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ABSTRACT

We present a linear analysis of the vertical structure and growth of the magnetorotational
instability in stratified, weakly ionized accretion discs, such as protostellar and quiescent dwarf
novae systems. The method includes the effects of the magnetic coupling, the conductivity
regime of the fluid and the strength of the magnetic field, which is initially vertical. The
conductivity is treated as a tensor and is assumed to be constant with height.

We obtained solutions for the structure and growth rate of global unstable modes for different
conductivity regimes, strengths of the initial magnetic field and coupling between ionized
and neutral components of the fluid. The envelopes of short-wavelength perturbations are
determined by the action of competing local growth rates at different heights, driven by the
vertical stratification of the disc. Ambipolar diffusion perturbations peak consistently higher
above the midplane than modes including Hall conductivity. For weak coupling, perturbations
including the Hall effect grow faster and act over a more extended cross-section of the disc
than those obtained using the ambipolar diffusion approximation.

Finally, we derived an approximate criterion for when Hall diffusion determines the growth
of the magnetorotational instability. This is satisfied over a wide range of radii in protostellar
discs, reducing the extent of the magnetic ‘dead zone’. Even if the magnetic coupling is weak,
significant accretion may occur close to the midplane, rather than in the surface regions of

weakly ionized discs.
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1 INTRODUCTION

The collapse of protostellar cores leads to the development of a
central mass or protostar, surrounded by a disc of material, which is
accreted towards the centre. During this process angular momentum
is transferred to a small percentage of disc material at large radii,
enabling the collapse of most of the disc towards the central star
(e.g. Weintraub, Sandell & Duncan 1989; Adams, Emerson & Fuller
1990; Beckwith et al. 1990). The evolution of this ‘disc accretion’
phase is dependent upon the rate of angular momentum transport in
the disc (e.g. Adams & Lin 1993).

A variety of mechanisms have been invoked to explain this trans-
port. As the molecular viscosity of accretion discs is too low to
explain observed accretion rates (Pringle 1981), some form of tur-
bulent viscosity must be present. The origin and characteristics of
this turbulence remain an important problem in star formation theo-
ries. Convective turbulence has been considered as an option (Lin &
Papaloizou 1980), but further studies suggest that this mechanism
may transport angular momentum towards the central star instead of
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away from it (Cabot & Pollack 1992; Ryu & Goodman 1992; Stone
& Balbus 1996). The gravitational field of a companion star may
trigger hydrodynamic waves that can transport angular momentum
(Vishniac & Diamond 1989; Rozyczka & Spruit 1993), but as a
significant fraction of stars do not belong to binary systems, this
mechanism is not general enough to explain accretion processes in
all stars.

Balbus and Hawley have pointed out that the nature of this anoma-
lous viscosity can be hydromagnetic (Balbus & Hawley 1991; Haw-
ley & Balbus 1991; Stone et al. 1996). This ‘magnetorotational’ in-
stability (MRI) had been described initially by Velikhov (1959) and
Chandrasekhar (1961) through their analysis of magnetized Couette
flows. It drives turbulent motions that transport angular momentum
radially outwards, as fluid elements exchange angular momentum
non-locally by means of the distortion of the magnetic field lines
that connect them.

Under ideal MHD conditions, MRI perturbations grow in discs
that are differentially rotating, with the angular velocity increasing
outwards. Axisymmetric modes need a magnetic field with a weak,
poloidal component. In this context, ‘weak’ means that the magnetic
energy density of the field is less than the thermal energy density.
These perturbations have a characteristic length-scale A ~ v/,
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where v, is the Alfvén speed and €2 is the Keplerian angular fre-
quency in the disc, and a maximum growth rate ~g€2/2, with g =
1.5 for Keplerian discs (Balbus & Hawley 1992a). This growth rate
does not depend on the strength or direction of the magnetic field as
long as a poloidal component is present. Non-axisymmetric pertur-
bations are most unstable under the influence of a poloidal field, but
also grow at a reduced rate if the field is purely toroidal (Balbus &
Hawley 1992b). These perturbations are of interest for the analysis
of field amplification mechanisms, as dynamo amplification cannot
occur through axisymmetric perturbations (Moffatt 1978). With no
strong dissipation processes, no other conditions are required. Be-
cause of its robustness and the general conditions under which it
develops, the magnetorotational instability is a promising source of
turbulent viscosity in accretion discs.

Ideal MHD conditions are a good approximation to model astro-
physical systems where the ionization fraction of the gas is high
enough to ensure neutral and ionized components of the fluid are
well coupled. Active dwarf novae (except possibly in the outer re-
gions) and black hole accretion discs are examples of such systems.
However, in dense, cool environments such as those of protostellar
discs, it is doubtful that magnetic coupling is significant over the
entire radial and vertical dimensions of the discs (Gammie 1996;
Wardle 1997). Similar conditions are thought to apply in quies-
cent and the outer regions of hot-state dwarf novae discs (Gammie
& Menou 1998; Menou 2000; Stone et al. 2000). In these cases,
low-conductivity significantly affects the growth and structure of
MRI perturbations. Different approximations have been adopted to
account for the departure from ideal MHD in low-conductivity as-
trophysical discs (see Section 2.1).

Most models of the MRI in low-conductivity discs have used the
ambipolar diffusion (Blaes & Balbus 1994; MacLow et al. 1995;
Hawley & Stone 1998) or resistive (Jin 1996; Balbus & Hawley
1998; Sano, Inutsuka & Miyama 1998) limits. Recently, the impor-
tance of the Hall conductivity terms has been recognized in addition
toresistivity for the analysis of low-conductivity discs (Wardle 1999,
hereafter W99; Balbus & Terquem 2001; Sano & Stone 2002a,b,
2003).

The huge variation of fluid variables over the vertical and radial
extension of astrophysical discs is a further complication. Vertical
stratification is particularly relevant, as these objects are generally
thin and changes in the plane of the disc are much more gradual
than those in the direction perpendicular to it. Previous models
of the MRI have not included density stratification and Hall conduc-
tivity simultaneously. It is expected that solutions will be strongly
modified when both factors are present. This motivates the present
study.

This paper examines the structure and linear growth of the mag-
netorotational instability in vertically stratified, non-self-gravitating
accretion discs. We assume the disc is isothermal and geometrically
thin, so variations in the fluid variables in the radial direction can
be ignored. The initial magnetic field is vertical and the analysis
is restricted to perturbations with wavevector perpendicular to the
plane of the disc (k = k). These are the most unstable perturbations
with the adopted field geometry, as magnetic pressure strongly sup-
presses displacements with k, # 0 (Balbus & Hawley 1991; Sano
& Miyama 1999). The conductivity of the gas is treated as a tensor
and is assumed constant with height in this initial study, although
the formulation is also valid for a z-dependent conductivity. This
makes the present method a powerful tool for the analysis of more
realistic discs (see Section 6 for a discussion).

Section 2 presents the governing equations for a weakly ion-
ized, magnetized disc in near-Keplerian motion around the central
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star and details the adopted disc model. Section 3 summarizes the
linearization of the equations and presents the final linear system
in dimensionless form. It also describes the three parameters that
control the dynamics of the fluid. Section 4 discusses the bound-
ary conditions used to integrate the equations from the midplane
to the surface of the disc and the integration method. Section 5
presents the test cases used to characterize the conductivity regimes
relevant for this work and compares our results with a previous lo-
cal analysis. It also details key findings on the dependence of the
structure and growth rate of the perturbations with the conductiv-
ity regime, the strength of the magnetic field and its coupling with
the neutral gas. These results are discussed in Section 6. By way
of example, this section also calculates the structure and growth
rate of the MRI under fluid conditions where different conductivity
regimes are dominant at different heights above the midplane. This
reflects (qualitatively) the conditions expected to be found in real
discs. Finally, the methodology and key findings of this paper are
summarized in Section 7.

2 FORMULATION

2.1 Governing equations

The equations of non-ideal MHD are written about a local Kep-
lerian frame corotating with the disc at the angular frequency €2
associated with the particular radius of interest. Consequently, the
velocity of the fluid can be expressed as a departure from exact Ke-
plerian motion v =V — vk, where V is the velocity in the standard
laboratory coordinate system (r, ¢, z) anchored at the central mass
M and vx = VGM/r¢ is the Keplerian velocity at the radius r.
Similarly, if 9/9¢ is the time derivative in the local Keplerian frame,
then the time derivative in the laboratory frame can be expressed as
0/0t + ©20/9¢. We also assume that the fluid is weakly ionized,
meaning that the abundances of charged species are so low that their
inertia and thermal pressure, as well as the effect of ionization and
recombination processes in the neutral gas, are negligible. These
assumptions effectively restrict the range of frequencies that can be
studied with this formulation to be smaller than the collision fre-
quency of any of the charged species with the neutrals. Accordingly,
separate equations of motion for the charged species are not required
and their effect on the neutrals is contained in a conductivity tensor
(see Section 2.2).
The governing equations are the continuity equation,

P 49 (o) =0 ()
—_ . v) =0,
ot P
the equation of motion,
ov 1 . VR c?
— V)V = 2QugF + =Qu.p — KP4+ 2V
a[—i—('u v 1)¢r—|—2 ) rr—l—p P
J x B
+ Vo — =0, (@3
cp

and the induction equation,
0B , 3 N
E:Vx(va)—chE—EQB,qb. 3)

In the equation of motion (2), ® is the gravitational potential due
to the central gas, given by

GM
- (r2 + Zz)l/z’
and v% /r is the centripetal term generated by exact Keplerian mo-
tion. At the disc midplane this term balances the radial component

“
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of the gravitational potential. The terms 2Quv,# and %Qv,é are the
coriolis terms associated with the use of a local Keplerian frame,
¢s = +/ P/ p is the isothermal speed of sound, 2 = vk /r is the Ke-
plerian frequency and c is the speed of light. Other symbols have
their usual meanings.

In the induction equation (3), the term ¢V x E' contains the effects
of non-ideal MHD. E’ is the electric field in the frame comoving
with the neutrals and the term %QB,(Z) accounts for the generation
of a toroidal field from the radial component due to the differential
rotation of the disc.

Additionally, the magnetic field must satisfy the constraint

V-B=0, ®
and the current density must satisfy Ampere’s law,
4
and Ohm’s law,
J=0 E. Q)

Note that the conductivity, which depends on the abundance and
drifts of the charged species through the neutral gas is treated as a
tensor o, as detailed in the following section. This formulation is
compared with the drift velocity approach in Section 2.3.

2.2 The conductivity tensor o

The electric conductivity is a tensor whenever the gyrofrequency
of the charged carriers is larger than the frequency of momentum
exchange by collisions with the neutrals, or || > 1 (Cowling 1957;
Norman & Heyvaerts 1985; Nakano & Umebayashi 1986). In con-
trast, when collisions with the neutrals are dominant the conductiv-
ity is a scalar, the ordinary ohmic resistivity. To obtain expressions
for the components of this tensor, we begin by writing down the
equations of motion of the ionized species. As inertia and thermal
pressure are neglected, the motion of the charged particles is given
by the balance of the Lorentz force and the drag force from collisions
with the neutrals,

Zie (E’+ﬁ ><B> —ympv; =0, ®)
C

where each charged species j is characterized by its number density
nj, particle mass m;, charge Z;e and drift velocity v;. In the above
equation,

(ov);
mj+m’

Vi = 9

where m is the mean mass of the neutral particles and (ov); is
the rate coefficient of momentum exchange by collisions with the
neutrals. We will also make use of the Hall parameter,

Z_feB 1
Bj= —,

m;c yjp

given by the ratio of the gyrofrequency and the collision frequency
of charged species j with the neutrals. It represents the relative im-
portance of the Lorentz and drag terms in equation (8).

Following the treatment of Wardle & Ng (1999) and W99 we use
the following expression for Ohm’s law:

J=0-E =0E|+0BxE| +0E, (11

(10)

obtained by inverting (8) to express v; as a function of E’ and B
and then using J = e} ;n;Z;v; together with the charge neutrality
assumption ) _;n;Z; = 0. In equation (11), E| and E', are the com-
ponents of the electric field E’, parallel and perpendicular to the

magnetic field, respectively. The components of the conductivity
tensor o are the conductivity parallel to the magnetic field,

ec
o) = Eznjzjﬂﬁ (12)
J
the Hall conductivity,
ec n;Z;
o1 =" . (13)
B 4~ 1+8;
J
and the Pedersen conductivity,
o = ”J'Zfﬂ;. (14)
B - 1+ 85

The relative values of the components of the conductivity tensor
differentiate three conductivity regimes.

(i) The ambipolar diffusion regime occurs wheno | > o, > |0 |
or |B] > 1 for most charged species. This implies that most charged
particles are strongly tied to the magnetic field by electromagnetic
stresses. This regime is dominant at relatively low densities, where
the magnetic field is frozen into the ionized component of the fluid
and drifts with it through the neutrals. The linear behaviour of the
MRI in this regime has been analysed by Blaes & Balbus (1994)
and the non-linear growth by MacLow et al. (1995) and Hawley &
Stone (1998).

(i1) The resistive (Ohmic) regime is obtained when most charged
species are linked to the neutrals via collisions. This occurs when
o ~ 0, > |oy|, implying |B| < 1. This regime is predominant
closest to the midplane, where the high density makes the collision
frequency of the charged particles with the neutrals high enough to
prevent the former from drifting. This case has been studied under
a linear approximation by Jin (1996), Balbus & Hawley (1998),
Papaloizou & Terquem (1997), Sano & Miyama (1999) and Sano
et al. (2000). The non-linear regime has been studied by Sano et al.
(1998), Fleming, Stone & Hawley (2000) and Stone & Fleming
(2003). This last work includes a z-dependent resistivity.

(iii) Finally, the Hall regime occurs when charged particles of
one sign are tied to the magnetic field while those of the other sign
follow the neutrals. In this case |o| ~ 0, < o and |B] ~ 1. Itis
important at intermediate densities, between those associated with
the ambipolar and Ohmic diffusion regimes. Recent studies have
explored the MRI with Hall effects in the linear (W99; Balbus &
Terquem 2001) and non-linear regimes (Sano & Stone 2002a,b,
2003).

2.3 Comparison with the multifluid approach

Another commonly used form of the induction equation is obtained
by assuming that ions and electrons are the main charge carriers
and drift through the neutrals (e.g. Balbus & Terquem 2001; Sano
& Stone 2002a). Using this approach, the induction equation is
0B
— =V x (v, x B)
ot

drtnJ J><B+(J><B)><B

c ene CYiPP;

Vx |vx B

15)

where v, is the electron drift speed, n = ¢?/47o is the resistivity
and the subscripts e and i refer to electrons and ions, respectively.
The four terms in the right-hand side of equation (15) are, from left
toright, the inductive, resistive, Hall and ambipolar diffusion terms.
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We now express equation (3) in terms of J, B and the components of
the conductivity tensor in order to show that, in the appropriate limit,
it corresponds to equation (15), as expected. We begin by inverting
equation (11) to find an expression for E’,

J ﬂ]XB_(g_i) (JxB)x B

E'=—+—
(o] o7 B B2

3 , (16)
o I
where 0, = y/o? + 07 is the total conductivity perpendicular to
the magnetic field. Assuming that the only charged species are ions
and electrons with Hall parameters 8; and . (<0), respectively, and
that charge neutrality is satisfied (n; = n.), we obtain the following
expressions for the components of the conductivity tensor:

cene

o) = — (Bi — B, an
cene (Bi+ Be)(Be — Bi)
_ cene (Bi+ Be)(Be — Bi) 18
9="p (1+82) (1 +52) (o
and

cene (1 — Bipo)(Bi — Bo)

= _—_— 1
TR U+ A+ ) a9
From (18) and (19), we find

o, = cen, (Bi — Be) 20)

B[+ (48]

Substituting these expressions into (16) gives

Bl J  Be+BJIxB B

E = =
Bi—Beo  B.—PBi cen. B. — Bi

(JxB)x B
cyipp;

@n

where o is the electrical conductivity due to electrons. Finally, sim-
plifying (21) by using |B.| > Bi (as is the case) and substituting the
resulting E’ in equation (3) (without the coriolis term), yields the
standard result, shown in (15).

Each of the last three terms in the right-hand side of equation (15)
dominate when the fluid is in a particular conductivity regime (Sec-
tion 2.2). These limits can also be recovered with the appropriate
assumptions, through equations (16) and (21). To obtain the resis-
tive regime, for example, we substitute oy = 0 and o) = o into
equation (16). In this limit the conductivity is a scalar (the resistive
approximation), so E' = J /o and the induction equation reduces to
the familiar form

oB c?
— =Vx|vxB——VxB). (22)
ot 4o

On the other hand, to model the Hall limit, we regard the charged
species to be either ‘ions’, which are strongly tied to the neutrals
through collisions (8; < 1), or ‘electrons’, for which the only im-
portant forces are electromagnetic stresses (|8.| > 1) (see also dis-
cussion in W99). In this limit the Hall conductivity is

cen,

o = 2 <L 0| (23)
while the Pedersen conductivity is

1
0y =0 (,Bi_F) <L o (24

As the ions are effectively locked with the neutrals, the current
density will be given by the drift of the electrons through the neutral
gas. Collisions are unimportant in their equation of motion, so they
drift perpendicular to the plane of the electric and magnetic fields,
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in order to annul the Lorentz force acting upon them. In this limit
(J x B) x B=—B?J and

_J><B

E/
cen,

(25)

consistent with the Hall term in equation (15).

Finally, the ambipolar diffusion approximation is recovered by
assuming o > 05, o0y = 0 and |B.| > Bi > 1. In this limit, the
Pedersen conductivity is given by

ce n, 26)
Oy = — —
© BB
and
B)x B
E = _% 27
CVippi

which gives the ambipolar diffusion term of (15).

Although the multifluid drift and conductivity tensor formula-
tions are ultimately equivalent, which one is more convenient de-
pends on the problem at hand. In particular, the presence of dust
grains tends to make the treatment of different species especially
complex. In protostellar discs, dust grains can be the more abun-
dant charged species over extended regions. For example, assum-
ing 0.1 um grains, negatively charged grains dominate whenever
nyg 2> 10" cm™~3, while positive charged grains are the most abun-
dant ions for ny; > 10" cm~3 (Wardle & Ng 1999). Having separate
equations of motion for different charged species would generally
involve dividing the grain size distribution of interest into an ap-
propriate number of discrete intervals and explicitly treating each
one. Unless the number of such intervals is small it is easy to see
that this method can become very cumbersome. In these circum-
stances, incorporating the contribution of each charged species into
a conductivity tensor can be a valuable approach.

2.4 Disc model

Our model incorporates the vertical structure of the disc, but ne-
glects fluid variations in the radial direction. This is appropriate as
astrophysical accretion discs are generally thin and changes in the
radial direction occur on a much larger length-scale than those in
the vertical direction. Including the vertical structure means that
perturbations of spatial dimensions comparable to the scaleheight
of the disc, which are associated with a strong magnetic field (va ~
¢s), or low conductivity, can be explored.

The balance between the vertical component of the central grav-
itational force and the pressure gradient within the disc determines
its equilibrium structure. The vertical density distribution in hydro-
static equilibrium is given by
plr,z)

22
o) F {_wzm} ' (28)

In the above equation, p,(r) is the gas density at the midplane and
H(r) = cs/<2 is the scaleheight of the disc.

A self-consistent treatment of this problem, would involve adopt-
ing a particular dependence of p, and H with r using a suitable
model, such as the minimum solar nebula (Hayashi, Nakazawa &
Nakagawa 1985) and calculating p(r, z) by means of (28). This den-
sity, together with the adopted strength of the magnetic field B and
the values of the conductivity tensor o as a function of height would
be used to evaluate the parameters that govern the fluid evolution
(see Section 3.3) and solve the fluid equations.

The realistic evaluation of the conductivity tensor is a complex
undertaking, as it depends critically on the abundances of charged
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species (ions, electrons and charged dust grains) which, in turn, are a
function of the ionization balance in the disc. This balance is given
by the equilibrium between ionization processes by cosmic rays,
radioactive elements and X-rays from the central star (e.g. Hayashi
1981; Glassgold, Najita & Igea 1997; Igea & Glassgold 1999; Fro-
mang, Terquem & Balbus 2002) and recombinations taking place
both in the gas phase and in grain surfaces (e.g. Nishi, Nakano &
Umebayashi 1991). In low-conductivity discs, the level of ioniza-
tion is insufficient to produce good coupling between the magnetic
field and the neutral component of the fluid over its entire vertical
structure. In protostellar discs, for example, it is expected that in the
region outside ~0.1 au from the central star, the coupling will be
significant only in the surface layers, where X-rays and cosmic rays
can penetrate and ionize the gas (Gammie 1996; Wardle 1997). In
these environments, the z-dependent attenuation of the ionization
rate typical of interstellar space 1077 H~! s~! has to be taken into
account.

On the other hand, the contribution of dust grains to recombina-
tion processes is particularly complex, because they generally have
a distribution of sizes and corresponding collision cross-sections
(Mathis, Rumpl & Nordsieck 1977; Umebayashi & Nakano 1990).
Moreover, the dynamics of grain particles depends on the activity of
the disc. In quiescent environments, they tend to settle towards the
midplane and begin to agglomerate into bigger structures that could
eventually become planets (e.g. Weidenschilling & Cuzzi 1993).
This removes grains from regions at relatively high z and causes the
ionization level to increase by reducing recombination processes
taking place in their surfaces. Simulations of the evolution of dust
grain distributions in dense cores show that they grow icy mantles
and coagulate efficiently (Ossenkopf 1993). By this process, the
smallest particles grow quickly while the upper grain size limit is
only slightly changed (Ossenkopf 1993). As a result, the surface
area of dust grains can be significantly modified by grain evolution,
which ultimately affects the ionization balance in the disc.

In the present work, a simpler treatment has been adopted. In order
to study the MRI under different conductivity regimes, the values of
the components of the conductivity tensor have been selected so that
they satisty the conditions outlined in Section 2.2 for each regime.
For simplicity, these values are assumed to be constant, although
the formulation allows them to be a function of height. We found
that the parameters that control the evolution of the fluid are the
ratio of the components of the conductivity tensor perpendicular to
the magnetic field (o,/0,), the strength of the magnetic field and
its degree of coupling with the neutral component of the fluid (see
Section 3.3). The midplane values of these parameters have been
selected in order to simulate the fluid conditions we were interested
in modelling. This approach will be discussed in Section 3.1 where
the chosen test cases are detailed.

With this approach we are able to study the dependence of the
growth rate and structure (characterized by the height of maximum
amplitude and the wavenumber of unstable modes) of the instability
with the parameters of the fluid in a stratified disc. This is relevant,
as the region where linear perturbations peak is also expected to
be the region where non-linear perturbations grow fastest, until tur-
bulence finally sets in and causes all wavenumbers to interact so
that, eventually, the longest wavelengths carry the greatest angular
momentum transport (e.g. Hawley & Balbus 1995).

3 LINEARIZATION

We linearized the system of equations (1)—(3), (6) and (11) about an
initial steady state where J = v= E’ =0 and B = BZ. In the initial

state both E’ and J vanish, so the changes in the conductivity tensor
due to the perturbations do not appear in the linearized equations. As
a result, it is not necessary to explore how the perturbations affect
the conductivity and only the values in the initial steady state are
required.

3.1 Linearized equations

We assume the wavevector of the perturbations is perpendicular to
the plane of the disc (k = k). Perturbations with a vertical wavenum-
ber, initiated from a vertically aligned equilibrium magnetic field,
exhibit the fastest growth rate for a given set of parameters be-
cause magnetic pressure strongly suppresses displacements with
k, # 0 (Balbus & Hawley 1991; Sano & Miyama 1999). Taking
perturbations of the form ¢ = g, + 6¢(z)e’ about the initial state,
linearizing and neglecting terms of the order of H /r or smaller, we
find that the equations decouple into two subsystems. One of them
corresponds to sound waves propagating in the vertical direction
and the other describes MHD perturbations in the plane of the disc,
with vanishing z component.

With these simplifying assumptions, the final linear system of
equations that describes the MHD perturbations within the disc is

B
iwpdv, — 2pQvy — —8J4 =0, (29)
c
. 1 By
iwpdvg + 5,09811,- + ?BJ, =0, (30)
dSE
iwsB, —c—2% =0, 31
dz
dSE, 3
iw$ B —Q6B, =0, 32
1woBy + ¢ & + 2 (32)
§J, = —— 33
4t dz G
¢ déB,
8y = — 20 34
T 4n dg G
(SJ,- =O'2(SE;—(715E/¢, (35)
8,145 =O'1(SE;+028E;5, (36)

where  E4 and S E, are the perturbations of the electric field in the
laboratory frame, given by

, . By
SEy=8E), + —sv,, 37
c
and
, By
SE, =8E, — —8vy. (38)
c

We note that o, the component of the conductivity tensor par-
allel to the magnetic field, does not appear in the final linearized
equations. Because the ambipolar diffusion and resistive conductiv-
ity regimes are differentiated by the value of o (Section 2.2), this
means that during the linear stage of the MRI, under the adopted
approximations, these regimes are identical.
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3.2 Equations in dimensionless form

Equations (29)—(38) can be expressed in dimensionless form, nor-
malizing the variables as follows:

: 6B
Z*:i *:p(rZ) OB = —
H po(r) By
6 6E 6E’
ov =22 6E" =€ SE* = ¢
Cs ¢sBy ¢sBy
6
spr=—% o o
CsBUULU UJ_O Gio

The subscript ‘0’ is used to denote variables at the midplane of
the disc. Effecting these changes and dropping the asterisks to keep
the notation simple, we finally express the dimensionless system of
equations in matrix form as

B, 0 0 CiA, CiA; B,
d | B 0 0 —CiA, CA B
d o | _ . 142 C1A3 ® (39)
dz | E, -5 —v 0 0 E,
E, v 0 0 0 Ey
si=oc (™ ") sk (40)
=0 2
P\A, A,
Xo 1 -2 v
bv="— L od (41)
pl+vi\—v —3
/ 1 03 0
6E = — 6J, (42)
o] \—0, —0,
where
iw
= —, 43
v=9 (43)
VA -2
¢ =0 (2) " (44)
Cs
XoO 1 50 o XoO -
Cr = |1 o001 __l 2 _2 o0 L i 45
2 [+ 5 1+v2<201+ vt (45)
01 X001 1
Al=—+2 —_— 46
1= + PR (46)
0, Yoo |1
Ay = — 47
2= +v PR 47
and
(o5} 1 XoOL 1
Ay = — + - . 48
T T2 p 142 “8)
In the above expressions,
B()
= 49
" T @
is the Alfvén speed at the midplane of the disc, and
Weo 1 BZO'L()
=g =g 50
X Qe (50)

is a parameter that characterizes the midplane coupling between
the magnetic field and the disc (see Section 3.3). To understand the
information contained in this parameter it is useful to recall that the
effect of finite conductivity is different for perturbations of different
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wavelengths. Finite conductivity is important when the term ¢V x
E’ in the induction equation (3) is of the order of V x (v x B).
Adopting a length-scale L ~ 1/k ~ vp/w and o ~ o |, it is found
that these two terms are comparable when kv, ~ (c?/4m)k?/o |, in
other words, non-ideal effects will strongly modify wavemodes at,
or above, the critical frequency,
BZO' iR
w. = —.
pc?

It can be shown (W99) that in the limit |8 ;| — o0, w. reduces
to > ;y;p;, the collision frequency of the neutrals with any of the
charged species. Generally, w, is smaller than this value and much
smaller than y; p, the collision frequency of charged species j with
the neutrals. In dense clouds, w. ~ y g pG, whichis the smallest y; o,
the collision frequency of neutrals with grains. As pg ~ 0.01p, the
treatment of this paper, restricted to w < y;p by neglecting the
inertia of the charged species, remains valid for @ ~ 100w.. For
perturbations with lower frequencies (longer wavelength) than w.,
ideal MHD (the flux-freezing approximation) is valid.

(5D

3.3 Parameters

As these equations reveal, three important parameters control the
evolution of the fluid.

(1) va/cs, the ratio of the Alfvén speed to the isothermal speed
of sound of the gas at the midplane. It is a measure of the strength
of the magnetic field. In ideal MHD unstable modes grow when the
magnetic field is subthermal (v, /cs < 1). When v, ~ ¢ the mini-
mum wavelength of the instability is of the order of the scaleheight
of the disc and the growth rate decreases rapidly.

(i1) xo. a parameter that characterizes the strength of the cou-
pling between the magnetic field and the disc at the midplane (see
equation 50). It is given by the ratio of the critical frequency above
which flux-freezing conditions break down and the dynamical fre-
quency of the disc at the midplane. If x, = w,/2 < 1 the disc
is poorly coupled to the disc at the frequencies of interest for dy-
namical analysis. As the growth rate of the most unstable modes
are of the order of 2 in ideal MHD conditions, these are also the
interesting frequencies for the study of this instability.

(iii) o1/02, the ratio of the conductivity terms perpendicular to
the magnetic field. It is an indication of the conductivity regime of
the fluid, as discussed in Section 2.2.

Note that the density of the disc decreases with z, so the local
values of x and v, /c, increase with height. The parameters of the
model are defined as the corresponding values at the midplane.

It is common practice to characterize the magnetic coupling of
a weakly ionized fluid by its electron density n.. Before finishing
this section, we discuss how x relates to this fluid parameter. We
begin by writing the magnetic Reynolds number as (e.g. Balbus &
Terquem 2001),

R vwH  B’oyJAmpc, o X

M= n B pc? B Q_(TLUA/CS!
where we have used n = ¢? /470 . If ions and electrons are the only
charged species, then

(52)

R
x=2 o . (53)

Cs (1 +I3§)1/2(1 +ﬂi2)1/2

In the resistive regime, || < 1 for both charged species and (53)
shows that the criterion for non-Hall MRI perturbations to grow
(W99), x > va/cs, is equivalent to Rey; > 1.
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Table 1. Comparison of the magnetic coupling parameter y, and the ionization fraction x. at the midplane for
different radial positions r,, with B = 10 mG and assuming grains have settled out (Fromang et al. 2002). Also
shown are the assumed temperature T, and calculated values of ny, va/cs, ¢, Be and B;.

ro@) To(K) nu(em™)  wvafes  CGTTHTH B Bi Xe Xo
1 280 6 x 10 000076 5.76 x 10722 0.035 7.68 x 1075 7.32x 10713 89 x10°¢
5 130 7 x 1012 0.010 481 x1071% 444 658x103 511x10°10 1.9
10 90 1 x 10'2 0.033  9.76 x 10718 37.31 0.046 1.76 x 10~° 19

We can now obtain an expression for x in terms of the electron
density 7, at the midplane,

1 B0,  en.B Bi — Be
X=35 = 2 2
Q pc? cQp (1+ﬂ§)1/ (1+:3i2)1/
ne(ov)me B:

R~ (me +m,)Q2 (1 +/33)1/2, (54)

where we have used expression (20) for o and assumed B; < |Be|
and B; < 1. In the above equation

128/<T)“2

97tm.

(ov) ~ 1 x 1071% em? ( (55)
is the momentum transfer rate coefficient for electron—neutral scat-
tering. Note that the dependence of x on magnetic field strength
now enters only through the electron Hall parameter .. Following
Fromang, Terquem & Balbus (2002) we assume that grains have
settled out and the electron (and ion) number density is determined
by the recombination of metal ions given by

tn 172
ne & (—H) , (56)
o

where o &~ 3 x 10~"'T~1/2 ¢cm? s~ is the radiative recombination
rate for metal ions. The ionization rate ¢ is assumed to be due to
cosmic rays at a rate of 10~ 7exp(—X/96g cm™2) s~' H~!, where
¥ is the disc surface density. This dominates X-ray ionization for
the column densities we shall consider here. Results are shown in
Table 1 for a nominal 1 solar mass star and B = 10 mG.

For this strength of the magnetic field, |8.] < 1 at 1 au and yx
scales as B? (up to about 200 mG) at this radius. On the other hand,
Be is greater than 1 at 5 and 10 au, so x will scale linearly with B (see
equation 54). In particular, for B = 100 mG at 1 au, x =~ 0.00088,
consistent with the detailed calculations in Wardle (2003).

4 BOUNDARY CONDITIONS

To solve equations (39)—(42) it is necessary first to integrate the sys-
tem of ordinary differential equations (ODEs) in (39). This problem
can be treated as a two-point boundary value problem for a coupled
ODE. Five boundary conditions must be formulated, prescribed ei-
ther at the midplane or at the surface of the disc.

At the midplane. A set of boundary conditions can be arrived at
by assuming fluid variables have either ‘odd’ or ‘even’ symmetry
about the midplane. ‘Odd’ symmetry means the variable is an odd
function of z and vanishes at z = 0. Conversely, when ‘even’ sym-
metry is applied, the variable is assumed to be an even function of
z and its gradient is zero at the midplane. In this paper we applied
the odd—even symmetry criteria to the perturbations in the magnetic
field, 6 B(z) = 6 B(—z), where the upper (lower) sign corresponds
to even (odd) symmetry conditions. This contrasts with Lovelace,
Wang & Sulkanen (1987), who applied the symmetry criteria to the
flux function W(r, z) = rAy with A, the toroidal component of

the vector potential and obtained 8B, 4(r, z) = F8B, 4(r, —2) as
their symmetry criteria. The symmetry of a particular fluid variable
is assigned arbitrarily, subject to the constraint that fluid equations
are satisfied. This means that two sets of boundary conditions are
equally valid, obtained by reversing the assumed symmetry of the
fluid variables. Perturbations obtained with a particular set of bound-
ary conditions are displaced a quarter of a wavelength from those
found with the other one. The growth rates of these solutions lie at
intermediate points of the curve v versus k obtained from the local
analysis (W99), as expected. Evidently, no generality is lost by fo-
cusing in one of these two possible sets of solutions. We compare the
growth rate versus the number of nodes of perturbations obtained
with ‘odd’ and ‘even’ symmetry in Section 5.2 (comparison with
local analysis). For the rest of the analysis presented in this paper
we chose to assign odd symmetry to § B, and 8 B4, so they vanish
at z = 0. This gives us two boundary conditions at the midplane.
As the equations are linear, their overall scaling is arbitrary, so a
third boundary condition can be obtained by setting one of the fluid
variables to any convenient value. To that effect, we assigned a value
of 1 to §E’,. Summarizing, three boundary conditions are applied
at the midplane:
8B, =8B, =0, and SE, =1.

At the surface. At sufficiently high z above the midplane, ideal
MHD conditions hold. This assumption is appropriate in this case
because the local coupling parameter x is inversely proportional
to the density and so it is stronger at higher z regions where the
density is smaller. When x > 10 the growth rate and characteris-
tic wavenumber of unstable modes differ little from the ideal limit
(W99), so even though for simplicity we have assumed the con-
ductivity tensor to be spatially constant, we can assume that flux-
freezing conditions hold at the surface and the local dispersion re-
lation is kv, = 2 (Balbus & Hawley 1991). As the Alfvén speed
increases with p'/2, the wavelengths of magnetic field perturbations
increase with z and given the dependence of p with z (see equation
28), must tend to infinity as z — 0o. The displacements in the plane
of the disc of an infinitely stretched perturbation should effectively
vanish, so § B, and § B4 should be zero at infinity. This gives us the
remaining two boundary conditions required to integrate the system
of equations (39). Consistently with them, both § E” and §J vanish
as well.

Interestingly, this solution is consistent with § E and v being
non-zero at infinity. The only requirement is that the gradient of the
velocity in the vertical direction dév/dz be zero when z — oo, to
prevent any horizontal stretching of the magnetic field. It may seem
puzzling at first that dv is non-vanishing at infinity. This can be
understood by taking into account that these perturbations travel to
infinity in a finite time 7., given by

®dz  H [T g H
loo = / —/Z =— exp “2 ) dz = v, (57)
0o Va  ValJy 4 v

A
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Table 2. Comparison of maximum growth rate vpyax and number of nodes
N of the fastest growing modes for all conductivity regimes and two different
locations of the boundary. In all cases va/cs = 0.1 and x, = 10.

Z/H=5 z/H =17
Conductivity regime Vimax N Vimax N
Ambipolar diffusion 0.730 3865 5 0.730 3869 5
Hall limit (o1 B; > 0) 0.749 8761 5 0.749 8761 5
Hall limit (01 B; < 0) 0.746 1857 5 0.746 1854 5
Comparable conductivities 0.734 5455 5 0.734 5459 5
Opposite conductivities 0.734 0035 5 0.734 0039 5

where z is the vertical coordinate in units of the scaleheight H and
v}, is the local value of the Alfvén speed. Because of this finite
traveltime to infinity, the fluid can retain a finite velocity when z —
oo. Furthermore, through equations (37) and (38) it is clear that 6 E,
the perturbations in the electric field as seen from the laboratory
frame, are finite at infinity as well.

These boundary conditions are strictly valid at infinity, but will
also hold at a boundary located sufficiently high above the midplane.
We chose to locate the boundary at z/H = 5 after confirming that
increasing this height does not significantly affect either the structure
or the growth rate of unstable modes. This can be appreciated in
Table 2, which compares the maximum growth rate vy, and the
number of nodes N (a proxy for wavenumber) of the perturbations in
all conductivity regimes for two different locations of the boundary.
Summarizing, the boundary conditions adopted at the surface are
8B, =8By =0, at z/H=5.

This system of equations is solved as a two-point boundary value
problem for coupled ODEs by ‘shooting’ from the midplane to the
surface of the disc and simultaneously adjusting the growth rate v
and S E}; until the solution converges.

5 RESULTS

5.1 Test models

We solved the system of equations (39) for different conductivity
regimes, coupling between fluid components and initial magnetic
field strengths. As discussed in Section 3.1, under the linear approx-
imation and disc model adopted in the present paper, the ambipolar
diffusion and resistive conductivity regimes are identical, so even
though throughout this work we have labelled the case when o =
0 as the ‘ambipolar diffusion’ limit, it should be borne in mind that
this condition describes the resistive regime as well. Two different
Hall limits exist, as the growth rate of the MRI depends on the ori-
entation of the initial magnetic field with respect to the disc angular
velocity vector £2 (W99). The case when B, is parallel (antiparallel)
to €2 is characterized by 0B, > 0 (01 B, < 0).

We calculated the growth rate and vertical structure of all unstable
perturbations for different conductivity regimes with v, /¢y = 0.1.
The degree of coupling between the magnetic field and the neutral
component of the fluid was characterized by either x, = 10 (good
coupling) or x, =2 or 1 (poor coupling). The choice of x, for the
low coupling analysis is dependent on the conductivity regime of
the fluid. We took x, = 1 for all regimes, except the Hall (o, B, <
0) limit, where x, = 2 was adopted as our code fails to converge
for x < 2. In this regime, the local analysis shows that when 0.5 <
x < 2 all wavenumbers grow (W99). We believe that this complex
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Table 3. Relative values of the components of the conductivity
tensor perpendicular to the magnetic field oy and o2 and fiducial
values of the coupling parameters x, (good coupling, poor coupling
limits) and v /cs adopted to explore the structure of the perturbations
for all conductivity regimes.

Conductivity regime o Xo VA/Cs

Ambipolar diffusion o1 =0 10, 1 0.1
Hall limito B, > 0 02=0,01>0 10, 1 0.1
Hall limito1B; <0 02=0,01<0 10,2 0.1
Comparable conductivities 10, 1 0.1
Opposite conductivities o] =—03 10,1 0.1

structure of the perturbations at ever increasing k prevents our code
from converging when x, < 2.

We also examined the dependence of the structure of the fastest
growing modes, their growth rate and the height of maximum am-
plitude, with the coupling x, and the strength of the magnetic field
for all conductivity regimes. To study the effect of the magnetic cou-
pling, the value of v, /¢, was fixed at 0.1. The impact of the strength
of the field was explored for good and poor coupling conditions.

Finally, we studied the dependence of the growth rate of the most
unstable perturbations with the coupling y, for va/c, = 0.1 and
0.01 and with the magnetic field strength for x, = 10, 2 and 0.1.

The relative values of o; and o, used to characterize each con-
ductivity regime, together with the values of v, /cs and yx, used to
explore the structure of the perturbations are summarized in Table 3.

5.2 Comparison with local analysis

The linear growth of the MRI as a function of wavenumber in a
local analysis shows that v versus k generally takes the form of
inverted quadratics (W99). The local wavenumber of the perturba-
tions change with z, so we use the number of nodes of § B, over the
entire thickness of the disc, from z = —5 to +35, as a proxy for the
wavenumber £ to compare our results with those of W99. Results
are shown in Fig. 1 for the ambipolar diffusion and Hall (o, B, >
0) limits for good and poor coupling. In both regimes the reduction
of the wavenumber of the fastest growing perturbation with x, is
obtained, as expected from the local analysis. Reducing yx, also di-
minishes the growth rate of the instability in the ambipolar diffusion
limit, but v remains unchanged for the Hall regime, as expected from
the local results.

These results confirm our expectation that applying boundary
conditions and integrating the fluid equations in the vertical direction
would restrict the unstable frequencies from the continuous curve v
versus k obtained in the local analysis to a discrete subset of global
unstable modes supported by the fluid.

Also shown as crosses in Fig. 1 are the growth rates obtained with
‘even’ boundary conditions applied to § B, and § B, at the midplane
(see Section 4), for the ambipolar diffusion limit with x, = 10. As
expected, the perturbations are displaced a quarter of a wavelength
(one node) from those obtained with ‘odd’ boundary conditions.

5.3 Structure of the perturbations

Fig. 2 shows the perturbations in all fluid variables as a function
of height, from the midplane (z/H = 0) to the surface of the disc
(z/H =5), for the ambipolar diffusion regime and good coupling
(xo = 10). They are obtained through equations (40)—(42) once the
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Figure 1. Growth rate versus number of nodes (proxy for wavenumber) of
the MRI for different conductivity regimes and coupling at the midplane x .
Circles show the ambipolar diffusion limit (o7 = 0) and triangles the Hall
limit (62 = 0, o1 B; > 0). Filled symbols correspond to the good coupling
case xo, = 10 and open ones to the poor coupling case x, = 1. Crosses
show the ambipolar diffusion limit with ‘even’ boundary conditions applied
to 8B, and § By. Note that results in this case are displaced a quarter of a
wavelength (one node) from those obtained with ‘odd’ boundary conditions.
In all cases vp/cs = 0.1.
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Figure 2. Structure of the perturbations in all fluid variables as a function of
height for the most unstable mode in the ambipolar diffusion limit, for good
coupling (xo, = 10) and vp /cs = 0.1. The growth rate is v = 0.7304. Note
the non-zero values of v and § E’ at the surface, due to the finite traveltime
to infinity of the perturbations.

ODE system (39) has been integrated. Note the non-zero values of
évand OF at the surface, as discussed in Section 4. From this point
onwards, the discussion will be focused on the perturbations of the
magnetic field only. Unless otherwise stated, the radial component of

the field § B, is plotted with a solid line and the azimuthal component
8B4 with a dashed line. As the overall scale of our linear equations
is arbitrary, plots depicting the structure of the perturbations either
do not show the scale of the vertical axis (corresponding to the
amplitude of the perturbations) or show a conveniently normalized
scale, for reference purposes.

5.3.1 Effect of the conductivity regime

Fig. 3 compares the structure of all unstable perturbations for the
ambipolar diffusion and Hall (o, B, > 0) regimes under good cou-
pling (x, = 10). The modes are ordered by the number of nodes. We
find that at small v, the structure of the perturbations in both cases is
very similar, but significant differences arise when the growth rate
is close to maximum. Then, ambipolar diffusion perturbations peak
at the node closest to the surface, while Hall (o, B, > 0) ones peak
closest to the midplane. This behaviour is linked to the change in the
local coupling x with z and its effect in the structure of the perturba-
tions for different conductivity regimes. It will be discussed further
in the next section. At this good coupling level, there are no appre-
ciable differences in the structure or growth rate of perturbations
between both Hall limit results, as expected from the local analysis
(W99). When both conductivity components are present (0| = 0,
cases), the structure of the perturbations is similar to the ambipolar
diffusion limit. This property is also dependent on the value of the
local coupling x and will be analysed in the next section. We found
nine to ten unstable perturbations in all cases.

Under low coupling conditions, x, = 2 or 1, depending on the
conductivity regime (see Table 3), fewer unstable modes grow for
both the ambipolar diffusion, Hall (o B, > 0) and the comparable
conductivity (o, = o) regimes. Six to eight unstable perturbations
are found in these cases. As expected from the local analysis (W99),
the range of wavenumbers for which unstable modes exist is reduced
as compared with the good coupling cases.

Results are quite different for the two remaining conductivity
regimes (Hall 0y B, < 0 and o, = —0,). More unstable modes are
found in these cases; 12 in the opposite conductivity case (o, =
—0,) and a total of 27 for the Hall (o B, < 0) limit. In this last case
in particular, despite the low coupling of ionized and neutral com-
ponents of the fluid, unstable modes have a very complex structure
(high wavenumber). Fig. 4 shows the structure of two such modes at
the low growth rate, high-wavenumber region of the v—k space. Note
that unstable modes are so closely spaced that increasing the number
of nodes by a few only marginally changes their wavenumber and
has little effect on their growth rate. This complexity is expected
from the form of the dispersion relation at low coupling from the lo-
cal analysis (W99). Non-linear simulations (Sano & Stone 2002a,b)
confirm that the many growing modes in this regime strongly interact
with each other and the instability develops into MHD turbulence.
This turbulence is a transient phase that eventually dies away in two-
dimensional simulations (Sano & Stone 2002a), but it is sustained
in full three-dimensional models (Sano & Stone 2002b). In both
cases the non-emergence of the typical two-channel flow obtained
in other regimes is noted by the authors.

Finally, some of the perturbations show a structure resembling
an interference pattern (see Fig. 5). They were obtained specifically
in regimes where ambipolar diffusion is present, for good and poor
coupling, but not in any of the Hall limits. This pattern can be ex-
plained by recalling that local results show that two unstable modes
exist with the same growth rate and different wavenumber. Despite
this, just one global mode is found for each v in this analysis. Again,
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Figure 3. Structure and growth rate of all unstable modes of the MRI for
the ambipolar diffusion (¢y = 0) and Hall (6, = 0, 01 B; > 0) cases. In
all plots x, = 10 and va/cs = 0.1. For this good coupling, there are no
differences between both Hall limits. When both conductivity components
are present (0] = F0 cases), results resemble the ambipolar diffusion limit
shown.
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Figure 4. Structure of two unstable modes in the Hall (0| B, < 0) limit for
poor coupling (x, = 2) and vp /cs = 0.1. Note the complex structure of the
perturbations (high wavenumber). Unstable modes are so closely spaced that
increasing the number of nodes only marginally changes their wavenumber
and growth rate.

the application of boundary conditions and integration along the
vertical direction restricts global unstable modes from those pos-
sible under a local analysis. The interference pattern suggests that
global modes are a superposition of two WKB modes with (nearly)
the same growth rate and which are not global solutions themselves.
The interference of Fig. 5 was successfully replicated through the
superposition of two local modes with v = (.7004 using the analyt-
ical expressions in W99 for the ambipolar diffusion limit.

5.3.2 Effect of the coupling parameter X,

Fig. 6 compares the structure and growth rate of the most unstable
modes of the MRI for all conductivity regimes as a function of the
coupling parameter x,. In all cases vp/cs = 0.1. We notice that
reducing the coupling x, causes the wavenumber (i.e. the number
of nodes) of unstable modes to diminish in all conductivity regimes
except the Hall o1 B,; < 0 limit (rightmost column of Fig. 6), for
which this dependence is inverted. The growth rate is also reduced
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Figure 5. Structure of an unstable mode in the ambipolar diffusion limit
(o1 = 0) for good coupling (x, = 10) and va/cs = 0.01. Note the interfer-
ence pattern of the perturbation, which suggests that this global mode is a
superposition of two WKB modes of similar growth rates.

at a rate that depends on the conductivity regime of the fluid. These
results are expected from the findings of the local analysis (W99).

It is evident from Fig. 6 that at very high magnetic coupling
(xo & 100), the fluid is close to ideal MHD conditions and results
obtained in all conductivity regimes are alike. When the coupling
is reduced to x, &~ 10, we begin to appreciate differences between
them. In particular, the amplitude of the perturbations when am-
bipolar diffusion is present peaks close to the surface while in both
Hall limits the maximum amplitude is closest to the midplane. This
is more clearly appreciated in Fig. 7, which plots the height of max-
imum amplitude of the fastest growing modes as a function of the
coupling parameter x, and the conductivity regime of the fluid for
va/cs = 0.1. This figure shows that pure Hall regimes (o, B, > 0
and o B, < 0) peak closer to the midplane, for all x, studied, than
the cases when ambipolar diffusion is present. This behaviour can
be explained by the dependence of the local growth of the instabil-
ity with y for different conductivity regimes. The maximum growth
rate of ambipolar diffusion perturbations increases with the local x
(W99), which in turn is a function of height. As a result, at higher z,
the local growth of the instability increases, driving the amplitude of
global perturbations to increase. Hall (o B, > 0) perturbations, in
contrast, have the same v, for all x, so the instability is not driven
from any particular vertical location, which explains the flatness
of their envelope. This also explains why in Fig. 3 the differences
between these regimes are apparent at close to maximum growth:
the increment in the local growth rate with the coupling x is less
marked for slow growing perturbations. This is also appreciated in
the local analysis by the form of the dispersion relation for different
x in the ambipolar diffusion regime (W99).

It is also clear from Fig. 7 that perturbations in the ambipolar
diffusion and Hall (o', B, > 0) limits peak at higher z when y, is re-
duced. This dependence is driven by the reduction of the wavenum-
ber of most unstable perturbations with the coupling in these regimes
(W99, see also Fig. 6). In contrast, in the Hall (¢ | B, < 0) limit, the
wavenumber of the fastest growing mode increases as y , is reduced
and the perturbations peak closer to the midplane with weaker x,.

Finally, looking at the first three columns of Fig. 6 it is evident
that the structure of unstable modes in the o, = +o0, conductiv-

ity regimes are remarkably similar to the ambipolar diffusion limit
shown in the leftmost column of the figure for x, = va/cs = 0.1.
When the coupling is weaker than this value, the structure of unsta-
ble modes in these regimes is no longer alike. To explain this we
recall that the minimum degree of coupling for unstable modes to
grow, determined by the requirement that a wavelength fit in the
disc scaleheight, is given by x = va/cs in the ambipolar diffusion
limit and x > v3/c? in the Hall case (W99). For x, < 0.1 then,
the growth rate of ambipolar diffusion (o; = 0) perturbations is
expected to drop markedly and the envelope of the perturbations
will be mainly determined by the Hall effect. This transition in
both o1 = *0, cases, is clearly seen in Fig. 7. In both cases, for
Xo 2 0.1 the perturbations resemble the ambipolar diffusion limit
(o1 = 0). In the o; = 0, regime, when x, < va/cs the pertur-
bations resemble those in the Hall (o; B, > 0) limit (compare the
lowest panels in the second and fourth columns of Fig. 6), consistent
with the notion that ambipolar diffusion effects are no longer impor-
tant in this region of parameter space. This implies a constant vy,
for weaker x,, so the perturbations tend to peak closer to the mid-
plane. In contrast, in the 0| = —0o; case, vy, continues to diminish
with x once x < va/cs (W99). In this case, the range of growing
modes is always finite (as opposed to the Hall o} B, < 0 limit) and
there is a fastest growing mode for every y. As a result, the insta-
bility is driven at intermediate z (as in the ambipolar diffusion limit)
and accordingly, the perturbations peak at higher z with decreas-
ing x,. The height of maximum amplitude increases faster as y, is
reduced in this regime than in the ambipolar diffusion limit. This
occurs because v,y for a given local x is greater in this case (W99,
see also Section 5.4.1) so global perturbations are amplified even
further.

5.3.3 Effect of the magnetic field strength

In ideal MHD, the weaker the magnetic field is, the higher the min-
imum wavenumber of the perturbations (Balbus & Hawley 1991).
The results of this study are consistent with this finding. With
va/cs ~ 0.005 the perturbations grow with very high wavenum-
bers in all conductivity regimes. This can be appreciated in Figs 8
and 9 for the ambipolar diffusion and Hall (o} B, > 0) limits, re-
spectively, for good coupling (x, = 10). At this x,, solutions for
both Hall limits are similar. Also, o; = 0, regimes are similar
to the ambipolar diffusion limit, as expected. Note the interference
pattern of perturbations in lower panels of Fig. 8.

We also studied the dependence of the height of maximum am-
plitude with the strength of the magnetic field (Fig. 10) for good
(xo = 10) and poor coupling (x, = 2). In the former case, when
ambipolar diffusion is present, with and without the Hall effect and
regardless of the sign of 0| B, the location of maximum amplitude
of the fastest growing perturbations as a function of v, /¢y is similar,
which is expected as x, > va/cs (see Figs 10a—c). We obtained un-
stable modes for v, /cs up to 1. As v, /¢, is reduced from this value,
the perturbations peak at higher z until v, /cs ~ 0.04. However, the
location of maximum amplitude begins to diminish as the field is
further reduced, which could be caused by the interference pattern,
and very high wavenumber, of the perturbations (see also Fig. 8).
The height of maximum amplitude peaks at z ~ 2.8.

In both Hall limits the height of maximum amplitude increases
with the strength of the magnetic field until v, /cs ~ 0.3 and then
remains unaffected with further increments of v,/cs (Figs 10d
and e). This occurs because as the strength of the magnetic field
increases, the wavenumber of the perturbations diminish, which
pushes the maximum amplitude to higher z. For v, /cs ~ 0.3 the
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Figure 6. Structure and growth rate of the most unstable modes of the MRI for all conductivity regimes and different values of .. In all cases va/cs =
0.1. The value of the coupling parameter x, is indicated at the top right corner of each panel. The growth rate (v) of the perturbations is shown in the lower
right-hand corner. Note that the Hall o B, < 0 regime is explored for x, 2> 2. In this conductivity regime our code fails to converge for x < 2 as in this region
of parameter space the range of wavenumbers for which local unstable modes exist becomes infinite (W99).

perturbations have only one node, so any further increase in the
magnetic field strength has little effect on the location of the maxi-
mum amplitude.

In the low coupling case results are very similar to the x, =
10 cases. We note that in regimes where ambipolar diffusion is
present (left-hand side panels of Fig. 10), perturbations tend to peak
at a higher z/H than in the good coupling cases when va/cs S

© 2003 RAS, MNRAS 345, 992-1008

0.1. In the Hall (o) B, < 0) regime, there are unstable modes for
‘suprathermal’ field strengths (v /cs up to 2.9). This will be further
analysed in Section 5.4.2, dealing with the dependence of the growth
rate of this instability with the strength of the magnetic field. In this
case, the height of maximum amplitude peaks at va/cs & 0.5 and
then gradually diminishes as the field is incremented beyond this
value.
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5.4 The perturbations in parameter space

5.4.1 Effect of the coupling

Fig. 11 shows the growth rate of the most unstable modes as
a function of the coupling x, for all conductivity regimes with
va/cs = 0.1 (top panel) and 0.01 (bottom panel). The Hall (o B,
< 0) limit could not be modelled for x, < 2 because in this region
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Figure 10. Height of maximum amplitude of the perturbations as a function
of v /cs, for all conductivity regimes. Triangles correspond to good coupling
(xo = 10) and circles to poor coupling (x, = 2).

of parameter space the range of wavenumbers for which unstable
modes grow becomes infinite (see Section 3.1). We find that at the
good coupling limit the instability grows at a rate similar to its ideal
value of 0.75€2 for all conductivity regimes. As the coupling di-
minishes, the growth rate is reduced at a rate that depends on the
conductivity regime of the fluid. In the Hall (o) B, > 0) case the
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Figure 11. Growth rate of the fastest growing modes of the MRI as a
function of x, for different conductivity regimes. va/cs = 0.1 (top panel)
and 0.01 (bottom panel).

growth rate remains unaffected until x, ~ 0.01, and then dimin-
ishes drastically to 0.1€2 when x, ~ 0.005. The ambipolar diffusion
limit has a much more gradual reduction of vy, with x,. In this
case, the growth rate departs significantly from the ideal value for
Xo ~ 0.1 and then drops rapidly, reaching ~0.007<2 for x, ~ 0.008.
This is in agreement with findings by W99 that unstable modes grow
when x 2 va/c, in the ambipolar diffusion limit and x > v3/c?
in the Hall case (see also Section 5.3.2). When  is less than these
values, perturbations are strongly damped.

When vu/cs ~ 0.01 (bottom panel of Fig. 11), the growth of
Hall (o, B, > 0) perturbations is constant at about the ideal rate
0.75 until x, ~ 10~*. Below this, it plummets to zero as expected.
In contrast, in the ambipolar diffusion and o; = o, regimes,
Vmax begins to diminish much sooner. It is also noticed that, in the
ambipolar diffusion and o, = o, cases, the growth rate increases
again after reaching a minimum for x, ~ 0.05. This is caused by
the high wavenumber of the perturbations due to the weakness of
the magnetic field. In these conditions global effects (stratification)
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are less important and the maximum growth rate diminishes with
the coupling as per local results (W99). As the wavenumbers of the
perturbations decrease when yx,, is reduced, for sufficiently low x,
(~0.05), k is low enough for global effects to be important again and
to modify the growth rate of unstable perturbations. With the local
x increasing with height above the midplane, stratification will tend
to increase the growth of global modes at low x,.

5.4.2 Effect of the magnetic field strength

The dependence of the maximum growth rate with the strength of
the magnetic field for all conductivity regimes is shown in Fig. 12
for x, = 10, 2 and 0.1. In the good coupling case (top panel),
increasing the strength of the magnetic field has little effect on the
growth rate of the most unstable modes of all conductivity regimes
until v, /cs ~ 1, where it drops drastically to zero. These results are
similar to the ideal MHD case, which predicts that at this strength of
the magnetic field the wavelength of most unstable modes become
~H, the scaleheight of the disc, and the perturbations are strongly
damped.

In the x, = 2 case shown in the middle panel, we found unstable
modes in the Hall limit (6| B, < 0) for v, /cs up to2.9. We know from
the local analysis (W99) that once the local x < 2, unstable modes
exist for every kv, /€2 in this conductivity regime. As a result, even
for suprathermal fields (va/cs > 1), there are still unstable modes
with kH < 1 growing within the disc.

Results for x, = 0.1 (bottom panel) show clearly how v, plum-
mets when va/cs 2 x (ambipolar diffusion limit) or v} /c? > x
(Hall limit), as expected.

Finally, turning our attention to the dependence of the growth rate
of the instability with the field strength at low v, /cs, we appreci-
ate in all panels of Fig. 12 that v, initially increases as v, /cs is
reduced, until it reaches a maximum. Further reductions in v, /c;
cause the growth rate to diminish monotonically. Comparing these
results with the findings of the local analysis (W99), we can show
that the growth rates of global unstable modes at weak magnetic field
strengths tend to the local values for the relevant coupling . This
can be explained simply by the increase in wavenumber of unstable
modes as v, /c; is reduced, which causes global effects (driven by
stratification) to be less important. As a result, the growth of global
modes does not differ significantly from the local values at the same
coupling.

6 DISCUSSION

The solutions presented in the previous sections illustrate the growth
and structure of the MRI when different components of the con-
ductivity tensor are dominant throughout the entire cross-section
of the disc. Density stratification causes the local growth of un-
stable modes, and the amplitude of global perturbations, to be a
function of height. The envelopes of short-wavelength solutions are
shaped by this competition between different growth rates acting
at different vertical locations. Moreover, when x is weak at the
midplane, long-wavelength perturbations are important and verti-
cal stratification is crucial in determining the growth of global MRI
solutions. The results presented in this contribution confirm these
expectations.

When the Hall and Pedersen components are comparable, the
Hall effect alters the structure and growth of unstable perturbations
for x, < va/cs. In this region of parameter space, ambipolar diffu-
sion perturbations have negligible growth, but unstable modes that
include Hall conductivity still grow at v = 0.2-0.3. Hall o1 B, > 0
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Figure 12. Growth rate of the fastest growing modes of the MRI as a
function of v, /¢ for different conductivity regimes. From top to bottom the
coupling x, is 10, 2 and 0.1.

perturbations grow faster than o B, < 0 ones. Furthermore, under
a weak magnetic field (va/cs < 0.01), the Hall effect significantly
increases the growth rate of unstable modes at low coupling. When
it dominates, unstable modes grow at close to the ideal rate for
Xo ~ 1074,

The height above the midplane where the most unstable pertur-
bations peak is dependent on the conductivity regime of the fluid.
Consequently, the vertical location of the active zones within the
disc, in which the MRI produces angular momentum transport and
disc material is being accreted, is dependent on the configuration
of the conductivity tensor. Perturbations including ambipolar diffu-

sion peak consistently higher than those in both Hall limits. Also,
for x, < va/cs, 01 = o, modes peak at different heights, sig-
nalling that the Hall effect is dependent on the orientation of the
magnetic field with respect to the disc angular velocity vector €2.
In this region of parameter space, when o; B, < 0, modes peak at
a higher z than when o, B, > 0. The Hall effect does not signifi-
cantly modify the dependence of the height of maximum amplitude
of unstable modes with the strength of the magnetic field for good
coupling. In this region of parameter space ambipolar diffusion dom-
inates and causes the perturbations to peak at higher z when v, /¢, is
reduced.

When 0B, < 0, Hall perturbations can have a very complex
structure (high wavenumber), even at low coupling, and many modes
are found to grow. In the non-linear stage, the interaction between
these modes causes the MRI to develop into MHD turbulence with
non-emergence of the typical two-channel flow obtained in other
conductivity regimes (Sano & Stone 2002a,b).

When does Hall diffusion determine the behaviour of the insta-
bility? Naively one might propose |o1| = o, as a criterion, but this
ignores the level of coupling between the magnetic field and the gas.
For example if x 2 10, ideal MHD almost holds and there is little
dependence of growth rate and structure on the diffusion regime
(see Fig. 3). A useful criterion can be derived using the results of
the local analysis in W99 and comparing the maximum growth rates
with and without Hall diffusion in the weak-coupling limit. In the
absence of Hall diffusion (i.e. 01 = 0), the maximum growth rate for
x S 1is 3y /4. When Hall diffusion is present and x < |o|/o |, the
maximum growth rate is either %|01 |/(oL +0y)ifo B, > 0 or the
instability is suppressed if o) B; < 0. In either case, Hall diffusion
dominates the behaviour of the instability when

XS Herie = ol (58)
oL

Thus even when |o| < 02, the structure and growth rate of the
magnetorotational instability are dominated by Hall diffusion if
X < |o1]|/o L. This is easily satisfied, for example, for the nomi-
nal conditions at the disc midplane 1 au from the central protostar
(see Table 1), where |o1|/0, ~ |Be| = 0.035 (using equations 18
and 20 with [B.] > 1) and x =9 x 107%. At 5 au, x ~ 2 and o
> 0,, so Hall diffusion dominates here also. Although these re-
sults depend on the assumed magnetic field strength, the conditions
under which x < . are so broad that we can conclude that Hall
diffusion determines the growth rate and structure of the instability
over a large range of radii.

Despite this, Hall diffusion has generally been neglected in stud-
ies of accretion discs in favour of the ambipolar diffusion or re-
sistive limits. Here we illustrate the severity of this approximation
by comparing the structure and growth rate of the unstable pertur-
bations for a model with oy = o, to those for ‘simplified’ pure
ambipolar/resistive diffusion and Hall (o B, > 0) models obtained
by setting o, or o to zero, respectively, and reducing the coupling
parameter x, by a factor of /2 to reflect its dependence on (o3 +
o3)!/2 (see equation 50). The full model has v, /c; = 0.01 and x, =
0.01414, whereas the corresponding ambipolar diffusion and Hall
limits have x, = va/cs = 0.01 and the appropriate values of ¢, and
o, as per Table 3.

The comparison is presented in Fig. 13. The structure and growth
rate of pure ambipolar diffusion and Hall (o B, > 0) perturbations
are as expected for x, & v, /cs, With the ambipolar diffusion decay-
ing towards the midplane and the envelope of the pure-Hall solutions
being fairly constant. In both the ambipolar diffusionand the o = 0>
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Figure 13. Comparison of the structure and growth rate of the MRI for
different configurations of the conductivity tensor for va/cs = 0.01. Top
panel shows the case where both ambipolar diffusion and Hall (o1 B; > 0)
conductivity terms are important. In this configuration the Hall regime is
dominant close to the midplane and ambipolar diffusion dominates near the
surface. Middle and bottom panels show the instability under the ambipolar
diffusion and Hall approximations, respectively. In the top panel x, = +/2 x
0.01, while in the middle and bottom panels x, = 0.01.

cases we obtain a magnetic ‘dead zone’ near the midplane where no
perturbations grow (Gammie 1996; Wardle 1997). Comparing the
top panel of Fig. 13 with the middle and bottom ones it is clear that
the Hall effect modifies both the structure and growth of unstable
modes. In particular, the extent of the dead zone is reduced and the
growth rate is increased. According to these results, both the depth
of the active zones within the disc and the rate of angular momen-
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tum transport by unstable modes can be significantly modified by
the Hall effect.

Although our solutions incorporate the effect of density stratifi-
cation on the coupling parameter and the Alfvén speed, we have
assumed that the components of the conductivity tensor do not vary
with height. While this simplification permitted us to compare the
behaviour of the instability in different regimes, the conductivities
in a real disc will reflect the height dependence of charged particle
abundances and their Hall parameters (see Section 2.1). Different
regimes are expected to dominate at different heights (Wardle 2003).

None the less, it is clear from the simplified comparison pre-
sented here that Hall diffusion is an essential part of accretion in
low-conductivity discs, and that it determines the extent of the mag-
netically inactive ‘dead zone’ (Gammie 1996; Wardle 1997). Fur-
thermore, Hall diffusion will modify any angular momentum trans-
port within the dead zone that occurs via non-axisymmetric density
waves driven by the active surface layers (Stone & Fleming 2003)
because it will dominate the marginally magnetically active regions
of the disc just above the dead zone. Hall diffusion may therefore
affect the ability of dust grains to settle towards the midplane and
begin to assemble into planetesimals (e.g. Weidenschilling & Cuzzi
1993).

7 SUMMARY

In this paper we have examined the structure and linear growth of
the magnetorotational instability in weakly ionized, stratified accre-
tion discs, assuming an initially vertical magnetic field. This work is
relevant for the study of low-conductivity accretion systems, such
as protostellar and quiescent dwarf novae discs, where non-ideal
MHD effects are important (Gammie & Menou 1998; Menou 2000;
Stone et al. 2000). The formulation allows for a height-dependent
conductivity, but in this initial study we assumed the components
of the conductivity tensor were constant with height. The analysis
was restricted to perturbations with a vertical wavevector (k = k),
which are the most unstable modes when initiated from a vertically
aligned magnetic field (Balbus & Hawley 1991; Sano & Miyama
1999). In this case, the field-parallel component of the conductivity
tensor plays no role and the ambipolar diffusion and resistive limits
are identical. The linearized system of ODEs was integrated from
the midplane to the surface of the disc under appropriate boundary
conditions and global unstable modes were obtained. The param-
eters that control the evolution of the fluid are: (i) The coupling
between ionized and neutral components of the fluid evaluated at
the midplane (x,), which relates the frequency at which non-ideal
effects are important with the dynamical (Keplerian) frequency of
the disc; (ii) the magnetic field strength characterized by the ratio
va/cs at the midplane; and (iii) the ratio of the components of the
conductivity tensor perpendicular to the magnetic field o1 /0».

In order to explore the growth and structure of unstable modes
when different conductivity regimes dominate over the entire cross-
section of the disc, we examined the following configurations of
the conductivity tensor: o1 = 0 (the ambipolar diffusion or resistive
limits), o, = 0 (both Hall limits oy B, > 0 and o B, < 0), and the
cases where both effects are important (o} = +0,).

The main results of this study are highlighted below.

(i) Global modes are a discrete subset from the continuous curve
of possible v versus k combinations obtained with a local analysis
(W99). These unstable modes can be expressed as a superposition
of two WKB modes with similar growth rate, which explains the
interference patterns found in some of the perturbations.
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(i) Ambipolar diffusion perturbations peak consistently higher
above the midplane than solutions where Hall conductivity domi-
nates.

(ii1) For good coupling (x, > va/cs), the structure and growth of
the perturbations are mainly determined by ambipolar diffusion. For
a weaker coupling, Hall conductivity significantly modifies unstable
modes. In this case, o; = o, perturbations resemble the Hall o, B,
> 0 limit and peak closer to the midplane while o, = —o, modes
have their maximum amplitude closer to the surface.

(iv) Hall limit (0B, < 0) perturbations can have a complex
structure (high wavenumber) even for poor coupling (x , = 2). There
are also many unstable modes, which supports findings that in this
case the MRI evolves into MHD turbulence with non-emergence
of the two-channel flow obtained in other regimes (Sano & Stone
2002a,b).

(v) Asthe coupling parameter x, is reduced, departure from ideal
growth v ~ .75 occurs at a rate that depends on the conductivity
regime. Hall limit perturbations grow at close to the ideal limit for
Xo > v%/c2. In the ambipolar diffusion approximation the growth
rate decreases when x, < va/c,. These results are in agreement
with predictions from W99.

(vi) The weaker the magnetic field the higher the perturbations
peak in all regimes where ambipolar diffusion is present. In contrast,
both Hall limits peak closer to the surface with weaker v, /cs.

(vii) Unstable modes grow when v, /cs is increased until a critical
value (va/cs)erie 1s Teached. At the critical v, /cs the growth rate
abruptly drops to zero. At good coupling (va/cs)eit ~ 1 for all
conductivity regimes. At the poor coupling limit (x, = 2), results
are different only for the Hall regime (o, B; < 0). In this case we
obtain unstable modes for v /cs ~ 2.9.

(viii) Atvery weak magnetic fields (v, /cs < 0.01), global effects
are less important, due to the high wavenumber of the perturbations.
In this region of parameter space the growth rates of MRI pertur-
bations tend to the corresponding local values for the relevant fluid
parameters.

(ix) Hall diffusion determines the growth of the MRI when x <
|oy|/o . This condition is satisfied over a large range of radii in
protostellar discs.

(x) When the Hall regime dominates near the midplane and am-
bipolar diffusion is dominant closer to the surface, a larger sec-
tion of the disc is unstable to MRI perturbations and unstable
modes grow faster than those obtained using the ambipolar diffusion
approximation
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