
Central Washington University
ScholarWorks@CWU
All Faculty Scholarship for the College of the
Sciences College of the Sciences

8-2010

Slip Distribution of the 1952 Kamchatka Great
Earthquake Based on Near-Field Tsunami Deposits
and Historical Records
Breanyn MacInnes
University of Washington - Seattle Campus, macinnes@geology.cwu.edu

Robert Weiss
Texas A & M University - College Station

Joanne Bourgeois
University of Washington - Seattle Campus

Tatiana K. Pinegina
Institute of Volcanology and Seismology, Russia

Follow this and additional works at: http://digitalcommons.cwu.edu/cotsfac

Part of the Environmental Indicators and Impact Assessment Commons, Geophysics and
Seismology Commons, and the Tectonics and Structure Commons

This Article is brought to you for free and open access by the College of the Sciences at ScholarWorks@CWU. It has been accepted for inclusion in All
Faculty Scholarship for the College of the Sciences by an authorized administrator of ScholarWorks@CWU.

Recommended Citation
MacInnes, B.T., Weiss, R., Bourgeois, J., & Pinegina, T.K. (2010). Slip distribution of the 1952 Kamchatka Great Earthquake based on
near-field tsunami deposits and historical records. Bulletin of the Seismological Society of America, 100(4), 1695–1709. DOI: 10.1785/
0120090376

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks at Central Washington University

https://core.ac.uk/display/51140589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.cwu.edu?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cwu.edu/cots?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1015?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/164?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


THE SEISMOLOGICAL SOCIETY OF AMERICA
400 Evelyn Ave., Suite 201

Albany, CA 94706-1375
(510) 525-5474; FAX (510) 525-7204

www.seismosoc.org

Bulletin of the Seismological Society of America

This copy is for distribution only by
the authors of the article and their institutions

in accordance with the Open Access Policy of the
Seismological Society of America.

For more information see the publications section
of the SSA website at www.seismosoc.org



Ⓔ

Slip Distribution of the 1952 Kamchatka Great Earthquake Based

on Near-Field Tsunami Deposits and Historical Records

by Breanyn T. MacInnes, Robert Weiss, Joanne Bourgeois, and Tatiana K. Pinegina

Abstract We explore the magnitude and slip distribution of the 1952 Kamchatka
earthquake (Mw 8.8–9.0) using constraints from the 1952 Kamchatka tsunami. Our
new field data provide more comprehensive coverage of the near-field tsunami than
had been available to date. We examine the effects of internal slip distribution within
complex earthquake ruptures on near-field tsunami runup and evaluate some of the
limitations of this approach. Our approach compares tsunami-deposit distribution with
simulated runup from tsunamis generated by different configurations of seafloor
deformation from hypothetical earthquakes resembling that of the 1952 Kamchatka
earthquake. We identify areas of high slip because different distributions of seafloor
deformation result in variations in tsunami runup in the near field. Mapped deposits
and local observations of the 1952 Kamchatka tsunami indicate that near-field runup
in central Kamchatka was consistently less than 10 m (averaging 6 m), while south
Kamchatka to the northern Kuril Islands had more variability and higher average
runup (8 m runup in South Kamchatka and 10 m runup in the northern Kuril Islands).
Our simulations show that in order to produce the distribution of runup indicated by
tsunami deposits and historical observations, the 1952 earthquake had regions of high
slip off the coast of southern Kamchatka, and the location of high slip is shallower in
the subduction zone than previously interpreted.

Online Material: Sedimentary methodology, model inputs, and simulation results.

Introduction and Background

In this paper, we show how tsunami-deposit distribution
can help determine earthquake magnitude and slip distribu-
tion for the specific case of the great 1952 Kamchatka earth-
quake (Mw 8.8–9.0). This earthquake occurred in a sparsely
populated, largely restricted area and before widespread
modern instrumentation, so, although this earthquake remains
one of the largest instrumentally recorded, the specifics of its
magnitude and slip distribution remain imprecise. Our field
study of tsunami deposits associated with this event has more
than doubled the number of accurately located observations in
the near field (the coastal zone parallel to the zone of rupture).
With this denser array of data, we examine models for slip
distribution of the 1952 Kamchatka earthquake.

Unraveling the details of earthquakes and tsunamis
requires a dense array of data or very sensitive recorders,
so even relatively recent, remote events can be difficult to
reconstruct. Records of modern and historical tsunamis from
buoys deployed in the deep sea and tide gauges have been
used to investigate earthquake rupture characteristics (John-
son and Satake, 1999; Hirata et al., 2003; Ichinose et al.,
2007; Borrero et al., 2009; Hébert et al., 2009). However,
similar records of tsunami waveforms do not exist for paleo-

events or for large historical tsunamis in their near field,
where the tsunami or earthquake destroys most instrumenta-
tion. Records of prehistoric and sans-instrumental earth-
quakes are primarily limited to evidence for strong
shaking, such as liquefaction structures (Obermeier, 2005),
evidence for rupture and abrupt land-level change (Satake
and Atwater, 2007; McCalpin, 2009), and preserved tsunami
deposits (Bourgeois, 2009). Of these forms of geologic
evidence, our work focuses on tsunami deposits.

Tsunamis link directly to the earthquakes that generated
them and reflect details of earthquake characteristics (Okal,
2009). While secondary processes, such as submarine slump-
ing, splay faulting, etc., can enhance tsunamis, recent studies
have shown that tsunami runup in the near field is sensitive to
earthquake slip distribution and other source characteristics
(Geist 2002; Hirata et al. 2003; Okal and Synolakis, 2004;
Satake et al., 2008; Borrero et al., 2009). Thus, by studying
tsunami records, we can learn more about historical earth-
quakes, as well as about prehistoric earthquakes (Martin
et al., 2008; Satake et al., 2008). Such records include cat-
alogs of tsunami height, survey maps of tsunami inundation,
and the distribution of tsunami deposits.
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The extent of a tsunami deposit is a proxy for minimum
tsunami inundation (horizontal distance of tsunami penetra-
tion measured landward from the shoreline) and runup (ele-
vation above mean sea level, MSL, at inundation). Therefore,
deposit distribution along a coastline can record spatial var-
iations in a tsunami’s form. This distribution can inform us
about rupture characteristics of an earthquake when we use
standard forward modeling techniques (Liu, 2009; Imamura,
2009) to propagate tsunamis from an initial seafloor distur-
bance and then compare the simulated runup distribution to
observed sediment distribution.

Examining cases that have some historical and instru-
mental records, like the 1952 Kamchatka earthquake and
tsunami pair, not only can elucidate the earthquake itself
but also helps paleoseismologists address basic goals of
paleoseismology, which include identification of recurrence
intervals, magnitudes, and source characteristics of paleotsu-
namis and paleoearthquakes. Because we have more than
doubled the existing records for 1952 Kamchatka and other
historical tsunamis in the Russian Far East with our studies of
tsunami deposits, this location can help bridge the boundary
between seismology and paleoseismology with respect to the
use of tsunami geology. Our goal is to test a technique that
eventually can be applied to paleoevents—those without
direct record of an earthquake.

Factors in Local Tsunami-Amplitude Variations

For any given seismic moment, near-field tsunamis can
be significantly influenced by depth of rupture and amount
and distribution of slip (Geist and Dmowska, 1999; Geist,
2002; Satake et al., 2008;Okal, 2009). Heterogeneous rupture
patterns are expected for all earthquakes but are more notice-
able in large events (as in Johnson and Satake, 1997; Ishii
et al., 2005). In a test case, Geist (2002) calculates a factor-
of-three variation in peak tsunami amplitudes in the near field
due to differences in earthquake slip distributions for theoret-
ical Mw 8.1 earthquakes along the coast of Mexico. He con-
cludes that, other than seismic moment, the most important
determinants of tsunami waveforms are (1) high slip and
low shear modulus along the shallowest sections of the sub-
duction zone, (2) variations in water depth in the rupture area,
and (3) heterogeneous slip distribution reflecting both depth
and along-strike variations of the rupture. The first parameter
is responsible for a tsunami earthquake (Kanamori, 1972;
Pelayo andWiens, 1992; Satake and Tanioka, 1999). The sec-
ond parameter, local bathymetry, causes variations or pertur-
bations in the initial waveform and propagation of the tsunami
wave (Liu, 2009). Heterogeneities in depth (slip variations
down dip) affect the vertical displacement field and generate
different initial wave profiles than homogeneous ruptures
(Tadepalli and Synolakis, 1996).Variations in slip along strike
also result in spatial amplitude changes along the wavefront
(Geist and Dmowska, 1999).

1952 Kamchatka Earthquake and Tsunami

The 1952 Kamchatka great earthquake (Fig. 1) began at
16:58:22 Greenwich mean time on 4 November and is
considered the fourth largest historical event, after 1960
Chile, 1964 Alaska, and 2004 Sumatra–Andaman earth-
quakes (Brune and Engen, 1969; Kanamori, 1976; Okal,
1992; Lay et al., 2005). Its seismological characteristics have
been relatively well studied (compare Hutchinson, 1954;
Hodgson, 1956; Brune and Engen, 1969, Kelleher and
Savino, 1975; Kanamori, 1976; Johnson and Satake, 1999).
These studies constrain the earthquake’s rupture location and
magnitude, but, because of data and technology limits in
1952, the error range is large by today’s standards.

The tsunami following the 1952 Kamchatka earthquake
had measurable runup around the world and was particularly
damaging in the near field, destroying many of the villages
and towns along the Pacific coastlines of southern Kamchat-
ka and the northern Kuril Islands (Soloviev and Go, 1984;
Zayakin and Luchinina, 1987; Kaistrenko and Sedaeva,
2001; Nikonov, 2006). Existing catalogs have about 300
far-field data points and 30 near-field data points (see Data
and Resources section). Local observations were limited due
to a dispersed population; and, because the earthquake and
tsunami occurred at the height of the Cold War, direct obser-
vations and human experiences from Kamchatka and the
Kurils of the earthquake and tsunami only recently are be-
coming available to the rest of the world (Kaistrenko and
Sedaeva, 2001; Nikonov, 2006).

The generally accepted rupture area of the 1952 earth-
quake (Fig. 1) is approximately 700 km long, from northern
Onekotan Island (49° N) to Shipunskii Cape (52.5° N), and is
150–200 km wide. A cluster of foreshocks (Fig. 2) in the two
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Figure 1. Tectonic setting and the inferred rupture areas of
tsunamigenic subduction-zone earthquakes (locations after Fedotov
et al., 1982, 1999). The star represents the 1952 epicenter. The rup-
ture zones and epicenters for two events in the eighteenth century
(1737 and 1792) are unknown.Refer to Table 2 formore information.
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years before the earthquake occurred near both the epicenter
and the southern end of the rupture zone (Kelleher and
Savino, 1975; Balakina, 1992). Aftershocks within one
month of the earthquake (Fig. 2) have been used to define
the northern limit of the rupture (Ben-Menahem and Toksöz,
1963; Kelleher and Savino, 1975; Fedotov et al., 1982).
Earlier studies proposed a rupture area 1000 km by 250 km
(Bath and Benioff, 1957), but the larger area is considered to
include earthquakes that are not aftershocks (Ben-Menahem
and Toksöz, 1963). Slip direction appears to have been
roughly perpendicular to the subduction zone (Kanamori,
1976).

The amount and distribution of slip and the total seismic
moment are less certain than the location; original studies
considered the earthquake to have ∼5 m of homogeneous
slip over the entire area (e.g., Kanamori, 1976). There are
relatively few records of the earthquake from global seismic
stations, some of questionable quality (Kanamori, 1976).
Even different analyses based on the same records (e.g.,
Kanamori, 1976; Okal, 1992) have yielded somewhat differ-
ent earthquake magnitudes. Published estimates of seismic
moment range from 180 × 1020 to 350 × 1020 Nm, corre-
sponding to a moment magnitude between Mw 8.84 and
Mw 9.03 (Johnson and Satake, 1999).

Using a different approach, Johnson and Satake (1999)
calculated heterogeneous slip on possible 100 × 100 km
segments of the 1952 rupture zone by inverting tide-gauge

records of tsunami waves in the far field. They proposed
a varying slip of up to 11.4 m, with high coseismic slip pre-
dicted to have occurred only in sections of the subduction
zone deeper than about 20 km (Fig 2). Earlier studies of
1952 seismic records similarly suggested a deeper-than-
average subduction-zone event: up to 40 km (Hutchinson,
1954) or even 60–80 km (Ben-Menahem and Toksöz, 1963).
Johnson and Satake (1999) suggest that such deep slip would
make the 1952 earthquake anomalous for tsunamigenic sub-
duction-zone earthquakes in that the largest amount of slip
did not occur near the trench.

Additional evidence that the 1952 Kamchatka rupture
was heterogeneous comes from recent Global Positioning
System (GPS) analysis of asperity distribution. Bürgmann
et al. (2005) used recent GPS measurements and the analyses
of Johnson and Satake (1999) to identify two or three poten-
tially persistently locked regions in the Kuril–Kamchatka
subduction zone that correspond to regions of slip ≥5 m cal-
culated by Johnson and Satake (1999). Also, Johnson and
Satake’s areas with the highest proposed slip (≥10 m) have
a notably low count of aftershocks from 1952 (Fig. 2),
supporting the idea that these regions relocked immediately
after rupture.

Field Observations: Historical Records and Deposits
of the 1952 Kamchatka Tsunami

We reconstructed the 1952 Kamchatka tsunami in the
near field on the basis of two kinds of information: historical
observations (recorded in catalogs and other publications or
papers) and tsunami deposits. Hereafter, we refer to the com-
bination of historical records and sediment data collectively
as field observations. For each field observation, we deter-
mine an estimate of inundation and runup, which we com-
pare to simulations of the 1952 tsunami.

Historical Runup and Inundation Data for the 1952
Kamchatka Tsunami in the Near Field

From published records, we used nine observations
(Table 1) with known latitudes and longitudes from the His-
torical Tsunami Database for the World Ocean (HTDBWLD
database; see Data and Resources section), which compiles
prior catalog data. Observations in the HTDBWLD database
are not necessarily measurements of tsunami runup; most
likely the wave height was measured near a settlement or
military outpost. These data also do not include inundation
distances, which we calculated from latitude and longitude of
the observation point and the adjacent shore. We used an
additional eight locations (Table 1) from a post-tsunami
survey conducted by members of the Second Navy Hydro-
graphic Expedition, who mapped tsunami inundation in
1953 (Kaistrenko and Sedaeva, 2001). Observations from
this post-tsunami survey include maps of tsunami runup and
inundation and therefore are more reliable than observations
in the HTDBWLD database.
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Figure 2. The preferred slip distribution for the 1952 Kamchat-
ka earthquake determined by Johnson and Satake, 1999. Major
aftershocks (from Fedotov et al., 1982) and foreshocks (from
Balakina, 1992) help define the inferred rupture area. The color ver-
sion of this figure is available only in the electronic edition.
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Based on the HTDBWLD database, the 1952 Kamchatka
tsunami is the most recent tsunami to have consistently
recorded wave heights greater than 5 m in the area adjacent
to the 1952 rupture (Fig. 1; Table 2). The second largest
tsunami, 1960 Chile, has reported runup higher than 5 m in

only one location in this same area in Kamchatka. Where
both tsunamis were recorded at the same location, 1952 is
typically about twice as large (HTDBWLD database). Older
tsunamis of potentially comparable size are 1737 and the
more local 1841 events (Fig. 1). Runup from the 1952

Table 1
Field Observations of Runup and Inundation of the 1952 Kamchatka Tsunami

Runup (m) Inundation (m)

Site Location Latitude Longitude
Sediment Limit

Observed? Sediment Water Sediment Water*
Acceptable Range
for Simulations (m)

Vasil’eva 50.0346 155.3980 no 8.4 117 7.9–∞
Vasilyeva east† 50.0502 155.4267 ‡ 6.2 500 5.0–7.2
Ocean Bay† 50.1840 155.7650 ‡ 7.0 300 6.0–8.0
Okeanskaya 50.1898 155.7445 no 8.2 174 7.7–∞
Paramushir 3 50.5351 156.1480 no 5.4 214 4.9–∞
Paramushir 4 50.5687 156.1475 no 16.8 211 16.3–∞
S Severo-Kurilsk† 50.6707 156.1254 ‡ 9.0 1200 8.0–10.0
N Severo-Kurilsk† 50.6902 156.1269 ‡ 7.0 400 6.0–8.0
Kozyrevsk† 50.7024 156.1804 ‡ 7.0 400 6.0–8.0
Baikovo§ 50.7187 156.1947 ‡ 9§ 60 7.0–11.0
Shumshu 3 50.8645 156.4794 no 15.6 183 15.1–∞
E Cape Lopatka† 50.8708 156.6711 ‡ 15.0 200 9.0–12.0
W Cape Lopatka† 50.8808 156.6595 ‡ 10.0 250 14.0–16.0
Three Sisters 3 51.1452 157.0783 yes 7.5 166 7.0–9.0
Three Sisters 4 51.1475 157.0824 no 7.2 395 6.7–∞
Three Sisters 1 51.1558 157.0968 no 3.8 345 3.3–∞
Three Sisters 5 51.1574 157.1010 no 18.0 150* 17.5–∞
Ushatnaya 5 51.2738 157.2780 no 3.6 405 3.1–∞
Ushatnaya 6 51.2769 157.2870 no 17.4 202 16.9–∞
Utyuzhnaya 9 51.3379 157.3480 no 6.5 506 8.3–∞
Utyuzhnaya 7 51.3528 157.3750 no 6.6 516 2.4–∞
Utyuzhnaya 8 51.3564 157.3910 no 6.5 494 6.0–∞
Vestnik 10/11 51.4275 157.4735 no 9.9 1366 9.4–∞
Vestnik 12 51.4479 157.4890 yes 10.8 875 10.0–11.0
Vestnik 13 51.4701 157.5060 no 7.6 1037 7.1–∞
Vestnik 1 51.4861 157.5300 yes 8.8 643 8.3–16.7
Vestnik 2 51.5158 157.5778 yes 5.4 872 4.5–11.0
Vestnik§ 51.5444 157.6520 ‡ 8.3§ 890 6.3–10.3
Vestnik 3 51.5605 157.6890 no 5.5 1000 5.0–∞
Khodutka§ 51.7751 158.0050 ‡ 2§ 880 0.0–4.0
Khodutka 1 51.7803 158.0090 yes 4.4 1038 2.5–12.7
Asacha§ 52.1208 158.3070 ‡ 7§ 200 5.0–9.0
Asacha 1 52.1394 158.3344 yes 4.9 332 4.4–6.9
Mutnaya G 52.1921 158.3820 no 5.2 385 3.6–∞
Mutnaya 1 52.1937 158.3730 yes 4.1 975 3.5–9.9
Mutnaya 2 52.2094 158.3720 no 5.2 953 4.7–∞
Povorotny Cape§ 52.3263 158.5532 ‡ 10§ 0 8.0–12.0
Russian Bay§ 52.4097 158.4031 ‡ 7§ 500 5.0–9.0
Zhirovaya 52.6103 158.4000 yes 5.7 499 4.0–6.2
Jirovaya§ 52.6200 158.4100 ‡ 4.5§ 500 2.5–6.5
Vilyuchinskaya† 52.6540 158.4177 ‡ 8.0 500 7.0–9.0
Sarannaya§ 52.7713 158.4776 ‡ 7§ 435 5.0–9.0
Mayachny Cape§ 52.8986 158.6998 ‡ 5.7§ 130 3.7–7.7
Khalaktirka 1 52.9809 158.8292 yes 8.3 419 7.8–9.5
Khalaktirka 2 52.9941 158.8477 no 5.6 418 5.1–∞
Khalaktirka 3 53.0091 158.8711 yes 4.7 440 4.2–5.8
Khalaktirka 4 53.0646 158.9746 yes 3.9 426 2.9–5.0
Khalaktirka 5 53.1008 159.0587 yes 5.1 211 4.6–6.0

*Calculated using latitude/longitude and the shoreline.
†Observation from 1953 post-tsunami survey (Kaistrenko and Sedaeva, 2001).
‡Not applicable.
§Observation archived in the HTDBWLD database; runup numbers may not be true runup, but rather tsunami height (see Fig. 3).
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tsunami in the Kuril Islands was generally higher than else-
where on Kamchatka, according to historical observations,
but the post-tsunami survey data indicate tsunami runup
was consistently lower than observations reported in the
HTDBWLD database. For example, in the town of Severo-
Kurilsk, the database reports the maximum tsunami height
was 15 m, but a map in the post-tsunami survey shows that
tsunami runup was consistently 7–9 m. In such instances, we
used the post-tsunami survey maps rather than HTDBWLD
points, which may represent maximum tsunami heights
rather than runup (Fig. 3).

Tsunami-Deposit Survey

There are significant gaps in the latitudinal distribution
of historical observations, which we have been able to fill in
with 31 new observations from our tsunami-deposit surveys.
The 1952 Kamchatka tsunami left extensive deposits all
along the Pacific coasts of central and southern Kamchatka
and the northern Kuril Islands. This tsunami is recent enough
to make identification of deposits as being from 1952 rela-
tively straightforward. The deposits are extensive, sometimes
reaching over a kilometer inland and are old enough to be
buried and preserved in stratigraphy.

Tsunamis create sedimentary deposits as they flood the
coast with turbulent, turbid water. Modern and paleodeposit
surveys suggest that the form and lateral extent of a tsunami
deposit is the result of a variety of factors, but there is fidelity
between deposit extent and actual tsunami extent. The
general character of a tsunami deposit is a sand sheet that
typically thins and fines landward, following topography
(Dawson and Shi, 2000). Deposits are more extensive where
tsunamis overtop erodible beach ridges and coastal dunes
(Bourgeois et al., 1999). Many factors, from sediment avail-
ability to coastal topography to the velocity profile of the
incoming and outgoing waves, play a role in sedimentation.

The maximum inland distance of a tsunami deposit
(which we define as sediment inundation) and the deposit’s
elevation at sediment inundation (which we define as sedi-
ment runup) represent minimum estimates of tsunami extent.
Tsunami deposits can only be more limited (not more exten-
sive) than water runup and inundation, and thin, distal depos-
its may be difficult to recognize. How well tsunami deposits
approximate runup and inundation has been studied in a few
recent post-tsunami surveys. For example, in a survey
following the 2006 Kuril Island earthquake and tsunami,
where floating debris indicated water runup and inundation,

(b)  Example profile with sediment inundation limit observed

(c)  Example profile with sediment inundation limit not observed
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Figure 3. Example calculations of sediment runup from tsunami-deposit extent and definitions of tsunami terminology. (a) Hypothetical
topographic profile showing the difference between inundation, runup, and tsunami height. Inundation and runup are both measured at the
farthest inland extent of the tsunami. Tsunami height is a measure of the tsunami at any point on land other than inundation. Historical
observations from the Second Navy Hydrographic Expedition post-tsunami survey (Kaistenko and Sedaeva, 2001) include measurements
of runup, while values in the HTDBWLD database might be records of tsunami height rather than runup. (b) An example of a profile
(Zhirovaya; see Table 1) that included the limit of sediment inundation. Sediment runup is determined from the elevation of the farthest
inland deposit. (c) An example profile (Vestnik 10/11; see Table 1) where the sediment limit is beyond the profile, and the topography beyond
the end of the profile was not surveyed. In these cases, our estimates of sediment runup may be too low or too high (the latter if profile
elevation decreases landward).
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MacInnes et al. (2009) showed that deposits typically repre-
sented 90% of tsunami runup and inundation on sandy coast-
lines in the central Kuril Islands (immediately south of the
1952 rupture zone); a literature review of other post-tsunami
surveys yielded similar percentages (MacInnes et al., 2009).

Deposits were classified as being from 1952 on the basis
of (1) their relationship to historical volcanic ash layers;
(2) the presence of other historical inclusions in deposits,
such as boat debris; (3) stratigraphic position (the youngest
tsunami deposit is 1952) combined with the knowledge that
the runup and inundation of no other tsunami since either
1841 or 1737 was as extensive; and (4) the broad extent and
sheetlike nature of the deposit (Ⓔ see the electronic supple-
ment to this paper for details). Our field sites are primarily
sandy coastal plains, such as beach-ridge sequences, where
the availability of sand maximizes the likelihood of generat-
ing and preserving tsunami deposits. We identified deposits
in excavations along topographic profiles, which were mea-
sured perpendicular to the shoreline using a surveying rod
with transit level or with hand level and tape (Fig. 3; methods
as in Bourgeois et al., 2006).

Based on identified and mapped 1952 tsunami deposits
from seven field seasons, we calculated minimum sediment
runup and inundation above MSL for 31 profiles (Fig. 4;
Table 1). We determined sediment runup by evaluating the
presence or absence of distinct 1952 deposits in those pro-
files (Fig. 3). The tide in Kamchatka at the time of tsunami
inundation in 1952 was rising, and was approximately �0:5
to �0:75 m MSL (Ⓔ see Fig. S1 in the electronic supple-
ment to this paper; Harold O. Mofjeld, personal comm.,
2010). We did not make corrections for tide at the time of
profile measurement because we do not have accurate local
tidal predictions; however, the tidal range of the northern
Kuril Islands and Kamchatka is less than 2 m. We made a
distinction between profiles where the farthest landward
excavation still contained the 1952 deposit and ones that
did not (Figs. 3 and 4). If no deposit was present in one or
more excavations landward of those containing the deposit,
the limit of sediment inundation occurred within the mea-

sured profile, and actual tsunami runup could be estimated
from sediment runup. For profiles where the 1952 deposit
extends beyond all excavations, the actual size of the tsunami
could be significantly greater than our minimum estimates of
sediment runup.

The Magnitude and Overall Distribution of Tsunami
Runup Predicted by Field Observations

Near-field observations of the 1952 tsunami outline the
distribution of tsunami runup and inundation on Kamchatka
and Kuril coastal plains (Fig. 4; Table 1). For ease of discus-
sion and comparison, we have divided the near field into
three zones of approximately equal length and separated by
small data gaps: (1) the northern Kuril Islands and the south-
ernmost cape of Kamchatka (∼50° N–51° N) (13 observation
points), (2) southern Kamchatka (∼51° N–52° N) (18 points),
and (3) the northern extent of the rupture zone (∼52° N–
53° N) (17 points). Hereafter, we refer to these regions as
the Kuril Islands, South Kamchatka, and Central Kamchatka,
respectively.

There are higher field indicators of the 1952 Kamchatka
tsunami in South Kamchatka and the Kuril Islands (Fig. 4),
with deposits found up to 18 m above sea level and over a
kilometer inland (Table 1). Almost all sediment observations
in Central Kamchatka include the limit of sediment inunda-
tion, which is not the case in South Kamchatka or the Kuril
Islands. Sediment runup heights and historical data are
highest in the Kuril Islands, ranging from 5.4 to 16.8 m
and averaging 10 m. In South Kamchatka, the field observa-
tions indicate a tsunami that averaged 8 m runup but varied
widely from 2 to 18 m. Inundation distances are greatest,
up to 1.4 km, in South Kamchatka. In Central Kamchatka,
geologic and historical data record a smaller, less variable
tsunami, with a runup average of only 6 m, ranging from
3.9 to 10 m. In general, the geologic and historical data
are consistent where both are present. In South Kamchatka,
sediment data significantly fill in the region where historical
data are sparse.

0m

5

10

15

20

25

52°

15
8°

E51°

53°N15
4°

15
6°

Range of acceptable 
      model values
Runup with no sediment
      limit
Runup with sediment limit

Cataloged observation

Post-tsunami survey runup

Kuril Islands Central KamchatkaSouth Kamchatka

Figure 4. Field observations of the 1952 Kamchatka tsunami for 48 locations. For comparison in our analysis, we divide the near field
into three areas: the Kuril Islands, South Kamchatka, and Central Kamchatka. The tsunami had higher runup in the Kuril Islands and South
Kamchatka than in Central Kamchatka. For explanation of the “range of acceptable model values,” see discussion in the text and Figure 6A.
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Simulating the Tsunami and Earthquake
Slip Distribution

MOST Tsunami Propagation and Runup Code

In order to relate tsunami field observations to charac-
teristics of an earthquake, we need a method for generating
and propagating the tsunami from chosen configurations of
seafloor displacement. We use the MOST code (Method of
Splitting Tsunami; Titov and Synolakis, 1995, 1998; Titov
and Gonzales, 1997), the standard forecasting model in the
National Oceanic and Atmospheric Administration (NOAA)
Center for Tsunami Research. MOST has been carefully
tested against analytical solutions of the canonical problem
(as in Hall and Watts, 1953), against results of experimental
studies, and against field observations of tsunamis (Titov and
Synolakis, 1995, 1998). As is common in tsunami models
(Imamura, 2009; Liu, 2009), MOST numerically solves
the nonlinear shallow-water wave equations for the water
dynamics off- and near-shore (Titov and Synolakis, 1998;
Gica et al., 2008). To compute inundation, the shoreline is
treated as a moving boundary; the MOST code has the ability
to handle weakly breaking waves (Titov and Synolakis,
1995). The accuracy of the computed runup depends on
bathymetric and topographic grid resolution.

We converted bathymetric and topographic data for the
Kuril and Kamchatka area into a 120-sec (2.4–3.7 km) reso-
lution grid covering the entire Kamchatka and Kuril study
region and, within the larger grid, a series of 3.25-sec
(60–100 m) resolution grids to cover field areas along the
Pacific coastline (Ⓔ for configuration, see Fig. S2 in the
electronic supplement to this paper). Telescoping grids
decrease run time and allow for computation in complicated
areas (Titov and Synolakis, 1998). Bathymetry was derived
from the ETOPO1 1 Arc-Minute Global Relief Model (see
Data and Resources section) combined with shipping charts,
which we digitized. Topography was derived from our own
topographic profiles and from Shuttle Radar Topography
Mission (SRTM) data (see Data and Resources section).

Modeling Slip Distributions

Forward models, such as MOST, use deformation of
the seafloor and sea surface as initial conditions. Because
vertical displacement due to the earthquake occurs instanta-
neously on the time scale of a tsunami, computations of the
earthquake's deformation field can be carried out separately
from tsunami simulation. The homogeneous half space, after
Okada (1985), is one of the standard approximations for the
computation of deformation fields. The initial conditions for
the Okada equations are the displacement (or slip) of the
earthquake, the area in which the seismic moment is released
that deforms the elastic homogeneous half space, and geo-
metric characteristics of the fault.

We utilized NOAA’s unit sources, a series of 100 × 50 km
grids along the subduction-zone interface (Ⓔ see Fig. S2
in the electronic supplement to this paper), to model slip

distributions (Fig. 5). In the NOAA Center for Tsunami
Research, a database contains unit sources mimicking stan-
dard subduction-zone earthquakes (Gica et al., 2008). In such
earthquakes, the shape of the earthquake’s vertical displace-
ment is determined by elastic deformation based on the equa-
tions of Okada (1985). Unit sources assume the rupture of a
single rectangular fault plane. They can be scaled through slip
to consider moment magnitude (Mw) because the area of the
unit sources in which the seismic moment is released is kept
constant (Gica et al., 2008). Composite deformation fields,
featuring patches of varying magnitude of deformation (such
as those in Fig. 5), can be created by superposing deformation
fields of adjacent unit sources.

We tested hypotheses for slip distributions during the
1952 earthquake (Fig. 5) that consist of homogeneous
and heterogeneous patterns, including approximations of
Johnson and Satake’s (1999) slip-distribution pattern based
on tide-gage inversions of the 1952 Kamchatka tsunami
(Fig. 2). Our slip distributions maintained a total magnitude
between Mw 8.8 and 9.0, assuming a shear modulus of
3:5 × 1010 N=m2. We applied homogeneous slip to basic
distribution patterns of (1) the entire rupture zone—a 700
× 200–km rectangle (Homall1, Homall4; Fig. 5), (2) slip
concentrated either in the shallow or deep section of the
subduction zone—700 × 100–km rectangles (Homshm2,
Hommdd2; Fig 5), or (3) slip concentrated in strike-parallel
groupings—300 × 200–km rectangles, which we moved
north and south (Play1–Play6; Fig. 5).

For heterogeneous slip distributions, with each unit
source having different slip values, we began with slip dis-
tributions based on the work of Johnson and Satake (1999)
(Fig. 2) and included their error range (JAS3, JAS4, JAS5,
JAS3big; Fig. 5). In search of slip distributions that better
matched the near-field tsunami data, we also made modifica-
tions to Johnson and Satake’s (1999) slip distribution and
to homogeneous distributions (JASmod1big–JASmod5big,
JASmod5–JASmod7; Fig. 5). We made these modifications
based on our early results and on factors important to gen-
erating variations in near-field tsunami runup, as discussed in
the Introduction and Background section.

One major effect of subduction-zone earthquakes is
coseismic land-level change in the near field. Our 21 slip-
distribution models produce local differences of up to a few
meters of coastal coseismic uplift and subsidence (Ⓔ see
Fig. S3 in the electronic supplement to this paper). However,
while these differences are large enough to provide distinc-
tion between slip models, we have limited information that
deformation was recorded historically, and it may not have
been large enough to be noted in the locations of post-
tsunami surveys. Thus we cannot currently use such evi-
dence to discriminate between models. Further investigation
of evidence for land-level change could help improve slip
models; however, field evidence more than 50 years after
the earthquake may be difficult to unravel.

For each slip-distribution model, we computed inunda-
tion within our high-resolution bathymetric and topographic
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grids. Along the inundation line, we calculated the grid cell
closest to a field-observation point and compared 1∶1 the
elevation of this grid cell (runup) with our field observation
of runup. Ⓔ All results are illustrated in Figs. S4–S7 in the
electronic supplement to this paper, and the criteria for
determining agreement between simulated runup and field
observations are discussed in the next section.

Evaluating the Agreement between Simulated Runup
and Field Observations

In order to evaluate the agreement between simulated
runup and field observations, we implemented separate criter-
ia for each type of field observation (Fig. 6). For example, if

the limit of a deposit was mapped on a given profile, the
matching criteria are stricter than in cases where the limit
of a deposit was not mapped; but in both cases, the simulated
tsunami must surpass the sediment runup, within an assigned
measurement error of �0:5 m, to be considered a match.
Similarly, historical observations in databases are difficult
to evaluate because these numbers commonly represent
tsunami heights rather than runup and also may be rough
estimates rather than measured points. Thus the criteria for
matching observations in the HTDBWLD database are weaker
than the criteria for matching mapped inundation by the post-
tsunami survey. Error inherent in the simulations themselves
is not incorporated into our comparisons because we assume
all simulations have the same kind and magnitude of error.
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Figure 5. Slip distributions simulated in this study. The two columns on the left are homogeneous ruptures. The middle column is slip
distributions based on Johnson and Satake’s (1999) study, including their error range. JAS3 is their preferred slip distribution. The two
columns on the right are modifications of Johnson and Satake’s and the homogeneous distributions. Slip distributions with land colored
in black produced best agreement (see Fig. 6, Table 3). Those with land colored in gray produced the worst agreement (Table 3).Ⓔ Locations
of unit sources and results from all simulations are included in the electronic supplement to this paper.
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Historical runup records

Sediment limit on profile Sediment limit not on profile

Equations for calculating the agreement between simulated runup and field observations

SIMPLE MATCH METHOD

SUM OF VARIANCE METHOD

< (min. elev. 
within 10% of 

sediment runup 
- 0.5 m) = 
no match

> (max. elev. 
within 10% of 

sediment runup 
+ 0.5 m) = 
no match

< (sediment 
runup - 0.5 m) 
= no match

± > 1 m =
no match

± > 2 m =
no match

Post-tsunami
survey

Catalogue

STANDARD DEVIATION BY
SEGMENT 

% match = 
number of locations that match

48
x 100

variance = a + b

where a = ∑min-h  if min > h
b = ∑h-max  if max < h

total deviation = c + d

e =   (KI-mean)2+(SK-mean)2+(CK-mean)2

  for SIMPLE MATCH METHOD

f =   (KI-mean)2+(SK-mean)2+(CK-mean)2

  for SUM OF VARIANCE METHOD

KI = sum of values for 13 locations in the Kuril Islands
SK = sum of values for 18 locations in South Kamchatka
CK = sum of values for 17 locations in Central Kamchatka

mean = mean of the KI, SK, and CK segments

e
maximum e for any slip distribution

c =

f
maximum f  for any slip distribution

d =

where

h = simulated runup
min = minimum acceptable model value

max = maximum acceptable model value

Simulated runup matches field observations unless

Geological records ("sediment runup")

(a) 

(b) 

Figure 6. (a) Decision tree for determining agreement between simulated runup and field observations based on different field-
observation data types. (b) Equations used for calculating the best-fit slip distributions. The three methods are implemented for each source
model; the results are ranked and listed in Table 3.

Table 2
Historical Tsunamis* Affecting the Field Region (Fig. 1)

Earthquake Tsunami

Origin Date (dd/mm/yyyy) Mw Mt Elevation in Field Area (m) Total World Observations

Kuril-Kamchatka 17/10/1737 † † 10–48 35
Kuril-Kamchatka 22/08/1792 † † 2 2
Kuril-Kamchatka 17/05/1841 † 9 1–15 7
Kuril-Kamchatka 25/06/1904 7.6 † 2? 1
Kuril-Kamchatka 03/02/1923 8.6 8.8 † 39
Kuril-Kamchatka 04/11/1952 9 9 2–18 339
Kuril-Kamchatka 04/05/1959 8 8 0.1–2 12
Chile 22/05/1960 9.5 9.4 1–7 630
Kuril-Kamchatka 15/12/1971 7.8 7.8 0.1–0.36 15
Kuril-Kamchatka 08/06/1993 7.5 7.5 † 5
Kuril-Kamchatka 05/12/1997 7.8 7.7 † 13

*Data from the Historical Tsunami Database for the World Ocean (HTDBWLD). (See Data and Resources.)
†No record.
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We use three methods, equally weighted, to reach our
objectives that (1) simulations agree with runup of field ob-
servations, (2) simulated runup that does not agree with field
observations is not excessively high or low, and (3) simula-
tions are equally successful north to south. For each of these
objectives, we used methods of comparing simulations with
field data, which we call simple match, sum of variance, and
standard deviation by segment (Fig. 6). In the simple match
method, simulated runup either predicts individual field
observations or not, with some leeway given for observation
type and observation error, as discussed previously. In the
case of sum of variance, each data location is scored by the
variance (in meters) of simulated runup outside the acceptable
limits of amatch, and the score is the sumof that variance. The
standard deviation of segments is the combination of the
normalized standard deviation of both the simple match and
sum of variance when the field area is divided into the Kuril
Islands, South Kamchatka, and Central Kamchatka (Fig. 4).
Those results are ranked and presented in Table 3.

No simulated tsunami completely reproduced our field
observations. Because of errors inherent in both observations
and tsunami simulation, our primary goal is to compare the
performance of different slip distributions to each other
rather than to find the perfect fit. The results from the five
best-fit distributions are illustrated in Figure 7 (Ⓔ the re-
mainder are found in the electronic supplement to this paper).

The Effects of Slip Distribution

A Uniform Rupture (The Null Hypothesis) Does Not
Predict Field Observations

Homogeneous slip extending the full length of the 1952
Kamchatka rupture zone (such as distributions Homall1 and
Homall4; Table 3 and Figure 5) does not produce a tsunami
with runup that agrees with our field observations. The
homogeneous, uniform rupture pattern is an important test
of the null hypothesis. If uniform rupture matches our field
observations as well as other distributions, bathymetry
and topography between the source region and the field-
observation locations would be affecting initial tsunami
waveforms to the extent that signatures of a complex rupture
pattern are not maintained in the near field. Homogeneous
ruptures do produce relatively higher runup in South
Kamchatka and the northern Kuril Islands than in Central
Kamchatka, and runup in the Kuril Islands and much of
South Kamchatka is too low. Thus, even if a homogeneous
rupture does produce most of the field observations in
Central Kamchatka, its inability to generate runup compar-
able to data from the more southern sites makes it an unreal-
istic distribution.

Commonalities of the Worst and the Best
Slip Distributions

The slip distributions with the worst agreement with
field observations (Fig. 5, Table 3) generally fell into three

overlapping categories: either (1) they had homogeneous slip
the length of the rupture, (2) moderate-to-large slip occurred
in the shallowest unit sources off Central Kamchatka, or (3)
the magnitude was too low. As mentioned previously, distri-
butions without a concentration of slip could not replicate the
magnitude of higher field observations observed in the Kuril
Islands and South Kamchatka relative to Central Kamchatka.
Shallow slip (greater than 10 m) off Central Kamchatka pro-
duced runup that was too high in that sector, regardless of
how well field observations matched elsewhere. Finally, slip
distributions with magnitudes less than Mw 8.9 consistently
underestimated field observations.

Slip distributions that produced runup in best agreement
with field observations (Fig. 5; Table 3) consistently had
higher slip off the Kuril Islands or the south end of South
Kamchatka (Fig. 7). If deeper (>25 km), the high slip had
to cover a larger area (JASmod2 and JASmod3) than if shal-
lower (<25 km; JASmod6 and JASmod7). Slip-distribution
Play2 showed that slip off Central Kamchatka was unneces-
sary to generate reasonable agreement between simulated run-
up and field observations; however, including moderately
deep slip (<25 km) off Central Kamchatka, up to 10 m in
JASmod7, produced slightly better agreement than Play2.

The slip distribution suggested by Johnson and Satake
(1999) (Fig. 2; Fig. 5: JAS3–JAS5, JAS3big) did not produce
runup that agreed as well with our field observations as many
other slip distributions (Table 3). Their distribution generates
a simulated tsunami that matches observations in Central
Kamchatka but that is too small in the Kuril Islands. While
overall, Johnson and Satake’s slip distribution is consistent
with our interpretation of patches of higher slip off South
Kamchatka, their source model is not better at matching
tsunami field observations than a uniform rupture.

Our accumulated understanding of how tested slip
patterns affected our tsunami simulations allowed us to mod-
ify Johnson and Satake’s slip distribution (Fig. 2) to distribu-
tions that better reproduced our field observations (Table 3,
Fig. 7). These modifications of Johnson and Satake’s distri-
bution have either more extensive or shallower slip in the
south. More extensive slip requires adjustment elsewhere to
maintain moment magnitude within our acceptable range.

Effects of Slip Location and of Bathymetry

As expected, shallower slip always produced a larger tsu-
nami in the near field, and isolated patches of slip concentra-
tion produced adjacent correlatable peaks of tsunami runup.
A Mw 9.0 rupture of only the shallower unit sources on the
subduction zone (Homshm2) generated a tsunami with 5-m
higher runup, on average, than the same rupture of the deeper
unit sources of the subduction zone (Hommdd2; Figure 5, Ta-
ble 3, and Ⓔ see Fig. S4 in the electronic supplement to this
paper). Concentrations of similar magnitude slip along strike
(Play1–Play6) locally increased tsunami runup by up to 10m.

Bathymetric effects were noticeable in our comparative
studies of slip distributions. A concentration of slip in the
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north (Play6) amplifies simulated runup by ∼7–10 m locally,
with smaller amplifications (∼3–5 m) in the south (Play2).
Also, a simulated tsunami from deeper slip produced runup
that exhibited less north–south variation, while the shallower
slip produced proportionally higher runup in South Kam-
chatka. These discrepancies are due to the tsunami originat-
ing in areas with different bathymetry and propagating across
a broader, shallower continental shelf in the south versus a
deeper embayment with a narrow shelf in the north.

Limitations of Our Methods

Complete agreement is unlikely for comparisons be-
tween geological data and geophysical models, each of which
has limitations. In this paper, our method of generating
initial tsunami waveforms (unit sources mimicking standard
earthquakes) does not account for secondary effects in
tsunami generation. Our method of using sediment as the
means of estimating tsunami runup is inherently noisy. Also,
any evaluation of our results requires us to consider whether

our bathymetry and topography are accurate enough to gen-
erate realistic results.

Discrepancies between simulated and observed runup
can result from wave complexity not represented in tsunami
generation. Secondary processes, such as submarine slump-
ing and splay faulting, can cause or influence tsunamis (com-
pare Baba et al., 2006; Gisler, 2009). Timing of rupture
propagation has also been shown to cause local constructive
wave interference in tsunamis (Pietrzak et al., 2007). If im-
portant, these more complex formative processes of tsunamis
would affect runup at only a few locations—either adjacent
to the slump or splay or where the timing of rupture produces
constructive interference during runup. Thus secondary pro-
cesses would likely contribute to the inherent noisiness of the
model-observation comparison.

An additional contributor to noisiness is that tsunami-
deposit extent is controlled by many factors, only one of
which is the actual tsunami water runup. Issues of sediment
availability, preservation, and our field techniques can occa-
sionally make the observed sediment runup lower than the
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actual runup. For example, although we surveyed sandy
shorelines, water runup can be significantly underestimated
by sediment runup if the tsunami is starved. Also, thin de-
posits at the distal end of the sand sheet may be bioturbated
beyond identification, although on Kamchatka bioturbation
is weak. Even though our method of trenching is better than
coring for recognition of thin deposits, it is still discontinu-
ous and in some cases did not reach the end of a deposit.

Clearly topographic and bathymetric accuracy can affect
a simulation’s ability to reproduce field observations. For
example, in bays in South Kamchatka, sediment runup on
profiles next to each other can differ by >10 km (Fig. 4)
because of local topographic controls. Errors in near-shore
bathymetry can influence the inundation distribution; too
low resolution of near-shore bathymetry can cause dynamic
processes to be underresolved in space and therefore change
runup distribution. Both errors result in inaccurate represen-
tations of resonance or edge waves.

All hydrodynamic computer codes are limited by the
governing equations they solve numerically. The flow dy-
namics of a tsunami is three dimensional and, hence, complex.
In computer codes like MOST, a tsunami is simulated by two-
dimensional, depth-integrated approximations, which result
in simplifications of flow dynamics especially near the wave
front.

Our slip distributions consistently produced simulations
that underestimated or overestimated a few of our observa-
tions, likely because of a combination of these factors. In
attempting accurate simulation of “noisy” data, such as
paleotsunami deposits, one should not expect ideal matches;
as such it is valuable to use as many observations for com-
parison as possible.

Conclusions

For the specific case of 1952 Kamchatka, extensive field
observations show that the 1952 tsunami was larger in south-
ern Kamchatka and the northern Kuril Islands than at the
northern end of the rupture zone (Fig. 4). This spatial varia-
tion in tsunami runup from field observations could not be
produced by slip distributions without a concentrated area of
higher slip. The general picture of slip from the 1952 event
determined by our work is of high slip off southern Kamchat-
ka, more extensive or shallower than suggested by Johnson
and Satake (1999). Their concentration of slip at the very
northern end of the rupture zone could be consistent with
our observations only if the slip was neither extensive nor
shallow.

For seismically active coastlines without (or with
unobserved) historical tsunamis, near-field paleotsunami
deposit distribution may be a valuable, but underexploited,
source-model validation tool. Our study shows that using
paleotsunami deposits to study paleoearthquake rupture
characteristics is feasible, provided there are ample reliable
observations of sediment runup.

Tsunami-deposit distributions can predict regions of
large coseismic slip. Because high-slip regions are associated
with locked sections of subduction zones, these regions may
persist in time and be useful for studies of pre-events or
postevents (Johnson and Satake, 1999; Bürgmann et al.,
2005). If the 1952 earthquake’s high-slip region off southern
Kamchatka remains locked over multiple earthquake cycles,
similarly higher tsunami runup in southern Kamchatka
would be expected in the next large Kamchatka earthquake
and tsunami.

Data and Resources

Historical observations of the 1952 Kamchatka tsunami,
excluding the 1953 post-tsunami survey (Kaistrenko and Se-
daeva, 2001), were found in the Historical Tsunami Database
for the World Ocean (HTDBWLD database), maintained by
the Tsunami Laboratory, Institute of Computational Mathe-
matics and Mathematical Geophysics, Siberian Division
Russian Academy of Sciences, Novosibirsk, Russia, for
the United Nations Educational, Scientific and Cultural Or-
ganization’s Intergovernmental Oceanographic Commission
(http://tsun.sscc.ru/nh/tsunami.php; last accessed 13 Novem-
ber 2009).

Tsunami-deposit distribution was compiled from field
observations over seven summers in the Russian Far East.
Fieldwork was conducted by many, under the supervision
of Tatiana Pinegina and Joanne Bourgeois.

The MOST code and the unit sources were provided by
the modeling group of the National Oceanic and Atmo-
spheric Administration (NOAA) Center for Tsunami Re-
search (Pacific Marine Environmental Laboratory–NOAA,
Joint Institute for the Study of the Atmosphere and
Ocean–University of Washington). Unit sources can be
found at their Propagation Database, available at http://sift
.pmel.noaa.gov/thredds/catalog/data/uncompressed/catalog.
html (last accessed 25 February 2010). Bathymetric grids
were created in ArcGIS using the ETOPO1 1 Arc-Minute
Global Relief Model (Amante and Eakins, 2009) and 1
arc-second SRTM data (Shuttle Radar Topography Mission,
1 Arc Second scene SRTM_u03_n008e004, Unfilled Unfin-
ished 2.0, Global Land Cover Facility, University of Mary-
land, College Park, Maryland). ETOPO1 and SRTM data
were modified with shipping charts and coastal topographic
profiles measured by Pinegina and Bourgeois field teams.
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