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ABSTRACT
We study a model of weakly ionized, protostellar accretion discs that are threaded by a large-
scale, ordered magnetic field and power a centrifugally driven wind. We consider the limiting
case where the wind is the main repository of the excess disc angular momentum and gener-
alize the radially localized disc model of Wardle & Königl, which focused on the ambipolar
diffusion regime, to other field diffusivity regimes, notably Hall and Ohm. We present a gen-
eral formulation of the problem for nearly Keplerian, vertically isothermal discs using both
the conductivity-tensor and the multifluid approaches and simplify it to a normalized system
of ordinary differential equations in the vertical space coordinate. We determine the relevant
parameters of the problem and investigate, using the vertical-hydrostatic-equilibrium approx-
imation and other simplifications, the parameter constraints on physically viable solutions for
discs in which the neutral particles are dynamically well coupled to the field already at the
mid-plane. When the charged particles constitute a two-component ion–electron plasma, one
can identify four distinct sub-regimes in the parameter domain where the Hall diffusivity dom-
inates and three sub-regimes in the Ohm-dominated domain. Two of the Hall sub-regimes can
be characterized as being ambipolar diffusion-like and two as being Ohm-like: the properties
of one member of the first pair of sub-regimes are identical to those of the ambipolar diffusion
regime, whereas one member of the second pair has the same characteristics as one of the Ohm
sub-regimes. All the Hall sub-regimes have Brb/|Bφb| (ratio of radial-to-azimuthal magnetic
field amplitudes at the disc surface) >1, whereas in two Ohm sub-regimes this ratio is <1.
When the two-component plasma consists, instead, of positively and negatively charged grains
of equal mass, the entire Hall domain and one of the Ohm sub-regimes with Brb/|Bφb| < 1
disappear. All viable solutions require the mid-plane neutral–ion momentum exchange time
to be shorter than the local orbital time. We also infer that vertical magnetic squeezing always
dominates over gravitational tidal compression in this model. In a follow-up paper we will
present exact solutions that test the results of this analysis in the Hall regime.
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1 IN T RO D U C T I O N

Star formation is thought to be induced by the gravitational collapse
of the dense cores of molecular clouds (e.g. Shu, Adams & Lizano
1987). During the collapse, angular momentum conservation results
in the progressive increase of the centrifugal force, a process that
eventually halts the infalling matter and leads to the development of
a central mass (protostar) surrounded by a rotationally supported,
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wardle@physics.mq.edu.au (MW)

gaseous disc. In the presence of an angular momentum transport
mechanism, mass accretion on to the protostar proceeds through
this disc, and it is believed that this is how stars typically gain most
of their mass.

A common feature of accreting protostellar systems is their as-
sociation with energetic bipolar outflows that propagate along the
rotation axis of the source (e.g. Bally, Reipurth & Davis 2007). The
outflows from low-bolometric-luminosity objects (Lbol < 103 L�)
have velocities in the range ∼150–400 km s−1 (of the order
of the escape speed from the vicinity of the central protostar)
and are typically well collimated (opening half-angles ∼3◦–5◦ on
scales of 103–104 au). The connection between accretion discs and
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outflows, which extends smoothly from very low-mass stars and
brown dwarfs (e.g. Mohanty, Jayawardhana & Basri 2005) all the
way up to protostars with masses of at least ∼10 M� (e.g. Corcoran
& Ray 1998), is manifested by the observed correlations between
accretion diagnostics (e.g. inverse P-Cygni profiles and excess emis-
sion in UV, IR and millimetre wavelengths) and outflow signa-
tures (e.g. P-Cygni profiles, optical forbidden lines, thermal radio
radiation and the presence of molecular lobes) in these objects
(e.g. Hartigan, Edwards & Ghandour 1995). Also relevant are the
correlations of the type Ṁ ∝ Lδ

bol (with δ ∼ 0.6–0.7) that have been
inferred for both accretion and outflow rates in low- and high-Lbol

objects (e.g. Levreault 1988) and the joint decline in outflow ac-
tivity and disc frequency (as well as in the inferred accretion rate)
with stellar age (e.g. Calvet, Hartmann & Strom 2000; Calvet et al.
2005).

These features point to an underlying physical link between ac-
cretion and outflow processes in these systems. A natural explana-
tion for this connection is that outflows provide an efficient means
of transporting away the excess angular momentum and of tapping
the liberated gravitational potential energy of the accreted matter. In
this scenario, disc material is centrifugally accelerated by the torque
exerted by a large-scale, ordered magnetic field that threads the disc
(Blandford & Payne 1982, hereafter BP82; see also the reviews by
Königl & Pudritz 2000; Pudritz et al. 2007; Königl & Salmeron
2009). A dynamically significant, ordered field component is indi-
cated by the hourglass field morphology detected by polarization
measurements in several pre-collapse molecular cloud cores on sub-
parsec scales (e.g. Schleuning 1998; Girart, Rao & Marrone 2006;
Kirby 2009). These interstellar field lines are expected to be ad-
vected inward when the core undergoes gravitational collapse and
could naturally give rise to an ordered field in the resulting pro-
tostellar discs. Alternatively, an ordered field component could be
generated locally in the disc (and star) by a dynamo process. The
comparatively high momentum discharges inferred in protostellar
outflow sources are consistent with this interpretation, as alterna-
tive wind-driving mechanisms would fall far short of the indicated
requirements (e.g. Königl & Pudritz 2000). The centrifugal wind
picture can also naturally account for the comparatively high ratio
(∼0.1) of the mass outflow to the mass accretion rate that is inferred
in both the quiescent and the outburst phases of low-mass protostars
(e.g. Hartmann & Kenyon 1996; Ray et al. 2007).

Vertical angular-momentum transport by a large-scale, ordered
magnetic field is expected to dominate radial angular-momentum
transport via turbulence induced by the magnetorotational instabil-
ity (MRI; e.g. Balbus & Hawley 1998) when the disc is threaded by
a comparatively strong magnetic field, corresponding to the ratio
a0 of the Alfvén speed vA0 (where the subscript 0 denotes the mid-
plane) to the isothermal sound speed cs being not much smaller
than unity.1 When this condition is satisfied, angular momentum
transport by a small-scale, disordered magnetic field is suppressed
because the wavelength of the most unstable MRI perturbations
exceeds the magnetically reduced disc scaleheight (e.g. Wardle &
Königl 1993, hereafter WK93). On the other hand, when the mag-
netic field is comparatively weak (a0 � 1), MRI-induced radial
transport should dominate.

1 Note that vertical angular-momentum transport can also be mediated by
additional mechanisms (not considered in this paper), including magnetic
braking (the launching of torsional Alfvén waves into the ambient interstellar
medium; e.g. Krasnopolsky & Königl 2002), ‘failed’ winds (which do not
become supersonic or super-Alfvénic) and non-steady phenomena.

Previous studies have considered the aforementioned radial and
vertical angular-momentum transport mechanisms under a number
of simplifying assumptions. The MRI has been analyzed in both its
linear and non-linear stages (e.g. Sano & Stone 2002a,b; Salmeron
& Wardle 2003, 2005; Fleming & Stone 2003; Desch 2004; Sano
et al. 2004; Turner, Sano & Dziourkevitch 2007). Similarly, centrifu-
gal wind-driving discs have been examined both semi-analytically,
making use of self-similarity formulations (e.g. WK93; Li 1995,
1996; Ferreira 1997), and through numerical simulations that uti-
lize resistive-MHD codes (e.g. Casse & Keppens 2002; Kuwabara
et al. 2005; Meliani, Casse & Sauty 2006; Zanni et al. 2007). It
is, however, likely that both the radial and vertical modes of angu-
lar momentum transport play a role in real accretion discs. While
quasi-steady disc models in which both mechanisms operate had
been considered in the literature (e.g. Lovelace, Romanova & New-
man 1994; Casse & Ferreira 2000; Ogilvie & Livio 2001), they did
not specifically link the radial transport of angular momentum with
its origin in MRI-induced turbulence. In a first attempt in this di-
rection, Salmeron, Königl & Wardle (2007) explored the possibility
that radial and vertical transport could operate at the same radial lo-
cation in a protostellar disc. They derived an approximate criterion
for identifying the vertical extent of a wind-driving disc at the given
radius that is unstable to MRI-induced turbulence and obtained a
quantitative estimate (based on the numerical simulations of Sano
et al. 2004) of the amount of angular momentum that is removed
radially from that region.

An important consideration for the analysis of magnetic angu-
lar momentum transport in protostellar discs is that these discs are
generally weakly ionized over most of their extents, so magnetic
diffusivity effects are significant. This is a critical issue because both
the centrifugal-wind and MRI-turbulence transport mechanisms re-
quire a minimum level of field–matter coupling to be effective. A
complete model therefore needs to take into account the detailed
ionization and conductivity structure of the disc/wind system. At
low densities (near the disc surfaces and at large radii), the disc
is typically in the ambipolar diffusion regime. As the density and
the shielding column increase (closer to the disc mid-plane and
the central source), the fluid passes successively through the Hall
and Ohm diffusivity regimes (see Section 2). Note, however, that
the disc parameters may well be such that the gas does not clearly
correspond to any one of these limiting cases and must instead
be described more generally using either the conductivity-tensor
(Section 2.1) or the multifluid-decomposition (Section 3.14) for-
mulations. Most previous treatments have simplified the problem
by focusing on a single conductivity regime. In particular, WK93
and Salmeron et al. (2007) concentrated on the ambipolar diffu-
sion limit (although WK93 also discussed the Hall-current effects).
WK93 were able to obtain simple analytic constraints on the pa-
rameter values for physically viable wind-driving disc solutions
in this limit by modelling the vertical structure of the disc under
the hydrostatic (negligible vertical velocity) approximation. One of
their derived constraints yielded the minimum required degree of
field–matter coupling, and they proceeded to verify their analysis
by obtaining numerical solutions for discs in this strong coupling
regime.

Although it is in principle possible to seek a self-similar solution
for the global disc/wind configuration (e.g. Königl 1989; Ferreira
1997), WK93 adopted a somewhat simpler approach in which they
obtained a solution for the vertical structure of a radially localized
(radial extent �r � r at a cylindrical radius r) region of the disc
and matched it to a self-similar (in the spherical radial coordinate
R) global wind solution of the type originally constructed by BP82.
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This approach facilitated the derivation of viability and consistency
constraints involving exclusively the disc model parameters, and
subsequently Li (1996) demonstrated that the basic features of this
solution are consistent with those of a fully global disc/wind simi-
larity solution. Our aim in this paper is to generalize the parameter
constraints derived in WK93 for the ambipolar diffusion regime to
the other basic diffusivity regimes, namely Hall and Ohm. In each
of the latter regimes, we identify parameter combinations that yield
different sets of constraints, which correspond to solutions with dis-
tinct physical properties, and we use these constraints to delineate
the Hall and Ohm sub-regimes in parameter space where one can
derive viable, strongly coupled, wind-driving disc solutions. In a
follow-up paper (Salmeron et al., in preparation, hereafter Paper II)
we test the results for the Hall regime – derived by using the hydro-
static approximation – against full numerical solutions obtained in
the radially localized disc approximation of WK93.

As noted above, the Hall and Ohm diffusivity regimes are likely
to apply near the mid-plane in the inner regions of real protostel-
lar discs. Typically, the surface regions from which the wind is
driven would be sufficiently well ionized by cosmic rays and by
the protostellar radiation field (see Section 2.1) to lie in the am-
bipolar diffusion regime (e.g. Salmeron & Wardle 2005; Königl
& Salmeron 2009). Nevertheless, we adopt the approximation that
the entire disc cross-section between the mid-plane and the base
of the wind lies in a single diffusivity sub-regime in order to bring
out the distinct properties of the solutions for each parameter range.
This approximation is less appropriate for the Ohm regime, both be-
cause two additional regimes (ambipolar diffusion and Hall) would
be encountered on the way up to the disc surface in this case and
because the column densities of wind-driving discs are relatively
small (especially in comparison with those typically implied by
radial-turbulent-transport models) and are therefore likely to con-
tain only limited regions (if any at all) where the Ohm diffusivity
dominates. We have nevertheless chosen to include the Ohm regime
in our analysis of weakly ionized discs for completeness as well as
for possible comparisons with resistive-MHD numerical simula-
tions.2 The results of this analysis could potentially be applicable
also to the collisionally ionized innermost region of the disc, where
anomalous resistivity (the enhanced drag between ions and electrons
due to scattering off electromagnetic waves generated by current-
driven plasma instabilities) might develop. To obtain explicit solu-
tions in the different diffusivity regimes, we have generalized the
WK93 model setup by implementing a conductivity-tensor scheme
that can be applied to any given vertical ionization structure. In
Paper II, we use a simplified version of this scheme to mimic the
single-diffusivity conditions adopted in the present work.

This paper is organized as follows. Section 2 summarizes the
formulation, including the disc model and the governing equations.
Section 3 describes the methodology we employ to reduce these
equations to a set of ordinary differential equations (ODEs) in the
vertical coordinate z and to express them in a dimensionless form;
it also lists the parameters of the problem. Section 4 derives the
constraints that characterize the parameter space where physically
viable solutions exist and explicates them for the Hall regime, with
the corresponding constraints for the Ohm regime presented in Sec-
tion 5. The key findings of the paper are discussed in Section 6 and
summarized in Section 7.

2 Note, however, that we do not continue to consider this case in Paper II,
which concentrates on the ambipolar-diffusion and Hall regimes.

2 FO R M U L AT I O N

2.1 Disc model

We model the disc as being in a steady state, geometrically thin,
vertically isothermal, nearly Keplerian and in dynamical equilib-
rium in the gravitational potential of the central protostar. Since we
expect all the physical variables to exhibit smooth spatial variations,
the assumption of geometrical thinness enables us to neglect the ra-
dial derivative terms (|∂/∂r| ∼ 1/r) in our equations in comparison
with the vertical derivative terms (|∂/∂z| ∼ 1/h), where r and z
are cylindrical coordinates and h(r) (�r) is the disc pressure (or
density) scaleheight at the radius r.3 The disc material is assumed
to be weakly ionized, with the abundances of charged species being
so low that (i) the effect of ionization and recombination processes
on the neutral gas can be neglected and (ii) the inertial, gravita-
tional and thermal forces on the ionized species are negligible in
comparison with the electromagnetic force exerted by a large-scale,
ordered magnetic field. Under these approximations, separate equa-
tions of motion for the charged species are not required, and their
effect on the neutrals can be incorporated via a conductivity tensor
σ (e.g. Cowling 1976; Wardle 1999 and references therein), which
is a function of position {r , z}. This formulation makes it possible
to systematically include different ionized fluid components as well
as the three basic field–matter diffusion mechanisms (ambipolar,
Hall and Ohm). The conductivity-tensor components are the Ohm,
Hall and Pedersen terms, given by

σO = ec

B

∑
j

nj |Zj |βj , (1)

σH = ec

B

∑
j

njZj

1 + β2
j

(2)

and

σP = ec

B

∑
j

nj |Zj |βj

1 + β2
j

, (3)

respectively (e.g. Wardle & Ng 1999). In the above expressions, nj

is the number density of charged species j (of mass mj and total
electric charge Zje), c is the speed of light and

βj = |Zj |eB
mjc

1

γjρ
(4)

is the Hall parameter, the ratio of the gyrofrequency and the collision
frequency of species j with the neutrals, which measures the relative
importance of the Lorentz and drag forces on the motion of the
charged species. In these equations,

B ≡ |B| sgn{Bz} (5)

is the signed magnetic field amplitude, with the sign introduced to
keep the dependence of the Hall conductivity on the magnetic field
polarity.4 Also, in equation (4),

γj = 〈σv〉j

mj + m
, (6)

3 The only exception to this approach is our retention of the radial derivative
of the azimuthal velocity component vφ (see WK93).
4 Note from equations (1)–(3) that, in contrast with σH, which depends on an
odd power of B, both the Ohm and Pedersen conductivities are independent
of the magnetic field polarity.
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where m= 2.33 mH is the mean mass of the neutral particles in terms
of the hydrogen nucleus mass mH, ρ is the density of the neutral gas
and 〈 σ v〉j is the rate coefficient of momentum exchange of species
j with the neutrals.

The above equations can be used to treat charged species with a
wide range of masses and degrees of coupling with the neutral gas.
However, to simplify the analysis and make it more transparent,
we henceforth specialize to a fluid with only two charged species,
one with positive charge (which we refer to as ‘ions’ and denote
by a subscript ‘i’; Zi > 0) and the other with negative charge
(‘electrons,’ subscript ‘e’, satisfying Ze < 0). This description is a
good approximation both in the comparatively low-density regions
of protostellar discs, where the two species can be taken as metal
ions (of typical mass mi = 30 mH; e.g. Draine, Roberge & Dalgarno
1983) and electrons, and in high-density (ρ � 10−13 g cm−3) regions
where the dominant charge carriers are positively and negatively
charged dust grains of equal mass (e.g. Umebayashi & Nakano
1990; Neufeld & Hollebach 1994; Krasnopolsky & Königl 2002).5

The ‘ion’ and ‘electron’ Hall parameters are related by β i = qβe,
where

q = me

mi

mi + m

me + m

〈σv〉e

〈σv〉i
. (7)

In the case of charged grains of equal and opposite charge as well
as equal mass, q = 1, whereas in the case of ions and electrons we
find, using

〈σv〉i = 1.6 × 10−9 cm3 s−1 (8)

and

〈σv〉e ≈ (1 × 10−15 cm2)

(
128kT

9πme

)1/2

(9)

from the results of Draine et al. (1983), that q ≈ 1.3 × 10−4
√

T

(where T denotes the gas temperature and k is Boltzmann’s con-
stant). In our analysis, we often encounter the product s ≡ βe β i =
β2

i /q, which is sometimes referred to in the literature as the ion slip
factor (e.g. Mitchner & Kruger 1973).

With the help of the charge-neutrality condition,∑
j

njZj = 0 , (10)

equations (1)–(3) become

σO = cene|Ze|
B

(βe + βi), (11)

σH = cene|Ze|
B

(βe + βi)(βe − βi)(
1 + β2

e

) (
1 + β2

i

) (12)

and

σP = cene|Ze|
B

(1 + βiβe)(βe + βi)(
1 + β2

e

) (
1 + β2

i

) , (13)

respectively (e.g. Salmeron & Wardle 2003). We also make use
of σ⊥ =

√
σ 2

H + σ 2
P , the total conductivity perpendicular to the

magnetic field, which is given by

σ⊥ = cene|Ze|
B

(βe + βi)[(
1 + β2

e

) (
1 + β2

i

)]1/2 . (14)

5 During the late (�105 yr) phases of protostellar evolution, after the dust has
largely settled to the mid-plane (e.g. Nakagawa, Nakazawa & Hayashi 1981;
Dullemond & Dominik 2004; D’Alessio et al. 2006), ions and electrons
could dominate the charged species also in the dense inner regions of the
disc.

The ratios of the conductivity-tensor components σ H, σ P and σ O

determine the relative importance of the ambipolar, Hall and Ohm
diffusion mechanisms (e.g. Wardle & Ng 1999). These ratios, in
turn, depend on the magnitudes of the ‘ion’ and ‘electron’ Hall
parameters, which are functions of the neutral density and mag-
netic field amplitude. The spatial variation of the latter quantities in
protostellar systems results in different diffusion mechanisms dom-
inating in different regions of the disc. We now briefly outline the
main properties of these different regimes, although it must be borne
in mind that some regions of the disc will inevitably correspond to
the transition zones between two such regimes (or between any of
the sub-regimes that we identify) and hence cannot be so simply
classified.

(i) Ambipolar diffusion. This regime dominates when σ O �
σ P � |σ H| or, equivalently, when |β i| � 1. In this case the magnetic
field is effectively frozen into the ionized fluid component (the
‘electrons’ and the ‘ions’) and drifts with it through the neutrals.
This regime is expected to dominate at relatively low densities in
protostellar discs – throughout the vertical column in the outermost
regions of the disc (e.g. WK93) and close to the disc surfaces at
smaller radii.

(ii) Hall diffusion (σ P � |σ H| � σ O). These conditions are sat-
isfied when the most highly mobile charged particles (having the
highest value of |Zje/mj| – the electrons in the case of an ion–
electron plasma) are well coupled to the magnetic field (|βe| �
1) even as the drift of the more massive charged particles of the
opposite sign (i.e. the ions in an ion–electron plasma) through the
neutrals is strongly inhibited by collisions (|β i| � 1). In this limit,
the current in an ion–electron plasma is dominated by the elec-
trons, which drift perpendicularly to the magnetic and electric fields
(thereby minimizing the electromagnetic force acting on them, with
the electron–neutral drag force usually remaining negligible). This
gives rise to the Hall current, which is perpendicular to both the
electric and magnetic fields. This regime typically dominates close
to the disc mid-plane on ‘intermediate’ radial scales (e.g. Li 1996;
Wardle 1999; Sano & Stone 2002a; Salmeron & Wardle 2005).
Note that σ H (and therefore the Hall diffusivity regime) vanishes
identically when |β i| = |βe| (i.e. when q = 1).

(iii) Ohm diffusion (σ O ≈ σ P � |σ H| or, equivalently, |βe| �
1). In this case all the ionized species are uncoupled from the field
by collisions with the neutrals, so the magnetic field cannot be
regarded as being frozen into any of the fluid components. In this
parameter regime one can formulate the problem in terms of a simple
scalar conductivity, corresponding to the familiar ohmic resistivity.
However, as we show in Section 5, one cannot in general neglect
the Hall term in Ohm’s law in classifying the physically viable
disc solutions in this regime. The Ohm diffusivity may dominate in
the most shielded inner regions of particularly massive protostellar
discs (but outside the radius where collisional ionization of alkali
metals sets in). As we noted in Section 1, it is also conceivable that
anomalous Ohm diffusivity dominates in the collisionally ionized
zone further in. In fact, certain models (e.g. Bell & Lin 1994;
Gammie 1999) link the formation of a higher ionization zone in
the innermost region of the disc to the development of FU Orionis-
type outbursts, during which most of the accretion on to the central
protostar may take place (e.g. Calvet et al. 2000).

Note that the ion slip factor s = β2
i /q is �1 in the ambipolar

diffusion regime and �1 in the Ohm regime. This factor can be
either <1 or >1 for a q � 1 two-component plasma in the Hall
regime. This suggests that in the latter case one can distinguish
between the ambipolar diffusion-modified Hall regime, in which the
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inequalities
√

q � |βi| � 1 are satisfied, and the Ohm diffusion-
modified Hall regime, in which the inequalities q � |βi| � √

q

are obeyed (Königl 1997). We return to provide explicit support for
this characterization in Section 6.

In the fiducial minimum-mass solar nebula model (Hayashi
1981), the ambipolar, Hall and Ohm diffusivity regimes dominate
at the disc mid-plane on scales r � 10 au, ∼1–10 au and ∼0.1–1 au,
respectively, for likely magnetic field strengths and when the effect
of grains is neglected. If sufficiently small (� 0.1 μm) grains are
present at z = 0 and the density is large enough that they carry a
significant fraction of both the negative and the positive charges
then the extent of the mid-plane Hall regime is strongly reduced
(e.g. Wardle & Ng 1999; Wardle 2007; Salmeron & Wardle 2008).
Wind-driving accretion-disc models typically have lower column
densities and mid-plane densities than either the minimum-mass
model or standard viscous disc models (a reflection of their com-
paratively high inward drift speeds; see Section 6): this has the
effect of pushing both the inner and outer edges of the mid-plane
Hall regime inward. In practice, the spatial distribution of the dif-
ferent diffusivity regimes depends on the mass accretion rate, the
dust content and the nature of the ionization mechanisms that affect
the disc, and it could vary from source to source and during the
evolution of any particular system.

Evaluating the conductivity tensor in a real disc involves calcu-
lating the ionization balance and associated abundances of charged
species at any given location. This balance is, in turn, the result of
a delicate equilibrium between ionization and recombination pro-
cesses acting both in the gas phase and on the surfaces of dust
grains (if present). The most relevant ionization sources outside the
central ∼0.1 au of the disc are non-thermal: X-rays and UV radi-
ation, emanating from the magnetically active young star and its
magnetosphere, as well as interstellar cosmic rays and radioactive
decay inside the disc (e.g. Hayashi 1981; Umebayashi & Nakano
1981, 1990; Igea & Glassgold 1999). In the vicinity of the star,
the disc surface is ionized mainly by X-rays, but UV radiation
also becomes important at larger distances (e.g. Semenov, Wiebe
& Henning 2004; Alexander, Clarke & Pringle 2005; Glassgold
et al. 2005). Within the innermost ∼0.1 au the degree of ionization
could be significantly raised by collisional ionization of alkali met-
als, particularly potassium (e.g. Gammie 1996; Li 1996). A detailed
calculation of the vertical ionization and conductivity structure of a
wind-driving disc has so far been performed only in the context of a
radially localized treatment and without including dust (e.g. Königl
& Salmeron 2009); a generalization to a global disc/wind model
and the incorporation of dust remain to be done.

In this paper and in Paper II, we adopt a simpler treatment than
the one outlined above, motivated by the fact that our main inter-
est is to (i) identify the regions in parameter space where viable
wind-driving disc solutions can be found under weak-ionization
conditions and (ii) derive the main properties of these solutions. As
our classification scheme requires the specification, at the mid-plane
of the disc, of the values of three distinct variables (see Section 6),
we make the assumption that the density and ionization structure of
the disc is such that, at the radial location under consideration, the
parameter regime determined by the mid-plane values of the chosen
three variables continues to apply throughout the vertical extent of
the disc. In the analysis presented in Sections 4 and 5 of this paper,
we use the variables βe, β i and ϒ , the neutral–ion coupling param-
eter defined in equation (82), and assume that they remain constant
with height at least within the quasi-hydrostatic layer. In the numer-
ical work presented in Paper II, we choose the distinct variables to
be two independent ratios of the conductivity-tensor components

and the field–matter coupling parameter � (the Elsasser number;
see Section 3.13), and we assume that they remain constant between
z = 0 and the sonic point above the disc surface. Notwithstanding
the difference in the specific variables chosen in each case, these
two procedures are effectively equivalent.

2.2 Governing equations

Our basic equations describe the conservation of mass

∂ρ

∂t
+ ∇ · (ρv) = 0 (15)

and momentum

∂v

∂t
+ (v · ∇)v + 1

ρ
∇P + ∇� − J×B

cρ
= 0 (16)

for the neutral gas, as well as the evolution of the magnetic field

∂B
∂t

= ∇×E = ∇×(v×B) − c∇×E′, (17)

where v is the fluid velocity and J is the current density. In the
equation of motion (equation 16)

P = ρc2
s = ρkT

μmH
(18)

is the gas pressure, cs is the isothermal sound speed and μ ≡ m/

mH = 2.33 is the molecular weight. In addition, � is the gravitational
potential of the central object, given by

� = − GM

(r2 + z2)1/2
, (19)

where G is the gravitational constant and M is the mass of the
protostar (which is treated as a point mass at the origin of the
coordinate system). Note that in equation (16) we have made use of
the low-inertia limit for the ionized species by balancing the sum
of the ion–neutral and electron–neutral drag forces ( f in and f en,
respectively) by the Lorentz force,

f in + f en = J×B
c

, (20)

on the assumption that all other terms in the momentum equations
for the charged particles remain small.

In the induction equation (17)

E′ = E + v×B
c

(21)

is the electric field in the frame comoving with the neutrals and E is
the corresponding field in the inertial (laboratory) frame. The field
E′ is related to the current density J through the conductivity tensor
σ (see equation 24). Furthermore, the magnetic field satisfies the
solenoidal condition

∇ · B = 0, (22)

which implies (in analogy with the inference on ρvz following
equation 35) that in a thin disc Bz is approximately constant with
height, whereas the current density obeys Ampère’s law

J = c

4π
∇×B (23)

(where we neglected the displacement current) and Ohm’s law,

J = σ · E′ = σO E′
‖ + σH B̂×E′

⊥ + σP E′
⊥, (24)

where B̂ is the unit vector in the direction of B.
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Equation (24) can be inverted to yield the following expression
for E′:

E′ = J
σO

+ σH

σ 2
⊥

J×B
B

−
(

σP

σ 2
⊥

− 1

σO

)
( J×B)×B

B2
. (25)

The terms on the right-hand side of equation (25) are, from left
to right, the resistive (Ohm), Hall and ambipolar diffusion contri-
butions, respectively. Substituting equations (11)–(14) for a two-
component plasma into equation (25) gives

E′ = βe

βe + βi

J
σe

+ βe − βi

βe + βi

J×B
cene|Ze| − βeβi

βe + βi

( J×B)×B
Bcene|Ze| ,

(26)

where σ e is the ‘electron’ electrical conductivity,

σe = nee
2Z2

e

meγeρ
. (27)

Using β i/(Bcene|Ze|) = (c2γ iρρ i)−1 in the last term of equa-
tion (26) and taking the limit q � 1 lead to

E′ = J
σe

+ J×B
cene|Ze| − ( J×B)×B

c2γiρiρ
, (28)

which is similar in form to expressions obtained in multifluid for-
mulations (e.g. Königl 1989; Balbus & Terquem 2001).

The impact of the magnetic diffusivity on the evolution of the
fluid can be more readily appreciated if we use the Ohm, Hall and
ambipolar diffusivity terms, given by

ηO = c2

4πσO
, (29)

ηH = c2

4πσ⊥

σH

σ⊥
(30)

and

ηA = c2

4πσ⊥

σP

σ⊥
− ηO. (31)

Expressing the conductivity terms in equation (25) as functions of
the Ohm, Hall and ambipolar diffusivities (equations 29–31) and
substituting the resulting expression for E′ into equation (17) leads
to the following form of the induction equation (Wardle 2007):

∂B
∂t

= ∇× (v×B) − ∇×[ηO∇×B

+ηH(∇×B)×B̂ + ηA(∇×B)⊥], (32)

where the subscript ⊥ again denotes the direction perpendicular to
B. In the limit of a two-component plasma with q � 1, it can be
shown (Wardle 2007) that

ηH = βeηO (33)

and

ηA = βeβiηO . (34)

Under ideal-MHD conditions all the magnetic diffusivity terms in
the induction equation tend to zero and the evolution of the magnetic
field is fully determined by the inductive term (the first term on the
right-hand side of equations 17 and 32).

3 ME T H O D O L O G Y

3.1 Simplification of the equations

We now proceed to reduce the system of equations (15)–(17) and
(23) to a set of ODEs in z. We closely follow the approach of

WK93 and consider, as in that paper, a radially localized region of
the disc that is threaded by an open magnetic field with an ‘even’
symmetry (Br0 = Bφ0 = 0). Sections 3.2–3.8 deal with the mass
and momentum conservation equations for the neutral gas and with
the induction equation that describes the evolution of the magnetic
field. Sections 3.9 and 3.10 are concerned with Ampère’s and Ohm’s
laws, respectively.

3.2 Continuity

We are looking for steady-state (∂/∂t = 0), axisymmetric (∂/∂φ =
0) solutions. In this limit, the continuity equation (15) reads

1

r

∂

∂r
(rρvr ) + ∂

∂z
(ρvz) = 0. (35)

This expression is further simplified by neglecting the radial deriva-
tive term (see Section 2.1), which implies that ρvz is constant with
height. This approximation, first adopted in WK93, has been cri-
tiqued (e.g. Ferreira 1997) for not allowing vz to assume negative
values within the disc, as it must do in cases (expected to be typical)
in which the disc thickness decreases as the protostar is approached.
This issue can be fully addressed only in the context of a global
disc/wind model. However, it can be expected that any error in-
troduced by this approximation would be minimized if the upward
mass flux remained small enough for vz to have only a weak effect
on the behaviour of the other variables within the disc. Under the
assumption that |vr| is of the same order of magnitude as |vφ −
vK| one can readily show that the condition for this to hold is that
vz/cs remain � 1 everywhere within the disc. This can be checked a
posteriori for each derived solution of the radially localized model,
and we do this for the solutions presented in Paper II. Note that the
fulfilment of this condition also implies that the hydrostatic sim-
plification employed in the derivation of the parameter constraints
in Sections 4 and 5 should result in a good approximation to the
complete numerical solution for the vertical structure of the disc.

3.3 Radial component of the momentum equation

ρvr

∂vr

∂r
+ ρvz

∂vr

∂z
− ρv2

φ

r
+ ∂P

∂r
+ ρ

∂�

∂r
= 1

c
(JφBz − JzBφ).

(36)

The dominant terms in this equation are the gravitational and cen-
trifugal forces. We can thus simplify it by neglecting the ∂P/∂r

and ∂vr/∂r terms. Because of the assumed geometrical thinness,
we can also neglect a term of order (z/r)2v2

K/r in ∂�/∂r . However,
to handle the departure from exact Keplerian rotation, we keep the
drag force (i.e. the Lorentz force, communicated to the neutrals by
ion–neutral collisions; see equation 20) and the ∂vr/∂z term. Intro-
ducing these changes and using v2

K − v2
φ ≈ 2vK(vK − vφ), the radial

momentum equation becomes

ρvz

dvr

dz
+ 2ρvK

r
(vK − vφ) = 1

c
(JφBz − JzBφ). (37)

3.4 Azimuthal component of the momentum equation

ρvr

∂vφ

∂r
+ ρvφvr

r
+ ρvz

∂vφ

∂z
= 1

c
(JzBr − JrBz). (38)

In this equation, the torque due to the ion-neutral drag (the right-
hand side) and the inward radial transport are important in the
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hydrostatic layer, whereas the vertical material transport becomes
relevant as the wind region is approached. It is thus appropriate to
retain all the terms. Using vφ ≈ vK, we estimate ∂(rvφ)/∂r ≈ vK/2.
With these changes, equation (38) reads

ρvrvK

2r
+ ρvz

dvφ

dz
= 1

c
(JzBr − JrBz). (39)

3.5 Vertical component of the momentum equation

ρvr

∂vz

∂r
+ ρvz

∂vz

∂z
+ ∂P

∂z
+ ρ

∂�

∂z
= 1

c
(JrBφ − JφBr ). (40)

The dominant terms in this equation are the thermal pressure gradi-
ent and the tidal and magnetic compression terms. This equation can
be simplified using

∂P

∂z
= c2

s

∂ρ

∂z
,

∂vz

∂r
≈ 0,

ρvz

∂vz

∂z
≈ −v2

z

∂ρ

∂z
, ρ

∂�

∂z
≈ ρv2

K

r

z

r
,

where the approximation ρvz = const was used to obtain the first
expression on the second line. The simplified equation is then

(
c2

s − v2
z

) dρ

dz
+ ρv2

K

r

z

r
= 1

c
(JrBφ − JφBr ). (41)

3.6 Vertical component of the induction equation

∂Bz

∂t
= −1

r

∂

∂r
(rcEφ), (42)

where

cEφ = vrBz − vzBr + cE′
φ. (43)

In strictly steady-state discs ∇×E = −(1/c)∂B/∂t = 0, so E can
be expressed as a gradient of a scalar function and hence, under the
assumption of axisymmetry, Eφ = 0. However, Bz or, equivalently,
the poloidal (subscript ‘p’) magnetic flux function �(r , z) (defined
by 2π� = �

Bp · dS, where the integral is over a spatially fixed
surface that is threaded by the poloidal magnetic field) may still
change on the ‘long’ accretion time-scale τ a ≡ r/|vr|, corresponding
to a radial drift of the poloidal magnetic field through the disc. The
mid-plane radial speed of the magnetic flux surface at the radius of
interest is given by

vBr0 = cEφ0/Bz (44)

(e.g. Nakano, Nishi & Umebayashi 2002). The magnetic flux speed
vBr0 cannot be fixed arbitrarily (e.g. Ogilvie & Livio 2001) and is, in
general, an eigenvalue of the global disc/wind problem. However,
in the radially localized formulation of this paper we write vBr0 =
−εBcs and treat εB as a free parameter (see Section 3.13).

3.7 Radial component of the induction equation

∂Br

∂t
= ∂

∂z
(cEφ)

= vr

∂Bz

∂z
+ Bz

∂vr

∂z
− vz

∂Br

∂z
− Br

∂vz

∂z
+ c

∂E′
φ

∂z
. (45)

The radial and vertical components of the induction equation can
be combined into a single relation by using the poloidal magnetic
flux function � defined in Section 3.6. In view of the solenoidal
condition on B (equation 22), � satisfies

Bz = 1

r

∂�

∂r
, Br = −1

r

∂�

∂z
.

Hence, one can replace equations (42) and (45) by

∂�

∂t
= −rcEφ, (46)

which implies that, if ∂Bz/∂t �= 0 (so that Eφ �= 0) then, strictly,
∂Br/∂t need not vanish. We will, however, assume (as was done
in WK93) that ∂Br/∂t is identically zero. This approximation may
be justified on the grounds that a non-zero value of Br can be es-
tablished between the mid-plane (where Br = 0) and the top of the
disc on the ‘short’ dynamical time τ d ≡ r/vφ ≈ h/cs (where h is
again the disc scaleheight) by, for example, the vertical shear in the
radial velocity field acting on Bz (consider, respectively, the terms
vz∂Br/∂z and Bz∂vr/∂z in equation 45). Although a fully self-
consistent solution in which Br at the disc surface exactly matches
the value determined by the global magnetic field distribution out-
side the disc (see Section 3.13) may still require a contribution from
the slow radial diffusion of the poloidal field, a significant change in
the value of Br at any given radial location can potentially occur on
a time much shorter than the accretion time. This situation contrasts
with that for the vertical field component Bz (see equations 42 and
43) and is essentially a consequence of the assumed geometrical
thinness of the disc. An effectively equivalent approximation was
adopted in the Ogilvie & Livio (2001) disc model.

Setting ∂Br/∂t = 0 in equation (45) implies that Eφ is constant
with height and hence (using equations 43 and 44) that

cE′
φ = vzBr + (vBr0 − vr )Bz (47)

at any given radius.

3.8 Azimuthal component of the induction equation

∂Bφ

∂t
= ∂

∂z
(vφBz − vzBφ) − ∂

∂r
(vrBφ − vφBr )

− c

(
∂E′

r

∂z
− ∂E′

z

∂r

)
. (48)

In analogy with the case of the radial field component discussed in
Section 3.7, it can be argued that the explicit-time-derivative term
∂Bφ/∂t in equation (48), which describes variations in Bφ over
the ‘long’ radial accretion time, can be neglected in comparison
with the vertical advection term vz∂Bφ/∂z, which indicates that
a measurable azimuthal field component can be established over
the ‘short’ dynamical time, in this case primarily through the radial
shear in the azimuthal velocity field acting on Br (the term Br∂vφ/∂r

in equation 48). We thus set ∂Bφ/∂t = 0. In addition, we adopt the
following simplifications for the radial-derivative terms:

∂E′
z

∂r
≈ 0,

∂(vrBφ)

∂r
≈ 0,

∂vφ

∂r
≈ −vK

2r
=⇒ ∂(vφBr )

∂r
≈ −3

2

BrvK

r
− vφ

∂Bz

∂z

(see Section 2.1), where we used ∇ · B = 0 in the second expression.
However, for consistency with the rest of our derivation, we continue
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to neglect the vertical variation in Bz. With these approximations,
and relating E′

r to Er through equation (21), we obtain

d

dz
(cEr ) = −3

2

BrvK

r
. (49)

3.9 Ampère’s law

The radial and azimuthal components of Ampère’s law are, respec-
tively,

Jr = − c

4π

dBφ

dz
(50)

and

Jφ = c

4π

dBr

dz
, (51)

where we neglected the radial derivative term (∂Bz/∂r) in the last
expression. The vertical component is

Jz = c

4πr

[
Bφ + r

∂Bφ

∂r

]
≈ 0. (52)

Our neglect of J z inside the disc is motivated by the fact that, under
the thin-disc approximation, the magnitudes of the J × B terms
that include this component will be small in comparison with the
terms that involve Jr and J φ .

3.10 Ohm’s law

To simplify this equation, we begin by expressing the components
of E′ parallel and perpendicular to B as

E′
‖ = (E′ · B̂)B̂ = y B (53)

and

E′
⊥ = − 1

B2
(E′×B)×B = −(y B − E′), (54)

respectively, where y ≡ E′ · B/B2, B2 = B2
r + B2

φ + B2
z . Substi-

tuting equations (53) and (54) into equation (24) and using J z ≈ 0,
we obtain

Jr = y(σO − σP)Br + σH

B
(E′

zBφ − E′
φBz) + σPE

′
r , (55)

Jφ = y(σO − σP)Bφ + σH

B
(E′

rBz − E′
zBr ) + σPE

′
φ, (56)

E′
z = −Bz(E′

rBr + E′
φBφ)(σO − σP)

B2
z (σO − σP) + B2σP

+ σHB(E′
rBφ − E′

φBr )

B2
z (σO − σP) + B2σP

. (57)

3.11 System of ODEs in z

Summarizing, after the simplifications indicated in Section 3.1, we
have the following system of non-linear ODEs in z:

ρvz

dvr

dz
+ 2ρvK

r
(vK − vφ) = 1

c
(JφBz), (58)

ρvz

dvφ

dz
+ ρvrvK

2r
= −1

c
(JrBz), (59)

(
c2

s − v2
z

) dρ

dz
+ ρv2

K

r

z

r
= 1

c
(JrBφ − JφBr ), (60)

d

dz
(cEr ) = −3

2

BrvK

r
, (61)

Jr = − c

4π

dBφ

dz
, (62)

Jφ = c

4π

dBr

dz
. (63)

3.12 Normalized equations

Equations (58)–(63) form a system of ODEs in vr, vφ , ρ, Er, Bφ and
Br. The remaining variables – vz, Jr, J φ , E′

r, E′
φ and E′

z – may be
found algebraically via equations (21) and (55)–(57), together with
the condition ρvz = const. Furthermore, as discussed above, under
the adopted approximations Bz and Eφ are constant with height and
J z ≈ 0.

These equations can be expressed in dimensionless form by nor-
malizing the variables as follows:

z̃ ≡ z

hT
, ρ̃ ≡ ρ(r, z)

ρ0(r)
, (64)

w ≡ v − vKφ̂

cs
, wE ≡ cE/B0 + vK r̂

cs
, e′ = cE′

csB0
, (65)

j = 4πhT J
cB0

, σ̃ = 4πhTcsσ

c2
, b ≡ B

B0
, (66)

where hT = csr/vK is the tidal scaleheight of the disc. Note that,
under the adopted field symmetry, B0 = Bz and hence bz = 1. The
quantity w represents the normalized (by cs) fluid velocity in a frame
that rotates with the local Keplerian angular velocity �K = vK/r .
The quantity wE is an analogously reduced effective flux-surface
velocity. In particular, note that wEφ0 = vBr0/cs (see equation 44).
One can similarly express the effective mid-plane angular velocity
of the magnetic flux surfaces as �B0 = −cEr0/rB0, which implies
that wEr0 = −r(�B0 − �K)/cs.

With these normalizations, the following dimensionless system
of equations is obtained:

dwr

dz̃
= 1

wz

[
a2

0

ρ̃
jφ + 2wφ

]
, (67)

dwφ

dz̃
= − 1

wz

[
a2

0

ρ̃
jr + wr

2

]
, (68)

d ln ρ̃

dz̃
= 1

1 − w2
z

[
a2

0

ρ̃
(jrbφ − jφbr ) − z̃

]
, (69)

dwEr

dz̃
= −3

2
br , (70)

dbr

dz̃
= jφ, (71)

dbφ

dz̃
= −jr , (72)

e′
r = wEr + wφ − wzbφ, (73)

e′
φ = −εB + wzbr − wr, (74)
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jr = y(σ̃O − σ̃P)br + σ̃H

b
(e′

zbφ − e′
φ) + σ̃Pe

′
r , (75)

jφ = y(σ̃O − σ̃P)bφ + σ̃H

b
(e′

r − e′
zbr ) + σ̃Pe

′
φ, (76)

e′
z = −(e′

rbr + e′
φbφ)(σ̃O − σ̃P)

(σ̃O − σ̃P) + b2σ̃P

+ σ̃Hb(e′
rbφ − e′

φbr )

(σ̃O − σ̃P) + b2σ̃P
. (77)

In the above expressions, a0 is the mid-plane value of a ≡ vA/cs,
where the Alfvén speed is given by

vA = |B|√
4πρ

, (78)

and εB ≡ −wEφ = −vBr0/cs is the normalized value of the vertically
uniform Eφ .

Note in this connection that wEr, the radial component of the
reduced electric field, is expected to be >0 below the base of the
wind. This was demonstrated in WK93 for the ambipolar diffusion
case and is also true in the Hall and Ohm regimes. The reason
for this is that the matter inside the disc rotates at sub-Keplerian
speeds because it loses angular momentum to the field, and since
the motion of the field lines is controlled by that of the matter
(given that the quasi-hydrostatic layer, where the bulk of the mass
is located, is thermal pressure-dominated), �B must remain �vφ/r .
Hence, wEr = −r(�B − �K)/cs would be >0. As the magnetic
field bends away from the disc rotation axis (Br > 0 above the mid-
plane), �K decreases with distance along the field line, resulting in
a corresponding decline in wEr. [Equivalently, equation (70) shows
that wEr decreases with z̃ for br > 0.] Eventually, wEr vanishes at
some height above the mid-plane, which roughly coincides with the
location of the base of the wind (see Section 4.3).

As the height of the sonic point (denoted by a subscript ‘s’)
and the gas density at that location (or, equivalently, the vertical
velocity at the mid-plane, given that ρvz is constant with height)
are not known a priori, we treat z̃s and wz0 as additional variables,
which satisfy

dz̃s

dz̃
= 0 (79)

and

dwz0

dz̃
= 0. (80)

This allows us to find the position of the sonic point and the upward
mass flux self-consistently (see Paper II).

3.13 Parameters

The following parameters characterize the disc solutions in our
model.

(i) a0 ≡ vA0/cs, the mid-plane ratio of the Alfvén speed (based
on the large-scale vertical field component) to the isothermal sound
speed. This parameter measures the strength of the ordered magnetic
field that threads the disc.

(ii) cs/vK = hT/r , the ratio of the tidal scaleheight to the disc ra-
dius. While this parameter, which measures the geometric thinness
of the disc, does not appear explicitly in the normalized equations,
it nevertheless serves to constrain physically viable solutions (Sec-
tions 4 and 5) and is used in matching the disc solutions to the
self-similar wind solutions (see Paper II).

(iii) The mid-plane ratios of the conductivity-tensor compo-
nents: [σ P/σ⊥]0 (or [σ H/σ⊥]0) and [σ⊥/σ O ]0. They character-
ize the conductivity regime of the fluid (Section 2.1). In general,
the conductivity-tensor components vary with height, reflecting the
ionization structure of the disc (e.g. Salmeron & Wardle 2005).
However, the explicit solutions derived in Paper II correspond to a
simplified ionization prescription wherein the above ratios remain
constant with z.

(iv) The mid-plane Elsasser number �0 ≡ v2
A0/(�Kη⊥0), where

η⊥ ≡ c2/4πσ⊥ is the ‘perpendicular’ magnetic diffusivity. This
parameter measures the degree of coupling between the neutrals
and the magnetic field, with values �1 and �1 corresponding to
strong and weak coupling, respectively.6

(v) ε ≡ −vr0/cs, the normalized inward radial speed at the mid-
plane. This is a free parameter of the disc solution; its value is
determined (for given values of the other parameters) at the step
where we match it to the BP82 self-similar global wind solution
by imposing the Alfvén critical-point constraint on the wind (see
Paper II). Although the value of ε could in principle be negative (as
it, in fact, is in certain viscous disc models; e.g. Takeuchi & Lin
2002), in the context of our model formulation we generally expect
ε > 0 for physically viable, exclusively wind-driving discs.

(vi) εB ≡ −vBr0/cs = −cEφ0/csBz, the normalized azimuthal
component of the electric field E (vertically constant by equation 45)
measures the radial drift speed of the poloidal magnetic field lines.
This parameter vanishes in a strictly steady-state solution but is non-
zero if the magnetic field lines drift radially on the ‘long’ accretion
time-scale τ a.

In a global treatment of the disc/wind problem, one can relate εB

to the value of Br at the disc surface. The latter is determined by
the magnetic field distribution outside the disc, and, in the limit of a
potential (∇ × B = 0) external field, can be inferred from the radial
distribution of Bz along the disc surface (e.g. Ciolek & Mouschovias
1993; Lubow, Papaloizou & Pringle 1994; Krasnopolsky & Königl
2002). In the numerical solutions presented in Paper II, we simplify
the calculation by setting εB = 0; this condition is then used to
determine the value of Br at the disc surface. WK93, who employed
a similar radially localized model, derived solutions for both posi-
tive and negative values of εB (subject to the physically motivated
constraint εB < ε) and showed that disc configurations with the
same value of (ε − εB) were very similar to each other. This result
suggests that setting εB equal to zero should not strongly impact the
generality of the results. Further discussion of this approximation
is given in Appendix A.

3.14 Comparison with the multifluid approach

A commonly used alternative to the conductivity-tensor formal-
ism is based on writing down the separate equations of motion for
each charged-particle species (e.g. WK93). In this case, instead of
employing two independent ratios of the conductivity-tensor com-
ponents, the fluid can be characterized by the electron and ion Hall

6 The Elsasser number � = v2
A/(�Kη⊥) is distinct from the Lundquist

number S ≡ vAL/ηO and from the magnetic Reynolds number ReM ≡
V L/ηO (where V and L are characteristic speed and length-scale, respec-
tively), which have been used in similar contexts in the literature. This
quantity was labelled by the symbol χ in the MRI linear stability anal-
yses of Wardle (1999) and Salmeron & Wardle (2003, 2005), where,
in fact, its general form (which allows for variation with height) was
considered.
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parameters. Indeed, we already noted in Section 2 how the distinct
conductivity regimes of the fluid can be delineated directly in terms
of βe and β i. It is also instructive to evaluate the limiting forms of
the magnetic coupling parameter � – the ‘third parameter’ in our
classification scheme of viable solutions (see Sections 4 and 5) – in
the different conductivity regimes. In the ambipolar diffusion limit
|βe| � |β i| � 1 and hence

σ⊥ ≈ σP ≈ ce

B

ne

βi
(81)

(see equations 13 and 14). In this case � reduces to

ϒ ≡ γiρi

�K
, (82)

the ratio of the Keplerian rotation time to the neutral–ion momentum
exchange time. This parameter has emerged as the natural measure
of the field–matter coupling in the ambipolar diffusion-dominated
disc model of WK93 (where it was labelled η), as well as in stud-
ies of the linear (e.g. Blaes & Balbus 1994) and the non-linear
(e.g. Mac Low et al. 1995; Brandenburg et al. 1995; Hawley &
Stone 1998) evolution of the MRI in such discs. Indeed, since the
ions are well coupled to the field in this limit (|β i| > 1), the neu-
trals will be well coupled to the field if their momentum exchange
with the charged particles (which is dominated by their interaction
with the comparatively massive ions) occurs on a time-scale that
is short in comparison with the dynamical time (corresponding to
ϒ > 1).

On the other hand, in the Hall regime |βe| � 1 and |β i| � 1,
which implies

σ⊥ ≈ |σH| ≈ cene

|B| (83)

(see equations 12 and 14) and hence �=ϒ |β i|. The parameter com-
bination ϒ |β i|, which also figures prominently in linear (e.g. Wardle
1999; Balbus & Terquem 2001) and non-linear (e.g. Sano & Stone
2002a,b) studies of disc MRI in the Hall limit, similarly has a clear
physical meaning. Indeed, in contradistinction to the ambipolar dif-
fusion regime, the ions are not well coupled to the field in this case
(|β i| < 1). In order for the neutrals to be well coupled to the field
in the Hall regime it is, therefore, not sufficient for them to be well
coupled to the ions (ϒ > 1); rather, the product ϒ |β i| must be >1
in this case.

Finally, in the Ohm regime, where even the ‘electrons’ are not
well-coupled to the magnetic field (|βe| � 1),

σ⊥ ≈ σP ≈ cene

B
βe (84)

and therefore � = ϒβeβ i, implying a further tightening of the
requirement for good coupling between the neutrals and the field.

As we show in Sections 4 and 5, the parameter ϒ plays a fun-
damental role in the theory of wind-driving discs. In fact, it turns
out that the condition ϒ � 1 (which, according to the argument
given above, signifies good coupling of the neutrals to the field
only in the ambipolar diffusion regime) must be satisfied by all
viable configurations of this type, irrespective of the conductivity
domain that characterizes the disc. We elaborate on this point in
Section 6.

One can use the definitions of the conductivity components to
express their ratios in terms of βe and β i. Specializing again to the
case q � 1, we have

σP

σH
= 1 + βeβi

βe
. (85)

Furthermore, in the Hall and Ohm limits we get

σO

σH
=

{
βe Hall,

β−1
e Ohm.

(86)

We also have

σ̃⊥0 = �0

a2
0

, (87)

which follows from the definition of the Elsasser number.

4 PARAMETER CONSTRAI NTS

As previously shown by WK93 and Königl (1997), viable wind-
driving disc solutions in the strong-coupling regime (defined by �0

not being �1) occupy a limited region of parameter space. This
region is determined by the requirements that (i) the flow remain
sub-Keplerian within the disc, (ii) a wind is driven from the disc sur-
face (i.e. a wind launching criterion is satisfied), (iii) only the upper
layers of the disc participate in the outflow and (iv) the rate of heating
by the Joule dissipation is bounded by the rate of gravitational en-
ergy release. In this section, we generalize these conditions, which
were originally derived for discs in the ambipolar diffusion regime,
and apply them to discs in the Hall conductivity domain. The corre-
sponding constraints for discs in the Ohm regime are presented in
Section 5. The viable solution regions can in general be delineated
by the mid-plane values of two independent conductivity-tensor
components and of the Elsasser number � [see items (iii) and (iv)
in Section 3.13]. While we employ this representation in Paper II,
in this paper we use instead the parameters ψ ≡ ϒ0, β ≡ 1/β i0 and
qβ = 1/βe0, which are appropriate to the two-component plasma
to which we specialize and afford additional insights into the prob-
lem. This choice also allows us to make direct comparisons with
the results obtained in WK93 for the ambipolar diffusion regime.

The relevant constraints are derived by focusing, as in WK93, on
the quasi-hydrostatic disc region adjacent to the mid-plane, where
w2

z � 1. In this limit, the vertical momentum conservation equa-
tion (69) reduces to

dρ̃

dz̃
≈ a2

0 (jrbφ − jφbr ) − ρ̃z̃. (88)

The last term on the right-hand side of this equation, which repre-
sents tidal compression, can generally be neglected in comparison
with the magnetic squeezing term (see Section 6). Applying this ap-
proximation and substituting for jφ and jr from equations (71) and
(72), respectively, one can then integrate equation (88) to deduce
that

ρ̃ + a2
0

2

(
b2

r + b2
φ

) ≈ const (89)

within the disc and, therefore, that

b2
rb + b2

φb ≈ 2

a2
0

(90)

at the base of the wind (subscript b; the effective surface of the
disc), where ρ̃ � 1. Within the quasi-hydrostatic layer it is appro-
priate to set ρ̃ ≈ 1. The two other components of the momentum
conservation relation (equations 67 and 68) then reduce to

wφ ≈ −a2
0

2
jφ (91)

and

wr ≈ −2a2
0jr . (92)
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In the remainder of this section (as well as in Section 5) we assume
that the ion mass density ρ i and the collisional coupling coefficient
γ i (equation 6) are constant with height in the quasi-hydrostatic
zone. Under this assumption we can neglect the z-variation of the
quantity ϒ within this layer and set it equal to ϒ0 = ψ .7

4.1 Sub-Keplerian flow below the launching region

We seek to identify the regions of parameter space where wφ <

0 below the launching region, as expected for physically viable
solutions (see Section 3.12 and WK93). We begin by expressing
jr and jφ as functions of br, bφ , wEr and our model parameters
by substituting equations (21), (91) and (92) into equation (25).
Equation (91) can then be used to deduce the condition that must be
satisfied for the flow to remain sub-Keplerian within the disc. The
radial and azimuthal components of equation (25) are, respectively,[
b2 σ⊥

σO
+

(
σP

σ⊥
− σ⊥

σO

)
(1 + b2

φ)

]
jr

+
[
b2 �0

2
+ b

σH

σ⊥
−

(
σP

σ⊥
− σ⊥

σO

)
brbφ

]
jφ = b2 �0

a2
0

wEr

(93)

and[
2b2�0 + b

σH

σ⊥
+

(
σP

σ⊥
− σ⊥

σO

)
brbφ

]
jr

−
[
b2 σ⊥

σO
+

(
σP

σ⊥
− σ⊥

σO

)
(1 + b2

r )

]
jφ = b2 �0

a2
0

εB. (94)

These relations can be cast in terms of br, bφ , wEr and the parameters
ψ , β and q, which are the variables employed by WK93 in their
analysis of the ambipolar diffusion regime. Specifically, inverting
equations (93) and (94) and substituting

b
σH

σ⊥
= b2

(
1 − q

1 + q

)
β�0

ψ
, (95)

b2 σ⊥
σO

= b2 qβ2

1 + q

�0

ψ
(96)

and(
σP

σ⊥
− σ⊥

σO

)
= b2

1 + q

�0

ψ
, (97)

we find⎛
⎝ jr

jφ

⎞
⎠ = ψ

a2
0

(1 + q)

K

⎛
⎝ A1 A2

A3 A4

⎞
⎠

⎛
⎝ wEr

εB

⎞
⎠ . (98)

In these expressions

A1 = 1 + qβ2 + b2
r , (99)

A2 = ψ

2
(1 + q) + β(1 − q) − brbφ, (100)

7 In WK93, it was assumed that ρi and γ i are constant from z = 0 all the way
to the sonic point of the wind, and it was noted that this might be a reasonable
approximation to the actual conditions in some protostellar discs on scales
�102 au, where ambipolar diffusion dominates. In the more general case
considered in this paper, where we incorporate also the Hall and Ohm
diffusivity regimes that are relevant at higher densities, a similar assumption
would not be realistic. However, here we only make this approximation in
the quasi-hydrostatic layer, where it helps to simplify the analysis.

A3 = 2ψ(1 + q) + β(1 − q) + brbφ, (101)

A4 = − (
1 + qβ2 + b2

φ

)
(102)

and

K = (1 + qβ2)
(
b2

r + b2
φ

) + (1 + β2)(1 + q2β2)

+ψ(1 + q)

[
5

2
β(1 − q) − 3

2
brbφ + ψ(1 + q)

]
. (103)

In the remainder of this paper we assume, for simplicity, that
εB ≈ 0 (see Section 3.13 and Appendix A). Substituting jr from
equation (92) into equation (98) and using the fact that wEr > 0
(see Section 3.12) and wr < 0 below the disc surface, we infer
that K must be >0 within the disc. We can also substitute jφ from
equation (98) into equation (91) to obtain an explicit expression for
the sub-Keplerian flow condition:

wφ ≈ −ψ(1 + q)

2

[2ψ(1 + q) + β(1 − q) + brbφ]wEr

K
< 0.

(104)

In the rest of this section and in Section 5 we also specialize to
the case q � 1 (or, equivalently, 1 ± q ≈ 1), which provides a
good approximation for discs in which grains are not the dominant
charge carriers. It is straightforward to carry out this analysis in
the other case of special interest, namely q = 1, which arises when
grains dominate both the ‘+’ and the ‘−’ charged components (see
Section 6). In the limit q � 1, the expression for wφ reduces to

wφ ≈
− 1

2 ψ(2ψ + β + brbφ)wEr

(1 + qβ2)(b2
r + b2

φ) + (1 + β2)(1 + q2β2) + ψ( 5
2 β − 3

2 brbφ + ψ)
.

(105)

In the ambipolar diffusion limit (|βe| � |β i| � 1) we can take β

(≡ 1/β i0), qβ (≡ 1/βe0) and qβ2 (≡ 1/βe0β i0) to be all �1. The
right-hand side of equation (105) then reduces to the right-hand side
of equation (4.3) in WK93 (where the minus sign in front of the
numerator is a typographical error). On the other hand, in the Hall
limit (|β i| � 1 � |βe|) one has β � 1 and qβ � 1, but qβ2 may
be either >1 or <1. In the Ohm regime (|β i| � |βe| � 1) both β

and qβ (and hence also qβ2) are � 1.
Given that wEr > 0 and K > 0 inside the disc, the condition wφ <

0 implies that

dbr

dbφ

= − jφ

jr

= −2ψ + β + brbφ

1 + qβ2 + b2
r

(106)

(where we used equations 98, 99 and 101 in the limit q � 1) is <0,
or

−brbφ < 2ψ + β ≡ C (107)

below the disc surface. The fact that brbφ < 0 above the mid-plane
in turn implies that C must be > 0 and hence that

β > −2ψ. (108)

The form of equation (106) suggests that the Hall parameter
regime can be subdivided into four sub-zones, depending on how
the ion slip factor s0 = 1/qβ2 and the Elsasser number �0 = ψ/|β|
compare with 1 and 1/2, respectively (Königl 1997). In Table 1,
where we list the parameter constraints for viable wind-driving disc
solutions in the Hall regime, we label these sub-regions by the
numerals i through iv.

Combining equations (90) and (107), we infer that the solutions
must satisfy

b4
rb − 2

a2
0

b2
rb + C2 > 0 (109)
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Table 1. Parameter constraints for wind-driving disc solutions in the limit where the Hall diffusivity dominates. Four distinct cases can be identified, depending
on how the values of s0 = 1/qβ2 = βe0β i0 and of 2�0 = 2ψ/|β| = 2ϒ0|β i0| compare with 1. The first inequality expresses the requirement that the disc
remain sub-Keplerian below the wind zone (z̃ < z̃b), the second is the wind launching condition (the requirement that the magnetic field lines be sufficiently
inclined to the vertical for centrifugal acceleration to occur), the third ensures that the base of the wind is located above the (magnetically reduced) density
scaleheight and the fourth specifies that the rate of Joule heating at the mid-plane should not exceed the rate of release of gravitational potential energy
there.

Case Limits Parameter Constraints – Hall limit
s0 = βe0β i0 �0 = ϒ0|β i0| (multifluid formulation)

i >1 >1/2 (2ϒ0)−1/2 � a0 � 2 � εϒ0 � vK/2cs

ii >1 <1/2 β
1/2
i0 � a0 � 2(ϒ0β i0)1/2 � ε/2β i0 � ϒ0β i0 vK/cs

iii <1 >1/2 (2ϒ0)−1/2 � a0 � 2 � εϒ0βe0β i0 � vK/2cs

iv <1 <1/2 β
1/2
i0 � a0 � 2(ϒ0β i0)1/2 � εβe0/2 � ϒ0β i0 vK/cs

in order for the accretion flow to remain sub-Keplerian all the way
to the top of the disc. Assuming an equality, we find that solutions
only exist if a0 > C−1/2. This translates into a0 > (2ψ)−1/2 for
Cases (i) and (ii) in Table 1 (for which C ≈ 2ψ) and a0 > 1/β1/2

for the remaining two cases (where C ≈ β). These constraints are
summarized in the first column of inequalities in the table.8

4.2 Wind launching criterion

We identify the wind launching condition using a similar argument
to the one developed in WK93. The essence of the argument is that,
if no wind were to form, wz would remain small and equation (88)
would be valid throughout the vertical extent of the disc. The right-
hand side of this expression is <0 near the mid-plane, but if it
became >0 at some height, so that

a2
0

ρ̃
(jrbφ − jφbr ) > z̃, (110)

this would represent an unphysical situation and would lead to a
necessary condition for wind launching. We obtain this condition
by differentiating both sides of equation (110) with respect to z̃ after
substituting for jφ and jr from equation (98). In the upper layers
of the disc the z̃ derivatives of ρ̃, br and bφ can be neglected in
comparison with the derivative of wEr (given by equation 70). The
wind-launching condition then becomes (setting again ρ̃ ≈ 1)[
3ψ2 + 3

2
ψβ − (1 + qβ2)

]
b2

rb > (1 + β2)(1 + q2β2) + ψ2

+ 5

2
βψ + (1 + qβ2)b2

φb + 3

2
ψqβ2brbbφb. (111)

In the ambipolar diffusion regime, where β, qβ and qβ2 are � 1,
this expression reduces to equation (4.16) of WK93. That study
moreover showed that viable solutions in this regime satisfy ψ �
1 and brb > |bφb| (see also Section 6), from which it follows that
this constraint further reduces to the ideal-MHD wind-launching
criterion brb > 1/

√
3 (BP82) in this case. Using brb ≈ √

2/a0 (see
equation 90), this condition can be expressed as a0 �

√
6 ≈ 2. The

corresponding constraints in the Hall regime are contained in the
second column of inequalities in Table 1. Given that the approxima-
tion brb ≈ √

2/a0 holds in the Hall domain as well (see Section 4.3),
it is seen that the ideal-MHD limit of the wind-launching criterion
also characterizes Cases (i) and (iii) in this regime. In the other

8 Note that, although the ion Hall parameter can in principle assume a
negative value, all entries of β

1/2
i0 in Tables 1 and 3 in fact correspond to

βi0 > 0 (see Section 6).

two Hall sub-regimes (Cases ii and iv) brb is required to exceed
(2/ϒ0βi0)1/2/

√
3, which is >1/

√
3 (i.e. the minimum inclination

angle of the surface field to the rotation axis that is required for
launching a wind is higher than the ideal-MHD value of 30◦.).

4.3 Location of the base of the wind

In light of both theoretical and observational arguments (e.g. Königl
& Pudritz 2000), only a small fraction of the disc material should
participate in the outflow. This condition is implemented by requir-
ing that the base of the wind (which we identify with the height
above which the azimuthal velocity becomes super-Keplerian) be
located above the magnetically reduced density scaleheight (i.e.
z̃b/h̃ > 1). When this condition is violated, Bφ changes sign within
the disc, reflecting the attempt by the field to transfer angular mo-
mentum to matter before the outflow is initiated (see fig. 6 in WK93
and Paper II).

To formulate this constraint, we begin by estimating the vertical
location of the base of the wind. In the hydrostatic approximation,
the azimuthal velocity increases to a Keplerian value (i.e. wφ = 0)
when wEr decreases to 0 (see equations 91 and 98). By equation (70),
this occurs at

z̃b ≈ 2

3

wEr0

brb
. (112)

Next, we substitute j r0 from equation (92) and wr0 = −ε into
equation (98) to get

wEr0 = ε

2ψ

ψ2 + (5/2)ψβ + (1 + β2)(1 + q2β2)

1 + qβ2
, (113)

where, in the Hall regime (β2 � 1 and q2β2 � 1), the product
(1 + β2)(1 + q2β2) on the right-hand side reduces to β2.9 As an
aside, we note that equation (113) can be used to derive a param-
eter consistency constraint based on the requirement that wEr0 (or,
equivalently, the mid-plane value of K; see equation 103) must be
>0 (see Section 3.12). Indeed, treating this expression as a quadratic
equation for β and setting it equal to 0, we find that viable solutions
in the Hall regime require β < −2 ψ or β > −ψ/2. In view of
equation (108), it follows that

β > −ψ/2 in the Hall regime. (114)

In the wind-driving discs that are of interest to us the den-
sity scaleheight (h̃) is generally reduced by magnetic squeezing

9 A more general expression for wEr0, in which no restriction is placed on
the value of q, is given by equation (A11) in WK93.
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Table 2. Key properties of viable disc solutions in the Hall regime. Listed, in order, are the mid-plane values of |dbr/dbφ |, the
magnetically compressed scaleheight in units of the tidal scaleheight (h̃ ≡ h/hT), the similarly normalized vertical location of the base
of the wind z̃b in units of h̃ and the normalized Joule dissipation rate j · e′ at the mid-plane.

Case Limits Solution characteristics – Hall limit
s0 = βe0β i0 �0 = ϒ0|β i0| |dbr/dbφ |0 h̃ z̃b/h̃ ( j · e′)0

i >1 >1/2 2ϒ0 (>1) a0/εϒ0 (εϒ0)2/3
√

2 ε2ϒ0/a
2
0

ii >1 <1/2 1/β i0 (>1) 2 a0β i0/ε ε2/6
√

2ϒ0β
3
i0 ε2/4ϒ0β

2
i0 a2

0
iii <1 >1/2 2ϒ0 βe0β i0 (>1) a0/εϒ0β i0βe0 (εϒ0βe0βi0)2/3

√
2 ε2ϒ0βe0β i0/a

2
0

iv <1 <1/2 βe0 (>1) 2a0/ε βe0 (εβe0)2/6
√

2ϒ0βi0 ε2βe0/4ϒ0β i0a
2
0

(h̃ ≡ h/hT < 1; see Section 6 and WK93). To obtain an expres-
sion for h̃ we first approximate the surface values of br and bφ by
brb ≈ z̃b(dbr/dz̃)0 and bφb ≈ z̃b(dbφ/dz̃)0, respectively.10 Then,
using equation (106), we deduce∣∣∣∣ brb

bφb

∣∣∣∣ ≈
∣∣∣∣ dbr

dbφ

∣∣∣∣
0

= 2ψ + β

1 + qβ2
, (115)

which is readily verified to be >1 in all the Hall sub-regimes. These
results are presented in column 4 of Table 2, which summarizes the
key properties of our wind solutions for the various Hall sub-regimes
considered in this section. Neglecting the bφ term in equation (88)
and approximating ρ̃ ≈ 1 and br ≈ z̃(dbr/dz̃)0, we find

dρ̃

dz̃
≈ −

[
a2

0

(
dbr

dz̃

)2

0

+ 1

]
z̃. (116)

As we show in Section 6, magnetic compression (represented by the
first term on the right-hand side of equation 116) dominates tidal
squeezing (the second term on the right-hand side) in all viable
wind-driving disc solutions. Defining the scaleheight h̃ by relating
it to an effective Gaussian density distribution, so that

dρ̃

dz̃
= − z̃

h̃2
, (117)

we thus infer

h̃ ≈ 1

a0

(
dbr

dz̃

)−1

0

. (118)

By substituting for (dbr/dz̃)0 in equation (118) from equations
(71) and (98), we can express h̃ in terms of the disc parameters as

h̃ ≈ 2a0

ε

1 + qβ2

2ψ + β
. (119)

Similarly, combining equations (90), (112), (113) and (119), we get
the desired expression for the location of the base of the wind in the
Hall regime:

z̃b

h̃
≈ ε2(2ψ + β)

6
√

2ψ

ψ2 + (5/2)ψβ + β2

(1 + qβ2)2
. (120)

Expressions for h̃ valid for Cases (i)–(iv) are listed in column 5
of Table 2. Equation (120), which is listed in column 6 of that table,
can be used to express the constraint z̃b/h̃ > 1 in each of the four
Hall sub-regimes. This constraint is shown in the third column of
inequalities in Table 1.

10 We will not use these expressions to estimate the actual magnitudes of
the transverse magnetic field components at the base of the wind (rather
than just their ratio) both because the assumption of a linear scaling of the
field components with z̃ is not expected to remain accurate above a density
scaleheight and because of the approximation involved in the definition
(112) of z̃b; instead, we will use equation (90) for this purpose.

4.4 Dissipation rate

This constraint, represented by the last set of inequalities in Table 1,
limits the rate of heating by Joule dissipation at the mid-plane to
less than the rate of gravitational potential energy release at that
location (Königl 1997),

( j · e′)0 <
ε

2a2
0

vK

cs
, (121)

where, by equations (26), (27) and (52),

( j · e′)0 = a2
0

ψ
(1 + qβ2)(j 2

r0 + j 2
φ0)

= ε2

4ψa2
0

(1 + qβ2)

[
1 +

(
2ψ + β

1 + qβ2

)2
]
. (122)

The expression (122) is shown in column 7 of Table 2 for each of
the Hall sub-regimes.

5 TH E O H M R E G I M E

In this section, we consider the parameter constraints on viable
wind-driving disc solutions for discs in the Ohm diffusivity regime.
The corresponding constraints for discs in the Hall regime were
derived in Section 4 using the hydrostatic approximation, and here
we either directly apply the results presented in that section or
else further generalize them to cover also the Ohm domain. We
again adopt the multifluid formalism in a weakly ionized ‘ion’–
‘electron’ gas with q � 1, in which the Ohm regime is defined by
the inequalities |β i0| � |βe0| � 1 (or, equivalently, |β| � q|β| �
1). We also continue to assume that εB ≈ 0.

5.1 Sub-Keplerian flow below the launching region

All the results derived in Section 4.1 are applicable in this regime.
In particular, a necessary condition for a solution to exist is that the
inequality a0 > C−1/2 is satisfied, where C, given by equation (107),
is equal to 2ψ (where ψ = ϒ0) or to β in the limits where ψ/|β|
is �1/2 or �1/2, respectively. The magnitude of this parameter
combination thus provides a natural classification criterion, simi-
larly to the situation in the Hall regime. However, in contrast with
the Hall case, in which the factor qβ2 in the denominator of equa-
tion (106) can be either >1 or <1, in the Ohm limit qβ2 � 1 and
this parameter combination cannot be used to identify the relevant
parameter sub-regimes. A suitable combination can nevertheless
be found by using the relation (106) to determine which transverse
magnetic field component (radial or azimuthal) dominates at the
disc surface (see equation 115). In the limit |β| � 2ψ we have
|brb/bφb| ≈ 1/qβ � 1, but in the opposite limit (2ψ � |β|) this
ratio is given by |brb/bφb| ≈ 2ψ/qβ2, which can be either >1 or <1.
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This suggests that the parameter combination ψ/qβ2 could serve
to sub-divide the parameter regime ψ/β > 1/2. As we verify in the
subsequent sections, this is indeed a proper choice. This result is not
surprising given the fact that, in the Ohm regime, ψ/qβ2 is equal to
the Elsasser number �0 (defined in Section 3.13) and that �0 plays
a similar role in the Hall regime (where it is equal to ψ/|β|).

5.2 Wind launching criterion

In analyzing the inequality given by equation (111) in the Ohm
limit, we consider separately the cases ψ/|β| > 1/2 and ψ/|β| <

1/2. As we noted in Section 5.1, the first case can be sub-divided
according to whether �0 is >1/2 or <1/2. When �0 > 1/2, the
dominant terms on both the left-hand side and the right-hand side
of equation (111) are the ones containing the factor ψ2, and we
recover the BP82 launching condition of a centrifugally driven,
ideal-MHD wind from a Keplerian disc, brb > 1/

√
3. However, the

application of the above equation to the second sub-regime, in which
the inequalities |β| < 2ψ < qβ2 are satisfied, is less straightforward.
Indeed, while one can readily verify that the term involving ψ2 again
dominates the left-hand side of equation (111) in this case, on the
right-hand side of this equation either the first term or the last term
could potentially dominate. Assuming that the first term (∼q2β4)
in fact dominates, one can substitute b2

rb ≈ (2/a2
0)(2ψ/qβ2)2 from

equations (90) and (115) into equation (111) to infer that the factor
6ψ2/a2

0q
2β4 is >(qβ2/2ψ)2 > 1. But in the chosen parameter

regime this factor is equal to the ratio of the absolute magnitude of
the last term on the right-hand side of equation (111) to the first term
on the right-hand side of this equation, which is a contradiction (as
we assumed that the first term on the right-hand side dominates). A
self-consistent solution can thus be obtained only if the ratio of the
absolute values of the last and first terms on the right-hand side of
equation (111) is required from the start to exceed 1, in which case
the inequality expressed by this equation would be trivially satisfied
(with the left-hand side being >0 and the right-hand side – which
is proportional to brbbφb – being <0). This requirement, in turn,
provides an effective wind-launching condition on the inclination
of surface poloidal field: brb > 2/

√
3.11

Turning now to the case ψ/|β| < 1/2, we find that it is again
possible to choose between two alternatives: either ψ > q|β| or ψ <

q|β|. The first alternative is similar to the just-discussed ψ/|β| >

1/2, �0 < 1/2 sub-regime in that one can immediately identify the
dominant term on the left-hand side of equation (111) (which in this
instance involves the factor 3ψβ/2) even as the choice between the
first and last terms on the right-hand side of this equation appears to
be unclear. The assumption that the first term on the right-hand side
dominates again leads to a contradiction, so in this case, too, one is
led to impose the requirement that the last term always dominates
the first term on the right-hand side of equation (111). This require-
ment, in turn, again implies an effective wind-launching criterion,
which in this case is brb > [(4/3)(β/2ψ)]1/2(> 2/

√
3).12 The sec-

ond alternative, corresponding to the parameter regime q|β| < ψ <

|β|/2, does not allow the launching condition to be satisfied since
it implies that, while the right-hand side of equation (111) remains
>0, the left-hand side is dominated by the last term and is there-

11 This condition implies a minimum inclination angle of the surface poloidal
field to the rotation axis of �49◦, as compared with 30◦ for the ideal MHD-
like case (brb > 1/

√
3).

12 We have implicitly assumed that the Hall parameters are >0 in this case;
this is explicitly justified in Section 6.

fore <0. We therefore exclude this parameter regime from further
consideration in the ensuing sections, in which we continue to ver-
ify that the three other Ohm sub-regimes that we have identified
are compatible with wind-driving disc solutions that obey all the
relevant physical requirements.

5.3 Location of the base of the wind

In the Hall regime, we deduced that all viable solutions satisfy
|brb/bφb| ≈ |dbr/dbφ |0 � 1, and we used this approximation in
deriving the expressions (118) and (120) for the normalized den-
sity scaleheight h̃ and discheight z̃b. However, as already noted
in Section 5.1, in the Ohm case this inequality could in principle
be reversed, in which case the above expressions would need to be
modified. This can be done through a straightforward generalization
of the derivations presented in Section 4.3. Using equation (115)
and defining

D(ψ, β) ≡
(

dbr

dbφ

)2

0

=
(

2ψ + β

1 + qβ2

)2

, (123)

we obtain

h̃ = 2a0

ε
[1 + D(ψ, β)]−1/2, (124)

brb ≈
√

2

a0
[1 + 1/D(ψ, β)]−1/2 (125)

and

z̃b

h̃
≈ ε2

6
√

2ψ

ψ2 + (5/2)ψβ + (1 + β2)(1 + q2β2)

2ψ + β
[1 + D(ψ, β)].

(126)

It can be readily verified that in the Hall limit these results reduce
to the corresponding expressions presented in Section 4.3.

5.4 Dissipation rate

The results of Section 4.4, given by equations (121) and (122),
continue to apply also in the Ohm regime. Note that the second of
the above equations can be written in the form

( j · e′)0 = ε2

4ψa2
0

(1 + qβ2) [1 + D(ψ, β)] . (127)

5.5 Results

The results of the foregoing analysis are collected in Tables 3 and
4, which are patterned on Tables 1 and 2, respectively, in Section 4
(where the corresponding data for the Hall regime are presented).
The implications of these results are discussed in conjunction with
those of our findings for the Hall and ambipolar-diffusion regimes
in Section 6.

5.6 Formulation in terms of scalar conductivity

As we noted in Section 2.1, the analysis of the problem in the
Ohm regime can be alternatively carried out in terms of the scalar
conductivity σ O (equation 11). In the case of a two-component
plasma with q � 1 this is just the ‘electron’ electrical conductivity
σ e (equation 27). With our adopted normalization (see equation 66),
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Table 3. Parameter constraints for wind-driving disc solutions in the limit where the Ohm diffusivity dominates. Three distinct cases can be
identified, as indicated. The meaning of the four inequalities in each sub-regime is the same as in Table 1. The parameters ψ , β and qβ used in
the text are related to the parameters employed in the table through ψ = ϒ0, β = 1/β i0 and qβ = 1/βe0.

Case Limits Parameter constraints – Ohm limit
ϒ0|β i0| �0 = ϒ0|βe0| |β i0| (multifluid formulation)

i >1/2 >1/2 (2ϒ0)−1/2 � a0 � 2 � εϒ0βe0β i0 � vK/2cs

ii >1/2 <1/2 (2ϒ0)−1/2 � a0 � 2ϒ0βe0β i0 � ε/2 � ϒ0βe0β i0vK/cs

iii <1/2 >|β i0| β
1/2
i0 � a0 � 2(ϒ0β i0)1/2βe0 � ε/2 � ϒ0βe0β i0 vK/cs

Table 4. Key properties of viable disc solutions in the Ohm regime. See the caption to Table 2 for a description of the listed quantities.

Case Limits Solution characteristics – Ohm limit
ϒ0|β i0| �0 = ϒ0|βe0| |β i0| |dbr/dbφ |0 h̃ z̃b/h̃ ( j · e′)0

i >1/2 >1/2 2ϒ0βe0β i0 (>1) a0/εϒ0βe0β i0 (εϒ0)2/3
√

2 ε2ϒ0βe0β i0/a
2
0

ii >1/2 <1/2 2ϒ0βe0β i0 (<1) 2a0/ε (ε/ϒ0βe0βi0)2/12
√

2 ε2/4ϒ0βe0β i0a
2
0

iii <1/2 >|β i0| βe0 (>1) 2 a0/ε (ε/βe0)2/6
√

2ϒ0βi0 ε2/4ϒ0βe0β i0a
2
0

the corresponding dimensionless conductivity at the mid-plane of
the disc is

σ̃e0 = 4πhTcsσe

c2
= hTcs

ηO0
= ϒ0βe0βi0

a2
0

. (128)

From equation (128) it is seen that, in the Ohm regime, �0 =
a2

0 σ̃e.13 This makes it possible to relate the results derived in this sec-
tion to the equivalent scalar-conductivity formulation. In particular,
Cases (i) and (ii) identified above correspond to a2

0 σ̃e being >1/2
and <1/2, respectively. Resistive-MHD disc models that have ap-
peared in the literature typically use Ohm’s law in the form E =
−v × B/c + J/σ e and ignore the second (Hall) term on the right-
hand side of the more general expression given by equation (25).
On the face of it, this might be justified by the fact that the ratio
of the conductivity prefactors of the second and first terms on the
right-hand side of this equation, |σ H| σ O/σ 2

⊥, is ∼|βe|, which is �1
in the Ohm regime. However, this argument does not account for
the fact that the Hall term in the expression for E′ is perpendicular
to J, which implies, in particular, that the Hall term appears in the
prefactor of the radial current density Jr in the normalized expres-
sion for the azimuthal electric field component Eφ (equation 94).
The only other contributor to this prefactor at z = 0 is associated
with the advective (∝ v × B/c) term, which could in principle be
subordinate to the Hall-current term. Now, these two terms (Hall
and advective) in equation (94) correspond to the two terms (β and
2ψ , respectively) in the numerator of the expression for |dbr/dbφ |0
(equation 115) that are used in our solution classification scheme for
the Ohm regime. In Cases (i) and (ii) ϒ0|βi0| = a2

0 σ̃e0/|βe0| > 1/2
and so the Hall term can be neglected, but in Case (iii) this inequality
is reversed and the Hall term dominates.

6 D ISCUSSION

The first term within the first pair of parentheses on the right-hand
side of equation (122) represents the ohmic contribution to the Joule
dissipation in the disc, whereas the second term corresponds to the
ambipolar dissipation. (The Hall term in Ohm’s law, i.e. the term
∝ J × B in equations 25 and 26, does not contribute to the J ·
E′ dissipation.) This suggests (see Königl 1997) that the slip factor

13 This also follows directly from the relation (87) in this limit.

s0 = 1/qβ2 = βe0β i0 can be used to distinguish between ambipolar
diffusion-like (βe0β i0 > 1) and Ohm-like (βe0 β i0 < 1) sub-regimes
in the nominal Hall parameter domain (|β i0| < 1 < |βe0|).14 For
comparison, both βe0β i0 > 1 and |β i0| > 1 must hold in the actual
ambipolar diffusion regime, whereas both βe0 β i0 < 1 and |βe0| <

1 must be satisfied in the genuine Ohm regime. This criterion forms
the basis of the classification given in the second column of Ta-
ble 1. The relevance of this criterion is demonstrated by the fact
that the first row of inequalities (Case i) exactly reproduces the cor-
responding constraints in the ambipolar diffusion case (see WK93
and Königl 1997) and that the third row (Case iii) is identical to the
first row of inequalities in Table 3 (Case i in the Ohm regime).15

The third column in Table 1 classifies the solutions according
to the value of the magnetic coupling parameter �0 (the Elsasser
number, which in the Hall regime is equal to ϒ0|β i0|). Although
the constraints obtained for large (�0 > 1/2; Cases i and iii) and
small (�0 < 1/2; Cases ii and iv) values of �0 are clearly distinct in
their forms, it is interesting to note that the sub-Keplerian rotation
and wind-launching requirements (the first and second inequalities,
respectively) together imply that ϒ0 � 1 in all cases. This inequality
already follows directly from the conditions ϒ0|β i0| > 1/2 and
|β i0| < 1 that define the Hall Cases (i) and (iii), but it is noteworthy
that all viable solutions in the Hall domain satisfy this constraint,
which was previously inferred in the ambipolar diffusion regime
(see WK93). This result can be visualized by plotting the sub-
Keplerian-rotation and wind-launching constraints for each of the
Hall sub-regimes. First, however, we present the relevant curves in
the ambipolar diffusion limit (Fig. 1; cf. fig. 3 in WK93). The dark,
solid lines in this figure show the run of br versus bφ , computed from
equation (106), for ϒ0 = 10, 2 and 1. In fully sub-Keplerian discs
dbr/dbφ must be <0 below the base of the wind (i.e. for z̃ < z̃b; see
equations 105 and 106). This condition constrains viable solutions
to lie to the left of the long-dashed curve that marks the locus
of points where dbr/dbφ = 0. On the other hand, these solutions
must also satisfy the wind-launching criterion (equation 111), which
constrains them to reside above the light solid line for the given

14 This can also be seen directly from equation (34), which implies that s =
ηA/ηO.
15 These correspondences apply also to the solution characteristics listed in
Tables 2 and 4.
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Figure 1. Plots of br versus bφ [each normalized by (2ϒ0)1/2] in the quasi-
hydrostatic region of the disc (dark solid lines) for ϒ0 = 1, 2 and 10 in
the limit where ambipolar diffusion dominates. Physically viable solutions
must satisfy two constraints. First, they must lie to the left of the long-dashed
line, which marks the point where d br/d bφ changes sign: this ensures that
the azimuthal velocity is sub-Keplerian within the disc (i.e. wφ , given by
equation 105, is <0 for z̃ < z̃b). Secondly, they must also lie above the light
solid line for the corresponding value of ϒ0, so that the wind-launching
criterion (equation 111) is satisfied. It is evident from the figure that these
two constraints together imply ϒ0 � 1.

value of ϒ0. It is evident from these plots that no physically viable
solutions exist for ϒ0 < 1. The corresponding curves for Cases
(i)–(iv) in the Hall limit are shown in the four panels of Fig. 2: they
confirm that viable solutions satisfy ϒ0 � 1 also in all the Hall
sub-regimes.

As was shown in Section 5, the magnitude of the parameter
combination ϒ0|β i0| compared to 1/2 is one of the classification
criteria also in the Ohm regime (see the second column in Table 3).
When ϒ0|β i0| > 1/2 the second classification criterion in the Ohm
regime can again be expressed in terms of the Elsasser number �0

(which in this limit equals ϒ0 βe0β i0) being either >1/2 (the Ohm
Case i) or <1/2 (the Ohm Case ii; see the third column in Table 3).
Similarly to the situation in the Hall Cases (i) and (iii), the fact
that |β i0| < 1 implies that ϒ0 must be �1 also in these two Ohm
sub-regimes. The third Ohm sub-regime is defined by ϒ0|β i0| <

1/2 and ϒ0|βe0| > 1. Since |βe0| < 1 in the Ohm domain, it follows
that ϒ0 � 1 in this case too.

The parameter ϒ0 (which is equal to �0 in the ambipolar diffusion
regime) thus turns out to be of fundamental importance in the theory
of diffusive wind-driving discs in that it is inferred to be �1 for all
viable solutions irrespective of the conductivity regime. Physically,
the condition ϒ0 � 1 expresses the requirement that the momentum
exchange time of the neutrals with the particles that dominate the
momentum of the charged species (the comparatively massive ‘ions’
in our formulation) be shorter than the dynamical time (i.e. the
Keplerian orbital time). This requirement is evidently more basic
than having the nominal neutral–field coupling parameter �0 be
�1. In fact, as noted above, some of the distinct parameter sub-
regimes that we identified are defined by the inequality �0 < 1/2.
However, even in the latter cases �0 remains bounded from below
by a numerical factor that typically is not �1 (�0 � a2

0/3 and

�0 � a0/
√

6 in the Hall and Ohm regimes, respectively, from the
wind launching condition; see Tables 1 and 3).

The lower bounds on �0 reflect our assumption that the mod-
elled discs are strongly coupled, which implies, in particular, that
the transverse magnetic field component starts to grow already at
z̃ = 0 (see the solution curves presented in Paper II). As was first
demonstrated by Li (1996) and Wardle (1997), viable solutions of
discs in which the bulk of the matter is not well coupled to the field
can also be constructed.16 In these solutions, significant field-line
bending that enables a centrifugally driven wind to be launched
from the disc surface only starts well above the mid-plane. Al-
though the basic disc properties above the height where br starts to
increase rapidly are similar to those of strongly coupled configura-
tions, this location depends on the detailed density and ionization
structure of the disc and cannot be readily determined a priori. It
roughly coincides with the height where |dbr/dbφ | (estimated using
equation 115), which is typically � 1 at the mid-plane under these
circumstances, has grown to a value ∼1. However, disc material
already moves inward below this height on account of the fact that
|bφ | becomes � 1 when br is still �1, which means that a signifi-
cant magnetic torque (of density ∝ BzdBφ/dz) can be exerted even
at lower elevations.

The magnitude of the field-strength parameter a0 is bounded from
below by the sub-Keplerian rotation constraint (the first inequality
in Tables 1 and 3) and from above by the wind-launching con-
straint (the second inequality in Tables 1 and 3). If the magnetic
field is too weak it will not drive an outflow but instead mediate
a ‘two-channel’ flow within the disc (see Salmeron et al. 2007).
On the other hand, if the field is too strong it will not bend out
sufficiently to drive a centrifugal wind. Our typical solutions are
characterized by a0 � 1. We have found that the ratio |brb/bφb| of
the radial to azimuthal magnetic field amplitudes at the disc surface
is >1 in the ambipolar diffusion regime (WK93) as well as in all the
Hall sub-regimes (Section 4.3). However, in the Ohm regime this is
true only for Case (i), whereas in the other two Ohm sub-regimes
|bφb| > brb (see Table 4). Nevertheless, even in the latter two cases
brb is required to exceed a certain lower bound (which is at least
2/

√
3; see Section 5.2) to satisfy the wind launching condition. It

is also worth noting in this connection that, even if the magnetic
field at the disc surface is not bent strongly enough to satisfy the
wind launching requirement, vertical magnetic angular-momentum
transport along a large-scale field that threads the disc could poten-
tially still take place by other means, such as magnetic braking (see
footnote 1).

By combining the wind-launching and wind-loading constraints
(the second and third inequalities, respectively, in Tables 1 and 3)
and using the expression for h̃ in the fifth column of Tables 2 and
4, one finds that h̃ < 1, i.e. that the vertical confinement of the
disc is primarily magnetic [due to the vertical gradient of (B2

r +
B2

φ)/8π] rather than tidal for all the cases in the Hall and Ohm
regimes. This result, which was previously shown by WK93 to
apply to ambipolar diffusion-dominated discs, is corroborated by
the full solutions presented in Paper II. Predominantly magnetic
confinement is thus seen to be a generic property of our wind-driving
disc model. The generality of this result was, however, questioned
by Ferreira (1997), who suggested that it might be a consequence of
the simplification ρvz = const adopted in our treatment of the mass

16 Such configurations were later found to arise naturally in certain models
of disc formation from the collapse of rotating molecular cloud cores (see
Krasnopolsky & Königl 2002).
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Figure 2. Same as Fig. 1, but in the limit where the Hall diffusivity dominates. The four panels correspond to Cases (i) through (iv) in Table 1. Note that, as
in the ambipolar diffusion regime shown in Fig. 1, physically viable solutions satisfy ϒ0 � 1 also in each of the Hall sub-regimes.

conservation relation. In addressing this question, it is interesting to
note that the inequality h̃ < 1 was inferred in this paper already on
the basis of the hydrostatic approximation, which does not make use
of the continuity equation. On the other hand, our argument involved
an estimate of z̃b, the normalized height of the disc surface, which
corresponds to a disc region where the hydrostatic approximation
may no longer be accurate. A definitive resolution of this issue
would require using a more elaborate model in which the above
simplification is not made.

The wind-loading and energy dissipation constraints (the third
and fourth inequalities, respectively, in Tables 1 and 3) provide
lower and upper bounds, respectively, on the radial velocity pa-
rameter ε. The lower bound reflects the fact that the height of the
disc surface scales as ε whereas the scaleheight scales as 1/ε, so
that z̃b/h̃, which is required to be >1, scales as ε2 (see the fifth
and sixth columns in Tables 2 and 4). The upper bound is a con-
sequence of the fact that both the electric field and the current
density scale as ε, so that the Joule dissipation (which scales as ε2

– see the seventh column in Tables 2 and 4) might exceed the rate
of gravitational energy release (∝ ε) if the inflow speed were too
high. The solutions presented in Paper II have values of ε in the
range ∼0.3–1. With these parameters, one infers a nominal emp-
tying time �104 yr for a representative protostellar disc, which is
consistent with the mean duration of the earliest (Class 0) phase of
protostellar evolution but is very much shorter than the total age
of accreting protostars. This is the essence of the ‘short evolution
time’ critique of pure-wind angular-momentum transport models
of protostellar discs, which has led to the argument that alternative
angular-momentum transport mechanisms must dominate in such

systems (e.g. Shu et al. 2008).17 Note, however, that even if a cen-
trifugally driven wind does not control the overall evolution of the
disc throughout its lifetime, it might still dominate the angular mo-
mentum transport in regions of the disc from which strong outflows
are launched, which may be especially pertinent during the FU
Orionis-type rapid accretion episodes that are thought to account
for most of the mass deposition on to low-mass protostars (e.g.
Calvet et al. 2000). Furthermore, wind-mediated angular momen-
tum transport could in principle also contribute in regions where a
radial transport mechanism dominates (see Salmeron et al. 2007).
It is also worth noting that significantly lower mean inflow speeds
could be attained in more realistic, vertically stratified wind-driving
disc models (e.g. Königl & Salmeron 2009), and in particular in
weakly coupled discs (see Li 1996; Wardle 1997). Further work is,
however, required to determine the extent to which this effect would
increase the predicted disc evolution time.

We have been careful to use the absolute values of β i0 and βe0 in
delineating the various sub-regimes in the Hall and Ohm domains
in view of the fact that our definition (equation 4) of the Hall
parameters has an explicit dependence on the magnetic field polarity
and thus allows them to have both positive and negative values.
However, in our table entries for the Hall Cases (ii) and (iv) and for
the Ohm Case (iii) we implicitly treated the ion and electron Hall
parameters as positive quantities. This can be readily justified by

17 These alternative mechanisms potentially include vertical transport along
a large-scale open magnetic field by means other than the steady wind that
has been the focus of our discussion (see footnote 1).
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observing that these cases correspond to |β| being >2ψ and taking
note of the inequality β > −2ψ (equation 108) that all viable
solutions must obey. These two inequalities can be simultaneously
satisfied only if β > 0. In other words, for these parameter sub-
regimes a self-consistent wind-driving disc solution can be obtained
only if the field has a positive polarity but not if sgn{Bz} < 0. The
sensitivity to the field polarity reflects the explicit dependence on
the Hall conductivity in these cases (see Sections 2.1 and 5.6) and is
a specific prediction of our model that is checked in the numerical
work presented in Paper II. We emphasize that our discussion here
concerns the nature of certain sub-regimes, in which only solutions
with β > 0 are predicted to exist. This property is distinct from
the dependence of wind-driving wind solutions on the field polarity
in other parameter sub-regimes in which both positive and negative
values of β are allowed but in which changing the sign of β modifies
the behaviour of the solution (see WK93). An example of the latter
dependence is given in Paper II for the Hall Case (iii), which admits
β values in the range −ψ/2 < β < 2ψ (see equation 114).

Our analysis has concentrated on discs with a charged-particle
composition that can be represented as a two-component plasma
consisting of electrons and comparatively massive ions, with the
parameter q (equation 7) being �1. This composition is appropri-
ate to relatively low-density disc regions or even to denser zones that
do not contain dust (see footnote 5). Weakly ionized disc regions
that have densities �10−13 g cm−3 and contain dust may be better
approximated by a two-component, q = 1 plasma corresponding to
oppositely charged grains of equal mass (see Section 2.1). In this
case the Hall regime is not present (see equation 95) and the parame-
ter space of viable solutions consists of only two regimes (ambipolar
diffusion and Ohm). One can readily verify that, under these cir-
cumstances, the Ohm domain contains only two sub-regimes, the
analogues of the Ohm Cases (i) and (ii) for a q � 1 plasma.18 This
finding is not surprising in view of the fact (see Section 5.6) that
the Ohm Case (iii) for a q � 1 plasma arises from the Hall-current
term in Ohm’s law, which is missing when q = 1.

The viability constraints that we derived on diffusive accretion
discs in which the entire excess angular momentum is transported
by a centrifugally driven wind can be useful also for generaliz-
ing the model to incorporate other modes of angular momentum
transport. In particular, one can argue (see Salmeron et al. 2007)
that radial angular-momentum transport through MRI-induced tur-
bulence could operate at disc locations where the sub-Keplerian
rotation constraint (expressed by the first inequality in Tables 1 and
3, in which the various parameters are taken to have their local,
density-dependent values) is violated. For example, in the ambipo-
lar diffusion case (as well as in the Hall Cases i and iii and the Ohm
Cases i and ii) this corresponds to 2ϒa2 ∝ ρ i/ρ being <1. As this
quantity is expected to increase with height on account of the in-
crease in the fractional ionization of the gas on going away from the
disc mid-plane, one can envision a situation in which 2ϒa2 is <1
(with both radial and vertical angular-momentum transport taking
place) in the vicinity of the mid-plane but becomes >1 (with only
vertical transfer into a wind remaining relevant) closer to the disc
surfaces. This criterion can be employed for constructing a ‘hybrid’
disc model in which both vertical and radial angular momentum
transport take place (through a large-scale, ordered magnetic field

18 Note from equations (95)-(97) that the parameter ψ = ϒ0 always appears
in the conductivity tensor in the combination (1 + q) ψ . Therefore, the
parameter ϒ0 in the expressions for the q � 1 Cases (i) and (ii) in Tables 3
and 4 is replaced by 2ϒ0 in the corresponding expressions for q = 1.

and a small-scale, disordered field, respectively; see Salmeron et al.
2007 for details).

7 C O N C L U S I O N

We have investigated a protostellar accretion disc model in which
the dominant angular momentum transport mechanism is a centrifu-
gally driven wind launched along a large-scale, ordered magnetic
field that threads the disc. The basic assumptions we adopted are
the same as those of the radially localized disc model constructed
by WK93, and our main purpose has been to extend the analysis
presented in that paper, which focused on discs in which ambipo-
lar diffusion dominates the magnetic diffusivity inside the disc, to
a general diffusivity regime. In particular, we included also the
Hall and Ohm diffusivities, which are relevant to higher-density
disc regions than those covered by the WK93 treatment. We em-
ployed a tensor-conductivity scheme that, in conjunction with an
ionization-balance calculation, can be used to determine realistic
vertical conductivity profiles for protostellar discs in the context
of this model. However, in this paper and its follow-up (Paper II),
we adopt a simpler treatment and assume that the three model pa-
rameters that are needed to identify the distinct solution regimes
for an ion–electron plasma remain constant with height in the disc.
The three variables employed for this purpose in the current paper
are the electron and ion Hall parameters (βe and β i, respectively,
with |β i| � |βe|) and the neutral–ion coupling parameter ϒ (equa-
tion 82). In Paper II we use instead two independent ratios of the
conductivity-tensor components as well as the Elsasser number �

[see items (iii) and (iv) in Section 3.13].
We determined the parameter regimes where physically viable

disc solutions could be found by employing the hydrostatic ap-
proximation and imposing the following requirements (originally
applied in the ambipolar diffusion regime by WK93 and Königl
1997) on ‘strongly coupled’ systems (discs in which the magnetic
field is dynamically well coupled to the bulk of the matter already at
the mid-plane): (i) the disc (in contradistinction to the wind) rotates
at sub-Keplerian speeds; (ii) a wind launching condition (which
yields a lower limit on Br/Bz) is satisfied at the disc surface; (iii)
most of the disc material is located below the wind-launching re-
gion and (iv) the rate of Joule dissipation does not exceed the rate
of gravitational energy release in the disc. Our main results can be
summarized as follows.

(i) In addition to the ambipolar diffusion regime considered in
WK93, there are four distinct sub-regimes in the Hall diffusion-
dominated parameter domain and three distinct sub-regimes in the
Ohm domain. (A fourth potential Ohm sub-regime was found not to
be consistent with the wind-launching requirement.) The four Hall
sub-regimes naturally divide into two ambipolar diffusion-like and
two Ohm-like parameter regions: in the former pair one of the sub-
regimes has the same structural properties as the ambipolar diffusion
regime, whereas in the latter pair the solution characteristics of
one of the sub-regimes are identical to those of one of the Ohm
sub-regimes. In the case (not treated in detail in this paper) of a
high-density disc plasma dominated by oppositely charged grains
of equal mass, only an ambipolar diffusion regime and an Ohm
regime (with two sub-regimes corresponding to our Ohm Cases i
and ii) are present.

(ii) All viable solutions, irrespective of the diffusivity regime, are
found to satisfy ϒ � 1. The physical requirement expressed by this
condition, that the neutral–ion momentum exchange time be shorter

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 479–499



Wind-driving protostellar accretion discs 497

than the disc orbital time, is thus indicated to be a fundamental
constraint on wind-driving discs of this type.

(iii) Viable solutions are also characterized by the parameters a0

(mid-plane Alfvén-to-sound speed ratio) and ε (mid-plane inflow-
to-sound speed ratio) being �1. However, weakly coupled discs,
characterized by values of �0 (the mid-plane value of the Elsasser
number; see Section 3.13) that are �1, could have a0 � 1 and ε �
1. In such systems a significant bending of the magnetic field away
from the rotation axis (required for driving a centrifugally driven
wind) takes place only above some finite height in the disc, although
vertical angular momentum transport along the large-scale field
typically occurs already at lower elevations. Although our analysis
does not directly apply to weakly coupled discs, our results should
be useful for understanding the basic qualitative aspects of their
behaviour.

(iv) The wind-launching and wind-loading conditions [the afore-
mentioned requirements (ii) and (iii), respectively] together imply
that magnetic squeezing (by the gradient of the magnetic pressure
force associated with the transverse field components Br and Bφ)
dominates the gravitational tidal compression of the disc. A more
elaborate model is, however, needed to verify the full generality of
this result.

(v) The transverse magnetic field at the disc surface is dominated
by the radial component in all the Hall parameter sub-regimes (in-
cluding their ‘twins’ in the ambipolar-diffusion and Ohm domains),
and by the azimuthal component in the remaining two Ohm sub-
regimes. However, even in the latter two cases the poloidal surface
magnetic field must be sufficiently strongly bent to satisfy the wind
launching requirement.

Centrifugally driven winds are not the only means of vertical
angular momentum transport in a protostellar disc (magnetic brak-
ing is an example of another option), and there are also alternative
mechanisms that involve radial transport along the plane of the disc.
It is nevertheless instructive to investigate the limiting case in which
wind transport dominates at a given radius in view of the ubiquity of
energetic outflows in protostellar systems and the inferred associa-
tion of disc winds with FU Orionis-type high-accretion-rate events.
The constraints considered in our model can also be useful for iden-
tifying the parameter regimes where other mechanisms (such as
MRI-induced turbulence) are likely to operate, possibly even at the
same radial location as wind-mediated angular momentum transport
(Salmeron et al. 2007).

The parameter regimes that we identified were determined under
the assumption that the values of the parameters used in the classi-
fication scheme did not vary with height in the disc. This approx-
imation becomes less accurate as one moves from the ambipolar-
diffusion regime to the Hall regime and then (at even higher disc
densities and column densities) to the Ohm regime. In particular,
in the latter case it can be expected that if a real disc could be
described as being in this regime at the mid-plane then it would
transit to the Hall regime further up and would likely be ambipolar
diffusion-dominated at the surface. For this reason (and also because
wind-driving discs might not be massive enough to harbour an Ohm
regime within their weakly ionized zones) we have emphasized the
Hall regime in our discussion and do not consider the Ohm domain
in Paper II. However, our findings for the Ohm regime could still
be applicable to the innermost, collisionally ionized regions of pro-
tostellar discs (and possibly also to disc regions participating in an
FU Orionis-type outburst), in which an anomalous ohmic resistivity
might dominate.

The actual parameter regime that characterizes a given section
of an accretion disc of the type that we have modelled will be
determined by the global magnetic flux distribution, the density
structure (which depends in part on the mass accretion rate) and
the ionization profile (which depends in part on the nature of the
ionization sources as well as on the disc composition). It is con-
ceivable that some of the sub-regimes that we have identified are
not commonly realized in nature or that they correspond to unsta-
ble configurations. More insight into these questions would likely
emerge from comparisons with observations as well as from addi-
tional analytic and numerical work. Our study has, however, indi-
cated that, if such wind-driving accretion flows are indeed present
in real protostellar systems, they will exhibit certain generic prop-
erties (including good neutral–ion coupling, subthermal Alfvén and
inflow speeds and magnetic squeezing within the field-line bending
region) irrespective of the particular parameter regime to which they
correspond.
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A P P E N D I X A : TH E εB ≈ 0 A PPROX IMATION

In their consideration of a weakly ionized disc containing a two-
component plasma, WK93 noted the qualitative similarity of solu-

tions characterized by the same value of the parameter combination
(ε − εB). They attributed this result to the fact that the only change
in the underlying system of equations introduced by switching to a
reference frame that moves with the radial velocity vBr0 = −εBcs

of the poloidal flux surfaces involves the magnitude of the torque
that is required to remove the excess angular momentum, so that all
radial-velocity terms (except in the angular momentum equation,
which remains unchanged) are modified simply by subtracting vBr0

from the radial velocity component. We appealed to this result in
Section 3.13 to motivate setting εB = 0 in our analysis.

One could, however, question this approach on the basis of the
following consideration. Starting from Ohm’s law in the form E′ =
E + v × B/c = (4π/c2) η ·J , where η is the diffusivity tensor, we
rewrite it in terms of normalized quantities as

⎛
⎝ wBr0 − wr

wBφ0 − wφ

⎞
⎠ =

⎛
⎝ η̃H −η̃P

η̃P η̃H

⎞
⎠

⎛
⎝ 0.5 wr

2 wφ

⎞
⎠ , (A1)

where η̃P = η̃O + η̃A and where η̃O, η̃H and η̃A are obtained by
multiplying the expressions in equations (29)–(31), respectively,
by 1/hTcsa

2
0. We have also written wBr0 ≡ vBr0/cs = wEφ0 and

wBφ0 ≡ r(�B0 − �K)/cs = −wEr0 for the normalized mid-plane
radial and azimuthal velocities, respectively, of the poloidal flux
surfaces. By inspecting equation (A.1) one may be induced to infer
that, since the off-diagonal terms of the diffusivity tensor dominate
in the ambipolar-diffusion and Ohm regimes whereas the diagonal
terms are dominant in the Hall limit, one should retain the latter
terms when considering the Hall regime and the former terms when
treating the other limits. This inference could be carried over to the
analysis of equation (98) in the text, in which the matrix is related to
the inverse of the matrix that appears in equation (A1). Specifically,
specializing to the mid-plane (where br = bφ = 0) and assuming
q � 1 for simplicity, one can use equations (95)–(97) to deduce that
A1 = −A4 ∝ σ P/σ⊥ (with the factor qβ2 in equations 99 and 102
representing the ratio ηO/ηA). One can similarly deduce that the
term β in the expressions for A2 and A3 is ∝ σ H/σ⊥ (with the term
involving ψ in equations 100 and 101 arising from the advective
contribution to the electric field). Adopting the above reasoning, it
would appear that one should retain the diagonal terms A1 and A4

in the ambipolar-diffusion and Ohm regimes and the off-diagonal
terms A2 and A3 in the Hall limit. However, this procedure cannot be
implemented if one sets εB to be identically zero in equation (98),
as we have done in our analysis, which casts doubt on the validity
of the approach followed in the text.

In addressing this question, it is important to keep in mind the
basic attributes of the system that we wish to model. We are primar-
ily interested in the quasi-steady behaviour of a disc in which mass
and poloidal magnetic flux that were originally part of a large-scale
equilibrium configuration of a molecular cloud core are carried in
by the accretion flow. In this picture, the accretion is enabled in large
measure by the vertical magnetic transport of angular momentum,
and the inward motion of the matter is, in turn, responsible for the
radial transport of the field lines (which, however, generally lag
behind the matter because of the disc’s diffusivity). The vertical
magnetic transport of angular momentum implies that JrBz > 0 and
hence that wr < 0 (see equation 92), whereas the inward bending of
the magnetic field lines by the inflowing gas implies that J φBz > 0
and hence that wφ < 0 (see equation 91). The fact that the motion
of the field lines is controlled by that of the gas implies that wBφ

= −wEr would also be <0 (see Section 3.12). In a similar vein, we
expect the radial velocity of the poloidal field lines (described by
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the parameter wBr0 = −εB) to satisfy wr0 ≤ wBr0 (or, equivalently,
εB ≤ ε).19

We now proceed to examine the consequences of the alternative
formulation outlined above in light of the just-discussed constraints.
To this end, we substitute for j r0 and jφ0 in equation (98) from
equations (92) and (91), respectively, to obtain

A1 wEr0 + A2 εB = Kε

2ψ
, (A2)

A3 wEr0 + A4 εB = −2Kwφ0

ψ
. (A3)

In the ambipolar-diffusion and Ohm regimes we retain only the A1

and A4 terms. In the ambipolar diffusion limit A1 = −A4 ≈ 1 and
K ≈ 1 + ψ2 ≈ ψ2 (since ψ is equal in this case to the mid-plane
value of the neutral–field coupling parameter �, which is expected
to be >1), so equation (A3) implies εB = 2ψwφ0 < 0, which is
inconsistent with our expectation that εB ≥ 0. Similarly, in the Ohm
limit A1 = −A4 ≈ qβ2 and K ≈ qβ2 + ψ2, so equation (A.3)

19 It is conceivable that εB and ε could have opposite signs, but such a sit-
uation would likely only arise in the context of a localized, time-dependent
phenomenon. An example of this possibility is provided by the cyclical be-
haviour exhibited by the core-collapse solutions of Tassis & Mouschovias
(2005) near the boundary of their computational ‘central sink.’ This be-
haviour is indeed localized (in both space and time) and clearly does not
correspond to the global, quasi-steady accretion process analyzed in this
paper.

implies εB = 2 (ψ/qβ2 + qβ2/ψ) wφ0, which is again inferred to
be <0, contrary to our physical expectation. In a similar vein, we
retain only the A2 and A3 terms in the Hall regime. Using equations
(100) and (101) and focusing on the case q � 1, we infer from
equations (A2) and (A3) that

εB

ε
=

1 + 5
2

ψ

β
+

(
β

ψ

)2

1 + 2β

ψ

(A4)

and

wEr0

−wφ0
=

1 + 5
2

ψ

β
+

(
β

ψ

)2

1 + β

2ψ

. (A5)

One can readily verify that equations (A4) and (A5) cannot be simul-
taneously satisfied while also respecting the constraints 0 ≤ εB/ε ≤
1 and wEr0/wφ0 < 0. These arguments indicate that a formulation
based simply on the dominant terms in the conductivity tensor is
not physically self-consistent for the problem under consideration.

In contrast, one can verify that the formulation adopted in the
text is self-consistent – in the sense that the neglected terms in
equations (A2) and (A3) never come to dominate the ones that
were retained – under the assumption εB/ε ≤ 1 . In particular,
using the expression (113) for wEr0 and equations (99)–(102), it
is straightforward to ascertain that the ratios |A2εB/A1wEr0| and
|A4εB/A3wEr0| remain ≤1 in this case for all the viable-solution
parameter regimes identified in Sections 4 and 5.
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