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ABSTRACT
Previous studies of the non-linear regime of the magnetorotational instability in one particular
type of shearing box model – unstratified with no net magnetic flux – find that without explicit
dissipation (viscosity and resistivity) the saturation amplitude decreases with increasing nu-
merical resolution. We show that this result is strongly dependent on the vertical aspect ratio
of the computational domain Lz/Lx. When Lz/Lx � 1, we recover previous results. However,
when the vertical domain is extended Lz/Lx � 2.5, we find the saturation level of the stress is
greatly increased (giving a ratio of stress to pressure α � 0.1), and moreover the results are
independent of numerical resolution. Consistent with previous results, we find that saturation
of the magnetorotational (MRI) in this regime is controlled by a cyclic dynamo which gener-
ates patches of strong toroidal field that switches sign on scales of Lx in the vertical direction.
We speculate that when Lz/Lx � 1, the dynamo is inhibited by the small size of the vertical
domain, leading to the puzzling dependence of saturation amplitude on resolution. We show
that previous toy models developed to explain the MRI dynamo are consistent with our results,
and that the cyclic pattern of toroidal fields observed in stratified shearing box simulations
(leading to the so-called butterfly diagram) may also be related. In tall boxes the saturation
amplitude is insensitive to whether or not explicit dissipation is included in the calculations,
at least for large magnetic Reynolds and Prandtl number. Finally, we show MRI turbulence
in tall domains has a smaller critical Pmc, and an extended lifetime compared to Lz/Lx � 1
boxes.

Key words: accretion, accretion discs – dynamo – instabilities – MHD – turbulence –
methods: numerical.

1 IN T RO D U C T I O N

The local shearing box model has proved to be very useful for
studying the non-linear regime of the magnetorotational instability
(MRI; Hawley, Gammie & Balbus 1995). It is useful to classify such
models into four types, depending on whether or not the domain
contains net magnetic flux, and whether or not the vertical compo-
nent of gravity is included (producing a vertically stratified density
profile). Generally speaking, the results of numerical simulations
that explore three of these four types of shearing box models can be
summarized as follows.

(i) Unstratified shearing box simulations with net flux show sus-
tained MHD turbulence and numerically converged values of the
stress and angular momentum transport. The saturated stress-to-
pressure ratio α varies widely (∼10−3–0.1) depending on the net
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magnetic field strength (Hawley et al. 1995; Sano et al. 2004; Guan
et al. 2009; Simon, Hawley & Beckwith 2009).

(ii) Vertically stratified shearing box simulations with no net flux
also show strong MRI driven turbulence with typical α ∼ 10−3–
10−2, as well as dynamo activity that leads to a quasi-periodic
pattern of alternating toroidal field (Brandenburg et al. 1995; Stone
et al. 1996; Gressel 2010; Simon et al. 2013a). The stress is in-
dependent of numerical resolution (Davis, Stone & Pessah 2010;
Shi, Krolik & Hirose 2010), although recently Bodo et al. (2014)
have claimed at very high resolution this may no longer be the case.
Further investigation of this issue is required.

(iii) Vertically stratified shearing box simulations with net flux
show a wide range of behaviour depending on the field geometry
and strength (Stone et al. 1996; Miller & Stone 2000). For example,
sustained turbulence is observed with weak toroidal fields, while
powerful outflows that depend on the field strength are produced in
the case of net vertical fields, and the disc can show complex in-
terplay between MRI and buoyancy (Parker) instabilities for strong
toroidal fields (Suzuki & Inutsuka 2009; Guan & Gammie 2011;
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Simon, Hawley & Beckwith 2011; Bai & Stone 2013a; Fromang
et al. 2013; Lesur, Ferreira & Ogilvie 2013; Simon et al. 2013b).

The final case of an unstratified shearing box with no magnetic
flux, introduced by Hawley, Gammie & Balbus (1996) to study the
MHD dynamo driven by the MRI, shows intriguing behaviour. In
this case simulations find that the saturated level of stress decreases
as the numerical resolution is increased (Fromang & Papaloizou
2007; Guan et al. 2009; Simon et al. 2009; Bodo et al. 2011).
When physical dissipation (viscosity and resistivity) is included in
the model, convergence of the stress with resolution is recovered
(Fromang et al. 2007). Numerous works have also shown that the
ratio of these two dissipation length-scales seems to control the
saturation level of stress driven by MRI turbulence (Fromang et al.
2007; Simon et al. 2009; Fromang 2010), even when net flux is
included (Lesur & Longaretti 2007; Simon & Hawley 2009; Meheut
et al. 2015).

Since the important work of Fromang & Papaloizou (2007) there
has been significant effort to investigate MHD dynamo action in the
special case of unstratified no net flux shearing box. Almost all of
this work is based on spectral methods, so that explicit dissipation
(both viscosity and resistivity) must be included. For example, Lesur
& Ogilvie (2008b) found that long-lived cyclic dynamo activity oc-
curs in an incompressible MHD model in which the aspect ratio of
the computational domain is (Lx : Ly : Lz) = (1 : 4 : 2), and these
authors developed a toy dynamical model to explain the cycles.
More recently, the work of Rincon, Ogilvie & Proctor (2007), Rin-
con et al. (2008) has explored the subcritical dynamo mechanism
in more detail, and in particular the role of the magnetic Prandtl
number (ratio of viscosity to resistivity) in determining the out-
come. Recent work (Riols et al. 2013, 2015) reveals the non-linear
dynamics of the MRI dynamo is more complex than expected.

Despite this progress, the question remains why, in compressible
MHD with no explicit dissipation, does the saturation amplitude of
the MRI depend so strongly on resolution? One hint may come from
the extended vertical domain used in the study of MRI dynamos in
incompressible MHD, e.g. Lesur & Ogilvie (2008b). Most previous
studies in compressible MHD adopt a standard computational do-
main that spans one thermal scaleheight H in the radial direction,
and uses a vertical aspect ratio Lz/Lx = 1 and a toroidal aspect ratio
Ly/Lx � 4. In contrast, studies of shear-driven dynamos have found
that a large vertical aspect ratio is required for vigorous dynamo
action (Yousef et al. 2008), consistent with the results of Lesur &
Ogilvie (2008b).

In this work, we present new studies of the saturation of the MRI
in compressible MHD in the no-net flux unstratified shearing box,
both with and without explicit dissipation, to investigate the role
of the size and aspect ratio of the computational domain on the
results. Similar to the results reported in incompressible MHD, we
find qualitatively different behaviour when the vertical aspect ratio
of the domain is large, Lz/Lx � 2.5. In such case vigorous dynamo
action produces a strong, cyclic toroidal magnetic field that greatly
increases the level of turbulence and stress. Moreover the saturation
amplitude of the turbulence is independent of numerical resolution,
and independent of whether explicit dissipation is included in the
model (at least for large magnetic Reynolds numbers and magnetic
Prandtl numbers greater than one).

In reality, the unstratified shearing box with no net flux has very
little relevance for real astrophysical discs, because it is impossi-
ble for each local patch in a global disc to maintain zero-net-flux
for all time. Even if overall the disc has no net flux, large-scale
field loops on the scale of the vertical size of the disc will impart

smaller local patches with a time-varying net flux. Moreover, in
many astrophysical plasmas the dominant non-ideal MHD effect is
not simply Ohmic dissipation, but rather ambipolar diffusion and/or
the Hall effect (Wardle 1999; Salmeron & Wardle 2003). Significant
progress has been made recently on investigating the role of am-
bipolar diffusion (Hawley & Stone 1998; Bai & Stone 2011, 2013b;
Simon et al. 2013a,b) and the Hall effect (Sano & Stone 2002; Kunz
& Lesur 2013; Lesur, Kunz & Fromang 2014; Bai 2014, 2015) on
the saturation of the MRI in all four kinds of shearing box models
described earlier, and the results differ significantly from models
which include only Ohmic resistivity. Nevertheless, it is of interest
to understand dynamo action in the unstratified no net flux shearing
box (with and without resistivity) if only because it represents such
a simple well-posed model. In addition, we show in this paper that
the cyclic dynamo action observed in stratified shearing box models
(resulting in the so-called butterfly diagram of toroidal field) may
be related to that observed in more realistic unstratified domains.

The structure of the paper is as follows: we first describe the
equations we solve and the numerical methods adopted in Section
2; the main results are then presented in Section 3; a short discussion
of the dynamo action observed in our results follows in Section 4;
and finally in Section 5, we summarize and conclude.

2 M E T H O D S

2.1 Equations solved and code description

We solve the compressible MHD equations adopting the ‘shearing
box’ approximation. In a Cartesian reference frame corotating with
the disc at fixed orbital frequency � ẑ, the equations solved are as
follows:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂ρv

∂t
+ ∇ · (ρvv + T ) = −2ρ� ẑ × v + 2qρ�2x x̂ , (2)

∂B
∂t

− ∇ × (v × B − η∇ × B) = 0 , (3)

where x̂ refers to the radial direction, ρ is the mass density, v is
the velocity, q = 3/2 is the Keplerian shear parameter, B is the
magnetic strength, and η is the Ohmic resistivity. The total stress
tensor T is defined as

T =
(

P + B · B
8π

)
I − B B

4π
− � , (4)

where I is the identity tensor, P = ρc2
s is the gas pressure, and cs is

the isothermal sound speed. The viscous stress � can be expanded
as

�ij = ρν

(
∂vi

∂xj

+ ∂vj

∂xj

− 2

3
δij∇ · v

)
, (5)

where ν is the kinematic viscosity. Note that in equation (2), the
vertical tidal acceleration �2z ẑ is omitted, that is we are studying
the unstratified shearing box. We include explicit viscosity and
resistivity terms in some of our calculations, as discussed in Section
3.5. However, in order to investigate the convergence of stress with
numerical resolution without dissipation, most of simulations are
ideal MHD.

We use the ATHENA (Stone et al. 2008; Stone & Gardiner 2010)
MHD code for our numerical simulations. We adopt the CTU
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integrator, third-order piecewise parabolic reconstruction with char-
acteristic tracing in the primitive variables, and the Roe Riemann
solver as the basic algorithms. The orbital advection scheme is used
to increase the efficiency of calculation (Masset 2000; Johnson,
Guan & Gammie 2008). As the shearing box boundary conditions
can cause mismatch of the integral of fluxes over the two radial
faces due to remap (Gressel & Ziegler 2007), using orbital advec-
tion can reduce this mismatch and improve the conservation (Stone
& Gardiner 2010). We ensure the conservation of vertical magnetic
flux to machine precision by treating the shearing box boundary
conditions carefully with a remapping method described in Stone
& Gardiner (2010, Section 4).

2.2 Initial conditions and run setup

We initialize the disc density with a uniform distribution ρ = ρ0 =
1 within the box. We set the unit of time �−1 = 1 and the unit of
length H = cs/� = 1, and therefore the sound speed cs and initial
gas pressure P0 = ρ0c

2
s are unity as well. The initial magnetic field

is B = B0 sin(2πx/Lx) ẑ, where B0 is specified through the plasma
β0 ≡ P0/(B2

0 /8π) = 100 for all runs. With this configuration, the
net magnetic flux is zero in all three directions. We also ran several
models in which the initial magnetic field geometry and strength
were varied to check that our results do not depend on the precise
form of the initial conditions, provided the net flux is zero. We adopt
periodic boundary conditions in the azimuthal (y) and vertical (z)
directions, and shearing periodic in the radial (x) direction (Hawley
et al. 1995).

We carry out multiple sets of simulations with various box sizes
Lx ∈ {0.25, 0.5, 1.0}H, vertical to radial aspect ratios Lz/Lx = 0.5–
12 and numerical resolutions (�x)−1 = (�y)−1 = (�z)−1 ∈ {32, 64,
128, 256}H−1. Parameters for all our runs are all listed in Table 1.
We do not vary the toroidal aspect ratio Ly/Lx in this work, instead
we fix Ly/Lx = 4 for all runs. Provided Ly/Lx � 1, it has been found
that different sized domains in the toroidal direction primarily affect
the spectrum and amplitude of spiral density waves excited by the
turbulence and amplified by shear Heinemann & Papaloizou (2009),
however such waves do not dominate the saturation level of stress.

2.3 Diagnostics

In order to facilitate analysis and obtain statistical properties of our
simulations, we define a few ways to average physical variables.
We first define a volume (box) average:

〈X〉 ≡
∫

X dxdydz∫
dxdydz

. (6)

We also define a time average

〈X〉t ≡
∫

X dt∫
dt

. (7)

The time average is generally applied over ∼200 orbits to elimi-
nate chaotic fluctuations and achieve meaningful statistics (Winters,
Balbus & Hawley 2003). Using these averages, we write the time-
averaged Maxwell and Reynolds stresses as

αM ≡ 〈〈−BxBy

4πP0
〉〉t , αR ≡ 〈〈ρvxδvy

P0
〉〉t (8)

respectively. In Table 1 we also list the total internal stress, αtot ≡
αR + αM. We use these stresses as a measure of the saturated level
of MRI turbulence throughout this paper.

As some of our simulations develop large-scale coherent field
structures within the box, we therefore introduce a horizontal aver-
age:

X ≡
∫

X dxdy∫
dxdy

. (9)

This average is useful for decomposing the total magnetic field B
into mean and fluctuating parts. i.e.

B = B + b , (10)

where b denotes the turbulent (small-scale) fluctuating field.

3 R ESULTS

3.1 Saturation in tall versus short boxes

We begin by studying saturation in the standard computational do-
main, (Lx, Ly, Lz) = (1, 4, 1) H. We begin with a numerical resolution
of 32/H. We refer to this simulation as x1y4z1r32, where our nam-
ing convention gives both the box dimensions (in H) and resolution.
We then double this resolution twice (simulations x1y4z1r64 and
x1y4z1r128) to reproduce previous results. The top panels of Fig. 1
show 3D snapshots of the magnetic energy and density in these
runs. As the resolution improves from left to right, the magnetic
energy is reduced, and turbulence becomes weaker. At the highest
resolution (x1y4z1r128 in the right-hand panel) the density field is
dominated by kz = 0 shearing waves (Heinemann & Papaloizou
2009), and there is little indication of turbulence.

We then repeat these runs in a taller box, (Lx, Ly, Lz) = (1, 4,
4) H, varying the resolution from 32/H for run x1y4z4r32, to 64/H
for run x1y4z4r64, and to 128/H for run x1y4z4r128. Snapshots of
magnetic energy and density for these runs are shown in the bottom
row of Fig. 1. In contrast to the standard box case, we see no signs of
weakening turbulence as resolution improves from left to right. The
typical magnetic energy rises slightly from x1y4z4r32 to x1y4z4r64,
and stays roughly at the same level as the resolution doubles again
in x1y4z4r128. The typical density fluctuation follows the similar
trend, and are dominated by small-scale turbulent fluctuations. At
the same time, both the density and magnetic field show a large
amplitude vertical mode with wavelength about half the vertical
size of the box.

To quantify the resolution effects, we measure the volume-
averaged total stress αtot (the sum of the Maxwell and Reynolds
stresses normalized with thermal pressure defined in Section 2.3)
and the results are shown in Fig. 2. In the standard box runs (the
top-left panel), after a short transient growth (∼30 orbits), the to-
tal stresses reaches a quasi-steady state that last hundreds of orbits
through the end of the simulations. The time-averaged stresses are
therefore well defined and are measured over the last 100–200 orbits
(see Table 1 for the exact number used for averages). Comparing
the saturation levels at different resolutions, we confirm the stress
decreases as the resolution improves, roughly by a factor of two
every time the resolution is doubled. In particular, αtot drops from
10−3 for x1y4z1r32 to 5 × 10−4 when the resolution is doubled, and
drops by another factor of ∼2 when 128/H is used. This behaviour
is identical to that previously reported (e.g. Fromang & Papaloizou
2007; Simon et al. 2009; Guan et al. 2009; Bodo et al. 2011).

Remarkably, the decrease in stress with resolution that appears
in the standard box is not reproduced in the taller box simula-
tions. In the bottom-left panel of Fig. 2, we show that the volume-
averaged stress does in fact converge with numerical resolution for
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Table 1. Simulation parameters and results.

Namea αtot
b αM

b αR
b �Tc �Tavg

d Tcycle
e �t f

〈〈
B2

8πP0

〉〉g

t

〈〈
ρv2

2P0

〉〉g

t

〈〈
B

2

8πP0

〉〉g

t

〈〈
B

2
y

8πP0

〉〉g

t

(×0.01) (×0.01) (×0.01) (orbits) (orbits) (orbits) (orbits)

x1y4z0.5r32 0.63 0.43 0.2 200 150 6.4+3.6 0.3 0.0098 0.0067 0.0006 0.0005

x1y4z0.5r64 0.43 0.31 0.12 200 150 7.6+0.2 0.5 0.0066 0.0046 0.0005 0.0002

x1y4z0.5r128 0.19 0.14 0.05 200 150 7.8−1.8 0.9+0.1 0.0029 0.0021 0.0002 0.0001

x0.5y2z0.5r32 0.44 0.35 0.09 300 200 6.2+3.8 0.3 0.0084 0.0035 0.0014 0.0013

x0.5y2z0.5r64 0.32 0.25 0.07 300 200 11.0−6.0 0.5−0.1 0.0055 0.0025 0.0004 0.0004

x0.5y2z0.5r128 0.19 0.15 0.04 300 200 9.6+1.4 0.9+0.1 0.0032 0.0015 0.0001 0.0001

x1y4z1r32 1.12 0.85 0.27 300 200 5.2+4.8 0.5 0.0190 0.0085 0.0017 0.0016

x1y4z1r64 0.54 0.41 0.13 300 200 7.6+5.8
−0.2 1.0+0.1

−0.1 0.0088 0.0041 0.0004 0.0004

x1y4z1r128 0.30 0.26 0.07 200 100 15.4−2.4 2.1+0.1
−0.1 0.0050 0.0023 0.0001 0.0001

x0.5y2z1r32 0.89 0.73 0.16 300 200 6.6+0.4
−0.2 0.6+0.1 0.0176 0.0073 0.0042 0.0041

x0.5y2z1r64 0.57 0.47 0.10 300 200 8.4+0.2
−1.0 0.9+0.1

−0.1 0.0104 0.0047 0.0013 0.0013

x0.5y2z1r128 0.29 0.24 0.05 250 150 12.6+4.2 1.6+0.3
−0.2 0.0053 0.0024 0.0004 0.0004

x1y4z2r32 1.81 1.44 0.37 300 200 9.0+2.8 1.1+0.1 0.0333 0.0144 0.0049 0.0047

x1y4z2r64 0.86 0.68 0.17 300 200 12.6+4.0
−2.2 1.8+0.2

−0.1 0.0152 0.0068 0.0010 0.0009

x1y4z2r128 0.39 0.31 0.08 300 150 13.0+6.0
−0.4 1.6+0.1

−0.1 0.0068 0.0031 0.0002 0.0002

x1y4z2.5r32 2.27 1.81 0.46 300 200 10.6+2.8
−0.2 1.4+0.1 0.0422 0.0181 0.0067 0.0065

x1y4z2.5r64 1.30 1.05 0.25 250 150 12.6+0.8
−0.4 1.9+0.1 0.0239 0.0105 0.0022 0.0021

x1y4z2.5r128 1.31 1.08 0.22 200 100 20.0−3.4 2.0+0.1
−0.5 0.0202 0.0087 0.0020 0.0020

x1y4z3r32 3.11 2.51 0.60 300 200 13.4+2.0
−1.6 1.6+0.2 0.0618 0.0251 0.0146 0.0141

x1y4z3r64 6.09 5.08 1.01 270 170 27.4−2.4 2.0+0.3
−0.3 0.1585 0.0508 0.0628 0.0614

x1y4z3r128 9.13 7.79 1.34 150 100 33.2 2.5+0.3
−0.4 0.2496 0.0739 0.1048 0.1028

x1y4z3.5r32 3.50 2.83 0.68 300 200 25.0+6.1
−4.4 1.9+0.1

−0.1 0.0753 0.0281 0.0234 0.0228

x1y4z3.5r64 6.35 5.29 1.05 300 200 27.8+5.6
−2.8 2.7+0.3

−0.3 0.1630 0.0529 0.0626 0.0612

x0.25y1z1r64 0.42 0.35 0.07 200 100 19.6+7.0 2.9+0.2
−0.3 0.0118 0.0035 0.0061 0.0060

x0.25y1z1r128 0.49 0.41 0.08 300 200 19.0+3.2
−6.4 2.6+0.1

−0.2 0.0125 0.0041 0.0052 0.0051

x0.25y1z1r256 0.51 0.43 0.08 300 200 27.7−5.0 3.4+0.6
−0.7 0.0161 0.0051 0.0065 0.0064

x0.5y2z2r32 1.44 1.17 0.27 300 200 17.4+4.6
−0.8 2.4+0.2

−0.2 0.0370 0.0117 0.0177 0.0173

x0.5y2z2r64 1.83 1.51 0.32 300 200 25.0+8.4 3.2+0.2
−0.1 0.0489 0.0151 0.0224 0.0219

x0.5y2z2r128 2.13 1.80 0.33 160 100 25.0+5.0 3.1+0.6
−0.3 0.0633 0.0183 0.0289 0.0284

x1y4z4r32 5.16 4.17 0.99 300 200 22.8+10.6 3.0+0.2
−0.5 0.1301 0.0417 0.0565 0.0553

x1y4z4r64 7.85 6.49 1.36 300 200 30.8+2.6
−8.6 3.6+0.3

−0.3 0.2562 0.0649 0.1374 0.1353

x1y4z4r128 8.41 7.14 1.26 200 100 30.0 3.3+0.5
−0.7 0.2730 0.0714 0.1331 0.1310

x1y4z4r128pm8 9.25 7.90 1.35 120 100 19.4 4.40.7
−1.1 0.2716 0.0590 0.0767 0.0752

x1y4z4r32pm4 4.90 3.99 0.91 300 200 22.8+5.8
−0.6 2.6+0.6

−0.7 0.1188 0.0399 0.0387 0.0378

x1y4z4r64pm4 7.11 5.90 1.21 300 200 30.0−10.0 3.7+0.2
−0.6 0.2053 0.0597 0.0989 0.0972

x1y4z4r128pm4 8.53 7.24 1.29 200 100 22.6+4.8 3.8+0.3
−0.3 0.2307 0.0604 0.0942 0.0924

x1y4z4r128pm2 5.39 4.51 0.88 300 200 32.8 3.6+0.5
−1.1 0.1421 0.0439 0.0464 0.0455

x1y4z4r128pm1 – – – 300 – – – – – – –

x2y8z8r32 20.06 16.08 3.98 300 200 34.4−2.4 3.9+0.6
−0.6 0.6387 0.1701 0.3401 0.3351

x2y8z8r64 21.52 17.53 3.99 200 150 47.0+19.6
−11.0 3.9+0.5

−0.7 0.6823 0.1791 0.3451 0.3401

x1y4z6r32 5.93 4.79 1.14 300 250 47.6+2.4
−7.4 4.8+0.3

−0.3 0.1558 0.0477 0.0725 0.0710

x1y4z6r64 7.60 6.30 1.31 280 180 37.0+3.0
−2.2 6.9+0.5

−0.4 0.2390 0.0632 0.1228 0.1207

x0.25y1z2r64 0.42 0.34 0.08 300 200 33.4+6.6 7.0+0.4
−0.5 0.0146 0.0034 0.0091 0.0090

x0.25y1z2r128 0.48 0.40 0.08 250 150 50.0+3.4
−1.4 9.2+1.4

−1.9 0.0211 0.0040 0.0151 0.0150

x0.25y1z2r256 0.52 0.44 0.08 200 100 59.6+19.2 9.6+2.2
−1.1 0.0531 0.0044 0.0143 0.0141

x0.5y2z4r32 1.53 1.24 0.28 300 200 40.0−11.4 6.0+0.2
−0.1 0.0451 0.0124 0.0250 0.0245

x0.5y2z4r64 2.04 1.68 0.36 300 200 44.3−11.0 8.8+1.4
−0.4 0.0648 0.0168 0.0359 0.0353

x0.5y2z4r128 2.13 1.79 0.35 200 150 61.4+5.0
−11.4 12.00.4

−1.8 0.0918 0.0179 0.0590 0.0583

x1y4z8r32 6.10 4.88 1.22 300 200 55.0+2.2
−7.2 9.7+0.8

−2.3 0.2261 0.0488 0.1428 0.1409

x1y4z8r32by 5.97 4.78 1.19 300 200 50.0+6.2 8.3+0.7
−1.1 0.2048 0.0478 0.1225 0.1207
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Table 1 – continued

Namea αtot
b αM

b αR
b �Tc �Tavg

d Tcycle
e �t f

〈〈
B2

8πP0

〉〉g

t

〈〈
ρv2

2P0

〉〉g

t

〈〈
B

2

8πP0

〉〉g

t

〈〈
B

2
y

8πP0

〉〉g

t

(×0.01) (×0.01) (×0.01) (orbits) (orbits) (orbits) (orbits)

x1y4z8r64 7.21 5.92 1.29 200 100 50.0+3.4 7.6+1.1
−2.5 0.3833 0.0595 0.1850 0.1827

x1y4z8r128 7.92 6.66 1.26 200 100 62.0+20.0 9.2+3.0
−1.3 0.3790 0.0680 0.2491 0.2470

x1y4z10r32 5.68 4.54 1.13 300 200 57.2+9.6
−7.2 11.3+0.5

−0.4 0.1949 0.0454 0.1178 0.1160

x1y4z10r64 7.16 5.91 1.25 300 200 80.0−7.0 12.5+1.6
−2.0 0.2444 0.0591 0.1357 0.1338

x1y4z12r32 6.29 5.04 1.25 300 200 96.8+4.0 15.7+2.8
−1.0 0.2000 0.0504 0.1142 0.1122

x1y4z12r64 7.00 5.73 1.27 300 200 100.0−5.0 16.9+1.1
−3.1 0.3349 0.0574 0.2306 0.2285

Notes. aName convention: xn ym zk denotes box dimension (Lx,Ly,Lz)=(n,m,k)H; ‘r32’ means typical resolution 32/H, ‘r64’ and ‘r128’ are 64/H and 128/H
respectively; ‘pm8’, ‘pm4’,‘pm2’, and ‘pm1’ denote resistive runs with magnetic Prandtl number Pm = 8,4,2, and 1 for fixed Reynolds number Re = 3125;
‘by’ stands for an initial azimuthal magnetic field B(t = 0) = B0 sin(2πx/Lx ) ŷ instead of the vertical configuration B(t = 0) = B0 sin(2πx/Lx ) ẑ used in
most runs.
b αM and αR are the Maxwell and Reynolds stresses normalized by ρ0c

2
s ; αtot is the sum of these two.

cDuration of the simulation.
dLast �Tavg orbits chosen for time average.
eThe period of the oscillating magnetic field cycle. Measured based on the power spectra of the largest vertical mode (k = 2π/Lz) of By (t). We separate the
time sequence to two parts, and the errors are derived from the range of Tcycle over two different parts.
fThe time lag between the azimuthal and radial mean field defined in Section 4.1 and used in equation (13) for calculating the phase lag.
gThe total magnetic energy 〈〈B2/8πP0〉〉t , total kinetic energy 〈〈ρv2/2P0〉〉t, total mean field energy 〈〈B2

/8πP0〉〉t , and azimuthal mean field energy

〈〈B2
y/8πP0〉〉t .

Figure 1. Snapshots (at t = 150 orbits) from standard box (top row, Lx = Ly/4 = Lz = 1 H) and tall box (bottom row, Lx = Ly/4 = Lz/4 = 1 H) simulations.
Shown in each case are magnetic energy (far half) and density (near half) distributions. From left to right, the resolution is 32/H, 64/H, and 128/H. Turbulence
becomes weaker in the standard box case as resolution increases; while it maintains constant amplitude in the tall box runs. Note the colour scale of the
magnetic energy is logarithmic, and the colour bars in the bottom and top rows are different.

runs x1y4z4r32 through x1y4z4r128. In these cases, αtot 	 0.08 is
reached once the resolution exceeds 32/H.

Fig. 2 also demonstrates that the amplitude of the converged stress
in the tall box is significantly greater than those in the standard do-
main. For example, the time-averaged αtot 	 0.079 in x1y4z4r64,
almost 15 times larger than αtot 	 0.005 in x1y4z1r64, while

αtot 	 0.08 in x1y4z4r128, some ∼30 times greater than that of
x1y4z1r128. The magnetic energy in simulations performed in the
tall box is also much greater than in the standard box runs; typically
〈B2/8πP0〉 	 0.27 which is a factor of �50 time bigger (this is
also evident in Fig. 1 where different colour scales must be used
for the two cases). The large values of the stress achieved in taller
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2278 J.-M. Shi, J. M. Stone and C. X. Huang

Figure 2. The volume-averaged stresses for a standard box ((Lx, Ly, Lz) = (1, 4, 1) H, left-hand panel) and a tall box ((Lx, Ly, Lz) = (1, 4, 4) H, right) with
various resolutions: 32/H(black solid),64/H(red dotted) and 128/H(green dashed). In contrast to the small box, the vertically elongated box achieves good
convergence.

Figure 3. The power spectra of magnetic density energy for a standard box ((Lx, Ly, Lz) = (1, 4, 1) H, (left two panels) and a tall box ((Lx, Ly, Lz) = (1, 4,
4) H, right two panels) with various resolutions: 32/H(black solid),64/H(red dotted) and 128/H(green dashed), where B2

k is spherical shell integrated value
and B2

kz
is integrated along constant kz plane. In contrast to the small box case, where the self-similar power spectra decays with resolution, it achieves good

convergence at low wavenumber in the tall box.

boxes is also of interest in that they are close to the values inferred
from observations suggesting that in fully ionized accretion disc
(e.g. dwarf novae in outburst) αtot ∼ 0.1–0.4, alleviating some of
the concerns raised by King, Pringle & Livio (2007) regarding the
discrepancy between values suggested by observations and mea-
sured in simulations. (But see Hirose et al. (2014), in which they
found convection-enhanced α above 0.1 when the disc is near the
hydrogen ionization transition using a stratified shearing box.)

Further important insights into the differences between the sat-
urated state in standard and tall boxes are revealed by the Fourier
power spectrum. The right column of Fig. 3 shows the magnetic
energy density power spectra calculated over either spherical shells
of constant k (kB2

k ) or along a constant kz plane (kzB
2
kz

) for both the
standard (left) and tall box (right). The definition of both can be find
in Davis et al. (2010, section 2.1). The spectra in the standard box
peak at an intermediate wavenumber that increases with the resolu-
tion, and with an overall amplitude that decreases with resolution
(but with a shape that is unchanged). In stark contrast, however,

in the tall box the power spectra peak (or plateau) at the lowest
wavenumbers (k ∼ 1–5) at all resolutions. Such spectra are much
more reminiscent of turbulence driven at a large outer scale, with an
energy cascade to high k independent of numerical resolution. These
spectra suggest there is a resolved characteristic outer length-scale
in the tall box simulations. We note the spectrum and its depen-
dence on resolutions of those tall box runs are also very different
than those using standard short boxes with explicit dissipation (e.g.
fig. 3 in Fromang 2010) due to the lack of a large-scale dynamo in
the short boxes. However, a large-scale dynamo, as we will show in
the next subsection, is present in our tall box simulations.

3.2 A large-scale dynamo

The images of magnetic energy and density shown in Fig. 1, and
the power spectra in Fig. 3, both indicate that large-amplitude and
large-scale vertical structure appears in simulations in tall boxes. In
this section, we show this structure is associated with a large-scale
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MRI in unstratified zero-net-flux tall box 2279

Figure 4. Space–time diagrams of the horizontally averaged azimuthal field By for various runs as labelled. Runs with Lz < 8 H are duplicated 8 (for
x1y4z1r32), 4 (for x1y4z2r32), and 2 (for x1y4z4r32) times, so that the images have the same aspect ratio of run x1y4z8r32. The individual black box shows
the actual box we simulate. Large and structured azimuthal B-field appears when Lz > 2 H.

dynamo action that is triggered in the vertically extended box. Fig. 4
plots a space–time diagram of the horizontally averaged azimuthal
magnetic field in both standard and tall boxes. Patches of strong
By that extend over vertical regions of size ∼H are evident in run
x1y4z4r32, with the sign of the field alternating quasi-periodically
over ∼10–20 orbits. The pattern become even more clear in the pan-
els corresponding to runs x1y4z8r32, x1y4z10r32 and x1y4z12r32
(see especially the middle right panel in Fig. 4). Clearly, a large-
scale dynamo must be operating that generates such strong ordered
toroidal field. The 3D structure of the magnetic field at three dif-
ferent times during one reversal cycle in run x1y4z4r32 is explored
further in Fig. 5. Large-scale (kx = ky = 0 and kz = 1) patterns in
the azimuthal magnetic field form along the azimuthal direction.
Spatially, the field lines flip signs (from red to blue) with height to
conserve the zero-net-flux initial condition. Their orientations also
reverse from one state of coherent structures (top left at t = 200 or-
bits) to another (top right at t = 220 orbits). This result is similar to
the dynamo cycle reported in Lesur & Ogilvie (2008b) (see their fig.
3). However, we emphasize that no explicit dissipation (viscosity
or resistivity) is required to capture the dynamo, nor is it required
to see a converged level of stress.

The large-scale dynamo maintains a time-averaged mean field

〈〈B2
/8πP0〉〉t 	 0.06 for x1y4z4r32 and 	 0.13 for x1y4z4r64 and

x1y4z4r128 runs, which amount to ∼40–50 per cent of the total
magnetic energy in the box (see Tables 1 and 2), close to a state of
equalized mean B and turbulent (b) field strength. In contrast, runs
in the standard box do not exhibit strong cyclic dynamo behaviour
(see top-left panel of Fig. 4), and the mean field is rather weak,

〈〈B2
/8πP0〉〉t � 0.1〈〈b2/8πP0〉〉t for x1y4z1r32, and it drops fur-

ther down to 	2 per cent of the turbulent magnetic energy in run
x1y4z1r128.

Why does dynamo action produce a larger value for the stress
which does not vary with numerical resolution? The large-scale ver-
tical patches of azimuthal magnetic field produced by the dynamo
act locally as a region with net toroidal flux. Thus, each Lz ∼ H
patch acts as an unstratified shearing box with net toroidal field.

As is already known, shearing boxes with net flux produce satu-
rated stress which is independent of resolution (Guan et al. 2009;
Simon & Hawley 2009). As a result of (locally) strong magnetic
field, the saturated Maxwell stress in x1y4z4r128 is αM 	 0.0714,
∼31 × greater than that of x1y4z1r128. Of this total, ∼16 per cent
is due to the correlated mean field −BxBy/4π, while the majority
is still from the correlation between the perturbed field components
−bxby/4π (since Bx is still small). In contrast, in the standard-sized
box almost all of the stress is associated with the perturbed field.

We find the stress-to-energy ratio, αmag ≡ 〈〈 − 2BxBy〉〉t/〈〈B2〉〉t

	 0.27 in the tall box, smaller than in the standard box case in which
αmag 	 0.46. A diminished αmag is also observed in simulations with
strong net azimuthal flux (run Y8 in Hawley et al. 1995), where the
imposed azimuthal mean field resembles a subsection of our box
which contains By of the same sign.

3.3 Varying the aspect ratio Lz/Lx: a parameter survey

We now investigate the effect of varying the aspect ratio using Lz/Lx

∈ {0.5, 1, 2, 2.5, 3, 3.5, 4, 6, 8, 10, 12} with fixed size Ly = 4H
and Lx = H in the horizontal dimensions. For each of Lz/Lx, we
also vary the resolution to study numerical convergence. We first
plot the αtot in Fig. 6. This figure clearly demonstrates what may
be our most important result. The data fall into two groups which
show distinctly different behaviour; the two groups are separated
by the vertical dashed line at Lz/Lx 	 2.5. For aspect ratios �
2.5 (to the left of the dotted line), the stress decays linearly with
the vertical size Lz. Moreover, at any given aspect ratio, the stress
decreases with increasing numerical resolution as shown by the
decreasing amplitude of the black (32/H), red (64/H) and green
(128/H) points. Clearly the standard box, with Lz/Lx = 1 falls in
this group. In contrast, for aspect ratios Lz/Lx � 2.5 (to the right of
the dotted line), the saturated stress associated with MRI turbulence
appears independent of the vertical size Lz, approaching αtot ∼
0.1. Moreover, numerical convergence in the value of the stress is
achieved for aspect ratios Lz/Lx > 4. For example, for Lz/Lx = 8,
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2280 J.-M. Shi, J. M. Stone and C. X. Huang

Figure 5. Top row: large-scale magnetic field in x1y4z4r32 run reverses between t = 200 orbits (top left) and 220 orbits (top right); t = 210 at the middle show
more tangled field during this transition. Bottom row: snapshots of large-scale field structures in other tall box runs (x1y4z8r32, x1y4z10r32, and x1y4z12r32
from left to right). In all panels, tubes are field lines in the box with starting points randomly distributed; colour bar describes the value of By/

√
4πρ0cs to

show the orientation and strength of magnetic field in azimuth.

Table 2. Time- and volume-averaged magnetic-field-related quantities.

x1y4z1r128 x1y4z4r128 x1y4z8r128

〈〈B2/8πP0〉〉t 0.0050 0.2730 0.3790
〈〈B2

x /8πP0〉〉t 0.0007 0.0352 0.0357
〈〈B2

y /8πP0〉〉t 0.0041 0.2208 0.3273
〈〈B2

z /8πP0〉〉t 0.0003 0.0170 0.0160

〈〈B2
/8πP0〉〉t 0.0001 0.1331 0.2491

〈〈B2
x/8πP0〉〉t 0.0 0.0020 0.0022

〈〈B2
y/8πP0〉〉t 0.0001 0.1311 0.2470

〈〈B2
z/8πP0〉〉t 0.0 0.0 0.0

〈〈b2/8πP0〉〉t 0.0049 0.1399 0.1299
〈〈b2

x/8πP0〉〉t 0.0007 0.0332 0.0335
〈〈b2

y/8πP0〉〉t 0.0040 0.0897 0.0803
〈〈b2

z /8πP0〉〉t 0.0003 0.0170 0.0160
〈〈−BxBy/4πP0〉〉t 0.0023 0.0714 0.0680
〈〈−BxBy/4πP0〉〉t 0.0 0.0115 0.0110
〈〈−bxby/4πP0〉〉t 0.0023 0.0599 0.0570
〈〈ρv2/2P0〉〉t 0.0028 0.0707 0.0706
〈〈ρv2

x/2P0〉〉t 0.0014 0.0226 0.0226
〈〈ρδv2

y/2P0〉〉t 0.0009 0.0365 0.0369
〈〈ρv2

z /2P0〉〉t 0.0005 0.0116 0.0111
〈〈ρvxδvy/P0〉〉t 0.0007 0.0126 0.0131
〈〈(δρ/ρ0)2〉1/2〉t 0.0312 0.1990 0.2243

Figure 6. The sum of Maxwell and Reynolds stress for various aspect ratios
(Lz/Lx) and resolutions for Lx = Ly/4 = 1 H boxes. The vertical dotted line
separates the ‘diverging’ and ‘converging’ regions: to the left of this line,
the stress decays with increasing resolution; the stress converges to ∼0.08
for different Lz/Lx on the right.

the stress values are nearly identical for resolutions of 32/H through
128/H. The behaviour of the two groups in this figure simply reflect
the emergence of dynamo action in runs with a large vertical extent,
which controls the stress. For example, the Lz/Lx = 4, 8, 10, and 12
cases in Figs 4 and 5 show strong cyclic azimuthal magnetic field
driven by the underlying dynamo mechanism.
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Figure 7. The ratio of the Maxwell stress and the Reynolds stress as a
function of Lz/Lx and numerical resolution. The vertical dotted line at Lz/Lx

= 2.5 same as Fig. 6. The Maxwell stress always dominates the Reynolds in
all runs; the ratio increases by a factor of ∼2 in the small box regime, while
stays roughly constant in the tall box cases. The tall box runs have greater
αM/αR than previous measurements marked as the shaded region.

For all runs, the Maxwell stress dominates the total turbulent an-
gular momentum transport; the ratio of the Maxwell to the Reynolds
stress varies with different Lz/Lx in a similar way (but at reduced
amplitude) as the αtot. In Fig. 7, we find αM/αR rises gradually
from ∼3 to 4 as Lz/Lx is increased from 0.5 to 2. The ratio then
levels off, ranging between 4 and 6. This is greater than the typical
values previously reported in the literature with Keplerian shear
(∼3–4) (Hawley et al. 1995; Abramowicz, Brandenburg & Lasota
1996; Stone et al. 1996; Hawley, Balbus & Winters 1999; Sano
et al. 2004; Pessah, Chan & Psaltis 2006). As the strong coherent
field structures tend to eliminate strong velocity fluctuations and
therefore reduce the Reynolds stress in those regions (similar to
those observed in the corona regions of stratified boxes (Branden-
burg et al. 1995; Miller & Stone 2000)), the box averaged αM/αR

therefore rises above the previously reported values.
The ratio between the Maxwell stress and magnetic energy, αmag

(see definition in Section 3.2), is usually adopted as a measure of
sufficient resolution to capture MRI turbulence (e.g. αmag = 0.3–
0.4 in Blackman, Penna & Varnière 2008; Hawley, Guan & Krolik
2011). We find consistent results for our standard boxes (Lz/Lx �
2.5), in which a relatively constant αmag ∼ 0.47 is obtained, in spite
of that no convergence is achieved for the stress. Surprisingly, this
ratio falls with (Lz/Lx)−1/2 in our tall box runs where converged
stresses are found. As the stress stays roughly constant in those tall
boxes, it is the increase of magnetic energy (or 1/β) as (Lz/Lx)1/2

that drives this scaling.
The dynamo effect in tall boxes alters the underlying mag-

netic field structure. As discussed in Section 3.1, most of the
stress comes from the correlation of the small-scale field, and
〈−BxBy〉 ∼ 〈−bxby〉 � 〈−BxBy〉 holds true for both groups. How-
ever, the magnetic energy in smaller boxes is mostly from the az-

imuthal component of the turbulent field, i.e. 〈B2〉 ∼ 〈b2
y〉 � 〈B2

y〉;
while 〈B2〉 ∼ 〈B2

y〉 � 〈b2
y〉 in tall boxes. As a result, αmag roughly

measures |bx/by| in the standard box cases, but it traces a very differ-

ent quantity,
∣∣bxby

∣∣ /B
2
y in the tall boxes. The effects of increasing

the aspect ratio in an already elongated box would only introduce a
stronger mean magnetic field. For instance, we find the total mag-
netic energy rises from 〈B2/8πP0〉 	 0.27 to 0.37 when comparing
x1y4z4r128 and x1y4z8r128 in Table 2, and the energy increase

mostly goes into 〈B2
y/8πP0〉 so that the latter increases from 	 0.13

to 0.25 while the other magnetic field components stay constant.

Figure 8. Top: αmag ≡ −2〈〈BxBy〉〉t/〈〈B2〉〉t for various Lz/Lx and res-
olutions. Again, the vertical dotted line delineates the short and tall box
regimes. The horizontal dashed line shows that αmag stays constant in the
small box regime; the dashed lines at Lz/Lx > 2.5 follows the (Lz/Lx)−1/2

power law. Bottom: stress-to-energy ratios computed with pure mean field
(small symbols) and turbulent field (large symbols) as defined in 11. The tur-
bulent ratio keeps constant α

(t)
mag ∼ 0.47 (the horizontal dashed line); while

its mean field counterpart α
(m)
mag ∝ (Lz/Lx )−1 (the dashed line at Lz/Lx >

2.5), much smaller than α
(t)
mag.

In a recent review, Blackman & Nauman (2015) pointed out the
stress-to-energy ratios for the pure mean and turbulent field could
be different. Following their proposal, we define

α(m)
mag ≡ −2

〈BxBy〉
〈B2〉

; α(t)
mag ≡ −2〈bxby〉

〈B2〉 − 〈B2〉
(11)

for the mean field and turbulent field, respectively. In the bottom
panel of Fig. 8, we find the ratio of the turbulent field (larger sym-
bols) still reaches a constant α(t)

mag ∼ 0.47, while the mean field
counterpart α(m)

mag  α(t)
mag, and decreases linearly with Lz/Lx. These

are consistent with the results found in Blackman & Nauman (2015).

3.4 Varying the box size with fixed aspect ratio

For given box size Ly = 4H, Lx = H in the horizontal domain, we
find the stresses converge in the tall box runs (Lz/Lx � 2.5) owing to
the emergence of large-scale azimuthal magnetic field produced by
dynamo action that acts as a local non-zero net flux. Since the mean
field sets an extra length-scale that is directly related to the box size,
it is also important to see how does the stress depend on the box size
itself. Therefore we have performed an additional series of runs in
which we vary Lx, but keep the aspect ratio Lz/Lx fixed.

In general, we find the amplitude of the saturated stress still con-
verges to a constant value independent of numerical resolution

MNRAS 456, 2273–2289 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/456/3/2273/1094776 by U
niversity of Southern Q

ueensland user on 30 M
arch 2022



2282 J.-M. Shi, J. M. Stone and C. X. Huang

Figure 9. The box size dependence of the stress (left) and magnetic energy (right) for Lz/Lx = 4 runs. We note that for both panels, the x-axes are (Lx/H)2

instead of Lx. The dashed lines shows the ∝ (Lx/H)2 scaling. A strong linear correlation between the stress/energy and (Lx/H)2 is obtained which indicates a
way to renormalize α and 〈B2〉 using the squared length-scale L2

x .

Figure 10. Rescaled magnetic energy power spectra for boxes with same
aspect ratio Lz/Lx = 4. The close matches between x1y4z4 and x0.5y2z2r64,
x1y4z4r64 and x0.5y2z2r128 indicate that the underling turbulence is in-
trinsically the same but only rescaled to a different box size.

as long as Lz/Lx > 2.5 (see Table 1). However, the value to which
the stress converges depends on the box size, as found previously
for shearing box simulations with net azimuthal field (Hawley
et al. 1995; Guan et al. 2009). As shown in Fig. 9, both αtot and
〈B2/8πP0〉, measured from runs with aspect ratio of 1 : 4 : 4 scale
as ∝ L2

x . This differs from the saturation predictor used in Hawley
et al. (1995), in which a linear relation ∝ Ly is reported. However,
their relation applied to relatively weak (β ∼ O(102)) external az-
imuthal field is very different than the very strong (β ∼ O(10)),
dynamo generated oscillating azimuthal field observed in our runs.

In fact, the unstratified box does not have any intrinsic length-
scales other than the box size Lx, cell width �x, and (for compress-
ible flows) the sonic scale cs/�. If we assume that compressible
effects can be ignored (we return to this point below), then based on
a dimensional analysis the stress can be normalized by ρ0(q�Lx)2

(Fromang & Papaloizou 2007; Guan et al. 2009), giving stress ∝ L2
x

as reported above. As long as the simulation is resolved Lx/�x � 32,
we find negligible dependence of the stress on numerical resolution,
e.g. Fig. 9. We find similar scaling with size for other quantities such
as magnetic and kinetic energy, and Reynolds stress. In addition,
the scaling ∝ L2

x applies to runs using other values of the aspect
ratio, e.g. Lz/Lx = 8 as tabulated in Table 1.

In Fig. 10, we plot the Fourier power spectra of five different runs
computed with different numerical resolutions and physical box size
(both Lx = H and Lx = 0.5H), but normalizing both the spectra and
wavenumber according to the above scaling. Interestingly, all runs

contain the same amplitude and slope at small k (the ‘inertial range’),
but extend to successively larger k as the resolution is increased.
Moreover, run x0.5y2z2r64 recovers the results of run x1y4z4r32
identically, and run x0.5y2z2r128 resembles x1y4z4r64 as well.
Since these two pairs of runs have the same range of scales Lx/�x,
we expect them to show similar behaviour provided there are no
intrinsic length-scales in the model. The result clearly indicates that
indeed the properties of MRI turbulence in the unstratified shearing
box model depend only on dimensionless wavenumber kL. As a
result, similar properties found in previous sections for tall boxes
of Lx = H are also present in tall boxes with different Lx.

Returning to Fig. 9, the stress measured in our simulations de-
viates slightly from the (Lx/H)2 power law scaling at α � 0.1,
which occurs in the largest boxes. We speculate this is due to com-
pressibility effects (Sano et al. 2004). Such large values of α are
associated with very strong (nearly sonic) turbulence. For example,
the rms density fluctuation for runs with large Lx become as large as
〈(δρ/ρ0)2〉1/2 ∼ 0.25 in x2y8z8r64. Compressibility strongly damps
the turbulence, and prevents the turbulent magnetic field from grow-
ing even stronger. Obviously compressibility effects must play a role
at some point, as turbulence alone cannot generate α � 1.

3.5 Explicit dissipation

Previous work has shown that if explicit dissipation is included
in the unstratified shearing box model with no net flux using the
standard box size Lz/Lx = 1, then a converged value for the mag-
netic stress can be achieved (Fromang et al. 2007). The saturation
level of the stress in this case is highly sensitive to the magnetic
Prandtl number Pm. It increases almost linearly with Pm in the range
4 ≤ Pm ≤ 16; while turbulence is completely suppressed once the
magnetic Prandtl number is below some critical value Pmc ∼ 2–4
(Fromang et al. 2007; Simon & Hawley 2009). Further study sug-
gests this behaviour shares similar origin to supertransient behaviour
in chaotic systems, and that the lifetime of the turbulent active phase
of the MRI increases exponentially with magnetic Reynolds number
for fixed kinetic Reynolds number (Rempel, Lesur & Proctor 2010;
Riols et al. 2013). In addition, studies with net flux and explicit
dissipation have also shown a somewhat weaker dependence on
the magnetic Prandtl number (Lesur & Longaretti 2007; Simon &
Hawley 2009), with saturation levels appearing to reach asymptotic
values in the Pm  1 limit (Meheut et al. 2015). These results have
been used to argue it may be necessary to include explicit dissipa-
tion in all simulations of the non-linear regime of the MRI, even
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Figure 11. Left: time evolution of volume-averaged total stress for different magnetic Prandtl number Pm. Right: time-averaged total stress-to-pressure ratio
as a function of Pm. All curves are calculated using resolution 128/H. We set αtot = 0 for Pm = 1 case (run x1y4z4r128pm1), as turbulent transport vanishes
after 250 orbits. The saturated stress level is sensitive to the magnetic Prandtl number when Pm � 4; however, this dependence becomes less significant when
Pm � 4, unlike the linear dependence found in standard boxes (Fromang et al. 2007; Simon & Hawley 2009).

Figure 12. Similar to Figs 2 and 3 but with explicit dissipation: Re = 3125 and Rm = 12500. The results are very similar to the runs without explicit
dissipation in Figs 2 and 3.

at very large magnetic Reynolds number and when the magnetic
Prandtl number Pm ∼ 1.

However, we have shown above that for large aspect ratios (Lz/Lx

� 1), converged values of the stress are achieved in ideal MHD. To
test whether the saturated stress is affected by the inclusion of ex-
plicit dissipation, we have repeated simulations in a tall box (Lx, Ly,
Lz) = (1, 4, 4) H but with four different combinations of kinematic
viscosity and Ohmic resistivity that give (Re, Pm) = (1600, 7.8125)
for run x1y4z4r128pm8, (3125, 4) for x1y4z4r128pm4, (3125, 2)
for x1y4z4r128pm2, and (3125, 1) for x1y4z4r128pm1, with resolu-
tion of 128/H. Parameters are chosen to match previous simulations
in Fromang et al. (2007) and Simon & Hawley (2009). A resolution
of 128/H ensures that the small-scale dissipation is well resolved
in the parameter space we explored (Simon & Hawley 2009). The
results of all four runs are listed in Table 1. We note all runs are
simulated with the same initial conditions as described in Section
2.2 except x1y4z4r128pm8, which is restarted from t = 50 orbits
of run x1y4z4r128pm2 to reduce the computational cost.

We find for Pm � 4 (run x1y4z4r128pm4 and x1y4z4r128pm8),
sustained stress and magnetic energy are achieved in tall boxes.
Moreover, the saturated stress and magnetic energy for these

runs are not much different from those without explicit dissipa-
tion. The time- and volume-averaged total stress is 	0.085 for
run x1y4z4r128pm4, and 0.092 for x1y4z4r128pm8, comparing to
0.084 for run x1y4z4r128 without explicit dissipation (see Fig. 11
and Table 1). We find, in Fig. 12, both the volume-averaged stresses
and magnetic energy spectra are quite similar to the tall box runs
without explicit dissipation as shown in right columns of Figs 2
and 3. It would seem that for taller boxes, in which the non-linear
regime and saturation is controlled by dynamo action at least in the
Pm � 4 regime, including explicit dissipation has little effect on the
results. We note that the saturated stress, αtot ∼0.085 owning to the
large-scale mean field, t is much greater than the values reported in
run SZRe3125Pm4 of Simon & Hawley (2009) (∼0.013), and in run
128Re3125Pm4 of Fromang et al. (2007) (∼0.009). We also note
that the shape of the power spectrum is different than the standard
short box simulations with explicit dissipation (Fromang 2010) as
the large-scale dynamo observed in our tall box runs is completely
absent in this latter case.

When Pm = 2 (run x1y4z4r128pm2), the stress in Fig. 11 appears
to be more bursty compared to higher Prandtl number runs and those
without explicit dissipation. The large fluctuations might be a result
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of competition between supertransient decay and dynamo growth
(Thaler & Spruit 2015). Time averaging over the last 200 orbits, we
find αtot ∼ 0.05, almost twice smaller than high Pm runs. The same
parameters have also been explored previously using a standard
box, see run 128Re3125Pm2 in fig. 8 of Fromang et al. (2007) and
SZRe3125Pm2 in table 1 of Simon & Hawley (2009), in contrast to
our tall box run x1y4z4r128pm2, no sustained MHD turbulence is
observed in either of these cases.

The only run in which we find turbulence eventually decays is
Pm = 1 (run x1y4z4r128pm1 in Fig. 11). After about 250 orbits,
both the Maxwell stress and magnetic energy abruptly drop by
several orders of magnitude and the flow becomes laminar. This
finding confirms the existence of a critical Prandtl number Pmc for
a given kinetic Reynolds number even when the box is tall (Lz/Lx

> 1 and Ly/Lx = 4). Together with the results of Pm = 2 run,
it indicates a smaller critical value, 1 � Pmc � 2, comparing to
Pmc = 2–4 found in standard boxes (Fromang et al. 2007; Simon
& Hawley 2009). As we mainly varies the ReM, we caution the
readers that the results might possibly reflect the dependence of
saturation amplitude of the MRI on another dimensionless number,
the Lundquist number Lu ≡ v2

Az/η� (Sano & Stone 2002). We find
the time-averaged Lu 	 332, 105 and 11 for run x1y4z4r128pm4,
x1y4z4r128pm2 and x1y4z4r128pm1,1 getting closer to the critical
values reported in previous studies with vertical net flux (Lesur
& Longaretti 2007; Pessah, Chan & Psaltis 2007; Turner, Sano &
Dziourkevitch 2007; Masada & Sano 2008).

The result of Rempel et al. (2010, see their fig. 5), based on the
statistics of MRI turbulence in a standard (Lx : Ly : Lz) = (1 : π :
1) box, would predict a characteristic decay time ∼10 shear time
units for Pm = 1 and 2 with the same Re = 3125 as used here.
However, we find sustained turbulence that lasts more than several
thousand shear time units in our Pm = 2 run; and the active time
for our Pm = 1 run is ∼200 orbits, or 2000 shear time units, much
longer than the prediction. Moreover, Fromang et al. (2007) find,
when changing Re from 12 500 to 25 000, the turbulence lifetime
of Pm = 1 increases from �40 orbits to ∼100 orbits. This would
suggest a decaying time even shorter than 40 orbits for Re = 3125
case, therefore much smaller than our result. Clearly, the aspect ratio
of the computational domain may play a big role in determining the
dynamical lifetime of MRI turbulence (Riols et al. 2015) in the
unstratified, no net flux shearing box.

To sum up, we find the Prandtl number dependence of the tur-
bulent stress in our tall box runs is very different from that found
earlier using a standard box (see right-hand panel of Fig. 11). When
Pm ≥ 4, the saturated stress level is insensitive to the inclusion of
explicit dissipation. We find converged turbulent stress for runs with
and without explicit dissipation. The saturated stress shows stronger
dependence when Pm < 4 as it drops linearly from Pm = 4 to 2.
By choosing a taller box which promotes dynamo action, we find
the dynamical lifetime of MHD turbulence is extended, and the crit-
ical magnetic Prandtl number is reduced compared to the standard
smaller box simulations.

4 MO D E L I N G T H E DY NA M O

Our previous results indicate that shearing box simulations of the
MRI with a large aspect ratio, dynamo action produces strong or-
dered toroidal fields on vertical scales Lx. In this section we explore
models that might explain this dynamo action.

1 Take time average over turbulent active phase t < 250 orbits.

4.1 Dynamo cycle period

An important property of the dynamo is that at any given vertical
location z, the toroidal magnetic field is cyclic, and the period of
these cycles is an important clue to the mechanism of dynamo
action. As illustrated in Fig. 4, cyclic patterns of the mean field
By becomes strong and regular for those boxes with Lz � 8 H. It
is relatively easy to identify the cycle period from the space–time
diagrams. However, for smaller boxes, e.g. Lz = 4 H as shown in
Fig. 4, the cycle is less regular and it is more difficult to extract a
single value of the period Tcycle. Thus, we measure the cycle period
based on the power spectrum density (PSD) of the largest vertical
mode (kz = 2π/Lz) of By(t) in Fourier space, i.e.

PSD of B̃y(t), where B̃y(t) ≡
∫

By(z; t)e−ikzzdz . (12)

We can also estimate errors from the range of Tcycle as measured from
two independent time sequences. We have applied this measurement
to all simulations regardless of the box size, but note the physical
meaning of Tcycle in simulations with a small aspect ratio (Lz/Lx

< 2) is less clear due to the absence of dynamo action. We list all
values of Tcycle measured in this way in Table 1 for reference.

Once dynamo is at action, there is in general a phase lag between
the radial mean field Bx and the azimuthal By . In order to obtain the
phase shift, we first apply filter on our mean field and get the largest

vertical mode B
(1)

(z, t), where ‘(1)’ denotes kz = 2π/Lz only. We
then calculate the cross-correlation between two time sequences,

B
(1)
x and B

(1)
y at given z. The exact time delay �t between radial and

azimuthal mean field are the lag which gives the most negative value
of correlation. In Table 1, we list the vertically averaged �t, and the
errors from the variation of �t at different height. The azimuthal
mean field therefore lags behind the radial field by

φ = π − 2π
�t

Tcycle
(13)

in phase.
In the top panel of Fig. 13, we plot the measured Tcycle for all Lx

= 1 H runs. In general, we find the cycle period is much longer than
the dynamical (orbital) time, ranging from several to tens of orbital
periods. The measured Tcycle becomes longer as Lz/Lx is increases
with a slope slightly shallower than unity. In contrast to the aspect
ratio dependence, Tcycle is not very sensitive to the box size. As
shown in the middle panel of Fig. 13, Tcycle for Lz/Lx = 4 scatters
between ∼20 and 30 orbits, while it varies around ∼50 orbits for
Lz/Lx = 8 with �50 per cent fluctuations. The phase lag between
radial and azimuthal mean field does not depend on box size either
(see Table 1). It only weakly depends on the aspect ratio, roughly
∝ (Lz/Lx)−0.2 as shown in the bottom panel of Fig. 13.

4.2 A toy model

Following the model proposed in Lesur & Ogilvie (2008b), we also
try to fit the dynamo cycles observed in our simulations with the
following non-linear model:

∂tB
(1)
x = γB

(1)
y (t − tr )

∣∣∣B (1)
y (t − tr )

∣∣∣ − Br

Br

, (14)

∂tB
(1)
y = −q�B

(1)
x − βB

(1)
y (t − tr ) , (15)

where B
(1)
x and B

(1)
y are horizontally averaged radial and azimuthal

field that are filtered to conserve only the largest vertical mode
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Figure 13. Top: dynamo cycle periods for different Lz/Lx with fixed
Lx/H = 1, dashed lines show ∝ Lz/Lx power law. Middle: dynamo pe-
riods versus box sizes (small symbols for Lz/Lx = 4, and larger symbols for
Lz/Lx = 8). The dotted horizontal lines at Tcycle = 27 and 48 orbits show the
constancy of cycle period with respect to various box sizes. Bottom: phase
lag between radial and azimuthal mean field as calculated in equation (13),
dashed lines follow ∝ (Lz/Lx)−0.2 scaling. The dotted vertical lines at Lz/Lx

= 2.5 separate the standard and tall boxes. The error bars of Tcycle are the
variations measured with two independent time sequences; the error bars
of phase lag show the max/min values given the variations of the measured
Tcycle and time delay �t.

(kz = 2π/Lz, represented with the superscript ‘(1)’). Here tr char-
acterizes the time delay between the EMF and large-scale magnetic

field. When the mean field |B (1)
y | is smaller than Br, the γ term

effectively amplifies the B
(1)
x field, which in turn lead to B

(1)
y growth

via shear. In the opposite case, when |B (1)
y | exceeds Br, the γ term

starts to damp the radial field, and the azimuthal field is thus re-
duced via the β term. In the fitting, we choose tr = 2/|q�| =

Figure 14. A toy model fit (red, based on equations 14 and 15) to our
unstratified x1y4z8 run (black). The top panel shows the largest vertical
mode of mean By at z = −3 H; the bottom panel shows the corresponding
radial field. Dotted lines in both panels mark zero amplitude level.

4�−1/3 as suggested by linear analysis (Lesur & Ogilvie 2008a,b),
and Br/(

√
4πρ0cs) = 0.3, a factor ∼2.5 greater than used in Lesur

& Ogilvie (2008b) to better fit the mean field amplitude observed
in our simulations. We then vary γ and β to match the observed
cycle period and long-term amplitude. Empirically, γ determines
the cycle frequency, and β prevent the solution from diverging. We
focus on fitting the results for run x1y4z8r32 as it exhibits a well
organized cyclic pattern. Without loss of generality, we fit the fil-

tered B
(1)
x and B

(1)
y at z = −3 H. With γ = 2 × 10−4 and β =

4 × 10−4, the model is shown as the red curves in Fig. 14. For
times after 100 orbits, the model provides a reasonable fit to the
spatial filtered simulation data. The model predicts the correct dy-

namo period and relative strength between B
(1)
x and B

(1)
y . However

the phase shift between B
(1)
x and B

(1)
y is π/2, slightly smaller than

the simulation data, which is φ 	 (0.65 ± 0.08)π. This phase lag
is also different than what is found in Herault et al. (2011) (∼π),
but is close to 3π/4, the phase shift of a marginally excited dynamo
wave in a α-� dynamo (Brandenburg & Subramanian 2005). As
the values of Br and tr are uncertain, there are likely to be degenera-
cies in the model parameters. Recent work has explored this model
as a magnetic analogue to the ‘shear current’ effect proposed by
Rogachevskii & Kleeorin (2004) in which the non-isotropic con-
tribution of the turbulent diffusion can drive large-scale magnetic
field growth in non-helical turbulent shearing flows. Interestingly,
Squire & Bhattacharjee (2015b) recently find negative off-diagonal
turbulent diffusivity (a negative ηyx term which drives exponential
growth of Bx, see their equations (2) and (3), or equation (16) in
this paper for its definition) by direct measurement in simulations
assuming a simple closure model,

Ei = αijBj − ηij εjkl∂kBl , i, j , l ∈ {x, y} , k = z (16)

where the turbulent EMF, E ≡ v × b, and mean field B can be
measured from the simulation data, and εjkl is the Levi–Civita per-
mutation symbol. After setting αxx = αyy, αyx = 0, ηxx = ηyy and
ηxy = 0, they find an average ηyx ∼ −10−4H2�. Following their
procedure, i.e. computing 〈EiM〉 from equation (16) for each of
M = (Bx, By, ∂zBx, ∂zBy) and solving the resulting matrix equa-
tions at each time point, we also find negative ηyx 	 −1.6 ×
10−3H2� by time averaging over the dynamo’s growth phase t
= 10–50 orbits in x1y4z8r32.

Alternatively, we can also solve equation (16) at any given z

directly assuming time-independent transport coefficients (but a
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Figure 15. Turbulent transport coefficients measured via simulation at t = 10–50 orbits, assuming closure model like equation (16). We further set αxx = αyy,
αyx = 0, ηxx = ηyy and ηxy = 0 in this fitting. Square symbols are the time-averaged coefficients at evenly spaced disc height. The black dashed lines show the
vertical averages and the grey dashed lines are set to zero to help read this plot. Clearly, negative ηyx is obtained for all z indicating an antidiffusive growth of
magnetic field.

function of height) with multiple linear regression method. The
results are shown in Fig. 15. All αs fluctuate about zero and are
close to zero when averaging over z. The diagonal ηxx ∼ 5 ×
10−3H2� are dissipations of magnetic field. The non-diagonal term
ηyx ∼ −10−3H2� for all z is consistent with that of Squire &
Bhattacharjee (2015b), indicates a dynamo growth. We find this
negative ηyx behaviour does not change with non-zero αs and ηs,
or unequal αxx and αyy, as long as the diagonal ηs are kept to be the
same (ηxx = ηyy). We also obtain similar values of ηyx in the well
established dynamo cyclic phase using data at t = 100–200 orbits.

However, comparing a time dependent ηyx throughout a dynamo
cycle2 shows no evidence for sign change when the mean field |By |
surpasses some critical magnetic field strength as designed in the
toy model, although we do see the filtered EMF E (1)

y changes sign
over a cycle with the projection method used in Lesur & Ogilvie
(2008b, see their eqautions 12 and 13) and after some smoothing.
Further study is still required to explain the inconsistency we find
here, and identify the dynamo mechanisms ultimately, but is beyond
the scope of this paper.

4.3 Connection to the stratified shearing box

It is interesting to compare the dynamo cycles in our unstratified
shearing box simulations with those observed in stratified discs.

2 It is calculated again by fitting moment equations of the closure 16 at each
time point (without time average) using E and B values directly from the
simulation. We can also fit equation (16) with filtered data, e.g. by keeping
only the first few wavenumbers. The resulting ηyx can switch sign, however
is so noisy that we can hardly retrieve any meaningful results from it.

Simulations using the stratified shearing box always find strong
dynamo cycles in the toroidal field (e.g. Brandenburg et al. 1995;
Stone et al. 1996; Ziegler & Rüdiger 2000; Gressel 2010; Oishi &
Mac Low 2011; Käpylä et al. 2013). As the unstratified shearing
box discs approximates the midplane of a stratified discs, there
may be some relation between the dynamo behaviour seen in both
cases.

We start by analysing an existing stratified simulation data (run
STD32) first published in Shi et al. (2010). Due to buoyancy, the
mean magnetic field is expelled towards the disc surface producing
a regular pattern known as the butterfly diagram (see fig. 6 of Shi
et al. 2010) reproduced here in Fig. 16. By extracting data within
±H of the midplane, we find a clear dynamo cycle with a period
∼10 orbits as shown in the bottom panel of Fig. 16. At any given
time, the mean azimuthal field is roughly uniform in z, and has one
sign throughout the subvolume near the midplane (to preserve the
constraint of no net flux, field of the opposite sign is located above
and below the midplane). We can also model the dynamo in the
stratified shearing box with the toy model described in Section 4.2.
Again, we adopt tr = 4/(3�) and Br/(

√
4πρ0cs) = 0.3, where ρ0

and cs are the midplane density and sound speed in the stratified disc.
We fit the vertically averaged Bx and By with parameter values of γ

= 10−3 and β = 0.014 as shown in Fig. 17. Similar to the unstratified
case, the toy model captures the cycle period and relative strength
of the field components correctly, but slightly underestimates the
relative phase between Bx and By (φ/π 	 0.6+0.1

−0.2).
The overall similarity between the dynamo in the unstratified

and stratified discs suggests the same mechanism could act in both
cases. We speculate that the core of the stratified disc resembles
our tall box runs. Extrapolating the linear scaling found in the top
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Figure 16. Top: space–time diagram of By in a stratified box STD32 (Shi
et al. 2010). Bottom: a blow-up view of the left to show the main body of
the disc within ± H.

Figure 17. A toy model fit (based on equations 11 and 12) to the stratified
disc STD32 (see Fig. 16; Shi et al. 2010). The fit is in red, the vertically
averaged mean By (top) and Bx (bottom) within ± H are in black. Dotted
lines in both panels mark zero amplitude level.

panel of Fig. 13 to Lz/Lx � 2 gives Tcycle ∼ 10 orbits which matches
the cycle period of the stratified shearing box very well. Assum-
ing similar correlation between EMF and mean field as described
in Section 4.2 (Squire & Bhattacharjee 2015b,a), we find again a
negative off-diagonal resistivity ηyx ∼ −10−3H2� (Fig. 18), which
favours an antidiffusive dynamo model similar to the unstratified
case. However, we find, unlike the unstratified case, an α-effect is
also present in the stratified box. The diagonal αyy is antisymmet-
ric with respect to the midplane. In the upper half of the disc, it
is negative below 4 H, and systematically positive above 4 H. The
negative α-effect (within the upper half of the disc) is generally at-
tributed to the dynamo growth in previous stratified simulations and
the negative sign is caused by the influence of the field buoyancy
and/or strong shear in accretion discs (e.g. Brandenburg et al. 1995;
Rüdiger & Pipin 2000). The positive α-effect has also been recently
proposed to explain the dynamo (Gressel 2010; Gressel & Pessah
2015). Together with the η-effect, it seems to suggest a combination
of direct and indirect dynamo mechanisms (Blackman & Tan 2004;
Gressel 2010) in stratified shearing box. Further investigations are

required to identify whether one or both mechanisms could exist
and further cause the dynamo cycles.

5 C O N C L U S I O N S

In this paper, we have studied MRI turbulence in the unstratified
shearing box model with no net flux, and in particular how the size
and aspect ratio of the computational domain affects the saturation
amplitude and stress. We have performed simulations both with and
without explicit dissipation. Previous simulations of this particular
shearing box model have shown that the saturation amplitude of the
MRI depends on numerical resolution. However, we have shown
that the geometry of the computational domain also strongly affects
the result. Our main results are summarized as follows.

(i) The amplitude of the stress and turbulence driven by the MRI
converge to values independent of numerical resolution if the aspect
ratio of the computational domain Lz/Lx > 2.5, even without explicit
dissipation. These values are proportional to the box size L2

x . Only
when the aspect ratio Lz/Lx < 2 do these levels depend on resolution.

(ii) When Lx = H and Lz/Lx > 2.5 the converged value of the
saturated stress is greatly increased compared to previous values
reported for Lz/Lx = 1, and can be as large as α � 0.1. These values
are similar to those required by observations of dwarf novae discs in
outburst, perhaps negating some of the concerns expressed in King
et al. (2007).

(iii) The Fourier power spectra of runs with large aspect ratio are
very different from those with Lz/Lx ∼ 1. In particular, most of the
power in the magnetic field is at small k, independent of resolution.

(iv) For the limited range of parameter values explored in this
paper, we find the saturation level of the MRI is independent of
whether explicit dissipation (viscosity and resistivity) is included
or not, provided that the magnetic Reynolds number is large. Tur-
bulence can be suppressed at small ReM, corresponding to small
magnetic Prandtl number Pm � 4, however simulations utilizing
a taller box show a relatively smaller critical Prandtl number and
much longer lifetime of turbulence than those with Lz/Lx ∼ 1.

(v) Cycles of strong large-scale toroidal magnetic field with al-
ternating sign on scales of a few Lx are generated in domains with
Lz/Lx > 2.5 via a dynamo. This large-scale magnetic field sets and
sustains the turbulence independent of numerical resolution.

(vi) Some aspects of the cyclic dynamo can be modelled with
anisotropic turbulent resistivity (Lesur & Ogilvie 2008b), although
the physical mechanisms driving the dynamo are unclear. Similar
dynamo cycles observed in a stratified shearing box simulation
suggest the stratified and unstratified discs might share common
dynamo mechanisms.

As discussed in the Introduction, the unstratified zero-net-flux
shearing box model is unlikely to have much relevance to real
astrophysical discs. Instead, it is likely that different local (L ∼
H) patches of the disc are threaded by a broad range of net field
strengths, even if the total field threading the disc is zero. Thus,
global models of astrophysical discs are best constructed from an
ensemble of net flux shearing box simulations. Nevertheless, studies
of the unstratified zero-net-flux shearing box are of interest in order
to study MHD dynamo action in a simple, well-posed model. More-
over, we have shown that some aspects of the dynamo observed in
stratified shearing boxes may be related to properties of the dynamo
discussed here. Thus, further study of the MRI dynamo in domains
with large aspect ratio, in both compressible and incompressible
MHD, and both with and without explicit dissipation are warranted.
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Figure 18. Similar to Fig. 15, turbulent transport coefficients measured via stratified disc as in Fig. 16 are plotted assuming only ηxx = ηyy. In each panel,
different colours represent different coefficients as labelled on its y-axis. We see similar negative ηyx as in the unstratified disc within ±4 H, also a negative
(positive) αyy below (above) 4 H in the upper half of the disc, antisymmetric with respect to the midplane.
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