
A Methodology for Automating Graph Construction and

Evaluation

Congcong Xing

BSc Biological Science

MSc Financial Risk Management

A Dissertation submitted in fulfilment of the

requirements for the award of

MSc

to

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisors: Prof. Mark Roantree and Dr. Andrew McCarren

September 2021

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gram of study leading to the award of MSc is entirely my own work, and that I

have exercised reasonable care to ensure that the work is original, and does not

to the best of my knowledge breach any law of copyright, and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed:

ID No.: 18214880

Date:

Acknowledgements

I would first like to thank my supervisors Prof. Mark Roantree and Dr. Andrew

McCarren, for giving me the great support during my MSc. Without their constant

encouragement, guidance and pursuit of perfection, this thesis would not exist.

There are too many people at DCU that I would like to thank. But I am not going to

attempt to name everyone because I fear forgetting many, so I would like to extend

my thanks to all the students and postdocs at the School of Computing.

Finally, I would like to thank the VistaMilk SFI Research Center and the Depart-

ment of Agriculture, Food and Marine on behalf of the Government of Ireland for

funding my research under grant no. SFI/12/RC/2289.

Table of Contents

Abstract 1

1 Introduction 1

1.1 Introduction and Background . 1

1.1.1 Motivation and Problem Statement 4

1.2 Graph Analytics . 6

1.3 Approach . 7

1.3.1 Research Questions . 7

1.4 Summary . 8

2 Related Research 11

2.1 Data Integration . 11

2.2 Graph Transformation . 16

2.3 Summary . 20

3 Integration Methodology 21

3.1 System Architecture . 22

3.1.1 Ontology Matching . 22

3.1.2 Metadata Integration . 24

3.1.3 Data Integration . 24

3.1.4 Graph Construction . 25

3.2 Agri-Based Case Study . 26

3.2.1 The Livestock Data Source 26

3.2.2 Animal Grazing Data Source 28

3.2.3 Paddock Data Source . 29

3.2.4 Cow Information Data . 32

3.2.5 Lactation Database . 33

3.3 Summary . 34

4 Schema Integration 35

4.1 Initial Instance Data Loading . 35

4.2 Metadata Extraction . 36

4.3 Ontology Matching . 38

4.4 Metadata Integration . 40

4.5 Instance Data Integration . 42

4.6 Re-run of Steps For All Input Files 43

4.7 Evaluation . 53

4.7.1 Evaluation Framework . 53

4.7.2 Evaluation Results . 55

4.8 Summary . 55

5 Data Model Transformation 57

5.1 Introduction . 57

5.2 Meta-Analysis . 59

5.3 Attribute Classification . 60

5.4 Graph Construction . 62

5.5 Summary . 69

6 Evaluation 70

6.1 Experimental Setup . 70

6.2 Results . 71

6.2.1 Storage . 74

6.2.2 Data Integrity . 76

6.2.3 Analytical Evaluation . 79

6.3 Analysis and Discussion . 82

6.3.1 Storage Analysis . 82

6.3.2 Data Integrity Analysis . 83

6.3.3 Analytics Result Analysis . 84

6.3.4 Data Loading Performance 85

6.4 Summary . 85

7 Conclusions 87

7.1 Thesis Summary . 87

7.2 Future Research . 89

Bibliography 91

Appendices 99

A LivestockNumbers Ontology 100

B ManagementDecisions Ontology 102

C Integrated Metadata Ontology File For First Step 104

D PaddockEstimation Ontology 106

E Integrated Metadata Ontology Extended With PaddockEstima-
tion 110

F PbiLactation Ontology 115

G Integrated Metadata Ontology Extended With PbiLactation 116

H IndividualCase Ontology 122

I Integrated Metadata Ontology Extended With IndividualCase 124

J PbiCow Ontology 131

K Yam++ API Response Example 133

List of Figures

1.1 Data Integration . 2

2.1 Direct Mapping, Note. From “R2LD: Schema-based Graph Mapping

of relational databases to Linked Open Data for multimedia resources

data” by Zhao, Z., Han, S. & Kim, J., 2019, Multimed Tools Appl

78, 28835–28851 (2019). https://doi.org/10.1007/s11042-019-7281-5.

CC BY-NC. 18

3.1 System Flow Diagram . 23

3.2 Case Study with Agri sources . 27

4.1 Livestock Numbers Data Source as a MySQL Table 36

4.2 Livestock Numbers Metadata Graph & Properties for CoverDate Node 37

4.3 Calibration Feature Enabled . 41

4.4 First Integrated Metadata Graph . 42

4.5 Metadata Graph Extended with PaddockEstimations 45

4.6 Metadata Graph Extended with PbiLactation 47

4.7 Metadata Graph Extended with IndividualCase 49

4.8 Final Integrated Metadata Graph With PbiCow Integrated 51

4.9 File Integration Flow In Action . 52

5.1 Sample Data . 62

5.2 Sample IA Node Info . 65

5.3 Sample DA Node Info . 65

5.4 Sample DA Connected with IAs . 66

5.5 Multiple DAs connecting to same IA 67

5.6 Nodes connecting with each other in graph 68

6.1 Covid-19 Graph Database Schema 72

6.2 Covid-19 Graph . 73

6.3 Neo4j Storage Size . 75

6.4 MySQL Table Storage Size . 75

6.5 Cases reported for a given week . 77

6.6 Unknown Travel History Cases . 78

6.7 BC Case Aged 30-39 . 79

6.8 Linked Query Result from Neo4j . 81

6.9 Community Detection Query Result from Neo4j 82

List of Tables

3.1 Sample Data for LivestockNumbers File 28

3.2 Sample Data for ManagementDecisions File 29

3.3 Sample Data for PaddockEstimations File 32

3.4 Sample Data for PbiCow File . 33

3.5 Sample Data for PbiLactation File 33

4.1 Metadata Node Properties . 37

4.2 First Step Metadata Score File . 40

4.3 Second Step Metadata Score File . 44

4.4 Third Step Metadata Score File . 46

4.5 Fourth Step Metadata Score File . 48

4.6 Last Step Metadata Score File . 50

4.7 Validation Results . 56

5.1 Sample Attribute Classification . 63

6.1 Covid-19 Dataset Meta Analysis . 71

6.2 Validation Results . 79

6.3 Analytics Results . 81

Abstract

Congcong Xing

A Methodology for Automating Graph Construction and Evaluation

Graphs and graph analytics facilitate new approaches to machine learning. They

also provide the ability to extract new insights from the same datasets as used in

traditional machine learning experiments. For this reason, many researchers are

seeking to exploit graph databases in pursuit of better performance for their predic-

tive models. However, the construction of a graph from relational or flat models such

as CSV files is not a straightforward transformation. A careful selection of nodes

and relationships is required to ensure an optimal construction of the target graph.

Overly large graphs can cause performance issues for a number of graph algorithms

and thus, graph compression is an important part of the construction process. This

research has 2 components: the usage of graphs to integrate multiple data sources

and a graph transformation methodology to create the integrated schema and pop-

ulate the graph. Our approach to validation uses link prediction and community

detection graph analytics to evaluate the graphs built using our methodology.

Chapter 1

Introduction

Data analytics helps individuals and organizations make sense of data and in that

context, better data analytics often leads to better decision making. In order to

perform data analytics, a well-constructed dataset is essential and the richness of

the dataset can determine the quality of the result gathered by analytics. In many

cases, data integration is a fundamental part of this process as data often reside

in different locations. As this is a well-understood process for many application

areas, this research will also investigate the use of graphs for modeling data and

graph analytics. We begin this dissertation in section 1.1, with the background for

this topic where we discuss problems and our motivation for doing this research.

In section 1.2, we introduce graph analytics before we outline our research plan in

section 1.3. Finally, we present the structure for the dissertation in section 1.4.

1.1 Introduction and Background

Data integration is the process of combining data coming from different sources/sys-

tems to provide a panoramic view to the end-user with meaningful and valuable

information [13]. Data from different sources is not connected will lead to the lim-

itation of data extraction and analytics. Connecting different data from different

sources to have a unified view of data is the process of data integration. It is im-

1

Figure 1.1: Data Integration

portant to do the data integration process as most real-world data is generated

from different sources and the integration process itself will have a direct impact

when extracting and analyzing heterogeneous data. There are many methods and

approaches to integrate data from different sources. Different data integration meth-

ods have different features, most common processes include data collection, cleaning

and reformatting, data matching, connecting, and data loading. Among them, data

matching and connection steps are the key steps where the major challenges will

be encountered. The data presented to the user upon completion of the integration

process should maintain its integrity and therefore can be trusted. By applying

data analytics on the integrated data, the end-user can often make better business

decisions compared to analyze the different data produced from different systems in

isolation. A simplified version of what is data integration and what we can achieve

with it can be viewed in figure 1.1. On the left-hand side, we can see prior to data

integration, the user has to deal with data coming from different systems which can

lead to huge time and effort. On the right-hand side, the unified integrated data

store containing all the information gathered from different systems will be provided

to the user as a unified view for easy access which will be a much-preferred solution

to many.

2

The data integration process is well utilized by many in fields such as the financial

sector to fulfill many requirements such as market prediction and risk analysis.

However, not so much for fields that traditionally were not technology-driven, such

as the Agricultural (Agri) sector. The reason is simple: there was not enough

data. However, with more and more organizations like Teagasc (agriculture and food

development authority in Ireland) [58] setting their mission to support science-based

innovation in the agri-food sector, it is time to have another look at the benefits

of data integration in such field. Data warehouses [24] are a means of gathering

multiple sources of data in a single repository and there have been examples of data

warehouses specific to Agri data [33]. While some research eg. [56] provided solutions

to create dynamic data marts from the integrated data, there is little evidence in

the Agri domain of attempts to automate the integration process itself.

In order to deliver a broader bio-economy that will underpin profitability, competi-

tiveness, and sustainability, Teagasc has partnered with many information commu-

nications technology (ICT) research institutes including the VistaMilk SFI Research

Center [60]. The VistaMilk SFI Research Centre is a collaboration between Agri-

Food and ICT research institutes and leading Irish/multinational food and ICT com-

panies. It focuses on developing new and advancing existing electronic monitoring

and actuation technologies. Adopting state-of-art devices, large-scale sensor/sys-

tem generated data are delivered through advanced network and communication

technology infrastructures.

With those modern technologies, the amount of data that is produced in Agri field

makes it a good candidate for data analytics. By applying analytical techniques

to those datasets acquired, the research center has already made great process for

enhancing pasture-based dairy production, improved processability, and generated

novel, higher-value-added products. However, a large number of data resources in

the Agri field regularly originate from disparate sources and can be disconnected

with different formats and types. In addition, the different data are often generated

within specific areas for specific scientific focuses. We believe it is worth exploring

with data integration, if the integrated dataset could be more helpful to further

3

advance data analytics and thus, generate more valuable results. In order to archive

such a goal, a solid integration solution is required.

1.1.1 Motivation and Problem Statement

The integration process for data produced in the Agri domain (and others) can

be very time-consuming. That is because manual intervention is often required to

handle the complex disconnected source data. In order to improve the inefficiency

of that process, we want to explore what is required to deliver a robust automated

system for data integration. Thus, the first question we ask is:

• Is it possible to isolate those integration processes that are heavily manual?

In other words, can we investigate where most manual effort is required in data

integration? Traditionally, data integration often involves manual effort to create

mappings between different datasets. Such processes can be very time-consuming

and can lead to undesired results because of human errors among other issues. The

user often is responsible for extracting the data from different file stores, performing

the integration, and eventually having the option to load the result into a different

data store for further use.

The next question we ask is:

• Can we identify precise operations that can optimize the manual process?

This process can often be improved by adopting some generic software/tools so

that less manual work is required. However, with the rapidly increasing volume

of dynamic data, adjustments or enhancements are still required to support the

importation of new files into the system. At this point, the process has evolved

to reduce the manual effort. In delivering this solution, the user will utilize some

software/tools to extract data from multiple data stores and complete the data in-

tegration process. Any modifications to the source files/systems will require manual

4

adjustments by the user or developer to the system. We believe the development

of a fully automated integration system is needed to remove the manual work from

the process. The goal is to reduce the time and effort required from the end-user,

so they can spend more time on data analytics. In such a process, the end-user

does not participate in the integration process but only serves as a consumer of the

integration result. At this point, we ask our next question:

• How can we validate the integrated result?

The result of data integration is a unified data store containing information from all

the processed input source information. It is essential that the integration process

maintains not only the integrity of the source data but also their schema. For this,

we will need to provide a solid testing strategy to ensure no data loss during the

integration process and to validate the schema of the final integrated data. Until

now, the solution is fully automated and it is up to the end-users how they want to

use the integrated data, Which motivates our next question:

There are many data science algorithms that have been proposed by many re-

searchers which can help to gain insight into existing datasets. With many inte-

gration solutions leveraging relational databases to persist the integrated data, it

is up to the user to implement the specific algorithms as those databases rarely

come with built-in functions. This might lead to inaccurate results depending on

the quality of implementation. In addition, for data generated for a field like Agri,

one with less domain knowledge will feel difficult to interpret the integrated datasets

as the information gathered by different systems might not be descriptive enough.

We believe a graph database like Neo4j [39] is able to address these challenges as

it provides a well-designed user interface with visual capability and also provides

an enterprise tested data science library [38] [37] for the end-user. Users can apply

algorithms such as community detection [50] or link prediction [31] directly from

the graph DB, which can save the user both time and effort and allow them to

concentrate more on analytics.

5

1.2 Graph Analytics

In a simple dataset where there are few relationships within the data and little

structure, tabular data provides a simple means of data storage. Even complex

analytics using Agri data such as deep learning approaches [43] still used data in a

flat, simple format. However, once the data structure gets more complex, especially

for a dataset that is a result of combining multiple data sets, the flat model can

neither represent, nor help to visualize the data. In addition, in order to apply a data

science algorithm, the user often will need to code the algorithm themselves, and

depending on the technical skill of the users, the quality of the end result produced

can be inconsistent. Graph databases on the other hand have become common in

recent years as they allow queries and analyses that provide new insights into the

data. Graph databases such as Neo4j [39] provide a series of well-maintained data

science libraries and instructions, which users can use to directly apply data science

algorithms with minimum technical skills.

A graph (denoted as G = (V, E)) is a mathematical structure to model paired

objects and their relations. It consists of a non-empty set of vertices or nodes V and

a set of edges E. A vertex a represents an endpoint of an edge. An edge joins two

vertices a, b and is represented by a set of vertices it connects.

Early application of graph theory is known as Euler Circuits and The Konigsberg

Bridge Problem [8], where graphs were used to solve geographical problems. Graphs

are also good to model any data with relationships and are well used in physical, bio-

logical, social network, fraud detection and cybersecurity areas for the development

of the applications [26].

In the computer science sector, website networks can be represented as a whole

graph, links presented as edges and each edge connects to a distinct web page

node. The idea can be used in semantic web/computational linguistic and therefore

to be developed in ontology matching that is crucial and well used in the data

integration process. Graphs can optimize data storing, modeling, and traversing

when data is in a graph structure. In fundamental science topics like chemistry,

6

biology, physics, and mathematics, when objects can connect with each other as

logical causal relationships, graphs can easily visualize and help reveal unknown

interactions.

1.3 Approach

Graph databases allow researchers to obtaining new insights, even from existing

data. However, most data resides in relational databases, flat files like Excel or

CSV, or some form of web data. None of these formats model data as a graph

with data points and relationships. Existing model transformation methods can

be problematic when metadata or schema information is unavailable. Furthermore,

many datasets require new levels of optimization before a good design graph schema

can be formed. Thus, in order to help users to construct a robust graph for data

analytics, perhaps based on data integrated from different data sources, we propose

an automated integration platform that is able to take multiple data sources in

tabular form and produce a well construct graph as an end result.

Our research comprises 3 components:

1. A graph-based integration platform.

2. A transformation methodology to transform an integrated relational data

source to a graph format.

3. An evaluation methodology, both to test this transformation and to evaluate

analytical functions on the new graph database.

1.3.1 Research Questions

At this point, we highlight the primary goal and contribution of our work: providing

a fully automated data integration solution that leverages redundancy in data to

organize graph data in a way that improves query performance. There are a number

7

of research questions that must be answered as part of this research and dissertation

in order to archive the overall goal.

• Can we integrate scattered datasets that is continuously being generated?

One example of such datasets would generated from the modern Agri domain.

Such integration solution should be both lightweight and flexible. It is one of

the key elements of the proposed system that it should be intelligent enough

to perform the integration on unseen files while at the same time, limit the

creation of any redundant data.

• Can we verify the integration process so that we have not corrupted the data?

We need to ensure the result of the integration is a true representation of the

data and therefore, can be trusted.

• Can the solution automatically construct a graph from the integrated schema?

The graph transformation should be done automatically by leveraging the

integrated schema with minimal human overhead.

• Can we demonstrate that this can perform more powerful analytics that cannot

be achieved using relational systems. We need to verify that we can run graph

analytics such as centrality or community detection to extract new insights

from this data.

1.4 Summary

In this chapter, we explained what is data integration and briefly discussed the

benefits of performing such a process. With the constantly rising volume of hetero-

geneous data in the Agri section produced by modern technologies. Researchers are

looking for a solid integration solution to deliver good quality integrated datasets

to gain more insights. While many existing integration solutions can be adopted to

Agri field, we believe the traditional data integration solution will not be sufficient

as they rarely provide researchers any build-in functionalities to apply data science

8

algorithms. Because many data science algorithms play a significant part in today’s

data analytics, we propose our graph based integration solution which not only en-

sures the data quality but also provides a well-maintained ready-to-use data science

library.

The remainder of this thesis is structured as follows.

Chapter 2 provides a discussion on the state of the art in both data integration and

graph model transformation.

In chapter 3 we go over the methodology that is proposed by us. In this chapter, the

system architecture will be firstly outlined, followed by detailed description for each

of the components in our system including Initial Data Loader, Ontology Matching

Processor, Metadata Integrator, Instance Data Integrator, Integrated Instance Data

Extractor and Graph Data Loader.

Chapter 4 provides a detailed explanation of the schema integration part of our

system. We walk through every stage of this process, which includes initial loading

of data, metadata extraction, ontology matching, metadata integration and instance

data integration. One of the key aspects of any integration methodology is data

integrity, that is, there should be no data loss upon completion of the integration. We

evaluate our integration methodology by comparing the results of multiple queries

executed against the original source data as well as the integrated data store.

In chapter 5, we described the final part of our system, the graph transformation.

We give an introduction about graph transformation in general and then we go over

different stages of our transformation methodology. This process includes Meta

Analysis, Attribute Classification and finally Graph Construction.

A detailed evaluation is carried out on the graph generated using our graph trans-

formation methodology in chapter 6. In this chapter, we firstly go over the hardware

and software setup of our experiment. That is followed by a multi-dimensional eval-

uation process, where we examine the pros and cons of our methodology in respect

of storage, performance, data integrity and finally, the analytical benefits.

9

The dissertation concludes with chapter 7. In this chapter, provide a summary of the

methodology proposed by us, the evaluation we have done, and the results presented

in this dissertation. This is followed by some future works worth exploring, which

were identified during our study.

10

Chapter 2

Related Research

In this chapter we provide an overview of previous work related to the work carried

out in this thesis. We begin with Data Integration in section 2.1. Following this,

we examine the state of the art for Graph Transformation in section 2.2. In section

2.3, we summarise this chapter.

2.1 Data Integration

The aim of this section is to discuss and analyze research into data integration. A

growing number of fields are trying to adopt the data integration process in order

to produce richer data for data analytics.

In practice, there are often some challenges integrating data. In [61], the authors de-

tailed computational challenges for data integration processes within the biomedical

sector, a number of issues were specified including but not limited to:

• Data size;

• Format and schema design;

• Biases on data extraction;

• Collection and cleaning;

11

• Information efficiency;

• Data protection policies;

• Scalability.

The challenges faced in the traditional data integration process are further com-

pounded with the introduction of big data. In [19] the authors details these chal-

lenges, in addition, they explore the progress that has been made so far to address

those challenges.

Obtaining a dataset that is both high in quality as well as accuracy is hard, even in

domains where high standards are applied [18,55]. To perform data integration, the

most traditional method involves a manual method providing support to semanti-

cally integrate the data. There are many limitations of manual work, for example,

accuracy as well as bias and knowledge differences among different domain experts.

Most importantly, as the size of the dataset increases, human effort is not enough to

complete the task in a reasonable time period. Thus, many researchers are seeking

automatic methods for data and knowledge fusion.

Many attempts have been made to achieve an automated solution, often through an

ontological approach. The ontology approach is a semantic technology application

to express data in a semantic way that deals with uncertain representations [46,53].

For such approaches, the ontology matching/alignment process plays an important

role when representing uncertainties, a reliable algorithm needs to be developed to

assess these uncertainties and output a data integration process.

The ontology alignment process can be either supervised or non-supervised, In [46],

the authors developed a tool to support the supervised ontology matching process.

The proposed tool relies on intuitive user inputs rather than on strong skills in

ontology and Semantic Web technology. As stated by the author, the primary

goal of the tool is to support the systematic conversion of a given dataset into

an independent and self-contained ontology in Ontology Web Language (OWL). In

order to complete such a conversion, the user will have to manually characterize

12

each of the data columns into ID, Resource or Attribute type through a provided

user interface. The author stated such a manual alignment process is one way to

limit the level of uncertainty. However, it was not tested using real-world datasets

which are far more complex. In addition, because of the hard dependency on user

inputs, it becomes unrealistic once the scale of the system becomes significant or in

the presence of heterogeneity. We adopted a hybrid approach where we implement

a threshold-based alignment solution based on graph but we use user input as an

optional calibration step. Therefore we can achieve a full level of automation, but at

the same time, still have the flexibility to receive contributions from domain experts

to increase the result accuracy.

In [63], the authors proposed a hybrid method involving the building of both a local

and global ontology base to integrate data with manually constructed mapping

rules. In the proposed solution, the local ontology will firstly be built, which is

derived from the local schema. By analyzing the local ontology, the system will be

able to generate an OWL-based global ontology with the help of Protégé. Protégé

supports the creation, visualization, and manipulation of an ontology in various

representation formats and enables users to build ontology for the Semantic Web.

However, in order to achieve semantic interoperability and decompose the global

query into one or more sub-queries over the local data sources, the user must define

the relations between the global ontology and the local ontology. These relations are

named mapping rules. However, the manual effort required to define such mapping

rules means the solution will not be able to scale once the data gets more complex.

Our system, on the other hand, does not have such a scalability issue.

In [47], a system called IncMap has been developed by the authors for data inte-

gration based on ontology matching techniques. The system uses a global ontology

and features a fully automated system based on the graph to create mappings be-

tween the source data files and the global ontology to complete the data integration

process. The system mainly consists 5 steps including Schema Graphs, Reasoning

and Patterns, Matching Step, Fixpoint Computation and Mapping Generation. As

a first step, the system will create source and target schema using IncMap+ model.

13

The system will iterate over all schema elements in the relational schema and the

ontology, as result, two graphs will be created. Second, the proposed system will

apply reasoning techniques on the input ontology and use heuristics to annotate

patterns on the source database. After that, the system will perform initial match-

ing based on the source and target graph. Next, the system computes a fixpoint

computation using the PCG which will be used to refine the calculated match scores.

Finally, mappings are generated from the correspondences resulting from the PCG.

Although the solution promises very positive results compared to other systems it

still significantly struggles with the more complex scenarios as well as the two real-

world cases (Geodata and Oil & Gas). Moreover, its primary focus is on relational

database integration. Our system initially will be focusing on integrating data in

tabular forms generated in the Agri domain.

In [17], the authors propose an ontology-based integration approach for web analyt-

ics within the e-commerce domain. The proposed approach is capable of collecting

and integrating data from different e-shops. The integrated data is then used for

advanced data mining procedures which ultimately provides better customer ana-

lytics which can lead to better sale results. The solution specifically focused on

three main sources of data coming from different web tracking methods, including

Google Analytics, Piwik, and specific web scraping methods in the scope of SME

E-Compass project. Therefore the solution is not generic enough to be adopted by

datasets generated by different systems. That is different from our proposed system

which is not designed for a specific field can be utilized by sectors like Agriculture.

In [25], the authors demonstrate the urgent need of an ontology-based data in-

tegration solution for NoSQL [49] databases. They outline the maturity of such

solutions in the context of RDBMS [1]. However, due to the widely used NoSQL

databases such as HBase, and the lack of such solution for these types of data store,

an ontology-based semantic integration system for column-oriented data has been

proposed to satisfy these requirements. The system proposed leverages tools and

frameworks that are currently adopted by integration systems that are primarily

focusing on RDBMS. The proposed implementation consists four parts. Starting

14

from schema generation, which is crucial for NoSQL databases as they do not have

the schema concept with their dynamic nature. In order to solve this problem,

the authors implemented an approach that performs both online and offline schema

generation. The proposed system creates a lookup table in HBase for each table

whose schema has to be extracted. Schema extraction takes place by finding the

fittest individual, this process commences after the lookup table is constructed. The

extracted information is then converted to suitable OWL primitives and mapped to

an OWL ontology. The system then performs ontology alignment merging using

COMA++ [6] and forms the global ontology. Custom SPARQL endpoints were

implemented for the system to query the data through the constructed global on-

tology. The results of the queries can be interpreted with a reasoner. This solution

is designed specifically for HBase. However, it can be altered to use other NoSQL

databases. However, it cannot be used in the Agri sector as most of the data is

tabular in nature and rarely stored in NoSQL Databases.

In [14], the authors demonstrated a way to represent the information stored in

NoSQL databases through the use of ontologies. The process has three stages, on-

tology creation for each data source, ontologies alignment and finally global ontology

construction. The implementation uses the global ontology as the query entry point,

it provides a bridge query language that supports translation from SPARQL queries

using specific APIs for each database source, such as Cassandra NOSQL database.

The system is able to reason on the elements of the ontologies and retrieves infor-

mation efficiently. However, because of the need for such bridge query language, the

user will not be able to use the proposed solution unless the bridge query language

has been extended to support the input source type. In addition, because of the lack

of community support on such query language, the user might find certain required

functionalities missing from implementation. Our proposed work will leverage a ma-

tured enterprise graph solution that provides a query language that has been used

by many enterprises as well research groups.

In [30], the authors present a semi automated solution to transform heterogeneous

data to OWL format as an approach to data integration. The proposed solution uses

15

a four-step transformation approach to transform the source files into OWL files as

the integration result. While the constructed OWL files are query-able and have

been validated by the author to ensure data integrity. The query language itself

introduces a learning curve for the end-user. Moreover, the presentation of the data

is not ideal for the end-user if the user wishes solely to browse through the integrated

data. In contrast, our integrated datasets will be stored in a well-constructed graph

with much better accessibility and user experience.

In [42], the ontology matching tool YAM++ applies machine learning, information

retrieval, and graph matching techniques to provide a higher quality matching result.

However, the limitation of Yam++ is also very clear, it is only able to work with

data that is in OWL format meaning a structured ontology of a dataset is required

as input. Not all datasets have a supplementary OWL ontology, meaning that

ontology construction is a necessary pre-step before YAM++ can be utilized for

ontology matching.

2.2 Graph Transformation

The aim of this section is to discuss and analyze research into graph transformation.

As explained in section 1.2, a Graph is a mathematical structure to model paired

objects and their relations. It can provide different forms of analyses, offering new

insights into existing data. For this reason, many researchers have attempted to

implement methods to convert existing datasets into a graph model. This process

is defined as graph transformation [22]. In a graph data model, objects are rep-

resented as Nodes and connected by Edges. Which can be seen as a triplet and

therefore can be modeled using RDF [32]. A triple is a structure that consists of

subject-Predicate-object [44]. Most of the solutions that are proposed focus on

transforming a dataset into RDF format.

For many years, the focus for graph transformation was on converting relational

data into graph models, where Primary Keys (PKs) and Foreign Keys (FKs) are

16

used for mappings between instance data. Direct Mapping [4] and R2RML [16] are

the complementary W3C recommendation (specifications) which define the language

and algorithm respectively that are used to transform relational databases into RDF

graphs.

In [34] and [35], the authors implement a mapping language named xR2RML to

generate and add namespaces to the original data and convert data into RDF [27].

The xR2RML is built as an extension to R2RML. The mapping language relies

on RML for the handling of various data formats. The mapping implementation

relies on the assumption that databases provide a declarative query language to

translate into RDF, and, assumes that domain ontologies already exist with classes

and properties which can be used to transform a data source into RDF triples.

While a lot of data are stored and processed in relational databases, data can also

be produced in other formats such as CSV flat files.

More challenges are encountered when trying converting the plain data into graph

formatted data: mapping (in other words, the process of generating edges) is an issue

of significant note. In a plain file/table, there are no relations between rows due

to the lack of PKs and FKs, therefore, a mapping strategy is required to generate

these relationships (and subsequent graph edges).

In [28], the authors provide a solution that utilizes direct mapping rules. The rules

are essentially used as an RDF vocabulary. The proposed solution is shown to work

on a governmental CSV dataset. While the vocabulary method can be adopted

easily, it is often used within a specific domain where fixed domain knowledge is

present.

The rules of Direct Mapping are straightforward, it provides a simple mapping

method to transform Relational Databases (RDB) to RDF. Some key elements of

the approach:

• Tables in RDB are mapped as Classes;

• Attributes are mapped to Properties;

17

• Rows are mapped as entities/resources with IRI creation;

• Each cell is a value;

• Foreign keys are mapped directly to the IRI of corresponding entities/re-

sources;

Figure (2.1) Direct Mapping, Note. From “R2LD: Schema-based Graph Mapping of relational databases
to Linked Open Data for multimedia resources data” by Zhao, Z., Han, S. & Kim, J., 2019,
Multimed Tools Appl 78, 28835–28851 (2019). https://doi.org/10.1007/s11042-019-7281-5.

CC BY-NC.

The example of the direct mapping process can be found in figure 2.1. The lim-

itation of such a process is the lack of control in how the RDF is generated. In

addition, the requirement of pre-defined rules poses difficulties with large scale com-

plex datasets. Our proposed system does not mandate any human intervention.

As opposed to Direct Mapping, R2RML (Relational to RDF Mapping Language)

provides more flexible mappings for relation representations. Customized mapping

rules are enabled in R2RML by the customized mapping file. The application of

Logic Table breaks the restriction of the RDB structure making the target RDF

data capable of meeting users’ target needs and at the same time, does not modify

the original RDB data structure.

In [11], the authors applied two approaches for converting CSV files to a graph. The

first approach is the typical way to transform using R2RML mappings, this approach

creates one TriplesMap for each column corresponding to a slice of a dimension. In

18

the second approach, they aim to reduce the size of an R2RML mapping for statis-

tical data by incorporating an iterator variable into RMLC. This mapping language

has been equipped with several features to be able to deal with the heterogeneity of

tabular data. The author stated that the only difference between those TriplesMaps

is the name of the column, which provides a unique identifier to the TriplesMap

object and the means of accessing the data of each column. By incorporating a

variable that references the target columns, RMLC-Iterator reduces the size of the

mapping while maintaining the semantics of the R2RML mapping. This variable

is formalized in the mapping language by incorporating four new properties to the

Logical Table object. The proposed solution also provides a mechanism to transform

the RMLC mapping to R2RML mappings. The authors conclude that the second

approach using RMLC mapping drastically reduces the size of the R2RML mapping

document. However, we wish to highlight that the RMLC mapping still requires

manual generations which can be error-prone and time-consuming.

Mapping is used by the majority of the solutions that have been proposed so far.

However, In [5], the authors outline that at the enterprise level, large companies

such as Facebook, store social media data in both MySQL and HBase [62] (social

graph storage). Where in their MySQL database, graph interactions are stored in

different tables separately as Object (graph node) and Association (graph edge).

With such system architecture, tabular data can be converted to a graph directly.

However, such a setup can be very difficult to achieve because of the requirements

of significant hardware and software resources.

Most approaches to graph construction begin with relational datasets where Pri-

mary Keys (PKs) and Foreign Keys (FKs) are used for mappings between instance

data. While this course grained approach ensures that the graph is reasonably com-

pact, it will feature a somewhat limited number of relationships between the nodes,

specifically only those mapped from PKs and FKs. Crucially, they often assume

some level of schema information which is not always available with datasets ac-

quired from various sources across the web. With a more fine-grained approach,

each tuple or row cell can become a node which maximizes the relationships be-

19

tween nodes. However, this requires an approach to optimize graph construction by

using redundant data to avoid excessively large graphs.

2.3 Summary

In this chapter, we provided an overview of different approaches for data integration.

We discussed many attempts that have been carried out in the past and outlined our

contributions and differences compared to other proposed solutions. In addition, we

examined the state of the art in graph transformation which forms a crucial part of

our overall methodology.

In the next chapter, we will explain the methodology of our proposed automated

graph based data integration platform.

20

Chapter 3

Integration Methodology

Data Integration is a major process in data warehouse construction. It is essential

for combining data from different data sources which contain heterogeneous data

into a unified view of data to be used for downstream data analytics. Historically,

data integration has often been performed by individuals with mostly manual efforts

on data from different systems or applications. However, manual effort even with the

help of some generic software tools, means that extracting the required information

from disparate streams of data in a timely fashion can be extremely time-consuming,

difficult, and error-prone. In order to address this problem, an automated data

integration platform was developed to speed up the process of integrating data based

on graph theory. By utilizing the integration platform, individuals or businesses

will be able to complete ad hoc task as well as scheduled batch processing jobs by

having minimum manual interventions, the result achieved will not only be accurate

but also gives significantly more insight which can then be used to deliver more

insightful decisions. In section 3.1, we present an integration architecture that uses

an existing platform to match data between schemas, and subsequently improves

the automation process. We then provide a detailed description in section 3.2 of how

data is transformed using the architecture and a case study from the agricultural

domain. In section 3.3, we summarise the chapter.

21

3.1 System Architecture

For this part of our research, we constructed an integration framework based on the

existing YAM++ Graph Based Integration Platform [42]. Using this approach, data

from heterogeneous sources will go through an initial processing phase at which they

will be divided into two categories: metadata category and instance data category.

The data that is categorized as metadata will be transformed to the ontology descrip-

tion format (RDF/OWL) and fed into the ontology matching platform, YAM++,

which will be processed later. With help from YAM++ APIs, the resulting output

of the ontology matching process will be an XML alignment file. The matching

results stored in the alignment file will be used as a key driver during the meta-

data integration. The connected metadata will then be used as a blueprint by the

platform to complete the instance data integration. We will now proceed with a de-

tailed system flow diagram presented in figure 3.1. The platform consists of a small

number of critical components to deliver the final integrated dataset and these are

described briefly in the rest of this section. In order to validate our system, we will

integrate a set of files from the Agri domain that contain heterogeneous data gen-

erated from different systems. The set of files will be described in detail in section

3.2. A more detailed discussion on data integration will take place in chapter 4 and

graph construction is described in detail in chapter 5.

3.1.1 Ontology Matching

Ontology matching is the first step in the overall process and figure 3.1 shows the

involvement of a Loading stage, a Producer stage, and finally the Ontology Matching

process itself. In our earlier work [57], we showed that by extracting small samples

of data, we could build a sufficient profile of the data to build a plan for processing

or integrating that data. The same concept is applied here but in a more formal

approach.

Initial Data Loader is the first component in the workflow and loads the data

22

Figure 3.1: System Flow Diagram

23

from input files into the MySQL database. Metadata Producer will take each one

of the source files and load them into the Metadata Graph and extract ontology files

to be used by Ontology Matching Processor. Ontology Matching Processor will

process the ontology files generated by the Metadata Producer in pairs. One pair

will be processed at a time: if the processor detects that two input files contain any

potential connection points, the result will be passed to the Metadata Integrator,

otherwise, it will proceed to the next pair in the queue. For example, for a 4-file

integration process for data sources A, B, C, D, the ontology matching processor

process the files in the following sequence: [A,B], [A-B, C], [A-B-C, D]. When this

process has been completed, a score file will be generated for each of the pairs been

processed, the score file will then be passed to the next component.

3.1.2 Metadata Integration

The Metadata Integrator handles the metadata integration for the Metadata Graph.

Once the integration is complete, it will invoke the Metadata Producer to extract

the extended integrated ontology file based on the integrated metadata graph. It

can then be used as the new baseline for the next metadata integration step. Ad-

ditionally, it also passes the metadata integration information to the Instance Data

Integrator.

At this point, the system has gathered enough information to proceed with instance

integration which will be the next step.

3.1.3 Data Integration

The role of the Instance Data Integrator is to leverage the information generated by

the Metadata Integrator and perform JOIN operations using the MySQL database.

As the vast majority of data is still captured using a relational or flat data model,

a relational database is a good choice here. Traditionally, objects models were seen

as best suited to data integration [20, 21, 52] and in this work, we selected a graph

based model but a relational model was chosen as the data model for source data.

24

MySQL was chosen because of its wide usage in the research community. Using the

original datasets, a new table will be created based on the integrated instance data.

Depending on whether or not all files are fully processed, this new integrated table

can be used as either the baseline for the next instance data integration step or the

final integrated instance data to be fed to Integrated Instance Data Extractor. If

there are input files still pending, the system will repeat the process of the Ontology

Matching processor, where one of the ontology files will be the one generated by the

Metadata Integrator from the previous step, and a second being the next ontology

file in the list, yet to be processed.

The Integrated Instance Data Extractor extracts the final integrated instance data

from the MySQL database in CSV file format. The reason the platform extracts

the data as a CSV file and passes it to the Graph Data Loader is to increase the

future re-usability of the Graph Data Loader Service, so other external systems

can leverage the loader service to import any already integrated data generated by

other tools. All they need to do is to put a transformation step prior to invoking

the Graph Data Loading Service exposed by the platform. At this point, our system

has managed to complete the instance data integration for the given source file pair

and generated the integrated instance data in a tabular format.

3.1.4 Graph Construction

Graph Data Loading is the final step in the workflow. It is responsible for loading the

integrated instance data in CSV file format generated by the previous component

in the flow into the Neo4j Instance Data Graph. This step is not part of the data

integration process and is discussed in detail in Chapter 5. The choice of Neo4j as

the graph deployment application was made after a lot of analysis. It is clear that

this particular graph implementation is quickly becoming one of the most powerful

with strong evidence of a highly vibrant community of researchers and users [40].

25

3.2 Agri-Based Case Study

In this section, we present the case study that demonstrates the integration platform

presented in Chapter 4.

Nowadays, agricultural (Agri) data is generated from a wide variety of sources, such

as sensors, farm equipment, farmers, agricultural laboratories, and in many cases,

the Web. However, these large data resources regularly originate from disparate

sources and are often disconnected with different formats or types. Integrating

these resources is generally the first process in the data engineering cycle and can

be a manual time consuming process. These manual efforts can be attributed to the

interventions required to handle the complex disconnected source data. Leverag-

ing the graph based automated integration platform, simplifies and accelerates the

integration process for the practitioner.

What was required for this part of our research was a robust evaluation of the

integration process. ICBF [2] a partner in the Vistamilk [60] project was able to

supply a set of analytical requirements and different Agri data sources to meet our

integration challenge.

In the following case study, a list of Agri files in CSV format will be used as the

source data and will be integrated using the platform shown in figure 3.2. In figure

3.2 we can see a list of input sources files on the left-hand side which go through the

integration platform in the middle and eventually the constructed integrated graph

can be used for data analytics purposes.

3.2.1 The Livestock Data Source

The LivestockNumbers file contains information for each of animal type that is on

file, and sample data is shown in Table 3.1. The file consist of 10 data fields:

• CoverDate: Date field in the format of DD/MM/YYYY, dates ranging from

year 2015 to year 2019

26

Figure 3.2: Case Study with Agri sources

27

• PreviousCoverDate: Date field in the format of DD/MM/YYYY, dates rang-

ing from year 2014 to year 2019 and contains blanks

• CoverID: Numerical identifier field

• LivestockTYpe: String type field, the content can be one of the 11 types,

>2 years, 0 - 6 months, 1 - 2 years, 6 - 12 month , Autumn Milkers,

Dairy Milkers Group 3, Dry Cows, Lactating Ewes, Spring Milkers, Stock

Bull, Suckler Cows

• NumberOfStock: Numeric field ranging from 0 to 605

• MealInTake: Numeric field ranging from 0 to 12

• SilageIntake: Numeric field ranging from 0 to 20

• GrassIntake: Numeric field ranging from 0 to 23

• AverageKgLwt: Numeric field ranging from 0 to 900 and contains blank

• TotalIntake: Numeric field ranging from 0 to 25

CoverDate PreviousCoverDate CoverID LivestockTYpe NumberOfStock MealIntake SilageIntake GrassIntake AverageKgLwt TotalIntake

12/10/2019 01/10/2019 242781 1 - 2 years 0 0 0 6 300 6
01/10/2019 25/09/2019 240888 Spring Milkers 187 3 0 15 0 18
23/09/2019 15/09/2019 239267 6 - 12 months 0 0 0 2.4 120 2.4
23/08/2019 19/08/2019 232324 1 - 2 years 0 0 0 6 300 6
25/07/2019 22/07/2019 225195 1 - 2 years 0 0 0 6 300 6

Table 3.1: Sample Data for LivestockNumbers File

3.2.2 Animal Grazing Data Source

The ManagementDecisions file contains grazing management decisions, sample data

shown in Table 3.2. This file contains a total number of 6 data fields:

• CoverID: Numerical identifier field

• CoverDate: Date field in the format of DD/MM/YYYY, dates ranging from

year 2015 to year 2019

28

• RotationLength: Numeric field ranging from 0 to 130 and contains blanks

• ResidualHeight: Numeric field ranging from 3 to 100 and contains blanks

• DensityOfHerbage: Numeric field value can be either 240 or 250

• TargetPreGrazingYield: Numeric field ranging from 0 to 27523 and contains

blanks

By cross referencing the data fields with first file LivestockNumbers, the possible

integration points would be within CoverID and CoverDate.

CoverID CoverDate RotationLength ResidualHeight DensityOfHerbage TargetPreGrazingYield

242781 12/10/2019 38 4 250 1578
240888 01/10/2019 38 4 250 1579
239267 23/09/2019 38 4 250 1368
232324 23/08/2019 25 4 250 1320
225195 25/07/2019 22 4 250 1168

Table 3.2: Sample Data for ManagementDecisions File

3.2.3 Paddock Data Source

The PaddockEstimations file contains estimated data for all the paddocks that are

managed, sample data shown in Table 3.3. A total number of 35 data fields are in

this file:

• ANONID: Numerical identifier field

• CoverID: Numerical identifier field

• CoverEstimations PaddockID: Numerical identifier field

• CoverDate: Date field in the format of DD/MM/YYYY, dates ranging from

year 2015 to year 2019

• PreviousCoverDate: Date field in the format of DD/MM/YYYY, dates rang-

ing from year 2014 to year 2019 and contains blanks

• PaddockArea: Numeric field, ranging from 0 to 16

29

• DrainageCharacteristics Description: String type filed, value can be Well/

Moderately/ Poorly drained or blank

• PaddockDistanceFromParlour: Numeric field ranging from 0.1 to 1000 and

contains blanks

• PrincipalSoil: String type field, value can be one of 11 types or blank, e.g.

Acid Brown Earth 70, Gleys 75 etc.

• SoilNumber: Numeric field, value ranging from 1 to 41 and contains blanks

• AssociatedSoils: String type field, value can be one of 11 types or blank, e.g.

Brown Earth 10, Brown Earth 20 Gleys 5 etc.

• ParentMaterial: String type field, value can be one of 11 types or blank, e.g.

Mainly granite, Mostly ilurian shale etc.

• PaddockAltitude: Numeric field ranging from 20 to 400 and contains blanks

• Gradients Description: String type field

• Aspects Description: String type field, includes North, East, South, West,

North East and blanks

• HerbageEstKgDmHa: Numeric field, value ranging from -540 to 8000 and

contains blanks

• Height: Numeric field, value ranging from 2.5 to 25 and contains blanks

• PreviousHerbageEstKgDmHa1: Numeric field, value ranging from -540 to 8000

and contains blanks

• PoachingEvent: Boolean field

• PoachingLevel: String type field, value can be Lightly/Moderately Poached

or blank

• GrowthRate: Numeric field, value ranging from 0 to 1266 and contains blanks

30

• PaddockStatus: String type field can be such as Grass, Being Grazed and

Silage - Cut Later etc.

• PaddockStatusPrevious: String type field can be such as Grass, Being Grazed

and Silage - Cut Later etc.

• defoliatationoption: String type field, value includes but not limited to Grazed,

Cut for silage

• GrazeDate: Date field in the format of DD/MM/YYYY, dates ranging from

year 2014 to year 2019 and contains blanks

• CutDate: Date field in the format of DD/MM/YYYY, dates ranging from

year 2015 to year 2019 and contains blanks

• ReseedDate: Date field in the format of DD/MM/YYYY, dates ranging from

year 2015 to year 2016 and contains blanks

• SilageYieldKgDmHa: Numeric field ranging from 0 to 11111 and contains

blanks

• ResidualAfterCuttingCM: Numeric field, value ranging from 0 to 200 and con-

tains blanks

• ResidualAfterGrazingCM: Numeric field, value ranging from 1 to 25 and con-

tains blanks

• Topping: Boolean field and contains blanks

• ResidualAfterToppingCM: Numeric field, value ranging from -2 to 20 and con-

tains blanks

• PreviousGrazeDate: Date field in the format of DD/MM/YYYY, dates rang-

ing from year 2011 to year 2019 and contains blanks

• ReseedMethodID: Numerical identified filed, can be 1, 2, 3 or blank

• PreGrazingYield: Numeric field, value ranging from 250 to 4000 and contains

blanks

31

This file contains a large number of data fields, so it would take some time to

analyze before making any conclusions about which field/fields should be used when

implementing the integration with the previous two files. Once the analysis is done,

both CoverID and CoverDate would transpire to be the integration points.

ANONID CoverID CoverEstimations PaddockID CoverDate PreviousCoverDate PaddockArea ...

1087943495 41554 25762 13/04/2017 06/04/2017 2.6 ...
1087943495 41937 25756 19/04/2017 13/04/2017 3.8 ...
2418859769 175978 102725 04/02/2019 07/01/2019 5.97 ...
2487105239 180556 25842 26/02/2019 21/11/2018 1.37 ...
1087943495 16011 25763 18/05/2015 11/05/2015 2.5 ...

Table 3.3: Sample Data for PaddockEstimations File

3.2.4 Cow Information Data

The PbiCow file contains cow information recorded by the system, and sample data

is shown in Table 3.4. The file consists of eight columns in total:

• ENC HERD ID: Numerical identifier field

• ENC ANI ID: Numerical identifier field

• DOB: Date field in the format of DD-mmm-YY, dates ranging from year 1998

to year 2018

• BREED: String field describing the breed of the cow

• Period Begin Date: Date field in the format of DD-mmm-YY, dates ranging

from year 2000 to year 2019

• Period End Date: Date field in the format of DD-mmm-YY, dates ranging

from year 2015 to year 2019 and contains blanks

• EBI: Numeric field ranging from -173 to 431 and contains NULL fields

• MILKSUBINDEX: Numeric field ranging from -103 to 192 and contains NULL

fields

32

ENC HERD ID ENC ANI ID DOB BREED Period Begin Date Period End Date EBI MILKSUBINDEX

359964155 2110584887 20-Mar-04 HO (68.75%), FR (18.75%), UN (12.5%) 20-Mar-04 27-Feb-17 78 -62
359968499 1503424535 27-Sep-03 HO (71.88%), FR (28.13%) 27-Sep-03 09-Feb-16 -75 -81
359969651 6252563027 07-Feb-13 HO (56.25%), FR (43.75%) 07-Feb-13 22-May-16 113 48
359970323 2682129227 22-Feb-06 HO (68.75%), FR (28.13%), UN (3.13%) 22-Feb-06 22-Dec-17 140 24
359977931 8149868573 13-Feb-16 HO (87.5%), FR (9.38%), MY (3.13%) 13-Feb-16 154 50

Table 3.4: Sample Data for PbiCow File

The fields presented in this file do not appear to have any integration points with

the files above, but it does share a common field named ENC ANI ID with the

PbiLactation file. We will see how the integration platform deals with this sit-

uation in detail in chapter 4.

3.2.5 Lactation Database

The PbiLactation file contains lactation information recorded by the system, with

sample data shown in Table 3.5. The file consists 4 columns in total:

• ENC ANI ID: Numerical identifier field

• Calving Date: Date field in the format of DD-mmm-YY, dates ranging from

year 2013 to year 2019

• End Lactation Date: Date field in the format of DD-mmm-YY, dates ranging

from year 2015 to year 2019 and contains blanks

• LACTATION: Numeric field ranging from 1 to 16

ENC ANI ID Calving Date End Lactation Date LACTATION

373492973 19-Feb-15 14-Dec-15 13
719997629 03-Feb-16 15-Aug-16 12
1331866073 26-May-17 15-Dec-17 14
2072385281 12-Mar-15 12-Jul-16 11
876545573 26-Feb-16 24-Jun-16 12

Table 3.5: Sample Data for PbiLactation File

From the four fields, Calving Date would appear to be the most plausible field to

use when integrating with files above.

33

At this point, it is not difficult to realize that each of the file above will provide

information regarding one specific area, but in order to deliver an all around in-

telligent view of the overall business, the data needs to be intelligently connected

together in a timely fashion.

3.3 Summary

The purpose of this chapter was to provide an outline approach to our research. This

involved a high level overview of each of the steps, Ontology Matching, Metadata

Integration, Data Integration, and Graph Construction, that is required to process

and integrate multiple sources into a graph-based system. We have addressed all

the components utilized by the system. The system is basically designed to be

able to take various data files, extract the ontology files, do the data integration,

and eventually completes graph construction. It is worth highlighting that the

metadata integrator relies heavily on the help of ontology matching tool YAM++,

but YAM++ itself can only be used as an ontology matching tool and it only

supports ontology files as input. Without the other components in the system,

YAM++ alone will not be able to deliver the one stop solution to simplify the data

integration for users since in reality, no system will provide ontology files unless they

are specifically coded for that purpose. Even with ontology files given the YAM++

result, a user will still need a robust system to finish the Instance Data Integration

in order to complete the graph construction for enhanced data analytics.

We also described a real-world case study that will help to explain some of the more

complex steps in our methodology. The next step is to examine each of the key

components in our architecture in more detail.

In the next chapter, we will deliver a deep dive into the integration process using

the data sources described in our case study.

34

Chapter 4

Schema Integration

In this chapter, we present the integration process in detail. This process takes data

in tabular form and automatically extracts ontology information. Those extracted

ontology files will then be assessed to determine how well all the input files can

be integrated, with help from YAM++ [42]. The score based assessment results

will then be utilized to perform the automated data integration. In section 4.1, we

describe the process for the initial loading of data while the metadata extraction

process is described in section 4.2. Moving into section 4.3, we will discuss the

ontology matching process followed by section 4.4 which describes in detail, the

metadata integration process. Then, the final step is discussed in section 4.5. Those

steps will be recursively invoked for all input files until all files are processed, in

4.6. In section 4.7, we present the evaluation framework and results and finally, in

section 4.8, we summarise this chapter.

4.1 Initial Instance Data Loading

The first step requires the capture of all input files into a relational database and

for this process, we use the MySQL database [36]. Before any integration steps take

place, all the individual source files will first be loaded by the Initial Data Loader

into the relational database, which will lead to the creation of a single dedicated

35

Figure 4.1: Livestock Numbers Data Source as a MySQL Table

table in the database. Using the first file processed by the loader as an example, the

CSV file LivestockNumbers will be imported into the MySQL database as a new

table, each column in the CSV file will be mapped directly to be one column in the

MySQL table, shown in Figure 4.1. It is worth highlighting that the only work the

user needs to complete at this stage is to input the selected input file names. The

program itself will handle both the DB schema creation as well as the data loading.

This process will be repeated for all the input files and it will only move to the

next step of the process only when all the files have been loaded into the MySQL

database. The data created in MySQL databases will be used later at Instance Data

Integration step.

4.2 Metadata Extraction

When all source files have been imported into the relational database, the metadata

producer will be invoked to proceed to the next processing step. During this step,

each of the source files will be fed, one by one, into the metadata graph automatically.

The graph nodes created by the platform in Neo4j are basically driven by the file

name as well as the column fields. The file being processed will act as the central

node, and the column fields will each map to a graph node having a belong to

relationship with the central node.

In order to visualize the metadata graph created by this process, Figure 4.2 shows

the metadata graph for file LivestockNumbers. In the center of the graph, the node

is named as LivestockNumbers. Each node will carry a number of properties which

36

Figure 4.2: Livestock Numbers Metadata Graph & Properties for CoverDate Node

will be helpful to describe the node. For example, the property named Type will

indicate whether the node was created from a table or column and the loadmark

property captures the origin of the node creation. Figure 4.2 contains the full

node information for the CoverDate node on the metadata graph created for file

LivestockNumbers. The full list of the properties are presented in Table 4.1

Property Name Description

id Unique identifier of the node
loadmark Indicates the source file where the node was created from

name The name of the node, will be same as the column name or the file name
type The type of the node, it can be either column or table

Table 4.1: Metadata Node Properties

Once the metadata graph has been created and fully loaded for a given source file,

the platform will extract the ontology file. This process is done by leveraging the

Neo4j database plugin Neosemantics [23], which enables the use of RDF in Neo4j.

By using this plugin it enables the platform to export the graph schema in the form

of an OWL Ontology. The platform will execute the commands against the Neo4j

37

graph database and will generate the owl:Class definitions for each label found,

theowl:ObjectProperty definitions for each relationship along with rdfs:domain

and rdfs:range based on the labels of their start and end nodes. At this stage, all

the input files will be processed individually and an ontology file will be generated for

each individual file, this step is a crucial prerequisite for the next phase of processing.

Note that a clear-out will be initiated before each file is processed. This is to ensure

that the ontology file generated by this process only contains information relating

to one specific source file.

Snippet 4.1 is the sample snippet of the ontology file generated for the LivestockNumbers

file, and we will call it LivestockNumbers Metadata. Note the metadata will only

contain the data fields information for a given source file and all the instance data

will remain in the MySQL database and will not be processed at this stage. The

full content of the ontology generated can be found in Appendix A.

Snippet 4.1: LivestockNumbers Metadata Snippet

<neo4j: //graph.schema#SilageIntake > a owl:Class;

rdfs:label "SilageIntake" .

<neo4j: //graph.schema#CoverID > a owl:Class;

rdfs:label "CoverID" .

<neo4j: //graph.schema#AverageKgLwt > a owl:Class;

rdfs:label "AverageKgLwt" .

4.3 Ontology Matching

The next step is the ontology matching processor which was developed with Yam++

[42]. Once all the files have been processed by the Metadata Extractor, there will be

6 ontology files generated for this case study, and each of them will be associated

with the original 6 source files. The Ontology Matching Processor will determine

how closely related each file is.

The processor evaluates ontology files in pairs, i.e. the LivestockNumbers Metadata

38

and ManagementDecisions Metadata mentioned above are considered as an ontol-

ogy file pair by the Ontology Matching Processor, and once evaluated, a score file is

produced. During the evaluation step, the component utilizes the ontology matching

tool Yam++ to deliver a score based solution. During the evaluation, the compo-

nent makes an HTTP call to the API provided by Yam++, to evaluate the pair of

ontology files being evaluated.

It is worth noting here that the metadata extraction capability we talked about in

the previous section 4.2 is not only a valuable offering from our system but almost

mandatory for real-world scenarios. This is because YAM++ is limited to only

work with ontology files. In order to avoid any manual works prior to the ontology

assessment, our system is essentially providing a unified end-to-end pipeline to make

the overall integration process seamless for real-world data.

The sample snippet of the ManagementDecisions Metadata can be seen in Snippet

4.2 and the full content of the file can be found in Appendix B.

Snippet 4.2: ManagementDecisions Metadata Snippet

<neo4j: //graph.schema#CoverID > a owl:Class;

rdfs:label "CoverID" .

<neo4j: //graph.schema#DensityOfHerbage > a owl:Class;

rdfs:label "DensityOfHerbage" .

<neo4j: //graph.schema#ResidualHeight > a owl:Class;

rdfs:label "ResidualHeight" .

Essentially, all the labels of each ontology file from the pair will be utilized to per-

form the matching process, which is called element level ontology matching. When

the matching process is completed, each of the label combinations between the

two ontology files will be assigned with a matching score, with 1.0 being the high-

est score and 0.0 being the lowest score. When a label combination returns the

highest score, this gives the metadata integrator enough confidence to decide that

the two fields from two different ontology files are very likely to be matched and

therefore should be integrated using that data field. An example is CoverID from

39

the Livestock Numbers Metadata and CoverID from the Management Decisions

Metadata receive a score of 1.0, indicating that the two files should be connected

by this data field. Also, CoverDate from the Livestock Numbers Metadata and

ResidualHeight from the Management Decisions Metadata receive a score of 0.0

indicating this combination should not be used by the platform to make the con-

nection between two files.

The response of the Yam++ API will be in XML format. The Ontology Matching

Processor will parse the result gathered from Yam++ API and generate a CSV file

which will be used in the next step of the metadata integration decision making.

The first score for the file coming back from Yam++ is shown in Table 4.2, with

the entire file shown in Appendix K.

entity1 entity2 relation score

CoverID CoverID = 1.0
CoverDate CoverDate = 1.0

PreviousCoverDate CoverDate = 1.0

Table 4.2: First Step Metadata Score File

4.4 Metadata Integration

At this stage, the automation platform has successfully completed all the pre-

requisites steps for the integration process, and each of the ontology file pairs has

been evaluated by the Ontology Matching Processor to determine whether two files

can be integrated together and if so by which data field.

The Metadata Integrator will automatically select the combinations which have a

score that is above the set minimum score threshold in order to be considered a

potential connection point. In this research, the default minimum score has been

set to be 0.8, which is configurable by the user. The score generated by the system

will range from 0.0 to 1.0.

Once all those points have been identified by the integrator, it will proceed by

40

Figure 4.3: Calibration Feature Enabled

executing Neo4j cypher queries to integrate two individual metadata graphs on se-

lected entities. When looking at the ontology file LivestockNumbers Metadata

and ManagementDecisions Metadata generated, it can be found that a few iden-

tical fields are present in both files, thus a number has been assigned with the

maximum score of 1.0. However, a field can only be used once to perform an inte-

gration. For example, if CoverDate from file one has been integrated with CoverDate

from file two, then the integration between the PreviousCoverDate field from file

LivestockNumbers and CoverDate field from file ManagementDecisions will not

be considered eligible for future integration’s. An optional calibration step is also

supported by the platform, which when enabled, allows the user to confirm the

integration of a particular field before merging is performed. The use case of this

optional step will be demonstrated by the next metadata integration step. An ex-

ample of the node integration calibration message is shown in Figure 4.3

As the result of the metadata integration process for given pair of input files along

with the score file produced by the Ontology Matching Processor, a new integrated

metadata graph will be created which contains data fields from both files being

integrated and it will serve as a foundation for the next step of processing. The

metadata integrator will perform the MERGE command on the fields defined by

the platform to be the eligible integration point/points. Once that process is done,

a new ontology file will also be extracted from this integrated metadata graph and

it will be used for the next metadata integration step, this metadata graph will

basically expand upon new successful metadata integration steps. The metadata

graph created as a result of integration of first pair of files LivestockNumbers and

ManagementDecisions is shown in Figure 4.4

41

Figure 4.4: First Integrated Metadata Graph

4.5 Instance Data Integration

Unlike the metadata integrator which can perform integrations on multiple fields,

the instance integrator requires only a single field to serve as the connection point

to perform the instance data integration. The platform will store the information

about which field combination has the highest matching score from the metadata in-

tegration, outlined in the first metadata integration step. As multiple combinations

can achieve the maximum score of 1.0, the first one encountered by the platform

will be selected as the connection point of two files for the instance data integration,

i.e. data field CoverID from both files. The specific data field selected with the

highest score will then be used by the platform to perform an outer join between

the MySQL tables associated with the original two source files. A new table labeled

as Integrated Table One will be created using the joined data. Similar to meta-

data integrator, the instance data integrator also provides a calibration feature that

allows users to override the integration point.

42

4.6 Re-run of Steps For All Input Files

Once the platform has completed the integration of the first two input files, it must

then process all remaining files. The above Ontology Matching Process, Metadata

Integration and Instance Data Integration will, in sequence, be triggered repeatedly

until all input source file pairs are fully processed.

Shown in Snippet 4.3 is the ontology file generated by the first step of metadata

integration, with the full content of the file in Appendix C. This file will become

half of the pair required to be processed next. The ontology matching processor

will retrieve the next file in the queue which is PaddockEstimations. Its ontology

file can be found in Appendix D with the corresponding sample shown in snippet

4.4. This pair of ontology files will generate a score shown in Table 4.3. By using

this platform generated score file, the metadata integrator will be able to construct

a new integrated metadata graph based on these two ontology files along with the

score file passed down from the ontology matching processor.

Snippet 4.3: Extended Metadata with ManagementDecisions Snippet

<neo4j: //graph.schema#TargetPreGrazingYield > a owl:Class;

rdfs:label "TargetPreGrazingYield" .

<neo4j: //graph.schema#GrassIntake > a owl:Class;

rdfs:label "GrassIntake" .

<neo4j: //graph.schema#CoverDate > a owl:Class;

rdfs:label "CoverDate" .

Snippet 4.4: PaddockEstimation Metadata Snippet

<neo4j: //graph.schema#PoachingLevel > a owl:Class;

rdfs:label "PoachingLevel" .

<neo4j: //graph.schema#CoverID > a owl:Class;

rdfs:label "CoverID" .

<neo4j: //graph.schema#GrazeDate > a owl:Class;

rdfs:label "GrazeDate" .

43

From Table 4.3 we can see if the metadata integrator was configured to process on

full auto mode. Some fields will be merged even though it would better if they

remained as independent nodes. The optional calibration feature can be a great

help in this case, as it allows the metadata integrator to skip the integration of

the fields based on human judgment. For instance, even though the combination

NumberOfStock and SoilNumber got a score of 1.0 by the ontology matching proces-

sor, it is relatively trivial for a human not to proceed with the integration of these

two fields. This also applies to TargetPreGrazeingYield and PreGrazeingYeild

as well as ResidualHeight and Height, where it is preferable for them to remain

as independent nodes, as they all have different meanings and will provide different

kinds of information. Once the calibration is done, the metadata integrator will

proceed with the integration process, Figure 4.5.

entity1 entity2 relation score

CoverID CoverID = 1.0
CoverDate CoverDate = 1.0

PreviousCoverDate CoverDate = 1.0
PreviousCoverDate PreviousCoverDate = 1.0

CoverDate PreviousCoverDate = 1.0
NumberOfStock SoilNumber = 1.0

TargetPreGrazingYield PreGrazingYield = 1.0
ResidualHeight Height = 1.0

Table 4.3: Second Step Metadata Score File

If a given input source file does not contain any data fields that can be used to do

integration with existing integrated metadata, the platform will simply skip the file

and proceed to the next file in the queue. For instance, the ontology file generated

by file PbiCow shown in Appendix J does not contain any potential integration data

points with the current integrated ontology file and will be skipped by the platform,

however, it will be added to the tail of the file list, in order to be retried later. This

is because once other files are added to the integrated graph, there is the possibility

that this file can be integrated with the further extended graph.

The next file in line is the PbiLactation, the ontology file generated for it can be

found in Appendix F with a sample snippet shown below in Snippet 4.5

44

Figure 4.5: Metadata Graph Extended with PaddockEstimations

45

Snippet 4.5: PbiLactation Metadata Snippet

<neo4j: //graph.schema#Calving_Date > a owl:Class;

rdfs:label "Calving_Date" .

<neo4j: //graph.schema#LACTATION > a owl:Class;

rdfs:label "LACTATION" .

<neo4j: //graph.schema#ENC_ANI_ID > a owl:Class;

rdfs:label "ENC_ANI_ID" .

Adding the latest extended ontology file shown in Appendix E with sample snippet

shown in Snippet 4.6 to form the pair, the Ontology Matching Processor will produce

the score file shown in Table 4.4, once processed by metadata integrator, it will

generate the further extended metadata graph shown in Figure 4.6

Snippet 4.6: Extended Metadata with PaddockEstimations Snippet

<neo4j: //graph.schema#PreviousHerbageEstKgDmHa1 > a

owl:Class;

rdfs:label "PreviousHerbageEstKgDmHa1" .

<neo4j: //graph.schema#CoverDate > a owl:Class;

rdfs:label "CoverDate" .

<neo4j: //graph.schema#NumberOfStock > a owl:Class;

rdfs:label "NumberOfStock" .

entity1 entity2 relation score

CoverDate Calving Date = 1.0

Table 4.4: Third Step Metadata Score File

The latest integrated ontology file extended by adding PbiLactation file can be

found in appendix G, and the sample snippet shown in Snippet 4.7, it will be

processed by the ontology matching processor along with ontology file generated by

file IndividualCase shown in appendix H with the sample snippet shown in Snippet

4.8. This step will produce the score file shown in Table 4.5.

Snippet 4.7: Extended Metadata with PbiLactation Snippet

46

Figure 4.6: Metadata Graph Extended with PbiLactation

47

<neo4j: //graph.schema#HerbageEstKgDmHa > a owl:Class;

rdfs:label "HerbageEstKgDmHa" .

<neo4j: //graph.schema#ENC_ANI_ID > a owl:Class;

rdfs:label "ENC_ANI_ID" .

<neo4j: //graph.schema#ResidualAfterGrazingCM > a owl:Class

;

rdfs:label "ResidualAfterGrazingCM"

Snippet 4.8: IndividualCase Metadata Snippet

<neo4j: //graph.schema#provincial_case_id > a owl:Class;

rdfs:label "provincial_case_id" .

<neo4j: //graph.schema#method_note > a owl:Class;

rdfs:label "method_note" .

<neo4j: //graph.schema#date_report > a owl:Class;

rdfs:label "date_report" .

entity1 entity2 relation score

CoverDate date report = 1.0

Table 4.5: Fourth Step Metadata Score File

By performing integration on CoverDate from the existing integrated metadata

graph and date report from the IndividualCase file, the metadata integrator will

be able to extend the graph with the new file as shown in Figure 4.7

As mentioned earlier, because the platform was not able to initially integrate the

file PbiCow, the file was appended to the tail of the file list to be re-processed later.

If we take a look at the latest integrated ontology file shown in appendix I, focusing

on the relevant component in Snippet 4.9, we find a field named ENC ANI ID which

was added as part of the integration of file PbiLactation. Now the platform should

be able to make the integration based on that field if we look at the similar snippet

from the ontology file generated using PbiCow shown in Snippet 4.10. If we look in

Table 4.6, the score file generated by evaluating the pair of ontology files confirms

48

Figure 4.7: Metadata Graph Extended with IndividualCase

49

the same.

Snippet 4.9: Extended Metadata with IndividualCase Snippet

<neo4j: //graph.schema#SilageIntake > a owl:Class;

rdfs:label "SilageIntake" .

<neo4j: //graph.schema#date_report > a owl:Class;

rdfs:label "date_report" .

<neo4j: //graph.schema#ENC_ANI_ID > a owl:Class;

rdfs:label "ENC_ANI_ID" .

Snippet 4.10: PbiCow Metadata Snippet

<neo4j: //graph.schema#PERIODBEGIN_DATE > a owl:Class;

rdfs:label "PERIODBEGIN_DATE" .

<neo4j: //graph.schema#ENC_ANI_ID > a owl:Class;

rdfs:label "ENC_ANI_ID" .

<neo4j: //graph.schema#ENC_HERD_ID > a owl:Class;

rdfs:label "ENC_HERD_ID" .

entity1 entity2 relation score

ENC ANI ID ENC ANI ID = 1.0

Table 4.6: Last Step Metadata Score File

By integrating the PbiCow file into the existing integrated metadata graph using field

ENC ANI ID, the platform now finishes the metadata integration process. Figure 4.8

shows the final integrated metadata graph with all the input files having been fully

processed. The workflow for a full demonstration of the process of the repeated

components is shown in Figure 4.9 .

On completion of the integration process, a final integrated metadata graph is pro-

duced in order for consumers to check/validate the metadata integration. It illus-

trates a high level overview of how the data fields are being integrated, by eliminating

any obstruction of the instance data, and clearly indicates the connections/relation-

ships between each of the data fields from all the processed files.

50

Figure 4.8: Final Integrated Metadata Graph With PbiCow Integrated

51

Figure 4.9: File Integration Flow In Action

52

At this stage, the platform has completed the full integration process with minimum

human intervention and the final integrated instance data has been extracted into

a CSV file and is ready to be imported into a graph.

4.7 Evaluation

It is important to measure how well our integration platform performed, as all parts

of this process with the exception of the usage of YAM++ in the Ontology Matching

phase, were developed for this dissertation.

4.7.1 Evaluation Framework

The final integrated SQL table contains 29,371 rows across 66 columns. For an

evaluation, we executed SQL queries against the original SQL tables created during

the initial instance data loading, with the same (although modified to reflect the

new structure) queries executed against the final integrated SQL table. We would

expect identical results from both sets of queries.

Five queries were selected to verify the data integrity of the integrated result against

original datasets, although we believe they sufficiently demonstrate a general notion

of correctness of the integrated data, it does not constitute absolute proof of cor-

rectness.

Example 4.7.1. Locate Cover with Livestock and Grazing Filter

SELECT CoverID FROM ICBF.LivestockNumbers WHERE CoverID

IN (SELECT CoverId FROM ICBF.ManagementDecisions

WHERE TargetPreGrazingYield > 2000)

AND NumberOfStock > 180 AND LivestockType = 'Spring

Milkers ';

SELECT CoverID FROM integration_6 WHERE

TargetPreGrazingYield > 2000 AND NumberOfStock > 180

AND LivestockType = 'Spring Milkers ';

53

Example 4.7.2. Rotational Length Distribution based on Previous Cover Date

Window

SELECT DISTINCT RotationLength FROM ICBF.

ManagementDecisions WHERE CoverID IN (SELECT DISTINCT

CoverId FROM ICBF.LivestockNumbers WHERE STR_TO_DATE

(PreviousCoverDate , '%d/%m/%Y') BETWEEN STR_TO_DATE('

01/09/2019 ', '%d/%m/%Y') AND STR_TO_DATE('01/12/2019 ',

'%d/%m/%Y'));

SELECT DISTINCT RotationLength FROM integration_6 WHERE

STR_TO_DATE(PreviousCoverDate , '%d/%m/%Y') BETWEEN

STR_TO_DATE('01/09/2019 ', '%d/%m/%Y') AND STR_TO_DATE(

'01/12/2019 ', '%d/%m/%Y')

Example 4.7.3. Paddock information that does not have specific livestock and

with large paddock area

SELECT CoverEstimations_PaddockID , PaddockArea ,

PaddockStatus FROM ICBF.PaddockEstimations WHERE

COVERID IN (SELECT DISTINCT CoverId FROM ICBF.

LivestockNumbers WHERE LiveStockTYpe = '>2 years ' AND

NumberOfStock =0) AND PaddockArea > 3;

SELECT CoverEstimations_PaddockID , PaddockArea ,

PaddockStatus FROM integration_6 WHERE LiveStockTYpe =

'>2 years ' AND NumberOfStock =0 AND PaddockArea > 3

;

Example 4.7.4. Filtered Cow information based on calving date

SELECT BREED , DOB , `PERIOD BEGIN DATE `, `PERIOD END DATE

`, EBI , `MILK SUB INDEX ` FROM ICBF.PbiCow WHERE

ENC_ANI_ID IN (SELECT ENC_ANI_ID FROM ICBF.

pbilactation WHERE STR_TO_DATE(Calving_Date , '%d-%M-%

54

Y') BETWEEN STR_TO_DATE('01-Jan -16', '%d-%M-%Y') AND

STR_TO_DATE('01-Jan -18', '%d-%M-%Y'));

SELECT BREED , DOB , `PERIOD BEGIN DATE `, `PERIOD END DATE

`, EBI , `MILK SUB INDEX ` FROM integration_6 WHERE

STR_TO_DATE(Calving_Date , '%d-%M-%Y') BETWEEN

STR_TO_DATE('01-Jan -16', '%d-%M-%Y') AND STR_TO_DATE('

01-Jan -18', '%d-%M-%Y') AND BREED IS NOT NULL;

Example 4.7.5. Lactation information for cows that are older than 20 years

SELECT ENC_ANI_ID , Calving_Date , End_Lactation_Date ,

LACTATION FROM ICBF.pbilactation WHERE ENC_ANI_ID IN (

SELECT ENC_ANI_ID FROM ICBF.PbiCow WHERE STR_TO_DATE(

DOB , '%d-%M-%Y') < STR_TO_DATE('25-May -01', '%d-%M-%Y'

));

SELECT ENC_ANI_ID , Calving_Date , End_Lactation_Date ,

LACTATION FROM integration_6 WHERE STR_TO_DATE(DOB , '%

d-%M-%Y') < STR_TO_DATE('25-May -01', '%d-%M-%Y');

4.7.2 Evaluation Results

Example 4.7.1 to Example 4.7.5 show the queries selected that were ran against

the source and final integrated tables. In each example, the query was executed

against the source table, and below is the query that was executed against the final

integrated table. The results for each are shown in Table 4.7. This confirmed the

accuracy of our integration framework methodology.

4.8 Summary

The purpose of this chapter was to perform a detailed description of our integra-

tion platform and to describe the validation process. Our case study used files in

55

Query ref Results from source Results from integrated data comments

Query 4.7.1 1 Column, 48 Records 1 Column, 48 Records Identical results
Query 4.7.2 1 Column, 19 Records 1 Column, 19 Records Identical results
Query 4.7.3 3 Columns, 36 Rows 3 Columns, 36 Rows Identical results
Query 4.7.4 6 Columns, 22 Records 6 Columns, 22 Records Identical results
Query 4.7.5 4 Columns, 4 Records 4 Columns, 4 Records Identical results

Table 4.7: Validation Results

the Agri sector which were introduced in section 3.2. The evaluation showed that

once files were taken from their sources and integrated, the query-based validation

demonstrated that the integration took place without corrupting the underlying

data.

In the next chapter, the final transformation/graph-loading step converts the anno-

tated dataset into a graph schema. Graph database systems offer tools that import

relational-like data into their graph model. In these tools, the approach is to convert

each tuple from the source relation into a single node, and each value in the tuple

into a property within such a node. Nodes are then linked to each other via edges,

where the edges describe the Foreign to Primary key linkage between tuples.

56

Chapter 5

Data Model Transformation

In the previous chapter, we described how we integrated data using a graph-based

platform. However, that data is still captured in a relational model and there

remains a further step in transforming that relational model data to graph data. In

this chapter an introduction is given in section 5.1. In section 5.2, we describe the

metadata analysis. In section 5.3, we discuss attribute classification. The Graph

construction process is presented in section 5.4. In section 5.5 we summarise this

chapter.

5.1 Introduction

Data models provide different data views and query languages provide different tools

for the analysis and querying of the same data. In a simple dataset where there

are few relationships within the data and little structure, tabular data provides

a simple means of data storage. In linked data [29], where data is linked as a

web, a flat model can neither represent, nor help to visualize the data. However,

many of the datasets provided for machine learning take the form of flat datasets,

stored in relational databases. Increasingly, there are very powerful datasets stored

in simple CSV files which contain none of the semantics captured in a relational

database. These files are still very useful in standard machine learning algorithms.

57

Graph databases have become common in recent years as they allow queries and

analyses that provide new insights into the data. Graph databases applications such

as Neo4j [39], languages such as Cypher [15] and algorithms such as centrality [41]

and community detection [50] provide different forms of analyses on the same data,

offering new insights.

In a real-world scenario, business data and data from most other domains are saved

in tabular format. However, in certain circumstances, some linked data has to be

modeled using a graph structure in order to do graph analysis. In parallel to rela-

tional tables, graphs are another model to store data. We cannot tell which data

model is the best, and the performances are related to the data itself: relational

databases have been shown to have better performances when the data has lit-

tle internal linkage e.g. only contains observational records, this applies for both

processing speed and memory size; For linked data e.g. social media relations, a

relational database can not model and visualize the internal linkages, where data is

linked as a web, therefore graphs are preferable when modeling such data.

The output from the integration part of our research described in chapter 4 was an

integrated tabular dataset, captured using a relational model and the RDF metadata

in Neo4j format. The next step is to convert the data into graph data and for this

process, we drop the RDF metadata. Our reasons can be articulated as follows:

we want a generic graph and not an RDF graph; there is still a significant process

involved in converting the RDF metadata graph into an actual data graph, and also

we would like a process that delivers the best possible graph.

In this chapter, we present our method for converting a tabular dataset into an

optimized graph database, Cube2Graph. In tabular datasets, each entry represents

a (business) record or observation. Often, these datasets come denormalized and

devoid of semantics, where data belonging to different conceptual entities are mixed

together, and no constraints (e.g. PKs or FKs) are provided. We focus our attention

on multi-dimensional datasets, where data can be split into two categories: dimen-

sions and measurements. Briefly, dimension data are composed of non-overlapping

values that provide a categorical description of the record; fact data provide an

58

associated quantitative measure. We assume that the input dataset is sufficiently

large to distinguish dimensions and facts where the dataset has a multi-dimensional

data model.

5.2 Meta-Analysis

In this step, We analyze the tabular data to extract salient information that will

drive the conversion to the graph model. A dataset in tabular format is basically a

relation without schema constraints. Formally:

Definition 5.1. (Tabular Dataset). A tabular dataset is a relation r over a schema

R(X), where R is the name of the relation and X is the set of attributes in R.

The relation r is analyzed to surface the following characteristics: keys, foreign-keys,

and statistical analysis of the values from each attribute Ai ∈ X.

The statistical analysis aims at determining whether the domain associated with the

attribute is finite or not. As described later in this section, attributes from finite

domains can be exploited in the conversion to obtain an optimized graph.

Each relation is profiled with a set of metrics listed below that will drive the graph

generation:

• M tot
aj : The cardinality of the relation across all attributes (we are assuming

the absence of NULL values);

• Mdist
aj : The number of distinct values for attribute aj ∈ Xi;

• Mmean
aj : The mean number of duplicates for the distinct values in attribute

for aj ∈ Xi;

• M rdis
aj : Ratio of distinct values Mdist

aj to total values for the column M tot
aj ;

• M rdup
aj : Ratio of mean duplicates Mmean

aj , to all values M tot
aj ;

59

In addition, we define an additional metric M limit
i that is the maximum value among

all Mdist
aj across all relations. While M limit

i is not used in the classification part of

our method, a very high number has implications for graph construction. This

number defines the max number of tolerable distinct values for the attribute. An

attribute with high value cardinality will generate a high number of nodes that in

extreme numbers cause performance problems.

During the meta-analysis step, the column with the highest number of distinct values

is recorded. This will become an independent node using the rules explained later in

this section. As graph databases suffer from performance problems, early detection

of problematic datasets is sensible. Our experiments showed that nodes with a high

number of distinct values cause memory problems and thus, Tlimit ≥ 150, indicates

that this limit is set to 150 values for each dimension. But we want to point out

that this limit can be adjusted according to the use case, e.g. datasets, hardware

setup, etc.

Initial thresholds are set in this step, with more datasets getting involved and a

manual-label-check adjustment process (post-step) will then adjust the thresholds

by gathering all manually labeled datasets as a data pool to train the thresholds.

5.3 Attribute Classification

In this step, every attribute is automatically classified in order to distinguish dimen-

sional values from facts on the basis of their annotations. As the original dataset

contained no semantics, we can only approximate this classification. Since there is

no guarantee that the detection of dimension versus fact will be semantically accu-

rate, we refer to categories dimensions and facts as Independent Attributes (IA) and

Dependent Attributes (DA), respectively.

Our classification process is based on three parameters:

• KB: Domain Knowledge Base

60

• MV: Max number of Values

• MR: Max Ratio on distinct values

The KB is a set of attributes names that domain experts deem as IA attributes, thus

overriding the automatic classification: this is necessary to simplify the management

of data for the domain experts themselves, once data is in graph format.

The MV specifies the max number of absolute distinct values that are tolerable for

an attribute before deeming it as DA.

The MR parameter provides an indication of the repetitions of distinct values versus

the total number of values.

Both MV and MR are used to control the level of optimization in the graph conversion.

Algorithm 5.1 Attribute Classification.

Classify X
inputs : X, KB, MV, MR
output: IA, DA
foreach Ai ∈ X ∈ r do

if Ai ∈ KB
∨ COUNT (DISTINCT Ai) ≤MV
∨ COUNT (DISTINCT Ai)/COUNT (Ai)
≤MR
then

IA← Ai ∪ IA
else

DA← Ai ∪DA
end

end

Intuitively, if the number of distinct values in an attribute is relatively low compared

to the cardinality of the relation R, then the attribute is classified as IA; else, it is

a DA. The classification algorithm is provided in Alg. 5.1. In addition to attributes

associations and defined threshold, there is an additional factor that is included in

the process: domain knowledge. There are some attributes that domain knowledge

experts prefer to keep separate because it simplifies the management of associated

values once the data is in a graph format. This knowledge base is a set of attribute

61

Figure 5.1: Sample Data

names and values which we refer to as KB. All attributes in the KB are classified as

IA.

Note, in the program, we use label RECORD to indicate that the type is IA and

NODE to indicate that the type is DA. In example 5.3.1 we can see case id is

categorised as IA because of the high number of distinct values at 100% compared

to the number of rows. In example 5.3.2 we can see age is categorised as DA

because of the low number of distinct values, approximately 0.1% compared to the

total number of rows in the source file.

Example 5.3.1. Classified as IA Example

Example 5.3.2. Classified as DA Example

Table 5.1 shows the result of classification step for the sample source file mentioned

in figure 5.1. In this table, on the left-hand side we have the Field Name column

which is the list of columns from the original CSV file, and on the right-hand side is

the Attribute Type column which contains the classification result from our system

for each column.

5.4 Graph Construction

With the tabular dataset annotated, the final step is the conversion to a graph

model. For the graph database, we adopt, without loss of generality, a simplistic

62

Table 5.1: Sample Attribute Classification

Field Name Attribute Type

case id DA
provincial case id DA

age IA
sex IA

health region IA
province IA
country IA

date report IA
report week IA

travel yn IA
travel history country IA

locally acquired IA
case source DA

additional info DA
additional source DA

method note IA

model where nodes can only have one value and edges only one label. More formally,

we define a graph database as follows:

Definition 5.2. (Graph Database). A graph database is a graph g = (N, E) where

every node n ∈ N is associated with a value, and every edge e ∈ E is associated

with a label.

Note that this definition of our graph database model is different from that used in

modern graph database systems, where a graph database is, indeed, a multi-graph.

In a multi-graph, in addition to linking nodes via edges, both a node and an edge

can be associated with a set of (key-value) properties (values).

Graph database systems offer tools that import relational-like data into their graph

model. In these tools, the approach is to convert each tuple from the source relation

into a single node, and each value in the tuple into a property within such a node.

Nodes are then linked to each other via edges, where the edges describe the FKs to

PKs linkage between tuples.

In our method as in other approaches, the primary and foreign keys constraints are

63

treated the same way: they become connection edges between nodes. In contrast

to other approaches, our method exploits node annotations in order to reduce the

number of nodes required in the graph.

Alg. 5.2 formally describes the graph construction method for a single relation. The

output of the algorithm is a star-graph, as defined in Def. 5.3.

Definition 5.3. (Star-Graph Database). A star-graph database is a multi-graph g

= (N IND, NDEP , E) where an independent node n ∈ N IND is a node associated

with a single value, a dependent node record r ∈ NDEP is associated with a set

of pairs 〈key, value〉, and every edge e ∈ E is a triple 〈r, n, l〉 describing a directional

connection with label l between two nodes within or across in N IND and NDEP .

Briefly, values associated with DA attributes are loaded with a 1:1 mapping into

the graph: each value becomes a so-called dependent node (NDEP) in the graph;

distinct values associated with IA attributes become a so-called independent node

(N IND). Dependent and independent nodes are then linked via graph relationships,

edges, to describe the records from the original relation. Compression is achieved

as only a single node class is created for each IA value which is considerably less

than the total number of instances.

More formally, as per Alg. 5.2 and Def. 5.3, the star-graph is formed by a NDEP

node at the center of the star, where N IND are satellite nodes. For the sake of

clarity and brevity, but without loss of generality, we assume that a relation can

only have one DA attribute. An N IND node is connected to the NDEP nodes via

two edges:

• An edge with a label RECORD to capture that values belonging to the same

source tuple;

• An edge with label describing the semantics of attribute connections: the

attribute name from the original relation.

The graph construction process involves three steps:

64

Algorithm 5.2 Graph Construction.

Input : TabularData, IAList, DAList
Output: Constructed Graph
foreach row r in Tabular Data File do

foreach DA in DA list do
Load r[DA] into joint dependent node Record recordr;

end
foreach IA in IA list do

if r[IA] does not exist in graph then
Load r[IA] as independent node noden;

Create bi-direction edges between noden and recordr
end

end

1. For properties which are categorized as IA, they will be loaded as independent

nodes by the program;

2. For properties which are categorized as DA, they will be loaded as joint nodes

named Record by the program;

3. Upon completion of node creation, the program will proceed with creating

edges between each node if there were relationships between them.

Figure 5.2: Sample IA Node Info

Figure 5.3: Sample DA Node Info

Next, we will present some visualisation samples from the constructed graph. In

Figure 5.2, we can see the node information for an N IND type node, in this node,

<id> is a unique id auto generated by Neo4j and other properties additional info,

case id, case source as well as provicial case id were categorised as IA types

in the previous step described in section 5.3. In Figure 5.3 we can see the node

information for an NDEP type node containing one property apart from Neo4j

generated <id> property.

65

Figure 5.4: Sample DA Connected with IAs

In Figure 5.4 we can see the sample NDEP node with case id = 9 at the center of

the star connected with multiple N IND node where each of the connections in the

star has two edges, one labeled as RECORD and another labeled as the attribute

name from the original source.

Figure 5.5 is an example that displays multiple DA node types connecting to the

same IA node type, in this case the blue colored node in the center of the graph is

report week which is an independent node and all the red colored nodes are dependent

nodes representing different COVID cases.

66

Figure 5.5: Multiple DAs connecting to same IA

In figure 5.6, we can also see an example where different DA type of nodes in the

graph are connected with each other through different shared common IA type of

nodes. In the graph, the dependent nodes labeled with case id and colored in red

are connected to each other via different independent nodes which are in different

colors other than red.

67

Figure 5.6: Nodes connecting with each other in graph

68

5.5 Summary

In this chapter, we have walked through the graph data transformation in detail.

Our research provides a method to convert tabular data into a graph structured

data which can be used to do graph analysis to discover relations that relational

databases cannot do. Tabular data is a widely used data type, it is convenient to

get other types (Json [45], XML [9], etc.) of data into a tabular type data. Between

tabular data and graph data, a mapping process is required to add namespaces/con-

nections/edges. The process to convert tabular data into graph data is a process to

find internal relations. Through a classification process, the system is able to gather

instructions on how to design the perspective graph schema. After generating edges

based on property structures and relations, data can be loaded directly into the

graph database as a graph.

With the development of Graph Technology, researchers have developed novel ap-

plications where graphs have been at the core of the solution. Graphs have given

researchers a different perspective and aspect in order to deal with conventional

problems and have helped in many discoveries. We believe the positive result will

be achieved by combing our graph transformation methodology with our integration

system.

In the next chapter, we present a detailed evaluation of the end result of the process,

a graph constructed using our system originated from data in tabular form.

69

Chapter 6

Evaluation

In this chapter, we evaluate the graph constructed using our transformation method-

ology with source data in the tabular form discussed in chapter 5. We also describe

the hardware and software setup for the experiment. In section 6.1, we describe the

experimental setup. The results of the experiment will then be presented in section

6.2. In section 6.3, we will share our insights and findings from the results, before

summarizing the chapter in section 6.4.

6.1 Experimental Setup

In this section, we will go over the setup for our experiment for both hardware and

software. Our core system is developed using python [59] version 3.7. During our

evaluation, the python program and MySQL database instance versioned 8.0.19 are

hosted on a local machine with 8GB of RAM, 4 CPU cores as well as a solid state

drive, and we leverage Microsoft AZURE [7] cloud machine with 14GB of RAM, 2

high performance CPU cores and a solid state drive for hosting a cloud based Neo4j

database versioned 4.0.0 to deliver optimized performance for processing graph data

loading.

Our research is largely involved in the agricultural domain. All of the datasets used

70

in our research originated from agricultural, geographical or weather datasets. For

an evaluation on the constructed graph, we used a data source outside our normal

domain in order to test the robustness of our approach. As it is topical at the

moment, we used one of the covid-19 datasets from Kaggle [10], consisting of 16

columns and 17,167 rows detailing individual infections in Canada. The goal is

to demonstrate the topography of the graph and run comparison queries for the

original source dataset and the newly constructed graph. This might appear to be

out of context as we are merging two fully separate domains. However, it provides

a good challenge for our approach and if successful, demonstrates that a number of

core dimensions exist across all datasets that enable some level of integration eg.

time and location.

able 6.1 presents the results of the Meta-Analysis step described in section 5.2

as columns Mdist, Mmean, M rdis
aj and M rdup

aj , recall that Mdist is the total number

of distinct values, M rdis
aj is the ratio of distinct values Mdist

aj to total values for the

column M tot
aj , M rdup

aj is ratio of duplicates mean Mmean
aj , to all values M tot

aj , while

Class presents the result of the Attribute Classification step described in section

5.3 specifically by algorithm 5.1.

6.2 Results

Table 6.1: Covid-19 Dataset Meta Analysis

Attribute Mdist Mmean Mrdis
aj

Mrdup
aj

Class

case id 17167 1.0000 1.0000 0.0001 DA
provincial case id 8580 2.0008 0.4998 0.0001 DA

age 17 1009.8235 0.0010 0.0588 IA
sex 3 5722.3333 0.0002 0.3333 IA

health region 83 206.8313 0.0048 0.0120 IA
province 13 1320.5385 0.0008 0.0769 IA
country 1 17167.0000 0.0001 1.0000 IA

date report 50 343.3400 0.0029 0.02 IA
report week 12 1430.5833 0.0007 0.0833 IA
travel yn 3 5722.3333 0.0002 0.3333 IA

travel history country 75 7.4400 0.0044 0.0133 IA
locally acquired 4 92.5000 0.0002 0.2500 IA

case source 838 20.4857 0.0488 0.0012 DA
additional info 174 7.9713 0.0101 0.0057 DA

additional source 163 8.0123 0.0095 0.0061 DA
method note 4 4291.7500 0.0002 0.2500 IA

71

Figure 6.1: Covid-19 Graph Database Schema

72

Figure 6.2: Covid-19 Graph

Figure 6.1 illustrates the schema design: a star where the dependent node (fact

properties) form the core with relationships to all independent nodes (dimensional

properties). Each fact can be related to other facts through one or more independent

nodes, for example, multiple covid cases can be linked to each other when they were

reported in the same week or they are based in the same province.

The constructed graph has 17,435 nodes, from 12 types (labels) and 377,674 rela-

tionships from 12 types. A partial view of the complete graph is shown in figure

6.2.

73

The graph is restricted to 5 random dependents nodes expanded with their connected

independent nodes. The simple retrieval query is shown in example 6.2.1. Note that

the reason for the relatively small number of nodes selected is for better visualization

purposes. A large crowd of dependent and independent nodes being displayed in

the same graph will simply make the graph unreadable.

Look at the center of the graph, the red colored nodes labeled with ID are 5 COVID

records. They are connected with all the independent fact nodes associated with

them.

Example 6.2.1. Retrieve 5 random dependent nodes

MATCH (r:record) RETURN r LIMIT 5

6.2.1 Storage

The first evaluation was to assess the storage requirements, as this is often a critical

point especially when physical storage is limited. The queries ran on both Neo4j

and MySQL to retrieve storage information are shown in Examples 6.2.2 6.2.3.

Example 6.2.2. Storage Info Retrieval Query for Neo4j

:sysinfo

Example 6.2.3. Storage Info Retrieval Query for MySQL

SELECT

TABLE_NAME AS `Table Name `,

ROUND (((DATA_LENGTH + INDEX_LENGTH) / 1024 / 1024) ,2)

AS `Total Storage Size (MB)`

FROM

information_schema.TABLES

WHERE

TABLE_NAME = "IndividualCase"

ORDER BY

74

(DATA_LENGTH + INDEX_LENGTH)

DESC;

The total storage required by the Neo4j graph was around 340 MB and includes the

storage for both the data and the metadata, Figure 6.3. Alternatively, the MySQL

database takes approximately 0.25MB in storage for the original source data shown

in figure 6.4.

Figure 6.3: Neo4j Storage Size

Figure 6.4: MySQL Table Storage Size

75

6.2.2 Data Integrity

We want to ensure we have a true representation of the data with the constructed

graph. In order to perform the validation, we have selected a number of queries to be

executed against both the Neo4j and MySQL databases. We expect the results from

both databases to be identical. The queries are shown in Example 6.2.4, Example

6.2.5 and Example 6.2.6. In those examples, the query at the top is executed against

the MySQL database, the query at the bottom was executed against Neo4j database.

Below are the expected results for each query example:

• Example 6.2.4: Integer number indicating the number of COVID cases re-

ported in the week commencing 08/03/2020 ;

• Example 6.2.5: Integer number of COVID cases that do not have the travel histroy country ;

• Example 6.2.6: COVID records that are aged between 30-39 and located in

BC area;

The graph representation in Neo4j for query result of example 6.2.4 is shown in

Figure 6.5. Figure 6.6 shows the graph representation of the result for the query

executed in Example 6.2.5. The graph representation for query result of example

6.2.6 is shown in Figure 6.7.

Example 6.2.4. Case Number reported for a given week

SELECT COUNT (*)

FROM IndividualCase

WHERE report_week = "08/03/2020"

MATCH (r:record) -[]->(w:report_week)

WHERE w.report_week = '08/03/2020 '

RETURN COUNT(r)

76

Figure 6.5: Cases reported for a given week

Example 6.2.5. Unknown Travel History

SELECT COUNT (*)

FROM IndividualCase

WHERE travel_history_country = "Not Reported"

MATCH (r:record) -[]->(t:travel_history_country)

WHERE t.travel_history_country = 'Not Reported '

RETURN COUNT(r)

77

Figure 6.6: Unknown Travel History Cases

Example 6.2.6. BC Case Aged 30-39

SELECT * FROM IndividualCase

WHERE province = "BC"

AND age="30-39"

MATCH (p:province) -[]->(r:record) -[]->(a:age)

WHERE p.province = "BC" AND a.age = "30-39"

RETURN r

78

Figure 6.7: BC Case Aged 30-39

Table 6.2: Validation Results

Query MySQL Result Neo4j Result Results

Case Number reported for a given week 197 197 Identical
Unknown Travel History 139 139 Identical
BC Case Aged 30-39 7 Records 7 Records Identical

6.2.3 Analytical Evaluation

As discussed in chapter 5, the benefits of graph databases have been realized by

a wider group in recent years as they allow queries and analyses that provide new

insights into the data. In order to demonstrate the pros and cons of a graph database

compared to a relational database, four analytical queries were selected to compare

the original SQL-based dataset and the new graph database:

• Select and Aggregate were selected to favour the relational approach.

• Linked and Community Detection to favour the graph approach.

79

Example queries 6.2.7 and 6.2.8 determine the possibility of infection for males in

the age group 30-39. Queries 6.2.9 and 6.2.10 examine the distribution of infections,

seeking the difference by geographic province and by gender. Example 6.2.11 seeks

to find links between infection cases. We believe the SQL equivalent is too complex

to build. It requires the creation of stored procedures, as well as edges table [12], so

we are not going to include it for this thesis. Example 6.2.12 is a community detec-

tion query, specific to graph databases. Before applying 6.2.12, a linkage creation

pre-processing step was required to create record-to-record relationships based on

example 6.2.11. This step used Microsoft Azure and the estimated time was based

on a cloud hosted single instance of Neo4j.

Example 6.2.7. Infection-Query-Cypher

MATCH (n:sex) -[]-(u:record) -[]-(m:age)

WHERE n.sex='Male ' and m.age='30-39'

WITH COUNT(u) as count

MATCH (a)

RETURN count *1.0/ count(a) as possibility

Example 6.2.8. Infection-Query-SQL

SELECT (

SELECT COUNT (*) FROM 'individual -level -cases '

WHERE age='30-39' and sex='Male '

)/COUNT (*) AS POSSIBILITY

FROM 'individual -level -cases '

Example 6.2.9. Distribution-Query-Cypher

MATCH(p:province) -[]->(r:record)< -[]-(s:sex)

WITH p.province AS province ,

COUNT(r) AS number , s.sex AS sex

RETURN province , sex , number

ORDER BY province

80

Example 6.2.10. Distribution-Query-SQL

SELECT province , sex , COUNT (*) AS number

FROM 'individual -level -cases '

GROUP BY province , sex

ORDER BY province

Example 6.2.11. Linked-Query-Cypher

MATCH (p1:record)< -[]-(p:province) -[]->(p2:record)

WHERE p1.case_id =1198 AND p1.case_id <> p2.case_id

RETURN p1.case_id , p2.case_id , gds.alpha. \

linkprediction.adamicAdar(p1 , p2) AS score

ORDER BY score DESC

Example 6.2.12. Community-Detection

CALL gds.labelPropagation.stream('integration -graph ')

YIELD nodeId , communityId AS Community

RETURN gds.util.asNode(nodeId) AS Node , Community

ORDER BY Community , Node

Table 6.3: Analytics Results

Query Cypher time(ms) SQL time(ms) Results

Select Ex3.1 36.2 Ex3.2 15.4 Identical
Aggregate Ex3.3 58.9 Ex3.4 19.7 Identical
Linked Ex3.5 319 Not shown 523050 N/A

Comm. Det. Ex3.6 5000 N/A N/A N/A

Figure 6.8: Linked Query Result from Neo4j

81

Figure 6.9: Community Detection Query Result from Neo4j

6.3 Analysis and Discussion

In this section, we will analyze the results shown in the previous section 6.2 and

discuss our findings.

6.3.1 Storage Analysis

In figure 6.3, we can see the total storage of 340.71 MB was much bigger for the

graph database in comparison to the space taken in MySQL of 0.25 MB. That is

because it includes storage information that is not directly related to the data we

stored, for example, the Logical Log required 59.06MB and is required by Neo4j

and should not be included in the comparison.

82

We believe that the storage types that are directly related to our data which are

not metadata that used by Neo4j is as follows:

• Label Store

• Index Store

• Schema Store

• Node Store

• Property Store

• Relationship Store

The total storage size of those types is roughly about 27MB, which is still consid-

erably a much bigger number compared to the 0.25MB used to store the same data

in MySQL. This is because, for every pair of nodes that have connections, there are

two relationships/edges as well as multiple properties created which lead to the dif-

ference in storage requirements. In other words, the way we choose to represent the

data has given us the benefits of enhanced analytical powers but has also resulted in

increased storage requirements. These issues need to be considered when leveraging

our system.

6.3.2 Data Integrity Analysis

From the results shown in Table 6.2, we can see for query Case Number reported

for a given week, both MySQL and Neo4j returned 197. For query Unknown Travel

History, both MySQL and Neo4j returned 139. Finally, 7 identical records were

retrieved by both databases when query BC Case Aged 30-39 was applied. To

summarise, the identical results retrieved by various queries performed at both Neo4j

database and MySQL database have proved that our system is working as expected.

At this point, we can confirm that we have a true representation of the original data.

83

6.3.3 Analytics Result Analysis

Table 6.3 shows the results for the 4 query types in terms of computation times and

a comparison of the results where possible. As expected, the Select and Aggregate

queries show SQL having a better performance than Cypher queries but impor-

tantly for our validation, the result sets were equivalent. However, SQL can expect

an inferior performance where JOINs are required, as Cypher has been shown to

significantly out-performed SQL [48].

For the Linked-Query, we used Neo4j build-in algorithm adamic adar algorithm,

which was introduced in 2003 by Lada Adamic and Eytan Adar to predict links in

a social network [3]. The result of the query is shown in figure 6.8. The first column

of the result, p1, is the base case with case id equal to 1198 and province case id

equal to 1. At the second column of the result is the p2 which is a list of cases that

are reported from the same province of case with case id 1198. At the last column

of the result is the score, a value of 0 indicates that two nodes are not close, while

higher values indicate nodes are closer. So we can see the highest score is about 1.8

indicating the two nodes are closer when compared to other nodes in the list. If we

bring Covid-19 into context, that will basically mean the possibility of the case with

case id of 9125 is linked to the case with case id of 1198 is relative higher compare

to other cases in the same geographic area. This algorithm can be useful to find

connection patterns among all the COVID cases reported.

We want to highlight that it was not possible to code a meaningful community

detection algorithm using SQL for this dataset, so such an algorithm can only be

adopted when data is stored in a graph database. The algorithm we applied on

Neo4j was the label propagation algorithm (LPA) [51], which is a fast algorithm

for finding communities in a graph. It detects these communities using network

structure alone as its guide and does not require a pre-defined objective function

or prior information about the communities. The result of the query completed in

Neo4j is shown in Figure 6.9. In the figure, The Node column contains the COVID

case records. The Community column indicates the community that the record

84

belongs to. But each record appears to have a unique community. The reason is, in

order for the community detection algorithm to work, the nodes are required to have

a direct relationship. However, in our graph, all the record nodes are connected to

each other through common independent nodes such as report week and province.

Therefore, the community detection algorithm will not be able to bring any valuable

insights for our current dataset.

6.3.4 Data Loading Performance

The loading performance between Neo4j database and MySQL database is not a like

for like comparison. For the Neo4j database, the time to completion (averaged over

multiple runs) for was for Meta analysis: 0.19s; Classification: 0.23 and Loading:

689.44s. The MySQL database, will only take a total of approximately 68 seconds.

The loading time difference is big with Neo4j taking around 10 times longer, but

that is simply because the large number of relationships created by our system and

stored in Neo4j graph database is not applied in the MySQL database. Therefore,

we will be unable to drill down in order to compare the two databases, but instead,

we are going to discuss the loading performance from our system alone. We want

to highlight that the performance of our system is heavily associated with the data

we are dealing with. It is the combination of a large number of nodes, properties,

and a large number of relationships that leads to the current loading performance of

Neo4j graph database. The performance concern may get addressed when adopted

by enterprises with machines that have large enough RAM, but for others, it will

not be ideal to process data files that contain a large number of fields in conjunction

with a large number of rows, unless waiting time is not a key factor.

6.4 Summary

In this chapter, we shared the hardware and software setup for our system as well

as the dataset we used for our experiments. We evaluated the system in multiple

85

dimensions including storage, data representation, analytics as well as performance.

We performed analysis for the results we gathered from the experiments and talked

about all the interesting findings.

In the next chapter, we draw conclusions for our research.

86

Chapter 7

Conclusions

As we have now reached the end of this dissertation, in section 7.1, we provide

a summary of the methodology, evaluation, and results. Then in section 7.2, we

suggest some areas for future research which could build upon the research presented

in our work.

7.1 Thesis Summary

In this dissertation, we have outlined the benefits of graph database for different

purposes and the difficulties of integrating data from different sources, and the con-

struction of graph which often involves a large amount of time consumed by manual

works. In order to solve those problems outlined, we presented our automated graph

based data integration system which is able to deliver a solution that is capable of

integrating multiple data sources and completes graph transformation with mini-

mum human intervention. Thus, we can highlight the 2 key goals we set out to

achieve and we will talk about them separately:

1. Automated Schema Integration

2. Automated Graph Data Model Transformation

87

We have discussed our schema integration methodology in detail in chapter 4. In

order to evaluate our integration mythology, we used a list of files in the field of

agriculture to demonstrate the result we can achieve by leveraging our integration

system. At the end of the integration stage, the most fundamental factors we want

to measure against our system is:

• Can the system perform integration on multiple files automatically?

• Will the system result in any data loss in the process of integration?

The evaluation result shown in section 4.7 has shown that no loss of data occurred

during the integration process and our system is able to integrate the five files

mentioned in 3.2. Our graph data model transformation methodology is presented

in chapter 5. In order to test the robustness of our methodology, we used a file that

is outside our research domain which is the covid-19 datasets from Kaggle [10].

There are a few questions we asked ourselves when performing the evaluation:

• How much storage space does the graph consume (compared to original sources)?

• Can the system guarantee data integrity?

• What is the performance of our system?

• Can we conduct graph analytics?

In order to answer these questions, we have performed a detailed evaluation primary

by comparing with MySQL in 3 dimensions. In section 6.3.1, section 6.3.2 and

section 6.3.4 we tried to answer above questions. In addition, we have conducted

some analytics comparison between MySQL and Neo4j Graph in section 6.2.3, the

result analyzed in section 6.3.3 indicates promising results when using Neo4j graph

database over MySQL when it comes to data analytics.

88

7.2 Future Research

During the work carried out in this thesis some questions which merit further inves-

tigation arose. We now revisit these as avenues for future work.

Our system, at the moment, is only dealing with data in CSV format. The reason

behind that is any data in tabular form can be easily transformed to CSV format by

various tools currently on the market. However, because the goal of our system is to

achieve full automation, it is worth extending this research to data models beyond

the basic CSV (flat) model.

During our integration process discussed in chapter 4, we identified that where

even two files share a potential integration point (same type across two files), the

mismatch of the field format can lead to undesirable results. For example, both of the

files can contain a date column where in the first file the format being YYYY-MM-

DD and format being DD-MM-YYYY for the second file. Ideally, the format should

be consistent across different files for the same type field but that is often not the

case. In order to enhance our system to be more resilient, a data unification process

can be added on top of the system. It should be invoked before the integration

process starts and should be able to unify the data format for the same type to

make consistency across all the source files.

In our graph data model, the transformation methodology presented in chapter

5 did not take into account the types of queries that might be expressed on the

data. Previous research such as [54] performed an analysis of common queries before

deciding on a final structure. We think this might one way to continue our graph

transformation algorithm.

There are other ways to optimize our graph design. Any given attribute in the

source file is either a dependent attribute or an independent attribute, and

when creating nodes in a graph database, all the independent attributes are created

as individual objects. However, some dimensions are dependent dimensions which

can be a dimension group and may have similar meta features to be classified to

89

dimensions. For example, two attributes named [county] and [country number],

we can clearly see that are highly dependent on each other by conducting a quick

analysis on the sample data. This suggests that ideally the two attributes should

be grouped into a shared Node (one dimension) containing information for both

attributes in a Graph. This is not something our system can support at the moment,

but if we can enhance our system to support the concept of independent attribute

group, not only we will be able to boost the performance and save a lot of storage

in the process, but also to be able to produce a more condensed graph that is

potentially more meaningful to the end user.

90

Bibliography

[1] Christensson, P. DBMS Definition. Retrieved 2021, Jun 22.

[2] Irish Cattle Breeding Federation. https://www.icbf.com/.

[3] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Soc.

Networks, 25:211–230, 2003.

[4] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, Juan Sequeda,

et al. A direct mapping of relational data to rdf. W3C recommendation,

27:1–11, 2012.

[5] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark

Callaghan. Linkbench: A database benchmark based on the facebook social

graph. SIGMOD ’13, page 1185–1196, New York, NY, USA, 2013. Association

for Computing Machinery.

[6] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm.

Schema and ontology matching with coma++. In Proceedings of the 2005

ACM SIGMOD international conference on Management of data, pages

906–908, 2005.

[7] Microsoft Azure. https://azure.microsoft.com/.

[8] Janet Heine Barnett. Early writings on graph theory: Euler circuits and the

königsberg bridge problem. Part II: Historical Projects in Discrete

Mathematics and Computer Science of Resources for Teaching Discrete

91

Mathematics: Classroom Project, History Modules, and Articles, MAA Notes,

74:197–208, 2005.

[9] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, François

Yergeau, et al. Extensible markup language (xml) 1.0, 2000.

[10] Roche Canada. Uncover covid-19 challenge, 2020.

[11] David Chaves-Fraga, Freddy Priyatna, Idafen Santana-Perez, and Oscar

Corcho. Virtual statistics knowledge graph generation from csv files. In

Emerging Topics in Semantic Technologies, volume 36 of Studies on the

Semantic Web, pages 235–244, 10 2018.

[12] Sara Cohen and Netanel Cohen-Tzemach. Implementing link-prediction for

social networks in a database system. In Proceedings of the ACM SIGMOD

Workshop on Databases and Social Networks, DBSocial ’13, page 37–42, New

York, NY, USA, 2013. Association for Computing Machinery.

[13] Stefan Conrad, Wilhelm Hasselbring, Uwe Hohenstein, Ralf-Detlef Kutsche,

Mark Roantree, Gunter Saake, and Fèlix Saltor. Engineering federated

information systems: Report of EFIS ’99 workshop. SIGMOD Rec.,

28(3):9–11, 1999.

[14] Olivier Curé, M. Lamolle, and C. L. Duc. Ontology based data integration

over document and column family oriented nosql. ArXiv, abs/1307.2603, 2013.

[15] Cypher. Cypher Manual v4.0, April 2020.

https://neo4j.com/docs/cypher-manual/current/.

[16] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2rml: Rdb to rdf

mapping language. W3C recommendation, 2012.

[17] Maŕıa del Mar Roldán Garćıa, José Garćıa-Nieto, and José F. Aldana-Montes.

An ontology-based data integration approach for web analytics in

e-commerce. Expert Systems with Applications, 63:20–34, 2016.

92

https://neo4j.com/docs/cypher-manual/current/

[18] Xin Luna Dong and Theodoros Rekatsinas. Data integration and machine

learning: A natural synergy. In Proceedings of the 2018 International

Conference on Management of Data, SIGMOD ’18, page 1645–1650, New

York, NY, USA, 2018. Association for Computing Machinery.

[19] Xin Luna Dong and Divesh Srivastava. Big data integration. In 2013 IEEE

29th International Conference on Data Engineering (ICDE), pages 1245–1248,

2013.

[20] Manuel Garćıa-Solaco, Fèlix Saltor, and Malú Castellanos. A structure based

schema integration methodology. In Philip S. Yu and Arbee L. P. Chen,

editors, Proceedings of the Eleventh International Conference on Data

Engineering, March 6-10, 1995, Taipei, Taiwan, pages 505–512. IEEE

Computer Society, 1995.

[21] Piotr Habela, Mark Roantree, and Kazimierz Subieta. Flattening the

metamodel for object databases. In Yannis Manolopoulos and Pavol Návrat,

editors, Advances in Databases and Information Systems, 6th East European

Conference, ADBIS 2002, Bratislava, Slovakia, September 8-11, 2002,

Proceedings, volume 2435 of Lecture Notes in Computer Science, pages

263–276. Springer, 2002.

[22] Reiko Heckel. Graph transformation in a nutshell. Electronic Notes in

Theoretical Computer Science, 148(1):187–198, 2006. Proceedings of the

School of SegraVis Research Training Network on Foundations of Visual

Modelling Techniques (FoVMT 2004).

[23] Adam Cowley Jesús Barrasa. https://neo4j.com/labs/neosemantics/.

[24] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete

guide to dimensional modeling. John Wiley & Sons, 2011.

[25] V K Kiran and R Vijayakumar. Ontology based data integration of nosql

datastores. In 2014 9th International Conference on Industrial and

Information Systems (ICIIS), pages 1–6, 2014.

93

[26] Mahesh Lal. Neo4j graph data modeling. Packt Publishing Ltd, 2015.

[27] Ora Lassila, Ralph R. Swick, World Wide, and Web Consortium. Resource

description framework (rdf) model and syntax specification, 1998.

[28] Timothy Lebo and Gregory Todd Williams. Converting governmental

datasets into linked data. In Proceedings of the 6th International Conference

on Semantic Systems, pages 1–3, 2010.

[29] Timothy Lebo and Gregory Todd Williams. Converting governmental

datasets into linked data. In Proceedings of the 6th International Conference

on Semantic Systems, I-SEMANTICS ’10, New York, NY, USA, 2010.

Association for Computing Machinery.

[30] Shao Liang, Adel Taweel, Simon Miles, Yevgeniya Kovalchuk, Anastassia

Spiridou, Ben Barratt, Uyen Hoang, S Crichton, Brendan Delaney, and

Charles Wolfe. Semi automated transformation to owl formatted files as an

approach to data integration a feasibility study using environmental, disease

register and primary care clinical data. Methods of information in medicine,

53, 06 2014.

[31] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey.

Physica A: statistical mechanics and its applications, 390(6):1150–1170, 2011.

[32] Brian McBride. The Resource Description Framework (RDF) and its

Vocabulary Description Language RDFS, pages 51–65. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2004.

[33] Andrew McCarren, Suzanne McCarthy, Conor O. Sullivan, and Mark

Roantree. Anomaly detection in agri warehouse construction. In Proceedings

of the Australasian Computer Science Week Multiconference, ACSW 2017,

Geelong, Australia, January 31 - February 3, 2017, pages 17:1–17:10. ACM,

2017.

[34] Franck Michel. Integrating heterogeneous data sources in the Web of data.

Theses, Université Côte d’Azur, March 2017.

94

[35] Franck Michel, Löıc Djimenou, Catherine Faron-Zucker, and Johan

Montagnat. Translation of heterogeneous databases into rdf, and application

to the construction of a skos taxonomical reference. In Valérie Monfort,

Karl-Heinz Krempels, Tim A. Majchrzak, and Žiga Turk, editors, Web

Information Systems and Technologies, pages 275–296, Cham, 2016. Springer

International Publishing.

[36] AB MySQL. Mysql, 2001.

[37] Mark Needham and Amy E Hodler. A comprehensive guide to graph

algorithms in neo4j. Neo4j. com, 2018.

[38] Mark Needham and Amy E Hodler. Graph Algorithms: Practical Examples in

Apache Spark and Neo4j. O’Reilly Media, 2019.

[39] Neo4j. Neo4j graph platform.

[40] Neo4j. Top ten reasons for choosing neo4j.

[41] ME Newman. Scientific collaboration networks. ii. shortest paths, weighted

networks, and centrality. Physical review. E, Statistical, nonlinear, and soft

matter physics, 64(1 Pt 2):016132, July 2001.

[42] DuyHoa Ngo and Zohra Bellahsene. Yam++ : A multi-strategy based

approach for ontology matching task. In Annette ten Teije, Johanna Völker,

Siegfried Handschuh, Heiner Stuckenschmidt, Mathieu d’Acquin, Andriy

Nikolov, Nathalie Aussenac-Gilles, and Nathalie Hernandez, editors,

Knowledge Engineering and Knowledge Management, pages 421–425, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[43] Jim O’Donoghue, Mark Roantree, and Andrew McCarren. Detecting feature

interactions in agricultural trade data using a deep neural network. In Ladjel

Bellatreche and Sharma Chakravarthy, editors, Big Data Analytics and

Knowledge Discovery - 19th International Conference, DaWaK 2017, Lyon,

France, August 28-31, 2017, Proceedings, volume 10440 of Lecture Notes in

Computer Science, pages 449–458. Springer, 2017.

95

[44] Pieter Pauwels, Ruben Verstraeten, Ronald Meyer, and Jan Campenhout.

Semantics-based design: Can ontologies help in a preliminary design phase?

Design Principles and Practices. An International Journal., 3:263–276, 02

2009.

[45] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Mart́ın Ugarte, and Domagoj

Vrgoč. Foundations of json schema. In Proceedings of the 25th International

Conference on World Wide Web, pages 263–273. International World Wide

Web Conferences Steering Committee, 2016.

[46] Salvatore Flavio Pileggi, Hayden Crain, and Sadok Ben Yahia. An ontological

approach to knowledge building by data integration. In Valeria V.

Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Jack J. Dongarra,

Peter M. A. Sloot, Sérgio Brissos, and João Teixeira, editors, Computational

Science – ICCS 2020, pages 479–493, Cham, 2020. Springer International

Publishing.

[47] Christoph Pinkel, Carsten Binnig, Ernesto Jimenez-Ruiz, Evgeny Kharlamov,

Andriy Nikolov, Andreas Schwarte, Christian Heupel, and Tim Kraska.

Incmap: A journey towards ontology-based data integration. In Bernhard

Mitschang, Daniela Nicklas, Frank Leymann, Harald Schöning, Melanie

Herschel, Jens Teubner, Theo Härder, Oliver Kopp, and Matthias Wieland,

editors, Datenbanksysteme für Business, Technologie und Web (BTW 2017),

pages 145–164. Gesellschaft für Informatik, Bonn, 2017.

[48] Neo4j Graph Platform. Concepts: Relational to graph, 2019.

[49] Jaroslav Pokorny. Nosql databases: A step to database scalability in web

environment. In Proceedings of the 13th International Conference on

Information Integration and Web-Based Applications and Services, iiWAS ’11,

page 278–283, New York, NY, USA, 2011. Association for Computing

Machinery.

96

[50] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A. Gunnels. Scalable

community detection with the louvain algorithm. In 2015 IEEE International

Parallel and Distributed Processing Symposium, pages 28–37, 2015.

[51] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear

time algorithm to detect community structures in large-scale networks.

Physical review E, 76(3):036106, 2007.

[52] Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay. Providing views and

closure for the object data management group object model. Inf. Softw.

Technol., 41(15):1037–1044, 1999.

[53] Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay. Using a metadata

software layer in information systems integration. In Klaus R. Dittrich,

Andreas Geppert, and Moira C. Norrie, editors, Advanced Information

Systems Engineering, 13th International Conference, CAiSE 2001, Interlaken,

Switzerland, June 4-8, 2001, Proceedings, volume 2068 of Lecture Notes in

Computer Science, pages 299–314. Springer, 2001.

[54] Mark Roantree and Jun Liu. A heuristic approach to selecting views for

materialization. Softw. Pract. Exp., 44(10):1157–1179, 2014.

[55] Mark Roantree, Dónall McCann, and Niall Moyna. Integrating sensor streams

in phealth networks. In 14th International Conference on Parallel and

Distributed Systems, ICPADS 2008, Melbourne, Victoria, Australia, December

8-10, 2008, pages 320–327. IEEE Computer Society, 2008.

[56] Michael Scriney, Suzanne McCarthy, Andrew McCarren, Paolo Cappellari,

and Mark Roantree. Automating data mart construction from

semi-structured data sources. Comput. J., 62(3):394–413, 2019.

[57] Michael Scriney, Congcong Xing, Andrew McCarren, and Mark Roantree.

Representative sample extraction from web data streams. In Sven Hartmann,

Josef Küng, Sharma Chakravarthy, Gabriele Anderst-Kotsis, A Min Tjoa, and

97

Ismail Khalil, editors, Database and Expert Systems Applications, pages

341–351, Cham, 2019. Springer International Publishing.

[58] Teagasc, the Agriculture and Food Development Authority.

https://www.teagasc.ie/.

[59] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.

CreateSpace, Scotts Valley, CA, 2009.

[60] VistaMilk SFI Research Centre. https://www.vistamilk.ie/.

[61] Gligorijević Vladimir and Pržulj Nataša. Methods for biological data

integration: perspectives and challenges. 12(112):20150571(10):891–921, 2015.

[62] Mehul Nalin Vora. Hadoop-hbase for large-scale data. In Proceedings of 2011

International Conference on Computer Science and Network Technology,

volume 1, pages 601–605, 2011.

[63] Laomo Zhang, Ying Ma, and Guodong Wang. An extended hybrid ontology

approach to data integration. In 2009 2nd International Conference on

Biomedical Engineering and Informatics, pages 1–4, 2009.

98

Appendices

99

Appendix A

LivestockNumbers Ontology

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#SilageIntake>,

<neo4j://graph.schema#NumberOfStock>,

<neo4j://graph.schema#GrassIntake>,

<neo4j://graph.schema#CoverDate>,

<neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#PreviousCoverDate>,

<neo4j://graph.schema#AverageKgLwt>,

<neo4j://graph.schema#TotalIntake>,

<neo4j://graph.schema#LivestockTYpe>,

<neo4j://graph.schema#MealIntake>;

rdfs:range <neo4j://graph.schema#LiveStockNumbers>;

rdfs:label "belong_to" .

<neo4j://graph.schema#SilageIntake> a owl:Class;

rdfs:label "SilageIntake" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#AverageKgLwt> a owl:Class;

rdfs:label "AverageKgLwt" .

<neo4j://graph.schema#TotalIntake> a owl:Class;

100

rdfs:label "TotalIntake" .

<neo4j://graph.schema#LivestockTYpe> a owl:Class;

rdfs:label "LivestockTYpe" .

<neo4j://graph.schema#GrassIntake> a owl:Class;

rdfs:label "GrassIntake" .

<neo4j://graph.schema#CoverDate> a owl:liveClass;

rdfs:label "CoverDate" .

<neo4j://graph.schema#NumberOfStock> a owl:Class;

rdfs:label "NumberOfStock" .

<neo4j://graph.schema#LiveStockNumbers> a owl:Class;

rdfs:label "LiveStockNumbers" .

<neo4j://graph.schema#PreviousCoverDate> a owl:Class;

rdfs:label "PreviousCoverDate" .

<neo4j://graph.schema#MealIntake> a owl:Class;å

101

Appendix B

ManagementDecisions Ontology

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#ManagementDecisions> a owl:Class;

rdfs:label "ManagementDecisions" .

<neo4j://graph.schema#RotationLength> a owl:Class;

rdfs:label "RotationLength" .

<neo4j://graph.schema#TargetPreGrazingYield> a owl:Class;

rdfs:label "TargetPreGrazingYield" .

<neo4j://graph.schema#belong$_$to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#RotationLength>,

<neo4j://graph.schema#CoverDate>,

<neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#ResidualHeight>,

<neo4j://graph.schema#TargetPreGrazingYield>,

<neo4j://graph.schema#DensityOfHerbage>;

rdfs:range <neo4j://graph.schema#ManagementDecisions>;

rdfs:label "belong_to" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#DensityOfHerbage> a owl:Class;

rdfs:label "DensityOfHerbage" .

<neo4j://graph.schema#ResidualHeight> a owl:Class;

102

rdfs:label "ResidualHeight" .

<neo4j://graph.schema#CoverDate> a owl:Class;

rdfs:label "CoverDate" .

103

Appendix C

Integrated Metadata Ontology

File For First Step

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#RotationLength> a owl:Class;

rdfs:label "RotationLength" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#AverageKgLwt> a owl:Class;

rdfs:label "AverageKgLwt" .

<neo4j://graph.schema#DensityOfHerbage> a owl:Class;

rdfs:label "DensityOfHerbage" .

<neo4j://graph.schema#TotalIntake> a owl:Class;

rdfs:label "TotalIntake" .

<neo4j://graph.schema#LivestockTYpe> a owl:Class;

rdfs:label "LivestockTYpe" .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#PreviousCoverDate>,

<neo4j://graph.schema#LivestockTYpe>,

<neo4j://graph.schema#MealIntake>,

104

<neo4j://graph.schema#SilageIntake>,

<neo4j://graph.schema#NumberOfStock>,

<neo4j://graph.schema#GrassIntake>,

<neo4j://graph.schema#CoverDate>,

<neo4j://graph.schema#RotationLength>,

<neo4j://graph.schema#AverageKgLwt>,

<neo4j://graph.schema#TotalIntake>,

<neo4j://graph.schema#ResidualHeight>,

<neo4j://graph.schema#TargetPreGrazingYield>,

<neo4j://graph.schema#DensityOfHerbage>;

rdfs:range <neo4j://graph.schema#LivestockNumbers>,

<neo4j://graph.schema#ManagementDecisions>;

rdfs:label "belong_to" .

<neo4j://graph.schema#ResidualHeight> a owl:Class;

rdfs:label "ResidualHeight" .

<neo4j://graph.schema#PreviousCoverDate> a owl:Class;

rdfs:label "PreviousCoverDate" .

<neo4j://graph.schema#ManagementDecisions> a owl:Class;

rdfs:label "ManagementDecisions" .

<neo4j://graph.schema#SilageIntake> a owl:Class;

rdfs:label "SilageIntake" .

<neo4j://graph.schema#TargetPreGrazingYield> a owl:Class;

rdfs:label "TargetPreGrazingYield" .

<neo4j://graph.schema#GrassIntake> a owl:Class;

rdfs:label "GrassIntake" .

<neo4j://graph.schema#CoverDate> a owl:Class;

rdfs:label "CoverDate" .

<neo4j://graph.schema#NumberOfStock> a owl:Class;

rdfs:label "NumberOfStock" .

<neo4j://graph.schema#LivestockNumbers> a owl:Class;

rdfs:label "LivestockNumbers" .

<neo4j://graph.schema#MealIntake> a owl:Class;

rdfs:label "MealIntake" .

105

Appendix D

PaddockEstimation Ontology

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#PoachingLevel> a owl:Class;

rdfs:label "PoachingLevel" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#GrazeDate> a owl:Class;

rdfs:label "GrazeDate" .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#HerbageEstKgDmHa>,

<neo4j://graph.schema#PaddockArea>,

<neo4j://graph.schema#GrowthRate>,

<neo4j://graph.schema#AssociatedSoils>,

<neo4j://graph.schema#CoverEstimations_PaddockID>,

<neo4j://graph.schema#PaddockDistanceFromParlour>,

<neo4j://graph.schema#Height>,

<neo4j://graph.schema#PoachingLevel>,

<neo4j://graph.schema#PrincipalSoil>,

<neo4j://graph.schema#ResidualAfterCuttingCM>,

<neo4j://graph.schema#Topping>,

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1>,

<neo4j://graph.schema#CutDate>,

106

<neo4j://graph.schema#SilageYieldKgDmHa>,

<neo4j://graph.schema#Gradients_Description>,

<neo4j://graph.schema#Aspects_Description>,

<neo4j://graph.schema#ReseedMethodID>,

<neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#GrazeDate>,

<neo4j://graph.schema#ReseedDate>,

<neo4j://graph.schema#PreviousCoverDate>,

<neo4j://graph.schema#ANONID>,

<neo4j://graph.schema#PaddockAltitude>,

<neo4j://graph.schema#PaddockStatus>,

<neo4j://graph.schema#PaddockStatusPrevious>,

<neo4j://graph.schema#PreGrazingYield>,

<neo4j://graph.schema#PoachingEvent>,

<neo4j://graph.schema#ResidualAfterGrazingCM>,

<neo4j://graph.schema#CoverDate>,

<neo4j://graph.schema#ParentMaterial>,

<neo4j://graph.schema#defoliatationoption>,

<neo4j://graph.schema#ResidualAfterToppingCM>,

<neo4j://graph.schema#SoilNumber>,

<neo4j://graph.schema#DrainageCharacteristics_Description>,

<neo4j://graph.schema#PreviousGrazeDate>;

rdfs:range <neo4j://graph.schema#PadDockEstimations>;

rdfs:label "belong_to" .

<neo4j://graph.schema#Height> a owl:Class;

rdfs:label "Height" .

<neo4j://graph.schema#CoverEstimations_PaddockID> a owl:Class;

rdfs:label "CoverEstimations_PaddockID" .

<neo4j://graph.schema#AssociatedSoils> a owl:Class;

rdfs:label "AssociatedSoils" .

<neo4j://graph.schema#PoachingEvent> a owl:Class;

rdfs:label "PoachingEvent" .

<neo4j://graph.schema#Gradients_Description> a owl:Class;

rdfs:label "Gradients_Description" .

<neo4j://graph.schema#GrowthRate> a owl:Class;

107

rdfs:label "GrowthRate" .

<neo4j://graph.schema#Topping> a owl:Class;

rdfs:label "Topping" .

<neo4j://graph.schema#PrincipalSoil> a owl:Class;

rdfs:label "PrincipalSoil" .

<neo4j://graph.schema#ANONID> a owl:Class;

rdfs:label "ANONID" .

<neo4j://graph.schema#SoilNumber> a owl:Class;

rdfs:label "SoilNumber" .

<neo4j://graph.schema#PreviousGrazeDate> a owl:Class;

rdfs:label "PreviousGrazeDate" .

<neo4j://graph.schema#PreGrazingYield> a owl:Class;

rdfs:label "PreGrazingYield" .

<neo4j://graph.schema#PreviousCoverDate> a owl:Class;

rdfs:label "PreviousCoverDate" .

<neo4j://graph.schema#ResidualAfterCuttingCM> a owl:Class;

rdfs:label "ResidualAfterCuttingCM" .

<neo4j://graph.schema#PaddockAltitude> a owl:Class;

rdfs:label "PaddockAltitude" .

<neo4j://graph.schema#DrainageCharacteristics_Description> a owl:Class;

rdfs:label "DrainageCharacteristics_Description" .

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1> a owl:Class;

rdfs:label "PreviousHerbageEstKgDmHa1" .

<neo4j://graph.schema#CoverDate> a owl:Class;

rdfs:label "CoverDate" .

<neo4j://graph.schema#PaddockDistanceFromParlour> a owl:Class;

rdfs:label "PaddockDistanceFromParlour" .

<neo4j://graph.schema#SilageYieldKgDmHa> a owl:Class;

rdfs:label "SilageYieldKgDmHa" .

<neo4j://graph.schema#PaddockArea> a owl:Class;

rdfs:label "PaddockArea" .

<neo4j://graph.schema#PaddockStatusPrevious> a owl:Class;

rdfs:label "PaddockStatusPrevious" .

<neo4j://graph.schema#PadDockEstimations> a owl:Class;

rdfs:label "PadDockEstimations" .

108

<neo4j://graph.schema#ParentMaterial> a owl:Class;

rdfs:label "ParentMaterial" .

<neo4j://graph.schema#defoliatationoption> a owl:Class;

rdfs:label "defoliatationoption" .

<neo4j://graph.schema#ResidualAfterToppingCM> a owl:Class;

rdfs:label "ResidualAfterToppingCM" .

<neo4j://graph.schema#PaddockStatus> a owl:Class;

rdfs:label "PaddockStatus" .

<neo4j://graph.schema#ReseedMethodID> a owl:Class;

rdfs:label "ReseedMethodID" .

<neo4j://graph.schema#ReseedDate> a owl:Class;

rdfs:label "ReseedDate" .

<neo4j://graph.schema#CutDate> a owl:Class;

rdfs:label "CutDate" .

<neo4j://graph.schema#Aspects_Description> a owl:Class;

rdfs:label "Aspects_Description" .

<neo4j://graph.schema#HerbageEstKgDmHa> a owl:Class;

rdfs:label "HerbageEstKgDmHa" .

<neo4j://graph.schema#ResidualAfterGrazingCM> a owl:Class;

rdfs:label "ResidualAfterGrazingCM" .

109

Appendix E

Integrated Metadata Ontology

Extended With

PaddockEstimation

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#PoachingLevel> a owl:Class;

rdfs:label "PoachingLevel" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#GrazeDate> a owl:Class;

rdfs:label "GrazeDate" .

<neo4j://graph.schema#AverageKgLwt> a owl:Class;

rdfs:label "AverageKgLwt" .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#HerbageEstKgDmHa>,

<neo4j://graph.schema#PaddockArea>,

<neo4j://graph.schema#GrowthRate>,

<neo4j://graph.schema#AssociatedSoils>,

<neo4j://graph.schema#MealIntake>,

<neo4j://graph.schema#CoverEstimations_PaddockID>,

110

<neo4j://graph.schema#PaddockDistanceFromParlour>,

<neo4j://graph.schema#Height>,

<neo4j://graph.schema#PoachingLevel>,

<neo4j://graph.schema#SilageIntake>,

<neo4j://graph.schema#NumberOfStock>,

<neo4j://graph.schema#PrincipalSoil>,

<neo4j://graph.schema#ResidualAfterCuttingCM>,

<neo4j://graph.schema#Topping>,

<neo4j://graph.schema#TotalIntake>,

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1>,

<neo4j://graph.schema#CutDate>,

<neo4j://graph.schema#SilageYieldKgDmHa>,

<neo4j://graph.schema#TargetPreGrazingYield>,

<neo4j://graph.schema#Gradients_Description>,

<neo4j://graph.schema#DensityOfHerbage>,

<neo4j://graph.schema#Aspects_Description>,

<neo4j://graph.schema#ReseedMethodID>,

<neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#GrazeDate>,

<neo4j://graph.schema#ReseedDate>,

<neo4j://graph.schema#PreviousCoverDate>,

<neo4j://graph.schema#ANONID>,

<neo4j://graph.schema#PaddockAltitude>,

<neo4j://graph.schema#LivestockTYpe>,

<neo4j://graph.schema#PaddockStatus>,

<neo4j://graph.schema#PaddockStatusPrevious>,

<neo4j://graph.schema#PreGrazingYield>,

<neo4j://graph.schema#GrassIntake>,

<neo4j://graph.schema#ResidualAfterGrazingCM>,

<neo4j://graph.schema#PoachingEvent>,

<neo4j://graph.schema#CoverDate>,

<neo4j://graph.schema#ParentMaterial>,

<neo4j://graph.schema#defoliatationoption>,

<neo4j://graph.schema#ResidualAfterToppingCM>,

<neo4j://graph.schema#RotationLength>,

111

<neo4j://graph.schema#AverageKgLwt>,

<neo4j://graph.schema#ResidualHeight>,

<neo4j://graph.schema#SoilNumber>,

<neo4j://graph.schema#DrainageCharacteristics_Description>,

<neo4j://graph.schema#PreviousGrazeDate>;

rdfs:range <neo4j://graph.schema#PadDockEstimations>, <neo4j://graph.schema#LiveStockNumbers>,

<neo4j://graph.schema#ManagementDecisions>;

rdfs:label "belong_to" .

<neo4j://graph.schema#DensityOfHerbage> a owl:Class;

rdfs:label "DensityOfHerbage" .

<neo4j://graph.schema#LivestockTYpe> a owl:Class;

rdfs:label "LivestockTYpe" .

<neo4j://graph.schema#Height> a owl:Class;

rdfs:label "Height" .

<neo4j://graph.schema#CoverEstimations_PaddockID> a owl:Class;

rdfs:label "CoverEstimations_PaddockID" .

<neo4j://graph.schema#AssociatedSoils> a owl:Class;

rdfs:label "AssociatedSoils" .

<neo4j://graph.schema#ResidualHeight> a owl:Class;

rdfs:label "ResidualHeight" .

<neo4j://graph.schema#PoachingEvent> a owl:Class;

rdfs:label "PoachingEvent" .

<neo4j://graph.schema#Gradients_Description> a owl:Class;

rdfs:label "Gradients_Description" .

<neo4j://graph.schema#GrowthRate> a owl:Class;

rdfs:label "GrowthRate" .

<neo4j://graph.schema#PrincipalSoil> a owl:Class;

rdfs:label "PrincipalSoil" .

<neo4j://graph.schema#Topping> a owl:Class;

rdfs:label "Topping" .

<neo4j://graph.schema#ANONID> a owl:Class;

rdfs:label "ANONID" .

<neo4j://graph.schema#SoilNumber> a owl:Class;

rdfs:label "SoilNumber" .

<neo4j://graph.schema#PreviousGrazeDate> a owl:Class;

112

rdfs:label "PreviousGrazeDate" .

<neo4j://graph.schema#PreGrazingYield> a owl:Class;

rdfs:label "PreGrazingYield" .

<neo4j://graph.schema#PreviousCoverDate> a owl:Class;

rdfs:label "PreviousCoverDate" .

<neo4j://graph.schema#ResidualAfterCuttingCM> a owl:Class;

rdfs:label "ResidualAfterCuttingCM" .

<neo4j://graph.schema#SilageIntake> a owl:Class;

rdfs:label "SilageIntake" .

<neo4j://graph.schema#PaddockAltitude> a owl:Class;

rdfs:label "PaddockAltitude" .

<neo4j://graph.schema#DrainageCharacteristics_Description> a owl:Class;

rdfs:label "DrainageCharacteristics_Description" .

<neo4j://graph.schema#GrassIntake> a owl:Class;

rdfs:label "GrassIntake" .

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1> a owl:Class;

rdfs:label "PreviousHerbageEstKgDmHa1" .

<neo4j://graph.schema#CoverDate> a owl:Class;

rdfs:label "CoverDate" .

<neo4j://graph.schema#NumberOfStock> a owl:Class;

rdfs:label "NumberOfStock" .

<neo4j://graph.schema#LiveStockNumbers> a owl:Class;

rdfs:label "LiveStockNumbers" .

<neo4j://graph.schema#PaddockDistanceFromParlour> a owl:Class;

rdfs:label "PaddockDistanceFromParlour" .

<neo4j://graph.schema#SilageYieldKgDmHa> a owl:Class;

rdfs:label "SilageYieldKgDmHa" .

<neo4j://graph.schema#PaddockArea> a owl:Class;

rdfs:label "PaddockArea" .

<neo4j://graph.schema#PaddockStatusPrevious> a owl:Class;

rdfs:label "PaddockStatusPrevious" .

<neo4j://graph.schema#PadDockEstimations> a owl:Class;

rdfs:label "PadDockEstimations" .

<neo4j://graph.schema#TargetPreGrazingYield> a owl:Class;

rdfs:label "TargetPreGrazingYield" .

113

<neo4j://graph.schema#ParentMaterial> a owl:Class;

rdfs:label "ParentMaterial" .

<neo4j://graph.schema#defoliatationoption> a owl:Class;

rdfs:label "defoliatationoption" .

<neo4j://graph.schema#ResidualAfterToppingCM> a owl:Class;

rdfs:label "ResidualAfterToppingCM" .

<neo4j://graph.schema#PaddockStatus> a owl:Class;

rdfs:label "PaddockStatus" .

<neo4j://graph.schema#MealIntake> a owl:Class;

rdfs:label "MealIntake" .

<neo4j://graph.schema#RotationLength> a owl:Class;

rdfs:label "RotationLength" .

<neo4j://graph.schema#TotalIntake> a owl:Class;

rdfs:label "TotalIntake" .

<neo4j://graph.schema#ReseedMethodID> a owl:Class;

rdfs:label "ReseedMethodID" .

<neo4j://graph.schema#ManagementDecisions> a owl:Class;

rdfs:label "ManagementDecisions" .

<neo4j://graph.schema#ReseedDate> a owl:Class;

rdfs:label "ReseedDate" .

<neo4j://graph.schema#CutDate> a owl:Class;

rdfs:label "CutDate" .

<neo4j://graph.schema#Aspects_Description> a owl:Class;

rdfs:label "Aspects_Description" .

<neo4j://graph.schema#HerbageEstKgDmHa> a owl:Class;

rdfs:label "HerbageEstKgDmHa" .

<neo4j://graph.schema#ResidualAfterGrazingCM> a owl:Class;

rdfs:label "ResidualAfterGrazingCM" .

114

Appendix F

PbiLactation Ontology

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#LACTATION>,

<neo4j://graph.schema#End_Lactation_Date>,

<neo4j://graph.schema#Calving_Date>,

<neo4j://graph.schema#ENC_ANI_ID>;

rdfs:label "belong_to";

rdfs:range <neo4j://graph.schema#PbiLactation> .

<neo4j://graph.schema#PbiLactation> a owl:Class;

rdfs:label "PbiLactation" .

<neo4j://graph.schema#Calving_Date> a owl:Class;

rdfs:label "Calving_Date" .

<neo4j://graph.schema#LACTATION> a owl:Class;

rdfs:label "LACTATION" .

<neo4j://graph.schema#ENC_ANI_ID> a owl:Class;

rdfs:label "ENC_ANI_ID" .

<neo4j://graph.schema#End_Lactation_Date> a owl:Class;

rdfs:label "End_Lactation_Date" .

115

Appendix G

Integrated Metadata Ontology

Extended With PbiLactation

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#PoachingLevel> a owl:Class;

rdfs:label "PoachingLevel" .

<neo4j://graph.schema#PbiLactation> a owl:Class;

rdfs:label "PbiLactation" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#GrazeDate> a owl:Class;

rdfs:label "GrazeDate" .

<neo4j://graph.schema#AverageKgLwt> a owl:Class;

rdfs:label "AverageKgLwt" .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#HerbageEstKgDmHa>,

<neo4j://graph.schema#ENC_ANI_ID>,

<neo4j://graph.schema#PaddockArea>,

<neo4j://graph.schema#GrowthRate>,

<neo4j://graph.schema#LACTATION>,

<neo4j://graph.schema#AssociatedSoils>,

116

<neo4j://graph.schema#MealIntake>,

<neo4j://graph.schema#CoverEstimations_PaddockID>,

<neo4j://graph.schema#PaddockDistanceFromParlour>,

<neo4j://graph.schema#Height>,

<neo4j://graph.schema#PoachingLevel>,

<neo4j://graph.schema#SilageIntake>,

<neo4j://graph.schema#NumberOfStock>,

<neo4j://graph.schema#PrincipalSoil>,

<neo4j://graph.schema#ResidualAfterCuttingCM>,

<neo4j://graph.schema#Topping>,

<neo4j://graph.schema#TotalIntake>,

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1>,

<neo4j://graph.schema#CutDate>,

<neo4j://graph.schema#SilageYieldKgDmHa>,

<neo4j://graph.schema#TargetPreGrazingYield>,

<neo4j://graph.schema#Gradients_Description>,

<neo4j://graph.schema#DensityOfHerbage>,

<neo4j://graph.schema#Aspects_Description>,

<neo4j://graph.schema#ReseedMethodID>,

<neo4j://graph.schema#Calving_Date>,

<neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#GrazeDate>,

<neo4j://graph.schema#ReseedDate>,

<neo4j://graph.schema#PreviousCoverDate>,

<neo4j://graph.schema#PaddockAltitude>,

<neo4j://graph.schema#ANONID>,

<neo4j://graph.schema#LivestockTYpe>,

<neo4j://graph.schema#PaddockStatus>,

<neo4j://graph.schema#PaddockStatusPrevious>,

<neo4j://graph.schema#PreGrazingYield>,

<neo4j://graph.schema#GrassIntake>,

<neo4j://graph.schema#PoachingEvent>,

<neo4j://graph.schema#ResidualAfterGrazingCM>,

<neo4j://graph.schema#End_Lactation_Date>,

<neo4j://graph.schema#CoverDate>,

117

<neo4j://graph.schema#ParentMaterial>,

<neo4j://graph.schema#defoliatationoption>,

<neo4j://graph.schema#ResidualAfterToppingCM>,

<neo4j://graph.schema#RotationLength>,

<neo4j://graph.schema#AverageKgLwt>,

<neo4j://graph.schema#ResidualHeight>,

<neo4j://graph.schema#SoilNumber>,

<neo4j://graph.schema#DrainageCharacteristics_Description>,

<neo4j://graph.schema#PreviousGrazeDate>;

rdfs:range <neo4j://graph.schema#PadDockEstimations>,

<neo4j://graph.schema#PbiLactation>,

<neo4j://graph.schema#LiveStockNumbers>,

<neo4j://graph.schema#ManagementDecisions>;

rdfs:label "belong_to" .

<neo4j://graph.schema#DensityOfHerbage> a owl:Class;

rdfs:label "DensityOfHerbage" .

<neo4j://graph.schema#LivestockTYpe> a owl:Class;

rdfs:label "LivestockTYpe" .

<neo4j://graph.schema#Height> a owl:Class;

rdfs:label "Height" .

<neo4j://graph.schema#CoverEstimations_PaddockID> a owl:Class;

rdfs:label "CoverEstimations_PaddockID" .

<neo4j://graph.schema#AssociatedSoils> a owl:Class;

rdfs:label "AssociatedSoils" .

<neo4j://graph.schema#ResidualHeight> a owl:Class;

rdfs:label "ResidualHeight" .

<neo4j://graph.schema#PoachingEvent> a owl:Class;

rdfs:label "PoachingEvent" .

<neo4j://graph.schema#Gradients_Description> a owl:Class;

rdfs:label "Gradients_Description" .

<neo4j://graph.schema#GrowthRate> a owl:Class;

rdfs:label "GrowthRate" .

<neo4j://graph.schema#PrincipalSoil> a owl:Class;

rdfs:label "PrincipalSoil" .

<neo4j://graph.schema#Topping> a owl:Class;

118

rdfs:label "Topping" .

<neo4j://graph.schema#ANONID> a owl:Class;

rdfs:label "ANONID" .

<neo4j://graph.schema#SoilNumber> a owl:Class;

rdfs:label "SoilNumber" .

<neo4j://graph.schema#PreviousGrazeDate> a owl:Class;

rdfs:label "PreviousGrazeDate" .

<neo4j://graph.schema#PreGrazingYield> a owl:Class;

rdfs:label "PreGrazingYield" .

<neo4j://graph.schema#LACTATION> a owl:Class;

rdfs:label "LACTATION" .

<neo4j://graph.schema#End_Lactation_Date> a owl:Class;

rdfs:label "End_Lactation_Date" .

<neo4j://graph.schema#PreviousCoverDate> a owl:Class;

rdfs:label "PreviousCoverDate" .

<neo4j://graph.schema#ResidualAfterCuttingCM> a owl:Class;

rdfs:label "ResidualAfterCuttingCM" .

<neo4j://graph.schema#SilageIntake> a owl:Class;

rdfs:label "SilageIntake" .

<neo4j://graph.schema#PaddockAltitude> a owl:Class;

rdfs:label "PaddockAltitude" .

<neo4j://graph.schema#DrainageCharacteristics_Description> a owl:Class;

rdfs:label "DrainageCharacteristics_Description" .

<neo4j://graph.schema#GrassIntake> a owl:Class;

rdfs:label "GrassIntake" .

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1> a owl:Class;

rdfs:label "PreviousHerbageEstKgDmHa1" .

<neo4j://graph.schema#CoverDate> a owl:Class;

rdfs:label "CoverDate" .

<neo4j://graph.schema#NumberOfStock> a owl:Class;

rdfs:label "NumberOfStock" .

<neo4j://graph.schema#LiveStockNumbers> a owl:Class;

rdfs:label "LiveStockNumbers" .

<neo4j://graph.schema#PaddockDistanceFromParlour> a owl:Class;

rdfs:label "PaddockDistanceFromParlour" .

119

<neo4j://graph.schema#SilageYieldKgDmHa> a owl:Class;

rdfs:label "SilageYieldKgDmHa" .

<neo4j://graph.schema#PaddockArea> a owl:Class;

rdfs:label "PaddockArea" .

<neo4j://graph.schema#PaddockStatusPrevious> a owl:Class;

rdfs:label "PaddockStatusPrevious" .

<neo4j://graph.schema#PadDockEstimations> a owl:Class;

rdfs:label "PadDockEstimations" .

<neo4j://graph.schema#TargetPreGrazingYield> a owl:Class;

rdfs:label "TargetPreGrazingYield" .

<neo4j://graph.schema#ParentMaterial> a owl:Class;

rdfs:label "ParentMaterial" .

<neo4j://graph.schema#Calving_Date> a owl:Class;

rdfs:label "Calving_Date" .

<neo4j://graph.schema#defoliatationoption> a owl:Class;

rdfs:label "defoliatationoption" .

<neo4j://graph.schema#ResidualAfterToppingCM> a owl:Class;

rdfs:label "ResidualAfterToppingCM" .

<neo4j://graph.schema#PaddockStatus> a owl:Class;

rdfs:label "PaddockStatus" .

<neo4j://graph.schema#MealIntake> a owl:Class;

rdfs:label "MealIntake" .

<neo4j://graph.schema#RotationLength> a owl:Class;

rdfs:label "RotationLength" .

<neo4j://graph.schema#TotalIntake> a owl:Class;

rdfs:label "TotalIntake" .

<neo4j://graph.schema#ReseedMethodID> a owl:Class;

rdfs:label "ReseedMethodID" .

<neo4j://graph.schema#ManagementDecisions> a owl:Class;

rdfs:label "ManagementDecisions" .

<neo4j://graph.schema#ReseedDate> a owl:Class;

rdfs:label "ReseedDate" .

<neo4j://graph.schema#CutDate> a owl:Class;

rdfs:label "CutDate" .

<neo4j://graph.schema#Aspects_Description> a owl:Class;

120

rdfs:label "Aspects_Description" .

<neo4j://graph.schema#HerbageEstKgDmHa> a owl:Class;

rdfs:label "HerbageEstKgDmHa" .

<neo4j://graph.schema#ENC_ANI_ID> a owl:Class;

rdfs:label "ENC_ANI_ID" .

<neo4j://graph.schema#ResidualAfterGrazingCM> a owl:Class;

rdfs:label "ResidualAfterGrazingCM" .

121

Appendix H

IndividualCase Ontology

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#sex> a owl:Class;

rdfs:label "sex" .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#case_source>,

<neo4j://graph.schema#health_region>,

<neo4j://graph.schema#travel_history_country>,

<neo4j://graph.schema#report_week>,

<neo4j://graph.schema#province>,

<neo4j://graph.schema#method_note>,

<neo4j://graph.schema#provincial_case_id>,

<neo4j://graph.schema#additional_source>,

<neo4j://graph.schema#travel_yn>,

<neo4j://graph.schema#date_report>,

<neo4j://graph.schema#sex>,

<neo4j://graph.schema#locally_acquired>,

<neo4j://graph.schema#additional_info>,

<neo4j://graph.schema#country>,

<neo4j://graph.schema#case_id>,

<neo4j://graph.schema#age>;

rdfs:range <neo4j://graph.schema#IndividualCase>;

122

rdfs:label "belong_to" .

<neo4j://graph.schema#age> a owl:Class;

rdfs:label "age" .

<neo4j://graph.schema#province> a owl:Class;

rdfs:label "province" .

<neo4j://graph.schema#additional_info> a owl:Class;

rdfs:label "additional_info" .

<neo4j://graph.schema#locally_acquired> a owl:Class;

rdfs:label "locally_acquired" .

<neo4j://graph.schema#additional_source> a owl:Class;

rdfs:label "additional_source" .

<neo4j://graph.schema#travel_yn> a owl:Class;

rdfs:label "travel_yn" .

<neo4j://graph.schema#travel_history_country> a owl:Class;

rdfs:label "travel_history_country" .

<neo4j://graph.schema#case_source> a owl:Class;

rdfs:label "case_source" .

<neo4j://graph.schema#health_region> a owl:Class;

rdfs:label "health_region" .

<neo4j://graph.schema#provincial_case_id> a owl:Class;

rdfs:label "provincial_case_id" .

<neo4j://graph.schema#method_note> a owl:Class;

rdfs:label "method_note" .

<neo4j://graph.schema#date_report> a owl:Class;

rdfs:label "date_report" .

<neo4j://graph.schema#report_week> a owl:Class;

rdfs:label "report_week" .

<neo4j://graph.schema#IndividualCase> a owl:Class;

rdfs:label "IndividualCase" .

<neo4j://graph.schema#country> a owl:Class;

rdfs:label "country" .

<neo4j://graph.schema#case_id> a owl:Class;

rdfs:label "case_id" .

123

Appendix I

Integrated Metadata Ontology

Extended With IndividualCase

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#PoachingLevel> a owl:Class;

rdfs:label "PoachingLevel" .

<neo4j://graph.schema#sex> a owl:Class;

rdfs:label "sex" .

<neo4j://graph.schema#CoverID> a owl:Class;

rdfs:label "CoverID" .

<neo4j://graph.schema#GrazeDate> a owl:Class;

rdfs:label "GrazeDate" .

<neo4j://graph.schema#DensityOfHerbage> a owl:Class;

rdfs:label "DensityOfHerbage" .

<neo4j://graph.schema#LivestockTYpe> a owl:Class;

rdfs:label "LivestockTYpe" .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#PaddockArea>,

<neo4j://graph.schema#GrowthRate>,

<neo4j://graph.schema#health_region>,

<neo4j://graph.schema#AssociatedSoils>,

124

<neo4j://graph.schema#travel_history_country>,

<neo4j://graph.schema#Height>,

<neo4j://graph.schema#PoachingLevel>,

<neo4j://graph.schema#travel_yn>,

<neo4j://graph.schema#date_report>,

<neo4j://graph.schema#SilageIntake>,

<neo4j://graph.schema#NumberOfStock>,

<neo4j://graph.schema#ResidualAfterCuttingCM>,

<neo4j://graph.schema#sex>,

<neo4j://graph.schema#Gradients_Description>,

<neo4j://graph.schema#TargetPreGrazingYield>,

<neo4j://graph.schema#country>,

<neo4j://graph.schema#ReseedMethodID>,

<neo4j://graph.schema#Calving_Date>,

<neo4j://graph.schema#CoverID>,

<neo4j://graph.schema#PreviousCoverDate>,

<neo4j://graph.schema#ReseedDate>,

<neo4j://graph.schema#ANONID>,

<neo4j://graph.schema#PaddockStatusPrevious>,

<neo4j://graph.schema#province>,

<neo4j://graph.schema#provincial_case_id>,

<neo4j://graph.schema#PreGrazingYield>,

<neo4j://graph.schema#ResidualAfterGrazingCM>,

<neo4j://graph.schema#End_Lactation_Date>,

<neo4j://graph.schema#defoliatationoption>,

<neo4j://graph.schema#ResidualAfterToppingCM>,

<neo4j://graph.schema#locally_acquired>,

<neo4j://graph.schema#SoilNumber>,

<neo4j://graph.schema#DrainageCharacteristics_Description>,

<neo4j://graph.schema#age>,

<neo4j://graph.schema#case_source>,

<neo4j://graph.schema#HerbageEstKgDmHa>,

<neo4j://graph.schema#ENC_ANI_ID>,

<neo4j://graph.schema#LACTATION>,

<neo4j://graph.schema#MealIntake>,

125

<neo4j://graph.schema#CoverEstimations_PaddockID>,

<neo4j://graph.schema#PaddockDistanceFromParlour>,

<neo4j://graph.schema#additional_source>,

<neo4j://graph.schema#PrincipalSoil>,

<neo4j://graph.schema#Topping>,

<neo4j://graph.schema#TotalIntake>,

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1>,

<neo4j://graph.schema#CutDate>,

<neo4j://graph.schema#SilageYieldKgDmHa>,

<neo4j://graph.schema#additional_info>,

<neo4j://graph.schema#DensityOfHerbage>,

<neo4j://graph.schema#case_id>,

<neo4j://graph.schema#Aspects_Description>,

<neo4j://graph.schema#GrazeDate>,

<neo4j://graph.schema#PaddockAltitude>,

<neo4j://graph.schema#LivestockTYpe>,

<neo4j://graph.schema#PaddockStatus>,

<neo4j://graph.schema#report_week>,

<neo4j://graph.schema#method_note>,

<neo4j://graph.schema#GrassIntake>,

<neo4j://graph.schema#PoachingEvent>,

<neo4j://graph.schema#CoverDate>,

<neo4j://graph.schema#ParentMaterial>,

<neo4j://graph.schema#RotationLength>,

<neo4j://graph.schema#AverageKgLwt>,

<neo4j://graph.schema#ResidualHeight>,

<neo4j://graph.schema#PreviousGrazeDate>;

rdfs:range <neo4j://graph.schema#PbiLactation>,

<neo4j://graph.schema#PadDockEstimations>,

<neo4j://graph.schema#IndividualCase>,

<neo4j://graph.schema#LiveStockNumbers>,

<neo4j://graph.schema#ManagementDecisions>;

rdfs:label "belong_to" .

<neo4j://graph.schema#province> a owl:Class;

rdfs:label "province" .

126

<neo4j://graph.schema#PoachingEvent> a owl:Class;

rdfs:label "PoachingEvent" .

<neo4j://graph.schema#locally_acquired> a owl:Class;

rdfs:label "locally_acquired" .

<neo4j://graph.schema#Gradients_Description> a owl:Class;

rdfs:label "Gradients_Description" .

<neo4j://graph.schema#age> a owl:Class;

rdfs:label "age" .

<neo4j://graph.schema#Topping> a owl:Class;

rdfs:label "Topping" .

<neo4j://graph.schema#ANONID> a owl:Class;

rdfs:label "ANONID" .

<neo4j://graph.schema#SoilNumber> a owl:Class;

rdfs:label "SoilNumber" .

<neo4j://graph.schema#PrincipalSoil> a owl:Class;

rdfs:label "PrincipalSoil" .

<neo4j://graph.schema#case_source> a owl:Class;

rdfs:label "case_source" .

<neo4j://graph.schema#health_region> a owl:Class;

rdfs:label "health_region" .

<neo4j://graph.schema#additional_info> a owl:Class;

rdfs:label "additional_info" .

<neo4j://graph.schema#PreviousCoverDate> a owl:Class;

rdfs:label "PreviousCoverDate" .

<neo4j://graph.schema#ResidualAfterCuttingCM> a owl:Class;

rdfs:label "ResidualAfterCuttingCM" .

<neo4j://graph.schema#method_note> a owl:Class;

rdfs:label "method_note" .

<neo4j://graph.schema#PaddockAltitude> a owl:Class;

rdfs:label "PaddockAltitude" .

<neo4j://graph.schema#DrainageCharacteristics_Description> a owl:Class;

rdfs:label "DrainageCharacteristics_Description" .

<neo4j://graph.schema#GrassIntake> a owl:Class;

rdfs:label "GrassIntake" .

<neo4j://graph.schema#report_week> a owl:Class;

127

rdfs:label "report_week" .

<neo4j://graph.schema#GrowthRate> a owl:Class;

rdfs:label "GrowthRate" .

<neo4j://graph.schema#CoverDate> a owl:Class;

rdfs:label "CoverDate" .

<neo4j://graph.schema#NumberOfStock> a owl:Class;

rdfs:label "NumberOfStock" .

<neo4j://graph.schema#additional_source> a owl:Class;

rdfs:label "additional_source" .

<neo4j://graph.schema#LiveStockNumbers> a owl:Class;

rdfs:label "LiveStockNumbers" .

<neo4j://graph.schema#SilageYieldKgDmHa> a owl:Class;

rdfs:label "SilageYieldKgDmHa" .

<neo4j://graph.schema#travel_history_country> a owl:Class;

rdfs:label "travel_history_country" .

<neo4j://graph.schema#PaddockStatusPrevious> a owl:Class;

rdfs:label "PaddockStatusPrevious" .

<neo4j://graph.schema#ParentMaterial> a owl:Class;

rdfs:label "ParentMaterial" .

<neo4j://graph.schema#Calving_Date> a owl:Class;

rdfs:label "Calving_Date" .

<neo4j://graph.schema#case_id> a owl:Class;

rdfs:label "case_id" .

<neo4j://graph.schema#PreviousGrazeDate> a owl:Class;

rdfs:label "PreviousGrazeDate" .

<neo4j://graph.schema#defoliatationoption> a owl:Class;

rdfs:label "defoliatationoption" .

<neo4j://graph.schema#PreviousHerbageEstKgDmHa1> a owl:Class;

rdfs:label "PreviousHerbageEstKgDmHa1" .

<neo4j://graph.schema#ReseedMethodID> a owl:Class;

rdfs:label "ReseedMethodID" .

<neo4j://graph.schema#RotationLength> a owl:Class;

rdfs:label "RotationLength" .

<neo4j://graph.schema#TotalIntake> a owl:Class;

rdfs:label "TotalIntake" .

128

<neo4j://graph.schema#travel_yn> a owl:Class;

rdfs:label "travel_yn" .

<neo4j://graph.schema#Aspects_Description> a owl:Class;

rdfs:label "Aspects_Description" .

<neo4j://graph.schema#CoverEstimations_PaddockID> a owl:Class;

rdfs:label "CoverEstimations_PaddockID" .

<neo4j://graph.schema#AssociatedSoils> a owl:Class;

rdfs:label "AssociatedSoils" .

<neo4j://graph.schema#PreGrazingYield> a owl:Class;

rdfs:label "PreGrazingYield" .

<neo4j://graph.schema#SilageIntake> a owl:Class;

rdfs:label "SilageIntake" .

<neo4j://graph.schema#date_report> a owl:Class;

rdfs:label "date_report" .

<neo4j://graph.schema#ENC_ANI_ID> a owl:Class;

rdfs:label "ENC_ANI_ID" .

<neo4j://graph.schema#CutDate> a owl:Class;

rdfs:label "CutDate" .

<neo4j://graph.schema#provincial_case_id> a owl:Class;

rdfs:label "provincial_case_id" .

<neo4j://graph.schema#country> a owl:Class;

rdfs:label "country" .

<neo4j://graph.schema#AverageKgLwt> a owl:Class;

rdfs:label "AverageKgLwt" .

<neo4j://graph.schema#Height> a owl:Class;

rdfs:label "Height" .

<neo4j://graph.schema#ResidualAfterGrazingCM> a owl:Class;

rdfs:label "ResidualAfterGrazingCM" .

<neo4j://graph.schema#PaddockStatus> a owl:Class;

rdfs:label "PaddockStatus" .

<neo4j://graph.schema#PbiLactation> a owl:Class;

rdfs:label "PbiLactation" .

<neo4j://graph.schema#ResidualHeight> a owl:Class;

rdfs:label "ResidualHeight" .

<neo4j://graph.schema#LACTATION> a owl:Class;

129

rdfs:label "LACTATION" .

<neo4j://graph.schema#End_Lactation_Date> a owl:Class;

rdfs:label "End_Lactation_Date" .

<neo4j://graph.schema#PaddockDistanceFromParlour> a owl:Class;

rdfs:label "PaddockDistanceFromParlour" .

<neo4j://graph.schema#PaddockArea> a owl:Class;

rdfs:label "PaddockArea" .

<neo4j://graph.schema#PadDockEstimations> a owl:Class;

rdfs:label "PadDockEstimations" .

<neo4j://graph.schema#TargetPreGrazingYield> a owl:Class;

rdfs:label "TargetPreGrazingYield" .

<neo4j://graph.schema#ResidualAfterToppingCM> a owl:Class;

rdfs:label "ResidualAfterToppingCM" .

<neo4j://graph.schema#MealIntake> a owl:Class;

rdfs:label "MealIntake" .

<neo4j://graph.schema#ManagementDecisions> a owl:Class;

rdfs:label "ManagementDecisions" .

<neo4j://graph.schema#ReseedDate> a owl:Class;

rdfs:label "ReseedDate" .

<neo4j://graph.schema#HerbageEstKgDmHa> a owl:Class;

rdfs:label "HerbageEstKgDmHa" .

<neo4j://graph.schema#IndividualCase> a owl:Class;

rdfs:label "IndividualCase" .

130

Appendix J

PbiCow Ontology

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<neo4j://graph.schema#belong_to> a owl:ObjectProperty;

rdfs:domain <neo4j://graph.schema#EBI>,

<neo4j://graph.schema#BREED>,

<neo4j://graph.schema#ENC_ANI_ID>,

<neo4j://graph.schema#DOB>,

<neo4j://graph.schema#MILKSUBINDEX>,

<neo4j://graph.schema#PERIODEND_DATE>,

<neo4j://graph.schema#ENC_HERD_ID>,

<neo4j://graph.schema#PERIODBEGIN_DATE>;

rdfs:range <neo4j://graph.schema#PbiCow>;

rdfs:label "belong_to" .

<neo4j://graph.schema#PERIODBEGIN_DATE> a owl:Class;

rdfs:label "PERIODBEGIN_DATE" .

<neo4j://graph.schema#ENC_ANI_ID> a owl:Class;

rdfs:label "ENC_ANI_ID" .

<neo4j://graph.schema#ENC_HERD_ID> a owl:Class;

rdfs:label "ENC_HERD_ID" .

<neo4j://graph.schema#PbiCow> a owl:Class;

rdfs:label "PbiCow" .

131

<neo4j://graph.schema#DOB> a owl:Class;

rdfs:label "DOB" .

<neo4j://graph.schema#PERIODEND_DATE> a owl:Class;

rdfs:label "PERIODEND_DATE" .

<neo4j://graph.schema#BREED> a owl:Class;

rdfs:label "BREED" .

<neo4j://graph.schema#EBI> a owl:Class;

rdfs:label "EBI" .

<neo4j://graph.schema#MILKSUBINDEX> a owl:Class;

rdfs:label "MILKSUBINDEX" .

132

Appendix K

Yam++ API Response Example

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment#’

xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:xsd=’http://www.w3.org/2001/XMLSchema#’

xmlns:align=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment#’>

<Alignment>

<xml>yes</xml>

<level>0</level>

<type>11</type>

<onto1>

<Ontology rdf:about="file:/tmp/yamppls/3TEPAF5EQQOFIB2/source.owl">

<location>file:/tmp/yamppls/3TEPAF5EQQOFIB2/source.owl</location>

</Ontology>

</onto1>

<onto2>

<Ontology rdf:about="file:/tmp/yamppls/3TEPAF5EQQOFIB2/target.owl">

<location>file:/tmp/yamppls/3TEPAF5EQQOFIB2/target.owl</location>

</Ontology>

</onto2>

<map>

<Cell>

<entity1 rdf:resource=’neo4j://graph.schema#CoverID’/>

133

<entity2 rdf:resource=’neo4j://graph.schema#CoverID’/>

<relation>=</relation>

<measure rdf:datatype=’http://www.w3.org/2001/XMLSchema#float’>

1.0</measure>

</Cell>

</map>

<map>

<Cell>

<entity1 rdf:resource=’neo4j://graph.schema#CoverDate’/>

<entity2 rdf:resource=’neo4j://graph.schema#CoverDate’/>

<relation>=</relation>

<measure rdf:datatype=’http://www.w3.org/2001/XMLSchema#float’>

1.0</measure>

</Cell>

</map>

<map>

<Cell>

<entity1 rdf:resource=’neo4j://graph.schema#PreviousCoverDate’/>

<entity2 rdf:resource=’neo4j://graph.schema#CoverDate’/>

<relation>=</relation>

<measure rdf:datatype=’http://www.w3.org/2001/XMLSchema#float’>

1.0</measure>

</Cell>

</map>

</Alignment>

</rdf:RDF>

134

	Abstract
	Introduction
	Introduction and Background
	Motivation and Problem Statement

	Graph Analytics
	Approach
	Research Questions

	Summary

	Related Research
	Data Integration
	Graph Transformation
	Summary

	Integration Methodology
	System Architecture
	Ontology Matching
	Metadata Integration
	Data Integration
	Graph Construction

	Agri-Based Case Study
	The Livestock Data Source
	Animal Grazing Data Source
	Paddock Data Source
	Cow Information Data
	Lactation Database

	Summary

	Schema Integration
	Initial Instance Data Loading
	Metadata Extraction
	Ontology Matching
	Metadata Integration
	Instance Data Integration
	Re-run of Steps For All Input Files
	Evaluation
	Evaluation Framework
	Evaluation Results

	Summary

	Data Model Transformation
	Introduction
	Meta-Analysis
	Attribute Classification
	Graph Construction
	Summary

	Evaluation
	Experimental Setup
	Results
	Storage
	Data Integrity
	Analytical Evaluation

	Analysis and Discussion
	Storage Analysis
	Data Integrity Analysis
	Analytics Result Analysis
	Data Loading Performance

	Summary

	Conclusions
	Thesis Summary
	Future Research

	Bibliography
	Appendices
	LivestockNumbers Ontology
	ManagementDecisions Ontology
	Integrated Metadata Ontology File For First Step
	PaddockEstimation Ontology
	Integrated Metadata Ontology Extended With PaddockEstimation
	PbiLactation Ontology
	Integrated Metadata Ontology Extended With PbiLactation
	IndividualCase Ontology
	Integrated Metadata Ontology Extended With IndividualCase
	PbiCow Ontology
	Yam++ API Response Example

