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ABSTRACT Harmful exposure to erythemally-effective ultraviolet radiation (UVR) poses high health risks 

such as malignant keratinocyte cancers and eye-related diseases. Delivering short-term forecasts of the solar 

ultraviolet index (UVI) is an effective way to advise UVR exposure information to the public at risk. This 

research reports on a novel framework built to forecast UVI, integrating antecedent lagged memory of cloud 

statistical properties and the solar zenith angle (SZA). To produce the forecasts at multi-step horizon we 

design a 3-phase hybrid convolutional long short-term memory network (W-O-convLSTM) model, validated 

with Queensland-based datasets. Our approach in optimizing the performance entails a robust selective 

filtering method using the BorutaShap algorithm, data decomposition with stationary wavelet transformation 

and hyperparameter optimization using the Optuna algorithm. We assess the performance of the proposed 

W-O-convLSTM model alongside the baseline and benchmark models. The captured results, through 

statistical metrics and visual infographics, elucidate the superior performance of the objective model in short-

term UVI forecasting. For instance, at a 10-minute forecast horizon, our objective model yields a relatively 

high correlation coefficient of ~0.961 in the autumn, 0.909 in the summer, 0.926 in the spring and 0.936 in 

the winter season. Overall, the proposed O-convLSTM model outperforms its competing counterpart models 

for all forecast horizons with the lowest absolute forecast error. The robustness of our newly proposed model 

avers its practical utility in delivering accurate sun-protection behavior recommendations to mitigate UV-

exposure-related public health risk. In accordance with our findings, we recommend that future integration 

of aerosol and ozone effects with cloud cover data may further enhance our UVI forecasting framework. 

INDEX TERMS Ultraviolet index forecasting, cloud effects, convolutional long short-term memory 

network, stationary wavelet transform.

I. INTRODUCTION 

Solar ultraviolet radiation (UVR) has benefits and risks for the 

people, industry, and the natural terrestrial environment. 

Exposure to erythemally-effective UVR poses high health 

risks of skin-based diseases, such as malignant keratinocyte 

cancers, and eye diseases (pterygium and cataracts) in humans 

[1], [2]. In the agricultural sector, UVR reduces a plant’s 

photosynthetic rate, CO2 intake and oxygen outputs, thus 

hindering its water use efficiency [3]. However, solar radiation 

is a vital renewable energy resource in the energy sector for 

harnessing clean energy using solar photovoltaic (PV) 

technologies. Factors that affect terrestrial UV radiation are 

inclusive of time of the day, season, geographical latitude, 

surface reflection, altitude and cloud cover [4]. While the 

intensity of solar UVR is largely dependent on solar zenith 

angle (SZA), the ground-level UVR is significantly affected 

by cloud movement. To implement sun-protection from such 

incident UVR, the World Health Organization (WHO), 

International Commission on Non-Ionizing Radiation 

Protection (ICNIRP), World Meteorological Organization 

(WMO) and United Nations Environment Programme 

(UNEP) developed the global solar ultraviolet index (UVI) for 

mitigating skin and eye health risks [5]. It is known that under 

unbroken cloud cover conditions,  UVI reduces by 50 to 60%, 
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and even further during precipitation [6]. However, under 

particular partial cloud cover conditions, scattering can 

escalate ground-based UV levels above the nominal cloud-

free surface UV irradiation [7]. Thus, accurate forecasts of 

cloud-affected UVI are essential in delivering real-time sun-

exposure advice to the public at risk of skin and eye-related 

diseases.   

Malignant melanoma cases, which are more prevalent in 

fair skin types, increase with decreasing latitudes [8]. In 

Australia, 1726 and 714 deaths were reported in 2019 for 

cutaneous malignant melanoma and keratinocyte cancer 

(squamous cell carcinoma and basal cell carcinoma), 

respectively [9]. A survey in 2011-2014 revealed that among 

the Australian populations, Queensland recorded the highest 

person-based incidence of keratinocyte cancer excisions with 

2679 per 100, 000 [10].  

In this paper, we propose a deep learning (DL)-based 

novel wavelet hybrid convLSTM, to advance an earlier study 

[7], to forecast short-term UVI with cloud cover effects by 

integrating cloud segmented statistical properties extracted 

from whole sky images and SZA. The earlier study [7] 

neither considered cloud cover factor nor incorporated deep 

learning methods and multiple forecast horizons for solar 

UVI predictions. Considering the seasonal and diurnal 

variations of SZA, and the cloud movement, in this study, we 

also present forecasts of the four seasons tailored for 

multiple-step time horizons. Prior to modeling UVI, we 

utilize an intelligent BorutaShap algorithm to select the most 

informative input features from the cloud chromatic 

properties. In addressing the issues of non-stationarity, 

intermittent or stochastic variations, periodicity, and trends 

in the predictor variables, we apply a stationary wavelet 

transform (SWT) to decompose these input signals. To 

optimize the hyperparameters of the wavelet hybrid 

convLSTM, we employ a state-of-the-art Optuna (O) 

algorithm with powerful sampling and pruning efficiency. 

Hereafter, we designate the proposed 3 phase wavelet hybrid 

convLSTM model with O optimization as W-O-convLSTM. 

Thus, the contributions of this paper, which are distinct from 

an earlier study [7], are summarized as follows:  

1) A novel hybrid W-O-convLSTM is proposed to forecast 

UVI for the first time using antecedent fluctuations in 

cloud cover conditions and SZA at multi-step forecast 

horizons. 

2) An efficient self-adaptive Python tool is developed to 

segment cloud chromatic properties using real-time sky 

images from total sky image repositories. 

3) In optimizing the performance of W-O-convLSTM, an 

intelligent wrapper-based BorutaShap algorithm is 

designed to select the most relevant features from the 

cloud segmented statistical properties. Further 

optimization is achieved through hyperparameter tuning 

using a state-of-the-art O optimizer. 

4) The non-stationarity behavior, periodicity and random 

fluctuations in the cloud chromatic properties and SZA 

over the temporal scales are addressed through the 

application of SWT with high and low frequency 

decompositions.  

5) The efficacy of W-O-convLSTM in forecasting UVI is 

explored for the four seasons with robust statistical score 

metrics and visual analysis of all tested data alongside 

other competing benchmark and baseline models. 

The rest of this paper is organized as follows: In Section 

II, we briefly present the related work and in section III, we 

discuss the theoretical overview. Afterward, we provide the 

methodology detailing the comparative experiments for UVI 

forecasts in section IV and then we present the results and 

discussion in section V. Finally, in section VI, we discourse 

the concluding remarks and future work.  

II.  RELATED WORK 

While UVI measurement can be achieved using mechanistic 

surface measurement methods including the use of a 

pyranometer or spectroradiometer, its potential for broad 

application can be constrained by high costs and calibration 

issues [11]. Previous researches have applied deterministic 

methods to predict UVI but such approaches are restricted by 

assumed fixed or estimated initial conditions [12], [13]. 

Artificial intelligence (AI) based data-driven and DL 

algorithms are robust, cost-effective and user-friendly [14] but 

have not yet been applied to predict short-term UVI by 

utilizing stochastic cloud cover conditions. Though solar UVI 

has been forecasted with applications of artificial neural 

networks (ANN) [15], extreme learning machine (ELM) [7], 

deep belief networks (DBN) [16] and long short-term memory 

(LSTM) [17], integrating cloud effects can further boost the 

performance of highly competitive machine learning (ML) 

and DL methods.  

A multiple-input DL convolutional long short-term 

memory (convLSTM) is currently gaining prominence as a 

powerful predictive tool. Having the convolutional operation 

embedded inside the long short-term memory (LSTM) cell, it 

robustly extracts statistically significant antecedent lagged 

inputs from the predictive variables whilst the LSTM learns 

from the sequentially incorporated features for low latency 

predictions [18], [19]. Recently, convLSTM was applied for 

flood index forecasts [20] and precipitation forecasts [21], and 

these studies illustrated the superiority of convLSTM over the 

benchmarked counterparts. Being an intelligent and versatile 

predictive model, convLSTM is highly suitable for modeling 

cloud-affected UVI.  

Feature selection approaches are essential components of 

the model designing phase to achieve the optimum 

performance of a forecast model. The Python-based 

BorutaShap algorithm remarkably eliminates irrelevant and 

largely redundant features, as revealed in a study where it 

was employed in identifying the strongest data series of 

winning and losing the Belgian professional soccer [22]. 

Along with utilizing selective filtering, the application of 

robust data decomposition schemes such as SWT efficiently 

accomplishes dimensionality reduction of the input 
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variables. As a pre-processing tool, SWT was applied by [23] 

to effectively decompose the input signals into low-

frequency and high-frequency components. The non-

stationarity in electrocardiogram signal inputs [24] was also 

exploited using SWT decomposition.  

III.  THEORETICAL OVERVIEW 

This section provides a brief overview of the operational 

mechanism of convLSTM in designing the proposed 

hybridized W-O-convLSTM model. Furthermore, we briefly 

discuss the three major phases of the UVI forecasting 

framework that includes feature selection by BorutaShap, data 

decomposition using SWT and Hyperparameter optimization 

by O algorithm.  

A.  OPERATIONAL MECHANISMS OF ConvLSTM 

ConvLSTM is fundamentally an extension of LSTM networks 

that encapsulates the convolutional operation to robustly 

capture the underlying spatial features in large scale sequential 

and multi-dimensional datasets [25], [26]. With a time-series 

predictive framework as in our case, the convolutional 

operation at each gate (input, forget and output) of the LSTM 

cell replaces matrix multiplication to suitably extract 

spatiotemporal patterns in the 2-dimensional inputs [21], [25].  

The future state of a cell in convLSTM is determined by its 

local neighbors’ input and past state. While convLSTM retains 

the strengths of LSTM to capture long short-term memory, it 

further minimizes the redundancy of the fully connected 

structure, thus improving the training and prediction efficiency 

[27]. The key equations governing the operation of a single 

convLSTM unit are as follows [26], [28]: 

 

𝐹𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒     𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑊𝑐𝑓 ∘ 𝐶𝑡−1 + 𝑏𝑓)   (1)  
 

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒       𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑊𝑐𝑖 ∘ 𝐶𝑡−1 + 𝑏𝑖)      (2) 
 

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑆𝑡𝑎𝑡𝑒    𝑆𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)        (3)  
 

𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑒𝑙𝑙       𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ 𝑆𝑡                                       (4) 
 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒      𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑊𝑐𝑜 ∘ 𝐶𝑡 + 𝑏𝑜)      (5) 
 

𝑂𝑢𝑡𝑝𝑢𝑡      ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝐶𝑡)                                                      (6) 
 

where ‘*’ denotes convolution operator, ‘∘’ denotes Hadamard 

product, ht is hidden state at sequential time t, Ct is cell state, 

St is intermediate state and the convLSTM gates it, ft, ot, are 3-

dimensional tensors having the last two dimensions as spatial 

dimensions (rows and columns).   

The operational mechanisms and explanations of the 

benchmarked models constructed using CNN [29], SVR [30] 

and PA [31] are elucidated elsewhere, as these methods are 

well-renowned. 

B.  WRAPPER-BASED BORUTASHAP 

BorutaShap is an elegant Python-based wrapper method 

that combines the Boruta feature selection algorithm with 

shapely additive explanations. It is highly compatible and 

facilitates any tree-based learner such as RF, XGBoost, 

decision tree (DT), etc. as the base model [22], [32]. To 

select the most significant features, the Boruta algorithm 

creates shadow features (exact replicas) of each feature and 

shuffles the values in the shadowed features to remove their 

correlations with the response variable [33]. Thereafter, it 

passes the actual and shadow-shuffled features in the tree-

based model to predict the target variable using the tree-

based learner. It then determines the permutation importance 

or Mean Decrease Accuracy (MDA) for the actual and the 

shadow-shuffled inputs for overall trees (mtree), given by the 

expression [34], [35]:  

 

MDA =
1

𝑚𝑡𝑟𝑒𝑒
∑

∑ 𝐼(𝑦𝑡=𝑓(𝑥𝑡))−∑ 𝐼(𝑦𝑡=𝑓(𝑥𝑡
𝑛))𝑡∈𝑂𝑂𝐵𝑡∈𝑂𝑂𝐵

|𝑂𝑂𝐵|

𝑚𝑡𝑟𝑒𝑒
𝑚=1    (7) 

 

where, xt is group of predictor variables (xt ∈Rn) and yt is target 

variable (xt ∈R) for n number of inputs in the set T (where t = 

1, 2,…., T), I(●) is indicator function, OOB is Out-of-Bag 

predictive error, 𝑦𝑡 = 𝑓(𝑥𝑡) is predicted value before 

permuting and 𝑦𝑡 = 𝑓(𝑥𝑡
𝑛) is predicted value after permuting. 

By performing a two-sided hypothesis test (t-test) for 

equality of both actual and shadowed, the algorithm 

calculates the z-score [32]. The z-score is determined by the 

expression:  

 

z score =
𝑀𝐷𝐴

𝑆𝐷
                                    (8) 

 

where SD represents the standard deviation of accuracy losses. 

A threshold is set by the algorithm where the z-score of the 

actual feature must be greater than the maximum z-score 

(zmax) of the randomized shadow features. If the threshold 

criteria is met, the feature is selected to be important. 

Additionally, comparisons are made between the features 

and corresponding shadow features in terms of their shapely 

importance values (SHAP values), which produces a more 

consistent result [36].  

C.  STATIONARY WAVELET TRANSFORM (SWT) 

SWT is a powerful mathematical tool for dimensionality 

reduction and data decomposition, which takes care of non-

stationary, nonlinear and noisy signals [37]. It is a modified 

version of conventional discrete wavelet transform (DWT) 

that is designed to handle the issues of signal decimation in   

DWT [38]. For a given signal, x(t), its wavelet transform can 

be determined by the expression [37]:  

 

X(𝜏, 𝑎) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝜏

𝑎
) 𝑑𝑡

∞

−∞
                         (9) 

 

where ‘*’ denotes complex conjugate, ψ is analyzing wavelet, 

a is time dilation, and τ is time translation. Therefore, the DWT 

of a signal, x[m], is given by the expression:  
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 X[𝑘, 𝑙] = 2−(𝑘/𝑙) ∑ 𝑥[𝑚]𝜓[2−𝑘𝑚 − 1]∞
𝑚=−∞               (10) 

 

By performing a DWT decomposition for the signal x[m], the 

respective sub-signals of detailed components (DC) and 

approximation components (AC) are acquired [39]. However, 

due to signal decimation after each level of decomposition, the 

transform by DWT is not time-invariant, which makes the 

signal unsuitable for data preprocessing [37]. To overcome 

this drawback, SWT (an extension of DWT) is employed as it 

uses the a-trous algorithm to solve the problem of shift-

invariance [38]. Having undecimated wavelet transform, the 

size of SWT data is efficiently preserved through the low-pass 

and high-pass filters. Thus, the length of the detailed and 

approximation coefficients are the same in comparison with 

the original signal [40]. Using SWT, the decompositions can 

be computed using the expressions [41]:  
 

𝑐𝐴𝑛,𝑚
𝑆𝑊𝑇 = ∑ 𝑐𝐴𝑛−1,𝑚+2𝑛(𝑢)

𝑆𝑊𝑇
𝑢 𝑔(𝑢)                         (11) 

 

𝑐𝐷𝑛,𝑚
𝑆𝑊𝑇 = ∑ 𝑐𝐷𝑛−1,𝑚+2𝑛(𝑢)

𝑆𝑊𝑇
𝑢 ℎ(𝑢)                         (12) 

 

where 𝑐𝐴𝑛,𝑚
𝑆𝑊𝑇  is the approximation coefficient of SWT, 

𝑐𝐷𝑛,𝑚
𝑆𝑊𝑇  is the detailed coefficient of SWT, n, m is the number 

of decomposition levels and the position, g(u) is the low pass 

filter and h(u) is the high pass filter. The Python-based SWT 

presents several mother wavelets for data decomposition and 

signal denoising, among which ‘haar’ and ‘db’ are widely 

utilized [23], [24]. 

D.  OPTUNA (O) OPTIMIZER 

The O algorithm is a next-generation hyperparameter 

optimization framework with a define-by-run API that 

provides the platform to construct the parameter search space 

dynamically via efficient searching and pruning strategies 

[42]. In searching ideal hyperparameter values, O utilizes 

various samplers such as random, grid, Bayesian, and genetic 

calculations [43].  During the process of optimization, the O 

algorithm achieves optimal solution by repeatedly calling and 

evaluating the objective function of different parameter 

values. The following steps describe the optimization process 

by O algorithm [44]: 

 

Step 1: Determine the direction of optimization, type of 

parameter, range of values and the maximum number of 

iterations. 

 

Step 2: Enter the loop; 

Step 2.1: Uniformly select a population of individuals within 

the function defining the parameter value range; 

Step 2.2: Automatically terminate the hopeless population 

individuals according to the trimming conditions with a 

trimmer;  

Step 2.3: Determine the objective function value of the 

unpruned individual populations; 

Step 2.4: Repeat the above steps for the loop and exit when 

the maximum number of iterations is reached. 

 

Step 3: Provide the output as the optimal solution and optimal 

function value. 

 

The O optimizer is gaining eminence as it provides an 

optimum combination of hyperparameters with relatively 

lower computation cost in comparison with other optimization 

methods such as exhausted grid search and random grid search 

[45]. 

IV. METHODOLOGY 

In this section, we describe our study location and datasets for 

the UVI modeling experiments. Thereafter, we discuss the 

process of segmenting cloud statistical properties from the sky 

images. Finally, we present the stages involved in designing 

the proposed W-O-convLSTM model, followed by a 

discussion on model evaluation using robust statistical score 

metrics.  

A. EXPERIMENTAL SITE AND DATASETS 

To validate the W-O-convLSTM model, the study site of the 

experimental set-up was based at the University of Southern 

Queensland (USQ) in Toowoomba (Latitude of 27.60 °S and 

Longitude of 153.93 °E), Australia, as illustrated in Fig. 1(a). 

Geographically, the experimental site is located approximately 

100 km inland relative to the ocean and experiences limited 

marine aerosol and anthropogenic effects [7]. Being a 

subtropical region, Queensland receives a large number of 

sunshine days annually, which poses a significant impact on 

the public health sector in terms of UV-exposure-related skin 

and eye diseases. 

 
 
 

 

 

 

 

 

 

 

 

FIGURE 1. (a) Geographic location of the USQ-based experimental site 

in Toowoomba, Australia to validate wavelet hybrid convLSTM model. (b) 

Roof-top mounted Bentham DTM300 Spectroradiometer for UVR 

measurement. (c) Co-located 501 broadband UVR Biometer. (d) 

Synchronous Total Sky Imager, TSI440 set-up to capture sky images and 

record SZA.  

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3153475, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

We measured the time-series solar spectral irradiance 

using the Bentham DTM300 Spectroradiometer (Bentham 

Instruments Inc., UK), mounted on a roof-top at the USQ 

Toowoomba campus, as shown in Fig. 1(b). Using the 

measured solar spectral irradiance, the UVI data was 

calculated based on the International Commission on 

Illumination (CIE) reference action spectrum for UV-induced 

erythema on the human skin [5]. As per the CIE guidelines, 

we first determined the erythemally active UV irradiance 

(UVE) by integrating the monochromatic UV irradiance (S(λ)) 

that is weighted with the CIE spectral action function CIE(λ) 

and bounded within the wavelengths of 280 nm to 400 nm as 

follows [46]:  

 

UVE = ∫ 𝑆(𝜆). CIE(𝜆). d𝜆
400

280
              (13) 

 
Having one unit of UVI equivalent to 25 mW m-2 of 

erythemally effective exposure to UVR, we calculated the 

UVI from the UVE as follows [46], [6]: 

 

        UVI =
1

25 mW m−2 ∫ 𝑆(𝜆). CIE(𝜆). d𝜆
400

280
              (14) 

 

The calculated UVI is a unitless normalized index, for which 

the values range globally from 0 to 11+. As the UVI 

increases, the exposure severity and potential for damage to 

the skin and eye rises.  

We acquired the UVI datasets at a time resolution of 10 

minutes. However, there were instances when these datasets 

were missing due to power failure or maintenance of the 

spectroradiometer. The missing datasets were recovered with 

the UVI calculated using the minimal erythema dose (MED) 

measurements of a co-located 501 broadband UVR Biometer 

(Solar Light Co., USA), as shown in Fig. 1(c). To avoid any 

UVI anomalies measured by two different instruments, the 

Biometer was initially calibrated to the Bentham 

spectroradiometer using a time-dependent conversion factor 

(CF). Consequently, the Biometer-derived UVI was 

calculated as follows:  

 

UVI = (𝑀𝐸𝐷 × 𝐶𝐹 × 40)/300                          (15) 

  

where MED is the minimal erythema dose measured by the 

Biometer at every 5 minutes (300 s) and CF is a conversion 

factor (different for each season). Considering that one unit of 

MED is equivalent to 200 J/m2 of erythemally weighted UV 

radiation [47], MED is converted to J/m2 by multiplying with 

CF. UVI is calculated from the erythemally weighted UV by 

multiplying the erythemal irradiance in units of W/m2 by 40.  

Thereafter, we extracted the sky images that were captured by 

a synchronous co-located Total Sky Imager - TSI440 (TSI) 

(Yankee Environmental Systems Inc., USA), as shown in Fig. 

1(d). These sky images were stored in the TSI repository. The 

records of SZA were also extracted from the TSI at 10 minutes 

intervals. We extracted the UVI, sky images and SZA data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Flowchart describing the algorithm execution process of 

the proposed automated python tool for extracting the cloud statistical 

properties from the TSI440 repository-based sky images. 
 

 

 

 

 

 

FIGURE 3. Sky image segmentation and comparisons with TSI 

segmented PNG image. 
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series for a complete year (from 01-Mar-2003 to 29-Feb-2004) 

to obtain the datasets for all 4 seasons. For each day, the 

datasets were extracted from 7.40 am to 4.10 pm. We 

segmented the sky images to extract the cloud statistical 

properties. While we utilized the UVI datasets as the target 

input, the cloud statistical properties and SZA datasets were 

employed as the input features in model building. 

B. SEGMENTING CLOUD STATISTICAL PROPERTIES 

Cloud statistical properties were essential input predictor 

variables in designing the W-O-convLSTM model and these 

variables were segmented from the sky images stored in the 

TSI repository. The TSI repository saves a suite of files that 

contain colored sky images in JPEG format, a properties text 

file and a TSI segmented image in PNG format with cloud and 

non-cloud parts of the clear sky. The properties text file 

contains the sun position, SZA and cloud fraction information. 

We utilized the TSI segmented PNG image and cloud fraction 

information to validate our segmented sky images through 

comparisons of blue sky and cloud cover. To segment the sky 

images from the suite of files, we designed an automated 

Python tool that reads all the 10 minutes sky images in JPEG 

format and extracts the cloud statistical properties for each 

image. The image segmentation algorithm, referred as the 

Python tool has been designed in the Python (version 3.7.9) 

environment. A flowchart shown in Fig. 2 demonstrates the 

algorithm execution process of the proposed automated 

Python tool to segment the cloud chromatic statistics. The 

Python-based “glob”, “os” and “cv2” libraries were utilized to 

locate and read the real-time sky image and properties files. 

Using the “linecache” library, a common line was read from 

the properties file and if this line was missing, the image was 

reported as corrupt. Otherwise, the image of background, 

camera housing, camera arm and sun-shield captured in the 

sky image were all masked using the “numpy” library, as 

shown in Fig. 3. Thereafter, the sky image was split into red 

(R), green (G) and blue (B) channels, from which R and B 

channel arrays were utilized for further analysis by applying 

previously reported image segmentation techniques [48]. 

Using the R and B channels, the red-blue ratios (RBR) of the 

pixels were determined. RBR has been a commonly applied 

threshold in segmenting cloud cover and blue sky that 

maintains a high resolution of the image despite getting 

downsampled when saved in JPEG format [49]. To increase 

contrast, the RBR pixel values were scaled within 0 to 255 

[50], [48]. A calculated threshold (T) was applied to binarize 

and segment the RBR-scaled pixels into black and white. The 

T was determined as follows:  

 

𝑇 = (255 × 𝑇𝐹)/𝑅𝐵𝑅_𝑚𝑎𝑥                          (16) 

 

where TF is a threshold factor of 0.56 [48] (usually between 0 

to 1) and RBR_max is the maximum RBR. If the pixel values 

were greater than T, they were assigned 255 (white color) to 

represent the cloud cover, else, they were assigned 0 (black 

color) to represent the blue sky. The binarized pixel values of 

cloud cover and blue sky were masked onto the pixels of red 

and blue channels to obtain the segmented statistics of the sky 

image. Finally, the Python-based tool was automated via a for 

loop to perform the same operations in segmenting the entire 

JPEG sky images within the suite. Our segmentation program 

is an improvement of the previously reported methods [48], 

which shows very close segmentation with the segmented TSI 

PNG image, as illustrated in Fig. 3. Upon comparing our 

image segmentation with the TSI-based image segmentation 

in terms of cloud percentages, we achieve a very low cloud 

percent difference of 1.84%. Further comparisons showed that 

the original and calculated cloud fraction data of the 

segmented images had a very strong correlation of 0.991. The 

cloud statistical properties are segmented as red and blue 

channel pixel averages, standard deviations, ratios, 

differences, TSI-based thin cloud and TSI-based opaque 

cloud. The cloud chromatic properties and SZA provided 16 

time-dependent predictor inputs to validate the proposed 

multiple input multi-step output W-O-convLSTM model for 

UVI forecasts. We present the descriptions of these 16 

predictor variables and UVI (predictand) in Table 1. 

C. MISSING DATA RECOVERY  

After acquiring the data series, it was noted that there were 

some missing values in the UVI and cloud statistical properties 

data. However, the SZA datasets were complete. The cloud 

statistical properties were incomplete due to some missing and 

corrupt images from the TSI repository. In the case of the UVI 

datasets, some incomplete values were observed because the 

501 Biometer UVI used to recover the Bentham UVI were 

missing occasionally. These missing values were duly 

imputed with the monthly median of the respective variable at 

the same daily time domain. Among the three commonly used 

imputation methods of mean, median and listwise deletion, the 

median imputation approach is more accurate and robust [51]. 

D. DEVELOPMENT OF THE PROPOSED PREDICTIVE 
MODEL  

The scope of this research was to develop a wavelet hybrid 

convLSTM model that entails 3 major phases, which include 

feature selection by BorutaShap, decomposition of the 

selected features using SWT and hyperparameter optimization 

by O algorithm. In designing this AI-based UVI forecasting 

model, the Python programming language (version 3.7.9) was 

implemented. For hyperparameter optimization using the O   
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TABLE 1 

DESCRIPTIONS AND INFERENTIAL STATISTICS OF THE PREDICTOR AND TARGET VARIABLES USED TO DEVELOP THE PROPOSED W-O-CONVLSTM MODEL TO FORECAST UVI  

Input Variables Symbol Definitions and Descriptions 
Inferential Statistics of Predictor Variables 

Cross 

correlations 

of Predictor 

Variables 

with UVI  

Mean St. Dev. Median Min Max Skew 

Objective Variable 

Global Solar Ultraviolet 

Index 
UVI 

Global solar ultraviolet index is a measure of the 

level of ultraviolet radiation.  
5.65 4.18 4.55 0.03 17.88 0.80 

Predictor Variables 

Solar Zenith Angle (°) 

(Baseline predictor 

variable) 

SZA 

Angular position of the sun measured as an angle 

between the position of the sun and normal to 

earth’s horizontal plane.  

45.28 17.15 47.67 4.59 80.68 -0.30 -0.89 

Sky Ratio in Red and Blue 

Channel 
SRBr 

Ratio of the pixel value averages in the red and 

blue channels representing blue sky.  
0.49 0.16 0.53 0.00 0.78 -2.23 0.35 

Cloud Standard Deviation 

in Blue Channel 
CBs 

Standard deviation of pixel values in the blue 

channel representing cloud cover. 
7.40 4.13 9.73 0.00 15.52 -1.07 0.26 

Average Cloud in Blue 

Channel 
CBa 

Average of pixel values in the blue channel 

representing cloud cover. 
182.17 67.61 186.81 0.00 255.00 -1.59 -0.24 

Average Cloud in Red 

Channel 
CRa 

Average of pixel values in the red channel 

representing cloud cover. 
159.84 57.04 166.84 0.00 236.95 -1.89 -0.24 

Sky Difference in Red and 

Blue Channel 
SRBd 

Difference in the average pixel values 

representing blue sky in red and blue channels. 
75.35 38.52 74.35 -49.85 1239.50 3.14 -0.24 

Cloud Difference in  Red 

and Blue Channel 
CRBd 

Difference in the average pixel values 

representing clouds in red and blue channels. 
22.17 13.90 20.33 -12.03 111.29 0.24 -0.20 

Cloud Standard Deviation 

in Red Channel 
CRs 

Standard deviation of pixel values in the red 

channel representing cloud cover. 
8.63 3.21 9.96 0.00 15.16 -2.11 0.15 

Average Sky in Blue 

Channel 
SBa 

Average of pixel values in the blue channel 

representing blue sky. 
160.44 79.00 168.04 0.00 4219.50 13.24 -0.13 

Opaque Cloud OC Thick cloud cover proportion in the sky.  0.35 0.36 0.24 0.00 1.00 0.69 -0.12 

Cloud Ratio in Red and 

Blue Channel 
CRBr 

Ratio of the pixel value averages in the red and 

blue channels representing clear sky. 
0.80 0.26 0.87 0.00 1.07 -2.62 0.10 

Sky standard deviation in 

blue channel 
SBs 

Standard deviation of pixel values in the blue 

channel representing blue sky. 
32.18 117.64 17.60 0.00 3830.95 15.37 -0.09 

Cloud Fraction 
CF 

Fraction of the number of cloud pixels and the 

total number of unmasked pixels. 
0.39 0.37 0.32 0.00 1.00 0.46 -0.09 

Sky standard deviation in 

red channel 
SRs 

Standard deviation of pixel values in the red 

channel representing blue sky. 
32.33 113.91 17.73 0.00 3726.13 15.36 -0.07 

Thin Cloud TC Thin cloud cover proportion in the sky.  0.03 0.05 0.01 0.00 0.62 4.30 -0.06 

Average Sky in Red 

Channel 
SRa 

Average of pixel values in the red channel 

representing blue sky. 
84.51 45.18 92.00 0.00 2980.00 24.56 0.04 
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algorithm, we used Google Colab with python programming 

as it provides freely available computing resources that 

include a graphics processing unit (GPU). The Python tool is 

highly versatile, as its virtual environment provides the 

platform for both ML and DL-based data analysis through its 

eminent packages such as Scikit-learn, Tensorflow and Keras 

[52], [53], [54]. 

The schematic diagram in Fig. 4 provides an overview of 

the stages involved in designing the proposed predictive 

model. In accordance with the stages illustrated in the 

schematic diagram, the details of the methods adopted at each 

stage of the UVI forecasting framework are as follows: 

 

Stage 1: This stage involves an assessment of the cross-

correlations (rcross) between the 10 minutes measured UVI (i.e. 

UVI(t)) and each of the 16 predictor variables (i.e. X1(t - n), 

X2(t - n), X3(t - n), ……, X16(t - n), where t is time and n is the 

most significant antecedent lag). Statistically, the individual 

predictors exhibiting the most significant correlation from the 

lagged combinations were selected to generate UVI forecasts. 

Table 1 enumerates the rcross values and the inferential statistics 

of these input variables. Once the significant antecedent 

lagged inputs of UVI and the 16 attributes were determined, 

the data series were reshaped for simulating the future UVI 

over multi-step horizons. We describe these forecast horizons 

in Table 2, where the 10 minutes, 20 minutes, 30 minutes and 

hourly ahead forecasts are designated as 10M, 20M, 30M and 

60M, respectively. In reshaping the datasets, a lagged matrix 

was constructed for each of the four forecast timescales. 

 

Stage 2: This stage describes the application of a wrapper-

based BorutaShap algorithm for effective feature selection. 

After feeding the UVI and 16 attributes into BorutaShap, it 

robustly selected the pertinent features and captured the 

significant antecedent memory of UVI behavior to deliver 

multi-step forecasts. In identifying the most significant input 

variables, XGboost was utilized as the base model for 

screening each of the four forecast horizon data series. During 

the process of screening, consistency was maintained in 

identifying the feature importance through the aggregated and 

sorted SHAP values. The outcome of feature selection 

revealed that all the 16 predictor variables in each of the four 

forecast horizon datasets were pertinent and BorutaShap 

selected them as important features for model building. For 

instance, Fig. 5(a) presents the outcome of feature selection for 

10 minutes forecast horizon datasets using the Borutashap 

feature importance plot. The plot marks all the 16 predictors 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

FIGURE 4. Schematic diagram detailing the construction of the proposed multiple input multi-step output model for UVI forecasts. 

TABLE 2 

DESIGNATION OF MODELS AND FORECAST HORIZONS  

Designated  

Model 
Label 

Forecast  

Horizon 
Label 

W-O-convLSTM M1 10 minutes 10M 

O-convLSTM M2 20 minutes 20M 

O-CNN M3 30 minutes 30M 

O-SVR M4 1 hour 60M 

O-PA M5   

W-O-convLSTMsza M6   
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as pertinent. In addition, Fig. 5(b) presents a bee-swarm plot 

that illustrates the feature importance of these predictors based 

on their SHAP values.  

The criterion in designing the proposed W-O-convLSTM 

model is to utilize the historical memories and BorutaShap 

feature selection of the inputs acquired from the diversified 

characteristics of UVI and cloud statistical properties data 

series. If the lagged values delay the two samples (i.e. 

predictors and predictand), by applying this criterion, they can 

be regarded as statistically independent. 

 

Stage 3: This stage describes the segregation of input datasets 

into respective seasons, followed by the train-test split. The 

time-series datasets prepared for each forecast horizon were 

initially segregated into four different seasons. As detailed in 

Table 3, autumn (01-Mar-2003 to 31-May-2003), winter (01-

Jun-2003 to 31-Aug-2003), spring (01-Sep-2003 to 30-Nov-

2003) and summer (01-Dec-2003 to 29-Feb-2004) were 

assigned with 4784, 4784, 4732 and 4732 data points, 

respectively. Thereafter, each seasonal-based data series was 

split into a training set (84.6% to 84.8%), a validation set (10% 

of training data) and a testing set (15.2% to 15.4%). Such 

training and testing split were employed because we utilized 

11 weeks datasets for training and 2 weeks datasets for testing 

during all four seasons. These datasets were extracted at 10 

minutes interval, so we had a sufficient number of data points 

(4732 to 4784) for each season to develop the proposed model. 

Some earlier studies have also employed a similar train-test 

split. For instance, the study by [55] employed a train-test split 

on monthly-based datasets with a training split of 71.45% to 

75.01% and a testing split of 12.59% to 14.39% for four sites. 

A similar approach for the train-test split was also adopted by 

[19], [56].  Subsequently, all the model input datasets as per 

Table 1 were normalized between  [0 – 1] to improve the 

efficiency and accuracy during training and testing phases [7].  

 

Stage 4: This stage employs SWT to address the issues 

pertaining to non-stationarity and noise in the input data 

signals. The train-test split of the input datasets was conducted 

prior to SWT decomposition to prevent the leakage of training 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 5 (a) BorutaShap-derived feature importance of the cloud segmented properties and SZA for 10 minutes forecast, (b) Beeswarm plot of feature 

importance based on shapely values. 

 
TABLE 3 

SEASONALITY-BASED DATA SEGREGATION INTO TRAINING, VALIDATION AND TESTING PHASES  

TO EXPERIMENT THE TIME-SERIES W-O-CONVLSTM MODEL IN TOOWOOMBA, QUEENSLAND 

Seasons Period 
Data 

Points 

Training Validation Testing 

(84.6% to 84.8%) (% Data) (15.2% to 15.4%) 

Autumn 01-Mar-2003 to 31-May-2003 4784 4056 

10% of training 

data 

728 

Winter 01-Jul-2003 to 31-Aug-2003 4784 4056 728 

Spring 01-Sep-2003 to 30-Nov-2003 4732 4004 728 

Summer 01-Dec-2003 to 29-Feb-2004 4732 4004 728 

 

(a) (b) 
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data into the testing sets, as this could add bias into the forecast 

[57]. In decomposing the lagged feature data series, SWT 

convolved each cloud statistical property and SZA signal 

through high and low pass filters into detailed components 

(DC) and approximation components (AC) without 

performing any decimation. Identifying the type of SWT 

scaling filter and level of decomposition was a critical task to 

achieve a remarkable wavelet-coupled model, as no specific 

method for such selection is confirmed in the literature [30], 

[39]. In our case, a trial and error method was adopted in 

selecting the best mother wavelet and decomposition level 

[58]. Among the SWT mother wavelets (that includes 

Daubechies (db), Haar (haar), Symlets (Sym), Coiflets (coif), 

Biorthogonal (bior), Reverse biorthogonal (rbio) and Gaussian 

(gaus)) and decomposition levels (that includes 2, 3, 4, 5, 6 

and 7), optimum performance was achieved in designing the 

proposed model using haar wavelet at a decomposition level 

of 2. These SWT parameters search space and optimum 

parameters are highlighted in Table 4. Moreover, Fig. 6 

illustrates the training phase decomposition of the attribute 

CBRd into its detailed coefficients (D1 and D2) and 

approximation coefficient (A2) at 10 minutes forecast horizon 

in summer. The other attributes were decomposed in a similar 

manner for all four forecast timescales. While A2 seems to be 

in phase with the original undecomposed predictor variables, 

D1 and D2 turn out to replicate greater details of the subtle but 

significant patterns in the time-series inputs. 

 

Stage 5: In this stage, we discuss the architectural design of 

the proposed hybridized convLSTM model and 

hyperparameter optimization using the O algorithm. The 

architecture of the deep learning convLSTM model consists of 

double convLSTM2D layers that robustly extract the complex 

behavior of antecedent lagged features. With RELU assigned 

as the activation function for the two layers, each layer was 

allocated with 100 and 44 filters, respectively. These were the 

optimal number of filters tuned by employing the powerful O 

algorithm. A flattening layer was integrated after each 

convLSTM2D layer. Finally, a dense layer was utilized to 

generate forecasts of future UVI as output. An improved 

performance was achieved with O optimized hyperparameters 

that include a batch size of 104 and epochs of 189. In adopting 

regularization to reduce overfitting and to improve the training 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 6. SWT decomposed detailed coefficients (D1 and D2) and 

approximation coefficient (A2) of CBRd (predictor input) in the training 

period for summer-based 10 minutes forecast horizon. 

TABLE 4 

SEARCH SPACE IN THE MODEL DESIGN PHASE WITH OPTIMUM 

ARCHITECTURE OF THE OBJECTIVE MODEL   

Model 
SWT Parameters and 

Model Hyperparameters 

SWT and O-based 

Model Search Space  

W
-O

-c
o

n
v

L
S

T
M

 

(M
1

) 

Decomposition levels 

Mother wavelets  

2, 3, 4, 5, 6, 7 

db, haar, sym, coif, 

bior, rbio, gaus 

Filter 1, Filter 2 

Activation function 

Batch Size, Epochs 

Dropout, Optimizer 

[40 - 130], [10 - 60] 

[ReLU]  

[100 - 300], [80 - 300] 

[0.05, 0.1], [Adam] 

O
-c

o
n

v
L

S
T

M
 

(M
2

) 

Filter 1, Filter 2 

Activation function 

Batch Size, Epochs  

Dropout, Optimizer 

[60 - 110], [20 - 60] 

[ReLU] 

[100 - 300], [80 - 300] 

[0.05, 0.1], [Adam] 

 

O
-C

N
N

 

(M
3

) 

Filter 1, Filter 2,  

Filter 3 

Padding, Pooling size 

Activation function,  

Batch Size, Epochs 

Dropout, Optimizer 

[80 - 500], [20 - 200],  

[2 - 50] 

Same, 2 

[ReLU],  

[100 - 500], [100 - 500] 

[0.05, 0.1], [Adam] 

O
-S

V
R

 

(M
4

) 

Kernel 

Gamma, Epsilon 

Degree, C 

[poly, rbf, sigmoid] 

[scale, auto], [0.1 - 0.5] 

[2 - 5], 1 

O
-P

A
 

(M
5

) 

Tol 

C, Epsilon 

Maximum iteration 

[0.001 - 0.002] 

[1 - 2], 0.1 

[100 - 200] 

W
-O

-c
o

n
v

L
S

T
M

sz
a
 

(M
6

) 

Decomposition levels 

Mother wavelets  

2, 3, 4, 5, 6, 7 

db, haar, sym, coif, 

bior, rbio, gaus 

Filter 1, Filter 2 

Activation function,  

Batch Size, Epochs 

Dropout, Optimizer 

[40 - 130], [20 - 50] 

 [ReLU] 

[100 - 300], [80 - 300] 

[0.05, 0.1], [Adam] 

Optimum Architecture of the Proposed W-O-convLSTM 

Optimum SWT Parameters: 

Wavelet type: haar 

Number of Decompositions = 2 

Optimum O-Based Model Hyperparameters: 

ConvLSTM2D layer 1 filters = 100 

ConvLSTM2D layer 2 filters = 44 

Activation function = ReLU, Dropout = 0.1,  

Optimizer = Adam, Batch Size = 104, Epochs = 189 

Learning rate = 0.001, ꞵ1 = 0.9, ꞵ1 = 0.999, Epsilon = 1x10-10 
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performance, a good dropout of 0.1 was applied. To further 

minimize the issue of overfitting, we adopted a 10 fold cross-

validation strategy. Table 4 presents the search space and 

optimal hyperparameters of the proposed W-O-convLSTM 

model (also labeled as M1). To comprehensively benchmark 

the proposed W-O-convLSTM model, we deployed other 

highly competitive counterparts. These counterparts were 

non-wavelet-based models that were developed using 

convLSTM, convolutional neural network (CNN), support 

vector regression (SVR) and passive-aggressive (PA) models. 

The hyperparameters of these benchmarked models were also 

optimized using the O algorithm. We designated these models 

as O-convLSTM (also labeled as M2), O-CNN (M3), O-SVR 

(M4) and O-PA (M5), respectively. In an earlier study by [7], 

UVI was forecasted by developing machine learning models 

using a single predictor input of SZA without considering the 

cloud cover effects. In this study, we design our deep learning 

UVI forecasting model (M1) using the attributes of cloud 

statistical properties (that define the cloud cover conditions) 

and SZA to claim that M1 will yield superior performance in 

comparison with a deep learning baseline model developed 

using the predictor input of SZA alone. We designated the 

baseline model developed using SZA as W-O-convLSTMsza 

(also labeled as M6). Though M1 and M6 were fed with 

different predictor inputs, they were both wavelet hybrid 

convLSTM models with similar architectural designs. It was 

important to compare the performance of our objective model 

(M1) with the baseline model (M6) due to a significant 

dependence of UVI on SZA. It is known that when the sun is 

out, we have SZA and SZA is highly correlated with UVI. For 

instance, Table 1 displays the highest correlation (0.89) 

between SZA and UVI in comparison with all other predictors. 

The model designations and O-based hyperparameter search 

space of the objective, benchmarked and baseline models are 

presented in Table 2.   

E. PERFORMANCE EVALUATION OF THE MODEL  

To confirm the superiority of the W-O-convLSTM model in 

UVI forecasting, we evaluated this model against the baseline 

and benchmarked models. To validate that the use of cloud 

cover effects could further improve the performance of the 

objective model, we evaluated our model alongside the 

baseline model.  Additionally, by evaluating our objective 

model (SWT-based model) alongside the benchmarked 

models (non-SWT-based models), we validated the 

superiority of employing SWT over non-SWT model design 

in forecasting UVI. Here, our focus was to evaluate SWT 

against non-SWT-based models, so other wavelet transforms 

such as DWT were not evaluated. While DWT is a known 

standard frequency transform, it was not applied to benchmark 

SWT in our study because the DWT algorithm exhibits 

significant problems associated with signal decimation. Such 

decimation effects induce a bias in the model that makes the 

signal unsuitable for data preprocessing [30], [37]. On the 

other hand, SWT is a modified version of the conventional 

DWT that utilizes an a-trous algorithm to overcome the issues 

of signal decimation [38]. This drawback of DWT confirms 

the superiority of SWT during data preprocessing, thus 

eliminating the need for evaluating the DWT-based models.  

A number of robust statistical metrics were applied to 

rigorously evaluate the hybridized W-O-convLSTM model 

alongside other competing counterparts in forecasting short-

term UVI. For this study, the commonly adopted model score 

metrics, such as Pearson’s Correlation Coefficient (r), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Coefficient of Determination (R2), Legate-McCabe’s Index 

(LM), Willmott’s Index (WI), Nash-Sutcliffe Efficiency 

(NSE), Relative Root Mean Square Error (RRMSE) and 

Relative Mean Absolute Error (RMAE) [18] were employed. 

 

     𝑟 =
∑ (𝑈𝑉𝐼𝑖

𝑂− 𝑈𝑉𝐼𝑂̅̅ ̅̅ ̅̅ ̅̅ )(𝑈𝑉𝐼𝑖
𝐹−  𝑈𝑉𝐼𝐹̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝑈𝑉𝐼𝑖
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𝑖=1
√∑ (𝑈𝑉𝐼𝑖
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𝑖=1

                   (17) 
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𝑁
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𝑖=1                                (19) 

 

  𝐿𝑀 = 1 − [
∑ |𝑈𝑉𝐼𝑖

𝑂 − 𝑈𝑉𝐼𝑖
𝐹|𝑁

𝑖=1

∑ |𝑈𝑉𝐼𝑖
𝑂 − 𝑈𝑉𝐼𝑂̅̅ ̅̅ ̅̅ ̅̅ |𝑁

𝑖=1

]                                    (20) 

 

𝑊𝐼 = 1 − [
∑ (𝑈𝑉𝐼𝑖

𝐹 − 𝑈𝑉𝐼𝑖
𝑂)

2
𝑁
𝑖=1

∑ (|𝑈𝑉𝐼𝑖
𝐹 − 𝑈𝑉𝐼𝑂̅̅ ̅̅ ̅̅ ̅̅ |+|𝑈𝑉𝐼𝑖

𝑂 − 𝑈𝑉𝐼𝑂̅̅ ̅̅ ̅̅ ̅̅ |)
2

𝑁
𝑖=1

]           (21) 

 

       𝑁𝑆𝐸 = 1 − [
∑ (𝑈𝑉𝐼𝑖

𝑂 − 𝑈𝑉𝐼𝑖
𝐹)

2
𝑁
𝑖=1

∑ (𝑈𝑉𝐼𝑖
𝑂 − 𝑈𝑉𝐼𝑂̅̅ ̅̅ ̅̅ ̅̅ )

2
𝑁
𝑖=1

]                                (22) 

 

   𝑅𝑅𝑀𝑆𝐸 =
√

1

𝑁
∑ ( 𝑈𝑉𝐼𝑖

𝐹 − 𝑈𝑉𝐼𝑖
𝑂)2𝑁

𝑖=1  

1

𝑁
∑ (𝑈𝑉𝐼𝑖

𝑂)𝑁
𝑖=1

× 100                    (23) 

 

𝑅𝑀𝐴𝐸 =
1

𝑁
∑ |

𝑈𝑉𝐼𝑖
𝐹− 𝑈𝑉𝐼𝑖

𝑂

𝑈𝑉𝐼𝑖
𝑂 |𝑁

𝑖=1 × 100                        (24) 

 

where 𝑈𝑉𝐼𝑖
𝑂, 𝑈𝑉𝐼𝑖

𝐹 = observed and forecasted UVI for the ith 

observation, 𝑈𝑉𝐼𝑂̅̅ ̅̅ ̅̅ ̅, 𝑈𝑉𝐼𝐹̅̅ ̅̅ ̅̅ ̅ = average observed and forecasted 

UVI, 𝑁 = Total number. 

It is to be noted that the results obtained through these score 

metrics may also be due to chance or decisive. So, to prevent 

rejection of an equally good parallel model due to 

stochastically generated performance metrics, we further 

evaluate their forecast accuracies using an efficient statistical 

test, known as Diebold–Mariano (DM) test. For details of the 

DM test, the readers may refer to [59]. 

V. RESULTS AND DISCUSSION 
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This section presents an account of the empirical results to 

appraise and demonstrate the merits of the newly designed W-

O-convLSTM model (M1) in UVI forecasting. The 

forecasting performance and efficacy are assessed against 

highly competitive counterparts of O-convLSTM (M2), O-

CNN (M3), O-SVR (M4), O-PA (M5) and W-O-

convLSTMsza (M6) at multi-step horizons using a plethora of 

statistical score metrics, as described in (17) – (24). 

Table 5 presents the testing phase performance evaluation 

of the developed models for the seasons of autumn, winter, 

spring and summer at different forecasting timescales (the 

optimal performance is highlighted in red). For almost all the 

experimentally captured modeling aptitudes having the 

highest Pearson’s correlation coefficient (r), lowest mean 

absolute error (MAE) and lowest root mean square error 

(RMSE), the proposed hybridized W-O-convLSTM model 

outperforms the comparative models in forecasting seasonal-

based UVI at 10M, 20M, 30M and 60M horizons. Overall, the 

proposed model highlights its best performance against the 

competing counterparts in autumn-based 10M forecast 

horizon with statistical scores of r = 0.961, MAE = 0.017 and 

RMSE = 0.024 with respect to r = [0.873-0.958], MAE = 

[0.020-0.043] and RMSE = [0.025-0.055], where [-] denote 

lower and upper statistical bounds. In terms of r values, the W-

O-convLSTM model shows the best performance in all the 

seasons for each forecast horizon, except for the summer-

based 10M forecast. At this instance, the non-wavelet hybrid 

O-convLSTM model executes slightly better. Despite the 

subtle variation, our objective model shows a very close 

performance with respect to the O-convLSTM model, having 

a very low difference in r values (≈ 0.004). The MAE and 

RMSE values approach 0, indicating that our model is 

approaching a high level of precision. Moreover, a decline in 

performance accuracy is observed with increasing forecast 

horizons. 

To completely gauge and understand the W-O-convLSTM 

model, it was rigorously evaluated with Willmott's Index 

(WI), Nash-Sutcliffe efficiency (NSE) and the most stringent 

metrics of Legate-McCabe’s index (LM). These evaluation 

statistics are presented after aggregating the initial results of 

the four seasons with averages so that extensive comparative 

outcomes could be delivered at multiple forecasting 

timescales. The observed trends in aggregated and non-

aggregated statistics were very similar. In Fig. 7, the 

comparisons of WI, NSE and LM aided by line graphs reveal 

that the W-O-convLSTM model performs significantly better 

than other predictive models. The objective model achieved 

the highest WI and NSE with WI = 0.962 and NSE = 0.864 at 

10M, WI = 0.960 and NSE = 0.851 at 20M, WI = 0.946 and 

NSE = 0.801 at 30M and WI = 0.940 and NSE = 0.780 at 60M 

forecast horizons. Verification of the performance measure 

using LM consolidates superior performance by the hybrid W-

TABLE 5 

THE TESTING PHASE PERFORMANCE OF W-O-CONVLSTM MODEL AGAINST COMPETING COUNTERPARTS IN TERMS OF CORRELATION COEFFICIENT (R), 

ROOT MEAN SQUARED ERROR (RMSE), MEAN ABSOLUTE ERROR (MAE) FOR UVI FORECAST   

Forecast 

Horizon 

Model Autumn Winter Spring Summer 

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE 

10 min  M1 0.961 0.017 0.024 0.909 0.033 0.049 0.926 0.050 0.078 0.936 0.054 0.077 

M2 0.958 0.020 0.025 0.905 0.035 0.049 0.918 0.051 0.080 0.940 0.054 0.079 

M3 0.931 0.032 0.040 0.902 0.035 0.050 0.915 0.067 0.090 0.929 0.058 0.079 

M4 0.873 0.043 0.055 0.822 0.057 0.072 0.876 0.079 0.101 0.904 0.071 0.094 

M5 0.875 0.040 0.051 0.845 0.057 0.071 0.883 0.079 0.097 0.855 0.096 0.123 
M6 0.932 0.030 0.042 0.866 0.050 0.065 0.858 0.069 0.104 0.906 0.085 0.102 

20 min M1 0.960 0.016 0.025 0.903 0.035 0.051 0.919 0.054 0.083 0.933 0.052 0.077 

M2 0.953 0.020 0.028 0.901 0.040 0.057 0.917 0.056 0.085 0.933 0.054 0.077 

M3 0.918 0.033 0.043 0.901 0.037 0.051 0.913 0.083 0.105 0.924 0.057 0.082 

M4 0.863 0.042 0.054 0.807 0.057 0.072 0.863 0.084 0.104 0.885 0.081 0.101 

M5 0.870 0.040 0.053 0.826 0.055 0.073 0.857 0.089 0.108 0.853 0.087 0.115 

M6 0.929 0.033 0.044 0.863 0.045 0.061 0.857 0.078 0.104 0.905 0.091 0.107 

30 min M1 0.939 0.028 0.037 0.888 0.040 0.057 0.913 0.068 0.091 0.924 0.059 0.083 
M2 0.918 0.042 0.051 0.875 0.044 0.058 0.907 0.070 0.098 0.921 0.060 0.088 

M3 0.875 0.039 0.048 0.840 0.050 0.068 0.887 0.091 0.117 0.919 0.068 0.092 

M4 0.758 0.053 0.064 0.707 0.069 0.083 0.757 0.109 0.136 0.771 0.111 0.137 

M5 0.758 0.088 0.105 0.695 0.072 0.089 0.697 0.125 0.150 0.757 0.142 0.182 

M6 0.922 0.038 0.049 0.860 0.045 0.062 0.848 0.075 0.110 0.899 0.077 0.097 

Hourly  M1 0.938 0.026 0.034 0.872 0.043 0.060 0.899 0.081 0.107 0.920 0.058 0.084 

M2 0.899 0.057 0.066 0.858 0.049 0.066 0.882 0.082 0.115 0.911 0.065 0.091 
M3 0.810 0.066 0.083 0.855 0.048 0.064 0.883 0.083 0.110 0.919 0.065 0.089 

M4 0.693 0.058 0.071 0.653 0.074 0.089 0.718 0.118 0.147 0.736 0.119 0.146 

M5 0.622 0.140 0.157 0.643 0.074 0.089 0.659 0.174 0.215 0.672 0.132 0.159 

M6 0.929 0.026 0.035 0.854 0.045 0.062 0.825 0.081 0.115 0.895 0.081 0.099 
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O-convLSTM model, as it yields lowest stringent errors and 

highest LM statistics, where LM = 0.713 at 10M, LM = 0.706 

at 20M, LM = 0.627 at 30M and LM = 0.609 at 10M forecast 

horizons. Again, the model performance drops with increasing 

forecast timescales. 

In conjunction with the statistical metrics, the percentage 

errors, such as RRMSE and RMAE were further employed as 

alternative score metrics to enable the model comparison 

during the four different seasons. For instance, the seasonal-

based performance comparison of the proposed W-O-

convLSTM model against the counterparts are presented using 

radar plots in Fig. 8 at 10M forecast horizon. The objective 

model captured the lowest RRMSE and RMAE values with 

RRMSE = 18.226% and RMAE = 28.426% in autumn, 

RRMSE = 26.324% and RMAE = 19.318% in winter, 

RRMSE = 17.697% and RMAE = 18.936% in spring and 

RRMSE = 17.173% and RMAE = 16.224% in summer. By 

displaying relatively better performance with respect to the 

comparative models in all four seasons, our newly designed 

model is highly competent for delivering more accurate 

forecasts of UVI at 10M forecast horizon. Similar 

performance was achieved by the objective model at all the 

other forecast horizons. 

A DM test was implemented to compare the forecasting 

performance of the objective model with its counterparts. The 

null hypothesis (HO) was set as: the observed differences 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
FIGURE 8. Radar plots showing the seasonal-based testing phase 

performance for W-O-convLSTM model (M1) against its comparatives 

(M2 – M6) measured by: (a) Relative Root Mean Square Error (RRMSE %) 

and (b) Relative Mean Absolute Error (RMAE %) at 10M forecast horizon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 7. Line graphs of seasonal aggregated Legate-McCabe’s Index 

(LM), Willmott’s Index (WI) and Nash-Sutcliffe Efficiency (NSE) for W-O-

convLSTM model (M1) against its comparatives (M2 – M6) during the 

testing phase. 

TABLE 6 

OUTCOMES OF DIEBOLD-MARIANO (DM) TESTS TO COMPARE THE FORECAST ACCURACY OF 

W-O-CONVLSTM MODEL (M1) AGAINST THE COMPETING COUNTERPARTS AT 10M FORECAST HORIZON 

Season DM Test M1 vs. M2 M1 vs. M3 M1 vs. M4 M1 vs. M5 M1 vs. M6 

Autumn 
DM Statistic -4.388 -14.358 -17.130 -18.091 -12.311 
p Value 0.000 0.000 0.000 0.000 0.000 
HO Reject Reject Reject Reject Reject 

Winter 
DM Statistic -2.655 -2.399 -17.977 -19.068 -15.870 
p Value 0.008 0.016 0.000 0.000 0.000 
HO Reject Reject Reject Reject Reject 

Spring 
DM Statistic -0.359 -9.672 -14.050 -13.437 -6.893 
p Value 0.719 0.000 0.000 0.000 0.000 
HO Accept Reject Reject Reject Reject 

Summer 
DM Statistic 0.161 -2.609 -7.857 -15.206 -16.303 
p Value 0.872 0.009 0.000 0.000 0.000 
HO Accept Reject Reject Reject Reject 
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between the performances of two forecasting models are not 

significant. HO was tested against the alternative hypothesis 

(HA), which was set as: the observed differences between the 

performances of two forecasting models are significant. By 

conducting this statistical test at a 5% level of significance, we 

rejected HO if |DM| > 1.96. The outcomes of DM tests are 

presented in Table 6 for 10M horizon, where the calculated 

DM statistics are mostly greater than 1.96 and less than -1.96. 

In accordance with these statistics, we conclude that the 

difference in UVI forecasts from the two predictive models is 

statistically significant in most cases (HO is rejected). The test 

implies that our W-O-convLSTM model mostly shows greater 

accuracies. The only exceptions are for comparisons of our 

objective model with O-convLSTM (M2) in spring and 

summer, where the DM statistics are -0.359 and 0.161, 

respectively. Possibly due to stochastic interference, the 

observed differences between the performances of these two 

forecast models are not significant and they capture the same 

accuracies. Otherwise, in most cases, our proposed model 

delivers superior performance. Similar outcomes of DM tests 

were yielded for other forecast horizons.  

To further examine the success of the W-O-convLSTM 

model in UVI forecasting, the observed and forecasted values 

were plotted as ordinate and abscissa (for the objective model) 

in Fig. 9 and as the absolute forecasted error (for all predictive 

models) in Fig. 10 for 10M horizon. The scatterplots presented 

in Fig. 9 display a least squares regression line (UVIfor = 

mUVIobs + c, where c is the ordinate intercept and m is the 

gradient) between the observed and forecasted UVI. For an 

optimal performing model, its R2 value is closer to 1, while the 

m and c values are very close to 1 and 0, respectively [58]. In 

our case, the W-O-convLSTM model performs very well in all 

seasons, having the most efficient performance in autumn with 

R2 = 0.923, m = 0.918 and forecasts with robust adaptability 

to seasonal and diurnal variations, particularly for stochastic 

cloud cover conditions. As enumerated in Fig. 10, the boxplots 

of absolute forecasted error |FE| (i.e. |FE| = UVIfor - UVIobs) 

explore the precision of the W-O-convLSTM model against 

comparative models in terms of statistics of the lower quartile, 

upper quartile, median, maximum, minimum and data outliers. 

Upon comparisons, the boxplots justify that the distributed 

errors for the objective model acquire significantly lower 

statistical error criteria with smaller spread and relatively 

lower magnitude of quartile and median statistics. Due to the 

reason that the designed models did not achieve a correlation 

coefficient of 1, some outliers were observed in |FE|. Mostly 

in summer and spring, the designed models could not capture 

all higher variability in cloud type, ozone column and aerosol 

effects (i.e. dust and smoke). Despite the presence of some 

outliers in |FE|, the proposed W-O-convLSTM model yielded 

high values of r, (mostly greater than 0.9) in all four seasons 

and at all the forecast timescales, as indicated in Table 5. 

The newly designed W-O-convLSTM model yielded high 

correlation coefficients (r values) in UVI forecasting. The high 

r values were achieved because the predictor inputs displayed 

a high correlation with the UVI. The study by [60] revealed 

that there is a high correlation between the monthly average 

SZA and UVI (≈ 88% or 0.88). Similarly, in our study, Table 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
FIGURE 9. Scatterplots of the observed and forecasted UVI data in the 

testing phase with the optimal W-O-convLSTM model (M1) for 10M 

forecast horizon. Equations of linear regression and the coefficient of 

determination (R2) are shown in each panel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

FIGURE 10. Boxplots of the absolute forecasted error |FE| in the 

seasonal-based testing datasets of UVI at 10M forecast horizon for W-O-

convLSTM model relative to its counterparts. 

 
 
 

TABLE 7 

SKILL SCORE (SS) OF THE W-O-CONVLSTM MODEL AT 10M FORECAST 

HORIZON 

Forecast 

Horizon 

Skill Score 

Autumn Winter Spring Summer 

10M 0.922 0.816 0.847 0.870 

20M 0.917 0.796 0.828 0.871 

30M 0.820 0.748 0.789 0.848 

60M 0.841 0.721 0.714 0.846 
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1 shows a high r value of 0.89 between 10 minutes SZA and 

UVI. Together with SZA, we further integrated cloud 

statistical properties that were also correlated with UVI to 

generate UVI forecasts. Having highly correlated features 

with the target, the simulations of UVI forecasts in this study 

yielded high r values. Another similar study by [61] integrated 

SZA and cloud statistical properties with a CNN-LSTM 

model to forecast photosynthetic photon flux density (PPFD). 

The outcomes revealed that the model captured a high r value 

of 0.92 in generating forecasts of PPFD. Moreover, our study 

forecasted very short-term UVI at 10M, 20M, 30M and 60M. 

For a very short-term forecast, there would be a high 

correlation of immediate past value with the current value, and 

a high correlation of current value with future value. To further 

justify the high r values captured by the objective model we 

calculated Murphy's skill score (SS). The work of [62] reveals 

that the derived decompositions of SS yield analytical 

relationships between the respective skill scores and the 

coefficient of correlation between the observations and 

forecasts. Table 7 presents the SS of the W-O-convLSTM 

model in generating UVI forecasts at multi-step horizons for 

the four seasons. High values of SS validate high r values 

captured in UVI forecasts.  

Overall, the evaluation outcomes and results exemplified 

in Table 5-6, as well as in Fig. 7-10 demonstrate the robustness 

and efficacy of the newly proposed W-O-convLSTM model 

in generating cloud-affected UVI forecasts with respect to its 

counterpart models at multi-step timescale. It was essential to 

apply several statistical criteria, as a single indicator may not 

portray the shortcomings of each predictive model [63]. After 

exploring the performance against benchmarked and baseline 

models, the findings reveal that our wavelet-based hybrid W-

O-convLSTM captures comparatively larger values of r, WI 

and ENS, smaller values of MAE and RMSE, lower 

percentage errors of RRMSE and RMAE and better values of 

R2, m and c. The superiority of W-O-convLSTM is further 

elucidated by larger values of the most stringent metric, i.e. 

LM. In terms of the forecast timescales, more accurate and 

efficient forecasts of cloud-affected UVI are achieved at a 

lower forecast horizon (10M). The stochastic nature of the 

cloud is best captured on short time scales, as even the slightest 

position change can vastly change the available UV. While our 

objective model presents the most precise performance by 

having lower |FE|, it demonstrates its forecasting adaptability 

for all four seasons in Queensland. Out of the four seasons, the 

aforementioned performance metrics statistics indicate that 

our wavelet-hybridized model generates the best forecasts in 

autumn and delivers slightly lower performance in winter at 

all the forecasting timescales. However, such observed 

discrepancy is subtle and relative to other counterpart models, 

the proposed W-O-convLSTM model still delivers the best 

forecasting skills for all four seasons. The robustness of our 

SWT-based objective model over the non-SWT-based 

benchmarked models is an outcome of exploiting SWT that 

successfully addressed the issues of non-stationarity in the 

cloud statistical properties prior to simulating UVI forecasts. 

To validate the influence of cloud movements on UVI, our 

cloud properties-based W-O-convLSTM model is gauged 

against the SZA-based W-O-convLSTMsza model (baseline 

model developed with a single predictor input of SZA). In 

accordance with the captured results in Table 5-6 and Fig. 7-

10, the objective model displays superior performance over 

the baseline model, thus affirming the significance of 

stochastic cloud effects on ground level UVR.  

In this study, the development of a multiple input multi-

step output W-O-convLSTM model entails many advantages. 

Firstly, after rigorous evaluation using robust statistical 

metrics, the model displays superior and enhanced 

performance in forecasting short-term UVI for Australia. 

Secondly, the enhancement in simulations of future UVI can 

serve as a powerful clinical tool to inform more accurate sun-

protection times to the public and mitigate skin and eye health 

risks under different cloud cover conditions. Moreover, our 

improved image segmentation technique avers its potential 

applicability in modeling UVI with cloud cover conditions for 

other temperate countries. Our image segmentation techniques 

may also be applicable in designing robust predictive models 

to improve solar radiation forecasts. This may benefit the 

energy sector for solar energy monitoring under cloud-

affected skies. Additionally, such cloud segmentation 

techniques can be integrated into modeling photosynthetic 

active radiation to facilitate healthy plant growth and benefit 

the agricultural sector. Despite an excellent performance by 

the newly proposed W-O-convLSTM model, it exhibits a 

minor limitation. In model designing, we did not use the 

aerosol and ozone datasets, as these were not available for our 

site at 10 minutes time resolution. These are two important 

atmospheric variables that also affect the ground-based UVI 

through the absorption and scattering processes. However, in 

our study, we utilized the time-lagged Bentham UVI datasets 

that already captured some ozone and aerosol effects. For 

future studies, integrating ozone and aerosol datasets may 

further improve the UVI forecasting framework. 

VI. CONCLUSION 

We proposed a novel solar UVI forecasting framework by 

building a hybrid deep learning and multi-step input system, 

denoted as W-O-convLSTM model, integrating antecedent 

lagged memory of cloud cover properties with SZA. The 

newly developed model was further validated with data 

extracted for four different seasons at study sites in 

Queensland, Australia where solar UV radiation currently 

poses a serious risk in terms of increasing skin cancer and 

eye diseases such as Pterygium, cataracts, or other eye health 

ailments. A 3-phase model design approach was employed, 

which entailed an input selection process with BorutaShap, 

data decomposition using the SWT and a hyperparameter 

optimization stage with the Optuna algorithm. We performed 

a holistic evaluation of the predictive model through 

statistical metrics and diagnostic plots of predicted and 
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measured UVI to elucidate the superior forecasting skill of 

the proposed W-O-convLSTM model over its benchmark 

models. For the forecast horizon of 10 minutes (10M), 20 

minutes (20M), half-hourly (30M) and hourly (60M) scales 

we noted an accurate performance of the proposed W-O-

convLSTM model that has also captured the stochastic 

effects of cloud cover. Thus, our newly proposed model is a 

likely tool to be adopted in real life for benefits to the public 

health area such as delivering sun protection behavior 

recommendations that can help mitigate skin cancer and eye 

disease risk.  

Our study, advancing an earlier work [7] that has used solar 

zenith angle as a single input to predict the solar UV index, 

was a next stage pioneering research in developing an artificial 

intelligence-based predictive model particularly by integrating 

cloud cover conditions. However, in a future study, we may 

integrate the actual measured values of aerosol and ozone 

effects together with the solar zenith angle and the cloud cover 

effects to further enhance the predictive framework for real-

time UVI forecasting. 
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