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ABSTRACT

Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too
small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed
dense cores’ mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar
CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape
of these CMF provides important clues to the competing physical processes which lead to star formation and its
feedback on the interstellar media. In this paper, we investigate the dynamical origin of the mass function of starless
cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct
a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin–Helmholtz
instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF
among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula:
(1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of
the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation
and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section
and suppression of ablation for cores with masses larger than the cores’ Bonnor–Ebert mass.
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1. INTRODUCTION

Dense molecular cores are long known to be embedded in
molecular clouds. These cores are particularly interesting in the
context of star formation because they are thought to be the
progenitors of individual stars or small stellar systems. Recent
infrared measurements of dust extinction, CO and NH3 maps
provide means for observers to systematically and quantitatively
analyze the physical properties of these cores. Among the first
studies of this kind is that carried out by Alves et al. (2007) on
the Pipe Nebula. These observations revealed a population of
dense, starless cloud cores. The similarity between the density,
temperature, and thermal pressure of cores at different locations
in the nebula suggests that they are confined by a global external
pressure, although the most massive cores have sufficient self-
gravity to hold themselves together. Prestellar cores are also
found in the Aquila Nebula, Polaris Nebula, and Ophiuchus
main cloud (Könyves et al. 2010; André et al. 2010, 2007),
though there exists some diversities in the environment and the
observed mass distribution.

One scenario for the confinement of these cores in Pipe is
the possible existence of a three-phase medium which includes
(1) a hot component ionized by the nearby B2 IV β Cephei star,
θ Oph, (2) a cold atomic gas (∼100 K, we refer to it as warm
medium to distinguish with the molecular phase), and (3) the
cold molecular cores (∼10 K) (Gritschneder & Lin 2012). We
associate this multi-phase medium in the Pipe Nebula with the
byproduct of a thermal instability which is excited when thermal
energy in a slightly cooler region is radiated away faster than its
surrounding (Field 1965). A quasi-hydrostatic pressure balance
is maintained over regions smaller than the field length scale
for sound waves to travel within the instantaneous cooling time.

These regions undergo isobaric cooling such that their density
contrast to the background grows in time. Meanwhile the field
length declines with decreases in both the sound speed and
cooling timescale. Eventually, density difference between the
cold regions and the medium which engulf them either become
nonlinear or reach an asymptotic limit over regions larger than
the shrinking field length (Burkert & Lin 2000).

Thermal instability is determined by local conditions and its
growth rate does not depend on the wavelength. Nevertheless,
the initial perturbation spectrum does determine the range of
length scale over which the density contrast may become
nonlinear during the onset of thermal instability. The interstellar
medium is turbulent and attains a power-law perturbation
spectrum, similar to the Kolmogorov law, over an extended
range of length scales (Lazarian 2009). However, the cores’ mass
function (CMF) in the Pipe Nebula appears to resemble more
closely with the stellar initial mass function (IMF; Alves et al.
2007; Salpeter 1955; Kroupa 2002) than with the single power-
law spectrum of the interstellar medium. The similarity between
the CMF and IMF has also been observed in the Aquila Nebula
and Ophiuchus main cloud (Könyves et al. 2010; André et al.
2007). Palaris is an exception of this resemblance (André et al.
2010). The relationship between the CMF and IMF has been
investigated by many authors using different approaches (Smith
et al. 2009; Dib et al. 2010; Veltchev et al. 2011; Anathpindika
2011). While there remains diverse opinions on which physical
processes affect the evolution of the CMF and the transition to
the IMF, it is generally recognized that such a process critically
determines star formation rate and efficiency.

Many past discussions have been focused on the origin of
the shape of CMF (see Padoan & Nordlund 2002; Hennebelle
& Chabrier 2008; Smith et al. 2009; Offner et al. 2008;
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Dib et al. 2008, etc.), which may be related to the turbulent and
self-gravitating flows (McKee & Ostriker 2007). Such flows are
complex because nonlinear structure of multi-phase medium
extends over a large dynamical range, from the inertial to
dissipative scales, throughout the star-forming region. Several
numerical methods, including different versions of the adaptive
mesh refinement scheme, have been constructed to simulate the
emergence of bound and unbound clusters of cores in a turbulent
environment. However, none of these attempts can fully resolve
cloud complexes in which many core coexist with their confining
medium. In addition, these simulations are time consuming and
have been carried out for limited sets of model parameters. It
is not clear whether they depend on the assumed history of the
system or are applicable in general.

In this paper, we aim to explain the present-day CMF
observed in the Pipe Nebula, which is just prior to the onset
of star formation. We suggest that the characteristic CMF
spectrum is established through the coalescence and ablation
of cores rather than precipitated directly from a turbulent gas
cloud through thermal instability. In Section 2, we construct a
coagulation equation which takes into account various relevant
physical processes. We design a numerical scheme (presented
in the Appendix) to efficiently solve this integral differential
equation. This method allows us to follow the cores and the
surrounding medium as two separate, but coexisting, fluids. We
describe our detailed modeling based on the properties relevant
to the Pipe Nebula in Section 3. In Section 4, we show that we
can reproduce the observed CMF, including the observed peak
of mass distribution which occurs in a mass range three times
heavier than that for IMF. Finally, we summarize our findings
and discuss their implication in Section 5.

2. IMPORTANT PROCESSES IN THE TWO PHASE MEDIA

We assume all but the largest cloud cores are confined by the
pressure of an external hot and warm medium. For simplicity,
we do not distinguish between contributions from the hot and
warm medium. In this paper, we are mainly concerned with the
interaction between the cloud cores and the inter-core gas. In
this context, we take into account two main physics processes:
(1) close-encounters and collisions between the cold cores, due
to the velocity dispersion between the cores and (2) the dy-
namic interaction between the cold cores and the background
gas due to the drag on the cores by the inter-core gas. Process
(1) leads to the coagulation between the cores, which induces
a shift in the mass distribution toward higher masses. Process
(2) leads to ablation of the cores, due to the Kelvin–Helmholtz
(K-H) instability which causes the mass distribution to evolve
toward the lower masses. In this section we will provide
the basic equations for the two processes and order of
magnitude estimation of the timescale. In addition, we briefly
discuss the contribution of conduction at the end of this section.

2.1. Coagulation Equation

Since we are primarily interested in the bulk properties
rather than the detailed phase space distribution of the cloud
population, we adopt a conventional approach to examine the
evolution of the distribution function

f (m, t) = dN(m, t)

dm
(1)

where N (m, t) is the number of cores in the mass range m and
m + dm at a time t. We define that the minimum and maximum

masses to be mμ and mmax, respectively. The rate of change
d(dN/dm)/dt can be expressed in term of a general coagulation
equation (see Murray & Lin 1996; Shadmehri 2004; Dib et al.
2007) such that(

df (m)

dt

)
coag

= 1

2

∫ m−mmin

mmin

f (m′)f (m − m′)G(m,m − m′) dm′

−
∫ mmax

mmin

f (m)f (m′)G(m,m′) dm′. (2)

For computational simplicity, we assume there is no mass loss
during each collision. We also assume the physical condition of
the inter-core gas, cores’ mass and kinematic distribution are
homogenous and isotropic. These assumptions can be relaxed
in a series global simulations to be presented in the future. We
adopt an average velocity dispersion σ for the cores, which is
observed to be σ ∼ 1 km s−1 in Pipe Nebula (Onishi et al. 1999).
Hydrodynamic simulations study the kinematics of molecular
cloud cores in the presence of turbulence also suggest similar
values for the velocity dispersion between cores (Offner et al.
2008). Considering gravitational focusing for massive cores, we
adopt a collisional kernel

G(m,m′) = (1 + Θ)π (Rc(m) + Rc(m′))2σ

where Θ = (c2
s /2σ 2)((m2/3 + m′2/3)/(m2/3

BE )), following
Equation (7.195) in Binney (2008). MBE is the Bonnor–Ebert
mass for the cores:

MBE = 1.15 M�

(
cs

0.2 km s−1

) (
Pext/κ

105 K cm−3

)−0.5

(3)

where Pext is the external pressure of the inter-core gas and κ is
the Boltzmann constant (Bonnor 1956; Ebert 1955).

Cores gain a significant fraction of their own mass through
cohesive collisions mostly with cores of comparable sizes with
a top heavy distribution of CMF. The characteristic growth
timescale for cores to double their masses is τcoag = λ/σ where
the cores’ mean free path λ = 1/(πRc(m)2nc). nc is number
density of cores with sizes Rc(m) and mass m. The number of
cores decreases with merger events.

Under these conditions, for a typical 1 m� core, we estimate

τcoag ∼ 1

πR2
c ncσ

= 1.3 Myr

(
Rc

0.1 pc

) (
ff

0.1

)−1
(

σ

km s−1

)−1

.

(4)
In the above estimate, we replace nc with 3ff /4πR3

c , where
the magnitude of the volume filling factor ff can be obtained
directly from the observed area filling factor.

2.2. Core Ablation as a Result of the
Kelvin–Helmholtz Instability

The intrinsic ablation of the cores also contributes to the
coagulation equation. When cores attain a relative velocity with
respect to the inter-core gas, they encounter a drag force. The
shear at the gas-core interface leads to the excitation of a K-H
instability (Murray et al. 2004). Within the growth timescale
τKH for the longest unstable wavelength (a significant fraction
of Rc(m)), about half of the core mass break up into smaller cores
(Murray et al. 1993). Cores’ mass loss rate is ∂m/∂t � −m/τKH,
and the mass at time t due to ablation alone can be approximated
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by m ∼ m(t0) exp(t0 − t)/τKH. For a density contrast between
the cores and the diffuse background, Dρ ,

τKH =
(

σ

Rc(m)D
1
2
ρ

)−1

= 1 Myr

(
σ

km s−1

)−1 (
Rc(m)

0.1 pc

)(
Dρ

100

)1/2

(5)

In the above expression, we assume the relative velocity
between the cores and the gas vr to be comparable to the
cores’ velocity dispersion σ . It is possible that the turbulence
speed of the gas vg is directly determined by some other
stirring mechanism such as external magnetic fields (Lazarian &
Vishniac 1999). On the turnover timescale of the largest eddies
(comparable to the size of the Pipe Nebula Rp), gas drag would
lead to a terminal relative velocity vr ∼ (DρRc(m)/Rp)1/2vg

(Lin & Murray 2000) and

τKH ∼ Rc(m)
1
2 R

1
2
p

vg

= 1 Myr

(
Rc(m)

0.1 pc

) 1
2
(

Rp

10 pc

) 1
2

(
vg

1 km s−1

)−1

. (6)

We include this ablation effect into the analysis of CMF’s
evolution as a source (due to the increase in the number of
cores in the mass range M − MBE) and sink terms (due to the
decrease in the number of cores of mass M by ablation) such
that(

df (m)

dt

)
abla

=
∫ MBE

m

f (m′)
τKH,m′

dm′

m
−

(
m − mμ

m

)
f (m)

τKH,m

. (7)

K-H instability would be suppressed by the cores’ self-gravity
if their mass M > MBE (Murray et al. 1993). They undergo
gravitational contraction and collapse rather than ablation. The
magnitude of MBE is approximately 2 M� in the Pipe Nebula
case (Lada et al. 2008). This critical mass for ablation partly
causes a peak in our simulated core mass distribution function.

2.3. Other Relevant Processes

In general, conduction between the warm inter-core gas and
the smallest cores may lead to their evaporation into the inter-
core gas. It is also possible for the inter-core gas to precipitate
into new cores or condense onto existing cores.

We neglect the effect of precipitation which leads to the
formation of lowest-mass cores. Condensation leads to a transfer
of mass from the warm medium to cores at a rate Ṁc =
πRc(m)2csρb, where cs is the sound speed, Rc(m) is the core
radii for core with mass m and ρb is the background density.
The associated conduction heats each core at a rate H ∼ Ṁcc

2
s .

The cores are also cooling with rate C = (4π/3)Rc(m)3n2Λ,
where n = ρ/(μMH), μ and MH are the molecular weight
and the mass of hydrogen atom. We compute the typical
cooling rate Λ following Draine (2011), and test different
evaporation rates ranging over three orders of magnitude.
If heating exceeds cooling, the cores would evaporate on a
timescale Mcc

2
s /(H − C). Otherwise, if C > H , the cooling

of the gas inside the cores vanish as atoms in them reaches a
ground state so that the condensation growth timescale would
be Mcc

2
s /H .

3. MODEL

3.1. Observed Properties of Pipe Nebula

We briefly summarize the observed properties of the Pipe
Nebula based on Lada et al. (2008) and Gritschneder & Lin
(2012):

1. physical dimension of the Pipe Nebula is 3 × 14 pc;
2. overall mass of the Pipe Nebula is 104 M�;
3. total mass of the cores is ∼230 M� (total mass is computed

following Table 2 of Rathborne et al. 2009);
4. number density of inter-core gas is 774 cm−3, with mean

molecular weight μ = 1.37 (Lombardi et al. 2006), gives
average density of the inter-core gas is 1.77×10−21 g cm−3;

5. mean number density of core is 7.3 × 103 cm−3, with mean
molecular weight μ = 2.35 (Lombardi et al. 2006), gives
internal density of the cores is ρ � 2.87 × 10−20 g cm−3;

6. size and mass range of the cores are 0.05–0.15 pc and
0.2–20 M�, respectively;

7. Bonnor–Ebert mass of the cores: MBE � 2–3 M�;
8. background gas velocity dispersion (13CO line width) is

∼1 km s−1 (see Onishi et al.’s 1999 Figure 6(b), also Lada
et al.’s 2008 Section 2.3.3);

9. cores’ non-thermal velocity dispersion is ∼0.15 km s−1;
10. typical sound crossing time in cores with M = MBE is

∼1 Myr; and
11. dynamical timescale across the Pipe Nebula is 3–10 Myr.

From these parameters, it is inferred that the pressure inside the
core as well as in the inter-core gas are Pint/k ∼ Pext/k ∼ 105

cm−3 (Lada et al. 2008). We also find the density contrast
Dρ � 15, σ ∼ vr ∼ vg ∼ 1 km s−1, and τKH ∼ 1 Myr.

3.2. Numerical Setup

Instead of investigating the evolution of individual cores,
we evolve the mass distribution function with the processes
described in Section 2 with the following set up.

In our standard model, we assume the warm medium is
uniformly distributed with a total mass of 104 M� within a
sphere of radius ∼5 pc. The cores have an internal density of
7 × 103 cm−3 so that their MBE ∼ 2 M�, which is consistent
with that derived from the observation of starless clouds in the
Pipe Nebula (Lada et al. 2008).

The initial mass distribution of the cores is set up with a
single power-law dN/d log M ∝ M−α

c . Analytical calculations
predict the spectrum of non-self-gravitating structures to be
dN/dM ∝ M2−n′/3, where n′ is the three-dimensional power
spectrum index of the log density field Hennebelle & Chabrier
(2008). When taking n′ to be the Kolmogorov index 11/3, we
found α to be 0.67. We only allow cores in the mass range
between Mmin (set to be 0.05 M�) and 1 M� at the onset of
the calculation. Their total mass is set to be 250 M�. For the
standard model, we adopt Dρ = 15 and a constant (everywhere
and throughout the calculation) transonic velocity dispersion
(∼1 km s−1) for all cores, regardless of their size (see Table 1).
For a robustness test, we carried calculations with other values
of model parameters such as (1) the cores’ velocity dispersion,
ranging from 0.5 km s−1 to 2 km s−1 and (2) the slope of cores’
initial mass distribution. The final result of the core distribution
does not strongly depend on the above parameters in the range
we tested.

The high-mass (Mc > MBE) cores are gravitationally unstable
and they undergo gravitation contraction and eventually will
evolve into stars. Based on an empirical model (Krumholz &
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Table 1
Parameters in Standard Model

mtotal/mtotalc ρc dρ = ρc/ρb dt mμ mmax σ MBE

104 M�/250 M� 3 × 10−20 g cm−3 15 10 yr 0.05 M� 100 M� 1 km s−1 2 M�
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Figure 1. Red dash line shows the initial distribution, Black lines with dots from
light to dark (end phase) show the evolution of CMF within 5 Myr in equal time
interval. Blue dash-dotted lines denote the Kroupa IMF, it is rescaled and shifted
toward the high mass end by a factor of three for comparison. The gray line
shows the CMF of Pipe Nebular as a probability density function from Figure 6
of Rathborne et al. (2009). The lines are labeled with the evolution time from
zero age.

(A color version of this figure is available in the online journal.)

Tan 2007), we adopt a simplified prescription for the rate of
star formation Ṅ (Mc) = N (Mc)/τ∗. We set τ∗ to be a Mc-
independent characteristic timescale which is two orders of
magnitude longer than their dynamical freefall timescale. We do
not account for mass loss and possible feedback to background
mass during the star formation process. The star formation
process contributes equally to all the cores exceed MBE. During
the entire evolution the total mass of the stellar population is
negligible compared with that of the cores.

We solve the combination of coagulation (Equation (3)) and
ablation (Equation (7)) equation as described in the Appendix.

df (m)

dt
=

(
df (m)

dt

)
coag

+

(
df (m)

dt

)
abla

. (8)

The solution is then corrected with the effect of other processes
(condensation, evaporation and star formation) in every time
step. During their coagulation and ablation, the cores’ mass is
conservatively redistributed. The evaporation and condensation
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Figure 2. Evolution of total core mass (solid line) and warm gas density (dashed
line) of the standard model.

process do not significantly modify the slope of CMF in the most
relevant mass ranges (0.3–10 M�). It mainly changes the mass
ratio between total core mass and the warm gas mass. While the
mass fraction between warm medium and cold cores evolves
with time, the total mass in the two components is essentially
constant. The determining factors of CMF are still dominated
by coagulation and ablation over condensation, evaporation, and
star formation.

4. RESULT AND DISCUSSION

The general shape of the observed CMF in the Pipe Nebula
matches that of the IMF of young stellar clusters obtained by
Kroupa & Boily (2002). But the cores’ mass at the peak of the
CMF is around the Bonnor–Ebert mass, a factor of three larger
than that of the stellar IMF (at least in the Pipe Nebula). We
simulate models to reproduce the observed CMF.

In our model, we adopt a set of idealized initial conditions
with a population of low-mass cores as described in Section 3.2.
We found that the asymptotic mass function of the cores does not
strongly depend on this choice of initial condition, albeit in the
standard model, it takes ∼1 Myr for the cores with Mc > MBE
to emerge and another ∼2–3 Myr for the CMF to establish a
smooth distribution. Due to the low star formation efficiency in
our model, stellar mass in the system is almost zero until around
5–6 Myr, at which we terminated the evolution for not many
propostellar cores have been found in Pipe yet.

We first compare the evolution of the simulated CMF from
the standard run with the observed CMF in the Pipe Neb-
ula. The darkest black line in Figure 1 represents the stage
after the emergence of gravitationally unstable cores but before
the onset of star formation, as is observed in the Pipe Nebula
today. For the mass range 0.3–10 M�, this black line matches
closely with the observed core distribution (gray line). We repro-
duced the broad peak of distribution around the Bonnor–Ebert
Mass, a flat distribution around 1 M�, and power-law cut offs
at both low mass end and high mass end. The mismatch at the
low mass end Mc < 0.3 M� is partly due to observation bias
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Figure 3. Comparison of ablation rate (red lines) and coagulation rate (blue
lines) at different time of the evolution. The rate is computed with (δ n/nδ t) for
every mass bin and for each process in units of Myr−1. δ n is the rate change
due to an individual process in mass bin which has number of cores n, with
time step δ t . Note the upper half of the figure is in log scales and the scale for
ablation rate and coagulation rate is different.

(A color version of this figure is available in the online journal.)

as well as the simplified evaporation model we use. There are
big uncertainties at the high mass end Mc > 10 M�, for in this
region, both observation and our model need to deal with the
problem of small number statistics.

We note that the cores at the high mass end of the CMF are

gravitationally bound. Their free-fall timescale is typically less
than 1 Myr. In order to match the shape of the CMF and accounts
for the absents of stars in them, we adopt the assumption that
they evolve on a timescale which is ∼30 Myr. In the case of Pipe,
magnetic field ∼17–65 μ G is observed inside the nebula, which
might play an important role in the pressure budget (Alves et al.
2008). The existence of magnetic field will provide additional
pressure support against gravity so that the cores might collapse
on a much longer timescale compare to free-fall time.

We show the total mass evolution of both components in
Figure 2. During the early stage, when the total core mass
is concentrated in small mass end, the effect of evaporation
win over condensation, so that the total mass of core decrease
in the first 1 Myr. After the CMF approaches from an initial
arbitrary distribution to a broad self similar form, most of cores
are not affected by evaporation anymore. The total mass of cores
increase due to condensation. Since we terminated the evolution
at the stage when stellar mass can be negligible, the background
gas density show inverse evolution path compare to the total
core mass.

By comparing the evolution of rate of coagulation and
ablation at different mass bins in Figure 3, we can see the
contribution of each processes to the final distribution. In
the low mass end, coagulation contributes as sink term and
ablation contributes as source term. Although ablation always
dominates coagulation in mass range smaller than 0.2 M�, the
cores of mass are small enough so that they are subjected to
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Figure 4. 5 Myr CMFs result from different initial conditions. Blue dash-dotted line in both figures is the rescaled and shifted Kroupa IMF; the gray curve is the
observed probability distribution of cores in Pipe Nebular (Rathborne et al. 2009). (a) We show the result of using different initial distribution of CMF at zero age.
Red crosses (from light to dark) show the initial distributions for different runs. They were set up with formula dN/d log M ∝ M−α , while the power-law index α

varying from 0 to 1.33; black dots with dash lines from light to dark show the corresponding final distribution of cores. Blue solid line show the initial distribution we
use for the standard run, black solid line show the final distribution from the standard run. We label the result from different runs with the value of α. (b) We show the
result of using different velocity dispersion (varying from 0.5 km s−1 to 2 km s−1) of the cores. The red solid line show the initial conditions shared by all the runs.
The black dots with dashed lines show the final distribution from different runs, from light to dark, the velocity dispersion increase. The solid black line is the result
from the standard run, with a velocity dispersion of 1 km s−1. We label the result from different runs with the value of σ , in units of km s−1.

(A color version of this figure is available in the online journal.)
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the influence of evaporation. Thus the overall population in this
low mass range is reduced during the evolution. From 0.2 M�
to 1 M�, the number density decrease at almost constant rate
since both coagulation and ablation act as sink terms. From
1 to 2 M�, coagulation starts to contribute positively to the
mass distribution. For massive cores, they are determined by a
self similar solution from a coagulation equation only. As the
system evolve, the rate of ablation increase due to decrease of
background density, the peak of gain from coagulation moves
toward higher mass along with the total distribution.

There are some freedom in the detailed prescription of the
ablation process. In reality, the outer shell of a gravitationally
bound Bonnor–Ebert sphere can still be stripped by K-H
instability. However, as shown in Murray et al. (1993), the mass
loss rate of core is really sensitive to the strength of gravitational
field. Only 2% of total mass got stripped by K-H instability
over 3.2 τKH in their simulation with a marginally gravitational
bound cloud. In our model, for the gravitational bound clouds,
the mass gain from coagulation will dominate the mass loss due
to the stripping of surface layer, so that a strict terminate of K-H
process at MBE could be a good enough assumption.

Note that the timescale for transition from the initial to
self similar mass distribution depends mostly on the initial
filling factor and the velocity dispersion. The poorly known
initial condition introduces additional uncertainties in the entire
evolution timescale for the system.

We explore a range of initial conditions in Figure 4. We vary
one parameter at a time, with all the other set ups the same as
the standard model. We terminate all the runs at 5 Myr to make
the comparison easier. The left panel of Figure 4(a) presents
the result (at 5 Myr) from runs initialed with different core
distribution at zero age. The power-law index of distribution
dN/d log M ∝ = M−α is varied from 0 to 1.33. As expected,
a flatter initial distribution (lighter lines) assists coagulation so
that the result distribution at 5 Myr is shifted toward higher mass
end. The initial slope does not strongly influence the shape
of final distribution. In contrast, as shown in the right panel,
Figure 4(b), a different velocity dispersion (σ varied from 0.5 to
2 km s−1) changes both the overall shape and the amount of mass
in the massive cores. The slope of final distribution between
0.1 and 2 M� is mainly due to the balance of coagulation and
ablation. As we increase the velocity dispersion, the slope varies
in this mass range. A higher velocity dispersion will also help
with the emerge of the massive cores, lead to broader distribution
with more mass in the high mass end. Nevertheless, in the
allowed parameter space, the final CMF is weakly dependent
on initial conditions.

In other star formation regions, the environment is somewhat
different from the case of Pipe. Ophiuchus has a much smaller
global velocity dispersion σ < 0.4 km s−1. If only consider
coagulation and ablation, the evolution timescale will be longer,
making them unlikely to be the only cause of the distribution.
Other processes such as global gravitational contraction and
accretion onto the core complex may also play important roles
in the cores’ velocity dispersion. But as we shown in Figure 4(b),
within 5 Myr, a system of velocity dispersion of σ = 0.5 km s−1

can still evolve into a flat and broad peak around 1–2 M�,
demonstrating the two process could still contribute to the final
distribution in such a system if the stellar less cores have longer
lifetime due to the pressure support of either turbulence or
magnetic field. Furthermore, the cores’ size-dependent velocity
dispersion is expected to have some influence on the power law
index of CMF. This size dependence may originate from the

cascade of turbulence in the warm gas and its ram pressure
acceleration of the cores. Besides velocity dispersion, the
diversity in Bonnor–Ebert mass in different regions is also likely
to cause the diversity in the CMF.

5. CONCLUSION

In several nebula, including the Pipe, Aquila, Polaris, and
Ophiuchus, a population of starless cores have been observed,
at the low mass end are confined by external pressure where
as the most massive cores are bound by their own gravity. The
origin of these CMFs is a crucial issue in understanding of star
formation in these regions.

In this paper, we present our calculation based on a two-phase-
media model. We show that the dominant physical processes
in this environment are coagulation, ablation and thermal
conduction. We demonstrate an IMF-like CMF can be generated
with a set of appropriate values. Through the exploration of a
range of parameters reasonable for the physical condition of
Pipe, we find this result is quite general. This robust form of
the CMF is an indication that it is determined by a dynamical
equilibrium, i.e., a balance between two competing processes:
ablation and coagulation.

The simulated CMF closely matches the observed CMF in
Pipe, and coincidentally matches the Kroupa IMF of the young
stars. This result suggests that the ablation clouds occur prior
to their collapse and the onset of star formation. The peak of
the CMF is established near the cores’ Bonnor–Ebert mass
mainly because ablation is suppressed and collisional cross
section is enlarged from their physical size for cores with
Mc > MBE. A similar peak is observed in the stellar IMF,
albeit with a corresponding stellar mass which is one-third
that of the most populous cores. If the a few of these cores
capture a large fraction of their masses, they would form massive
stars with copious sources of ionizing photons. Their feedback
on the background gas and the nearby cores may modify the
Bonnor–Ebert mass and lead to a reconciliation between the
stellar IMF and the cores’ CMF. We will explore these issues in
our next contribution.

We thank Drs. Matthias Gritschneder and Herbert Lau for
useful conversations. We also thank the anonymous referee
for valuable comments. D.N.C.L. acknowledges support from
NASA grant NNX08AL41G.

APPENDIX

IMPLICIT METHOD FOR SOLVING COAGULATION
EQUATION AND ABLATION

In general, the evolution of f (m) can be determined by the
equation:

dN
dm

dt
= df i

j

dt
= 1

2

∫ mj −mμ

mμ

f i+1
k f i+1

j−kGk,j−k dmk

−
∫ mmax

mμ

f i+1
j f i+1

k Gj,k dmk

+
∫ mBE

mj

f i+1
k

τKH,k

dmk

mj

−
(

mj − mμ

mj

)
f i+1

j

τKH,j

(A1)

In the function, the superscript denotes the time levels and the
subscript stands for different mass grids. The first two terms
are due to coagulation, and the last two terms describe ablation.
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Change m into non-dimensional x (xj = mj/M�), and collect
terms,

df i
j

dt
= A

[∫ xj −xμ

xμ

f i+1
k f i+1

j−k

(
x

1
3
k + x

1
3
j−k

)2
dxk

− 2
∫ xmax

xμ

f i+1
j f i+1

k

(
x

1
3
k + x

1
3
j

)2
dxk

]

+ C

⎡
⎣∫ xBE

xj

f i+1
k

x
1
6
k

dxk

xj

−
(

xj − xμ

xj

)
f i+1

j

x
1
6
j

⎤
⎦ . (A2)

In Equation (A2), we have

A = π

2
ff

σ

Rc0
, C = τ−1

KH = νf

Rc0D
1
2
ρ

=
(

νc

Rc0Rb

) 1
2

(A3)
while the volume filling factor ( f f ) equals

ff =
(

Mbρc

NMcρb

)−1

. (A4)

Rc0 is the radius of a 1 M� core. If we assume Rc0 to be invariant,
and adopt νc and Dρ to be constants, C is irrelevant to any
other parameter. A is only related to the volume filling factor ff

under this assumption, which is related to the thermal interaction
between two phase media, requiring further investigation in
future work.

We solve Equation (A2) numerically implicitly with first
order accuracy in time by discretizing the solution in both space
and time. We use an N = 100 discrete mass bin ranging from
minimum mass mμ to maximum mass mmax in logarithmic scale.
(See Table 1, showing all chosen parameters.)

xj = 0.05 ∗ (1 + 0.09)j−1 (1 < j < 100). (A5)

Introducing δi
j = f i+1

j −f i
j , and ignoring the second order term

of δ, we obtain a linear function of δ.

δi
j

Δt
= A

⎡
⎣xk=xj −xμ∑

xk=xμ

(
f i

k f i
j−k + δi

kf
i
j−k + δi

j−kf
i
k

) (
x

1
3
k + x

1
3
j−k

)2
Δxk

− 2
xk=xmax∑
xk=xμ

[
f i

k f i
j + δi

kf
i
j + δi

j f
i
k

] (
x

1
3
k + x

1
3
j

)2
Δxk

⎤
⎦

+ C

⎡
⎣xk=xBE∑

xk=xj

⎛
⎝δi

k + f i
k

x
1
6
k

⎞
⎠Δxk

xj

−
(
xj − xμ

mj

)⎛
⎝δi

j + f i
j

x
1
6
j

⎞
⎠
⎤
⎦

(A6)

which can be reduced to the form of∑
[ΨIj,k + Φj,k] δk = Bj . (A7)

Here, we take Ij,k as an unit matrix, where Ψ and Φ are
some constant only related to mass distribution in the old time
level.

Instead of implementing a thoroughly numerical analysis for
the stability properties of the explicit method in Equation (A2),
we use the result from this implicit method to justify the
robustness of the solution. For reasonable time steps and initial
conditions, we are also able to obtain a consistent result from
the explicit numerical method. To reduce the numerical time
cost, we will switch to the explicit method for further parameter
space investigation in the verified region.
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