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Abstract: The detection and classification of drug–drug interactions (DDI) from existing data are
of high importance because recent reports show that DDIs are among the major causes of hospital-
acquired conditions and readmissions and are also necessary for smart healthcare. Therefore, to avoid
adverse drug interactions, it is necessary to have an up-to-date knowledge of DDIs. This knowledge
could be extracted by applying text-processing techniques to the medical literature published in
the form of ‘Big Data’ because, whenever a drug interaction is investigated, it is typically reported
and published in healthcare and clinical pharmacology journals. However, it is crucial to automate
the extraction of the interactions taking place between drugs because the medical literature is being
published in immense volumes, and it is impossible for healthcare professionals to read and collect
all of the investigated DDI reports from these Big Data. To avoid this time-consuming procedure, the
Information Extraction (IE) and Relationship Extraction (RE) techniques that have been studied in
depth in Natural Language Processing (NLP) could be very promising. Since 2011, a lot of research
has been reported in this particular area, and there are many approaches that have been implemented
that can also be applied to biomedical texts to extract DDI-related information. A benchmark corpus
is also publicly available for the advancement of DDI extraction tasks. The current state-of-the-art
implementations for extracting DDIs from biomedical texts has employed Support Vector Machines
(SVM) or other machine learning methods that work on manually defined features and that might be
the cause of the low precision and recall that have been achieved in this domain so far. Modern deep
learning techniques have also been applied for the automatic extraction of DDIs from the scientific
literature and have proven to be very promising for the advancement of DDI extraction tasks. As such,
it is pertinent to investigate deep learning techniques for the extraction and classification of DDIs in
order for them to be used in the smart healthcare domain. We proposed a deep neural network-based
method (SEV-DDI: Severity-Drug–Drug Interaction) with some further-integrated units/layers to
achieve higher precision and accuracy. After successfully outperforming other methods in the DDI
classification task, we moved a step further and utilized the methods in a sentiment analysis task
to investigate the severity of an interaction. The ability to determine the severity of a DDI will be
very helpful for clinical decision support systems in making more accurate and informed decisions,
ensuring the safety of the patients.

Keywords: drug–drug interaction; information extraction; natural language processing; deep learning;
severity; smart healthcare; technologies
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1. Introduction

In the last couple of decades, biomedical and smart healthcare research has witnessed
a rapid amount of growth in terms of its presence in the literature, novel discoveries, and
computational approaches, due to which a huge amount of experimental data has been
generated and published (i.e., Big Data) to validate and to describe these innovations [1].
The amount of data is so large that it is impossible for a human being to analyze and read
the articles related to their desired field, and even the simple extraction of field-related
published articles has become nearly impossible. As such, to utilize the information from
scientific publications and articles, the increased use of automation due to the diversification
and explosive growth in the healthcare literature as well as in the pharmaceutical industry
is a clear representation of this growth. This is why attention has now been diverted and
focused on the implementation and evolution of tools for knowledge-based discovery: the
tremendous amount of biomedical research in the literature requires automation to extract,
represent, interpret, and maintain this information in a refined manner.

Globally, there are different organizations that are working in the healthcare sector,
with some examples being the World Health Organization (WHO), European Environment
and Health Committee (EEHC), and Pan American Health Organization (PAHO). The
motive of these organizations is to ensure patient safety, which is considered to be the of the
highest priority, and, to achieve this purpose, these organizations are actively participating
in taking legislative measures to control the adverse effects that can be avoided through
the use of proper strategies and plans.

The Institute of Medicine (IOM) in the United States determined [2,3] that, annually,
hundreds of thousands of patients die in hospitals due to quality of care issues, such as
medication errors, lack of cleanliness, hospital-acquired infection, obstetrics, and DDIs that
cause adverse drug reactions (ADRs) [4–8]. Though there are well-established systems
that are in place to maintain patient safety, the field of drug interactions require further
research [9] because recent reports indicate that drug reactions are one of a major cause
of hospital-acquired conditions and readmissions [10–14]. Pharmacovigilance, which was
initiated by the WHO, is gaining more attention, with the literature showing that almost one
tenth of the adverse reactions seen in ICU subjects are due to DDIs causing ADRs [15,16].
Different evaluation and automation systems are being used for ADR detection in different
medicines, but, in most cases, reports of ADRs are investigated and revealed by the
healthcare professionals quite a bit later.

The motive of this research is to create new strategies in already-working systems for
the detection of DDIs from the medical literature, considering ‘big data’. By definition,
one drug may decrease or increase the effect of another because of its mutual chemical
formulation, a phenomenon known as a DDI [17–19]. Information on DDIs is highly
important and relevant for restricting the failures of therapeutic treatments and to prevent
other strong ADRs. Though DDIs could be very dangerous, this is not true in all cases, and
these interactions can be effective in certain cases where they provide a desirable synergistic
effect [20]. Therefore, we are interested in determining the severity of a DDI by processing
the same text used for the detection of DDIs. This aspect will help clinical decision support
systems in making more accurate and informed decisions by ensuring the safety of the
patients. This would not only save the lives of humans, but it would also result in a huge
decrease in healthcare costs as well.

DDI has an immense impact on patients’ safety and therefore it needs to be tackled
seriously. There has been a rapid increase in the development of novel technologies and
expert systems in the domain of healthcare and medicine. With the passage of time, the
need for integrated approaches and evidence-based healthcare is increasing at a very high
rate. On the flip side, size as well as heterogeneity and complexity of data generated
by several sources are a big challenge to the computational approaches [21–24]. Making
sense of huge biomedical text is a challenge for healthcare research [25]. Unstructured
text constitutes the most important form of data in the healthcare and medical domains.
Though this form of data is very difficult to process, but it contains many elaborations,
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nuances, and details that could not be captured in the thesaurus of nomenclature, but
this information could be very useful in decision-making [26]. Dealing with this growing
unstructured information requires machine learning techniques and methods in order to
bring structure and extract meaningful insights [27].

There are many specialized databases (i.e., Drug Bank, Micromedex, MEDLINE) which
contain known DDIs. These DDI pairs are limited in coverage as new discoveries are made
and published as research articles. Consequently, there is an ultimate need for extraction of
newly discovered DDI in the scientific literature [28,29]. Text mining is known as one of
the best available techniques that can be applied to achieve automatic relation extraction
from the published literature and articles. Text mining is being used widely for relation
extraction, for instance protein–protein interactions (PPIs) and gene–disease relationships,
and therefore a corpus [30] is formed specifically for the DDI extraction task [31–33]. The
DDI extraction task is very similar to relationship extraction studied in depth in the text-
mining domain as shown in Figure 1. This figure presents the working of the relationship
extraction task with the demonstration of practical examples. In the processed sentence,
each drug is labelled initially, such as subject and object. After obtaining pairs of drugs, the
relationship among the drugs is investigated and if a pair of drugs is involved in increasing
or decreasing the effect of the other, it would be classified as a positive DDI pair, as shown
with solid lines in the presented example. While negative DDI pairs (i.e., drugs having no
effect on each other) are shown with dotted lines.
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Figure 1. Structured representation of DDIs.

In Figure 1, the complex structure of DDIs is presented with two practical real examples
including clauses of positive and negative DDIs represented with solid and dotted lines,
respectively.

(a) Examples of positive DDIs with multiple subjects (drugs) to one object. In this scenario,
subjects do not have any interaction with each other but only with the object.

(b) Represents one drug as a subject and two drugs as objects. In this case, there is surely
a connection between the subject and object individually and to the cluster of objects,
but no interaction between object drugs.

2. Literature Review

In this section, we will discuss the recent research work regarding different perspec-
tives of the DDI extraction task, including the challenges, different aspects, and strategies
to extracting DDIs, as explored by researchers in recent years. Secondly, we discuss deep
learning in the domain of DDI extraction and classification in Section 2.3, exploring the
employment of the very few works of sentiment analysis within the bio-medical domain.
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2.1. Drug Interaction Task

Due to the developments in biomedicine, there are numerous new terms evolving, and
the linkage between them is of high importance. As these relations are typically mentioned
in the biomedical text which includes immense volumes and is growing at a very high
pace [34], this area is receiving huge attraction from the scientific community. The DDI
extraction task did not receive as much attention as the gene–gene interaction and protein–
protein interactions received. There is much less work in the automatic extraction of DDIs,
and initially this task was tackled by [35,36], but this work was not appropriately mined,
meaning that it used outdated approaches in relevance to the modern approaches that exist
today in the smart health care domain.

The rise in this domain is due to the work of Herrero Zazo, M. et al. [22], who not only
proposed techniques in the automatic extraction of DDIs but also provided a standardized
annotated corpus to motivate the researchers in this particular task. This DDI corpus
was created by [37] in 2013 and includes 18,502 manually annotated pharmacological
substances as well as 5028 DDI pairs. The availability of the corpus comes with challenges.
Various methods have been proposed for relation extraction from the medical literature and
machine learning (ML)-based techniques remain dominant in building such systems [38].
These systems are mainly classification-based and every drug–drug pair is classified into a
possible case of interaction or otherwise. In doing so, language pre-processing is heavily
used for transforming text data into a structured representation.

Under SemEval-2013 (Semantic Evaluation task), an open challenge was announced
to extract and classify drug names. Many researchers accepted this challenge and im-
plemented different methods and approaches, but the best approach was proved to be
CRF-based learning [39], where “Chemical Entities of Biomedical Interest” known as ChEBI
were used and achieved an F-measure of 0.57 for the overall dataset. It is worthwhile
to mention that the challenge targeted a 0.71 score against the F-measure [40]. Similarly,
another competition was held for DDI extraction in 2013 to address the DDI extraction
issues. Against the DDIExtraction-2013 challenge, there are four most prominent submis-
sions. Among these, the Support Vector Machine (SVM-)-based method outperformed
other approaches [41–43]. These methods mainly involve manual features which work on
word level and are quite difficult to handle for long sentences with complex relationship
representation as the MEDLINE-2013 corpus contains.

2.2. Deep Learning

From the last few years, in contrast to SVM-based methods, by evolving deep learn-
ing [44], neural nets-based methods such as Convolutional Neural Networks (CNN) or
Recurrent Neural Networks (RNN) are used for different classification tasks and are quite
robust and versatile. CNNs and RNNs are not bound to manual features for extraction and
therefore have higher performance in many NLP tasks such as for sentiment analysis [45],
search query retrieval [46], and fast and accurate semantic parsing [47]. CNN-based meth-
ods have also been tried for the DDI extraction task [48–51]. These methods performed
well relative to SVM-based models; however, the performance of the systems was not
satisfactory with the ML-2013 dataset. The reason behind unsatisfactory results of CNNs
on ML-2013 is that it contains long and complex structures of sentences where the position
of the relationship containing words is not fixed (i.e., before, after or middle of the drugs).
Therefore, some meaningful words are ignored in long sentences which eventually makes
CNNs weak in this context.

To overcome this problem, RNN-based systems [52,53] are used for relationship
classification. In these systems, the mechanism of the long short-term memory (LSTM)
model is combined which works on memory units (MUs). In LSTM, all the contextual
information of words, whether consecutive or not, can easily be emulated in the MUs
regardless of the long-distance sentences. This procedure follows a sequence to process the
words of a sentence in an RNN, there is a slight chance of losing information for dependency
of relations in long-distance patterns. This issue of RNN also makes it a biased network
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because of dominating later words in the processing of long patterns such as in ML-2013.
To mitigate this issue, mechanism of ‘attention’ is exploited where the weighting method
is included to assign a score to the text segments. In this way, high-scoring segments
are considered to be the more influential part of the sentence and receive relatively more
attention from the network. An attention-based layer mechanism is applied quite effectively
and achieved better results in [54–56] when employed in different machine translation
and question answering tasks. These RNN-based methods [57–59] are applied on the DDI-
Extraction task and the results are 2–3% better than the existing baseline methods using
SVM and neural nets but still low in the recall. To overcome the biasness issue of RNNs,
we propose an LSTM-based RNN model with two distinct additional layers, i.e., Bottom
RNN (RNNB) and Top RNN (RNNT). The detailed working of this method (SEV_DDI) is
discussed in Section 3.3.

2.3. Severity Prediction in Drug–Drug Interactions

The sentiment analysis task is an established area of research, typically applied on
opinionated text collected from social media. The ‘sentiment’ can reflect the seriousness,
severity or the certainty of an interaction reported in medical text. In the biomedical
domain, to the best of our knowledge, sentiment analysis is applied in very few aspects.
Working on the healthcare literature with respect to sentiment analysis, the authors of [60]
investigated and classified the polarity at sentence level using multiple linguistic features
of text processing, i.e., n-grams. In this work, Y. Niu et al. [61] exploit a Unified Medical
Language System (UMLS) to extract the context and category information of medical terms.
For the purpose of sentiment extraction from medical text, a multi-step mechanism was
designed, where the topics or subjects were classified initially and then the polarity of each
subject was investigated [62] which shows 10% better performance.

Working within the domain of potential drug–drug interactions, the authors of [63]
have reviewed 92 published papers and almost a dozen interviews to extract 56 different
aspects of the knowledge for the interpretation of DDIs. In this review, the author identified
the advancements and strengths of expert systems along with the limitations and weak
sides of these expert systems. Severity extraction of DDIs is rarely studied, so we also
propose severity extraction method using the polarity of words describing the interaction.
The DDI severity extraction task did not receive much attention but could be very promising
for the advancements of clinical decision support systems. Instead of merely extracting the
DDI event, severity or significance of the drug’s interaction is very critical. Consequently,
we designed a mechanism which extracts the severity of classified DDI as well.

3. Methods and Implementation

We propose a deep neural network-based model with a hierarchal mechanism to
extract DDIs and severity from text sentences which are collected from the biomedical
literature (i.e., publications) and processed by applying NLP techniques on them as shown
in Figure 2. The model uses RNN with an addition of hierarchal LSTM layers.

A lexicon-based method is also designed to investigate the severity of interaction
between the DDIs. In this section, we illustrate the steps involved in the RNN-based model
with a hierarchal mechanism.



Big Data Cogn. Comput. 2022, 6, 30 6 of 17Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 6 of 18 
 

 
Figure 2. Architecture of the proposed system SEV-DDI. 

3.1. Pre-Processing 
Common pre-processing and text cleaning operations are performed on sentences 

including but not limited to lemmatization. Each drug mentioned in a sentence is labelled 
and considered to interact with other drugs. The number of drug pairs (DP) in a sentence 
could be estimated by Equation (1). 

𝐷𝑟𝑢𝑔 𝑃𝑎𝑖𝑟𝑠 (𝐷𝑃) =   𝑚𝑎𝑥 ൭ 0 , ෍(𝑖 െ 1)௡
௜ୀଵ   ൱ (1)

where n is number of drugs in a sentence. 
Drug blinding is also applied, where each and every drug name is assigned with a 

label as performed in [64], e.g., for a sentence, “Aspirin may decrease the effects of pro-
benecid”, the labelled sentence is “DrugA may decrease the effects of DrugB”. The drug 
blinding technique helps a model to recognize these labels as ‘subject’ and ‘object’ which 
eventually helps a model in classification. These processed sentences are then provided to 
the model for detection and classification of DDIs. 

3.2. Recurrent Neural Network Architecture 
Our proposed recurrent neural network model, with hierarchal long short-term 

memory (LSTM), includes five layers. These layers include ‘word embedding’, ‘attention’, 
‘dropout’, ‘bottom RNN’ and ‘top RNN’ as shown in Figure 3. The working and purpose 
of each layer in the purposed model are discussed in the following. 
Word Embedding Layer 

In this layer, each word is transformed into a real valued vector. This mapping of 
words into the matrix is performed by using already available Word2Vec [65] embedding 
information [66] using the abstracts of PubMed containing the drugs [67]. Each sentence 
is pre-processed and constitutes ‘si’ and ‘dj’ where dj is a drug label and si is any other 
word in this particular sentence. Each word ‘si’ is converted into the word vector using 
the word embedding matrix with the following formula. WEMB is an embedding matrix 
and WEMB ∈ ℝௗೞ × |௏|, where ‘ds’ is the number of dimensions in word embedding and ‘V’ 
is the vocabulary in the training data set, 𝑣௜௦ in Equation (2) represents the index of word 
embedding. 𝑠௜→  =  𝑊ாெ஻ . 𝑣௜௦  (2)

  

Figure 2. Architecture of the proposed system SEV-DDI.

3.1. Pre-Processing

Common pre-processing and text cleaning operations are performed on sentences
including but not limited to lemmatization. Each drug mentioned in a sentence is labelled
and considered to interact with other drugs. The number of drug pairs (DP) in a sentence
could be estimated by Equation (1).

Drug Pairs (DP) = max

(
0,

n

∑
i=1

(i− 1)

)
(1)

where n is number of drugs in a sentence.
Drug blinding is also applied, where each and every drug name is assigned with

a label as performed in [64], e.g., for a sentence, “Aspirin may decrease the effects of
probenecid”, the labelled sentence is “DrugA may decrease the effects of DrugB”. The drug
blinding technique helps a model to recognize these labels as ‘subject’ and ‘object’ which
eventually helps a model in classification. These processed sentences are then provided to
the model for detection and classification of DDIs.

3.2. Recurrent Neural Network Architecture

Our proposed recurrent neural network model, with hierarchal long short-term mem-
ory (LSTM), includes five layers. These layers include ‘word embedding’, ‘attention’,
‘dropout’, ‘bottom RNN’ and ‘top RNN’ as shown in Figure 3. The working and purpose of
each layer in the purposed model are discussed in the following.

Word Embedding Layer
In this layer, each word is transformed into a real valued vector. This mapping of

words into the matrix is performed by using already available Word2Vec [65] embedding
information [66] using the abstracts of PubMed containing the drugs [67]. Each sentence
is pre-processed and constitutes ‘si’ and ‘dj’ where dj is a drug label and si is any other
word in this particular sentence. Each word ‘si’ is converted into the word vector using
the word embedding matrix with the following formula. WEMB is an embedding matrix
and WEMB ∈ Rds×|V|, where ‘ds’ is the number of dimensions in word embedding and ‘V’
is the vocabulary in the training data set, vs

i in Equation (2) represents the index of word
embedding.

s→i = WEMB·vs
i (2)

Attention Layer
The words between and around the subject and object are quite important in detection

of whether the interaction or effect of the subject is influencing the object. Therefore, not
all but a few of these significant words (e.g., increase, decrease, effect, impact, careful
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monitoring, recommendation, prohibition, etc.) are of great value in the detection of
interaction between the drugs. Therefore, we are using an attention layer after embedding
the words into vectors because the attention layer is dominantly working on a mechanism
of learning in sentence to sentence. Similarly, it has been applied to the task of relationship
extraction [68]. Therefore, this mechanism is also applied in our model as applied in [69]
with the purpose of providing more refined embedded vector information to the network.

Dropout Layer
Machine learning-based algorithms tend to over-fit while processing huge amounts

of data with so many dimensions. The ‘Dropout’ technique was initiated by [70], which
prevents a model from overfitting by dropping the input values which can cause this
problem. Therefore, the inner layer processes most of the distinct inputs. To avoid this
model from overfitting, we applied this strategy in Gated Recurrent Unit (GRU) dropping
with probability at both embedding and neural network training by multiple test values,
and the best results are reported while tuning the hyper-parameters at 0.7 and 0.5 for
embedding and dropout layers, respectively.

Bottom and Top RNNs Layers
Two RNN-based layers are used to overcome the biasness issue of RNNs with LSTM.

The top and bottom layers are applied separately (like the working of Bidirectional LSTM)
to produce a score from both ends and then merged up to produce a final score of the words
with a zero-bias problem. RNNs can process any kind of sentence pattern through their
GRU where each word ‘si’ of a sentence ‘S’ is taken as input along with a previous hidden
state ‘hi-1’. The LSTM network [71] was introduced to mitigate the issue of exponential
growth and decay of gradient vectors in long patterns, which showed better results [72].
LSTM is also known to be a biased network when it is applied along with RNN because, in
this network dominance, initial words of a sentence are ignored and later words gradually
became more dominant than the initial ones [69].
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To overcome this bias, we designed a dual-layer mechanism, where LSTM is initiated
from both ends of a sentence to capture its contextual information along with global
semantic information. While processing a sentence Si = {s1, s2, s3, s4, . . . sn}, we two
encoded matrices as shown below in Equations (3) and (4). At the end, output vectors of
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both LSTMs are concatenated in Equation (5) to obtain a biasfree contextual and sematic
information of a sentence.

H→S1 =
{

h→1 , h→2 , h→3 , . . . , h→n−1, h→n
}

(3)

H←S1 =
{

h←n , h←n−1, h←n−2, . . . , h←2 , h←1
}

(4)

thus,
H =

{
H→S1 ‖ H←S1

}
≈ {h→1 ‖ h←1 , h→2 ‖ h←2 , h→3 ‖ h←3 , . . . , h→n ‖ h←n } (5)

Each ‘true’ drug pair is categorized among one of the four types, i.e., mechanism, effect,
int and advice. The description of drug type along with their correspondent examples is
illustrated in Table 1. All the sentence examples are taken from the DDIExtraction-2013
dataset.

Table 1. Description of DDI types in DDIExtraction-2013.

DDI Type Description Sentence

Int The interaction is reported in a sentence but
detailed information about the interaction is not

provided.

Concomitant use of alcohol with phentermine
hydrochloride may result in an adverse drug

interaction.
Advise For a pair of drugs, there are some

recommendations about its usage.
Scopolamine should be used with care in patients

taking other drugs that are capable of causing CNS
effects such as sedatives, tranquilizers, or alcohol.

Mechanism Between a pair of drugs, there is a
pharmacokinetic mechanism.

Penicillin blood levels may be prolonged by
concurrent administration of probenecid which blocks

the renal tubular secretion of penicillins.
Effect Between a pair of drugs, an effect is reported in the

sentence which could be positive or negative.
Other HDAC Inhibitors. Severe thrombocytopenia

and gastrointestinal bleeding have been reported with
concomitant use of ZOLINZA and other HDAC

inhibitors (e.g., valproic acid).
False There is no interaction between the mentioned

two drugs.
The in vitro binding of warfarin to human plasma

proteins is unaffected by tolmetin, and tolmetin does
not alter the prothrombin time of normal volunteers.

3.3. Severity Extraction Method

We are interested in only those sentences for which at least one DDI instance is ‘true’.
After classifying the interactive drug pairs, DDI reporting sentences are extracted from
the annotated corpus [22]. As mentioned in Figure 2, the extracted sentences are then
pre-processed to calculate the sentiments, i.e., polarity of words. In pre-processing, where
drugs’ names (i.e., nouns) are removed from the concerned text because drugs’ names
merely contain polarity nouns and could not be effective in polarity rating. We refined the
text by retaining only verbs; adverbs and adjectives and nouns are removed to prevent our
system from conducting extra processing.

Lexicons such as Sent WordNet [62] and WordNet Affect [64] are general lexicons,
used to extract general sentiments of text, i.e., movies and social reviews. The subjectivity
lexicon [70] is used to extract the subjective expression from arguments or text statements.
Many of the general and subjectivity lexicons were adapted in medical research for dif-
ferent healthcare tasks. An extended pharmaceutical lexicon is also evolved specifically
for the healthcare and biomedical domains, which is used to extract the sentiments of
pharmaceutical and clinical text.

We extracted the polarity of the sentences by applying Sent WordNet, and interaction
is categorized at low, moderate, or high level for dangerous as well as beneficial DDIs based
on the polarity of the candidate sentence. The analysis of the outcomes of severity is shown
in Section 4.1.
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4. Data, Experimental Parameters, and Results

DDIExtraction-2013 corpus [22] which is constituted with the prescriptions of Drug
Bank and the abstracts of PubMed articles are stored in MEDLINE corpora. It constitutes
with manually annotated 18,502 pharmacological substances along with 5028 DDI pairs;
statistics of the dataset is shown in Table 2.

Table 2. Statistics of DDIExtracrion-2013.

DrugBank MEDLINE

Contents Train Test Total Train Test Total

Articles 572 158 730 142 33 175
Drug Pairs 26,005 5265 31,270 1787 451 2238

Positive DDI Pairs 3789 884 4673 232 95 327
Negative DDI Pairs 22,216 4381 26,597 1555 356 1911

The annotated representation of this corpus with sentences and all possible instances,
i.e., drug pairs, is shown in Figure 4. For a sentence, all instances may be ‘false’, as a drug
pair is shown in Figure 4 with a black dotted block. On the contrary, a reported interaction
between a pair of drugs is indicated with ‘true’, as presented in Figure 4 with a red rectangle
block. There could be more than one ‘true’ and ‘false’ instance for a single sentence and all
could be either true or false.
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We used this corpus for training and testing of the model. The documents were initially
pre-processed and stored in pickle files for training and testing of the model. The parameters
of the DDI classification experiment are shown in Table 3. The rest of the parameters which
are not shown in the table are kept as default settings as in TensorFlow [49].

Table 3. Tuning parameters.

Parameter Value

Word Embedding Dimensions 100
Position Embedding Dimensions 20

Mini Batch Size 60
Hidden State’s Dimensions 230

Shortest Path Length 12
Learning Rate 0.005

Embedding Dropout 0.7
Dense Dropout 0.5
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Precision, recall and the f-measure are used for the DDI extraction task and are
calculated by Formulas (6)–(8), respectively. The results of the DDI classification and
severity identification are shown in Table 4, and comparison with state-of-the-art systems
is also presented.

Precision (P) =
TP

TP + FP
(6)

Recall (R) =
TP

TP + FN
(7)

F1 Measure (F1) =
2 (Precison× Recall)

Precision + Recall
(8)

Table 4. Performance comparison with existing systems on DDIExtraction-2013.

Method System/Team Year Precision (P) Recall (R) F-Score (F1)

SV
M

-b
as

ed
m

et
ho

ds

UTurku [30] 2013 73.2 49.9 59.4
NIL_UCM [63] 2013 55.0 53.0 54.0

SCAI [29] 2013 55.0 39.0 46.0
UWM-TRIADS [64] 2013 43.0 50.0 47.0

UColorado_SOM [65] 2013 27.0 43.0 33.0
BioSem [66] 2014 67.0 52.0 59.0
FBLKA [28] 2015 nil nil 67.0
Raihani and

Laachfoubi [67] 2016 73.7 68.7 71.1

Zheng et al. [34] 2016 nil nil 68.4

N
eu

ra
lN

et
s-

ba
se

d
m

et
ho

ds

MCCNN-DDI [40] 2016 nil nil 67.8
SCNN [41] 2016 68.5 61.0 64.5

CNN-DDI [37] 2016 75.3 60.4 67.0
Joint-LSTMs [39] 2017 71.3 66.9 69.3

RHCNN [69] 2019 77.3 73.75 75.48
SGRU-CNN [71] 2020 76.19 73.34 74.74

AGCN [72] 2020 78.17 75.59 76.86
Our Method: SEV-DDI 2021 83.81 81.59 82.68

Consequently, the task of extracting severity from the DDI’s text is applied. The
severity prediction mechanism is applied by implementing Algorithm 1 and applying
it on the DDIExtraction-2013 dataset. We collected 4672 sentences from the DrugBank
corpora and 327 from MEDLINE involving 9000 distinct drugs and 4999 DDIs. In the
algorithm, Polpos and Polneg represent the positive and negative polarity of the words,
respectively. After summing up all the polarities of the words, the final polarity of the
sentence is calculated by subtracting Polneg from Polpos. Based on the final polarity of
sentence, each DDI instance is assigned with a label of severity, as elaborated in Algorithm 1.
The performance of the system is shown in Table 4, illustration of severity in Table 5, while
Table 6 shows the categorized statistics of the DrugBank and MEDLINE corpus with the
extracted degree of severity presented in the text.
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Algorithm 1: Severity Prediction in Drug–Drug Interaction.

1: The text is split for each DDI instance. Each sentence is addressed separately.
2: Each sentence is pre-processed and normalized using the NLTK tool kit.
3: Each sentence is processed using SentiWordNet and the polarity of words is extracted and

summed into Pol pos and Pol neg for positive and negative polarity, respectively.
4: Final polarity is calculated as: Final-Polarity = Pol pos–Pol neg

5: The final polarity is split into two sets, i.e., Beneficial and Dangerous:
6: if Final-Polarity ≥ 0 then:
7: DDI instance is Beneficial.
8: else
9: DDI instance is Dangerous.
10: end if
11: Categorization of Beneficial and Dangerous instances into levels of severity.
12: For each instance in Beneficial:
13: if Final-Polarity is 0 to 0.2, then DDI is lightly beneficial.
14: else if Final-Polarity is 0.3 to 0.6, then DDI is moderately beneficial.
15: else DDI is highly beneficial.
16: end if
17: end for
18: For each instance in Dangerous:
19: if Final-Polarity is 0 to −0.2, then DDI is lightly dangerous.
20: else if Final-Polarity −0.3 to −0.6, then DDI is moderately dangerous.
21: else DDI is highly dangerous.
22: end if
23: end for

4.1. Results and Discussion

The performance of the model is compared with state-of-the-art models for the DDI
extraction task in Table 4. Our method outperformed in all three metrics of precision, recall
and f-score. Each of these three metrics are critically important in biomedical-related tasks
and particularly in DDI extraction, our model scored more than 80% in all three metrics,
i.e., 83.81, 81.59, 82.68 in precision, recall and f-measure, respectively. To the best of our
knowledge, none of the other systems achieved this milestone at the latest timepoint.

The improvement in the overall performance in the DDI-Extraction task, as mentioned
in Table 4, is due to addition of the attention mechanism and bidirectional LSTM. The atten-
tion mechanism provided better features in the training which were involved in most of the
interactions, and the dominance of these words with respect to each candidate drug is also
enhanced. Consequently, employment of LSTM from both ends of the sentence resolved
the issue of bias which was critical in the DDI extraction task where most significant words
could be anywhere in a sentence, i.e., before, after or around the subject. Every word in a
sentence achieved equal dominance regardless of its placement in the sentence which was
proven to attain more accurate prediction in DDI extraction and classification, as results
illustrated.

In the severity extraction task, all the DDI-related sentences are categorized in mild,
moderate, or severe levels of interaction. Table 5 illustrates the categorization of DDIs
at a level or degree of severity where examples of DDIExtraction-2013 are shown with
their degree of severity in an interaction based on the polarity of the sentences; positive
sentiments in the DDI related sentence are considered to have mild interaction in which
pharmacologists or experts recommended some drugs to be taken together for safety or
curing some disease, whereas a moderate level of severity is allocated to those DDIs whose
polarity was neutral, i.e., where the experts have described some mechanisms or a weak
impact on other drugs. A severe level of interaction is derived from the negative sentiments
where clinical experts showed danger and provided advice of careful monitoring or showed
some significant effect of one drug on others. The DDI categorization statistics are shown
in Table 6.
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Table 5. Illustration of severity categorization of DDIs.

Sentence Drug Pairs Severity Level

The possibility of hypotensive effects can be minimized by
either discontinuing the diuretic or increasing the salt
intake prior to initiation of treatment with perindopril.

(Salt, perindopril) Highly Beneficiary

AAV2-mediated retinal transduction is improved by
co-injection of heparinase III or chondroitin ABC lyase.

(AAV2, chondroitin ABC lyase) Moderate Beneficiary

Scopolamine should be used with care in patients taking
other drugs that are capable of causing CNS effects such

as sedatives, tranquilizers, or alcohol.

(Scopolamine, sedatives), (Scopolamine,
tranquilizers), (Scopolamine, alcohol)

Low

Pantoprazole has a much weaker effect on clopidogrel’s
pharmacokinetics and on platelet reactivity during

concomitant use.

(Pantoprazole, clopidogrel) Low

Concomitant use of alcohol with phentermine
hydrochloride may result in an adverse drug interaction.

(alcohol, phentermine hydrochloride) Moderate Dangerous

Other HDAC Inhibitors. Severe thrombocytopenia and
gastrointestinal bleeding have been reported with

concomitant use of ZOLINZA and other HDAC inhibitors
(e.g., valproic acid).

(HDAC inhibitors, ZOLINZA) Highly Dangerous

Table 6. DDI severity prediction on DrugBank and MEDLINE.

DrugBank MEDLINE Total

Articles 730 175 905
Candidate DDIs 31,270 2238 33,508

Positive DDI Related Sentence 4672 327 4999

Beneficial DDIs
Low 729 89 818

Moderate 759 73 832
High 762 39 801

Dangerous DDIs
Low 336 22 358

Moderate 724 56 780
High 1362 48 1410

We can claim this categorization is accurate by analyzing Figure 5, which presents
the statistics of the performance of the DDI classification task by existing systems on Drug
Bank and MEDLINE separately. It clearly shows that the performance of all the models
remains low on MEDLINE, as compared to the Drug Bank, and none of the existing models
achieved better performance on MEDLINE than on DrugBank.

DrugBank has articles with less ambiguity and shows clear interaction in the text;
many already implemented models showed excellent performance when applied only
to the DrugBank corpus as compared to when applied to MEDLINE. Co-relating this
emphasis with our extracted severity, our system categorized 36% DDIs of DrugBank as
being highly interactive, whereas just 27% of the MEDLINE’s DDIs were reported to have
high interactivity.

On the contrary, articles of MEDLINE corpora are less expressive and have quite long
and complex sentence structuring in reporting an interaction. Many of the state-of-the-
art systems showed very poor performance on the MEDLINE corpus as compared to on
DrugBank. Figure 6 shows statistical analysis regarding the performance of models on the
corpuses of DrugBank and MEDLINE. It clearly shows that all the implemented models
failed to achieve better performance on MEDLINE than on DrugBank, even some of the
models showed very bad performance on MEDLINE, while showing excellent results on
the corpus of DrugBank.
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It proves that articles in the corpus of MEDLINE contain huge complexity in expressing
the relationship of DDIs. That is why it always remained quite challenging for any model
to perform better on the MEDLINE corpus for extraction and classification of DDIs.

Similarly, our severity extraction model also showed a much lower percentage of DDIs
with high severity on both ends on the MEDLINE corpora than on DrugBank, i.e., 36% and
27% on DrugBank and MEDLINE, respectively. Alternatively, low and moderate levels
of severity remained dominant in prediction with 34% and 39% of the MEDLINE corpus,
compared with the predictions of DrugBank showing 22% and 32% of DDIs for mild and
moderated levels of severity as shown in Figure 6.

Prediction of the degree of severity on the overall DDIExtraction-2013 [22] corpus is
shown in Table 7. In our extracted ratings, about 44% of the DDIs in DDIExtraction-2013
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are highly interactive ones, 24% of them show low interactivity and 32% of the interactions
are of a moderate level. These results may vary a little in the perspective of pharmaceutical
interactions, because these interactions are categorized on the basic of polarity of the
sentences, which were used to report an interaction or the consequences of the interaction
of the articles.

Table 7. Prediction of levels of severity on DDIExtraction-2013.

Severity Level DrugBank MEDLINE DDIExtraction-2013

Low 22% 34% 24%
Moderate 32% 39% 32%

High 36% 27% 44%

The prediction and annotation of a DDI’s severity by a pharmaceutical and healthcare
expert could vary a little from our prediction. However, it is quite challenging for an expert
to categorize the huge number of pairs in the levels of severity. The addition of severity
concerning the DDIs in clinical healthcare and pharmaceutical expert systems could be
very promising in making more precise and accurate prescriptions. It could also be very
beneficial in reducing ADRs, which is one of the major causes of healthcare costs and
hospital-acquired conditions and readmissions.

5. Conclusions

In this paper, we propose a hierarchal attention-based LSTM neural network model
to improve the classification performance of drug–drug interaction tasks. Our model
outperformed all the existing methods in overall performance as well as recall metrics.
The method achieved 83.81%, 81.59% and 82.68% in the evaluation metrics of precision,
recall and f1-measure, respectively. To the best of our knowledge, none of the existing
models achieved more than an 80% threshold in all three metrics when applied on the
DDIExtraction-2013 benchmark.

Beyond improving accuracy, we employed severity extraction mechanism for the
DDIs which are reported and classified as positive DDIs (true interactions) by our model.
From the reported text of DDIs in the literature, we extracted severity of each interaction
employing sentiment analysis strategy. We investigated the severity of interaction by
calculating the polarity of the text used to report an interaction. This mechanism helped us
to formulate a new dataset regarding the DDI’s severity extraction task. Consequently, the
prediction of the severity extraction mechanism is evaluated and investigated by applying
different analysis based on the DDI classification task applied on DrugBank and MEDLINE
separately.
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47. Rocktäschel, T.; Grefenstette, E.; Hermann, K.M.; Kočiský, T.; Blunsom, P. Reasoning about Entailment with Neural Attention. In

Proceedings of the 4th International Conference on Learning Representations, ICLR 2016-Conference Track Proceedings, San
Juan, PR, USA, 22 September 2015. Available online: http://arxiv.org/abs/1509.06664 (accessed on 12 December 2021).

48. Liaquat, M.U.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Localization of Sound Sources: A Systematic Review.
Energies 2021, 14, 3910. [CrossRef]

49. Liaquat, M.U.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Sound Localization for Ad-Hoc Microphone Arrays.
Energies 2021, 14, 3446. [CrossRef]

50. Niu, Y.; Zhu, X.; Li, J.; Hirst, G. Analysis of polarity information in medical text. AMIA Annu. Symp. Proc. 2005, 2005, 570–574.
51. Xia, L.; Gentile, A.L.; Munro, J.; Iria, J. Improving Patient Opinion Mining through Multi-step Classification. In Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5729, pp. 70–76. [CrossRef]

52. Romagnoli, K.M.; Nelson, S.D.; Hines, L.; Empey, P.; Boyce, R.D.; Hochheiser, H. Information needs for making clinical
recommendations about potential drug-drug interactions: A synthesis of literature review and interviews. BMC Med. Inform.
Decis. Mak. 2017, 17, 21. [CrossRef]

53. Khan, S.I.; Anum, N.; Qadir, Z.; Kouzani, A.Z.; Parvez Mahmud, M.A. Post-Flood Risk Management and Resilience Building
Practices: A Case Study. Appl. Sci. 2021, 11, 4823. [CrossRef]

http://doi.org/10.1016/j.jbi.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25796456
http://doi.org/10.1145/3412841.3442062
https://aclanthology.org/S13-2111
http://doi.org/10.3390/s21237846
http://doi.org/10.3390/su132312951
http://doi.org/10.1016/j.jbi.2016.03.014
http://doi.org/10.1145/2567948.2577348
http://doi.org/10.1016/j.clet.2021.100217
http://doi.org/10.3115/v1/P14-2105
http://doi.org/10.1155/2016/6918381
http://doi.org/10.1109/BIBM.2016.7822671
http://doi.org/10.1016/j.ins.2017.06.021
http://doi.org/10.1155/2016/1850404
http://www.ncbi.nlm.nih.gov/pubmed/28053977
http://doi.org/10.1093/bioinformatics/btw486
http://www.ncbi.nlm.nih.gov/pubmed/27466626
http://doi.org/10.3390/su13179611
http://doi.org/10.1186/s12859-017-1609-9
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1509.06664
http://doi.org/10.3390/en14133910
http://doi.org/10.3390/en14123446
http://doi.org/10.1007/978-3-642-04208-9_13
http://doi.org/10.1186/s12911-017-0419-3
http://doi.org/10.3390/app11114823


Big Data Cogn. Comput. 2022, 6, 30 17 of 17

54. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Composi-
tionality. arXiv 2013, arXiv:1310.4546.

55. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the 1st
International Conference on Learning Representations, ICLR 2013-Workshop Track Proceedings, Scottsdale, AZ, USA, 17 January
2013. Available online: http://arxiv.org/abs/1301.3781 (accessed on 2 January 2022).

56. Shaukat, M.A.; Shaukat, H.R.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Cluster analysis and model comparison using smart
meter data. Sensors 2021, 21, 3157. [CrossRef] [PubMed]

57. Khan, S.I.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Insight into the Impact of COVID-19 on Australian Transportation Sector:
An Economic and Community-Based Perspective. Sustainability 2021, 13, 1276. [CrossRef]

58. Wang, L.; Cao, Z.; de Melo, G.; Liu, Z. Relation Classification via Multi-Level Attention CNNs. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 13 August 2016; Volume 3,
pp. 1298–1307. [CrossRef]

59. Muneeb, T.H.; Sahu, S.; Anand, A. Evaluating distributed word representations for capturing semantics of biomedical concepts.
In Proceedings of the BioNLP 15, Beijing, China, 19 July 2015; pp. 158–163. [CrossRef]

60. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

61. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
62. Baccianella, S.; Esuli, A.; Sebastiani, F. SENTIWORDNET 3.0: An enhanced lexical resource for sentiment analysis and opinion

mining. In Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta,
9 May 2010; pp. 2200–2204.

63. Bokharaeian, B.; Díaz, A. NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree
kernels. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA,
14 August 2013; Volume 2, pp. 644–650.

64. Rastegar-Mojarad, M.; Boyce, R.D.; Prasad, R. UWM-TRIADS: Classifying Drug-Drug Interactions with Two-Stage SVM and
Post-Processing. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA,
USA, 12 June 2013; Volume 2, pp. 667–674.

65. Hailu, N.D.; Hunter, L.E.; Bretonnel Cohen, K. UColorado SOM: Extraction of Drug-Drug Interactions from BioMedical Text
using Knowledge-rich and Knowledge-poor Features. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and
Computational Semantics, Atlanta, GA, USA, 15 June 2013; Volume 2, pp. 684–688.

66. Bui, Q.-C.; Sloot, P.M.A.; van Mulligen, E.M.; Kors, J.A. A novel feature-based approach to extract drug-drug interactions from
biomedical text. Bioinformatics 2014, 30, 3365–3371. [CrossRef]

67. Raihani, A.; Laachfoubi, N. Extracting drug-drug interactions from biomedical text using a feature-based kernel approach. J.
Theor. Appl. Inf. Technol. 2016, 92, 109–120.

68. Zhang, J.; Li, H.; Mo, D.; Chang, L. Mining Multispectral Aerial Images for Automatic Detection of Strategic Bridge Locations for
Disaster Relief Missions. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Springer Nature Switzerland AG: Cham, Switzerland, 2019; Volume 11607, pp. 189–200. [CrossRef]

69. Sun, X.; Dong, K.; Ma, L.; Sutcliffe, R.; He, F.; Chen, S.; Feng, J. Drug-Drug Interaction Extraction via Recurrent Hybrid
Convolutional Neural Networks with an Improved Focal Loss. Entropy 2019, 21, 37. [CrossRef]

70. Ali Awan, A.; Khalid, U.; Maqsood, A. Revolutionizing Telemedicine by Instilling H.265. Int. J. Image Graph. Signal Processing
2017, 9, 20–27. [CrossRef]

71. Wu, H.; Xing, Y.; Ge, W.; Liu, X.; Zou, J.; Zhou, C.; Liao, J. Drug-drug interaction extraction via hybrid neural networks on
biomedical literature. J. Biomed. Inform. 2020, 106, 103432. [CrossRef] [PubMed]

72. Park, C.; Park, J.; Park, S. AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction. Expert Syst.
Appl. 2020, 159, 113538. [CrossRef]

http://arxiv.org/abs/1301.3781
http://doi.org/10.3390/s21093157
http://www.ncbi.nlm.nih.gov/pubmed/34063197
http://doi.org/10.3390/su13031276
http://doi.org/10.18653/v1/P16-1123
http://doi.org/10.18653/v1/W15-3820
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1093/bioinformatics/btu557
http://doi.org/10.1007/978-3-030-26142-9_17
http://doi.org/10.3390/e21010037
http://doi.org/10.5815/ijigsp.2017.05.03
http://doi.org/10.1016/j.jbi.2020.103432
http://www.ncbi.nlm.nih.gov/pubmed/32335223
http://doi.org/10.1016/j.eswa.2020.113538

	Introduction 
	Literature Review 
	Drug Interaction Task 
	Deep Learning 
	Severity Prediction in Drug–Drug Interactions 

	Methods and Implementation 
	Pre-Processing 
	Recurrent Neural Network Architecture 
	Severity Extraction Method 

	Data, Experimental Parameters, and Results 
	Results and Discussion 

	Conclusions 
	References

