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ABSTRACT

The perfect 30-min cadence of the full-frame images from the Transiting Exoplanet Survey
Satellite (TESS) will impose a hard Nyquist limit of 24 d~! (2278 uHz). This will be problem-
atic for asteroseismology of stars with oscillation frequencies at or around that Nyquist limit,
which will have insurmountable Nyquist ambiguities. TESS does offer some observing slots
at shorter cadences, but these will be limited in number and competitive, while the full-frame
images will be the main data product for many types of variable stars. We show that the
Nyquist ambiguities can be alleviated if, when TESS resumes observations after a downlink,
integrations are not resumed at perfect cadence with those before the downlink. The time spent
idling before integrations are resumed need only be around 5 min for satisfactory results, and
observing time can be recouped from the downlink event if the telescope does not wait for a
return to perfect cadence before resuming integrations. The importance of imperfect cadence
after downlink is discussed in light of phase coverage of transit events.

Key words: asteroseismology —techniques: photometric — stars: oscillations — stars: variable:

8 Scuti—stars: variable: general.

1 INTRODUCTION

The Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015)
is due to be launched in 2018. By focusing on brighter targets than
those of the Kepler mission and by having full sky coverage, TESS
presents many new opportunities in the fields of exoplanets and
asteroseismology.

TESS will observe in three cadences: full-frame images will be
available at a strict 30-min cadence, while individual targets can be
observed at 2-min and 20-s cadences. While some 200 000 stars
will be observed at 2-min cadence, these will comprise mostly of
cool planet-host candidates. Stars with spectral types earlier than
~F5 will not be observed at the 2-min or 20-s cadences unless they
compete successfully under guest observer or asteroseismic target
programmes. In addition, supply of the 20-s cadence slots is small,
and the demand is expected to be high. Hence, maximizing the
utility of the 30-min cadence is important.

The sampling situation with TESS is not dissimilar to that of the
Kepler mission. Kepler has the capability of observing in a long-
cadence (LC) mode of 29.45-min and a short-cadence (SC) mode
of 58.85 s (Koch et al. 2010). Only 512 SC slots are available, and
because of memory and telemetry constraints, not all of these can
be used in the successor mission, K2 (Howell et al. 2014).

The hard Nyquist limit of Kepler was overcome due to the unique
features of Kepler’s heliocentric orbit. The full details were pre-

*E-mail: murphy @physics.usyd.edu.au

© 2015 The Author

sented by Murphy, Shibahashi & Kurtz (2013a), but a short sum-
mary is given here. In the original mission, a +200-s Rgmer delay
existed along the telescope’s line of sight towards its field of view
between Cygnus and Lyra. As a result, its sampling, which was
strictly regular on board the satellite, was periodically modulated
by its orbit when those times were converted to barycentric Ju-
lian Date (BJD). The periodic modulation therefore applied to the
Nyquist frequency. Nyquist aliases became multiplets in the Fourier
transform, when the observations were longer than one Kepler orbit
of 372.5 d, while real oscillation peaks remained as singlets. Fur-
thermore, the distribution of power into these multiplets meant that
aliases had lower amplitudes than the real peaks. The outcome was
that classical pulsators were no longer plagued by Nyquist ambigu-
ity, and the number of stars that could be analysed with confidence
increased by nearly two orders of magnitude.

Application of the same methodology to TESS meets problems.
TESS is in a geocentric orbit inclined to the ecliptic plane, with a
period of just 13.7 d. The light-travel time across its eccentric orbit
is only 1.6 s, which is far shorter than the 1800 s of one full-frame
integration. As such, the modulation to the sampling will not have
a detectable effect, and Nyquist ambiguities cannot be resolved in
this way. A full explanation is provided in Section 3. Of course, the
Earth also orbits the Sun, but TESS does not look at any field for one
or more Earth orbits except for the continuous viewing zone within
12° of the ecliptic pole. Unfortunately, since the Rgmer delay is the
product of the light-travel time across the orbit with the cosine of
the latitude of the field, the effect is small, and is applicable to only
a tiny fraction of TESS targets.
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Fortunately, an alternative solution is available. TESS’s step-and-
stare operations continue for 27 d for each field, which equals two
orbits. A data downlink occurs at each perigee, during which no
observations take place. We show in this paper that the amplitudes
of the Nyquist aliases are attenuated if the return to cadence after
a downlink is imperfect. This allows the real oscillation frequen-
cies, which are the fundamental data of asteroseismology, to be
distinguished from their aliases.

2 NYQUIST ALIASING

Nyquist aliases are peaks in the Fourier transform of the stellar
light curve that describe the data equally as well as the true peak.
There are an infinite number of Nyquist aliases, and some external
physical constraint is required to bound the frequency range of
pulsating stars. This could be as fundamental as restricting pulsation
time-scales to be longer than the light-travel time across the star,
but stellar pulsation models can offer much tighter constraints. Still,
the frequency ranges of some classes of variable star can straddle
one or more Nyquist frequencies of the most commonly used data
products, such as the light curves from Kepler and those anticipated
from TESS.

Nyquist aliases are particularly problematic when the sampling is
perfectly regular (see Koen 2006, 2010 for a description of the irreg-
ularly sampled case). The Nyquist frequency of regularly sampled
data is half the sampling frequency, and is defined as

fny = fs/2=1/Q2A0), )]

where At is the sampling interval. The time stamp of an observation
t;, can therefore be written as

1 =to+ jAt 2)

for an arbitrary (fixed) start time ;.
In order to resolve Nyquist aliases, some modifications to the
sampling must be made.

3 ORBITAL MODULATION OF THE
SAMPLING

In this section, we demonstrate that the super-Nyquist asteroseis-
mology method from Murphy et al. (2013a), which utilizes the
periodic modulation of the sampling due to the orbit of the satel-
lite, will not be viable for resolving Nyquist ambiguity with TESS.
The full mathematical foundation for this analysis was presented
by Murphy et al. (2013a), and so the interested reader is referred
there. Given the null result here, we restrict this discussion to only
the most relevant points.

The super-Nyquist asteroseismology method as applied to Ke-
pler relies on the substantial modification of the time-stamps due to
orbital motion. Since Kepler orbits the Sun with a semimajor axis,
a, of 500 light-seconds, light arrives at the telescope early or late,
compared to the Solar system barycentre. Thus, when the obser-
vation times are corrected to the arrival time at the Solar system
barycentre, a periodic modulation is imprinted. The time delay was
described by Murphy et al. (2013a, equation 11 there) as

51(t) = = cos B eos{ag () — A}, 3)
C

where A and B are the ecliptic longitude and latitude of the Kepler
field. The cos 8 term reduces the effective Rgmer delay,

T = a cos B, 4)
c
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Table 1. Parameters for TESS 30-min sampling.

Parameter Value Units
T 9.26 x 107° d
At 2.08 x 1072 d
ws 3.02 x 1072 rad d~!
Qorb 459 x 1072 rad d~!

to 200 s, which is still a substantial fraction of the ~1770 s
sampling interval of Kepler LC mode.

Murphy et al. (2013a) showed that the periodic modulation of the
sampling causes aliases in the Fourier transform to become mul-
tiplets, while the real angular oscillation frequency, wr = 27 fR,
remains a single peak. The central components of each multiplet
are found at the anticipated alias frequencies, that is, at nws + wg,
where ws is the sampling frequency and # is an integer, while the
additional components of the multiplets are separated from the cen-
tral component by integer multiples of the angular orbital frequency
(Qory = 2711/ Popy), that is, at nws + wr £ M. The amplitudes
of the mth components of the multiplet with respect to the cen-
tral peak are determined from the ratio of the Bessel coefficients
Jn(nwst)/Jo(nwsT).

Application of equation (4) to TESS yields a maximum Rgmer
delay of T ~ 0.8 s, if the eccentricity of the orbit is neglected. Since
TESS’s orbit is inclined to the ecliptic, the relevant angle in equation
(4) is no longer the ecliptic latitude, but the angle between the
satellite’s orbital plane and the target, which we call 8’, and which
still has the minimum value of 0°. The TESS full-frame images will
have a cadence approximately equal to the Kepler LC mode, thus
the amplitudes of the non-central components of the alias multiplets
will be reduced by a factor of Tgepler/TTESS = 200/0.8 = 250.
Relevant parameters of the TESS 30-min sampling are given in
Table 1.

By computing the Bessel coefficients J,,(nwst) forn = [0, ...,
7] and m = [0, ..., 3] we can evaluate the multiplet structure for
the first 2n + 1 = 15 Nyquist aliases, and determine whether these
multiplets will be detectable in the Fourier transform of typical
TESS observations of classical pulsators. The small value of t for
the TESS orbit causes the Bessel coefficients to change very slowly
with & = wr, as indicated in Fig. 1. The implications are that
the Nyquist aliases are self-similar and cannot be used to resolve
Nyquist ambiguity, even in the most favourable case of a target in the
orbital plane (i.e. with 8’ = 0). The amplitudes of the first sidelobes
of the multiplets are tiny, as given in Table 2, and more distant
sidelobes (higher m) are completely negligible (see Fig. 1 caption).
Although the first sidelobes do become detectable in higher order
aliases (higher n), the self-similarity of neighbouring aliases does
not permit distinction between them, and the real peak cannot be
identified.

An approximate anticipated visibility of the sidelobes observed
by TESS can be calculated. This example uses 6 Sct stars, which
are classical pulsators with low-order p modes and periods in the
range of ~15 min-5 h, but similar examples can be constructed
for other classes of pulsating stars with coherent oscillations. The
first pair of Nyquist aliases for a star in the ecliptic plane will
have sidelobes with maximum amplitudes of [J;(wst)/Jo(wsT) =]
0.135 per cent of that of the central component. Given an estimated
standard deviation of relative flux of 200 ppm h=!/2 for a 10th
magnitude star (Sullivan et al. 2015), and fields of 27.4 d = 657.6 h
(neglecting the central downlink gap), then an optimistic noise floor
of 8 ppm will apply. While there are some Kepler 6 Sct stars with

220z Iudy || uo3senb Aq 8815/ 1/69G2/€/SSY/o101E/SEIUW/WOD dNO"DIWSPEDE//:SU)Y WO} PEPEOJUMO(



~ 1.00000
0.99995
0.99990

1.0

AN

0.8
0.6

1,6

0.4
0.2

L
4o

LU § | N A
6w ‘

3w,

0.0
0.010

0.005
0.000
0.000 0.005 0.010 0.015 0.020

&

1.6)
Y

Figure 1. The Bessel coefficients J,,(§) with m = [0, ..., 3] for § =
[0, ..., 0.02]. The vertical lines show & = nwst with n = [0, ..., 7], at
which the window spectrum has sharp but small multiplet peaks. The centre
panel shows all Bessel coefficients, while the top and bottom panels zoom
in to show the variation of Jo(¢§) and Jy, . 3
values of the coefficients of Jo(£) and J3(£) in this range are 5.0 x 10~ and
1.6 x 1077, respectively.

Table 2. Amplitude ratios of the first sidelobes of
an alias multiplet (m = 1) to the central component
(m = 0), as a function of the alias identification (of
the form nws + wg), for TESS 30-min sampling. The
amplitude ratios for negative values of n are identical
to their positive values.

[n| Amp.(m = 1)/ Amp.(m = 0)
0 0.000 000
1 0.001 350
2 0.002 750
3 0.004 150
4 0.005 550
5 0.006 950
6 0.008 350
7 0.009 750

amplitudes of tens of mmag (e.g. KIC 9700322: Breger et al. 2011,
Guzik & Breger 2011; KIC11754974: Murphy et al. 2013b), Kepler
has shown that typical é Sct stars have amplitudes on the order of
1 mmag (Balona & Dziembowski 2011), or ~1 ppt of relative flux.
The TESS passband is redder than that of Kepler, so oscillation
amplitudes will be lower, but we assume amplitudes of 1 ppt for
ease of calculation. Then, the maximum sidelobe amplitudes are of
the order of 1 ppm for the first Nyquist alias, and only around 7 ppm
for the fifth Nyquist alias (that is, at § = Swgst; see Table 2). Brighter
stars have a lower noise floor, estimated to be as low as 60 ppm h~!/2
(Sullivan et al. 2015). However, in reality the spectral window of
the many different Fourier peaks in multiperiodic oscillators will
contribute extensively to the noise level, and such sidelobes will
remain undetectable.

Thus far, only the 30-min cadence of TESS has been discussed.
The Bessel coefficients depend on the sampling frequency; there-
fore, the sidelobes of the alias multiplets will be much higher in
the shorter cadence modes (Fig. 2). However, these modes also
have higher Nyquist frequencies (4320 d~! = 50 mHz for the 20-s
cadence), and so there will be no Nyquist ambiguity in need of
resolution.
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Figure 2. The Bessel coefficients J,,,(§) withm =0, ...,5]for§ =[0,...,
2.0] for the TESS 20-s cadence where wg = 2.71 x 10* rad d=!. The vertical
lines show & = nwst with n = [0, ..., 7], at which the window spectrum
has sharp multiplet peaks with significant sidelobe amplitudes, which could
be used to distinguish real peaks from their Nyquist aliases.

In the next section, we present a promising alternative approach
that will enable Nyquist ambiguity to be resolved in all observing
modes, and that will additionally benefit the main mission in the
discovery of exoplanets.

4 OFFSETTING THE SAMPLING

If the sampling interval is irregular, or an offset is introduced,
Nyquist aliasing can be alleviated, as illustrated in Fig. 3. The data
shown there are simulated TESS data with 30-min sampling, for a
monoperiodic star oscillating at 9.71 d~! (=112.4 uHz).! Halfway
through the data set, a single offset of half a cadence (15 min)
is introduced, and thereafter the cadence remains fixed at 30 min.
That is, the time stamps in the second half of the data set are now
expressed as

tj =ty + (j + €)At, (5

where € is the introduced offset that in this case is equal to 0.5.
The offset causes the first Nyquist alias to be in antiphase with the
observations, allowing it to be easily distinguished from the real
peak.

The anticipated TESS data are of longer duration than those shown
in Fig. 3, and the proposed sampling offset would be introduced
after each downlink, which are of ‘no more than 16 h’ (Ricker
et al. 2015). Therefore more realistic 27-d simulations were created
with a central gap during which an offset is introduced. The gap
was set at 0.8 d, corresponding to a pessimistic 19-h duration,
but the exact length is unimportant. The Fourier transform of those
simulations for a monoperiodic star oscillating at an input frequency
of fi, =9.71 d~! are shown in Fig. 4, for values of ¢ = 0, 0.5 and
0.213. The latter value was chosen to be approximately intermediate
between the in-phase (¢ =0 = 1) and antiphase (¢ = 0.5) cases, but
not have a simple relationship with either 0.5 or 1.

It can be seen in the top panel of Fig. 4 that if no offset is in-
troduced, the Nyquist aliases all have equal amplitudes and the
identification of the real peak is totally ambiguous. However, intro-
duction of an offset of € = 0.5 causes the Nyquist aliases at fs £ fi, to
have amplitudes lower than the input peak. In this way, the Nyquist
ambiguity has been resolved and the input frequency can be recov-
ered. But notice the alias peak near 87 d~!' (*1000 pHz), whose
amplitude is still equal to that of the input frequency. This alias

! The oscillation frequency was chosen to not have a simple integer rela-
tionship with the sampling frequency.
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Figure 3. Simulated 7ESS data with 30-min sampling are shown as blue circles. Halfway through the observations an offset is introduced, altering the sampling
to the red squares, after which the cadence remains a strict 30 min. The sampled oscillation has a frequency of 9.71 d~! (solid line), which has a corresponding
Nyquist alias at 38.29 d~! (dashed line). If the cadence had remained strictly regular at 30 min then the real peak and its alias would have fitted the data equally

well, but due to the offset only the real peak remains a good fit.
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Figure 4. Fourier transforms for three different values of the offset param-
eter €: top = 0.0, middle = 0.5, bottom = 0.213. Dashed orange lines are
drawn at integer multiples of the Nyquist frequency, fny = 24.0 d~!. The
input frequency, fi,, is 9.71 d~1.

can only be discarded if we have an external physical constraint
with which to select the real peak. In practice, this tends to be the
case, because here the real and ambiguous alias peak are an order
of magnitude different in frequency. However, the bottom panel of
Fig. 4 shows that there is no need; an offset that is not a simple
fraction of 0.5 or 1.0 will produce a series of aliases whose am-
plitudes are all lower than that of the input frequency, out to much
higher frequency in the Fourier transform (see Fig. 5). The Nyquist
ambiguity can then be considered completely resolved. The rea-
son is twofold: (1) any astrophysical target for which ambiguity at
such high frequency could be an issue would presumably have been
proposed for the shorter cadence slots anyway; and (2) oscillation
frequencies so much higher than the sampling frequency will have
severe amplitude attenuation (a factor ~10 reduction at 230 d=!)
and will most likely be unsuitable for study (see Section 5.1).

5 SUPER-NYQUIST ASTEROSEISMOLOGY

With the introduction of a suitable offset, real peaks can be distin-
guished from aliases even when those real peaks exceed the Nyquist
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Figure 5. Fourier transform of 27 d of simulated 7ESS data with an offset
of € = 0.213. Dashed orange lines are drawn at integer multiples of the
Nyquist frequency (=24 d~'). The input frequency, fi, = 9.71 d~', has the
highest amplitude up to a frequency of 230 d~!, where a pair of aliases have
similar amplitudes.

frequency. In Fig. 6, the general case is shown, where the star is mul-
tiperiodic and the input oscillations are distributed above and below
the Nyquist frequency, at 9.710, 26.240 and 41.033 d~'. These in-
put oscillations were given random phases. Noise was added to the
simulated data at a level anticipated for a 13th magnitude star.

The input oscillations are entirely recoverable by selecting the
peak with the highest amplitude from the set of Nyquist ambigui-
ties for each mode. Even for this 13th magnitude star, the amplitude
differences in the bottom panel of Fig. 6 are significant to 100.
Therefore, random noise spikes will not push an alias to an ampli-
tude higher than the real peak.

Close inspection of Fig. 6 provides insight on the optimal offset
for the purpose of distinguishing aliases. While amplitude differ-
ences are still significant for the 1.66 and 5.00-min offsets, it is
clear that the 9.27-min offset is more favourable. The reasons are as
follows. For the 1.66-min offset, the phase difference between the
true peak and its alias has had little time to accumulate. An offset
of 5.00 min, i.e. 1/6 of the 30-min cadence, trebles the available
accumulation time, but it is preferable to avoid simple fractions of a
cadence. The 9.27-min offset was chosen to not be a simple fraction
and to be roughly intermediate between the fractional cadences of
0.0 and 0.5 discussed in the previous section. The amplitude differ-
ences are much larger as a result, as is shown in the next subsection.
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Figure 6. Fourier transform of 27 d of simulated TESS data with different
values of the offset, €. Dashed orange lines are drawn at integer multiples
of the Nyquist frequency (=24 d~'). The input frequencies, identified with
arrows, are 9.710, 26.240 and 41.033 d~!. They are distinguishable from
their aliases by their higher amplitudes. The top, middle and bottom panels
have offsets of 1.66, 5.00 and 9.27 min, respectively, which are equal to
fractional cadences of € = 0.0556, 0.1667 and 0.3090.

5.1 Amplitude reduction of real and alias peaks

The effect of sampling on oscillation amplitudes as applied to Kepler
data was described in detail by Murphy (2014). The amplitude
reduction due to undersampling is a sinc function (Chaplin et al.
2011; Murphy 2012):

Aops = Ain sine(rt/x), ©

where x is the number of data points per oscillation cycle. This
amplitude reduction is illustrated in Fig. 7.

In this work, the amplitudes of greatest interest are those of the
aliases with respect to the real peak. The aliases come in pairs of
the same amplitude, at frequencies of nfs £ fr, where fs and fg
are the sampling and ‘real’ oscillation frequency, respectively, and
n is an integer coefficient. In Fig. 8, the ratios of the measured
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Figure 7. Measured amplitude in arbitrary units as a function of frequency,
for TESS data with a sampling frequency of 48 d~'. The input amplitude
was 1.0 on this scale.

alias amplitudes, A(nfs = fr), to the measured amplitude of the
real peak, A(fr), are shown as a function of the sampling offset,
€. The ratios were determined by simulating 1000 artificial TESS
light curves of 27 d, with added noise, a central gap of 0.8 d, and
a (uniformly) randomly generated € for each light curve. The light
curves were of a monoperiodic oscillator, each with a different
oscillation frequency drawn from a uniform random distribution
between 0.0 and 100.0 d~!. The outcome is independent of those
oscillation frequencies; the only important factors are n and €. The
functional form of the amplitudes in Fig. 8 is

A(nfs £ fr)
A(fr)

It is easily seen from equation (7) and Fig. 8 that aliases at
nfs £ fr will have the same amplitudes as the real peak at fi if
€ =1i/n, where i is an integer. Since both i and » are integers, simple
fractions for € are best avoided so that we can distinguish aliases
from real peaks. Ideally, we would choose € to be irrational, e.g. as
1/, but in practice € is best chosen randomly. Specifically, TESS
should return to observations as soon as it is ready, and should not
wait in an attempt to return to perfect cadence. The most important
distinction to be made is between the first alias pair (n = 1) and
the real peak, since these are closest in frequency. Hence, if € were
carefully selected, values nearer to (but not equal to) 0.5 would be
preferable to those nearer to 0.0 (= 1.0).

= | cos(nTte)|. 7
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Figure 8. Amplitude ratios of alias peaks at nfs + fr to real peaks at f, for integer n = [1, ..., 5]. Aliases have amplitudes below their corresponding real
peak, as long as € is not a simple fraction. Noisy data contribute some scatter. Based on 1000 simulated light curves.
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Figure 9. Fourier transform of 351 d of simulated TESS data, representative of the continuous viewing zone. The value of the offset, €, is randomized every
orbit. Dashed orange lines are drawn at integer multiples of the Nyquist frequency (=24 d~'). The input frequencies at 64.4, 67.7 and 87.2 d~! are completely
recovered. The noise, corresponding to the prediction for a 15th magnitude star, has no effect on the ability to apply the method.

5.2 Other cadences

Carefully planned offsets could be inserted into the shorter ca-
dence observations to achieve the same effect. The 2-min cadence
is only six times longer than the 20-s cadence, and so the in-
troduction of a suitable offset to that 2-min cadence could push
its effective Nyquist frequency to roughly the same value as that
of the 20-s cadence. This does not relieve the amplitude reduc-
tion effect due to undersampling (equation 6), so it will remain
the case that 20-s sampling is warranted for high-frequency, low-
amplitude oscillators such as white dwarfs. It is noteworthy that if
a random offset is introduced for the purposes of the 30-min full-
frame images, then the shorter cadences will automatically benefit
from the same offset, though the fractional cadence of that oft-
set will of course differ according to the length of the cadence
considered.

Other photometric data sets can supplement TESS and Kepler
data to resolve Nyquist ambiguities. For instance, the SuperWASP
(Pollacco et al. 2006) and KELT (Pepper et al. 2007) data have
random sampling, and oscillations can be detected at frequencies
much higher than the mean sampling frequency. This is exempli-
fied by the discovery of high-frequency oscillators in SuperWASP
data (Holdsworth et al. 2014), which included rapidly oscillating
Ap stars and the fastest § Sct pulsator known.

5.3 Application to the continuous viewing zone

Some parts of the sky will be observed for more than 27 d. The
TESS continuous viewing zones at the ecliptic poles will be ob-
served for 351 d each. If the return to cadence is imperfect every
time, that is, some random value of € is implemented, then super-
Nyquist asteroseismology is made easier. An example is provided
in Fig. 9. The amplitude of the real peaks are at least twice those of
the aliases, making the real peaks easy to identify, even when they
have frequencies greater than the sampling frequency. Those ampli-
tudes are still heavily reduced because the exposure time is longer
than the pulsation period. The actual input amplitudes for the real
peaks at 64.4, 67.7 and 87.2 d~! were 1000, 1000 and 2000 ppm,
respectively, and so the amplitude reduction shown in Fig. 7
is observed.
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6 CONCLUSIONS

The short light-travel time across the TESS orbit causes only a small
Rgmer delay. The resulting modulation of the sampling interval over
the orbital period is insufficient to produce detectable multiplets out
of the Nyquist aliases in 30-min TESS full-frame images.

However, the Nyquist limits of all TESS cadences can be raised
by introducing a sampling offset while the spacecraft performs a
data downlink. Providing that the time of return to observations
after downlink is not an integer number of cadences since the last
observation, Nyquist ambiguities can be resolved. It was shown that
an offset from perfect cadence with no simple integer relationship to
a full cadence is preferable. Observing time can be recouped from
the downlink event by implementing this proposed offset, because
for the application to the full-frame images, the telescope need not
wait for the observing gap to reach an integer multiple of 30 min in
duration.

Application to the continuous viewing zone yields even more
straightforward identification of the real peaks, because the ampli-
tudes of the aliases are more strongly reduced as a result of several
introduced sampling offsets.

Sampling offsets are also important to the main goal of the mis-
sion. With the huge number of transiting events that TESS will
detect, it is inevitable that some celestial orbital periods will be an
integer (or near-integer) multiple of the sampling interval, which
will lead to poor transit phase coverage. Offsetting the sampling af-
ter downlink will alleviate this and open up additional opportunity
for transit timing variations for the very short-period planets, or for
planets in the continuous viewing zone.

The major consequence of this work is that thousands more stars
will be opened up for asteroseismic study.
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