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Abstract
The multiscale stochastic simulation method based on the marriage of the Brownian Configuration Field (BCF) and the 
Radial Basis Function mesh-free approximation for dilute fibre suspensions by our group, is further developed to simulate 
non-dilute fibre suspensions. For the present approach, the macro and micro processes proceeded at each time step are linked 
to each other by a fibre contributed stress formula associated with the used kinetic model. Due to the feature of non-dilute 
fibre suspensions, the interaction between fibres is introduced into the evolution equation to determine fibre configurations 
using the BCF method. The fibre stresses are then determined based on the fibre configuration fields using the Phan–Thien–
Graham model. The efficiency of the simulation method is demonstrated by the analysis of the two challenging problems, 
the axisymmetric contraction and expansion flows, for a range of the fibre concentration from semi-dilute to concentrated 
regimes. Results evidenced by numerical experiments show that the present method would be potential in analysing and 
simulating various suspensions in food and medical industries.

Keywords Brownian configuration field · Radial basis function · 1D-Integrated Radial Basis Function-based 
approximation · Multiscale macro–micro stochastic simulation · Non-dilute fibre suspension

1 Introduction

The regime of a suspension flow is based on two param-
eters: the aspect ratio ar and the volume fraction � . Con-
cretely, a suspension can be either dilute, semi-dilute, or 
concentrated for 𝜙a2

r
< 1 , 1 < 𝜙a2

r
< ar , or 𝜙a2

r
> ar , respec-

tively. In dilute suspensions, the interaction of fibres can 
be neglected and the fibre evolution can be captured by the 
Jeffery equation [1]. Meanwhile, the physical description of 
the evolution of suspension configurations poses a challenge 
due to the necessity to take into account fibre interactions 
for the semi-dilute and concentrated suspensions. The fibre 
parameters for cases ranging from semi-dilute to concen-
trated suspensions are presented in Table 1.

Besides the bulk properties of a flow, the orientation of 
fibres in the flow is also considered. At a position in the 
flow, the orientation of fibres is illustrated by an ellipse’s 

geometry with three cases: a circle, an ellipse, or a straight 
line (see Fig. 1). They are corresponding to a predomi-
nant direction of fibres in parallel with the ellipse’s long 
major axis, or all fibres aligning with the line at a position, 
respectively.

For non-dilute concentrated suspensions, the fibre–fibre 
interaction is significant. Thus, it is necessary to take into 
consideration this interaction and one possible way is to 
introduce a diffusion term into Jeffery’s equation Folgar 
and Tucker [2]. From the literature, the simulation of a fiber 
suspension is basically carried out through three following 
steps: (i) introduce a fiber stress component into the momen-
tum conservation equation to include dynamic effects of fib-
ers on the bulk properties of the flow, (ii) apply an appro-
priate motion equation to describe the evolution of fiber 
particles, as stated above, the Jeffery’s equation is suitable 
for dilute suspension, whereas the Folgar–Tucker’s equation 
is applicable for semi-dilute and concentrated ones; and (iii) 
determine the fiber contribution to stress (named fiber stress 
tensor) using a relevant constitutive equation as a function 
of the fibers’ orientation.

Since the fiber stress tensor is essentially calculated 
from the fourth-order orientation tensor ⟨����⟩ , the basic 
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difference of numerical methods to simulate fiber suspen-
sions is the way to handle the fourth-order tensor. There are 
several approaches to process the fourth-order orientation 
tensor. One approach is to use a quadratic closure approxi-
mation to break the tensor ⟨����⟩ into two second-order 
tensors ⟨��⟩ Lipscomb et al. [3]. A fully alignment assump-
tion is subsequently applied to calculate these second-order 
tensors. This approach was employed to successfully simu-
late fiber suspension flows through axisymmetric contraction 
and expansion geometries Lipscomb et al. [3], Chiba et al. 
[4] and Baloch and Webster [5]. Another one is to directly 
solve the evolution of the fourth-order tensor as presented 
in Advani and Tucker [6]. And last but not least, the Brown-
ian Configuration Field (BCF) approach Hulsen, et al. [7], 
Tran-Canh and Tran-Cong [8, 9] was successfully applied 
to the simulation of fiber suspensions by Fan et al. [10], Lu 
et al. [11], Dou et al. [12] and Eberle et al. [13]. Follow the 
approach, a high number of fiber configurational fields is 
initiated on each computational node and the fourth-order 
tensor will be averagely calculated.

Over the last decade, the macro–micro multiscale methods 
based on the differentiated and integrated RBF approximations 

have been developed to simulate successfully a range of dilute 
polymer solutions and melts Tran et al., [14, 15], Nguyen et al. 
[16, 17]. In addition, a multiscale modelling based on the com-
bination of IRBF, DAVSS and BCF idea has been also pro-
posed for simulations of dilute fibre suspensions in Nguyen 
et al. [18]. Owing to the advantages of RBF-based high-order 
approximation schemes, the approach achieved high-order 
convergence and accuracy Nguyen et al. [16, 17].

Aligning with this approach, high-order RBF-based Brown-
ian configuration field (BCF) method for dilute fibre suspen-
sions Nguyen et al. [17] by our group is further developed for 
non-dilute suspensions by introducing a diffusion term into 
the Jeffery equation to capture fibre–fibre interaction. For this 
scheme, the conservation equations using the vorticity-stream 
function form are discretised using the high-order integrated 
RBF scheme, whereas the fibre configurations governed by the 
Folgar–Tucker equation are advanced by the BCF approach. 
Such two macro–micro processes are coupled using the Phan-
Thien and Graham model Phan-Thien and Graham [19] for 
the fibre stress.

Since the present method is the combination between the 
Stochastic Simulation Technique and a mesh-free numerical 
method, it is powerful for problems with moving bounda-
ries, complex boundary or free surface and without the need 
of closed form constitutive equation. Results evidenced by 
numerical experiments show the present method would be 
potential in simulating and producing suspensions in food and 
medical industries.

This work is organised as follows: the governing equations 
in the dimensionless form are first presented in Sect. 2. An 
introduction of the discrete adaptive viscoelastic stress split-
ting (DAVSS) technique into the conservation equations is 
also summarised in this section. Section 3 presents a coupled 
macro–micro system of governing equations, followed by a 
short review of the present method together with its algorithm. 
The application of the present method in semi-dilute and con-
centrated suspensions is then demonstrated and discussed 
through several benchmark examples in Sect. 4.

2  Governing equations for non‑dilute 
suspension flows

The dimensionless conservation equations for fibre suspension 
flows are given by [11]

where u, p and t are the velocity, pressure and time, respec-
tively; �s = 2� the stress contribution of the Newtonian 
solvent; � =

1

2

(
∇� + (∇�)T

)
 the rate of strain tensor; �f  the 

(1)∇ ⋅ � = 0,

(2)
��

�t
+ � ⋅ ∇� = −∇p +

1

Re
∇ ⋅

(
�s + �f

)
,

Table 1  States of fibre suspension fluids: semi-dilute (1 ≤ 𝜙a2
r
< a

r
) 

and concentrated (�a2
r
≥ a

r
) , where a

r
 is the aspect ratio of fibre and 

� the volume fraction

a
r

� �a2
r

State of fibre suspension

10 0.01 1 Semi-dilute
10 0.02 2 Semi-dilute
10 0.05 5 Semi-dilute
10 0.08 8 Semi-dilute
10 0.10 10 Concentrated
10 0.12 12 Concentrated
10 0.15 15 Concentrated
10 0.18 18 Concentrated
10 0.20 20 Concentrated
20 0.01 4 Semi-dilute
20 0.02 8 Semi-dilute
20 0.05 20 Concentrated
20 0.08 32 Concentrated
20 0.10 40 Concentrated

Fig. 1  Orientation of fibres: a Circle: the isotropic fibres’ direction; 
b Ellipse: the long major axis is the predominant of fibres’ direction 
and c Straight line: all fibres completely align with the line
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stress component contributed by the suspended fibres and 
Re the Reynolds number.

In this work, the fibre stress �f  for both the semi-dilute 
and concentrated suspensions is determined using the modi-
fied Phan-Thien–Graham model as follows Phan-Thien and 
Graham [19] and Fan et al. [10]:

where ⟨��⟩ and ⟨����⟩ are the second- and the fourth-order 
orientation tensors, respectively, in which � is the unit direc-
tion vector of fibres. Dr is the diffusion coefficient; ⟨(∗)⟩ the 
average value of (*); and A, F and f (�) are fluid parameters 
which are defined as functions of the volume fraction � and 
the aspect ratio ar of the suspended fibres as follows [10]:

where �m is the maximum volume package and empirically 
determined as a linear function of the aspect ratio [20]:

The second- and fourth-order orientation tensors, < �� > 
and < ���� > in Eq. (3) are defined by

where Nf  is the number of fibre configuration fields. More 
details can be found in Bird et al. [21, 22].

The evolution of fibres’ orientation in non-dilute suspen-
sions is determined using the Folgar and Tucker equation 
Folgar and Tucker [2]:

where D
Dt
(⋅) is the material time derivative of (.), � the iden-

tity tensor and � is the effective velocity gradient tensor 
and given by

(3)�f = f (�)
�
A� ∶ ⟨����⟩ + 2DrF⟨��⟩

�
,

(4)

A =
a2
r

ln 2ar − 1.5
, F =

3a2
r

ln 2ar − 0.5
, f (�) =

�(2−�∕�m)
2(1−�∕�m)

2 ,

(5)𝜙m = 0.53 − 0.013ar, 5 < ar < 3.

(6)⟨��⟩ = 1

Nf

Nf�
i=1

�i

Qi

�i

Qi

⟨����⟩ = 1

Nf

Nf�
i=1

�i

Qi

�i

Qi

�i

Qi

�i

Qi

,

(7)
D�

Dt
= � ⋅ � − � ∶ ��� + (� − ��) ⋅ �(b)(t),

(8)� = (∇�)T − �� with � =
2

a2
r
+ 1

.

It is worth noting that the fibres’ interaction is random 
collisions by the Brownian force �(b)(t) with the properties 
⟨�(b)(t)⟩ = 0 and ⟨�(b)(t+s)�(b)(t)⟩ = 2Dr�(s)� , where �(s) is 
the Dirac delta function; Dr = Ci�̇� the diffusion coefficient; 
�̇� =

√
2(� ∶ �) is the general strain rate and Ci the interac-

tion coefficient. In this work, Ci is chosen as a constant as 
done in [10, 11] for simplicity.

By introducing �(�, t) = Q�(�, t) , Eq. (7) is transformed 
into [23]

where Q is the modulus of � and 
√
2Ci�̇�

d�

dt
 is the Brownian 

force �(b) , a function of the Wiener process �.

2.1  Vorticity‑stream function formulation 
in the cylindrical coordinates

In this work, several 2-D problems are considered using 
the axisymmetric vorticity-stream function in the cylindri-
cal coordinates (r, z: radial and axial directions).

The relations between velocity ( ur, uz ), and vorticity � 
and stream function Ψ are given by

The stream function and vorticity transport equations 
can be then derived from Eqs. (1) and (2) using Eq. (10), 
respectively, as follows:

where �zz
f

 , �zr
f

 , �rz
f

 and �rr
f

 are the components of the fibre/
suspension stress tensor �f .

Using the DAVSS scheme, Eq. (12) is rewritten as fol-
lows Nguyen et al. [17]:

(9)
𝜕�

𝜕t
+ � ⋅ ∇� = � ⋅� +

√
2Ci�̇�Q

d�

dt
,

(10)� =
1

2

(
�uz

�r
−

�ur

�z

)
, uz =

1

r

�Ψ

�r
ur = −

1

r

�Ψ

�z
.

(11)1

r

�2Ψ

�z2
+

1

r

�2Ψ

�r2
−

1

r2
�Ψ

�r
= 2�.

(12)

Re

(
��

�t
+ uz

��

�z
+ ur

��

�r
−

ur

r
�

)
=

(
�2�

�z2
+

�2�

�r2
+

1

r

��

�r
−

1

r2
�

)

+
1

2

(
�2τrz

f

�r2
−

�2τzr
f

�z2
+

�2τzz
f

�r�z
−

�2τrr
f

�z�r
+

1

r

�τrz
f

�r
−

1

r

�τrr
f

�z
−

1

r2
τrz
f

)
,

(13)

Re

(
��

�t
+ uz

��

�z
+ ur

��

�r
−

ur

r
�

)
− �a

(
�2�

�z2
+

�2�

�r2

)

= −
(
�a − 1

)(
�2�

�z2
+

�2�

�r2

)
+
(

1

r

��

�r
−

1

r2
�

)

+
1

2

(
�2�rz

f

�r2
−

�2�zr
f

�z2
+

�2�zz
f

�r�z
−

�2�rr
f

�z�r
+

1

r

��rz
f

�r
−

1

r

��rr
f

�z
−

1

r2
�rz
f

)
,
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where �a is the adaptive viscosity and expressed by [11]:

With � = ∇� + (∇�)T is twice the strain rate tensor.

2.2  Discrete governing equations of fibre 
configurations in 2‑D axisymmetric coordinates

The effective velocity gradient � is developed in 2-D 
axisymmetric coordinate (z, r) as follows:

With Eq. (15), the evolution equation(9) is developed in 
z and r-directions as

Using tensor products, the fibre stress tensor in Eq. (3) 
can be developed in the z- and r-coordinates as follows:

(14)�a = Af (�) +

1 +
�

(1∕2)�f ∶ �f

1 +
√
(1∕2)� ∶ �

.

(15)� =

⎡
⎢⎢⎣

(1 − �)
�uz

�z

�uz

�r
−

�

2

�
�uz

�r
+

�ur

�z

�

�ur

�z
−

�

2

�
�uz

�r
+

�ur

�z

�
(1 − � )

�ur

�r

⎤
⎥⎥⎦
.

(16a)𝜕Qz

𝜕t
+ uz

𝜕Qz

𝜕z
+ ur

𝜕Qz

𝜕r
= (1 − 𝜁)

𝜕uz

𝜕z
Qz +

�
𝜕uz

𝜕r
−

𝜁

2

�
𝜕uz

𝜕r
+

𝜕ur

𝜕z

��
Qr +

√
2Ci�̇�QdWz,

(16b)𝜕Qr

𝜕t
+ uz

𝜕Qr

𝜕z
+ ur

𝜕Qr

𝜕r
= (1 − 𝜁)

𝜕ur

𝜕r
Qr +

�
𝜕ur

𝜕z
−

𝜁

2

�
𝜕uz

𝜕r
+

𝜕ur

𝜕z

��
Qz +

√
2Ci�̇�QdWr.

(17a)
�zz
f
= f (�)A

[
�uz

�z

⟨
PzPzPzPz

⟩
+

(
�uz

�r
+

�ur

�z

)⟨
PzPzPzPr

⟩
+

�ur

�r

⟨
PzPzPrPr

⟩]

+2f (�)DrF
⟨
PzPz

⟩
,

(17b)�rr
f
= f (�)A

�
�uz

�z

�
PzPzPrPr

�
+

�
�uz

�r
+

�ur

�z

��
PzPrPrPr

�
+

�ur

�r
⟨PrPrPrPr⟩

�

+2f (�)DrF⟨PrPr⟩ ,

3  Numerical method of the present method 
for non‑dilute fibre suspension flows

A macro–micro multiscale system included Eqs. (11), 
(13), (16a & b) and (17a, b & c) for the governing equa-
tions together with the stress formula in 2-D axisymmetric 
coordinates is discretised using the high-order radial basis 

function-based BCF method Nguyen et al. [17] as follows.
The vorticity equation (13) is temporally discretised using 

the semi-implicit scheme as follows:

(17c)

�zr
f
= �rz

f
=f (�)A

[
�u

z

�z

⟨
P
z
P
z
P
z
P
r

⟩

+

(
�u

z

�r
+

�u
r

�z

)⟨
P
z
P
z
P
r
P
r

⟩

+
�u

r

�r

⟨
P
z
P
r
P
r
P
r

⟩]

+2f (�)D
r
F

⟨
P
z
P
r

⟩
.

(18)

�n+1 −
Δt

Re
�
a

(
�2�n+1

�z2
+

�2�n+1

�r2

)
= �n −

Δt

Re

(
�
a
− 1

)(�2�n

�z2
+

�2�n

�r2

)

+
Δt

Re

(
1

r

��n

�r
−

1

r
2
�n

)
− Δt

(
u
n

z

��n

�z
− u

n

r

��n

�r
+

u
n

r

r

�n

)

+
Δt

2Re

(
�2(�rz

f
)n

�r2
−

�2(�zr
f
)n

�z2
+

�2(�zz
f
)n

�r�z
−

�2(�rr
f
)n

�z�r
+

1

r

�(�rz
f
)n

�r

−
1

r

�(�rr
f
)n

�z
−

1

r
2
(�rz

f
)n

)
.
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For the microscale, the evolution Eq. (16a & b) are explic-
itly discretised using the Euler–Maruyama method:

where superscripts (n + 1) and n denote the two successive 
time steps at tn+1 = (n + 1)∆t and tn = n∆t, respectively; ∆t is 
the time step size.

At each time step, the vorticity and/or stream function equa-
tions, as well as the first and second derivatives of the field 
variables including the fibre stresses at the collocation points, 
are approximated using the 1-D integrated RBF (1D-IRBF) 
method which is presented in Sect. 3.1.

3.1  The 1D‑IRBF‑based spatial discretisation 
scheme

At a time t, the highest order derivative of dependent variable 
ω(x, t) (the second order in this work), the first-order deriva-
tives and the function itself are decomposed as follows Mai-
Duy et al. [24] and Thai-Quang et al. [25]:

(19a)

Q
n+1
z

= Q
n

z
−

�
u
z

𝜕Qn

z

𝜕z
+ u

r

𝜕Qn

z

𝜕r

�
Δt + (1 − 𝜁 )

𝜕u
z

𝜕z
Q

n

z
Δt

+
�
𝜕u

z

𝜕r
−

𝜁

2

�
𝜕u

z

𝜕r
+

𝜕u
r

𝜕z

��
Q

n

r
Δt +

√
2C

i
�̇�ΔtQWn

z
,

(19b)

Q
n+1
r

= Q
n

r
−

�
u
z

𝜕Qn

r

𝜕z
+ u

r

𝜕Qn

r

𝜕r

�
Δt + (1 − 𝜁 )

𝜕u
r

𝜕r
Q

n

r
Δt

+
�
𝜕u

r

𝜕z
−

𝜁

2

�
𝜕u

z

𝜕r
+

𝜕u
r

𝜕z

��
Q

n

z
Δt +

√
2C

i
�̇�ΔtQWn

r
,

(20a)
d2�

dx2
=

m∑
j=1

wj(t)gj(x) =

m∑
j=1

wj(t)G
[2]

j
(x),

(20b)
d�

dx
=

m∑
j=1

wj(t)G
[1]

j
(x) + C1(t),

(20c)�(x, t) =

m∑
j=1

wj(t)G
[0]

j
(x) + C1(t)x + C2(t),

where 
{
wj(t)

}m

j=1
 is the RBF weights; 

{
gj(x)

}m

j=1
 the RBFs; m 

a  c h o s e n  n u m b e r ;  G
[1]

j
(x) = ∫ G

[2]

j
(x)dx  ; 

G
[0]

j
(x) = ∫ G

[1]

j
(x)dx and C1 and C2 are unknown integration 

constants at time t. In this work, the multi-quadric RBF 
(MQRBF) is used and given by

where 
{
cj
}m

j=1
 and 

{
aj
}m

j=1
 are the RBF centres and widths, 

respectively. The centres are chosen to be the same as the 
data points  xj in this work.

Equations (20a), (20b) and (20c) are evaluated at each and 
every collocation point and then rearranged to produce the 
following a set of algebraic equations:

where

Owing to the presence of integration constants, more 
additional constraints can be incorporated into the alge-
braic equation system through Eq. (22c) as follows:

(21)gj(x) =
√(

x − cj
)
+ a2

j
,

(22a)d2�

dx2
= �̂[2](x)�̂(t),

(22b)
d�

dx
= �̂[1](x)�̂(t),

(22c)� = �̂[0](x)�̂(t),

(23a)�̂ =
(
w1(t) w2(t) ⋯ wm(t) C1(t) C2(t)

)T

(23b)�̂ =
(
𝜔1(t) 𝜔2(t) ⋯ 𝜔m(t)

)T
with 𝜔j = 𝜔(xj),

(23c)

dk�̂

dxk
=
(

dkω1(x,t)

dxk

dkω2(x,t)

dxk
⋯

dkωm(x,t)

dxk

)T

with k = {1, 2},

�̂[2] =

⎡
⎢⎢⎢⎢⎣

G
[2]

1

�
x1

�
⋯ G

[2]
m

�
x1

�
0 0

G
[2]

1

�
x2

�
⋯ G

[2]
m

�
x2

�
0 0

⋮ ⋱ ⋮ ⋮ ⋮

G
[2]

1

�
x
m

�
⋯ G

[2]
m

�
x
m

�
0 0

⎤
⎥⎥⎥⎥⎦

�̂[1] =

⎡
⎢⎢⎢⎢⎣

G
[1]

1

�
x1

�
⋯ G

[1]
m

�
x1

�
1 0

G
[1]

1

�
x2

�
⋯ G

[1]
m

�
x2

�
1 0

⋮ ⋱ ⋮ ⋮ ⋮

G
[1]

1

�
x
m

�
⋯ G

[1]
m

�
x
m

�
1 0

⎤⎥⎥⎥⎥⎦

�̂[0] =

⎡⎢⎢⎢⎢⎣

G
[0]

1

�
x1

�
⋯ G

[0]
m

�
x1

�
x1 1

G
[0]

1

�
x2

�
⋯ G
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�
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�
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⋮ ⋱ ⋮ ⋮ ⋮

G
[0]

1

�
x
m

�
⋯ G

[0]
m

�
x
m

�
x
m
1

⎤⎥⎥⎥⎥⎦
.

(
�̂�

𝐟

)
= �̂��̂�,
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where �̂ =

[
�̂[0]

�̂

]
 and 𝐟 = �̂��̂� are additional constraints. 

The conversion of the network-weight space into the physi-
cal space yields

where �̂−1 is the conversion matrix. Equation (24) is sub-
stituted into Eq. (20a) and (20b) to obtain the second- and 
first-order derivatives of ω in terms of nodal variable values 
as follows:

where D1 and D2 are known vectors of length m; and k2 and 
k1 are scalars determined by �̂ . Apply Eq. (25) at all colloca-
tion points on the grid lines, we have

where D̂2x and D̂1x are known matrices of dimension m × m; 
and �̂2x , �̂1x are known vectors of length m; m is defined 
as before. The subscript x expresses the spatial direction, 
in which the matrices D̂2x , D̂1x and the vectors �̂2x , �̂1x are 
constructed. For 2-D problems, a similar process is carried 
out in the y-direction to achieve known matrices and vectors 
D̂2y,D̂1y,�̂2y and �̂1y.

3.2  Algorithm of the present macro–micro 
multiscale method

The algorithm of the present multiscale method is detailed 
as follows.

• The fibre stresses are determined at a time step ti+1 from 
the fibre configuration at step ti (the initial one for the 
first step) using Eq. (17a, b & c), and the derivatives 
of stresses are then approximated using the high-order 
integral RBF technique;

• Solve Eqs. (18) and (11) for the vorticity and stream 
function, respectively. Then, calculate the velocity of 
the current step using Eq. (10);

(24)�̂� = �̂�
−1
(
�̂�

𝐟

)

(25)d2ω

dx2
= D2�̂ + k2

dω

dx
= D1�̂ + k1,

(26)d2�

dx2
= D̂2x�̂ + �̂2x

d�

dx
= D̂1x�̂ + �̂1x,

• Calculate the effective velocity gradient � using 
Eq. (15);

• Solve Eq. (19a & b) for the fibre configuration fields 
� ’s using the Euler–Maruyama method;

• Calculate the fibre stress tensor at step ti+1 use Eq. (17a, 
b & c);

• The routine is repeated until either the desired time or 
convergence measure (CM) for the velocity is reached.

4  Numerical examples

The present method is used to simulate two challenging non-
dilute fibre suspension flows: flows through 4:1 and 4.5:1 
axisymmetric contractions, and flows through 1:4 axisym-
metric expansion for several fibre parameters and Reynolds 
numbers. The fibre parameters for cases ranging from semi-
dilute to concentrated suspensions are presented in Table 1 
of the introduction.

4.1  Flow through a circular tube

Although the flow through a circular tube of non-dilute fibre 
suspensions is not a focus of this work, this numerical exam-
ple is the first investigation, because the velocity profile, the 
vorticity and stream function at the outlet by the simulation 
will be used as the boundary conditions at the inlet of the 
fibre suspension flow through an axisymmetric contraction 
and expansion presented in Sect. 4.2.

The flow through a circular tube is described in Fig. 2. 
The length and radius of the tube are L = 10 and R = 0.5 , 
respectively. This simulation is carried out with Re = 0 , 
Δt = 1E − 3 and the number of fibres Nf = 1000.

The boundary conditions are given as follows: (i) non-slip 
boundary condition on the wall BC: uz = 0 and ur = 0 ; (ii) 

Fig. 2  Non-dilute fibre suspension flow through a circular tube: the 
geometry and the selected coordinates (z, r)

Fig. 3  Non-dilute fibre suspension flow through a circular tube: the 
velocity profile ( u

z
 ) along the centreline of flows with a range of 

�a2
r
= {1, 5, 10, 15, 20}
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the symmetric boundary condition on the centreline OD: 
�uz

�r
= 0 and ur = 0 ; (iii) Newtonian parabolic velocity profile 

at the inlet OB: uz = umax

(
1 −

(
r

R

)2
)

 and ur = 0 , where 

umax = 1.5 is the maximum velocity. A set of Nf  fibres is 
randomly generated and assigned at each collocation point 
as the initial fibre configuration field; and (iv) flow out con-
dition at the outlet DC: ur = 0 and �uz

�z
= 0.

Experiences find that finer meshes near the centreline 
and the outlet are necessary for higher solution accuracy 
in these regions. Therefore, a designed grid is applied with 
Δz1 = 0.05 , ∀z ∈ [0, 9.8] and Δz2 = 0.01, ∀z ∈ [9.8, 10] ; 
Δr1 = 0.01, ∀r ∈ [0, 0.1] ; and Δr2 = 0.05, ∀r ∈ [0.1, 0.5].

To demonstrate the role of fibre parameters in the kinetic 
behaviour of the flow, the non-dilute fibre suspension flow 
is simulated for a range of �a2

r
 . The obtained results by the 

Fig. 4  Non-dilute fibre suspen-
sion flow through a circular 
tube: the effect of fibre param-
eters on the velocity profile 
along the fibre direction with 
a �a2

r
= 1 ; b �a2

r
= 10 ; and c 

�a2
r
= 20

Fig. 5  Non-dilute fibre suspension flow through a circular tube: 
the velocity profiles at the outlet of the channel for flows with 
�a2

r
= {1, 5, 10, 15, 20}

Fig. 6  Non-dilute fibre suspension flow through a circular 
tube: the convergence measure for the velocity of flows with 
�a2

r
= {1, 5, 10, 15, 20}
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present method are discussed and compared with others as 
follows.

• Figure 3 presents the distribution of the axial veloc-
ity uz along the centreline of the tube for a range of 
�a2

r
= {1, 5, 8, 10, 15, 20} . Their corresponding vol-

ume fractions ( � ) and aspect ratios ( ar ) can be found in 
Table 1. Results show that in all cases of �a2

r
 , undershoot 

is observed near the entrance (z ∈ (0.41, 0.74)) . Moreo-
ver, the undershoot is more pronounced with increas-
ing �a2

r
 . Undershoots reflect the effect of the isotropic 

configuration of fibres (see Fig. 1a) at the inlet. In fact, 
the isotropy of fibre configurations resists the develop-
ment of the velocity (uz) at the region near the inlet. The 
velocity then increases along the centreline towards the 
outlet with a gradual decrease of the isotropy of fibres’ 
orientation.

  Results in Fig. 3 also show that the velocity (uz) on 
the centreline at the steady state reduces as � and/or  ar 
increases.

• Figure  4 shows the impact of � and ar on the pro-
file of axial velocity (uz) at several cross sections 
(z = {0, 0.5, 1, 2, 4, 10}) with �a2

r
= 1 (semi-dilute) 

(Fig. 4a), �a2
r
= 10 (concentrated) (Fig. 4b) and �a2

r
= 20 

(concentrated) (Fig. 4c). Numerical results show that the 

velocity profile becomes more plug-like with increasing 
� and/or ar . The profiles of outlet velocity of flows for a 
range of �a2

r
= {1, 5, 10, 15, 20} presented in Fig. 5 also 

depict that the velocity profiles are more plug-like for 
higher values of ar and/or �.

• Finally, the influence of �a2
r
 on the convergence meas-

ure CM for the velocity is reported in Fig. 6. Results 
show a significant influence of �a2

r
 on the convergence 

of the method, where the CM generally degenerates 
with increasing level of fibre concentration and/or 
aspect ratio.

4.2  The 4:1 axisymmetric contraction flows

The geometry of the 4:1 axisymmetric contraction flow 
is schematically described in Fig. 7 with the length and 
radius of the upstream tube LU and RU , respectively; the 
length and radius of the downstream LD and RD ; and the 
length of the salient vortex Lv.

The contraction ratio ( � ) and the dimensionless vortex 
length ( L∗

v
 ) are given by

The boundary conditions for this problem are as 
follows:

 (i) At the inlet OA , the velocity, the vorticity and the 
stream function are the values at the outlet of the 
circular Poiseuille flows investigated in Sect. 4.1. 
Furthermore, �Ψ

�z
= 0 is also assigned;

(27)� =
RU

RD

, L∗
v
=

Lv

2RU

.

Fig. 7  Geometry of the axisymmetric contraction flow and the 
selected coordinates (z, r)

Fig. 8  Non-uniform Cartesian grid for the 4:1 axisymmetric contrac-
tion flow

Fig. 9  4:1 axisymmetric contraction of non-dilute 
fibre suspensions: the impact of fibre parameters on 
the vortex length ( L∗

v
 ) with a

r
= 10 and a range of 

� ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20} ; and a
r
= 20 

and a range of � ∈ {0.01, 0.02, 0.05, 0.08, 0.10}
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 (ii) At the outlet DE , flow-out conditions are defined as 
�uz

�z
= 0 , ur = 0 ; �Ψ

�z
= 0 ; and ��

�z
= 0;

 (iii) On the walls AB , CD and BC , non-slip boundary 
condition is set up for the velocity, i.e., uz = 0 and 
ur = 0 . The corresponding boundary conditions for 
the stream function and the vorticity are determined 
by

 • On the wall AB : Ψ = 0,
�Ψ

�r
= 0 ; ω = ωw1

;
 • On the wall BC : Ψ = 0,

�Ψ

�z
= 0 ; � = �w2

;
 • On the wall CD : Ψ = 0,

�Ψ

�r
= 0 ; � = �w3

;where ωw1
 , 

ωw2
 and ωw3

 are determined and updated using Eq. (11) 
with the known stream function at each time step;

 (iv) On the centreline OE , symmetric boundary con-
dition for the velocity, i.e., �uz

�r
= 0 and ur = 0 ; the 

Fig. 10  4:1 axisymmetric con-
traction flows of non-dilute fibre 
suspensions: the effect of �a2

r
 

on the salient corner vortex size 
for �a2

r
 = {5, 10, 15, 20}

Fig. 11  4:1 axisymmetric contraction flows of non-dilute fibre suspensions: the effect of �a2
r
 on the orientation of fibres around the contraction 

area for �a2
r
 = {5, 10, 15, 20}
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corresponding boundary conditions for the stream 
function and vorticity are Ψ = Ψc , 

�Ψ

�r
= 0 and ω = 0 , 

where Ψc is determined by Eq. (10).

The non-uniform grid designed in [17] is applied 
to the simulation of this example as follows: 
Δz1 = 0.05,∀z ∈ [0, 0.5]

⋃
[4, 7]

⋃
[10.5, 11] ;  Δz2 = 0.1

∀z ∈ [0.5, 4]
⋃

[7, 10.5] ;  Δr1 = 0.01 ∀r ∈ [0, 0.1] and 
Δr2 = 0.025∀r ∈ [0.1, 1] (see Fig. 8).

Number of fibres Nf = 1000 and the time step size 
Δt = 1E − 3 are applied in this simulation. However, a finer 
time step is used at the initial time for the numerical stabil-
ity of the method in several cases of highly concentrated 
suspensions. In addition, unless otherwise stated, the simula-
tion is carried out for the 4:1 contraction flow with LU = 6

,RU = 1,LD = 5 , RD = 0.25 and Re = 0.
The effect of the volume fraction ( � ) and the fibre aspect 

ratio ( ar ) on the flow pattern and fibres' orientation is first 
investigated. Results by the present method are discussed 
and compared with those by [11] using the BCF-finite-ele-
ment method as follows.

– Figure  9 depicts the effect of the fibre param-
eters ( �, ar ) on the vortex length ( L∗

v
 ) for two 

cases of fibre suspension: ar = 10 with a range of 
� ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20} 

a n d  a r  =  2 0  w i t h  a  r a n g e  o f 
� ∈ {0.01, 0.02, 0.05, 0.08, 0.10} . Numerical experiments 
show that the vortex length is more pronounced with the 
increase of � or/and ar . This observation was reported in 
[11] but with a gap in the results by the present method 
as shown in Fig. 9.

– The impact of fibre parameters on the shape and 
length of the cortex at the salient corner for a range of 
�a2

r
= {5, 10, 15, 20} is presented in Fig. 10 in which the 

salient vortex's size is more pronounced with increasing 
�a2

r
 . Furthermore, the present results also confirm that 

unlike the Newtonian flow, where the vortex boundary is 

Fig. 12  4:1 axisymmetric contraction of non-dilute suspensions: the effect of Reynold number (Re) on the salient corner for �a2
r
 = 12

Fig. 13  Geometry for the 1:4 axisymmetric expansion flow and the 
selected coordinates (z, r)
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concave, it is slightly convex for fibre suspension flows 
as reported in Lipscomb et al. [3], Chiba et al. [4] and Lu 
et al. [11].

– Figure 11 clearly shows the influence of �a2
r
 on the ori-

entation of fibres around the abrupt contraction by an 
ellipse/line/circle (as defined in Fig. 1) at a position, 
whereas the black dashed lines represent the streamlines 
for four cases of �a2

r
= {5, 10, 15, 20} . Several notable 

points are observed as follows.

• Fibre distribution in the main area of the flow tends 
to be less anisotropic with the increasing of �a2

r
 . 

Experimental results also depict that the region 
dominated by anisotropic fibres distribution is 
gradually shrinking from lower �a2

r
= 5 for semi-

dilute (Fig. 11a) to higher �a2
r
= 20 for concentrated 

(Fig. 11d). This can be explained by the random 
interaction between fibres, which is stronger with 
increasing �a2

r
 , reduces the influence of the flow 

velocity on the fibres' orientation.
• Meanwhile, the fibres distribution is more isotropic 

towards the centre of the vortex.

Finally, the present work also investigates the impact of Re 
on the vortex size for �a2

r
= 12 . Numerical observation by 

Fig. 12 shows that the length of vortex lightly reduces with 
the increasing of Re for a range of Re ∈ {0, 1, 2, 5} . This is in 
good agreement with those in Abdul-Karem et al. [26].

4.3  The 1:4 axisymmetric expansion flow

The geometry of 1:4 axisymmetric expansion flow is sche-
matically described in Fig. 13 in which LD = 4 and RD = 1 
are the length and radius of the downstream tube, respec-
tively; LU = 6 and RU = 0.25 the length and radius of the 
upstream tube, respectively; and Lv the vortex length. The 
expansion ratio (β) and dimensionless vortex length ( L∗

v
 ) 

are defined as in Eq. (27) but for the expansion flow. The 
similar problem was studied by [11] using the finite-ele-
ment method-based BCF. The boundary conditions of this 
problem are described as follows.

 (i) At the inlet OA , the stream function, vorticity and 
velocity, are set up using the values at the outlet of 
the axisymmetric contraction flow investigated in 
Sect. 4.2. �Ψ

�z
= 0;

 (ii) At the outlet DE , the stream function, vorticity and 
velocity at the inlet of the axisymmetric contraction 
problems are used as the Dirichlet boundary condi-
tions of this problem. �Ψ

�z
= 0;

 (iii) On the walls AB , CD and BC , non-slip boundary 
condition is set up for the velocity: uz = 0 and ur = 0 . 
Hence, the corresponding boundary conditions for 
the stream function and the vorticity on the walls are 
set up as follows.

 • Ψ = 0 , �Ψ
�r

= 0 and � = �w1
 on the wall AB;

 • Ψ = 0 , �Ψ
�z

= 0 and � = �w2
 on the wall BC;

 • Ψ = 0 , �Ψ
�r

= 0 and � = �w3
 on the wall CD;where ωw1

 , 
ωw2

 and ωw3
 are determined using Eq. (11) with the 

known stream function at each time step;
 (iv) On the centreline OE , the symmetric boundary con-

dition for the velocity is applied, i.e., �uz
�r

= 0 and 
ur = 0 . The corresponding boundary conditions 
for the stream function and vorticity are set up as 
Ψ = Ψc , 

�Ψ

�r
= 0 and ω = 0 , where Ψc is determined 

by Eq. (10) using the inlet boundary condition of the 
velocity.

A non-uniform grid is designed for the simulation. 
Finer grids in regions near the outlet and inlet and around 
the abrupt expansion and the centreline are necessary to 
produce accurate solutions. A detailed grid is described in 
Fig. 14 and detailed as follows:

– On axial direction: Δz1 = 0.05∀z ∈ [5, 7] , Δz2 = 0.1

∀z ∈ [0, 5]
⋃

[7, 10];

Fig. 14  Non-uniform grid for the 1:4 axisymmetric expansion flow

Fig. 15  1:4 axisymmetric expansion flows of fibre sus-
pensions: the influence of fibre parameters on the vor-
tex length (Lv

*) for ar = 10 coupled with a range of 
ϕϵ{0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20} ; and for ar = 20 
coupled with a range of ϕϵ{0.01, 0.02, 0.05, 0.08, 0.10}
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Fig. 16  1:4 axisymmetric expansion flows of non-dilute suspensions: the influence of �a2
r
 on the salient vortex pattern for �a2

r
= {5, 10, 15, 20} . 

A lip vortex was observed for higher values of �a2
r

Fig. 17  1:4 axisymmetric expansion flows of non-dilute suspensions: the fibre distribution around the expansion area for a
r
= 10 and 

� ∈ {0.05, 0.10, 0.15, 0.20}
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– On radia l  d i rec t :  Δr1 = 0.01∀r ∈ [0, 0.1] ;  and 
Δr2 = 0.025 ∀r ∈ [0.1, 1].

The time step size Δt = 1E − 3 is also used in this sim-
ulation as in the contraction flow problem. However, a 
smaller time step is used at the initial time for the simula-
tion of several highly concentrated suspensions. Numerical 

results by the present method are discussed and compared 
with those by [11] and other publications as follows:

The effect of fibre parameters ( �, ar ) on the vor-
tex length ( L∗

v
 ) of the 1:4 expansion f low is pre-

sented by Fig.  15 for two cases of f ibre sus-
pensions:  ( i)  ar = 10 coupled with a range of 
� ∈ {0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20}  ; 

Fig. 18  1:4 axisymmetric 
expansion flows of non-dilute 
suspensions: the effect of the 
Reynold number on the salient 
corner vortex for a

r
= 10 and 

� = 0.12

Fig. 19  1:4 axisymmetric 
expansion flows of non-dilute 
fibre suspensions for a

r
= 10 

and � = 0.15 : the evolution of 
fibre stresses including shear 
stress ( τzr

f
 ), normal stresses ( τzz

f
 

and τrr
f

 ) and the first normal 
stress difference ( τrr

f
− τzz

f
 ) at 

the position z = 5.75 and r = 0.5
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a n d  ( i i )  ar = 20  c o u p l e d  w i t h  a  r a n ge  o f 
� ∈ {0.01, 0.02, 0.05, 0.08, 0.10} . The numerical results 
by Fig.  15 are in very good agreement with those by 
[11]. Indeed, in the contraction flows the vortex length is 
more pronounced with increasing � and/or ar (Fig. 10), 
while it changes insignificantly in the expansion flows 
( L∗

v
≈ 0.18… 0.26).

Moreover, numerical results by the present method 
confirm that the vortex lengths in the expansion flows are 
smaller than those in the contraction flows with the same 
fibre parameters. However, while the vortex length is nearly 
unchanged, a small lip vortex is observed near the re-entrant 
corner since a sufficiently large value of �a2

r
(15 & 20) as 

shown in Fig. 16 for a range of �a2
r
= {5, 10, 15, 20} . This 

observation is notable, because lip vortex was reported only 
for the Newtonian and viscoelastic expansion flows with 
high expansion ratio and Weissenberg number by Baloch 
and Webster [5] and Baloch et al. [27] but not in any report 
on fibre suspension flows.

The orientation of fibres as well as streamlines (black 
dashed lines) around the expansion area for a range of 
�a2

r
= {5, 10, 15, 20} is shown in Fig.  17. Results show 

that except fibres on the centreline, most fibres align with 
the flow direction (straight line or ellipse) in the upstream 
region, whereas the direction of fibres is more or less ran-
dom along the streamline (a circle/circular ellipse) in the 
downstream region. In other words, near the vortex bound-
ary fibres are not tangential to streamlines, which is in 
contrast to our numerical observation in the simulation of 
contraction flow (see Fig. 11). These findings are in good 
agreement with those of several numerical and experimental 
works Abdul-Karem et al. [26], Chiba and Nakamura [28] 
and Verweyst and Tucker [29].

The significant impact of inertia on the vortex size 
is also found by the present method. Indeed, results by 
Fig. 18 show a fast development of vortex with increasing 
Re = {0, 1, 2, 5} , which was reported in several experimental 
works by Abdul-Karem et al. [26] and Townsend and Wal-
ters [30]. Furthermore, the observation also shows, while the 
vortex boundary is convex referred to the centreline for the 
creeping flow ( Re = 0 , Fig. 18a), it is gradually concave for 
the flows at higher Re (Fig. 18b–d).

A simulation of the 1:4 expansion flow of non-dilute fibre 
suspensions with the fibre's aspect ratio ar = 10 and volume 
fraction � = 0.15 using a range of the numbers of fibre con-
figurations Nf = {500, 1000, 2000} is also carried out to 
study the impact of the fibre configuration on the mechanical 
properties of suspension. Figure 19 presents the profiles of 
shear stress ( τzr

f
 ), normal stresses ( τzz

f
 and τrr

f
 ) and the first 

normal stress difference ( τrr
f
− τzz

f
 ) at the position 

(z,r) = (5.75, 0.5) in the considered domain. The numerical 
results indicate that while τrr

f
 and τzr

f
 , about 12 (Fig. 18a) and 

59 (Fig. 18c), respectively, are in good agreement with those 
of the similar problem by Verweyst and Tucker [11], τzz

f
 and 

τrr
f
− τzz

f
 reported in Fig. 18b, d are smaller than those men-

tioned in the same publication. In addition, the smoothness 
of curve presenting fibre stresses, especially τzz

f
 , is improved 

with increasing the number of fibre configurations as 
described in Fig. 19.

5  Conclusions

The multiscale simulation method based on the combina-
tion of high-order integral RBF approximation and BCF 
idea is further developed for non-dilute fibre suspensions 
in this work. The research is to simulate semi-dilute and 
concentrated fibre suspension flows in which the evolution 
of fibre configurations governed by the Folgar–Tucker equa-
tion are determined by the BCF method and the fibre stress 
is approximated by the Phan-Thien–Graham model. The 
efficiency of the present method for the simulation of non-
dilute fibre suspension flows is based on both the accuracy 
of the method and the stability of the stochastic process. 
As an illustration of the present method, two challenging 
flows: the 1:4 axisymmetric expansion and 4:1 axisymmetric 
contraction flows are investigated for a large range of the 
fibre parameters from semi-dilute to concentrated regimes. 
Numerical results by the present method are in good agree-
ment with those published by Lu et al. [11]. Moreover, sev-
eral dynamics behaviours of suspension flows by the present 
work including the orientation of fibres are nearly similar to 
experimental observations published in Abdul-Karem et al. 
[26], Verweyst and Tucker [29] and Baloch et al. [5]. Finally, 
the present work finds the existence of a lip vortex in the 1:4 
expansion flows of highly concentrated fibre suspensions.
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