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Abstract 20 

The identification of different meat cuts for labelling and quality control on production 21 

lines is still largely a manual process.  As a result, it is a labor-intensive exercise with the 22 

potential for error but also bacterial cross-contamination.  Artificial intelligence is used in many 23 

disciplines to identify objects within images but these approaches usually require a 24 

considerable volume of images for training and validation. The objective of this study was to 25 

identify five different meat cuts from images and weights collected by a trained operator within 26 

the working environment of a commercial Irish beef plant.  Individual cut images and weights 27 

from 7987 meats cuts extracted from Semimembranosus muscles (i.e., Topside muscle), post-28 

editing, were available. A variety of classical neural networks and a novel Ensemble machine 29 

learning approaches were then tasked with identifying each individual meat cut; performance 30 

of the approaches was dictated by accuracy (the percentage of correct predictions); precision 31 

(the ratio of correctly predicted objects relative to the number of objects identified as positive), 32 

and recall (also known as true positive rate or sensitivity). A novel Ensemble approach 33 

outperformed a selection of the classical neural networks including convolutional neural 34 

network (CNN) and residual network (ResNET). The accuracy, precision, and recall for the 35 

novel Ensemble method were 99.13%, 99.00%, and 98.00%, respectively, while that of the 36 

next best method were 98.00%, 98.00%, and 95.00%, respectively. The Ensemble approach, 37 

which requires relatively few gold-standard measures, can readily be deployed under normal 38 

abattoir conditions; the strategy could also be evaluated in the cuts from other primals or indeed 39 

other species. 40 
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Abbreviations 44 

DATAS, deductive analytics for tomorrows agri sector; MLR, multinomial logistic regression; 45 

DT, decision tree; CNN, convolutional neural network; ResNET, residual network; SOL, Start 46 

of Line; EOL, End of Line; PW, meat cut weights; PBWI, pre-processed black and white 47 

images; CI, colored images 48 

 49 

Introduction 50 

Access to a skilled and experienced workforce is fundamental to businesses that depend 51 

on human intervention in their production processes. The meat industry is one such sector, and 52 

this was highlighted by the levels of absenteeism during the COVID-19 restrictions. Processes 53 

such as meat cutting, fat determination, and meat deboning have been partially automated 54 

(Bostian et al., 1985; Umino et al., 2011). However, the labelling and identification of meat 55 

cuts still require a substantial amount of human intervention and manual handling. This can 56 

incur additional labor costs as well as being a source of error and potential microbiological 57 

contamination (Choi et al., 2013). 58 

Primal boning lines are a typical example of where multiple operators simultaneously 59 

work on a range of meat cuts. Each cut will eventually arrive at a weighing station where a 60 

single operator will inspect, identify and weigh the arriving meat cut. The automation of the 61 

weighing process on boning lines has traditionally been conducted on single-meat-cut 62 

production lines. However, due to spatial restrictions in many meat plants, there is a preference 63 

in the beef industry to operate multiple meat cut types simultaneously on a single processing 64 

line. This multi-meat-cut processing strategy has made the automation of meat cut 65 

identification extremely challenging as there is a high probability of incorrect meat cut 66 
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identification; any proposed automated system must have a high level of accuracy in order to 67 

avoid misclassification and line downtime. 68 

Deep learning such as convolutional neural networks (CNN), a branch of machine 69 

learning, has become an increasingly popular method for image identification. In practice, 70 

CNN predictions can achieve human-level accuracy for tasks such as face recognition, image 71 

classification and real time object detection in an image or video (Du, 2018; Fan and Zhou, 72 

2016; Zeng et al., 2017). CNNs are algorithms which are trained on labelled images (Wei et 73 

al., 2015). The training process is implemented by creating features from characteristics such 74 

as edges, dots, and lines on each image and then using these as inputs into a traditional neural 75 

network classification algorithm (Du, 2018).  76 

The objective of this study was to collect image data and weights of individual meat 77 

cuts from the Semimembranosus primal, and to develop a methodology to correctly classify 78 

meat cuts from an image, resulting in an automated process for the identification of meat cuts. 79 

The Ensemble approach was then compared against various classical neural networks. The 80 

resulting algorithm enables the removal of a human operator, thus reducing the risk of cross-81 

contamination across samples and potentially improving product shelf life.  82 

 83 

Materials and Methods 84 

All animals used as part of the study were reviewed and processed under the approval 85 

of the Irish Department of Agriculture following European Union Council Regulation (EC) N° 86 

1099/2009. 87 

 88 

 89 
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Data 90 

The data collected for this project were from beef cuts taken from a Topside (i.e., 91 

Semimembranosus muscle) trimming line of a major Irish beef processor. The process flow for 92 

this line required an operator to weigh the primal topside cut on a start-of-line (SOL) weighing 93 

scales. Each cut was then placed on a conveyor belt where a team of operators removed fat, 94 

gristle and secondary muscles. The remaining meat cuts were then labelled, weighed, and an 95 

image captured by a trained operator on an end-of-line (EOL) weighing scales, where the meat 96 

cuts were vacuum packed and labelled. 97 

For this particular study, there were five different meat cuts derived from the Topside 98 

primal (Figure 1). The data acquisition required a hardware setup of weighing scales 99 

(Machines, 1985), at both the SOL and EOL together with a Vivotek bullet camera (IP8362 - 100 

Bullet - Network Cameras :: VIVOTEK ::) at the EOL to capture a photo image of each meat 101 

cut. In addition, bespoke data capture software using a node.js platform (Cantelon et al., 2013) 102 

was used to acquire the characteristics of each meat cut being weighed in a 4-step process. 103 

1. A manual capture of the carcass identifier number, primal weight and the time 104 

of arrival at the SOL scales. 105 

2. The time and the id of the operator validating the meat cut image as well as the 106 

meat cut weight, meat cut label, and a photo image at the EOL scales were all 107 

captured on bespoke data capture software used as a form of data acquisition in 108 

the development of an Agri Data Warehouse (McCarren et al, 2017). 109 

3. The EOL operator identified the meat cut using the data capture interface 110 

(shown in Figure 2), ensuring the correct image was stored to disk and linked to 111 

the appropriate database entry containing the variables captured at both EOL 112 

and SOL points. 113 



 
 

6 
 

4. After each meat cut was removed from the scales, an image of the empty scales 114 

was captured. This was done to help remove image noise (discussed later). 115 

The user interface for the data capture software is in Figure 2. A trained operator 116 

identified the meat cuts for subsequent categorization; the cuts were categorized as a) Cap Off, 117 

Pear Off, PAD, b) Cap Off, Pear On, c) Topside Heart PAD, d) Topside Bullet, or e) Cap Off 118 

Non PAD Blue Skin Only. The data collection period lasted 3 weeks and a summary of the 119 

data captured is in Table 1.  120 

At the end of the data collection period, an analysis was conducted to determine if there 121 

were any outlying weights; this was undertaken by comparing the weights of the primal cut 122 

weighed on the SOL scales with the weight of the corresponding generated meat cut on the 123 

EOL scales. The ratio of each meat cut weighed on the EOL relative to the primal cut on the 124 

SOL is known as the product yield. Boning operators generally have target product yields 125 

which are dependent on the product specification. As the beef plant operator had a specification 126 

limit of 10.00% for each of the meat cuts used in these experiments, any absolute difference 127 

between the actual product yield and the target product yield that exceeded 10.00% was flagged 128 

as an outlier and subsequently removed from the dataset (Albertí et al., 2005). As a result, 129 

7,987 records were deemed acceptable for the final dataset (McCarren et al., 2021). Each record 130 

in this dataset included an image of the meat cut along with a corresponding weight and the 131 

batch number. The weights and images were then used as inputs to classification algorithms. 132 

Image Pre-Processing 133 

When conducting image pre-processing, one generally aims to improve the prediction 134 

process by enhancing certain characteristics and/or blurring others (Lancaster et al., 2018). For 135 

this study, each meat cut image was accompanied by its associated background image such as 136 

that shown in Figure 3. In order to remove distracting or confusing items (e.g., operator hands 137 
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or small meat blobs), the background image was removed from the meat cut image. This image 138 

was then converted to grayscale (Figure 3), and finally, the meat cut was segmented from the 139 

scale using Gaussian blur technique. This final set of original and grayscale images were used 140 

in the model construction. 141 

The frequency breakdown of the different topside meat cuts is in Table 1; the frequency 142 

of meat cut 20002 was disproportionately low as it is not frequently harvested in this plant. 143 

Therefore, it was decided to use data augmentation to create artificial training samples for meat 144 

cut 20002 in order to improve the imbalanced nature of the dataset. As part of the augmentation 145 

process, transformations such as anticlockwise rotation, clockwise rotation, horizontal flip, 146 

vertical flip, noise addition and blurring were implemented. These processes created 84 147 

additional images for meat cut 20002 resulting in a final count of 98 images. The pre-processing 148 

and the application of deep learning algorithms was implemented using the Python 149 

programming language (Python Release Python 3.6.0), with the Tensorflow, Keras API, Scikit 150 

learn (Géron, 2019), and CV2 (Bradski and Kaehler, 2008) libraries. 151 

Convolutional Neural Network 152 

The CNN algorithm has shown particular success in identifying objects within images 153 

(Wallelign et al., 2018) and was therefore considered in the present study. The CNN algorithm 154 

processes data by passing images through multiple convolutional and pooling layers and 155 

applies non-linear transformations such as the Softmax or rectified linear unit (ReLU) function 156 

to obtain the probability-based classes (He and Chen, 2019). The functional form of a 157 

convolution layer is described in Eq. 1. 158 

 𝑋𝑗
𝑙 = 𝑔 (∑ 𝑋𝑖

𝑙−1

𝑖∈𝑁𝑗

∗  𝑊𝑖𝑗
𝑙 +  𝐵𝑗

𝑙) (1) 

 159 
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where 𝑙 is a layer and 𝑗 is an output, 𝑿𝒋
𝒍 is an output vector, 𝑾𝒊𝒋

𝒍  is the convolution 160 

kernel (also known as weights or parameter estimates), 𝑿𝒊
𝒍−𝟏 is the previous or hidden layer’s 161 

feature map, 𝑩𝒋
𝒍 is an additive bias given to each output map, 𝑁𝑗 represents the selection of the 162 

input maps, ∗ represents the convolution operation, and 𝑖 is an element of the training set. 163 

In a neural network, regularization is a technique to prevent overfitting. Overfitting 164 

occurs when the model is over-parameterized relative to the volume of data available. A loss 165 

function describes the deviation of predictions from the ground truth (Zhao et al., 2016) and is 166 

required to calculate the model error. The error for a single pattern can be expressed as in Eq. 167 

2,  168 

 𝜖𝑛 = 𝜖𝑛−1 + λ ∑|(𝛼𝑖𝑗)|

𝑖,𝑗

 (2) 

where ∈𝑛 is the new error calculated after each iteration, ∈𝑛−1 is the error from previous 169 

iteration and is highest for the first iteration, 𝜆 is a user-defined parameter that controls the 170 

trade-off and 𝛼𝑖𝑗 are the parameter estimates of the algorithm for a given output from layer 𝑖 to 171 

𝑗. 172 

After each iteration of the CNN, the parameters and learning rates get updated in order 173 

to minimize the error (loss) using algorithms such as Adaptive Moment (Adam), which is a 174 

first-order gradient-based optimization of the stochastic function and is based on adaptive 175 

estimates of lower-order moments (Kingma and Ba, 2014). ReLU, a computationally 176 

inexpensive activation function, accelerates the training procedure by avoiding the vanishing 177 

gradient problem (He and Chen, 2019). In order to avoid overfitting, a CNN architecture which 178 

was originally used to identify numbers in a large handwritten dataset known as MNIST (Garg 179 

et al., 2019), was adapted by adding max-pooling and a dropout on each convolution layer 180 

(Park and Kwak, 2016). 181 
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CNN concatenated with Meat Cut Weights 182 

In order to model the weight of each meat cut along with the cut images, the cut weights 183 

were integrated into the flattened layer of the CNN as mentioned above and described in Figure 184 

4. Flattening the final convolution layer converts the images into a 1-dimensional array and 185 

transfers it to the fully connected, dense layer. The weight is concatenated with the 1-186 

dimensional array and the last dense layer is used as an output layer which predicts the classes 187 

of the meat cut images. 188 

Ensemble Approach with Meat Cut Weights 189 

Theoretically, with CNN algorithms there is no need to engineer features during the 190 

classification process, as the mix of the convolution kernels and max pooling automatically 191 

creates features that can be inserted into a typical neural network (Liu et al., 2019). However, 192 

neural networks are highly non-linear and estimating the choice of initial parameter estimates 193 

can be computationally expensive. Creating a simplified set of initial features, such as the 194 

object extremities, and using these as inputs to a basket of simpler algorithms or an ensemble 195 

of algorithms has been found to be successful in other applications (Wang et al., 2019). In order 196 

to identify these object extremities, images were standardized by rotating them so that the 197 

longest side was always in a vertical position (Figure 5). From this image, the following hand 198 

crafted features were calculated using the CV2 Python library: 199 

● Density: white pixel counts relative to the total number of pixels. 200 

● (𝑋𝑚𝑖𝑛, 𝑋𝑚𝑖𝑛𝑌): the minimum X and the corresponding Y coordinate. 201 

● (𝑋𝑚𝑎𝑥, 𝑋𝑚𝑎𝑥𝑌): the maximum X and the corresponding Y coordinate. 202 

● (𝑌𝑚𝑖𝑛𝑋, 𝑌𝑚𝑖𝑛): the minimum Y and the corresponding X coordinate. 203 

● (𝑌𝑚𝑎𝑥𝑋, 𝑌𝑚𝑎𝑥): the maximum Y and the corresponding X coordinate. 204 
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The Ensemble architecture is presented in Figure 6 as a 5-layer structure. At the first 205 

layer (Training: Data-Level 1), the handcrafted features, 𝑋𝑚𝑖𝑛,  𝑋𝑚𝑖𝑛𝑌,206 

𝑋𝑚𝑎𝑥,  𝑋𝑚𝑎𝑥𝑌,  𝑌𝑚𝑖𝑛𝑋,  𝑌𝑚𝑖𝑛 , 𝑌𝑚𝑎𝑥𝑋,  𝑎𝑛𝑑  𝑌𝑚𝑎𝑥 were used in conjunction with each meat cut 207 

weight, together with a basket of machine learning approaches to identify each meat cut. The 208 

three base learners shown at layer 2 were Multinomial Logistic Regression (MLR), Decision 209 

Tree (DT) classifier, and CNN. 210 

Multinomial logistic regression can be used for classification of a task with multiple 211 

response variables. The general equations of the MLR model are shown in Eq. 3 and 4, where: 212 

𝑝𝑖 is the probability of occurrence of each event; 𝜃 is the likelihood parameter; 𝑝𝑘+1 represents 213 

the monotonicity of the lower bound iterate; 𝑥 = (𝑥1, … , 𝑥𝑚)𝑇 is the covariate vector; 𝑘 is the 214 

maximum number of possible outcomes; and 𝜃𝑖 is the parameter vector corresponding to the 215 

𝑖 − 𝑡ℎ response category (Böhning, 1992; Li et al., 2010). 216 

 𝑝𝑖 =
exp (𝜃(𝑖)𝑇

𝑥)

1 + ∑ exp (𝜃(𝑗)𝑇
𝑥)𝑘

𝑗=1

 for 𝑖 = 1, … , 𝑘 
(3) 

 𝑝𝑘+1 =
1

1 + ∑ exp(𝜃(𝑗)𝑇
𝑥)𝑘

𝑗=1

 (4) 

 217 

Decision tree (DT) classifiers are a rapid and useful top-down greedy approach to 218 

classify a dataset with a large number of variables (Farid et al., 2014). In general, each DT is a 219 

rule set. Researchers have used the ID3 (Iterative Dichotomizer) algorithm widely where 220 

objects are classified based on the improvement in information gain given by a proposed split 221 

in the tree (Chandra and Varghese, 2009). In the approach used in this study, the handcrafted 222 

features were used to calculate the information content and then the classes were subsequently 223 

predicted. In addition to the decision tree and MLR classifier, the CNN predictions were also 224 

included as part of the input layer to the neural network shown in Figure 6. 225 
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The predictions from the base learners comprise layer 3 of the ensemble architecture. 226 

The predictions 𝑦1𝑖, 𝑦2𝑖, … , 𝑦4𝑘, 𝑦5𝑘 are shown in Figure 6, where 𝑖(s) are the predictions of 227 

MLR, 𝑗(s) are the predictions from DT classifier and 𝑘(s) are the predictions from CNN. These 228 

are then used in conjunction with the meat cut weights (PW) with an additional learner neural 229 

network (layer 4) and the final predictions of the meat cuts (20001, 20002, …, 20010), are 230 

delivered at layer 5 in the architecture. 231 

Transfer Learning 232 

Transfer Learning approaches such as a ResNET have been found to be successful in 233 

classifying images (He et al., 2016; Marsden et al., 2017; Setyono et al., 2018). A ResNET is 234 

a CNN with a skip connection, which is also known as an identity shortcut connection. The 235 

concept behind the skip connection is to enable gradients to flow between layers as they help 236 

to reduce the impact of the vanishing gradient problem in deep learning architectures. The 237 

general form is shown in Eq. 5, where 𝑎 is the activation (outputs) of neurons in layer 𝑙, θ is 238 

the learning parameter, 𝑚 is the total number of layers, 𝑖 = 1, 2, … , 𝑚 and 𝑗 = 0, 1, … , 𝑚 − 1. 239 

 
𝑎(𝑙+2𝑖) = 𝑔(𝜃 + 𝑎(𝑙+2𝑗)) 

(5) 

A 34-layer ResNET architecture was used with and without considering cut weights in 240 

the present study. Such architectures are well-balanced and are as accurate as the CNN with 241 

relatively low computational power requirements (He et al., 2016).  242 

Experimental Setup and Evaluation 243 

 Two broad sets of experiments were carried out in order to better understand the effect 244 

of a data transformation step on the predictive performance of the three applied algorithms. In 245 

the first set of experiments, the colored input images were transformed to grayscale which has 246 

been shown to reduce the noise-to-signal ratio (Vidal and Amigo, 2012), thus reducing the 247 
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complexity and improving the performance of statistical learning techniques. In the second set 248 

of experiments, the color of the input images was retained as it was hypothesized that the color 249 

contrasts between the fat and meat components of each cut contained potentially useful 250 

information that would inform a better predictive performance. In each experiment, the datasets 251 

were split into a training set and a test set using an 80:20 stratified sampling ratio. The training 252 

set was further split using a 90:10 ratios for the purpose of implementing a validation strategy. 253 

The training data was used to train the model while the validation data was used to examine if 254 

the hyperparameters required further tuning. A hyperparameter is a parameter whose values 255 

cannot be estimated from the data and are external to the model. The test data was used as an 256 

unseen dataset to examine the results of the model. 257 

Evaluation metrics used in image identification are typically accuracy, precision, recall, 258 

F1- score and convergence time (Al-Sarayreh et al., 2018; Larsen et al., 2014; Ropodi et al., 259 

2015; Setyono et al., 2018; Wang et al., 2019). Accuracy and F1 scores are described in Eq. 6 260 

and 7 respectively. 261 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑ 𝑇𝑃𝑖
𝑛=5
𝑖=1

𝑁
 

(6) 

In Eq. 6, TPi or the true positive is the number of instances predicted correctly for instance 𝑖 262 

and 𝑁 is the total number of predictions. 263 

 𝐹1𝑖 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 

(7) 

where, 264 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 (8) 

 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 (9) 
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where 𝐹𝑃𝑖 or the false positive, is the number of instances where the true label is negative or 265 

of a different class but incorrectly predicted as positive, while 𝐹𝑁𝑖 or false negative, is the 266 

number of instances where the true label is positive but the class is incorrectly predicted as 267 

negative. The weighted-average F1 score was derived from the average F1 score from each 268 

classification category weighted by the number of meat cuts in each product group as shown 269 

in Eq. 10. 270 

 
𝐹1𝑖(𝑤𝑡) =

∑ 𝐹1𝑖
𝑛
𝑖=1

n
 

(10) 

where n is the number of categories. Table 2 demonstrates the value of these metrics along 271 

with the time taken to converge for each algorithm. 272 

In order to determine the statistical significance of the results, a beta regression model 273 

with a “loglog” link function was implemented in the R programming language using the 274 

betareg package (Cribari-Neto and Zeileis, 2010) to model accuracy against the algorithm, 275 

dataset and meat cut variables (R Core Team, 2020). Only 2-way interaction terms on 276 

combinations of the product, algorithm and image type were examined as the degrees of 277 

freedom in this particular analysis was limited to 40. The final beta regression model had 278 

pseudo R2 of 0.98 and the comparison with an identity link was significant (Φ=350.37, z=3.99, 279 

p<0.001). A Type III analysis was conducted and interaction effects between algorithm and 280 

image type and between algorithm and product were found to be significant (Algorithm*Image 281 

Type F4,26 = 3.046 and P =0.016, Algorithm*Product F12,26 = 5.082 and P <0.001). From this 282 

analysis, a post-hoc analysis on the estimated marginal means with a Tukey correction for 283 

multiple comparisons was conducted and is outlined in Table 3.  284 

 285 

 286 
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Results 287 

Accuracy statistics for each model and for both the color and grayscale images are in 288 

Table 2 for the training and test datasets. In addition, the convergence times for the color and 289 

grayscale images, for each method are also summarized in Table 2. While there was a wide 290 

disparity in convergence times, ranging from 1,745 seconds for the ResNET on the pre-291 

processed black and white images to 19,224 seconds for the Ensemble approach with color 292 

images, it was not unexpected given the difference in model complexities.  293 

 The Ensemble approach with color images was the best-performing algorithm with a 294 

test accuracy of 99.13% and a training accuracy of 99.50%. The estimated marginal mean 295 

(EMM) for the test accuracy difference on color images was higher for the Ensemble approach 296 

compared with either the CNN ((EMMCNN-EMMEnsemble) Zscore= -4.72 or P <0.001) the ResNET 297 

((EMMEnsemble-EMMResNET) Z score= 7.82 or P <0.001) algorithms without incorporating the 298 

cut weight information. The same algorithm also performed best for images in grayscale, with 299 

a test accuracy score of 95.00% and a train accuracy of the same value. However, the only 300 

statistical difference found was between the Ensemble and the ResNET without using cut 301 

weight information algorithms ((EMMEnsemble-EMMResNET) Z score= 4.42 or P <0.001). With a 302 

score of 98.00%, the Ensemble approach also had the highest weighted-average F1 score. 303 

Figure 7 illustrates both the training and validation accuracy as the number of epochs 304 

changed for each method, for both the color and grayscale images. All approaches, with the 305 

exception of the Ensemble approach, demonstrated varying degrees of percentage difference 306 

in accuracy between the training and test accuracy on the grayscale images (CNN 4.80%, CNN 307 

with weights 5.80%, ResNET 0.90% and Ensemble 0.00%), implying the algorithms over-308 

fitted the training data. The level of overfitting was reduced for both the CNN and the CNN 309 

that also used the cut weight information, albeit, there was a marginal increase in overfitting 310 
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with the ResNET and Ensemble approaches for the color images (CNN 2.90%, CNN with 311 

weights 1.60% and ResNET 1.30% and Ensemble 0.43%).    312 

All five algorithms, CNN, CNN concatenated with weights, ResNET, ResNET 313 

concatenated with weights and the Ensemble method performed better with color images, as 314 

the EMM difference between algorithms run on color images with those run on grayscale 315 

images was statistically significant ((EMMColor-EMMgrayscale) Zratio = 13.649, P<0.001) as 316 

shown in Table 3. 317 

The inclusion of product weights in the model demonstrated a beneficial effect when 318 

detecting meat cuts from images, as the CNN and Ensemble approaches when including 319 

weights out-performed the same algorithms when excluding the weights ((EMMCNN with Weights-320 

EMMCNN) Zratio = 3.527, P<0.015, ((EMMCNN with Weights-EMMResNET) Zratio = 5.37, P<0.001, 321 

((EMMEnsemble-EMMCNN) Zratio = 3.211, P<0.043, ((EMMEnsemble-EMMResNET) Zratio = 5.095, 322 

P<0.001) as shown in Table 3. 323 

Figure 8 shows the F1 score for each model for each individual meat cut. In all cases, 324 

the highest F1 score was achieved for the Ensemble method with colored images (CI); while 325 

meat cut 20004 had the highest F1 score (100.00%) using the Ensemble method. Meat cut 326 

20002, had the fewest number of images and correspondingly had the smallest F1 scores. 327 

However, using the Ensemble method with CI, meat cut 20002 did have the highest F1 score 328 

(97.00%).   329 

Discussion 330 

The primary aim of this study was to create an automated meat cut identification 331 

strategy for beef boning lines that simultaneously process multiple beef cuts; the present study 332 

focused solely on the cuts from the Semimembranosus muscle. In order to do this, a number of 333 
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classical neural network that perform image detection, and a novel Ensemble strategy were 334 

applied to a dataset (McCarren et al., 2021) consisting of 7,987 product cut images and their 335 

corresponding weights. A series of eight experiments were conducted on both color and 336 

preprocessed grayscale images and the novel Ensemble approach developed in this study 337 

performed best for each individual cut and that using color images outperformed those that 338 

used grayscale while availing of product weights also improved the accuracy of categorization. 339 

These results demonstrated findings relating to AI and implementation strategies that would be 340 

applicable for future commercial deployment strategies.  341 

AI Strategy 342 

Typically, in image detection problems, one highlights image features using a variety 343 

of pre-processing techniques to improve the algorithm’s performance. However, on the live 344 

production environment, where these experiments were conducted, the opposite result was 345 

found; accuracy and weighted-average F1 score was 4.00% higher for all models using color 346 

images. While this is not typical in object detection problems (Xu et al., 2016), the occurrence 347 

in these experiments can be explained by the fact that the background remained relatively 348 

constant throughout the experimental period, thus removing it from the images had little or no 349 

effect. In addition, grayscaling the images potentially limited the ability of all algorithms to 350 

differentiate between the fat and red meat.  351 

In the meat industry, meat cuts are generally extracted from primal cuts, and knowing 352 

the weights of these cuts can potentially help in the identification of candidate labels. Results 353 

from the present study clearly demonstrate a benefit of knowing the weight of the on-coming 354 

cut, as the inclusion of the product weight into the flat layer of both the CNN and ResNET 355 

improved the resulting meat cut identification. This is not surprising as it has been shown to be 356 

successful in previous research on product identification (Shi et al., 2020). However, in this 357 
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study a simplified model where product weights alone were used as the only independent 358 

variable resulted in an accuracy of 60.12% on the test dataset. This result justifies the 359 

importance of the product weights but also demonstrates that the product weights alone are not 360 

sufficient for categorizing product cuts. 361 

Transfer learning is one of the more recent evolutions of machine learning and, in 362 

particular, the ResNET transfer learning algorithm is considered to be one of the most advanced 363 

deep learning architectures in image detection (Marsden et al, 2017). However, in the 364 

experiments conducted in the present study, the incorporation of the weight of each meat cut 365 

in the final layer and the outputs of the simpler approaches outperformed the ResNET 366 

architecture. While this was somewhat surprising, the combined use of multinomial logistic 367 

regression, the CNN and the decision tree algorithm in the ensemble approach on the set of 368 

artificially created features, was the most consistent with respect to overfitting and suggests 369 

that the use of simpler algorithms in the Ensemble approach may have assisted the CNN 370 

algorithm in finding a stable solution. While the Ensemble approach with color images took 371 

longer to converge, the ability to avoid overfitting is extremely important in a live environment. 372 

In a live environment, the convergence time would not be a considerable issue as model fitting 373 

would only be implemented in order to calibrate the model in an offline mode. Finding a stable 374 

solution can be an issue when using Neural Network algorithms as the level of non-linearity in 375 

the cost function can cause overfitting (Nguyen et al., 2011). Using a mixture of simpler 376 

algorithms in the early stage of the Ensemble has been shown to outperform more complex 377 

methods with regard to accuracy and F1-score (Abdelaal et al., 2018) and to reduce overfitting 378 

(Perrone and Cooper, 1992). GC et al., (2021) achieved a maximum test accuracy of 98.57% 379 

and a weighted average F1-score of 94.00% on the test dataset of beef cuts using the alternative 380 

VGG16 transfer learning model, a state-of-the-art method. The proposed Ensemble method 381 

was able to achieve an accuracy up to 99.13% and weighted-average F1-score of 98.00%.  382 
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Deployment Strategy 383 

The data capture unit developed in the present study was implemented using the Node.js 384 

programming language, and consisted of a DEM weighing scales (Machines, 1985), a DEM 385 

terminal and a Vivotek harsh environment camera. In order to truly automate the collection of 386 

the cut weight and subsequently identify the products in a live environment, an external harsh 387 

environment color camera will need to be integrated into an inline weighing scales. The 388 

terminal for this scales will then need a script that runs the Ensemble machine learning models; 389 

however, the code used to create the Ensemble approach in the present study can be easily 390 

integrated into many diverse operating systems. For each new group of products, the algorithm 391 

will need to be trained on images collected from the live production of the corresponding plant. 392 

The number of samples required to train the algorithm will be problem specific. However, in 393 

previous research studies, researchers have recommended that at least 1000 images of each 394 

object should be used during the AI training phase (Cho et al., 2016). This is not a hard rule 395 

and in this study the results demonstrated that there was ample data with the exception of 396 

product 20002, where the overall accuracy was lower. As mentioned previously, the data 397 

collection for this study was implemented on bespoke software. This code can be readily 398 

implemented to help create training data for the Ensemble machine learning algorithm during 399 

new deployments and makes the implementation in a commercial environment an attractive 400 

proposition.  401 

 The cost of deployment is not envisaged to be expensive for a live environment as all 402 

the software used is open source (Tilkov and Vinoski, 2010; Python Release Python 3.6.0). 403 

The camera technology is relatively inexpensive as the image processing in the present study 404 

was conducted without the use of spectral images which was not the case in other studies 405 

(Larsen et al., 2014; Ropodi et al., 2015; Al-Sarayreh et al., 2018; Yu et al., 2018). The 406 

advancement in object detection algorithms and the inclusion of the weights seems to have 407 
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negated the need for infrared spectroscopy infrared and potentially could be used in many other 408 

applications in the food industry. The test accuracy with the ensemble algorithm demonstrates 409 

the ability of artificial intelligence to replicate the behavior of a human operator.  410 

Applications 411 

In the meat processing industry, the decision to implement automated or robotic 412 

processes is usually dictated by the return-on-investment which, in turn, is usually a function 413 

of improved product quality, reduced labor costs or a reduction in safety incidents (Purnell 414 

2013). Automation has been introduced in the sector and has been used in applications such as 415 

fat and red meat yield prediction (Pabiou et al., 2011) and a limited number cutting procedures. 416 

However, beef boning is still predominantly a highly manual process on modern pace boning 417 

lines. These operations rely on operators at the end of the line to identify products, check their 418 

quality characteristics, and then manually redirect them to the appropriate packing stations. At 419 

present, in operations were there are multiple cuts being processed simultaneously, there is 420 

generally no facility to monitor yields during the boning process. This is a major weakness in 421 

current systems as plant management rely on in line supervision to continually monitor the 422 

operator cut decisions of boning operators. By automating the identification of the relevant 423 

meat cuts and, in conjunction with automated weighing technology, the yield of the cut relative 424 

to the original primal weight can be accurately monitored during production rather than at the 425 

end the batch, thus improving the meat yield of the plant.  426 

In addition to potential yield improvement, removing an operator on the line can 427 

potentially reduce the possibility for cross contamination from bacteria such as Staphylococcus 428 

or Escherichia coli which are commonly transmitted on food operations by line operators 429 

(Coma, 2008). However, the potential for misspecification of the meat cut could potentially 430 

rise without the use of a trained human operator. In order to avoid this issue, the system applied 431 
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in this study could be adapted to remove products onto a separate QC line if it either did not 432 

recognize the meat cut or it was outside the weight specification, effectively mimicking the 433 

actions of a human operator.  434 

 435 

Conclusions 436 

 In the present study, an approach to automate the identification of meat cuts was 437 

presented using a live beef production line over a three-week period. It was unclear at the outset 438 

as to which machine learning model would perform best on these types of images in the live 439 

environment and thus a number of computer vision algorithms were evaluated. As is normal 440 

with the construction of a new dataset, imbalances in terms of image distribution frequencies 441 

can occur but this was offset using different pre-processing methods and data augmentation. 442 

The outcome was that an Ensemble approach, with a mixture of CNN, multinomial logistic 443 

regression, and decision tree classifiers that incorporated product weights, had the best 444 

performing result in terms of accuracy and weighted F1-score. The results also showed that the 445 

CNN-multi-inputs converged 33.00% faster than the Ensemble approach, although this model 446 

was 1.00% less accurate on the test dataset and showed less promising results when the training 447 

and validation loss graphs were examined. This work focuses on constructing a larger dataset 448 

with a broader range of primal cuts and the next step is to apply the best performing model on 449 

a more challenging dataset to demonstrate if the overall process can be used in a full-scale 450 

commercial application. 451 
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List of Figures 600 

 601 

 602 

Figure 1: 603 

Title: Topside cuts 604 

Caption: 5 meat cut variations. (a) Cap Off Pear Off, PAD topside muscle (20001); (b) Cap 605 

off, Pear on topside muscle (20002); (c) Topside Heart muscle (20003); (d) Topside Bullet 606 

muscle (20004); and (e) Cap Off, Non PAD, Blue Skin Only topside muscle (20010). 607 

 608 

Figure 2: 609 

Title: End of Line (EOL)  610 

Caption: A user interface for data collection 611 

 612 

Figure 3: 613 

Title: Images at various stages of pre-processing 614 

Caption: a) is the background image reflecting the scale on which the meat cuts were placed, 615 

b) shows the scale with a meat cut on it, c) is the difference between image a, and b, d) is the 616 

grayscale conversion of image c and e) represents the segmented meat cut. 617 

 618 

Figure 4: 619 

Title: Convolutional neural network with meat cut weight 620 

Caption: Architecture where the weight is concatenated with the image in the flattened layer. 621 

 622 

Figure 5: 623 

Title: Handcrafted features  624 

Caption: These features are created from, the co-ordinates of the virtual box surrounding the 625 

meat cut. 626 

 627 

Figure 6: 628 
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Title: Ensemble architecture 629 

Caption: Integrating the Multinomial Logistic Regression (MLR), Decision Tree classifier 630 

(DTC) and Convolutional Neural Network Learners, where the handcrafted features 631 

𝑋𝑚𝑖𝑛,  𝑋𝑚𝑖𝑛𝑌, 𝑋𝑚𝑎𝑥,  𝑋𝑚𝑎𝑥𝑌,  𝑌𝑚𝑖𝑛𝑋,  𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥𝑋,   𝑌𝑚𝑎𝑥 and images are used as inputs. The 632 

outputs 𝑦1𝑖 .. 𝑦5𝑘 are the predictions of each product cut from the MLR, DTC and CNN 633 

algorithms, which are then fed to a standard Neural Network(NN), whose outputs correspond 634 

to prediction of product cuts, 20001, 20002, 20003, 20004, and 20010. 635 

 636 

Figure 7: 637 

Title: Training and Validation Loss Graphs 638 

Caption: (a), (c), (g), and (h) show the overfitting as there is a significant difference between 639 

the train and the valid curves. In (b), (d), (e), and (f), there is no overfitting as the two lines are 640 

almost overlapping showing very minimal or no differences between train and valid results. 641 

 642 

Figure 8: 643 

Title: F1 score: 644 

Caption: It shows the F1 score for all five meat cuts with different models on both the pre-645 

processed black and white (PBWI) and the colored images (CI). 646 
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Tables 

Table 1: Dataset summary statistics 

Meat cut ID 𝑵 Meat cut 

description 

𝑿 ± 𝑺 Cut yield (%) 

20001 1060 Cap Off, Pear 

Off, PAD 

6.47 ± 1.17 55.11 

20002 14 Cap Off, PAD 

On 

8.87 ± 0.98 68.18 

20003 2132 Topside Heart 

PAD 

5.87 ± 1.10 44.00 

20004 2085 Topside Bullet 1.40 ± 0.29 9.45 

20010 2696 Cap Off Non 

PAD Blue Skin 

Only 

7.82 ± 1.59 61.55 

𝑁 is the frequency of the images, and 𝑋̅ and 𝑆 are mean and standard deviation of weights, respectively. 
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Table 2: Comparative performances for all 3 Models: The accuracy for the training and test datasets, and the weighted-average F1 score for the 

test dataset are shown in the columns Train Accuracy, Test Accuracy, and Test Weighted F1 Score respectively. For each of the models there are 

two rows representing the pre-processed black and white images (PBWI) and the colored images (CI). The time (s) column displays the time, in 

seconds, to train the model. 

Model Image Type Train Accuracy Test Accuracy Average 

Precision (Test) 

Average Recall 

(Test) 

Weighted F1 

Score (Test) 

Time(s) 

CNN PBWI 96.80% 92.00% 86.00% 82.00% 84.00% 6675 

CNN CI 98.90% 96.00% 96.00% 92.00% 92.00% 3093 

CNN with weights PBWI 98.80% 93.00% 91.00% 83.00% 86.00% 6059 

CNN with weights CI 99.60% 98.00% 98.00% 95.00% 96.00% 11251 

ResNET PBWI 91.80% 90.90% 90.90% 90.80% 90.80% 1745 

ResNET CI 96.80% 96.50% 96.50% 96.00% 96.00% 12500 

ResNET with 

weights 

PBWI 95.20% 92.00% 90.00% 78.00% 81.00% 8345 

ResNET with 

weights 

CI 99.10% 97.00% 97.00% 87.00% 90.00% 9278 

Ensemble PBWI 95.00% 95.00% 92.00% 82.00% 85.00% 18518 

Ensemble CI 99.50% 99.13% 99.00% 98.00% 98.00% 19224 
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Table 3: Tukey Post hoc contrast analysis of predicted marginal mean difference (SE) between algorithms by image type.  

Image Type Contrast Marginal Mean Difference (SE)  Z ratio  Adjusted P value 

Color  CNN - CNN with weights                                                                  -0.7573 (0.215) 0.0153 0.0153 

Color  CNN - Ensemble  -0.6719 (0.209) -3.211 0.0433 

Color  CNN - ResNET  0.3505 (0.174) 2.017 0.5871 

Color  CNN - ResNET with Weight  -0.0801 (0.186) -0.429 1 

Color  CNN with weights - Ensemble   0.0854 (0.237) 0.361 1 

Color  CNN with weights - ResNET  1.1078 (0.206) 5.37 <.0001 

Color 

 CNN with weights - ResNET with 

Weight  0.6773 (0.217) 3.122 0.0566 

Color  Ensemble - ResNET  1.0224 (0.201) 5.095  <.0001 

Color  Ensemble - ResNET with Weight   0.5919 (0.212) 2.798 0.137 

Color  ResNET - ResNET with Weight  -0.4305 (0.177) -2.437 0.3036 

Grayscale  (CNN ) - (Ensemble ) -0.4688 (0.175) -2.687 0.1789 

Grayscale  (CNN ) - (ResNET ) 0.2886 (0.145) 1.996 0.602 

Grayscale  (CNN ) - (ResNET with Weight ) -0.0423 (0.155) -0.272 1 

Grayscale  (CNN with weights ) - (Ensemble ) -0.3269 (0.183) -1.782 0.7468 

Grayscale  (CNN with weights ) - (ResNET )  0.4306 (0.155) 2.769 0.147 

Grayscale 

 (CNN with weights ) - (ResNET 

with Weight )  0.0997 (0.166) 0.602 0.9999 

Grayscale  (Ensemble ) - (ResNET ) 0.7575 (0.171) 4.422 0.0004 

Grayscale 

 (Ensemble ) - (ResNET with 

Weight ) 0.4266 (0.180) 2.364 0.3477 
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Figures 

   

(a) Meat cut 20001 (b) Meat cut 20002 (c) Meat cut 20003 

 

  

(d) Meat cut 20004 (e) Meat cut 20010 

Figure 1: Topside cuts: 5 meat cut variations. (a) Cap Off Pear Off, PAD topside muscle 

(20001); (b) Cap off, Pear on topside muscle (20002); (c) Topside Heart muscle (20003); (d) 

Topside Bullet muscle (20004); and (e) Cap Off, Non PAD, Blue Skin Only topside muscle 

(20010). 

 

 

 

 

 

 

 

 



 
 

31 
 

 

 

Figure 2: End of Line (EOL): A user interface for data collection 
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(a) Background image (b) Scale with meat cut and 

operator’s hand 

(c) Difference of 

background and meat cut 

 

  

(d) Converted grayscale image of the 

difference 

(e) Segmenting only meat cut 

Figure 3: Images at various stages of pre-processing: a) is the background image reflecting the 

scale on which the meat cuts were placed, b) shows the scale with a meat cut on it, c) is the 

difference between image a, and b, d) is the grayscale conversion of image c and e) represents 

the segmented meat cut. 
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Figure 4: Convolutional neural network with meat cut weight: Architecture where the weight 

is concatenated with the image in the flattened layer. 
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Figure 5: Handcrafted features: These features are created from, the co-ordinates of the virtual 

box surrounding the meat cut. 
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Figure 6: Ensemble architecture: Integrating the Multinomial Logistic Regression (MLR), 

Decision Tree classifier (DTC) and Convolutional Neural Network Learners, where the 

handcrafted features 𝑋𝑚𝑖𝑛,  𝑋𝑚𝑖𝑛𝑌, 𝑋𝑚𝑎𝑥,  𝑋𝑚𝑎𝑥𝑌,  𝑌𝑚𝑖𝑛𝑋,  𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥𝑋,   𝑌𝑚𝑎𝑥 and images 

are used as inputs. The outputs 𝑦1𝑖.. 𝑦5𝑘 are the predictions of each product cut from the MLR, 

DTC and CNN algorithms, which are then fed to a standard Neural Network(NN), whose 

outputs correspond to prediction of product cuts, 20001, 20002, 20003, 20004, and 20010. 
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(a) CNN without weights B/W overfit (b) CNN without weights color no overfit 

  

(c) CNN with weights B/W overfit (d) CNN with weights color no overfit 

  

(e) Ensemble B/W no overfit (f) Ensemble color no overfit 
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(g) ResNET B/W overfit (h) ResNET color overfit 

Figure 7: Training and Validation Loss Graphs: (a), (c), (g), and (h) show the overfitting as 

there is a significant difference between the train and the valid curves. In (b), (d), (e), and (f), 

there is no overfitting as the two lines are almost overlapping showing very minimal or no 

differences between train and valid results.  



 
 

38 
 

 

Figure 8: F1 score: It shows the F1 score for all five meat cuts with different models on both 

the pre-processed black and white (PBWI) and the colored images (CI). 

 

 


