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ABSTRACT

The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on
unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body
simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly
packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning
algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the
stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations.
Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to
characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of
concept motivates investing computational resources to train algorithms capable of predicting stability over longer
timescales and over broader regions of phase space.

Key words: celestial mechanics – chaos – planets and satellites: dynamical evolution and stability

1. INTRODUCTION

In order to characterize planetary systems, it is common
practice to assume long-term stability in order to set upper
limits on planetary masses and orbital eccentricities (e.g.,
Lissauer et al. 2011; Steffen et al. 2013; Tamayo 2014; Tamayo
et al. 2015). This involves running grids of direct N-body
integrations over the large multi-dimensional parameter space
of initial conditions that are consistent with observational error.
In practice, however, one can often explore only a minute
fraction of the phase space; in the case of many systems
discovered by the Kepler mission, each integration requires
several weeks of computation to simulate timescales compar-
able to the star’s age (1011 planetary orbits) with current
hardware. A more efficient classifier of dynamical stability
would thus be invaluable.

In this investigation, we specialize to the case of tightly
packed systems, where the interplanetary separations are less
than 10 mutual Hill radii (RH), where
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M1, M2, and Må are the masses of a pair of planets and the
central star; and a1 is the semimajor axis of the inner planet.
This regime has long been recognized as important in the early
stages of planetary systems when bodies are still merging and
has received much attention.

For the special case of two-planet systems, there exists an
analytic “Hill criterion” that, if satisfied, precludes close
encounters between the planets for all time (Marchal &
Bozis 1982, Milani & Nobili 1983, Gladman 1993, but see
also Barnes & Greenberg 2006; Deck et al. 2012; Veras &
Mustill 2013). However, in the general case with more than

two planets, the additional degrees of freedom preclude a
topological criterion for Hill stability.
This has led many authors to perform suites of N-body

simulations and fit empirical curves to the results. Because of the
prohibitively large phase space of possible initial conditions,
several authors (Chambers et al. 1996; Faber & Quillen 2007;
Smith & Lissauer 2009; Obertas et al. 2016) have considered
the special case of initially circular, planar orbits with all planet
pairs having equal Hill separations Δ, defined as the difference
in semimajor axis divided by RH. They find that instability
timescales grow approximately exponentially with Hill separa-
tion; however, the fitted coefficients change as the number of
planets and planetary masses are varied, and introducing
inclinations (Marzari & Weidenschilling 2002), eccentricities
(Ito & Tanikawa 1999; Chatterjee et al. 2008; Pu & Wu 2015),
or unequal spacings between planets (Marzari 2014) changes the
instability timescales substantially. For a given planetary system,
it is therefore not always clear which scaling law is appropriate
to apply and what confidence one can have in the resulting
estimate.
For this investigation we take a new machine-learning

approach. High-dimensional classification tasks of this kind are
ubiquitous across industry and data science, and sophisticated
machine-learning algorithms have been developed to tackle
these problems. Such techniques have been highly successful in
an astronomical context for several image classification tasks,
e.g., assigning morphological types to galaxies (Collister &
Lahav 2004); however, they have seen little use in dynamical
classification to date (see Petrovich 2015 for a recent
counterexample).

2. METHODS

We choose to frame the problem as a binary classification
task, i.e., predicting whether or not a given planetary system is
stable (over a given timescale). Each “example” (planetary
system) is described by a set of “features” that the algorithm
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uses to predict stability, in the form of a probability between 0
and 1. In supervised machine learning, an algorithm is first
trained on examples where it is told the correct answer (stable
or not stable). The trained algorithm can then be used to predict
on new examples.

2.1. Data Set

In order to train our algorithms, we generated a data set of
5000 N-body integrations of three-planet systems over 107

orbits of the innermost body. We focus on three-planet systems
since there exists an analytic criterion for the case of two
planets (Gladman 1993), and systems with more planets exhibit
qualitatively similar behavior (Chambers et al. 1996). The
number of simulations and length of integration were chosen to
generate a data set at limited computational cost (∼1000 CPU
hours) and assess the value of investing significant computing
time to train classifiers on more astrophysically relevant
timescales (∼109 orbits). Because we expect that instability
timescales of 107 and 109 orbits are both physically driven by
Chirikov diffusion due to the overlap of mean-motion
resonances (see Figure 2 in Obertas et al. 2016), we expect
the performance of models trained on this data set to be
comparable to that of similar algorithms trained on longer
data sets.

With a view toward applying these models to Kepler
discoveries, we adopted a solar-mass star, 5 ÅM (Earth-mass)
planets, and drew the innermost planet’s semimajor axis
randomly between 0.04 and 0.06 au. We note, however, that
our results are strictly scale-free and can be applied to
comparable systems with masses, orbital periods, and semi-
major axes expressed in terms of the star’s mass, innermost
planet’s orbital period, and semimajor axis, respectively. The
second planet’s semimajor axis was separated from the first by
a number of mutual Hill radii drawn from a uniform
distribution in the range [5, 9]. The third planet’s separation
was then independently drawn from the same distribution,
yielding unevenly spaced planets. The particular range of Hill-
radius separations was chosen to capture the regime of interest
on our adopted timescale of 107 orbits and roughly generate a
balanced data set of stable and unstable systems (this yielded
1479 stable systems out of 5000). Eccentricities and inclina-
tions were drawn independently for each planet from uniform
distributions over [0, 0.02] and [0, 1°], and the remaining
angles were drawn randomly over [0, 2π].

Because one only needs to integrate until the first Hill sphere
crossing (once this happens, strong scatterings happen quickly;
e.g., Gladman 1993), we use the efficient WHFAST integrator
(Rein & Tamayo 2015) in the open-source REBOUND N-body
package (Rein & Liu 2012). REBOUND is written in C99 and
comes with an optional python interface. We adopted a
conservative time step of 1% of the innermost planet’s orbital
period and classified systems as unstable if any pair of planets
came within 1 Hill radius of each other during the simulation.

2.2. Metrics

Binary classifiers are often evaluated on their precision (here
the fraction of systems that are actually stable when the model
predicts stability) and recall (the fraction of systems the model
predicts are stable out of the truly stable cases). For typical
algorithms that predict probabilities of class membership, one
can trade off between precision and recall by varying

the threshold probability for classification. For example, a
conservative model that only classifies systems as stable if it
predicts a probability of stability greater than 0.99 will be right
most of the times that it predicts stability (high precision), but
will miss all the stable systems that were assigned slightly
lower probabilities (low recall). The appropriate threshold
depends on the application (e.g., if predicting DNA matches for
crime cases, one might set a high threshold as above to have
confidence in predicted matches).
When comparing two models, one can plot pairs of precision

and recall scores for all possible thresholds to generate a
precision–recall curve. A common scalar metric for comparing
classifiers is the area under this curve (AUC), which would be
unity for a perfect model.

2.3. Algorithm Training

After experimenting with several machine-learning algo-
rithms (random forest and support-vector machine implementa-
tions in the Python scikit-learn library), we found that
gradient-boosted decision trees (GBDT6) XGBoost v0.6
(Chen & Guestrin 2016) yielded significantly higher AUC
values for our data set.
A recurring theme in machine learning is that of “over-

fitting,” an algorithm’s tendency to latch onto irrelevant
idiosyncrasies in the training set that cause it to predict poorly
on unseen examples. Different algorithms therefore try to
penalize overly complicated models in an effort to retain only
the broad features that are likely to generalize well. In practice,
the user navigates this balance between simplicity and
complexity empirically, by tuning an algorithm’s “hyperpara-
meters” that mediate this tradeoff, training it, and checking
performance (Section 2.2) on unseen data; this process,
together with trying different features to maximize perfor-
mance, is known as cross-validation. In order to rule out the
possibility of (sometimes subtle) mistakes in cross-validation
yielding overly optimistic performance metrics, it can be good
practice to assign a subset of the data to a holdout (test) set that
is never seen by the algorithm during cross-validation.
Evaluation of the final model on the holdout set therefore
provides robust metrics of the trained algorithm’s expected
performance on unseen examples; consistency between the
cross-validation and test scores also suggests a robust cross-
validation methodology. In our case, we randomly assigned
1500 systems to a holdout test set and used only the remaining
3500 for cross-validation.
A typical technique to reduce statistical fluctuations when

comparing the performance of different sets of hyperparameters
is k-fold cross-validation. One begins by splitting the training
examples into k evenly sized groups; then, for each group, one
trains the model on the remaining k−1 chunks and uses the
remaining group to evaluate performance. The scores from the
k folds are then averaged, reducing the variance in the estimate.
Finally, it is generally good practice to use stratified cross-
validation, whereby one ensures that each of the k folds is
assigned an approximately equal number of samples from each
class (stable and unstable).
XGBoost has several hyperparameters, so we sequentially

performed grid searches through two-dimensional cuts through

6 GBDT algorithms create and combine large numbers of individually weak
but complementary classifiers to yield a robust estimator (Friedman
et al. 2001).
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the parameter space, evaluating performance through the
precision–recall AUC (Section 2.2) using stratified, five-fold
cross-validation on the training set of 3500 examples. Values of
the final adopted hyperparameters for the algorithm are
discussed in Sections 3.1 and 3.2 and can be found in Table 1.

3. RESULTS

3.1. Model 1: Learning from Initial Conditions

We begin by considering as features the initial orbital
elements and periods of each planet, as well as the
interplanetary separations between adjacent planets in units of
mutual Hill radii (23 features). We then trained an XGBoost
classifier on these features (Section 2.3), allowing us to predict
the stability of each system in the test set in the form of an
estimated probability.

As discussed in Section 2.2, a threshold probability is
required for classifying a system as stable/unstable and is a
subjective choice that depends on the desired qualities of the
classifier. For our purposes we argue it is logical to adopt a
conservative threshold, in the sense that if the model predicts
stability, there is a strong likelihood that the system is actually
stable (high precision). This follows from the fact that it is
computationally much faster to verify that a system is unstable
(on short timescales) than it is to check that it is stable (on long
timescales). We choose to require a precision of 90% on our
test data set, which corresponded to the model only classifying
systems as stable if their predicted stability probability is larger
than a 0.785 threshold.7

Since previous works have identified the Hill separations
between adjacent planets as important features (Chambers
et al. 1996; Marzari 2014), we plot the performance of the
model projected onto this 2D plane (Figure 1).

Looking at the dashed, black line in Figure 1, one can see that
to first order, the model’s prediction boundary roughly obeys the
relation Δ1+Δ2>16.1. This is in fact the form of the simple
criterion suggested by Lissauer et al. (2011), who quote
Δ1+Δ2>18 for stability on timescales of 109 orbits. Because
we consider stability on shorter timescales, the threshold number
of Hill radii should be adjusted for a fair comparison. We term
models of the form D + D > x1 2 “Lissauer-family” models,
and find 16.1 is the threshold for Lissauer-family models that
yields a precision of 90% on this data set.
As stated above, a conservative probability threshold has the

disadvantage that the model will misclassify many stable
systems as unstable (low recall). This is easily seen by
considering different Lissauer-family models (dashed black
line in Figure 1), i.e., imposing different threshold values than
16.1 and generating lines parallel to the one plotted. Larger
threshold values ensure that a larger fraction of the systems to
the right of the boundary (i.e., those predicted stable) are in fact
stable (blue), leading to higher precision. However, this lowers
the recall, since now fewer of the stable systems (blue) are
predicted to be stable by the model (i.e., lie to the right of the
line). For a fixed precision of 90%, the machine-learning model
has a significantly higher recall (52%) than the Lissauer-family
model (30%). This is because the machine-learning model can
use information in the features not visible in this 2D projection
to make better predictions. The uncertainty in the recall should
be comparable to the rms variations in the AUC calculated
across the k folds during cross-validation, or ≈1% (Table 1).

3.2. Model 2: Generating Features from Short Integrations

An important factor determining the performance of a
machine-learning algorithm is the quality of the features it is
provided for each of the training examples. To this end, we
improved upon the previous model (Section 3.1) by generating
new features from short N-body integrations. To create the new
features, we performed simulations over 104 orbits (0.1% of the
simulation timescale probed) for each of the 5000 systems in

Table 1
Hyperparameters Used for the Initial-conditions (IC) Model (Section 3.1) and
Short-Integrations (SI) Model (Section 3.2), and their Associated Performance

LF IC SI

base_score 0.5 0.5
colsample_bylevel 1 1
colsample_bytree 1 1
gamma 0 0
learning_rate 0.001 0.00359
max_delta_step 0 0
max_depth 6 8
min_child_weight 1.0 1.2
missing None None
n_estimators 5000 5000
objective bin:log bin:log
reg_alpha 0 0
reg_lambda 1 1
scale_pos_weight 1 1
seed 27 27
subsample 0.4 0.5

AUC (Cross-validation) 0.84±0.01 0.91±0.01
AUC(Test) 0.77 0.84 0.90
Recall (90% Precision) 0.30 0.52 0.68

Note.Scores for the Lissauer-family (LF) model shown for comparison.

Figure 1. Performance on the test data set using a model trained on systems’
initial conditions. Stable systems are marked blue; unstable systems are marked
red. Correctly classified systems are plotted as circles; incorrect predictions are
marked as crosses. The bottom and left axes show Hill-sphere separations Δ for
the inner and outer planet pairs, respectively. The top and right axes correspond
to period ratios between the planet pairs. The dashed black line corresponds to
the Lissauer-family model Δ1+Δ2>16.1.

7 The reason this deviates from the desired precision is that the probability
that the model outputs is heuristic and is not necessarily an accurate measure of
the likelihood that the system is actually stable.
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the data set and recorded each planet’s orbital elements and
Lyapunov time every 5 orbits.

Because we suspect that the instability is driven by over-
lapping mean-motion resonances, we first generated features that
capture semimajor-axis variations, which would approximately
vanish if the dynamics were purely secular (Murray &
Dermott 1999). In particular, we generated features for the
standard deviation and maximum value of each planet’s
semimajor axis over the 104 orbits, normalized to the mean
value over the same period (std_ai and max_ai, where i
denotes the planet number). We also generated features for these
quantities over only the first 50 orbital periods to capture
variations on orbital timescales (std_window_ai and max_-
window_ai). Furthermore, we capture any drifts by generating
slope features from linear fits to each of the three planets’
semimajor axes, normalized to the mean semimajor axis divided
by the integration time (slope_ai). For the eccentricities, we
took the mean, standard deviation, maximum, and minimum
values over the full 104 orbits, normalized to the eccentricity the
planet would require to reach its nearest neighbor’s semimajor
axis (avg_ei, std_ei, max_ei, min_ei). For the Lyapunov
time we generated a single feature corresponding to the value
measured at the end of the integration, normalized to the
innermost orbital period (LyapTime). Finally, we added
features for the two pairs of initial Hill-radius separations
(daOverRH1, daOverRH2), and for the minimum and
maximum initial Hill-radius separations (mindaOverRH, max-
daOverRH). We experimented with features describing orbital
inclinations, but they did not significantly improve the models.

A summary of the features can be found in Table 2, ordered
by their importance. We quantify the importances through the
Gain value recorded by XGBoost, which corresponds to the
gain in accuracy that a given feature provides when it is
introduced into the underlying decision trees used by the
algorithm. The units are normalized so that the gains sum to
100. We find that the variations in the middle planet’s
semimajor axis are the most informative in this sense. This
suggests that the instabilities in these closely packed systems
are driven by the overlap of mean-motion resonances (which
change the semimajor axes), rather than secular effects (which
would keep the semimajor axes constant).

Finally, we compare the performance of this “short-
integration” model to the previous “initial-condition” model.
Figure 2 shows that while both models often assign unstable
systems (blue bins) a low predicted probability, the “initial-
condition” model assigns stable systems (green bins) a wide
range of predicted probabilities, translating to a lower recall.
In contrast, the “short-integration” model more confidently
assigns high predicted probabilities to stable systems, better
separating the two classes. Again, setting the predicted
probability threshold so as to obtain 90% precision, the recall
improves to 68%.
In summary, generating improved features from short

integrations and adopting XGBoost as our algorithm provided
our largest AUC gains (Table 1).

4. DISCUSSION AND CONCLUSION

In this investigation, we numerically integrated a data set of
5000 three-planet systems over 107 orbits. We then trained
machine-learning algorithms to classify systems’ orbital
stability on this timescale. In particular, we trained two models
using the XGBoost algorithm: an “initial-conditions” model
(Section 3.1) that learned only from the system’s initial orbital
elements and a “short-integration” model (Section 3.2) that
generated features from short N-body integrations. We then
compared their performance to “Lissauer-family models” that
require the sum of the interplanetary separations (expressed in
mutual Hill radii) to be greater than a particular threshold.
We summarize the investigated models’ performances in

Figure 3, which plot values for the respective classifier’s
precision and recall for all possible values of the probability
threshold above which the model labels a system as stable. As
discussed above, the appropriate choice of this threshold
depends on the desired qualities of the classifier. Above, we
advocated for conservative models that are correct 90% of the
time when a system is predicted stable (90% precision).
Our best machine-learning model (right column of Table 1):

1. Dominates other models at all threshold values.
2. Recovers 2.25 as many of the stable systems in the test

set (has 2.25 times higher recall) as a Lissauer-family
model at a fixed precision of 90%.

Table 2
“Short-integration” Model Feature Importances

Feature Gain Feature Gain

max_a2 20.3 max_window_a3 1.6
std_a2 8.3 std_window_a3 1.6
mindaOverRH 2.6 std_e1 1.5
maxdaOverRH 2.6 std_e2 1.5
std_a3 2.3 std_window_a1 1.5
max_e2 2.3 max_e1 1.5
daOverRH1 2.3 slope_a3 1.5
daOverRH2 2.2 slope_a1 1.5
max_e3 2.1 max_window_a2 1.5
std_a1 1.9 std_e3 1.4
max_a3 1.9 min_e3 1.4
avg_e2 1.8 avg_e1 1.4
avg_e3 1.8 max_window_a1 1.4
max_a1 1.8 min_e2 1.4
LyapTime 1.7 min_e1 1.3
std_window_a2 1.6 slope_a2 1.3

Note.See the text for a description of the gain and of the features.

Figure 2. Comparison of predictions of the initial-condition and short-
integration models on the test set. Stable systems are shown in green, unstable
systems are shown in blue, and the model-predicted probability of stability for
each system is shown along the x-axis. The leftmost blue bin is cut off to render
smaller bins visible—in the top panel it reaches 395 and in the bottom
panel 640.
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3. Is three orders of magnitude faster than direct N-body
integration. Performing the short integration, generating
the features, and evaluating the model for a given system
takes ∼1 s with current technology.

We note that while we have focused on making binary
predictions (stable versus unstable) for straightforward model
comparisons, the XGBoost classifier can instead output a
predicted confidence for a given system between 0 and 1. This
has more information and could, for example, be used to
estimate a prior probability distribution for fitting orbital data.

An important limitation of this work is the fixed masses (5
Earth masses around a solar-mass star) and the comparatively
short integration timescales (107 orbits). Our results strongly
motivate investing computational time to generate data sets
over longer timescales with a range of masses.

Such classifiers could be used in many of the ways that direct
N-body integrations currently are employed, but these models’
dramatically improved efficiency would allow much faster and
complete explorations of parameter space, e.g.:

1. Mapping out the stability boundary in mass-eccentricity
space for observed transiting systems.

2. Mapping out the parameter space that unseen planets
could stably inhabit in a given system to guide
observational follow-up strategies or theoretical consi-
derations.

3. Vetting low signal-to-noise detections through stability
constraints.

4. Generating a prior probability distribution describing
the allowable regions of phase space for statistical or
theoretical investigations.

5. As a stopping condition for simulations once they achieve
a dynamically long-lived configuration.

Such tools may be of particular interest for the upcoming
Transiting Exoplanet Survey Satellite (TESS). While transit-
timing variations have been powerful tools for constraining the
masses and eccentricities of near-resonant Kepler systems (e.g.,
Ford et al. 2012; Steffen et al. 2013; Deck & Agol 2015),
TESS’ shorter time baselines and planets’ smaller semimajor
axes will likely render such analyses difficult or impossible. It
is therefore likely that in many systems, stability considerations
will provide the strongest constraints on planetary masses
and eccentricities, and this will be important for guiding the
substantial radial-velocity follow-up efforts from the ground.
More broadly, we have shown that machine learning can be

a powerful tool for high-dimensional classification problems in
dynamics. However, in addition to their predictive power, our
models also revealed new insights into the underlying physics.
In particular, the most informative features in our model based
on short integrations were the variations in the middle planet’s
semimajor axis. This suggests that the orbital instabilities are
driven by the overlap of mean-motion resonances (which vary
the semimajor axes) rather than the secular chaos at work in our
own solar system (Lithwick & Wu 2011; Batygin et al. 2015),
which keeps semimajor axes approximately constant.

We would like to thank David Kipping for an insightful review
and Fred Rasio for helpful comments. Both greatly improved the
accuracy and presentation of this work. D.T., M.A., and C.H.
were supported by fellowships through the University of
Toronto's Centre for Planetary Sciences, and D.T. also gratefully
acknowledges support from the Jeffrey L. Bishop Fellowship.
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