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Semi-supervised learning with generative models
for pathological speech classification

Nam H. Trinh

Abstract

Recent work in pathological speech classification has employed supervised learning
algorithms such as neural networks and support vector machines to classify speech
as healthy or pathological. A challenge in applying such machine learning techniques
to pathological speech classification is the labelled data shortage problem. While
labelled data are expensive and scarce, unlabelled data are inexpensive and plentiful.
Labelled data acquisition often entails significant human effort and time-consuming
experimental design. Further, for medical applications, privacy and ethical issues must
be addressed where patient data is collected.

In this thesis, we investigate a semi-supervised learning (SSL) approach that em-
ploys a generative model to incorporate both labelled and unlabelled data into the
training process. Generative models explored include both a generative adversarial
network (GAN) and a variational autoencoder (VAE). To employ a GAN, we mod-
ify its traditional discriminator to not only differentiate between real and fake speech
samples but to also classify the given sample as healthy or pathological. To employ a
VAE, we first pre-train the VAE with unlabelled data and subsequently, incorporate
the pre-trained encoder into a classifier to be trained on labelled data.

We test our approach using three commonly used pathological speech datasets: the
Spanish Parkinson’s Diseases Dataset (SPDD), the Saarbrucken Voice Database (SVD)
and the Arabic Voice Pathology Database (AVPD). We compare the performance of
the GAN and VAE-based approaches trained on both labelled and unlabelled data
with a traditional supervised approach based on a convolutional neural network (CNN)
trained only on labelled data.

We observe that our SSL-based approach leads to an accuracy gain compared to a
baseline CNN trained only on labelled pathological speech data. This promising result
shows that our approach has the potential to alleviate the labelled data shortage
problem in pathological speech classification and other medical applications where
labelled data acquisition is challenging.
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Chapter 1

Introduction

In this chapter we present the research questions our work seeks to investigate and

describe the structure of the thesis. We also highlight our key contributions and pub-

lications. The chapter is organised as follows: in section 1.1 we outline the motivation

for our work and set it in context; in section 1.2 we define our research questions; in

section 1.3 we describe the structure of the thesis and map our research questions to

specific chapters; in section 1.4 we list our contributions; section 1.5 lists publications

arising from our work; section 1.6 concludes and summarizes the chapter.

1.1 Motivation and research context

Deep learning for healthcare applications has attracted significant research effort in

recent years [11–13]. For example, deep neural networks have been employed in medical

imaging (e.g. medical image segmentation and object detection within X-ray images)

and achieved state-of-the-art performance in tasks such as Corona virus detection from

X-ray images [14, 15], chest pathology classification [16], metal artifact reduction in

metal transplants [17] and bone structure segmentation [18]. Besides image-related

applications, neural networks for pathological speech classification have also attracted

significant research effort recently where supervised machine learning algorithms are

applied to classify speech data samples as pathological and healthy [19–22]. Before
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the advent of deep learning, research in pathological speech classification typically

employed a range of traditional machine learning algorithms including Random Forests

and Support Vector Machines (SVM) [23–26].

A challenge in the field of machine learning for medical applications is the scarcity

of labelled training data [27–30]. Labelled medical data acquisition often demands

significant human expertise and can give rise to privacy and ethical concerns. While

quality labelled data availability is often limited, unlabelled data are plentiful. Semi-

supervised learning (SSL), incorporating both labelled and unlabelled data [10, 31],

presents a potential means of alleviating the labelled data shortage problem and thus,

improving overall classification performance in pathological speech classification.

Convolutional Neural Networks (CNNs) [1] have been widely applied for computer

vision tasks and have achieved considerable success. However, CNNs require large

training datasets to perform well. Recently, generative models such as the Genera-

tive Adversarial Network (GAN) (introduced in [5]) and the Variational Autoencoder

(VAE) (introduced in [32]) have been applied in SSL with benchmark image datasets,

e.g. MNIST, CIFAR-10, and SHVN.

In this thesis, we explore both a GAN-based and a VAE-based SSL approach

to mitigating the data shortage problem for pathological speech classification. We

evaluate the latter proposed approaches by comparing the performance of each against

that of a baseline CNN.

1.2 Research questions

Research question 1: Can deep neural networks outperform traditional machine

learning algorithms in pathological speech classification?

Before the advancement of deep learning, work in pathological speech classification

typically employed traditional machine learning algorithms such as Random Forests

and Support Vector Machines (SVM) [23–26]. Speech data was first processed to

2



extract salient features. The extracted features were fed into classification algorithms

for pathology detections. Thanks to the advances in deep learning, neural networks

can now play the role of feature extractor simplifying the speech processing task. To

answer our first research question, we extract spectrograms from speech data and feed

them (as 2-D matrices) into a CNN. We compare the performance of CNN with that

of traditional machine learning algorithms such as SVMs and Random Forests.

Research question 2: Can we employ generative models (GAN and VAE) to in-

corporate unlabelled data into the training process and thereby boost pathological speech

classification accuracy?

Generative models were first employed in computer vision to generate highly real-

istic images for tasks such as human face generation [33,34], handwritten digit gener-

ation [9] and image-to-image translation [7, 35]. Semi-supervised learning approaches

employing generative models have also been proposed to alleviate the data shortage

problem [36, 37]. While generative models attempt to capture the training data dis-

tributions, they also learn the features of these data. To answer our second research

question, we incorporate unlabelled data into the training by employing generative

models to learn a feature representation from these unlabelled data. We then incorpo-

rate these learned features into a supervised neural network trained on labelled data

to improve the performance of the supervised model in the scenario where there is

a lack of labelled data. The performance of semi-supervised approaches is compared

with that of baseline CNNs trained only on labelled data.

Research question 3: Which generative model (GAN or VAE) yields a better

performance boost?

We compare the performance of the two generative models, the GAN and VAE,

in the semi-supervised learning tasks. Consistent training configuration is maintained

across all experiments to ensure that experimental results are comparable. We use the

librosa framework [38] for speech processing and Keras on top of Tensorflow [39] for

neural network model building.
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1.3 Thesis structure

The thesis approaches the above research questions as follows:

• Chapter 1 (this chapter) defines our research questions, thesis structure and

contributions.

• Chapter 2 presents a literature review on pathological speech classification.

• Chapter 3 presents the deep learning background that forms the basis of our

experiments in Chapters 4-6.

• Chapter 4 addresses research question 1.

• Chapter 5 addresses research question 2 in the context of a GAN.

• Chapter 6 addresses research question 2 in the context of a VAE and concludes

by addressing research question 3.

• Chapter 7 concludes the thesis, summarising its contributions, limitation and

setting our future work.

1.4 Contributions

Our contributions are:

• A baseline deep learning-inspired approach to pathological speech classification

employing a CNN trained only on labelled data (we use it as baseline result to

assess the performance of the SSL approaches employing a GAN and a VAE),

• a framework for applying GAN-based semi-supervised learning for pathological

speech classification,

• a framework for applying VAE-based semi-supervised learning for pathological

speech classification,
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• empirical experiments comparing the performance of the proposed approaches

with that of a baseline CNN using three popular pathological speech datasets.

1.5 Related publications

Several chapters in this thesis are extended versions of the following contributions:

• Chapter 4 has been published in Trinh, N., O’Brien, D. (2019). Pathological

speech classification using a convolutional neural network. IMVIP 2019: Irish

Machine Vision & Image Processing, Technological University Dublin, Dublin,

Ireland, August 28-30. doi:10.21427/9dnc-n002.

• Chapter 5 has been published as Trinh, Nam and O’Brien, Darragh (2020). Semi-

supervised learning with generative adversarial networks for pathological speech

classification. In Proceedings of the 31st Irish Signals and Systems Conference

(ISSC2020), 11 - 12 June 2020, Letterkenny, Ireland (Virtual).

• An extended version of the aforementioned paper is published in Trinh N.H.,

O’Brien D. (2020) Generative Adversarial Network-Based Semi-supervised Learn-

ing for Pathological Speech Classification. In: Espinosa-Anke L., Mart́ın-Vide

C., Spasić I. (eds) Statistical Language and Speech Processing. SLSP 2020.

Lecture Notes in Computer Science, vol 12379. Springer, Cham.

1.6 Summary

In this chapter we described the context and motivations for our research. We defined

the three research questions that this thesis seeks to investigate. We presented the

thesis structure and mapped its content to our research questions. We highlighted our

contributions and listed related publications.
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Chapter 2

Literature Review:

Machine Learning for

Pathological Speech Classification

In this chapter, we provide a review of speech production and speech pathologies and

subsequently, on related work that employs machine learning algorithms for patho-

logical speech classification. We first describe how speech is produced through a

three-stage process occurring in our respiratory system. Since the application of deep

learning to classify speech pathologies is the focus of our research, a review of speech

pathologies and associated voice abnormalities is presented along with some commonly

used pathological speech datasets. It is against such datasets that we test our classi-

fication methods. This chapter is organized as follows: we review speech production

process and speech pathologies in section 2.1; in section 2.2.1 we summarize several

commonly used pathological speech datasets; in section 2.2.2 we review pathological

speech classification work highlighting datasets, features, classifier design and resulting

classification accuracy; Section 2.3 summarizes the chapter.
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2.1 Speech production and speech pathologies

2.1.1 Speech production

Speech production transforms thoughts into a speech signal at both the psycholinguis-

tic level, where a cognitive linguistic process in the brain forms words, grammatical

structures and meaning, and the motor sensor level, where the articulation initiated

at the lungs actually creates actual speech signals that travel to listeners’ ears [40]. At

the psycholinguistic level, Broca’s area in the human brain processes language infor-

mation including choice of words and grammar structure and sends control signals to

motor organs for producing speech [41,42]. After receiving the signal from the human

brain, speech signals are formed by a three-stage process requiring the collaboration

of a complicated system of organs including the lungs, trachea, vocal tract, tongue,

teeth and nasal cavity. Below, we briefly review the physiology of speech production.

Anatomy of speech production

The three stages of speech production are respiration, phonation and articulation.

During respiration, the lung creates an airflow and pushes it through trachea. Res-

piration includes inhalation and exhalation. During normal respiration, the durations

of inhalation and exhalation are equal. During the speech production process, exha-

lation dominates [43].

Once the airflow is pushed through the trachea, it enters the larynx where the

phonation takes place. During phonation, the larynx modifies the airflow generated

by the lungs to produce an acoustic signal by modifying the length of the vocal folds

and vibrating the vocal folds to control the airflow through the glottis [43].

During articulation, the vocal tract shapes this airflow to create the desired sound

[43, 44]. There are two types of articulatory organs: active articulators and passive

articulators. Active articulators include the lower lip, tongue, glottis and uvula that

move actively during the speech production process. The active articulators are sup-
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ported by passive articulators (organs that do not move during speech production)

such as the teeth, alveolar ridge, palate and pharynx.

Articulatory phonetics

Articulatory phonetics refers to the way the speech sounds (phonemes) are formed.

There are two main types of phoneme: vowels and consonants [45].

Vowel sounds are formed by pushing the airflow from the lungs through vibrat-

ing vocal folds [43]. Different resonant frequencies in the vocal tract are created by

changing its shape and the position of the tongue and lips. Unlike during consonant

formation, there is no restriction in airflow. There are two types of vowel sounds:

monophthongs (one vowel, e.g. cat – /cat/ or sit - /sit/) and diphthongs (two vow-

els e.g. my - /mai/, or brain - /brein/). Three main characteristics describe a vowel

sound, namely height, backness and roundedness. Height and backness refers to tongue

position. For example, /i/ is produced with a high tongue position whereas /a/ is pro-

duced with a low tongue position. Producing /i/ requires the tongue to be forward

while producing /u/ requires the tongue to be backward. Roundedness refers to the

shape of the lips when the sound is produced, e.g. /u/ is a rounded vowel since the

lips are rounded when pronouncing /u/ while /i/ is an unrounded vowel.

Consonants are formed also by forcing an airflow from the lungs but, unlike with

vowels, the vocal tract is now constricted [43]. Different consonant sounds are created

through changes in place and manner of articulation and voicing. Place of articulation

refers to the position at which the airflow is constricted: bilabial consonants such as

/p/, /b/ and /m/ are formed by touching the two lips whereas labiodental consonant

sounds such as /f/ and /v/ are produced by touching the upper teeth with the lower lip.

The manner of articulation refers to the way in which the airflow constriction occurs,

e.g. stop consonant sounds /p/, t/ and /k/, fricatives /θ/, /v/ and /z/, affricative

sounds (a combination of a stop and fricative) /t
∫

/ and nasals (airflow through the

nasal cavity) /m/ and /n/. Voicing refers to the vibration of the vocal folds, i.e. if

9



the vocal folds vibrate, the sound is voiced (/b/ or /z/) and if the vocal folds do not

vibrate, the sound is unvoiced (/p/ or /s/).

In the experiments described in this thesis, we make use of sustained vowel sounds

for pathological speech classification. Patients’ speech was collected by requiring them

to pronounce vowel sounds (/a/, /e/ or /i/) and sustain this sound for several seconds.

2.1.2 Speech pathologies

Speech production is a complex process at both cognitive and motor levels and speech

pathologies may arise at either level. In this section, we provide a description of several

speech pathologies including speech disorders caused by Reinke’s edema, vocal cord

paralysis, nodules, sulcus, dysarthria and Parkinson’s Disease.

Reinke’s edema

Reinke’s edema (RE) is the swelling of the vocal cords caused by edema (a type of

fluid) that occupies the Reinke’s space [46]. “Reinke’s Edema” is named after the

anatomist Reinke who conducted morphological studies investigating the condition.

Patients with RE often have an abnormally low speaking fundamental frequency and

high subglottal pressure [47]. One major symptom of RE is a hoarseness and deepening

of the voice [48]. The patient’s voice has an abnormally low fundamental frequency

due to an increase in the edema within the Reinke’s space, leading to a lower frequency

vibration of the vocal cords. A study in [46] has shown that tobacco use is the primary

risk factor for RE.

Vocal cord paralysis

Vocal cord paralysis occurs when the nerve system (recurrent laryngeal nerves) that

controls the muscles of the larynx malfunctions, leading to paralysis of the vocal cords

[49]. Vocal cord paralysis affects not only the ability to produce speech but also

the ability to breathe since the vocal cords also protect our respiratory system by
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preventing food and drink from entering the trachea. Noticeable symptoms of vocal

cord paralysis include difficulties in breathing, swallowing and speaking [50,51]. Such

symptoms arise from the difficulty in moving the muscles in the larynx and the vocal

cords. Causes of vocal cord paralysis include congenital issues (neurological disorders

at birth), viral infection, tumors, trauma, thyroid diseases and other neurological

disorders [51, 52].

Vocal cord nodules

Vocal cord nodules refer to a speech pathology involving the abnormal growth of

masses on the vocal cords that affect their vibration during the speech production

process [53, 54]. The nodules are benign, i.e. not cancerous. The quality of voice

is affected by nodules as they increase the mass of the vocal cords, affecting their

vibration and closure. In patients with vocal cord nodules, the fundamental frequency

of their voice may be affected and the range of pitch frequency may be reduced.

Symptoms of vocal cord nodules include hoarseness, breathiness and a reduced range

of voice [53].

Sulcus vocalis

Sulcus vocalis results from a crease or groove on the vocal cords caused by a reduction

in the thickness (or sometimes even the absence) of a special layer of tissue on the

vocal cords called the superficial lamina propria [55]. According to clinicians, sulcus

vocalis is classified into three types: Type I with moderate loss at lamina propria; Type

II (sulcus vergeture) and Type III (sulcus vocalis) with severe destruction of lamina

propria causing severe dysphonia due to a completely lack of vibration of the vocal

cord [56]. Symptoms of sulcus vocalis include hoarseness and breathiness of voice.
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Dysarthria

Dysarthria is a speech disorder caused by neuromuscular deterioration [57]. Speech

production involves the movement of muscles in the face, lips, tongue and throat.

When dysarthria occurs, the control signal transmitted from the brain to these muscles

weaken [58, 59]. This may be due to brain damage at birth or after an illness or

injury [58]. Symptoms of dysarthria include abnormal speed of speech (too fast or too

slow), difficulty in moving the tongue, lips and jaw, mumbled or choppy speech, and

hard-to-understand speech.

Parkinson’s Disease

Parkinson’s Disease (PD) is a neurodegenerative disease caused by neuronal loss in a

region of the brain called the substantia nigra [60]. The loss of neurons responsible for

producing dopamine causes a dopamine deficit that leads to abnormal brain activity.

Several causes of the latter neuronal loss have been put forward including environ-

mental factors and genetics; however, none have been conclusively proven. In terms

of environmental factor, a meta-analysis in [61] claimed that smoking, caffeine and

alcohol consumption may reduce the risk of PD while exposure to pesticide and other

environmental toxins may increase the risk of PD. Several genetic studies have pro-

posed that gene mutation, notably in the α-synuclein and leucine-rich repeat kinase

two genes, may be associated with PD [62].

Symptoms of PD include tremor, bradykinesia (slow movement), muscular rigidity

and postural instability [63]. Speech and voice disorders are also regularly observed in

PD patients. A study of 200 Parkinson’s suffers found that 90% had a dysfunction in

their vocal tracts and larynx when producing speech [64]. A longitudinal study in [65]

proposed that a decrease in pitch variability can be observed as an early symptom of

PD. A study in [66] showed that speech disfluencies in PD patients were significantly

greater than in healthy controls in a reading task.
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Scope of the thesis

Our focus in this thesis is on the application of deep learning techniques for the early

detection of voice pathologies such as those described above. Early diagnosis of such

conditions invariably leads to improved patient outcomes and lower overall health-

care costs. We make use of publicly available datasets that contain samples of the

above pathologies. Those datasets and previous approaches to pathological speech

classification are described below.

2.2 Machine learning for pathological speech clas-

sification

The process of pathological speech classification is illustrated in Figure 2.1. The first

step is salient feature extraction from raw speech. During feature extraction, raw

speech signals are typically converted from the time-domain into frequency-domain

features (by means of, for example, the Fourier Transform). Frequency-domain fea-

tures are subsequently supplied to a classifier that differentiates between healthy and

pathological speech. Below we review publicly available datasets and previous machine

learning-based approaches to pathology classification.

Figure 2.1: A general pathological speech classification system

2.2.1 Pathological speech datasets

We summarize in Table 2.1 the contents of several commonly used speech pathology

datasets. We compare their contents in terms of languages, constituent phonemes, size

and classes (healthy versus pathological).
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Table 2.1: Commonly used pathological speech datasets

Datasets Language Phonemes Size Classes
Saarbrucken
Voice Database
(SVD) [67]

German Sustained vowels
/a/, /i/, /u/ and
conversational
sentences

Over 2000 speech
samples (33% of
them are healthy
samples and 67% of
them are pathologi-
cal samples)

Two classes:
healthy samples
and samples of
different patholo-
gies.

Massachusetts
Ear and Eye
Infirmary
(MEEI) [68]

English Sustained vowel
/a/ and Rain-
bow passage

Total 1400 speech
recordings of sus-
tained vowel sounds
/a/ (from 653 patho-
logical speakers and
53 healthy controls)

Two classes:
healthy samples
and pathological
samples.

Arabic Voice
Pathology
Database
(AVPD) [69,70]

Arabic Three vowels
/a/, /i/, /u/,
isolated words
and conversa-
tional speech

Total 366 samples of
normal and patho-
logical speech (51%
of them are normal,
the rest are patho-
logical)

Two classes:
healthy samples
and pathological
samples.

Child Patho-
logical and
Emotional
Speech
Database
(CPESD) [71]

French Conversational
sentences

2542 speech sam-
ples collected from
99 children (of which
12 with AD, 13 with
SLI, 10 with PDD-
NOS, and the rest
are TD children

Four classes:
Typically De-
veloping (TD),
Autism Disorder
(AD), Pervasive
Developmen-
tal Disorder -
Not Otherwise
Specified (PDD-
NOS), Specific
Language Impair-
ment (SLI).

Spanish
Parkin-
son’s Dis-
ease Dataset
(SPDD) [72]

Spanish Sustained vow-
els, isolated
words and
conversational
speech

50 people with
Parkinson’s Disease
and 50 healthy
control

Two classes:
healthy and
Parkinson’s
Disease speech
samples.

VOice ICar
fEDerico II
Database
(VOICED)
[73,74]

Italian Sustained vowel
/a/

208 samples (con-
sisting of 150 patho-
logical speech sam-
ples and 58 healthy
control samples)

Two classes:
healthy samples
and pathological
samples.
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2.2.2 Pathological speech classification

In Table 2.2 we summarize related work in machine learning-based speech pathology

classification. For each study we highlight datasets used, features extracted, classifier

design and reported classification accuracy.

Before the era of deep learning, early work in the area of pathological speech

classification typically required the design and implementation of analysis methods in

order to acquire meaningful features for classification.

In [23], the authors extracted features such as pitch, jitter, shimmer and harmonic-

to-noise ratio before feeding them into a linear regression model to discriminate be-

tween PD and healthy speech samples.

In [24], the authors extracted 132 features including jitter, shimmer, recurrence

period density entropy, noise features and mel-frequency cepstral coefficients (MFCCs)

that were subsequently fed into classification algorithms such as random forests (RFs)

and support vector machines (SVMs). They reported a classification accuracy of 93.0%

with RF and an accuracy of 98.6% with SVMs.

In [25], the authors proposed a classification system in which jitter, shimmer, glot-

tal pulse parameters, pitch, amplitude parameters and harmonicity parameters (auto-

correlation, harmonic-to-noise ratio) are extracted and input to SVM and K-Nearest

Neighbors.

In [75], a method was proposed to analyse Parkinson’s Disease based on funda-

mental and formant frequencies (F0, F1, F2, F3), jitter, shimmer, harmonic-to-noise

ratio, soft phonation index and glottal features. Using an SVM for classification, an

accuracy of 93% was achieved with this method.

In [76], a feature extraction method was proposed to extract harmonic-to-noise

ratio contour on sentence-level speech data; the classification accuracy achieved with

this method was 87.3% using an SVM classifier.

With the emergence of deep learning algorithms, pathological speech classification

models based on neural networks have also been proposed. For example, in [77–80],
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MFCCs serve as input vectors to a Multi Layer Perceptron (MLP).

MLP drawbacks, however, include overfitting and a potentially long training period

due to the large number of model parameters. To address MLP-related issues, Convo-

lutional Neural Network (CNN)-based models were proposed. Using a CNN-based ap-

proach (with a CaffeNet architecture), a state-of-the-art result of 97.5% accuracy with

the Saarbrucken Voice Database was reported consisting of 1616 pathological speech

samples and 686 normal speech samples in the form of sustained vowel /a/ [81]. In

our previous work in [82], we achieved promising results with 99.0% accuracy on SVD

and with 96.7% accuracy on SPDD. In experiments described in the Chapters 5 and

6, we employ the VGG-16-based CNN model proposed in [81] as a baseline model.

Besides SVD and SPDD, pathological speech classification methods have been ap-

plied with other datasets. In [83,84], various acoustic features were proposed and their

ability to detect speech disorders in children was evaluated against the CPESD (see

Table 2.1). In [85], a voice disorder system for mobile devices was trained on MEEI

and VOICED (see Table 2.1) and achieved a promising classification accuracy.

In this thesis, we employ three pathological speech datasets for all experiments:

SVD, SVDD and AVPD since such datasets are publicly available and commonly used

for pathological speech classification.

2.3 Summary

In this chapter, we reviewed the speech production. We described the speech patholo-

gies normally covered by publicly available datasets including those arising from Reinke’s

edema, vocal cord paralysis, nodules, sulcus vocalis, dysarthria and Parkinson’s Dis-

ease. We presented related work in pathological speech classification by firstly summa-

rizing the contents of commonly used pathological speech datasets and secondly, re-

viewing machine learning techniques employed for classifying pathological from healthy

speech. Work to date in the area of pathological speech classification has largely as-
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Table 2.2: Related work in pathological speech classification: features, classifiers and
reported accuracy

Reference Dataset Features Classifier Accuracy
Poorjam et al.
(2018) [26]

Data collected by
the authors in
collaboration with
Sage Bionetworks

MFCCs SVM 88.0%

Moon et al.
(2018) [77]

SVD [67] Jitter, shim-
mer and
MFCCs

MLP 87.4%

Smitha et al.
(2018) [78]

Supplied by the
Nitte Institute
of Speech and
Hearing Mangaluru

MFCCs MLP 95.0%

Shia et al.
(2017) [80]

SVD Wavelet Sub-
band Energy
Coefficients

MLP 93.3%

Alhussein et al.
(2018) [81]

SVD Spectrogram
(after framing
and applying
STFT)

CNN 97.5%

Trinh et al.
(2019) [82]

SVD Spectrogram CNN 99.0%
SPDD [70] 96.7%

sumed that an adequate corpus of training samples (including both normal and patho-

logical speech) is available to the model to be trained. In this thesis we shift focus

to exploring how a lack of training data can be mitigated through semi-supervised

learning.
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Our intelligence is what makes us human, and

AI is an extension of that quality.

Professor Yann LeCun
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Chapter 3

Background:

Deep Neural Networks,

Generative Adversarial Networks

and Variational Autoencoders

In this chapter, we present the background material on deep learning including neural

networks and generative models that underpins the research reported in subsequent

chapters. The chapter is organized as follows: in section 3.1 we provide a review of neu-

ral networks including multi-layer perceptrons; in section 3.2 we present an overview of

convolutional neural networks; in sections 3.3 and 3.4 we review the architecture and

cost functions of deep generative models such as generative adversarial networks and

variational autoencoders and provide a literature review of related work employing

generative models; in section 3.5 we review commonly used semi-supervised learning

approach; section 3.6 summarizes and concludes the chapter.
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3.1 Deep neural networks

Deep neural networks (DNNs) or Multi-layer perceptrons (MLPs) are fundamental

models in deep learning. In a supervised learning scheme, the goal of training an MLP

is to approximate a function f to map from an input x to an output y such that

y = f(x) and subsequently, to apply this function f to unseen input x to predict an

output [86]. The main building blocks of an MLP are neurons placed across different

layers: input layer, hidden layers and output layer (as depicted in Figure 3.1). The

goal is to train the network to obtain optimal parameters θ such that the network

yields outputs close to the ground truths (or labels).

Figure 3.1: MLP architecture

3.1.1 Feed-forward propagation

In feed-forward propagation, a neuron takes input vector x, multiplies x by weight

vector W and adds the result to the bias b (the result is z = WTx + b) [87]. The

weighted sum z is then acted upon by an activation function. The output of a neuron
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is mathematically expressed as follows:

y = g(WTx + b) (3.1)

Feed-forward propagation is so-called since the data x flows into the input layer,

through hidden layers and exits at the output layer. Some commonly used activation

functions are softmax, sigmoid, tanh, Rectified Linear Unit (ReLU), Leaky Rectified

Linear Unit (LeakyReLU). We briefly describe the properties of each in section 3.1.3.

3.1.2 Loss functions

The goal of feed-forward propagation during the training phase is to output a predicted

value ŷ that is as close as possible to the actual output y. To evaluate the closeness,

we implement a loss function. Several commonly used loss functions include the mean

absolute error (MAE), the mean squared error (MSE), the cross entropy (CE) and the

Kullback-Leibler divergence.

Mean absolute error (MAE) is the average absolute difference between pre-

dicted outputs and actual outputs over a training set and is defined as follows:

MAE(y, ŷ) = 1
m

m∑
i=1
||ŷ(i)–y(i)|| (3.2)

where y(i) is the actual output for the ith sample, ŷ(i) is the predicted output, and

m is the number of training samples.

Mean squared error (MSE) is the average squared difference between predicted

outputs and actual outputs over a training set and is defined as follows:

MSE(y, ŷ) = 1
m

m∑
i=1

(ŷ(i)–y(i))2 (3.3)

where y(i) is the actual output of the ith sample, ŷ(i) is the predicted output, m is the

number of training samples.
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Compared to MAE, MSE is larger for outlier data points since the difference be-

tween the predicted and actual output is squared. Thus, MSE is highly sensitive to

outliers while MAE is less affected by their presence [88].

Cross-entropy (CE) measures the performance of a model where the model’s

output is the probability of an event from 0 to 1 and is defined as follows:

CE(y, ŷ) = − 1
m

m∑
i=1

[y log(ŷ)− (1− y) log(1− ŷ)] (3.4)

Kullback-Leibler (KL) divergence is the distance between two probability dis-

tributions [89]. A KL divergence between two discrete distributions P and Q is defined

as follows:

DKL(P ||Q) =
∑
i

P (i) log P (i)
Q(i) (3.5)

3.1.3 Activation functions

Neural network training employs a gradient-based optimization method (described in

more detail in section 3.1.4) to update parameters θ by computing the derivative of the

loss function with respect to each parameter. The design of activation functions plays

an important role as the derivative is computed by propagating backward through the

network. In this section we briefly describe some commonly used activation functions

for neural networks and their properties.

Sigmoid activation

A sigmoid activation is expressed as follows:

g(z) = σ(z) = 1
1 + e−z

(3.6)

The range of the sigmoid activation is [0, 1] which can be interpreted as the probabil-

ity of a binary variable. The sigmoid saturates as the input z grows more positive or

negative. The function is fully differentiable. The disadvantages of the sigmoid acti-

vation include a vanishing gradient when employing gradient-based optimization and
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being computationally expensive. Since training a neural network is a gradient-based

optimization (see section 3.1.4), derivatives must be computed for the backpropaga-

tion process. However, the sigmoid activation exhibit slow convergence due to its

widespread saturation, i.e. it saturates to 0 with negative inputs and saturates to 1

with positive inputs, making the derivative at these saturation regions close to 0.

Hyperbolic tangent

A hyperbolic tangent or tanh activation is expressed as follows:

g(z) = tanh(z) = ez − e−z

ez + e−z
(3.7)

Similar to sigmoid, the tanh activation saturates to −1 with increasingly negative

input z and saturates to 1 with increasingly positive input z. The main advantage

of tanh over sigmoid is its similarity to the identity function, i.e tanh(0) = 0 while

σ(0) = 1
2 . Since it resembles the identity function, training a network with tanh is

as straightforward as training a network with linear activation if the input value z is

small.

Rectified linear unit

A rectified linear unit (ReLU) activation [90] is a piecewise linear function that

outputs 0 if z < 0 and outputs z if z > 0 where z is the activation input. ReLU is

mathematically expressed as follows:

g(z) = max(0, z) (3.8)

Its linearity makes ReLU straightforward to optimize since it is linear when the in-

put z is greater than 0 and is also computationally efficient. However, the “dying

ReLU” problem arises where the input z approaches 0 or becomes negative, causing

the derivative of the function to move close to 0 and preventing convergence through

gradient descent [91]. To mitigate this problem, several revised ReLU versions have

been proposed including one that adds a negative slope when the input z is less than
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0 [92]. In [93], empirical experiments have shown that adding a negative slope to a

standard ReLU can improve the performance of a convolutional neural network on an

image classification task. A LeakyReLU [94] is another extended ReLU activation and

is expressed as follows:

g(z) = max(αz, z) (3.9)

where α is a small fixed value (the default value for α is 0.01). Another ReLU

version is the Parametric ReLU or PRELU [92] and it too is expressed as:

g(z) = max(αz, z) (3.10)

where α however is now a trainable parameter, i.e. the slope of the negative PRELU

component is trainable.

Softmax activation

Applying the softmax activation to a vector of M elements normalizes them into

a probability distribution with M probabilities [88]. Unlike other activation functions

applied for a single neuron, a softmax activation is typically applied to a layer of

neurons. Softmax is implemented as follows:

g(zi) = ezi∑K
j=1 e

zj
(3.11)

3.1.4 Gradient-based backpropagation

After initializing the feed-forward propagation model including its weight and bias,

backpropagation is applied to train the network, i.e. to update its parameters until the

loss function is minimized using optimization algorithms [95]. Optimization algorithms

minimize or maximize an objective or cost function f(θ) by iteratively adjusting θ

until the cost function reaches its minimum. In the context of deep neural networks,

we employ optimization algorithms to iteratively update the trainable parameters θ

(weight matrix W and bias vector b) of the networks such that the loss function J is
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minimized. The loss function is a function of trainable parameters of the network:

J(W, b) = 1
m

m∑
i=1

L(y(i), ŷ(i)) (3.12)

where L is the loss function applied for each training sample, ŷ, y are the predicted

and actual output of the ith sample, respectively, and m is the number of training

samples. We briefly review below some commonly used optimization algorithms for

neural networks.

Gradient descent is a first-order iterative optimization method to find the min-

imum of the loss function by updating the parameters W and b [95]. To find a local

minimum of a function f(x) through gradient descent, we calculate the derivative f ′(x)

and then update x:

x := x− αf ′(x) (3.13)

where α is a pre-defined constant. In deep neural networks, f(x) corresponds to

the loss function J(W, b) and α is the learning rate. The gradient descent algorithm

for neural networks is defined in Algorithm 1.
Algorithm 1: Gradient Descent

Initialize parameters W, b

for number of epochs do
• Feed-forward propagation to compute predicted output ŷ

• Calculate the loss function J(W, b)

• Compute the gradients of the loss function with respect to

network parameters, i.e. dW and db

• Update parameters

W := W− αdW

b := b− αdb

where dW = ∂J(W, b)
∂W

and db = ∂J(W, b)
∂b

are partial derivatives of the loss
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function J(W, b) with respect to weights W and bias b.

Adaptive momentum optimization (Adam) [96] is an extension of mini-batch

gradient descent employing a combination of two techniques: momentum and root

mean square (RMS) prop. A momentum technique employs a moving average function

to calculate the average partial derivative over a batch [88, 97]. A moving average

function calculates the average over n successive values:

A[t] = βA[t− 1] + (1− β)X[t] (3.14)

where A[t] is the average value at data point tth and X[t] is the value at that point.

This approach saves on the memory needed to store the values to calculate the average

value since we only need to store the value A[t] at the time t. In gradient descent with

momentum, the moving average calculates the average value of parameter updates

after backpropagation, i.e. ∂J(W, b)
∂W

and ∂J(W, b)
∂b

as follows:

vdW = β1vdW + (1− β1)dW (3.15)

vdb = β1vdW + (1− β1)db (3.16)

W := W− αvdW (3.17)

b := b− αvdb (3.18)

where dW = ∂J(W, b)
∂W

and db = ∂J(W, b)
∂b

.

RMS prop calculates the average value of dW2 and db2 and divides the updated

amounts dW and db by these average values [98]. The motivation behind this method

is to reduce the number of updates, thereby dampening oscillations, when converging
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on the minimum. RMS prop is mathematically defined as:

SdW = β2SdW + (1− β2)dW2 (3.19)

Sdb = β2SdW + (1− β2)db2 (3.20)

W := W− α dW√
SdW + ε

(3.21)

b := b− α db√
Sdb + ε

(3.22)

where ε is a small constant added to the denominator to avoid zero division. Combining

momentum and RMS prop, Adam optimization is described as in Algorithm 2. Adam

is a popular optimization algorithm due to its fast convergence. In our experiments

presented in Chapters 4, 5, and 6, we employ the Adam optimizer with α = 0.00002,

β1 = 0.9 and β2 = 0.999 as recommended from the original work introducing Adam

[96].

3.2 Convolutional neural networks

A convolutional neural network (CNN) [99] is a type of neural network that employs

convolutional operations to extract features. Convolutional and pooling layers com-

pute intermediate features from input data before feeding them into fully-connected

layers for classification. In this section, we review the operation of a convolutional

neural network including convolution and pooling. We also review several classic

CNN architectures: LeNet, AlexNet, VGG and ResNet. We finish the section with an

overview of related work, mostly in the field of computer vision, employing convolu-

tional neural networks.
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Algorithm 2: Adam: Gradient descent with momentum and RMS prop
Initialize parameters W, b
Initialize vdW = 0 and vdb = 0
for number of epochs do

for number of batches do
• Sample a batch of m samples: x(1), x(2), . . . , x(m)

• Feed-forward propagation to calculate predicted output ŷ

• Calculate the loss function J(W, b)

• Compute the gradients of the loss function with respect to
network parameters, i.e. dW and db

• Update parameters
vdW = β1vdW + (1− β1)dW; vcorrecteddW = vdW

1− βi1
vdb = β1vdb + (1− β1)db; vcorrecteddb = vdb

1− βi1

SdW = β2SdW + (1− β2)dW2; ScorrecteddW = SdW
1− βi2

Sdb = β2Sdb + (1− β2)db; Scorrecteddb = Sdb
1− βi2

W := W− α vcorrecteddW√
ScorrecteddW + ε

b := b− α vcorrecteddb√
Scorrecteddb + ε

3.2.1 CNN operation

Convolution

Convolutional layers often appear early in a CNN. Operating on the input image

(or any two-dimensional input data) a convolutional layer is considered as a feature

extractor. A convolution operation takes input x and multiplies it with a kernel (or

filter) W using the sliding dot product or correlation (as illustrated in Figure 3.2).

The results are fed into non-linear activation functions (sigmoid, tanh or ReLU) to

incorporate non-linearity in the network. The output of the convolution operation

is called a feature map. In CNNs, the kernel in Figure 3.2 is modelled by trainable
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parameters W = [W1,W2, . . .Wk] and can be updated via backpropagation. A kernel

has typical size of 1× 1, 3× 3 and 5× 5. The convolution operation is mathematically

expressed as follows [88]:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.23)

where (i, j) is the position of the currently computed element in the resulting output

S, (m,n) is the size of the kernel K and I is the input data.

Compared with fully-connected feed-forward MLPs, CNNs have several advantages

including sparsity of connections and parameter sharing. With fully-connected feed-

forward MLPs, every neuron in layer N connects with every neuron in the layer N+1,

resulting in a large number of connections and consequently model parameters. For

example, if the input image has size 32× 32× 3 which is then flattened into a vector

of 3, 072 input pixels, and if the first hidden layer consists of 1, 000 neurons, then

the first layer will have 3, 072, 000 trainable weights. In a CNN, the same kernel is

reused for multiple regions in the input matrix. Regardless of the size of the input, the

number of parameters (the number of trainable weights) in the kernel is constant. This

parameter sharing also reduces the density of the connections between layers compared

with fully-connected feed-forward MLPs, making CNNs less prone to overfitting.

Pooling operation

Following the convolutional layers, pooling layers are employed to reduce the dimen-

sionality of the feature map. Dimensionality reduction lowers the computational com-

plexity and condenses extracted features by eliminating noise.

Two types of pooling are max pooling and average pooling. Max pooling outputs

the maximum values over pooled regions in the feature map (as illustrated in Figure

3.3a). Average pooling outputs the average values over pooled regions in the feature

map (as illustrated in Figure 3.3b). In this thesis, we use max pooling in all of our
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(a) Compute the first element in feature map

(b) Compute the second element in feature map

(c) Complete computations for the feature map

Figure 3.2: Convolution (from [1])

30



(a) Max pooling operation

(b) Average Pooling

Figure 3.3: Pooling (from [1])

CNN designs to reduce the dimensions of the feature map and hence, reduce the

computational cost.

3.2.2 Classic convolutional neural networks

CNNs were first introduced in the 1990s for pattern recognition in 2D images. In

2012, AlexNet using convolutional operation and max pooling achieved a state-of-the-

art performance with the ImageNet dataset. After AlexNet, several alternative CNN

architectures have been developed and evaluated against benchmark datasets such as

ResNet, Inception and VGG. In this section, we review the architectures of several

classic CNNs including LeNet-5, AlexNet and VGG.

LeNet-5

The Lenet-5 network [2] (as shown in Figure 3.4) consists of seven layers with three

convolution layers followed by two pooling layers. The feature map following the third
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Figure 3.4: LeNet-5 architecture (from [2])

convolution layer is flattened and fed into a fully-connected layer of 120 neurons, fol-

lowed by an 84-neuron fully-connected layer and a 10-neuron output layer. Lenet-5 was

shown to outperform other recognition methods in handwritten character recognition.

AlexNet

Figure 3.5: AlexNet architecture (from [3])

AlexNet (introduced in [3]) consists of seven layers (as shown in Figure 3.5). The

first convolutional layer takes an input image of size 224 × 224 × 3 and applies 96

11 × 11 × 3 filters. The second convolutional layer has 256 filters of size 5 × 5 × 48

followed by a max pooling layer. The third, fourth and fifth convolutional layers have

respectively 384, 384 and 256 filters of size 3 × 3 × 192. After the fifth convolutional
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layer, a max pooling layer reduces the dimensionality of data before feeding it into

two fully-connected 4096-neuron layers. The final output layer has 1, 000 neurons to

output the predicted probability for 1, 000 classes in the ImageNet dataset. AlexNet

won first place by achieving a state-of-the-art performance (15.3% top-5 error) in the

2012 ImageNet competition.

VGG

Figure 3.6: VGG-16 architecture (from [4])

The VGG CNN (introduced in [4]) consists solely of 3 × 3 filters instead of using

all filter sizes as in the Inception network or large filter sizes as in AlexNet. The depth

of the network ranges from 16-19 layers. In this thesis, we take the VGG-16 based

network (its architecture is shown in Figure 3.6) as one of our baseline model against

which we compare the performance of the proposed approaches.
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3.3 Generative adversarial networks

3.3.1 Overview

The original GAN [5] architecture is illustrated in Figure 3.7. A GAN is a genera-

tive model taking random noise as input and seeking to generate as output samples

from a real data distribution. A vanilla GAN consists of a discriminator and a gen-

erator. The generator takes random noise as input and generates new data samples.

The discriminator’s objective is to discriminate between real and generated samples

(provided by the generator), classifying them as real or fake, respectively. The two net-

works compete until an equilibrium is reached where the discriminator cannot reliably

discriminate between real and fake data.

Figure 3.7: GAN architecture (from [5])

3.3.2 Loss function

Let D be the discriminator and G be the generator. The minimax game between D

and G is modelled mathematically as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.24)

where Ex∼pdata(x) is the expected value over all real data samples with a data distri-

bution pdata(x), D(x) is the probability that a real data sample is classified as real,
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Ez∼pz(z) is the expected value over all noise samples with a prior noise distribution

pz(z), G(z) is the generated output from input noise z.

A GAN’s training process is described in Algorithm 3. The objective of the training

process is to train D to maximize the probability of classifying generated samples G(z)

as fake and data samples x as real and to train G to convince D that generated samples,

G(z), are real. In other words, D is trained to maximize the loss function (3.24) while

G is trained to minimize (3.24).

Algorithm 3: GAN’s training process
for number of epochs do

• Sample a batch of m training examples from real data distribution pdata(x):
x(1), x(2), . . . , x(m)

• Sample a batch of m noise samples from noise distribution pz(z):
z(1), z(2), . . . , z(m)

• Train the discriminator to minimize the loss function:

Loss(D) = −(Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]) (3.25)

• Sample a batch of m noise samples from noise distribution pz(z):
z(1), z(2), . . . , z(m)

• Train the generator to minimize the loss function:

Loss(G) = Ez∼pz(z)[log(1−D(G(z)))] (3.26)

3.3.3 Related work

Since their introduction in [5], GANs have attracted significant research interest with

the typical goals of a) generating highly realistic images and b) learning a feature

representation in unsupervised learning for classification tasks. In this section, we

review several major milestones in GAN design including improved techniques for

training GANs; along with the Info GAN, Cycle GAN, and Style GAN architectures.
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Improved techniques for training GANs

Though GANs have the ability to generate highly realistic images compared with other

generative models, GANs training process is challenging due to the problems of non-

convergence and mode collapse. In [37], new techniques were introduced to improve the

stability of GAN training including feature matching, minibatch discrimination, his-

torical averaging, one-sided label smoothing and batch normalization. Incorporating

these techniques, a GAN achieved a state-of-the-art performance in semi-supervised

learning tasks with benchmark datasets (MNIST and CIFAR10) [37]. The same work

also proposed the Inception score – a new evaluation metric for GANs - and provided

a basis to evaluate the quality of GAN-generated images.

Deep convolutional generative adversarial networks (DCGAN)

Figure 3.8: DCGAN’s generator (from [6])

In [6], Radford et al. proposed a new architecture for GANs (called DCGAN)

where both the discriminator and the generator consisted only of convolutional layers

instead of multi-layer perceptrons. In DCGAN’s generator, all activations are ReLU

except for tanh at the output layer and no fully-connected layers are used (as illus-

trated in Figure 3.8). In the discriminator, LeakyReLU replaced ReLU. With this

new architecture, DCGAN achieved state-of-the-art classification performance with

the SHVN and CIFAR-10 datasets in which a discriminator provided a representation
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learned from unsupervised pre-training. In this thesis, our GAN design (as described

in Chapter 5) is inspired by DCGAN.

Info GAN

In [100], Info GAN was proposed for learning a disentangled representation using

information theory where the Info GAN was trained to maximize the mutual infor-

mation between the latent codes and the observation at the output of the generator.

In unsupervised learning, one of the main approaches is to learn from unlabelled data

and subsequently, use pre-trained networks for supervised learning tasks. A challenge

with this approach is that features learnt from unlabelled data may not be useful

for downstream classification tasks. The goal of Info GAN was to learn disentangled

representation features from unlabelled data that can be useful for supervised classi-

fication tasks. The Info GAN loss function included a regularized term to maximize

the mutual information between latent code c and the generator’s output G(z, c). The

loss function of Info GAN was revised from that of the original GANs as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

− λI(c;G(z, c))

(3.27)

Info GAN successfully manipulated latent features in datasets such as 3D Chairs,

CelebA and SHVN and generated new images based on those manipulated features.

Cycle GAN

Cycle GAN [7] is a proposed method to translate images from a domain X to a

domain Y (as illustrated in Figure 3.9) without the need for paired images in the

training dataset. The goal of Cycle GAN’s training process is to learn a mapping from

domain X to domain Y and vice versa. Let G be the mapping function from domain

X to domain Y and F be the mapping function from domain Y to domain X. Cycle
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Figure 3.9: Cycle GAN with cycle consistency loss (from [7])

consistency loss was incorporated with adversarial loss to ensure that when translating

an image x ∈ X to domain Y to produce a generated image G(x) and subsequently,

translating back the image G(x) to domain X to get another generated image F (G(x))

one can retrieve the same image x, i.e. to reproduce an image F (G(x)) as close as

possible to the initial image x.

Other GAN architectures

In a semi-supervised GAN (SGAN) [101], the discriminator is extended from a binary

classifier to a (K+1)-class classifier where K is the number of classes for semi-supervised

tasks. In [33], Style GAN was proposed with the latent vector z modified to map the

training data distribution before being fed into the generator instead of the Gaussian

distribution used in a vanilla GAN. Self-Attention GAN (SAGAN) [102] employed

the self-attention mechanism from Natural Language Processing for image generation

tasks and achieved a state-of-the-art performance in terms of Inception score with the

ImageNet dataset.

3.4 Variational autoencoders

In this section we review the architecture of a standard autoencoder and a variational

autoencoder. We also provide a brief literature review of related work employing

variational autoencoders as generative models.
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3.4.1 Autoencoders

Autoencoders [103] are dimensionality reduction models. An autoencoder consists of

an encoder E that attempts to reduce the dimensions of the input data x, encoding x

as a latent variable z and a decoder D that attempts to reconstruct the original data x

from the latent variable z (as illustrated in Figure 3.10). The dimension of the latent

space z is often significantly less than that of the original data x. The goal of the

autoencoder’s training is to reconstruct the original data x with minimal difference

between x and x′, i.e. to minimize the reconstruction loss function:

L(x, x′) =
∑
m

(x− x′)2 (3.28)

where m is the number of input samples

Autoencoders have been widely applied in dimensionality reduction [104,105], rep-

resentation learning for unsupervised learning [106–108] and image denoising [109].

Figure 3.10: Autoencoder

3.4.2 Variational autoencoders

Limitations of standard autoencoders

A major limitation of standard autoencoders is that the latent space at the output

of the encoder may not be continuous and if the decoder decodes a vector from an

unsmooth region, then the newly generated data may not be realistic. The variational
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autoencoder (VAE) [9, 110] is an extension of the autoencoder whereby variational

inference is incorporated as an optimization problem to address the discontinuity in

the latent variable distribution. In a VAE, the latent variable z becomes a vector of

distributions instead of a vector of fixed values. Similar to a traditional autoencoder,

the training of a VAE also minimizes the reconstruction loss between the original

input data x and the output of the decoder x′. The difference between a VAE and a

standard autoencoder is that the encoder encodes the input data x into distributions

rather than as fixed values and subsequently, the decoder decodes a sampled point

from the encoded distributions to generate the new data x′.

Probabilistic model of a VAE

The probabilistic model of a VAE is presented in Figure 3.11 where a latent variable z

is sampled to generate new data X. The main objective of VAE training is to sample

the latent variable z that can produce new data points in X and subsequently, compute

P (X|z) from z to generate new data. Given a prior distribution P (z), the posterior

Figure 3.11: A graphical model of a VAE (from [8])

P (z|X) is computed by Bayes’ theorem:

P (z|X) = P (X, z)
P (X) (3.29)
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In equation 3.29, the denominator P (X) is intractable since P (x) =
∫
z P (X|z)P (z)dz.

Therefore, variational inference is employed to compute P (z|X) by defining a new

distribution Q(z|X) and optimizing Q(z|X) to be as close as possible to the optimal

posterior distribution P (z|X). KL divergence is used to evaluate the distance between

Q(z|X) and P (z|X). The training goal is to minimize this KL divergence:

DKL[Q(z|X)||P (z|X)] = Ez∼Q[logQ(z|X)− logP (z|X)] (3.30)

= Ez∼Q[logQ(z|X)− log P (X|z)P (z)
P (X) ] (3.31)

= Ez∼Q[logQ(z|X)− logP (X|z)− logP (z)] + logP (X)

(3.32)

= −Ez∼Q[logP (X|z)] +DKL[Q(z|X)||P (z)] + logP (X)

(3.33)

Rearranging terms in Equation 3.33 yields:

logP (X)−DKL[Q(z|X)||P (z|X)] = Ez∼Q[logP (X|z)]−DKL[Q(z|X)||P (z)] (3.34)

The right hand side of Equation 3.34 is called Evidence Lower Bound (ELBO) since

due to Jensen’s inequality, any KL divergence is greater than 0 [87] and therefore,

logP (X) ≥ ELBO. The goal of VAE training is to minimize DKL[Q(z|X)||P (z|X)],

i.e. to maximize the ELBO.

Architectural overview

The architecture of a VAE is shown in Figure 3.12. Compared to the architecture

of a standard autoencoder, the VAE encodes the input data into latent distribution

of z = µ + εσ instead of fixed vectors. Maximizing the ELBO in Equation 3.34 is

equivalent to minimizing the loss function:

LV AE = −Ez∼Q[logP (X|z)] +DKL[Q(z|X)||P (z)] (3.35)
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Figure 3.12: Architecture of a VAE (from [9])

In Equation 3.35, the first term is a reconstruction loss to ensure that the decoded

output x′ matches the input x and the second term is a regularization term where the

model is optimized to minimize the divergence between the latent distribution z and

the univariate Gaussian distribution ε.

3.4.3 Related work

Since the introduction of VAEs in 2013 [9], many applications have employed a VAE

as a deep generative model for data generation and for representation learning.

In [111], a deep feature consistent VAE (DFC-VAE) was proposed with the tradi-

tional pixel-by-pixel reconstruction loss replaced by feature perceptual loss where the

feature representations of input and output images were extracted from a pre-trained

deep CNN and the difference was computed with these feature representations. With

this improvement, DFC-VAE generated high-quality face images and also achieved a

state-of-the-art result in predicting facial attributes.

In [112], grammar VAE (GVAE) was proposed and achieved state-of-the-art per-

formance in generating discrete data such as arithmetic expressions and molecules.

In [113], multimodal VAE (MVAE) was proposed for fake news detection in which

the MVAE consists of three main components: an encoder, a decoder and a fake news

detector. MVAE achieved state-of-the-art performance with two real world datasets.

In [114], collaborative VAE (CVAE), a Bayesian-based generative model, was pro-

posed to employ both content and rating in a recommender system. Experiments have
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shown that CVAE achieves state-of-the-art performance compared to other recommen-

dation approaches.

3.5 Semi-supervised learning

Semi-supervised learning is a combination of supervised learning and unsupervised

learning incorporating both labelled and unlabelled data into the training process

with the goal of improving overall classification performance [10,31]. In this section, we

provide a review of traditional semi-supervised learning and semi-supervised learning

with generative models (VAEs and GANs). In supervised learning, a dataset consists

of labelled data points (xi, yi) where xi are input data points belonging to the input

space χl and yi are the labels corresponding to the input. The goal of supervised

training is to find a mapping function from data points xi to corresponding labels yi.

However, in many classification tasks, the quantity of labelled data points is often

limited, giving rise to the problem of overfitting as the model fits only to the limited

amount of training data and may not perform well on unseen data. Unsupervised

learning refers to methods to cluster unlabelled data points xi ∈ χu (data points

without corresponding labels) into groups that share similar features [115]. Semi-

supervised learning combines both types of learning: supervised and unsupervised

learning and incorporates both unlabelled and labelled data into the training process

to improve the classification performance [10,31]. We briefly describe three important

assumptions in semi-supervised learning below.

3.5.1 Assumptions in semi-supervised learning

Three important assumptions in semi-supervised learning (SSL) are the smoothness

assumption, the low density assumption and the manifold assumption [116]. The

smoothness assumption relates to the fact that two data points x and x′ residing close

to each other in the input space X should have the same corresponding label y and
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y′. The low density assumption states that the decision boundary of a classification

model separating input data points in the input space should not cross over high

density regions. The manifold assumption in SSL states that the input space consists

of many low-dimensional manifolds (low-dimensional representation of data points)

and if data points have the same manifolds, they should have the same labels.

3.5.2 Semi-supervised learning methods

In [117], entropy minimization was proposed as an SSL method to ensures that the

model (after being trained on labelled data) gives a confident prediction on unlabelled

data, i.e. to have a minimum entropy toward predictions of the model on unlabelled

data. Intuitively, this method ensures that the supervised model learns useful infor-

mation and it can understand the clustering information of the unlabelled data.

Another popular SSL method is self-training with pseudo-labelling in which a model

is first trained on labelled data and subsequently employed to generate predictions on

unlabelled data [118]. The most confident generated predictions will be incorporated

as new labelled data along with the initial labelled data in the next supervised training

iteration. Recently the Noisy Student method employed pseudo-labelling by training a

“teacher” model on labelled data and subsequently generating new labels for unlabelled

data [119]. This method achieved state-of-the-art top-1 accuracy in the ImageNet

classification task.

Label consistency using data augmentation refers to the assumption that two or

more data points being augmented from the same data point (regardless of being

labelled or unlabelled) should have the same label. Several techniques employing label

consistency have been proposed. In [120], pi-model and temporal ensembling method

were proposed in which a reconstruction loss based on the mean squared error between

two augmented data points was incorporated into the overall loss function. Temporal

ensembling computes the exponential moving average of label predictions after each

epoch; however, if the dataset is large, the moving average of the target becomes
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computationally expensive. The Mean Teacher method was proposed in [121] to solve

this issue by computing the moving average weights of the model instead of label

predictions. The Mean Teacher outperformed Temporal Ensembling and achieved a

state-of-the-art classification performance with the SHVN and CIFAR-10 datasets.

Virtual Adversarial Training (VAT) (proposed in [122]) also employs label consistency

by applying adversarial training [123] for unlabelled data to suit the task of semi-

supervised learning. VAT achieved state-of-the-art performance in semi-supervised

learning tasks with SHVN and CIFAR-10.

Unsupervised processing methods extract features from unlabelled data and, subse-

quently, incorporate extracted features in supervised models trained on labelled data.

A common feature extraction approach is to apply an autoencoder to first train it to

reconstruct the original data and, subsequently, incorporate the pre-trained encoder

into the supervised model trained on labelled data [124,125].

Another popular method in SSL is the use of generative models such as generative

adversarial networks and variational autoencoders. In the next section, we briefly

review related work that employs generative models for the task of semi-supervised

learning.

3.5.3 Semi-supervised learning with GANs and VAEs

Generative adversarial networks (GANs) [5] have been employed in SSL and have

been shown capable of contributing considerable improvements to overall classifica-

tion performance using benchmark image datasets such as MNIST, CIFAR-10 and

SHVN. In [37], several new architectural features and training procedures were pro-

posed in order to boost GAN performance in a semi-supervised setting. In [126],

SSL incorporating a GAN, specifically a Categorical GAN or CatGAN, was proposed.

For the SSL task the GAN’s discriminator, a binary classifier, was replaced with a

(K + 1)-class classifier (where K is the number of classes to be classified). This ap-

proach demonstrated a significant improvement in accuracy compared to traditional
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classifiers in image classification tasks. In [101], the proposed GAN-based approach

outperformed traditional classifiers at the MNIST classification task. In [127], the

proposed GAN-based SSL method with manifold invariance achieved accuracy gains

with CIFAR-10 and SHVN datasets. In [128], the proposed GAN method along with

a complementary generator improved the overall performance in image classification

tasks. Recently, MarginGAN [129] (based on margin theory) achieved high accuracy

compared to other SSL methods.

Besides GANs, variational inference generative methods such as variational au-

toencoders (VAE) have also been tested in an SSL context [36]. In [107], the proposed

approach using sequence to sequence autoencoders for representation learning achieved

a promising accuracy gain in an acoustic scene classification task.

Semi-supervised approaches have been applied in medical imaging. In [28], the

authors report a significant improvement in medical imaging segmentation thanks to

SSL. In [29], a graph-based SSL approach incorporating a CNN was proposed for breast

cancer diagnosis. In [30], an attention-based SSL approach achieves state-of-the-art

results on real clinical segmentation datasets.

Work to-date in pathological speech classification has typically assumed an ade-

quate corpus of pathological speech data. In [130], an approach using GANs was em-

ployed to learn feature representations for classifying speech of children with autism

spectrum conditions. This approach achieved better results than traditional classi-

fication algorithms including linear SVM and MLP. In our previous work [131], we

presented preliminary results where a semi-supervised method was applied to mitigate

the data shortage problem. In Chapter 5, we further explore and extend the GAN-

based SSL approach by testing against three popular pathological speech datasets. In

Chapter 6, we employ the VAE-based approach for representation learning and test it

against three datasets.
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3.6 Summary

In this chapter, we presented background material on neural networks and deep gen-

erative models (including GANs and VAEs). This background material provides the

context for our experiments in Chapters 4-6. We reviewed the fundamentals of neural

networks including multi-layer perceptrons, loss functions, activation functions, the

convolution operation and several classic CNN architectures. For GANs, we reviewed

their architecture, loss function and several achievements in GAN-related work. For

VAEs, we first reviewed standard autoencoders and followed this with a description of

VAEs. In the next three chapters, we apply these ideas to the problem of pathological

speech classification.
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The future depends on some graduate student

who is deeply suspicious of everything I have

said.

Professor Geoffrey Hinton
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Chapter 4

Experiment #1:

Convolutional Neural Networks for

Pathological Speech Classification

Convolutional neural networks (CNNs) have enabled significant improvements across

a number of applications in computer vision such as object detection, face recognition

and image classification. An audio signal can be visually represented as a spectrogram

that captures the time-varying frequency content of the signal. In this chapter, we

seek to answer our first research question: Can deep neural networks outperform tradi-

tional machine learning algorithms in pathological speech classification? We describe

how a CNN, taking as input the spectrogram of an audio signal can learn to distin-

guish pathological from healthy speech. We propose a CNN structure and implement

it using Keras on top of Tensorflow. We test the approach across three commonly

used pathological speech datasets. We then compare the performance of our CNN

with that of traditional machine learning algorithms including Random Forests and

Support Vector Machines. We observe that our CNN outperforms these traditional

discriminative algorithms in terms of classification accuracy. The content of this chap-

ter elaborates on the results presented in Trinh, N., O’Brien, D. (2019). Pathological
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speech classification using a convolutional neural network. IMVIP 2019: Irish Ma-

chine Vision & Image Processing, Technological University Dublin, Dublin, Ireland,

August 28-30. doi:10.21427/9dnc-n002. The chapter is organised as follows: section

4.1 describes the methodology of using a CNN for pathological speech classification;

section 4.2 presents the experiments testing the CNN against three pathological speech

datasets; section 4.3 summarises and concludes the chapter.

4.1 Methodology

In this section, we describe the design and implementation of a CNN-based approach to

pathological speech classification. We subsequently describe our baseline classification

algorithms based on Random Forests and Support Vector Machines.

4.1.1 CNN approach to pathological speech classification

Given in Figure 4.1 are example spectrograms extracted from pathological and healthy

speech samples (in this case sustained vowels). Distortion across the pathological

speech sample is observed. By contrast, the frequency content of spectrograms from

healthy speech samples is more stable. Our goal is to test whether a CNN can detect

the distortions and instabilities in the spectrogram indicative of pathological speech.

Figure 4.1: Spectrograms of a pathological speech sample (left) and of a healthy speech
sample (right)

In this thesis, all spectrograms are calculated using Librosa [38]. The speech signals
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are first windowed (with a window length of ≈ 5.8 ms) and the Short-time Fourier

Transform (STFT) is subsequently applied to extract the frequency components of the

audio signal. The resulting image is fed to a CNN for classification.

Figure 4.2: The proposed CNN architecture

4.1.2 Baseline classification algorithms

Random forest

A random dorest (RF) is a classification algorithm consisting of a number of decision

trees and employing bagging and feature randomness [132]. A decision tree is a tree-

structured supervised learning algorithm in which the input data are analysed through

a set of if-else conditions at each node of the tree and split into sub-nodes until a leaf

node (i.e. a terminal node) is reached [133]. The objective in a random forest is to

construct a set of uncorrelated decision trees and subsequently, treat the decisions of

each as committee members’ votes. Below we briefly describe two core concepts in an

RF algorithm: bagging and feature randomness.

• Bagging (or bootstrap aggregating) is a statistical sampling technique in which

given a sample size n, a set of B bootstrap samples of size n is created by

sampling with replacement, e.g. if a sample has data points (1, 2, 3, 4, 5), then

a random bootstrap sample may be (1, 2, 2, 4, 5) or (1, 3, 3, 5, 5) [134]. Since

decision trees are sensitive to the training data, different training data results

in different decision trees. The goal of employing bagging in an RF model is to

build uncorrelated decision trees as the trees are trained on different bootstrap

samples.
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• Feature randomness In a normal standalone decision tree, when splitting a

node, every possible features are considered and the one that best separates the

data is chosen. However, in an RF model, each tree selects only a random subset

of possible features, resulting in a low correlation between trees in the RF.

Support vector machine

A support vector machine (SVM) is a classification algorithm that aims to find an

optimal plane to separate classes of data [135]. The margin is the closest distance

between the threshold and data points. The objective of an SVM model is to find an

optimal hyperplane in N dimensions where N is the number of features with maximized

margin. SVMs employ hinge loss as their loss function which is given as:

LSVM(x, y) = C
N∑
i

max(0, 1− yif(xi)) (4.1)

where C is the regularization parameter, N is the number of samples, x is the input

data and y is the data label.

Below we briefly describe three important hyperparameters in an SVM design:

• Kernel refers to the method SVMs employ to transform the input data points

to a high dimensional feature space [87]. There are four commonly used kernel

functions for SVMs: linear kernel, polynomial kernel, radial basis function (RBF)

and sigmoid. While a linear kernel is a linear transformation method, the three

latter methods are non-linear transformation methods [136].

• Regularization term C determines the size of the margin of SVMs. A large

value of C adds more penalty to the loss function if a data point is misclassified,

leading to a smaller margin. Similarly, a small value of C results in a large

margin.

• Gamma γ determines the range of points considered to compute the margin. A

large gamma leads to the margin being computed from only data points close to
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the decision boundary and conversely, a small gamma value results in the margin

being computed from points far away from the decision boundary.

In the experiment described below, we implement a grid search on kernels, the reg-

ularization term and gamma to find the optimal hyperparameters for the baseline

SVM.

4.2 Experiments and results

The proposed CNN was tested against three datasets, namely, the Saarbrucken Voice

Database (SVD) [67] the Spanish Parkinson’s disease dataset (SPDD) [72] and the

Arabic Voice Disorder Dataset (AVPD) [69,70]. We compare the classification accuracy

of the proposed CNN with that of traditional machine learning algorithms including a

Random Forest and a Support Vector Machine. Below we describe both the datasets

and the results.

4.2.1 Datasets

The Saarbrucken Voice Database (SVD) [67] is a collection of speech samples

from over 2000 people. There are three types of recordings in the dataset:

• sustained vowel sounds (/a/,/u/ and /i/) at normal, high and low pitch,

• sustained vowel sounds (/a/, /u/ and /i/) at rising-falling pitch,

• a conversational sentence in German.

In the experiment described below, we use a subset of SVD consisting of 50 patho-

logical speech samples and 53 healthy speech samples of the sustained /a/ vowel.

Multiple samples are extracted from each file.

The Spanish Parkinson’s Disease Dataset (SPDD) [72] consists of speech

samples from 50 Parkinson‘s disease patients and 50 healthy controls, 25 men and 25
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women per group. All subjects are Colombian native Spanish speakers. Several types

of speech recordings are included in the dataset:

• sustained vowels including /a/, /u/, /i/, /e/ and /o/,

• some specific words and phonemes,

• conversational speech.

As with SVD, we use the sustained vowel /a/ recordings to test our model and to

compare its performance across two independent datasets.

The Arabic Voice Disorder Dataset (AVPD) [69, 70] is a collection of 350

normal and disordered subjects (175 healthy controls and 175 subjects with voice

disorders). Three types of speech recordings are included:

• sustained vowel sounds (/a/, /u/ and /i/),

• isolated words including Arabic digits and common words,

• continuous speech.

As with SVD and SPDD, we also use sustained vowel /a/ sounds to test our CNN

approach.

For all three datasets, we choose sustained vowel sounds instead of continuous

speech to implement experiments with pathological speech classification since a) fea-

tures extracted from sustained vowel sounds are computed in a more straightforward

fashion compared with those computed from continuous speech [137] and b) sus-

tained vowel sounds are independent of individual characteristics in human speech

such as speaker dialects, speaking flow or linguistics which may affect the classifica-

tion tasks [138]. Among several sustained vowels, we choose sustained vowel /a/ for

all experiments since vowel sounds /a/ are available in almost all pathological speech

datasets and the majority of research in pathological speech classification chooses the

vowel /a/ for experiments [139]. Using the sustained vowel /a/ in our experiments
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enables us to obtain a directly comparable result with work in the field of pathologi-

cal speech classification. The ratio of healthy to pathological speech data samples is

1 : 1 and thus, we choose accuracy as our evaluation metrics through all experiments

described in Chapters 4, 5 and 6.

4.2.2 Experimental design

Spectrogram extraction

To extract spectrograms from raw speech in the dataset, we use the librosa [38] speech

processing framework. Speech in the datasets is sampled at 44.1 kHz. The analysis

windows length is 5.8 ms. The hop length is 1.4 ms. These speech processing pa-

rameters were chosen simply in order to obtain square spectrograms before feeding to

classifiers. A Short-time Fourier Transform method is computed and 128 frequency

components extracted from each window. 96 windows are analysed to give feature

matrices of shape (128, 96) which are then zero-padded to obtain (128, 128) square

matrices. Square spectrogram matrices are more convenient for use with a CNN clas-

sifier (avoiding issues with tensor sizes at intermediate values of the CNN).

Data splitting

We split the data into 80% for training and 20% for testing and apply such a split

for all models evaluated in this thesis. The classification results are reported with

accuracy evaluated on testing data.

The proposed CNN

The architecture of the CNN used in this experiment is summarised in Figure 4.2.

The input layer has shape 128× 128. The model contains three convolutional layers,

one max-pooling layer, two fully-connected layers and one output layer organised as

follows:
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• The first convolutional layer has 16 filters of size 3×3, with a same padding and

a stride of one followed by a batch normalization layer [140].

• The second convolutional layer has 32 filters of size 3× 3, with a same padding

and a stride of one followed by a batch normalization layer.

• The third convolutional layer has 64 filters of size 3 × 3, with a same padding

and a stride of one followed by a batch normalization layer.

• A max-pooling layer with a size of two and a stride of two follows the convo-

lutional layers and reduces the size of the data by a factor of two. This layer’s

output is flattened and fed into two fully-connected layers of 128 and 64 neurons

respectively.

• The final output layer is a single neuron for binary classification with a sigmoid

activation function. The total number of parameters is 1, 638, 113. We use Keras

on top of TensorFlow to build the model.

The CNN was trained using the Adam optimizer [96], the minibatch size was 32,

the number of epochs was 30. The CNN was trained on 80% of each dataset and tested

against the remaining 20% of that dataset.

Baseline algorithms

Our baseline RF model has a maximum depth decision tree of 20 and a number of trees

of 10 and is constructed using the sklearn library [141]. We choose such maximum

depth and number of trees by running a grid search to find the optimal hyperparameter

setting. It serves as a baseline against which our CNN can be compared.

For the baseline SVM, in this experiment, we set the regularization parameter to

be 10 and the gamma value to be 0.01. These parameters are also chosen based on a

grid search to find the optimal hyperparameters. We also use the sklearn library [141]

to build our SVM model.
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To employ the RF and SVM as our baseline models, we first flatten the (128, 128)

spectrograms into (16384, 1) vectors before feeding these vectors into the two models

since they only accept one-dimensional data.

4.2.3 Results

Table 4.1: Results with sustained vowel /a/ sounds as input

Approach SPDD SVD AVPD
RF 0.845 0.945 0.939

SVM 0.872 0.967 0.954
CNN 0.967 0.980 0.987

Table 4.2: Results with all vowel sounds as input

Approach SPDD SVD AVPD
RF 0.735 0.796 0.845

SVM 0.725 0.849 0.876
CNN 0.892 0.901 0.936

The performance of three models (RF, SVM and CNN) across three datasets for the

sustained vowel /a/ is summarised in Table 4.1. The results reported in this Table are

based on an evaluation on the test set. Results show that the CNN model achieves 98%

test accuracy on SVD, which is competitive with that reported by [81] (see Table 2.2).

For all three datasets, our CNN outperforms traditional machine learning algorithms

in terms of classification accuracy. The accuracy across all three models (RF, SVM

and CNN) on the test set are slightly lower than that on the training set, indicating a

slight overfitting with the models.

To further evaluate the robustness of the CNN approach, we test it against our

baseline algorithms using a combination of other sustained vowel sounds (/a/, /u/, /i/,

/e/ and /o/) as input data. The motivation behind this evaluation is that in a practical

clinical setting, recorded speech samples may contain several sustained vowels from the

same patients. We observe a drastic reduction (especially with SPDD) in classification

accuracy with the baseline algorithms (see Table 4.2). With the CNN approach,
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we also observe a decrease in achieved accuracy; however, the CNN still achieves a

reasonably high accuracy (around 90% with SPDD and SVD and 93.6% with AVPD).

While acknowledging that the baseline algorithms (RF and SVM) require less time

and energy to train, the accuracy gain due to the CNN is significant. The proposed

CNN design achieves a high accuracy and is robust across several sustained vowel

sounds while the classification accuracy achieved with baseline algorithms decreases

significantly.

4.3 Summary

In this chapter we proposed a CNN for pathological speech classification. We tested

our CNN-based approach across three commonly used pathological speech datasets:

SPDD, SVD and AVPD. We achieved high accuracy classification with this approach

and compared it with other traditional machine learning algorithms (Random Forest

and Support Vector Machine). Our CNN was shown to outperform these discriminative

algorithms in terms of classification accuracy. We subsequently tested the robustness

of the CNN approach on a combined input data where we combined several sustained

vowels to simulate a situation where multiple vowels are presented in patient data.

We observed that while the accuracies achieved with baseline models (RF and SVM)

reduced significantly, the accuracy achieved with the CNN approach also decreased

but still remained acceptable high (around 90% with SVD and SPDD and 93.6% with

AVPD). With our CNN now in place, in the next chapters we describe two generative-

based semi-supervised learning (SSL) approaches where we aim to produce similar

accuracy while relying on less labelled data.
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You may say I’m a dreamer, but I’m not the

only one. I hope someday you’ll join us. And

the world will live as one.

John Lennon

59



Chapter 5

Experiment #2:

Semi-supervised Learning with

Generative Adversarial Networks

for Pathological Speech

Classification

In this chapter, we seek to answer our second research question: Can we employ gener-

ative models (GAN and VAE) to incorporate unlabelled data into the training process

and thereby boost pathological speech classification accuracy?. A challenge in applying

machine learning algorithms to pathological speech classification (and to medical clas-

sification problems in general) is the labelled data shortage problem [27–30]. Labelled

data acquisition often entails significant human effort and time-consuming experi-

mental design. Further, for medical applications, privacy and ethical issues must be

addressed where patient data is collected and stored. While labelled data are expen-

sive and often scarce, unlabelled data are typically inexpensive and plentiful. In this

chapter, we propose a semi-supervised learning approach that employs a generative
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adversarial network to incorporate both labelled and unlabelled data into training. We

observe a promising accuracy gain with this approach compared to a baseline convolu-

tional neural network trained only on labelled pathological speech data. The content

of this chapter is published in Trinh N.H., O’Brien D. (2020) Generative Adversarial

Network-Based Semi-supervised Learning for Pathological Speech Classification. In:

Espinosa-Anke L., Mart́ın-Vide C., Spasić I. (eds) Statistical Language and Speech

Processing. SLSP 2020. Lecture Notes in Computer Science, vol 12379. Springer,

Cham. The chapter is organised as follows: section 5.1 describes the methodology

where we modify a GAN’s discriminator to fit the task of semi-supervised learning;

section 5.2 presents the experimental design and results; section 5.3 summarises our

findings and concludes the chapter.

5.1 Methodology

In this section, we describe our modifications to the traditional GAN architecture to

fit the task of semi-supervised pathological speech classification.

5.1.1 Architectural overview

The original GAN architecture [5] is illustrated in Figure 5.1a. A GAN is a generative

model taking random noise as input and seeking to generate new samples from a real

data distribution. A vanilla GAN consists of a discriminator and a generator. The

generator takes random noise as input and generates new data samples. The discrim-

inator’s objective is to discriminate between real and generated samples (provided by

the generator), classifying them as real or fake, respectively. The two networks compete

until an equilibrium is reached where the discriminator cannot reliably discriminate

between real and fake data. Let D be the discriminator and G be the generator. The

minimax game between D and G is modelled mathematically as follows:
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(a) The original GAN [5] (b) The proposed Semi-Supervised GAN

Figure 5.1: Architecture overview

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (5.1)

where Ex∼pdata(x) is the expected value over all real data samples with a data dis-

tribution pdata(x), D(x) is the probability that a real data sample is classified as real,

Ez∼pz(z) is the expected value over all noise samples with a prior noise distribution

pz(z), G(z) is the generated output from input noise z. The objective of the train-

ing process is to train D to maximize the probability of classifying generated samples

G(z) as fake and data samples x as real and to train G to convince D that generated

samples, G(z), are real. In other words, D is trained to maximize the loss function

(5.1) while G is trained to minimize (5.1).

Semi-supervised GAN

To mitigate the problem of a shortage of training data, unlabelled and labelled

data are incorporated into the training process in order to enhance the classification

decision boundary (depicted in Figure 5.2). By incorporating unlabelled data, the

semi-supervised model can shift the decision boundary to better cluster the data dis-

tribution [10]. This can be interpreted as the model attempting to first cluster the

data and subsequently, identifying the decision boundary by assuming that unlabelled

data points carry the same label as the labelled data region to which they most closely
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reside.

Figure 5.2: Data points in supervised learning with a limited amount of labelled data
(left) and in semi-supervised learning with labelled data and unlabelled data (right)
(from [10])

A GAN-based approach for semi-supervised learning (as illustrated in Figure 5.1b)

incorporates data supplied from the GAN’s generator and feeds the latter along with

labelled and unlabelled data into the discriminator. In this work, we modify the

discriminator to not only classify a data sample as real or fake (as in the original GAN

formulation) but to also classify that sample as healthy or pathological. Following a

similar method to that outlined in [37], we modify the discriminator’s architecture by

adding an additional output layer in parallel with the output layer handling real/fake

classification to classify speech data as pathological or healthy. This can be considered

as a stacking of a discriminator D (for real/fake discrimination) and a classifier C (for

healthy/pathological classification).

As shown in Figure 5.4, the weights of the two networks (D and C) are shared

across the input layer connected to the final hidden layer. Following the latter, the

output layers of D and C are separated. A detailed description of this implementation

is presented in section 5.2.2. The shared weight structure ensures that as D learns

a feature representation from the unlabelled data, D shares that representation with

C and helps C improve its feature learning compared with C being trained on only

limited labelled data.
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5.1.2 Loss functions

We train D to maximize the probability that D classifies both labelled data x and

unlabelled data x̃ as real but generated data G(z) as fake. We train C to classify the

labelled data as healthy or pathological. We train G to maximize the probability that

D will classify generated samples G(z) as real. We derive the loss functions for D, C

and G as follows:

Loss(D) = −(Ex∼pl(x)[logD(x)]+Ex̃∼pu(x̃)[logD(x̃)]+Ez∼pz(z)[log(1−D(G(z)))]) (5.2)

Loss(C) = −E(x,y)∼pl(x,y)[ylogC(x)] (5.3)

Loss(G) = Ez∼pz(z)[log(1−D(G(z)))] (5.4)

where pu(x̃) and pl(x) are the unlabelled data and labelled distributions, pz(z) is the

prior Gaussian noise distribution, Ex∼pl(x) is the expected value over all labelled data,

Ex̃∼pu(x̃) is the expected value over all unlabelled data, Ez∼pz(z) is the expected value

over all noise samples, E(x,y)∼pl(x,y) is the expected value over all labelled data points

(x, y), G(z) is the generated sample from the generator G, D is the probability that

the discriminator classifies a data sample as real and C(x) is the pathological/healthy

classification result. The minimax game equation for the proposed semi-supervised

GAN model is as follows:

min
G

max
D,C

J(G,D,C) = Ex∼pl(x)[logD(x)] + Ex̃∼pu(x̃)[logD(x̃)]

+ E(x,y)∼pl(x,y)[ylogC(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]

(5.5)
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5.2 Experiments and results

In this section, we describe our experimental design and present our results.

5.2.1 Datasets

The contents of our three datasets, SPDD, SVD and AVPD have already been de-

scribed. See section 4.2.1 for the details.

The Spanish Parkinson’s Disease Dataset (SPDD)

We use speech data extracted from the sustained /a/ vowel recordings as labelled

data and from other sustained vowel /e/, /i/, /o/ and /u/ as unlabelled data in the

experiments described below.

The Saarbrucken Voice Database (SVD)

In our work, we make use of a subset of SVD data comprising of 50 pathological

speech samples and 53 healthy speech samples from the sustained /a/ vowel as labelled

data and sustained vowels /i/ and /u/ at different pitches (normal, high and low) as

unlabelled data.

The Arabic Voice Disorder Dataset (AVPD)

Similar to SVD and SPDD, we also use sustained vowel /a/ samples as labelled

data and sustained /i/ and /u/ vowels as unlabelled data.

For all three datasets, we include both healthy and pathological samples in the la-

belled and unlabelled sets. We choose to use sustained vowels /a/ as labelled data and

other sustained vowels as unlabelled data to simulate a real-world situation in which

the unlabelled speech data may not have the same vowel type as the labelled speech

data, i.e. unlabelled and labelled data come from different distributions [142]. The

purpose of the SSL approach is to extract useful features from alternative sustained

vowels and to incorporate such features into learning a representation for sustained

/a/ vowels. An additional reason for using the sustained /a/ vowel as labelled data

is to obtain a directly comparable result with other work in the field where sustained
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/a/ vowels were also extracted for pathological speech classification [81].

5.2.2 Experimental design

Speech Spectrogram Extraction

We follow the same approach as that in section 4.2.2.

Figure 5.3: The generator

Semi-supervised GAN

The proposed semi-supervised GAN includes a stacked discriminator/classifier and

a generator as shown in Figure 5.1b. Our GAN’s architecture is inspired by that of the

DCGAN [6]. The architectures of the generator and the discriminator are presented

in Figures 5.3 and 5.4.

Figure 5.4: The stacked discriminator D and classifier C

The generator’s architecture is depicted in Figure 5.3. The design of the generator

is as follows:

• The generator’s input is a Gaussian noise vector of shape (16384, 1). The latter

is reshaped to a square vector of shape (16, 16, 64).
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• Next, three stages of upsampling are applied to increase the data dimension

from (16, 16, 64) to (128, 128, 256). Each stage includes an UpSampling layer

followed by a convolutional layer with ReLU activation and a batch normalization

layer [140].

• We finally apply a convolutional layer with a sigmoid activation function. The

output of the generator is a tensor of shape (128, 128, 1).

The discriminator’s architecture is shown in Figure 5.4. The design of the discrim-

inator is as follows:

• The input to the discriminator (the output of the generator) has shape (128, 128, 1).

• We employ successive 2D convolutional layers with filter numbers of 32, 64, 128, 256

and 512 respectively. To the output of each convolutional layer, we apply

LeakyReLU with an alpha of 0.2, a drop-out layer with a rate of 0.25 and a

batch normalization layer with a momentum of 0.8.

• The final output is flattened and a copy forwarded in two directions: to a dis-

criminator for classification as fake or real and to a second classifier for patho-

logical/healthy classification.

• For pathological speech classification, the final output layer is a single neuron

with a sigmoid activation function for binary classification.

• For real/fake discrimination, we create a custom softmax layer to output the

probability of the data being real.

Baseline CNN

To implement the baseline CNN, we reuse the GAN’s discriminator architecture.

This ensures results produced by the SSL and baseline approaches are comparable.

The baseline is trained only on labelled data.

Training configuration
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For each dataset, we train our models over 100 epochs, with a batch size of 32,

with the Adam optimizer [96] and with a learning rate of 0.00002. Across models, we

reduce the number of labelled spectrogram samples for training from 1, 000 to 800, 600,

400 and 200 and test on 800 spectrogram samples. We first randomly sample these

spectrograms from the training set and test set and subsequently, train all models

on the same set of spectrograms for each experiment to ensure that the classification

results are directly comparable. We use 20, 000 unlabelled spectrograms (without

healthy/pathological labels) as unlabelled data in the proposed SSL approach.

5.2.3 Results

In this section, we present, for visual inspection, several generated spectrograms and

report the classification accuracy obtained with the GAN-based SSL approach.

Generative results

We present, for visual inspection, in Figure 5.5 sample spectrograms produced by the

generator trained on the SPDD alongside some original spectrograms extracted from

the same dataset. Similar frequency content is observed.

Figure 5.5: Original spectrograms (left) and generated spectrograms (right) using the
proposed GAN
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Classification accuracy

Accuracies obtained across the three datasets SPDD, SVD and AVPD are presented

in Tables 5.1, 5.2 and 5.3 respectively. We compare the classification accuracy of the

proposed semi-supervised GAN approach with that of the baseline CNN. We also com-

pare the accuracy of the proposed approach against two additional classifiers previously

proposed in the literature [81, 82]. We make several observations as follows:

• We observe an accuracy gain with the GAN-based SSL approach compared to

baseline CNN models across all three datasets. The accuracy gains achieved with

only 400 and 200 labelled data samples are promising across all three datasets.

• Among the three datasets, the GAN-based SSL approach shows the highest

accuracy boost with SPDD. The specific reason requires further investigation.

• Among the baseline CNN models, the VGG16-based CNN yields the highest

accuracy. This is because the VGG16-based CNN is a very large model with

more than 138 million parameters [4].

• The GAN-based SSL trained on 600 labelled samples outperforms that trained

on 1000 labelled samples. The specific reason for this behaviour requires further

investigation.

Table 5.1: SPDD classification accuracy with the GAN-based SSL approach

Approach Number of labelled data samples
1000 800 600 400 200

CNN [82] 0.896 0.835 0.851 0.798 0.705
VGG16-based CNN [81] 0.925 0.923 0.929 0.873 0.769
Baseline CNN 0.914 0.874 0.855 0.788 0.746
Proposed GAN-based SSL 0.951 0.942 0.919 0.890 0.833

Ablation study

To isolate the contribution of unlabelled data to the classification accuracy, we removed

the latter data in an experiment using only the SPDD data to observe any drop in
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Table 5.2: SVD classification accuracy with the GAN-based SSL approach

Approach Number of labelled data samples
1000 800 600 400 200

CNN [82] 0.976 0.967 0.974 0.942 0.862
VGG16-based CNN [81] 1.00 1.00 0.993 0.984 0.946
Baseline CNN 1.00 0.998 0.985 0.973 0.939
Proposed GAN-based SSL 1.00 1.00 0.999 0.998 0.960

Table 5.3: AVPD classification accuracy with the GAN-based SSL approach

Approach Number of labelled data samples
1000 800 600 400 200

CNN [82] 0.984 0.939 0.939 0.920 0.870
VGG16-based CNN [81] 0.991 0.991 0.978 0.963 0.860
Baseline CNN 0.990 0.986 0.966 0.944 0.818
Proposed GAN-based SSL 0.991 0.998 0.993 0.971 0.889

the classification performance. We select SPDD to implement the ablation study since

experiments on SPDD show the largest classification boost, i.e. the most significant

difference in accuracy between supervised CNN models and that of the semi-supervised

GAN-based approach. The result of the ablation study is presented in Table 5.4. We

observe a significant drop in the accuracy obtained, especially when training on only

400 and 200 labelled samples and without unlabelled data. This result further validates

the positive effect on classification performance of applying semi-supervised learning

to incorporate unlabelled data.

Table 5.4: SPDD ablation study with the GAN-based SSL approach

Proposed
GAN-based SSL

Number of labelled data samples
1000 800 600 400 200

w/ unlabelled 0.951 0.942 0.919 0.890 0.833
w/o unlabelled 0.934 0.940 0.899 0.866 0.734

5.3 Summary

This chapter described a proposed GAN-based semi-supervised approach for patho-

logical speech classification tasks. Results were presented that indicate the approach

70



has the potential to mitigate the labelled data shortage problem faced by certain

applications of deep learning. A GAN was incorporated into SSL by replacing the for-

mer’s traditional binary discriminator with a multi-class discriminator that not only

classified a sample as real or fake but also categorized that sample as healthy or patho-

logical. We tested the approach against three commonly deployed pathological speech

datasets: SPDD, SVD and AVPD. Comparing the performance of our GAN-based

approach with a baseline CNN and two additional classifiers previously proposed in

the literature [81,82], we observed a promising improvement in accuracy across models

at each number of training samples when we decreased the amount of labelled training

samples from 1000 through 800, 600, 400 and 200.

Future work will evaluate the performance of alternative GAN architectures (e.g.

infoGAN [100] and marginGAN [129]) in semi-supervised pathological speech classi-

fication setting. Feature matching [37] could be explored as a means to improve dis-

criminator performance. The proposed approach has potential applications not only

in pathological speech classification but also across other audio classification tasks. In

the following chapter we explore another application of generative modelling in the

context of semi-supervised learning, namely representation learning, using a varia-

tional autoencoder and investigate whether the latter can be constructively employed

in the pathological speech classification task.
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Nobody ever figures out what life is all about,

and it doesn’t matter. Explore the world.

Nearly everything is really interesting if you

go into it deeply enough.

Professor Richard Feynman
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Chapter 6

Experiment #3:

Semi-supervised Learning with

Variational Autoencoders for

Pathological Speech Classification

In Chapter 5, we proposed a semi-supervised learning approach that employed a gen-

erative adversarial network to incorporate both unlabelled and labelled data into the

training process. In this chapter, we continue to investigate our second research ques-

tion (in this case we focus not on a GAN but on a VAE) and seek to also answer

the third research question: Which generative model (GAN or VAE) yields a better

performance boost? by testing whether another commonly used generative model –

in this case a variational autoencoder (VAE)– can outperform a GAN in our semi-

supervised setting. We first train a VAE on unlabelled data to extract useful features

(representation learning) and subsequently, train a classifier employing the pre-trained

encoder trained on labelled data with a fine-tune objective. We compare the classi-

fication accuracy of the VAE-based SSL approach with that of the GAN-based SSL

approach. Results show that though our VAE-based approach outperforms the base-
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line CNN, the classification boost due to the VAE-based approach is less than that

due to the GAN-based approach. A potential explanation for this trend is that while

the GAN-based SSL approach concurrently employs two boosting strategies: repre-

sentation learning and cluster-then-label, the VAE-based approach only incorporates

unlabelled data for representation learning. The chapter is organised as follows: in

section 6.1 we describe the VAE-based SSL approach; in section 6.2 we describe our

experimental setting including datasets, neural network design and results; section 6.3

summarizes the chapter.

6.1 Methodology

In this section, we describe how we employ a VAE in an SSL approach, describing the

architecture of the VAE, its loss function and the training process.

6.1.1 Architectural overview

Below we briefly describe the architecture of a vanilla VAE and how to employ a VAE

in a two-step SSL training process.

Original VAE

The original VAE was discussed in detail in section 3.4.2 including an overview of its

architecture and loss function. Here we briefly describe the architecture of the VAE

depicted in Figure 3.12. A vanilla VAE includes an encoder and a decoder. Unlike a

standard autoencoder, the VAE’s encoder first encodes input data into two vectors:

mean µ and standard deviation σ and subsequently, samples the latent space z by

computing z = µ+ εσ where ε is a normal distribution N (0, 1).
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Semi-supervised learning with a VAE

To mitigate the labelled training data shortage, we employ a VAE for SSL as a represen-

tation learning model from unlabelled data by first training the VAE with unlabelled

data and subsequently incorporating the VAE’s pre-trained encoder component into a

fine-tuned CNN. The fine-tuned CNN is trained on labelled data as described in Figure

6.1. Unlabelled data in the VAE approach is extracted using the same method as we

employed in our previously described GAN setting: we extract spectrograms from sus-

tained vowels /u/ and /i/ as unlabelled data to simulate a real-world situation arising

in SSL tasks where unlabelled and labelled data come from different distributions. The

goal of pre-training the VAE is to learn a feature representation from unlabelled data,

in this context, to learn features from other sustained vowel sounds. This method

of using a VAE for representation learning follows the M1 approach proposed in [36]

where a VAE was employed to extract features from unlabelled data for SSL.

Figure 6.1: VAE-based approach for semi-supervised learning
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6.1.2 Loss function

We set the loss function of the VAE as in a typical VAE:

Loss(φ, θ) = Eqθ(z|x)[logpθ(x|z)]−DKL(qφ(z|x)||pθ(z)) (6.1)

where θ and φ are the parameters of the encoder and decoder networks. The first

term in equation (6.1) is the reconstruction loss representing the difference between

input and output whereas the second term is the regularization term representing the

KL divergence between the latent space at the output of the encoder and a univariate

Gaussian distribution (see section 3.4.2 in Chapter 3 for more details).

6.2 Experiments and results

In this section, we describe the datasets used and present the design architecture

of our variational autoencoder. We discuss the experimental results and compare

the classification accuracy of the proposed VAE approach with that obtained by the

baseline CNN and the GAN-based SSL approach.

6.2.1 Datasets

For our VAE-based SSL experiments, we use the same data as for our GAN-based SSL

experiments (see section 5.2.1). For the details on the dataset contents, see section

4.2.1.

Similar to the GAN-based experiment described in Chapter 5, we also extract sus-

tained /a/ vowels as labelled data and other sustained vowels /u/ and /i/ as unlabelled

data to simulate a real-world situation arising frequently with SSL tasks where the

unlabelled data carry some useful information about the labelled data but may not be

of the same type as the labelled data, i.e unlabelled and labelled data may come from

different distributions [142]. In a pathological speech SSL task, labelled data can be
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one type of sustained vowel but unlabelled data may be in different types of sustained

vowel sounds.

6.2.2 Experimental design

Spectrogram extraction

We follow the same approach as that in section 4.2.2.

Variational autoencoder

For this experiment, we designed and implemented a VAE with the architecture shown

in Figures 6.2, 6.3 and 6.4. Our proposed VAE includes three main components: an

encoder (see Figure 6.2), a sampling layer and a decoder (see Figure 6.3).

The encoder design is depicted in Figure 6.2 and is organised as follows:

• The input to the encoder is a spectrogram of shape (128, 128, 1). We employ

four successive 2D convolutional layers with filter numbers of 32, 64, 64 and 64

respectively.

• To the output of each convolutional layer, we apply ReLU activation, a batch

normalization layer and a two-by-two max-pooling layer. The output after four

convolution stages has shape (8, 8, 64).

• We flatten this output to shape (4092, 1) and apply a fully-connected network

of 512 neurons followed by a drop-out layer with a rate of 0.3.

• The output of the encoder (the latent lower dimensional feature representation)

is a vector of shape (512, 1).

The decoder design is depicted in Figure 6.3 and is as follows:

• The input to the decoder has shape (512, 1). We employ a fully-connected layer

with 256 neurons and reshape the output of this layer to obtain a tensor with

shape (16, 16, 1).

77



• We employ three up-sampling layers to successively double the size of the tensor

from 16 × 16 to 32 × 32, to 64 × 64 to 128 × 128. To the output of each up-

sampling layer, we apply a convolutional layer, a ReLU activation and batch

normalization layer.

• We finally employ a convolutional layer followed by a sigmoid activation to reduce

the channel size from 256 to 1. The output of the decoder is of shape (128, 128, 1).

The high-level architecture of the overall VAE is depicted in Figure 6.4. After the

encoder compresses input data from shape (128, 128, 1) to a vector of shape (512, 1),

the output of the encoder is fed into the sampling layer by separating into two fully-

connected layers to produce two vectors µ and σ. An ε vector is then sampled from

a univariate Gaussian distribution. The output of the sampling layer is calculated as

z = µ + σε. In the literature, this is referred to as ”the reparameterization trick”

where the goal is to make the VAE’s sampling layer differentiable for gradient-based

optimization [9]. The output z also has shape (512, 1) and is fed into the decoder to

generate new spectrograms.

Figure 6.2: Architecture of the encoder

Figure 6.3: Architecture of the decoder

Fine-tuned CNN with the pre-trained encoder

After pre-training the VAE, we incorporate the pre-trained encoder into a fine-tuned

CNN. The architecture of the fine-tuned CNN is depicted in Figure 6.5. The output of
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Figure 6.4: Variational autoencoder for spectrogram generation

the pre-trained encoder is fed into two fully-connected layers of sizes ten and one. The

ten-neuron layer is added before the final output layer to reduce overfitting instead of

connecting all 512 neurons to just one neuron at the output layer. The output layer

is a sigmoid activation function with an output probability that a speech sample is

pathological.

Figure 6.5: Architecture of the fine-tuned CNN with the pre-trained encoder

Baseline CNN

For the baseline, we employ a CNN with the same architecture (as depicted in Figure

6.6) as that of the fine-tuned CNN; however, we do not incorporate the pre-trained en-

coder into the baseline CNN. Instead, we employ random initialization for the baseline

CNN and subsequently train this CNN only on labelled data. Notice that we allow

the training to update the randomly initialized encoder.
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Figure 6.6: Architecture of the baseline CNN without the pre-trained encoder

Training configuration

We first train the VAE with unlabelled spectrogram data extracted from sustained

vowel speech samples /u/ and /i/ at different pitches in 20 epochs with 20, 000 unla-

belled data points. We then incorporate the pre-trained encoder into the supervised

CNN and train this CNN on labelled data extracted from sustained /a/ speech samples

in 100 epochs. For the baseline CNN, we train only on labelled data in 100 epochs.

In all training processes, we employ the Adam optimizer [96] with a learning rate of

0.00002. Across experiments, we reduce the number of labelled spectrogram samples

for training from 1, 000 to 800, 600, 400 and 200 and test on 800 spectrogram samples.

The ratio of healthy to pathological speech data points is 1 : 1.

6.2.3 Results

Below we present several generated spectrograms for visual inspection and the classi-

fication accuracy obtained with the VAE-based SSL approach.

Generative results

We present in Figure 6.7, for visual inspection, several sample spectrograms gener-

ated using the VAE-based approach. We observe similar frequency content across

the randomly sampled spectrograms; however, blurriness can be observed in these

spectrograms compared to those produced by the generator in the GAN-based SSL

experiment described in Chapter 5 (see Figure 5.5). This blurriness is expected as

the lack of definition stems from their attempt to regularize a Gaussian distribution

encoding the latent space. As a result, many data points in the training data can

have the same encoding z in the latent space [143,144], leading to blurriness in images
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generated by VAEs [5].

Figure 6.7: Original spectrograms (left) and generated spectrograms (right) using the
proposed VAE

Classification results

We present in Tables 6.1, 6.2 and 6.3 the classification accuracy results with SPDD,

SVD and AVPD using the VAE-based SSL approach. We make several observations

as follows:

• Classification results across three pathological speech datasets show that the

VAE-based SSL outperforms the baseline CNN, especially when the number of

labelled data samples reduces to 400 and 200. With 200 labelled data samples

of SPDD, while the baseline CNN only achieves 70.7% accuracy, the VAE-based

approach still achieves 78.2% accuracy. This implies that the VAE-based ap-

proach can boost the classification accuracy by learning a feature representation

from unlabelled data.

• With SPDD, the performance of the VAE-based approach is comparable with
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that of the VGG16-based CNN. With SVD and AVPD, the VGG16-based CNN

outperforms the VAE-based approach. This may be due to the fact that the

VGG16-based CNN is a very large model with more than 138 million param-

eters [4] while the number of parameters in the proposed VAE is 8.24 million

parameters.

• The GAN-based SSL approach outperforms the VAE-based SSL approach. A

potential explanation for this trend is that the GAN-based SSL approach com-

bines two SSL boosting strategies: representation learning and cluster-then-label

strategies when feeding the unlabelled data points to the stacking discriminator

(see Section 5.1 for more details) whereas the VAE-based SSL approach only

boosts the classification performance by learning a feature representation from

the unlabelled data.

• Among the three datasets, the VAE-based and GAN-based SSL approaches show

the highest classification boost on SPDD. The specific reason requires further

investigation.

Table 6.1: SPDD classification accuracy with the VAE-based SSL approach

Approach Number of labelled data samples
1000 800 600 400 200

CNN [82] 0.896 0.835 0.851 0.798 0.705
VGG16-based CNN [81] 0.925 0.923 0.929 0.873 0.769
Baseline CNN 0.890 0.854 0.851 0.792 0.707
Proposed GAN-based SSL 0.951 0.942 0.919 0.890 0.833
Proposed VAE-based SSL 0.931 0.938 0.894 0.814 0.782

Ablation study

We study the improvements attributable to the use of unlabelled data by removing

the latter when training the VAE. Here we pre-train the VAE only with labelled

data for initializing a set of parameters for the VAE. Thus, the VAE learns features

from a limited number of /a/ samples rather than learning from a mix of sustained
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Table 6.2: SVD classification accuracy with the VAE-based SSL approach

Approach Number of labelled data samples
1000 800 600 400 200

CNN [82] 0.976 0.967 0.974 0.942 0.862
VGG16-based CNN [81] 1.00 1.00 0.993 0.984 0.946
Baseline CNN 0.995 0.996 0.965 0.956 0.910
Proposed GAN-based SSL 1.00 1.00 0.999 0.998 0.960
Proposed VAE-based SSL 0.998 0.995 0.989 0.985 0.910

Table 6.3: AVPD classification accuracy with the VAE-based SSL approach

Approach Number of labelled data samples
1000 800 600 400 200

CNN [82] 0.984 0.939 0.939 0.920 0.870
VGG16-based CNN [81] 0.991 0.991 0.978 0.963 0.860
Baseline CNN 0.979 0.954 0.944 0.924 0.778
Proposed GAN-based SSL 0.991 0.998 0.993 0.971 0.889
Proposed VAE-based SSL 0.995 0.990 0.948 0.943 0.842

vowels. The ablation study results are presented in Table 6.4. We observe a decrease

in performance when removing unlabelled data from the VAE training. This result

further validates the positive effect of unlabelled data on improving the classification

performance of the fine-tuned CNN.

Table 6.4: SPDD ablation study with the VAE-based SSL approach

Proposed
VAE-based SSL

Number of labelled data samples
1000 800 600 400 200

w/ unlabelled 0.931 0.938 0.894 0.846 0.782
w/o unlabelled 0.911 0.894 0.875 0.824 0.762

6.3 Summary

In this chapter, we proposed a VAE-based SSL approach in which we employed unla-

belled data in VAE training. The latter’s pre-trained encoder was incorporated into

the training of a fine-tuned CNN on labelled data. We compared the performance of

the VAE-based SSL approach with that of a baseline CNN. We observed an accuracy

gain with the VAE-based SSL approach across all three pathological speech datasets.
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However, the classification accuracy of the VAE-based SSL approach was lower than

that of the GAN-based SSL approach. This can be explained as the GAN-based SSL

approach combines and leverages two boosting strategies: representation learning and

cluster-then-label when feeding the unlabelled data points to the stacking discrimina-

tor. By contrast, the VAE-based SSL approach boosts the classification performance

by learning a feature representation only from the unlabelled data. To isolate the

classification gain due to unlabelled data, in an additional experiment, we used only

limited labelled data for the VAE training. We observed a corresponding decrease in

performance.

Future work will explore alternative recently proposed VAE architectures (e.g. β-

VAE [145], infinite VAE [146] or Coupled VAE [147]). Other improvements could be

achieved by altering the VAE architecture, e.g. the size of latent space z and the

design of the encoder and decoder.
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As a technologist, I see how AI and the fourth

industrial revolution will impact every aspect

of people’s lives.

Professor Fei-Fei Li
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Chapter 7

Conclusion

This chapter concludes the thesis by highlighting our contributions, noting any lim-

itations of the work and suggesting areas for future investigation. The chapter is

organised as follows: section 7.1 reviews the thesis; section 7.2 notes several limita-

tions and corresponding future work; section 7.3 provides a final remark.

7.1 Review

We first review, in Chapter 2, related work in pathological speech classification. A

challenge in pathological speech classification (and a general problem for clinical ap-

plications of deep learning) is the data shortage problem due to the significant human

effort required to acquire and label patient speech data. Speech data collection also

raises privacy and ethical issues. In Chapter 3 we provided the background material

in deep learning that underpins the experiments presented in subsequent chapters.

The background material included an overview of deep neural networks, convolutional

neural networks, generative adversarial networks and variational autoencoders.

Chapters 4-6 dealt with our research questions. In Chapter 4 we described our

implementation of a convolutional neural network for pathological speech classification

trained only on labelled data. To mitigate the data shortage problem, we presented

in Chapter 5 our design and implementation of a semi-supervised learning approach
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based on a generative adversarial network. In Chapter 6, we describe an alternative

SSL approach based on a variational autoencoder.

7.1.1 Research questions

Research question 1: Can deep neural networks outperform traditional machine

learning algorithms in pathological speech classification?

In Chapter 4, we described an experiment using a CNN for pathological speech

classification across three commonly used datasets: the Spanish Parkinson Disease

Datasets (SPDD), the Saarbrucken Voice Database (SVD) and the Arabic Voice Patho-

logical Database (AVPD). We compared the performance of the CNN with that of an

RF and SVM. We observed high accuracy across all three datasets with the proposed

CNN (see Table 4.1). We conclude that the CNN outperforms traditional machine

learning algorithms in terms of classification accuracy across single and mixed vowels.

Using the proposed CNN approach, we achieved an SVD accuracy comparable the

state-of-the-art work reported in [81].

Research question 2: Can we employ generative models (GAN and VAE) to in-

corporate unlabelled data into the training process and thereby boost pathological speech

classification accuracy?

To answer research question 2, we implemented two SSL approaches using two

commonly used generative models, the GAN and VAE, to incorporate unlabelled data

into the training process with the goal of boosting classification accuracy.

We described our GAN-based SSL approach in Chapter 5. To incorporate unla-

belled data using a GAN, we modified the discriminator by stacking the classifier for

healthy/pathological classification and the discriminator for real/fake classification.

The purpose of this modification was to share weights between the discriminator and

the classifier such that the feature representation learned by the discriminator from

unlabelled data is shared with the classifier trained only on limited labelled data.

With this approach, we achieved an accuracy gain compared to the supervised CNN
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approach trained only on labelled data (see Tables 5.1, 5.2 and 5.3). We also imple-

mented an ablation study to quantify the contribution of unlabelled data by removing

it when training the proposed GAN. We observed a drop in performance when train-

ing without unlabelled data (see Table 5.4). This highlights the positive effect on

classification accuracy of incorporating unlabelled data into the training process.

We described our VAE-based SSL approach in Chapter 6. We incorporated un-

labelled data by first training a traditional VAE with unlabelled data with a loss

function including a reconstruction loss and a regularization loss. We subsequently

incorporated the pre-trained encoder into a supervised CNN trained on labelled data.

We also observed an accuracy gain with the proposed VAE-based approach compared

to the baseline CNN trained only on labelled data (see Tables 6.1, 6.2 and 6.3). Again,

we implemented an ablation study in which we removed unlabelled data from the VAE

pre-training process. We observed a drop in performance in this study (see Table 6.4)

demonstrating that unlabelled data contributed to the improvement in classification

accuracy.

Research question 3: Which generative model (GAN or VAE) yields a better

performance boost?

We compared the performance of the GAN-based SSL and the VAE-based SSL

approaches (see Tables 6.1, 6.2 and 6.3) in terms of classification accuracy. The GAN-

based SSL approach outperformed the VAE-based approach. A potential explanation

for this better performance is that the GAN in an SSL setting combines and lever-

ages two boosting strategies: representation learning and cluster-then-label while the

VAE-based approach boosts the classification accuracy by learning only a feature rep-

resentation from unlabelled data.

7.1.2 Contributions

Our contributions are as follows:

• In Chapter 2 we presented a literature review of previous work in pathological
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speech classification that identified key papers and databases useful for those

working in the field.

• In Chapter 4 we proposed a CNN architecture and trained it on labelled data

for pathological speech classification. This proposed CNN outperformed the

traditional machine learning algorithms (Random Forest and Support Vector

Machine) in terms of classification accuracy across all three datasets.

• In Chapter 5 we proposed, designed and implemented a GAN-based SSL ap-

proach for pathological speech classification. To incorporate unlabelled data

into the training, we stacked the discriminator and the classifier with the goal

of parameter sharing, i.e. when the discriminator learns a feature representation

from unlabelled data, it also shares these learned features with the classifier. Our

experimental results demonstrated the proposed approach reduces dependency

on labelled data while maintaining high accuracy.

• In Chapter 6 we proposed, designed and implemented a VAE-based SSL approach

for pathological speech classification by first training a VAE with unlabelled

data and then incorporating the pre-trained encoder into a fine-tuned CNN.

Our experimental results demonstrated a corresponding performance boost. We

compared the performance of the GAN-based approach with that of the VAE-

based approach

7.2 Limitations and future work

We present below four limitations in this work and describe how they might be ad-

dressed in future work.

• Limitation 1: We only employ vanilla GAN and VAE architectures. Fu-

ture work will experiment with alternative GAN (e.g. info GAN [100] and

marginGAN [129]) and VAE (e.g. β-VAE [145], infinite VAE [146] or Coupled
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VAE [147]) designs. Other neural network architectures for the encoder and the

decoder in the VAE and for the discriminator and the generator in the GAN

could be examined to find the most appropriate architectures for the proposed

approaches. Hyperparameter tuning using grid search could also be applied to

find the best hyperparameters for each model.

• Limitation 2: Another limitation is a lack of data visualisation to provide an in-

tuitive explanation of how the proposed SSL approaches improve the overall clas-

sification performance. Data visualisation will better explain how the proposed

approaches improved the classification accuracy. Visualisation methods can be

implemented using dimensionality reduction techniques, e.g t-Stochastic Neigh-

boring Embedding (t-SNE) [148] and Principal Component Analysis (PCA) [87].

Visualising the activations of neurons in hidden layers [149–152] will also provide

a better understanding of how the neural networks learn a feature representation

from both unlabelled data and labelled data.

• Limitation 3: Due to limited time and computing resources, we used the ran-

dom train/test split approach, i.e. we trained on 80% of the dataset and tested

against the remaining 20%. Future work will use k-fold cross-validation method

by dividing the data into k folds, training on the first k− 1 folds and validating

on the kth fold.

• Limitation 4: Alternative speech processing parameters for spectrogram cal-

culation are worth investigation (e.g. window length, window type, step size,

sampling rate (22kHz/16kHz/8kHz)) in order to measure their effect on classi-

fication performance. It would be interesting to explore feature representations

apart from the spectrogram. A host of alternative features have been proposed in

the literature incorporating MFCCs, glottal features, voicing, harmonic-to-noise

ratios, etc.

90



7.3 Final remarks

In medical applications the lack of labelled data imposes a major challenge on early dis-

ease diagnosis and classification. In this work we demonstrated that semi-supervised

learning approaches using generative models have the potential to alleviate this prob-

lem at least for pathological speech classification. We believe however that the ap-

proach has potential application beyond pathological speech classification in the audio

classification and medical fields.
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variational autoencoder. arXiv preprint arXiv:1703.01925, 2017.

[113] Dhruv Khattar, Jaipal Singh Goud, Manish Gupta, and Vasudeva Varma. Mvae:

Multimodal variational autoencoder for fake news detection. In The World Wide

Web Conference, pages 2915–2921, 2019.

105



[114] Xiaopeng Li and James She. Collaborative variational autoencoder for recom-

mender systems. In Proceedings of the 23rd ACM SIGKDD international con-

ference on knowledge discovery and data mining, pages 305–314, 2017.

[115] Geoffrey E Hinton, Terrence Joseph Sejnowski, Tomaso A Poggio, et al. Unsu-

pervised learning: foundations of neural computation. MIT press, 1999.

[116] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised

learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on

Neural Networks, 20(3):542–542, 2009.

[117] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy mini-

mization. In Advances in neural information processing systems, pages 529–536,

2005.

[118] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning

method for deep neural networks. In Workshop on challenges in representation

learning, ICML, volume 3, 2013.

[119] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with

noisy student improves imagenet classification. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 10687–10698,

2020.

[120] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning.

arXiv preprint arXiv:1610.02242, 2016.

[121] Antti Tarvainen and Harri Valpola. Mean teachers are better role models:

Weight-averaged consistency targets improve semi-supervised deep learning re-

sults. In Advances in neural information processing systems, pages 1195–1204,

2017.

106



[122] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual ad-

versarial training: a regularization method for supervised and semi-supervised

learning. IEEE transactions on pattern analysis and machine intelligence,

41(8):1979–1993, 2018.

[123] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[124] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christo-

pher D Manning. Semi-supervised recursive autoencoders for predicting senti-

ment distributions. In Proceedings of the 2011 conference on empirical methods

in natural language processing, pages 151–161, 2011.

[125] Shuangfei Zhai and Zhongfei Zhang. Semisupervised autoencoder for sentiment

analysis. arXiv preprint arXiv:1512.04466, 2015.

[126] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with cate-

gorical generative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[127] Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher. Semi-supervised learn-

ing with gans: Manifold invariance with improved inference. In Advances in

Neural Information Processing Systems, pages 5534–5544, 2017.

[128] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Russ R Salakhut-

dinov. Good semi-supervised learning that requires a bad gan. In Advances in

neural information processing systems, pages 6510–6520, 2017.

[129] Jinhao Dong and Tong Lin. Margingan: Adversarial training in semi-supervised

learning. In Advances in Neural Information Processing Systems, pages 10440–

10449, 2019.

[130] Jun Deng, Nicholas Cummins, Maximilian Schmitt, Kun Qian, Fabien Ringeval,

and Björn Schuller. Speech-based diagnosis of autism spectrum condition by

107



generative adversarial network representations. In Proceedings of the 2017 In-

ternational Conference on Digital Health, pages 53–57. ACM, 2017.

[131] Nam Trinh and Darragh O’Brien. Semi-supervised learning with generative

adversarial networks for pathological speech classification. In 31st Irish Signals

and Systems Conference (ISSC2020), Letterkenny, Ireland (Virtual), June 2020.

[132] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international con-

ference on document analysis and recognition, volume 1, pages 278–282. IEEE,

1995.

[133] Mark A Friedl and Carla E Brodley. Decision tree classification of land cover

from remotely sensed data. Remote sensing of environment, 61(3):399–409, 1997.

[134] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An in-

troduction to statistical learning, volume 112. Springer, 2013.

[135] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-

ing, 20(3):273–297, 1995.

[136] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to

support vector classification, 2003.

[137] Thomas Murry and E Thomas Doherty. Selected acoustic characteristics of

pathologic and normal speakers. Journal of Speech, Language, and Hearing

Research, 23(2):361–369, 1980.

[138] Vijay Parsa and Donald G Jamieson. Acoustic discrimination of pathological

voice. Journal of Speech, Language, and Hearing Research, 2001.

[139] Mazin Abed Mohammed, Karrar Hameed Abdulkareem, Salama A Mostafa,

Mohd Khanapi Abd Ghani, Mashael S Maashi, Begonya Garcia-Zapirain, Ibon

108



Oleagordia, Hosam Alhakami, and Fahad Taha AL-Dhief. Voice pathology de-

tection and classification using convolutional neural network model. Applied

Sciences, 10(11):3723, 2020.

[140] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.
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