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Abstract. Conventional approaches to image-text retrieval mainly focus on index-
ing visual objects appearing in pictures but ignore the interactions between these
objects. Such objects occurrences and interactions are equivalently useful and im-
portant in this field as they are usually mentioned in the text. Scene graph pre-
sentation is a suitable method for the image-text matching challenge and obtained
good results due to its ability to capture the inter-relationship information. Both
images and text are represented in scene graph levels and formulate the retrieval
challenge as a scene graph matching challenge. In this paper, we introduce the Lo-
cal and Global Scene Graph Matching (LGSGM) model that enhances the state-
of-the-art method by integrating an extra graph convolution network to capture the
general information of a graph. Specifically, for a pair of scene graphs of an im-
age and its caption, two separate models are used to learn the features of each
graph’s nodes and edges. Then a Siamese-structure graph convolution model is
employed to embed graphs into vector forms. We finally combine the graph-level
and the vector-level to calculate the similarity of this image-text pair. The empir-
ical experiments show that our enhancement with the combination of levels can
improve the performance of the baseline method by increasing the recall by more
than 10% on the Flickr30k dataset. Our implementation code can be found at
https://github.com/m2man/LGSGM.
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1. Introduction

Computer vision and natural language processing are two of the most popular domains
of deep learning, each of which has a wide range of applications [1,2,3]. A fusion of
these two areas has raised many fascinating challenges and focused the attention of re-
searchers. One of those topics is image-text retrieval, in which a text (image) query is pro-
vided to retrieve relevant images (texts) from a given dataset. This issue’s critical point
is the clear semantic gap between images and text, presenting a challenging multi-modal
data retrieval challenge.
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Many kinds of research have focused on this challenge, and one can summarise ear-
lier works into two types. The first type includes methods [4,5,6] in which each image
and textual description are entirely encoded as global representative vectors in the same
space. It can be considered a decent solution due to its simplicity and fast retrieval. How-
ever, these approaches are only suitable for simple cases where there is only a single ob-
ject in an image or a short sentence as they neglect the importance of positioning infor-
mation. The proposed techniques [7,8,9] of the second type can deal with this position-
ing issue. They encode images into several regions based on detected objects. Sentences
are also parsed into many fields based on their chunks of words. This approach now can
gain more elaborate detail for both data. Although these methods have been shown to
achieve better performance than others in the first group, there are still challenges to be
solved. Neither type has considered the actions occurring within the data, including the
interactions between entities/objects in images and captions. Such information can offer
more in-depth insights into images as well as textual queries [10], therefore facilitating
enhanced image-text retrieval. It should be mentioned that the global embedding meth-
ods in the first group also could learn this association information. However, it cannot
be in detail since they do not focus directly on the relationship aspect. The introduction
of a scene graph structure [10] introduces a promising way to address this issue. Due to
its capacity to capture both objects and their interactions, the design has been applied
and achieved excellent results in various fields [11,12,13,14]. A scene graph structure is
a graph including nodes and edges connecting nodes together. In the image-text retrieval
field, a node and an edge represent objects and the associations among objects detected
in images or captions, as depicted in Figure 1 where the green rectangles are nodes in
the graph indicating detected objects and the orange rectangles are edges illustrating the
relationships between them. Recent research [15,16] could obtain better results in this
retrieval area by utilizing these relations information. Hence there is a promise when
applying this useful data structure in the retrieval field.

Figure 1. An example of scene graphs generated from an image and its caption. The green and the red indicates
objects and their interactions respectively.

In this paper, we employ a state-of-the-art method that applies scene graph structure
to solve the retrieval challenge [15]. However, we advance this baseline by introducing
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an addition graph convolution network to capture a global form of a graph beside its
local representation produced by the baseline. To be more specific, we firstly generate
scene graph information of each image and its caption. Our proposed model can extract
and learn the insightful features of nodes and edges from both graphs to obtain the local
details. These scene graphs are then embedded into vectors by a Siamese graph model to
represent the entire image’s global information and textual content. The similarity of the
two graphs now can be measured at the local and global levels. We evaluate our proposed
method by measuring the recall metrics on the well-known Flickr30k [17] dataset to
show the effectiveness of our model.

2. Related Work

Many models have been introduced for the image-text retrieval problem. Some of them
[4,5,6] encode entire images and sentences into one space to facilitate the comparison,
while other solutions focused on local information instead [7,8,9]. Faghri et al. [4] fol-
lowed a typical method to use a CNN-based image encoder to extract visual features of
images and an RNN-based textual module to extract those from captions. These features
then went through a fully connected layer to be projected into the same vector space
to facilitate the comparison. Although it is a simple approach, it still achieves high per-
formance by applying hard negatives triplet loss during training. With different points
of view on analyzing sentences, Wang et al. [5] used a Bag-of-Word technique to ex-
tract the information from semantic data. However, one could also use a CNN network
to process sentences in a dual-path convolutional model [6] by entirely embedding each
image and sentence into a vector form using two CNN modules separately. In contrast,
Huang et al. [7] focused on the local information in images where semantic concepts and
their ordering were extracted by learning with their corresponding sentences. The work
from Wang [9] raised the awareness of the relative position of detected objects within
an image which could be useful when matching with the caption. Meanwhile, Lee et al.
[8] presented a novel cross attention mechanism that learned the importance of regions
(images) and words (captions) along with their alignment.

Although achieving considerable accuracy, previous work ignored or underestimated
the robust information of objects’ interactions within images and sentences. Johnson and
colleagues firstly introduced the scene graph for dealing with this issue for the image re-
trieval challenge [10]. In their research, a dataset of scene graphs of images was human-
annotated manually. An arbitrary graph was made and used as a query to retrieve equiva-
lent images having a similar graph. A Conditional Random Field model and a maximum
posterior technique was employed to measure the similarity of graphs. Many algorithms
were invented to generate scene graphs from images [18,19,20,21]since this structure
and the dataset about it was public. By virtue of them, some studies about image-text
retrieval [15,16] have followed the scene graph approach recently. Shi et al. [16] created
a scene concept graph based on a popular scene graph dataset [22] and used it to expand
the detected concepts in images to extract visual features. Cosine similarity was used
to measure the similarity between these features and the semantic features produced by
applying an RNN module to captions and rank them to perform the retrieval. The scene
graph matching (SGM) model from Wang et al. [15] takes a scene graph from both im-
ages and captions as input then extracts the graph features by using their own designed
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encoders called visual scene graph and textual scene graph for each modality. Then, one
can promptly calculate the similarity between the two graphs based on each part of the
first graph’s agreement with every part of the second graph. Despite getting state-of-the-
art results among the scene graph approaches, the SGM could still be enhanced. Firstly,
its similarity calculating process only takes the small parts of a graph into account, hence
neglect the overall detail. Secondly, the SGM model does not apply any normalization
technique, resulting in easy overfitting. Besides, using ResNet [23] as the backbone of the
structure also limits the model’s potential performance. There have been several recent
CNN-based networks that are more accurate than the ResNet.

Recently, some researchers have applied the attention technique to both visual and
textual data to learn the interaction between the components themselves, then combine
with another attention module to fuse two modalities together [24,25]. Chen et al. [24]
presented a novel structure that iteratively finds matching compartments between images
and sentences and refined them progressively. Meanwhile, the multi-modality cross at-
tention network employs the compelling Transformer [26] technique on images and se-
mantic data to get the fine-grained relationship information in detail. They both manage
to get the best results so far in the domain. Nevertheless, none of them use scene graphs
in their approach, which is our main focus of this research.

In this paper, we try to improve the performance of the SGM method by employing a
graph convolution model to capture the overall information of a graph which can be con-
sidered as one of its weaknesses mentioned above. Our model utilizes scene graph struc-
tures for images and sentences and encodes them into vector forms for storing overall es-
sential information to calculate the similarity between graphs instead of operating at the
graph level exclusively. We name this model “Local and Global Scene Graph Matching”
(LGSGM).

Our primary contributions are threefold. Firstly, the SGM measured the similarity
between graphs by dividing them into sub-graphs, hence diminishing the overall detail of
a graph. We overcome this problem by building a graph embedding module to summarise
all information of a graph into a vector form and combine it with the graphical form to
calculate the similarity of a pair of graphs. Secondly, the efficient network [27] is applied
to extract the visual features of detected objects in images instead of using conventional
Residual structure [23] in the SGM model as the former network is shown to be more
accurate although having a simpler design. Moreover, we also integrate normalization
techniques including Dropout and Batch normalization to mitigate the potential of over-
fitting. Thirdly, we run an evaluation on the Flickr30k dataset for the image-text match-
ing problem to facilitate a comparison with the SGM model [15] as the baseline, which
also uses scene graphs to support retrieval. We choose the SGM model as the baseline
due to its state-of-the-art result in this field for models that employ scene graphs in the
structure.

3. Methodology

This section will describe how our LGSGM model approaches the retrieval challenge
as a graph similarity ranking problem which is inspired by the SGM. Figure 2 depicts
the workflow of LGSGM that integrates an extra graph embedding stage to the SGM
baseline. Initially, our preprocessing data stage starts with the scene graph construction.
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The graphs of all images and texts are extracted beforehand and stored in the database.
A generated scene graph of a query, which can be an image or a sentence, then goes
through a graph encoder module to get a graph feature. Meanwhile, each sample in the
remaining modality database also follows the same scheme but separately. All feature
graphs now are passed through a Siamese-structured [28] graph embedding layer to learn
the summarised attributes of them, and the vector-level features of those graphs are ob-
tained. The similarity of a pair of graphs, which is a query graph and a sample graph
in the database, now can be calculated based on the feature graphs and their embedded
vectors representing local and global information accordingly. Finally, these scores are
ranked descending to find the most relevant answers from the database.

Figure 2. Our proposed LGSGM pipeline follows the SGM baseline. Scene graphs of an image and a query are
firstly extracted at the preprocessing stage. Both graphs are encoded by different graph encoders and embedded
into vector-level forms by a share graph embedding network to get to local and global features, which will be
used to calculate the similarity between them.

3.1. Visual Graph Encoder

A scene graph of an image can be established beforehand by using any available scene
graph generation method. The graph G after extracted can be seen as a tuple G=(O,B,R)
where:

• O = {o1, ...,oNo} is the set of No semantic labels of detected objects appearing the
image.

• B = {bo1 , ...,boNo
|boi ∈ R4} is the set of bounding boxes where boi is the coordi-

nate of the box of the corresponding object oi in the set O.
• R = {r1, ...,rNr} is the set of Nr predicted relations between objects in the image.

Each rm is a tuple of (oi, pi j,o j) where pi j is the label of the association between
two objects oi and o j. It is noted that R can be seen as the set of edges connecting
nodes, which are objects in O, of the scene graph G.

As shown in Figure 3, after the graph is constructed, we embed the label of the nodes
and edges into vectors with the help of trainable word embedding layers to gain their
semantic information. Besides, there is also rich information from images themselves.
We extract an image feature for each object in O based on its associated bounding box in
B. Regarding an edge pi j, its image feature can be computed through the union regions
of two boxes boi and bo j . These regions are fed into a CNN-based model, which is the
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EfficientNet [27] in our setting, to get the image features. The feature of one node or an
edge now is the fusion of its image feature and semantic features. We update these fea-
tures to learn the connection between nodes and edges features by using a convolutional
graph neural network [29] to get the final visual feature graph. The graph is finally fed to
the Siamese graph embedding model to get its global representation.

Figure 3. The workflow of an image in our LGSGM model.

Word Embedding. We exploit the information of semantic labels by embedding
names of objects and relations in O and R into vectors with two distinct embedding layers
for each. Each object label oi and predicate label pi j is transformed into one-hot vector
Ioi and Ipi j . Their embedding vectors, eoi and epi j , can be calculated as

eoi =WoIoi , Wo ∈ RdW×Co (1)

epi j =WpIpi j , Wp ∈ RdW×Cp (2)

where Wo and Wp are the trainable parameters in the layer, Co and Cp is the number of
categories of objects and relations supported in the scene graph generation method. We
set dW = 300 and utilise the pretrained embedding Glove model to initialise Wo and Wp.

Image Features. An image feature voi of an object oi can be obtained by applying
a pretrained CNN-based network to the cropped region boi around the object. Similarly,
the cropped region for an edge pi j, which is the area covering both boi and bo j regions,
also be used to extract its dI-dimension image feature vi j.

Fused Features. A simple trainable, fully connected neural network is applied to
the semantic feature’s concatenated vector and the image feature to get the fused feature
that can combine both modality detail. The fused representation of a node and an edge is
achieved as followed:

uoi = fact(Wu[voi , eoi ]) (3)

ui j = fact(Wu[vi j , ei j]), (4)

where [.] is the concatenating operation, fact is an activation function, and Wu ∈
RdF×(dI +dW ) is the trainable parameters.
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Graph Network. We use a Convolutional Graph Network (GCN) to learn the con-
nection and update the fused features of nodes (uoi ) and edges (ui j) of the graph. The
GCN works similarly to a normal CNN operation but more flexible to many types of
graph-structured data than only the grid data of a conventional CNN. In this GCN model,
the features of a node are only updated based on itself solely to mitigate noise effects
from surrounding nodes [15]. In contrast, because an edge bridges two nodes together,
its features should be related to those nodes’ features to learn the association between
them. Regarding an n-layer GCN model, updated features of a node and an edge at the
lth layer can be formulated as follows:

hl
oi
= MLPo(hl−1

oi
) (5)

hl
pi j

= MLPp([hl−1
oi

, hl−1
pi j

, hl−1
o j

]), (6)

where MLPo and MLPp are two separate neural network models, and h0
oi
= uoi and h0

pi j
=

ui j. The final output of the visual feature graph is the updated features of nodes and edges
which are denoted as hoi and hpi j .

3.2. Textual Graph Encoder

Figure 4. The workflow of a sentence in our LGSGM model. The N and M in the figure indicate the number
of words and number of relations in the sentence.

Similarly, a sentence also follows the same process of images. Figure 4 illustrates the
process of getting local and global features of the sentence. Firstly, the description is con-
verted into a scene graph to describe the relationships in detail. These triplet information,
such as ”man-wears-hat”, can be obtained by using SPICE technique [13]. However, re-
lying on the graph only will ignore other important clues in the sentence. Therefore two
different modules are used to extract the data from both pathways. Initially, every word
in the sentence can be encoded by a word embedding module similar to that in the visual
feature graph. Two distinct LSTM models [30] are then employed to learn the features
of each word in the sentence as well as the features of each extracted relation triplet. We
expand the SGM model by introducing an additional GCN to the graph created from the
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triplets. This graph is used to summarise information of all relations in the sentence and
compared to that of visual modality afterward.

Word Embedding. It is worth noting that there are a massive number of vocabular-
ies in a real-world deployment. Hence, it is not suitable for the word embedding part to
learn all words in the entire semantic modality database as an overfitting issue will occur
in the test condition. We create the dictionary from the textual database (excluding the
test set) and only learn some popular words. We replace the least common ones, whose
appearance frequency less than 4, with the ”unknown” word, which is considered a pop-
ular vocabulary. During the test phase, words not included in the dictionary are converted
to ”unknown”.

Word Features. After the embedding stage, the entire sentence goes to the bidirec-
tional LSTM hierarchy to get the features from both forwards and backward ways. Then
the representation of a word wi in the sentence, denoted as hwi , is the average of two
paths and computed as follows:

hwi =

−−−−→
LSTMw(ewi ,

−−→
hwi−1)+

←−−−−
LSTMw(ewi ,

←−−
hwi+1)

2
, (7)

where LSTMw is the bi-LSTM model, ewi is the word embedding vector whilst
−−→
hwi−1 and

←−−
hwi+1 are the hidden states of the word wi from forward and backward directions.

Graph Network. We organise the set of relations of a caption as T = {t1, ..., tNt}
with Nt is the total number of relations in the sentence parsed by SPICE. Each triplet tm
is a sequence of words (wi,wi j,w j) where the word wi j is the association between two
objects wi and w j such as (”man”, ”wears”, ”hat”). We use another bidirectional LSTM
structure, named LSTMt , and share it among all triplet ti for i ∈ [1,Nt ]. The feature of a
word in a triplet is the hidden state itself while the feature of entire triplet is the last state
of the sequence model. Specifically, they are calculated as:

hwn
tk =

−−−−→
LSTMt(e

wn
tk ,
−−−→
hwn−1

tk )+
←−−−−
LSTMt(e

wn
tk ,
←−−−
hwn+1

tk )

2
, (8)

htk =

−→
hwi

tk +
←−
h

w j
tk

2
, (9)

where triplet tk is a sequence of words started with wi and ended with w j, ewn
tk is the word

embedding vector of wn in tk. An extra GCN model having a similar structure with that
in visual modality (Eq. 5 and Eq. 6) is then applied to the graph formed by the set T .
Particularly, the graph will have hwn

tk as feature of nodes and h
wi j
tk for edges which are all

go through two neural networks to get the graph-level features of nodes and edges which
are denoted as hgwn

tk and hg
wi j
tk .

3.3. Graph Embedding

After feature graphs of both modalities are extracted, we embed them into vector forms
using an attention mechanism called multi-scale node attention [31]. Given a graph G
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having N nodes {h1, ...,hN} and M edges {r1, ...,rM} where hi and r j ∈ Rd is a feature
of a node and an edge accordingly, the embedded vector of G, noted as aG ∈ R2d , is
obtained by the following formula:

ah
G =

N

∑
n=1

σ(hT
n ReLU(Wh(

1
N

N

∑
m=1

hm)))hn, (10)

ar
G =

M

∑
n=1

σ(rT
n ReLU(Wr(

1
M

M

∑
m=1

rm)))rn, (11)

aG = [ah
G ,ar

G] (12)

where σ and ReLU indicate the sigmoid and rectified linear unit activate function, Wh
and Wr ∈ Rd×d is the training parameter in the model, subscript T denotes the transpose
operation, and [.] is the concatenation. We share this attention structure to the visual fea-
ture graph and textual feature graph as a siamese-model to get their vector-level repre-
sentation aV and aT respectively. It is noted that the node features and edge features of a
visual graph are hoi and hpi j while those of textual graph are hgwn

tk and hg
wi j
tk .

3.4. Similarity Function

The similarity between two scene graphs is measured using both local and global ap-
proaches. In the local form, each part of a graph is compared to every part of other
graphs; for instance, matching on each node-level feature and on each edge-level fea-
ture. Regarding the global approach, the embedding vectors of the entire two graphs are
used. This similarity score can be used to rank the retrieved result as higher means more
relevant answers.

Local similarity. The local score is the sum of a node score and an edge score. The
former score is the average of the matching scores of all words in a sentence with their
most relevant object detected in an image. The relevant score of a word wi in the caption
with an object in the image ok is their dot product hT

wi
hok . Assuming there are Nw words

in the caption and No objects in the image, the node score is calculated as:

SNode =
1

Nw

(
Nw

∑
i=1

max
k∈[1,No]

hT
wi

hok

)
(13)

Similarly, the edge score is the mean score between relations in the textual data with
their most matching edge in the visual graph and is formulated as:

SRel =
1
Nt

(
Nt

∑
i=1

max
pi j∈R

hT
ti hpi j

)
(14)

The local similarity then can be obtained as follows:

SLocal = SNode +SRel (15)

Global similarity. The global vectors provide the overall information of graphs. We
use conventional cosine distance to measure the degree of matching between two entire
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graphs. Specifically, the similarity score, SGlobal , of two embedding vectors of visual
graph aV and textual graph aT is:

SGlobal =
aT

V aT

‖aV‖‖aT‖
(16)

Finally, the similarity between two graphs takes both local and global details into ac-
count, hence is calculated by the sum of them, which is

S = SLocal +SGlobal (17)

This bi-level similarity score is also used in the loss function during the training
phase where we apply the hardest negative triplet loss as in [4,15]. The loss function is:

L(k, l) = max(0,m−Skl +Skl̂)+max(0,m−Skl +Sk̂l), (18)

where m is a margin hyperparameter, Skl is the similarity score of a true pair of image
k and its caption l, and k̂, l̂ is the least matching image and sentence with l and k in the
mini-batch, respectively.

4. Dataset and Metrics

We evaluate our proposed model on the Flickr30k dataset [17], which is one of the most
popular datasets in this image-text matching field due to its high quality of textual anno-
tation compared to others [32]. The dataset consists of 31,783 images, and each of them
has five corresponding captions. An example of image-sentence pairs and their gener-
ated scene graph can be illustrated in Figure 1. We split the Flickr30k data into training,
validating, and testing sets, so that the number of the training images is 29,783, whilst
the two latter subsets both have 1,000 images.

The evaluation metric we choose is a common Recall at K (R@K) value that has
been used in many kinds of research [15,9,24,25]. The R@K is the proportion of queries
that we find their correct matching answers in the top K of the ranking result. In our
experiments, we evaluate three values of K, which are 1, 5, and 10.

5. Experiments and Results

In this section, we run our proposed model on the Flickr30k dataset then compare the
baseline that is chosen as the SGM model as both our LGSGM and the SGM have a
similar scene graph approach.

5.1. Model Setting

At the scene graph generation stage, we use Neural Motifs [19] to get the similar graphs
as described in [15]. We only keep the top No = 36 detected objects and Nr = 25 predi-
cates in the result sorted by their confidence scores for each scene graph. Regarding vi-
sual features of objects, we employ the EfficientNet, which is considered to be more ac-
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curate in the image classification challenge, although fewer parameters [27] than ResNet
[23] as used in the baseline. The region surrounding the object is firstly cropped based
on its bounding box and resized to the desired format, then goes through the net, which
is excluded from the classification layer, to get the feature. We set dI = dF = 2048 and
choose the EfficientNet-b5 model pretrained on ImageNet to get the 2048-dim feature
vectors as comparable with the baseline. The number of layers in GCN models for both
modalities and the LSTM models is 1. The dimension of the output vector from GCN is
configured to be d = 1024, which is also the size of the hidden state of LSTM models.
We also apply Dropout and Batch-normalisation to avoid the potential overfitting in both
hierarchies. We use Swish [33] as an activate function when creating fused features (Eq.
3 and Eq. 4) and in GCN models. We also tried other activation functions (such as ReLU,
Leaky ReLU, or Tanh), but Swish has the best performance among these functions. The
margin m in the loss function (Eq. 18) is selected as 0.35. We train the model with the
batch size of 128 at the learning rate of 0.0003 with Adam optimizer.

5.2. Comparison with Baseline and other Methods

Although our primary focus is to compare with the baseline SGM, we also show the
result of other state-of-the-art techniques to provide a comprehensive perspective on the
performance of our proposed approach. Besides the SGM, other competing models are:

• PFAN [9] which uses the position focused attention network to extract the features
of the location of objects in images.

• IMRAM [24] with the attention mechanism to learn the matching fragments be-
tween images and sentences.

• MMCA [25] applying attention and transformer compartment to exploit the rela-
tionship between objects in images and words in texts within themselves.

• GSMN [34] that is also a graph-based approach but connects all detected objects
within an image to create a graph then compares to that of a text.

The LGSGM and others’ results on Flickr30k can be depicted in Table 1. The value
in bold is the highest number in that metric. Caption retrieval indicates that a model
needs to find texts that are relevant to a query image. On the contrary, image retrieval is
used when a query is a sentence. It is important to note that other models’ metrics are
taken from their original report since we use the same subset for training, validating, and
testing.

Table 1. Performance of models on Flickr30k Dataset. R-Sum is the sum of all recall metrics.

Methods
Caption retrieval Image retrieval

R@1 R@5 R@10 R-Sum R@1 R@5 R@10 R-Sum

PFAN [9] 70 91.8 95.0 256.8 50.4 78.7 86.1 215.2

IMRAM [24] 74.1 93.0 96.6 263.7 53.9 79.4 87.2 220.5

MMCA [25] 74.2 92.8 96.4 263.4 54.8 81.4 87.8 224.0

GSMN [34] 76.4 94.3 97.3 268.0 57.4 82.3 89.0 228.7

SGM [15] 71.8 91.7 95.5 259.0 53.5 79.6 86.5 219.6

LGSGM (Ours) 71 91.9 96.1 259.0 57.4 84.1 90.2 231.7

It is easier for all models to find captions when an image is given as a query than the
reversed retrieving because the caption retrieval section’s scores are higher than those in
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image retrieval. Regarding the caption retrieval, the GSMN using an ensemble setting
performs best among all models, where the differences in the R-Sum can be up to more
than 10%. This model is more accurate than ours with 3% on average of recall. Both
attention-based techniques, IMRAM and MMCA, share similar results as there is no sig-
nificant gap in all recall metrics. It is also true for SGM and LGSGM models. Although
we obtain higher scores at R@5 and R@10 with a margin less than 0.5%, the SGM model
has a slightly better R@1 metric than ours, which are 71.8% and 71%, respectively. The
PFAN model performs worst with the lowest R@1 and R@10. However, our LGSGM
achieves the highest scores on all three recall metrics in the image retrieval field, which
are 57.4%, 84.1%, and 90.2% accordingly. It makes the proposed method have the best
R-Sum of 231.7% in this text-to-image retrieval, which is 3% higher than the GSMN in
the second place. In specific, our R@5 and R@10 are better than that of GSMN roughly
by 1.8% and 1.2% respectively. Compared with the SGM, our improvement creates a
huge increase of 12.1% in total recall. The PFAN is still the model with the lowest recall,
while the R-Sum of MMCA is 4.5% higher than IMRAM.

In general, the proposed LGSGM surpasses the SGM model by a large margin,
which is also our main contribution. Our model and GSMN, which is also a graph-based
method, are the top-2 methods in the experiment, showing the usefulness of the graph
structure in this field. Nevertheless, GSMN achieves higher recall than ours with 496.7%
compared to 490.7% of our model in the total of all recall values in both types of re-
trieval. It might be due to its dense graph structure where this model connects all of the
objects in an image while the scene graph structure only captures some detected rela-
tions between them. Although the attention approaches are better than our scene graph
model in the image-to-text retrieval, our network still manages to get the highest score
on the remaining experiment. Moreover, LGSGM manages to score better than those
models concerning the sum of recall of both image retrieval and caption retrieval exper-
iments. With our state-of-the-art result in the text-to-image retrieval section, it opens a
wide range of applications of our structure in the field of finding images that are relevant
to the given description. For instance, one potential application is in lifelogging retrieval,
where a graph-based method has shown its promising performance [14].

6. Conclusion

In this research, we address an issue that remained in the state-of-the-art scene graph
matching model in which the global detail of graphs is ignored during the graph en-
coding phrase. We propose a graph embedding module that can address that concern by
summarising the overall information of a graph into a vector form. Our LGSGM method,
therefore, can measure the similarity between images and captions based on their input
scene graphs with both local and global views. Using a lighter and more accurate Effi-
cientNet to extract features combining with normalizing techniques to mitigate the over-
fitting problem, our model can surpass the baseline and achieve the new state-of-the-art
results for those using scene graph as input in image-text retrieval challenge.
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