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Abstract: Sea level rise is an important and topical issue in the South Pacific region and needs an
urgent assessment of trends for informed decision making. This paper presents mean sea level
trend assessment using harmonic analysis and a hybrid deep learning (DL) model based on the
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) technique,
Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU) and Neighbourhood Component
Analysis (NCA) to build a highly accurate sea level forecasting model for three small islands (Fiji,
Marshall Island and Papua New Guinea (PNG)) in the South Pacific. For a 20-year period, the
estimated mean sea level rise per year from the harmonic computation is obtained: 112 mm for PNG,
98 mm for Marshall Island and 52 mm for Fiji. The DL procedure uses climate and environment-based
remote sensing satellite (MODIS, GLDAS-2.0, MODIS TERRA, MERRA-2) predictor variables with
tide gauge base mean sea level (MSL) data for model training and development for forecasting. The
developed CEEMDAN-CNN-GRU as the objective model is benchmarked by comparison to the
hybrid model without data decomposition, CNN-GRU and standalone models, Decision Trees (DT)
and Support Vector Regression (SVR). All model performances are evaluated using reliable statistical
metrics. The CEEMDAN-CNN-GRU shows superior accuracy when compared with other standalone
and hybrid models. It shows an accuracy of >96% for correlation coefficient and an error of <1% for
all study sites.

Keywords: mean sea level (MSL); Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN); Convolutional Neural Network (CNN); Gated Recurrent Unit (GRU); Neigh-
bourhood Component Analysis (NCA); deep learning (DL)

1. Introduction

Climatic change has a considerable influence on the coastal communities of Australia
and Small Island Developing States (SIDS) in the South Pacific. The vulnerability of various
locations in the region will continue to increase with the accelerated rate of sea level
rise [1,2]. The changes in sea level extremes depend on many environmental and climatic
variables, such as increasing global temperatures. Among these, events such as tropical
cyclones, storm surges and wave-breaking processes can cause a devastating impact on
small islands [3,4]. The thermal expansion phenomena with sea warming and the melting
of ice mountain glaciers lead to the rise in the sea levels. According to [5], rising oceanic
temperatures affect the marine ecosystem in many ways, one of which is the melting of ice
caps driving sea levels to rise. Although this rise varies widely, the cumulative effect could
lead to serious consequences in the South Pacific region.
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The analysis of sea level variation in different places of the South Pacific region based
on available data is a very topical and highly important problem. The results obtained will
help to make a reliable prediction of the long-time trend in sea level. According to [6], there
is a clear pattern of vulnerability of South Pacific island nations. The sea level changes
are dependent on different factors, such as eustatic, isostatic, thermosteric and tectonic
contributions [7,8]. The increase in sea level in these small island nations is arguably the
most important threat from anthropogenic climate change. The two basic causes of concern
with sea level changes is the result of its direct relation to the earth’s climate change and
the socioeconomic consequences of South Pacific people who have to move and settle
elsewhere [9].

The availability of reliable data and the advancement in artificial intelligence mod-
elling have provided an important platform for the accurate future forecasting of marine
environment parameters. As the climate change issue is becoming a serious priority at a
global level and more awareness is created, the need for research and reliable forecasted
trends of climate impacts are required for better decision making. A study by Raj and
Brown [10] successfully used the hybrid Bi-directional Long Short-Term Memory (BiLSTM)
model with feature selection and Ensemble Empirical Model decomposition (EEMD) to
study wave height behaviour around the coastal areas of Queensland, Australia. Gharineiat
and Deng [11] have used a standalone Multi-Adaptive Regression Splines (MARS) model to
assess and show future sea level trends along the northern coast of Australia. A study [12]
at Chiayi coast, Taiwan have also used an Extreme Learning Machine model (ELM) to
predict daily sea level. Ahmed et al. [13–15] have used deep learning hybrid models to
predict other environmental variables as well. Ghimire et al. [16] used Convolutional
Neural Network and Long Short-Term Memory (CNN-LSTM) to forecast solar radiation in
Australia. Ekta et al. [17] also used a hybrid CNN-LSTM model to forecast air quality in
Australia. A study by Moishin et al. [18] used Conv-LSTM to successfully forecast flood in
the Fiji Islands. While there are other studies on sea level prediction and analysis, none of
these studies have focused on the small island countries in the South Pacific with a deep
learning data model. Hence, the novelty of this study is the assessment of sea level trend
and the development of a deep learning (DL) model for mean sea level forecasting for three
South Pacific Island nations.

2. Study Area and Data

There are essentially two types of sea level observations, tide gauge measurements
and satellite altimeter measurements. Tide gauge data is used in this study which provides
local sea level records, and the data capture a variety of features related to decadal climate
change, tides, storm surges, tsunamis and swells. Table 1 shows the latitude and longitude
of the selected sites. The three island nations were selected based on their geographical
location lying on triangular vertices in the South Pacific Ocean (see Figure 1).

Table 1. Description of the location of variables for MSL forecasting.

Country Place Latitude Longitude

Fiji Lautoka −2.0420 147.3737

Marshall Islands Majuro 7.1060 171.3725

PNG Manus −17.6053 177.4381
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Figure 1. Study region showing the selected Pacific Islands (i.e., Fiji, Marshall Island and PNG). 

Source: Pacific Sea Level Monitoring Project (bom.gov.au, accessed on 10 May 2021). 
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Figure 1. Study region showing the selected Pacific Islands (i.e., Fiji, Marshall Island and PNG).
Source: Pacific Sea Level Monitoring Project (bom.gov.au, accessed on 10 May 2021).

Atmospheric and environmental variables are inter-related and play major roles in sea
level variations [19]. When observed data are not available, satellite based data with an
associated variable can be effective to estimate trends of environmental variables due to
climate change [20,21]. The hydrologically based dataset from GLDAS 2.0 (https://ldas.
gsfc.nasa.gov/gldas, accessed on 5 February 2021) is associated with the changes in sea level.
This is supported by the results of Ref. [22], which claims that variability in hydrological
variables are linked to the sea level change through water held in soil, surface waters
and aquifers. The MODIS-Terra and MERA-2 (https://terra.nasa.gov/data/modis-data,
accessed on 5 February 2021) dataset variables provide valuable information on atmospheric
precipitation, pressure, and temperature. Global warming and sea level changes are directly
related as shown by many studies [23–26]. Studies on predictions of sea level rise have
produced many controversial findings and arguments [27–30] and the studies undertaken
confirms that precipitation and temperature have much more of an impact than initially
thought on sea level variability. The inclusion of these variables helped to achieve a
better fit with observed sea level variation [29]. Figure A1 in Appendix A shows the
correlogram to illustrate the covariance between the mean sea level and the predictor
variables in terms of cross-correlation for the Fiji Islands. The dark shades indicate a higher
cross-correlation value.

A total of 53 predictor variables were extracted from a global pool for data modelling.
These are satellite (MODIS, GLDAS-2.0, MODIS TERRA, MERRA-2)-based data. Table A1
in Appendix A describes each of these in more detail. Each predictor variable is correlated
with the objective variable to determine the degree of correlation before they are further
screened using decomposition and feature selection. Table A2 in Appendix A provides the
relevant information on optimum hyperparameters. Using the conventional models, the
traditional antecedent lagged matrix of the daily predictors’ variables was applied. The
prior application of the NCA feature selection algorithm was made before using CCF and
PACF and before significant predictors were removed from the model. NCA was applied
to highlight the most pertinent features from the lag in predictors that the antecedent
experienced for the hybrid model.

bom.gov.au
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://terra.nasa.gov/data/modis-data
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3. Materials and Methods

The mean sea level is the target variable in this study. The dataset for this is obtained
from the Bureau of Meteorology (BOM) (Pacific Sea Level and Geodetic Monitoring Project
File information and Instructions (bom.gov.au, 10 May 2021)). These are hourly data and
measured as observed sea level in meters above the tide gauge zero. The sea level data
recording is part of the Pacific and Geodetic monitoring (PSLGM) which comes under the
Climate and Oceans Support Program in the Pacific (COSPPac). The selected countries
(Fiji, PNG and Marshall Islands) for this study are participating nations in this program.
These countries host a permanent tide gauge facility which records the observations on
sea levels and tides. Tide gauges are fitted with sensors which record the height of the
surrounding water level [31,32]. The design has been improved over the years to protect
sensitive electronics, transmitting devices, backup power and storage components. The
satellite data is generated using remote sensing technologies such as sensors and radars
which collect the measurements [33–35].

Firstly, we used the harmonic analysis method for sea level trend observation. The proce-
dure involved fitting the observations with a function using a least-square computation [36–38]:

m(t) = a0 + att + acos 1 cos ω1t + asin 1 sin ω1t + acos 2 cos ω2t + asin 2 sin ω2t (1)

where t is the sampling interval, ω1 and ω2 are the yearly and half-yearly angular fre-
quencies. a0, a1 , a2, at, acos 1, asin 1, acos 2 and asin 2 are unknown coefficients that can
be estimated through least squares. The sea level residual was assumed to have a zero
mean and it follows Gaussian distribution [37–39]. The quality of the tide gauge data was
screened by the Pope Blunder Test [40] to remove any spurious changes in the data.

The coefficients were used to find the amplitudes of the annual (A):

A =

√
(acos 1)

2 + (asin 1)
2 (2)

and semi-annual (SA):

SA =

√
(acos 2)

2 + (asin 2)
2 (3)

The analysis and computation of the large dataset from 1994 to 2020 for the trend and
increase in sea level was performed in MATLAB.

Secondly, we combined the Convolutional Neural Network (CNN) and Gated Recur-
rent Unit (GRU) and developed the hybrid models for MSL forecasting. The standalone
models were used for benchmarking the objective model. These were Decision Tress (DT)
and Support Vector Regression (SVR). Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) was used for input signal decomposition with the ma-
chine learning algorithms to further improve the accuracy in forecasting. Feature selection
of the predictor inputs was generated by cross-correlation and Neighbourhood Component
Analysis (NCA).

It was critical to optimise the objective model’s architecture to incorporate the re-
lationship between predictors and model for the deep learning models. A multi-phase
CNN-GRU and GRU models were developed using Python-based deep learning packages
of TensorFlow and Keras. Reliable statistical metrics were used to investigate the forecasting
robustness of the incorporated models. Deep learning libraries of Keras [41,42] and Ten-
sorFlow [43] were used to implement the algorithms for the proposed models. Finally, the
matplotlib [44] and seaborn [45] packages were used to visualise the forecasted MSL. Three
methods for selecting lagged memories of MSL and predictors for an optimal model are
used in this study. These include the Auto Correlation Function (ACF), Partial Auto Cor-
relation Function (PACF) and the cross-correlation function (CCF). PACF was specifically
used to determine significant antecedent behaviour in terms of the lag of MSL [46,47].

Figure 2 shows the decomposed intrinsic mode functions (IMFs) and residual of
MSL variable. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

bom.gov.au
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(CEEMDAN) is an improved algorithm of Empirical Mode Decomposition (EMD) and
Ensemble Empirical Model Decomposition (EEMD). It can adaptively decompose signals
into IMFs in order. CEEMDAN algorithms effectively analyse nonlinear and non-stationary
signals. EMD and its variant algorithms have been applied to many data modelling
studies [10,48,49].
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Figure 2. Time series of the intrinsic mode functions (IMFs) and the residual components after
decomposing the MSL in the testing period using CEEMDAN. The time series of the actual MSL is
plotted at the top of the figure.

The cross-correlation function selected the input signal pattern based on the predictors’
antecedent lag [50] and determined the predictors’ statistical similarity to the target variable.
Antecedent daily delays are shown in Figure 3.

A set of significant input combinations were determined by evaluating each predictor’s
rcross with MSL. As shown in Figure 4, the highest correlation between the data and MSL
was found for all stations at lag zero (rcross 0.22 to 0.75). For Tr and TWS, both demonstrated
significant rcross from 0.25 to 0.40 and 0.30 to 0.38, respectively. To increase the predictors’
diversity, some predictors with insignificant lags such as Cloud Top Pressure (CP), Cloud
Top Temperature (CTm), and Snow evaporation (Sn) were also considered. These lags were
screened by the NCA process before MSL prediction.
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Figure 3. (a) Correlogram showing the covariance between the objective variable (MSL) and the pre-
dictor variables in terms of the cross-correlation coefficient (rcross) for Fiji stations and (b) Partial Auto
Correlation Function (PACF) plot of the MSL time series exploring the antecedent behaviour in terms
of the lag of MSL for every day (TWS—Terrestrial Water Storage, Tr—Transpiration, SurT—Average
Surface Skin Temperature).

The strategy for selecting lags from the cross-correlation function for all sites are
identical to what is used for the Fiji Islands. Figure 5 shows the graph of feature index and
feature weight for the case of Fiji Island using the NCA method. NCA is a non-parametric
feature selection method that helps maximise the prediction accuracy [51,52] and reduce
the computational load by selecting the significant inputs. The weights of the irrelevant
features are zero as shown in Figure 5. The algorithm is performed in MATLAB by fsrnca
function for regression using the predictors. The function, fsrnca learns the feature weights
by a diagonal adaptation of Neighbourhood Component Analysis with regularisation.

The predictor variable data sets are normalised between 0 and 1 to minimise the
overestimation of one variable to another.

Anorm =
A− Amin

Amax − Amin
(4)

In Equation (4), A is the respective predictor, Amin is the minimum value for the
predictor, Amax is the maximum value of the data and Anorm is the normalised value of the
data. After normalising the predictor variables, the data sets were partitioned as follows:
70% of the data sets for training, 15% of the data for testing, and the remaining 15% of the
data were used for validation as shown in Table 2.
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Correlation Function (PACF) plot of the IMF(s) of MSL time series.
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Table 2. Data partition breakdown with dates for the study sites.

Partition Training
(70%)

Validation
(15%)

Testing
(15%)

Dataset January
1994–December 2012

January
2013–December 2016

January
2017–December 2020

The GRU model was followed by the development of a hybrid GRU model with
3-layered CNN and 3-layered GRU, as illustrated in Figure 6. Note: (xt is the new input,
ht is the hidden state, ht−1 is the last hidden state, C̃t is the cell state, C̃t−1 is the previous
cell state, tanh is the hyperbolic tangent function, Ot is the output gate and σ is the logistic
sigmoid function). The overall modelling process is shown in Figure 7. The predictors and
MSL target variable pass through the CEEMDAN algorithm for IMF breakdown whereby
significant lags were selected by the NCA feature selection as the significant model inputs.
This was carried out for both hybrid and standalone models.
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Figure 7. Methodological steps used in the model designing phase for the proposed hybrid
CEEMDAN-CNN-GRU predictive models. Note: MSL = mean sea level, GRU = Gated Recurrent
Unit, IMF = Intrinsic Model Function and NCA = Neighbourhood Component Analysis.

4. Results

This section presents the results of the sea level trend analysis and the performance
of the proposed hybrid deep learning (i.e., CEEMDAN-CNN-GRU), benchmark hybrid
(i.e., CEEMDAN-GRU, CEEMDAN-SVR, CNN-GRU), and the standalone models (GRU,
DT and SVR). The tables and figures demonstrate substantial information obtained from the
trend and deep learning forecasting of MSL. Figure 8 shows the trend of the MSL increase
for the past 26 years. The trends shown in these figures with error uncertainty agree with
what was obtained in Ref. [53] for the rate of Black Sea level increase over 100 years, which
is 3 mm/yr on average for all stations of the northern coast of the Black Sea. This estimate
also agrees with the studies in [54–57] whereby it is also claimed that the global average
sea level has been rising by about 3 mm a year.
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𝑁𝑆 = 1 − [
∑ (𝐷𝑂𝑖−𝐷𝑆𝑖)2𝑛

𝑖=1
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], −∞ ≤ 𝑁𝑆 ≤ 1   (6) 

Figure 8. The graphs show the mean sea level trend and computed rise per year for the period
1994–2020.

The models were evaluated based on the testing dataset using eight statistical metrics
from Equations (5)–(11) of the predicted results. The models were evaluated by comparing
the model predictions to the observed data.

1. Correlation Coefficient (r)

r =

 ∑n
i=1(DOi −MDO)(DSi −MDS)√

∑n
i=1(DOi −MDO)2 ∑n

i=1(DSi −MDS)2

2

(5)
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2. Nash–Sutcliffe Coefficient (NS)

NS = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(DOi −MDO)2

]
,−∞ ≤ NS ≤ 1 (6)

3. Legates and McCabe index (LM)

LM = 1−
[

∑n
i=1|(DSi − DOi)|
∑n

i=1|DOi −MDS|

]
, 0 ≤ L ≤ 1 (7)

4. Willmott’s Index of agreement (d)

d = 1−
[

∑n
i=1(DOi − DSi)

2

∑n
i=1(|DSi −MDO|+|DOi −MDS|)2

]
(8)

5. Root Mean Square Error (RMSE)

RMSE =

√(
1
n

) n

∑
i=1

(DSi − DOi)
2 (9)

6. Mean Absolute Error (MAE)

MAE =
1
n

n

∑
i=1
|(DSi − DOi)| (10)

7. Root Mean Absolute Error (RMAE)

MAE =
1
n ∑n

i=1|(DSi − DOi)|
1
n ∑n

i=1|(DOi)|
(11)

8. Relative Root Mean Square Error (RRMSE)

RRMSE =

√(
1
n

)
∑n

i=1(DSi − DOi)
2

1
n ∑n

i=1 DOi
× 100 (12)

where : DOi—Observed data, DSi—Simulated data,

MDOi—Observed data, MDSi—Mean Simulated data

Correlation coefficient (r) analysis is widely used to determine the relationship between
two different variables [58]. It also indicates the strength or the degree of association be-
tween the considered variables. In this case, the observed and predicted values from the test
dataset. Nash–Sutcliffe (NS) [59] is used to determine model accuracy and assess the good-
ness of fit [60,61]. The Wilmott Index (d) or index of agreement developed by Wilmott [62]
is a standardised measure of the degree of model prediction error. It represents the ratio
of the mean square error and the potential error with the ability to detect additive and
proportional differences in the means and variances of observed and predicted datasets [63].
Equations (9)–(11) are used to compute error values between the observed and predicted
mean sea level values. The eight evaluation metrics provide a reliable means of compari-
son. Table 3 compares the hybrid deep learning models (i.e., CEEMDAN-CNN-GRU) to
their respective standalone models in terms of the statistical metrics r, NS, RMSE, RMAE
and MAE.
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Table 3. Results of the hybrid CEEMDAN-CNN-GRU vs. benchmark (CNN-GRU, CEEMDAN-GRU,
GRU) models for three study sites. The correlation coefficient (r), root mean square error (RMSE; m),
mean absolute error (MAE; m), relative mean absolute error (RMAE; %) and Nash–Sutcliffe coefficient,
NS) are computed between forecasted and observed mean sea level (MSL) in the testing phase. The
optimal model is boldfaced (blue).

Model r NS RMSE MAE RMAE

Station: Fiji

CEEMDAN-CNN-GRU 0.996 0.993 0.004 0.003 0.239

CEEMDAN-GRU 0.959 0.907 0.014 0.011 0.844

CEEMDAN-DT 0.927 0.850 0.018 0.014 1.075

CEEMDAN-SVR 0.806 0.605 0.043 0.035 2.767

CNN-GRU 0.982 0.964 0.009 0.007 0.513

GRU 0.955 0.909 0.014 0.011 0.841

DT 0.812 0.564 0.031 0.024 1.819

SVR 0.793 0.586 0.044 0.036 2.871

Station: Marshall Island

CEEMDAN-CNN-GRU 0.996 0.991 0.010 0.006 0.628

CEEMDAN-GRU 0.979 0.957 0.011 0.009 1.022

CEEMDAN-DT 0.962 0.924 0.019 0.015 1.301

CEEMDAN-SVR 0.829 0.492 0.049 0.038 3.289

CNN-GRU 0.989 0.977 0.011 0.008 0.711

GRU 0.984 0.967 0.013 0.010 0.851

DT 0.909 0.810 0.030 0.024 2.133

SVR 0.766 0.459 0.051 0.039 3.385

Station: PNG

CEEMDAN-CNN-GRU 0.995 0.989 0.007 0.005 0.650

CEEMDAN-GRU 0.979 0.957 0.011 0.009 1.022

CEEMDAN-DT 0.846 0.708 0.029 0.022 2.705

CEEMDAN-SVR 0.721 0.459 0.055 0.046 5.463

CNN-GRU 0.992 0.984 0.007 0.005 0.637

GRU 0.979 0.958 0.011 0.009 1.032

DT 0.846 0.708 0.029 0.022 2.705

SVR 0.735 0.451 0.049 0.040 4.759

5. Discussion

Firstly, the harmonic analysis of the mean sea level trend showed an estimated increase
of 5.6 mm/yr for PNG, 4.9 mm/yr for the Marshall Islands and 2.6 mm/yr for Fiji. For an
estimated 20-year period, this is a considerable rise, 112 mm for PNG, 98 mm for Marshall
Island and 52 mm for Fiji. According to a fourth assessment report [64], the rate of global
average sea level rise has risen from 1.8 mm/yr to 3.1 mm/yr from 1961 to 1993. Given
most settlements in these small islands are around the coastal areas, and taking into account
that the land slope in the coastal zone is usually relatively small, ~1/10 or even less, this
rise has caused many problems for people in these areas [65]. The major effects of sea level
rise include loss of land, coastal erosion and flooding [66,67].

Secondly, the developed CEEMDAN-CNN-GRU prediction model implemented for
the testing phase captures high values of correlation coefficient (r), Nash–Sutcliffe efficiency
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(NS), Willmott’s Index (WI), and notable lower values of root mean square error (RMSE),
mean absolute error (MAE) and Relative Root Mean Square Error. The highest performance
value was recorded for the station in Fiji by the CEEMDAN-CNN-GRU model, r (0.996),
RMSE (0.004), NS (0.993), MAE (0.003) and RMAE (0.239) comparing with CEEMDAN-GRU
(r = 0.959, NS = 0.907 and RMAE = 0.844%) and CNN-GRU (r = 0.982, NS = 0.964 and
RMAE = 0.513%) models. The standalone models (i.e., SVR and DT) were outperformed
by the single deep learning and hybrid deep learning models. However, the hybrid
DT model (CEEMDAN-DT) showed a better performance, obtaining a value of r = 0.927,
NS = 0.850 and RMAE = 1.075%. The CEEMDAN-CNN-GRU model with other two stations
(i.e., Marshal Island and PNG) also showed the respective superior performance, with
values of r (0.995–0.996), NS (0.989–0.991), RMSE (0.007–0.010) and RMAE (0.650–0.628%).
The performance metrics of this model are followed by the CNN-GRU, CEEMDAN-GRU
and GRU model accordingly. The proposed hybrid deep learning (i.e., CEEMDAN-CNN-
GRU) was further assessed based on Willmott’s Index (WI) and RRMSE for all tested
models, as shown in Figure 9.
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Figure 9. Comparison of the forecasting ability of proposed models in terms of RRMSE (%) and WI
in the testing phase.

Figure 9 shows the low magnitude of RRMSE and high magnitude of WI for the
objective model at the three monitoring stations. The RRMSE value between 6.8% to 7% is
far better than the other associated benchmark models, while the WI value ranges from
0.993 to 0.996. Additionally, the Marshall Island and PNG stations also show better WI
value for CEEMDAN-GRU and CNN-GRU models.

With further analysis through box plot, the forecasted-to-observed MSL and absolute
forecasting errors of all hybrid models (CEEMDAN-CNN-GRU, CEEMDAN-GRU and
CNN-GRU) for three stations are shown in Figure 10. The dispersion of the absolute
forecasted error (|FE| = MSLfor −MSLobs) depicts the amount of maximum error. Figure 10
illustrates the data by quartiles to show the distinct outliers. The plot is precisely situated
between the 25th percentile and the 75th percentile. The CEEMDAN-CNN-GRU provides
a closed distribution of error values for Fiji and PNG stations. The lower end of the plot for
|FE| is situated within the lower quartile and upper quartile. Furthermore, the CNN-GRU
model shows comparable prediction when applied to both locations. The error dispersion
of Marshall Island was found to be higher when compared with the other two stations.
More analysis of the absolute forecasted error (|FE|) from the hybrid CEEMDAN-GRU-
GRU model further confirms the suitability of the hybrid GRU approach in forecasting the
MSL of three selected Pacific islands with the narrowest distribution.
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Figure 10. Box plots of hybrid models (CEEMDAN-CNN-GRU) along with their respective stan-
dalone counterparts (i.e., GRU, DT and SVR) in forecasted error (|FE|) in forecasting MSL of three
selected Pacific Islands in the testing phase. The X symbol indicate the position of the mean in the box.

We have also used empirical cumulative distribution functions (ECDF) of absolute
forecast error (|FE|) to further evaluate the objective model. Figure 11 at Fiji station
indicates that 95% of the results from the CEEMDAN-CNN-GRU model fall within the
0.01 m error bracket, followed by a considerably larger error associated with CNN-GRU
(0.025 m), GRU (0.05 m) and the RF model (0.06 m). Similar performance was found for the
other stations as well. The objective model was favoured by predictions ranging between
the 95th and 98th percentile, which was the best for the current forecast.

Next, the scatterplot of the forecasted (MSLfor) and observed (MSLobs) MSL for three
stations using eight models show a precise comparison of MSL forecasting (Figure 12).
The scatter plots show the coefficient of determination (r2) with goodness-of-fit between
predicted vs. observed MSL and a least-square fitting line with the corresponding equation;
MSLfor = (mxMSLobs) + C, where ‘m’ is referred to as the gradient, and ‘C’ is denoted as
the y-intercept. Figure 12 shows that the proposed model displays significant performance
with a higher r2 value. The MSL forecasting using the objective model (i.e., CEEMDAN-
CNN-GRU) for the PNG station performed better than the other stations and models. The
magnitudes registered from the hybrid CEEMDAN-CNN-GRU model for three stations
were the closest to unity, which, in pairs (m|r2), are 1.003|0.994 for PNG, followed by Fiji
Island (0.993|0.987) and Marshall Island (0.992|0.987). Moreover, the CNN-GRU model
provided a comparatively better pair, such as 0.986|0.985 for PNG, 0.937|0.966 for Fiji and
0.894|0.963 islands, accordingly. Alternatively, the y-intercepts [ideal value = 0] were found
to be closer to zero, i.e., 0.005 (PNG), 0.008 (Marshall Island) and 0.017 (Fiji).
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generated by the proposed CEEMDAN-CNN-GRU along with comparing models for three selected
sites in the testing phase.

In terms of accuracy, the hybrid deep learning model (i.e., CEEMDAN-CNN-GRU)
confirmed the MSL forecasting model’s superiority as shown in Table 4.

When values tend to be high, the Legates and McCabe Index (0 ≤ LM ≤ 1.0) offers
an advantage over WI as outliers can increase the value of WI. It is also noted that the
LM value of GRU is higher than the CEEMDAN-SVR/DT value which can happen due
to redundancy in the input data. Figure 13 shows the visualisation of LM values of the
hybrid deep learning approach (i.e., CEEMDAN–CNN-GRU), the benchmark models
(i.e., CEEMDAN-GRU, CNN-GRU, and CEEMDAN-DT, etc.) and standalone models
(GRU, DT and SVR) for the three Pacific Island countries. For the hybrid deep learning
model, the LM index indicates a notably better result. Figure 12 shows that for PNG,
the maximum value of LM was 0.927, and the least value was 0.917 for Fiji Island. The
CEEMDAN-CNN-GRU model ranges from 0.916 to 0.927, while the CNN-GRU model’s
range is 0.821 to 0.878. The standalone models (GRU, DT, and SVR) show lower LM
values than the hybrid deep learning models. Combining the feature extraction algorithm
(i.e., CEEMDAN) and feature selection algorithm (i.e., NCA) with significant lags with the
CNN-GRU model significantly improves MSL for the Pacific islands. However, the hybrid
DL models have a high computational cost when compared to standalone models. The
numerical simulations take more time as it needs to be processed through three different
algorithms (CEEMDAN-CNN-GRU).
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Figure 12. Scatter plot of forecasted vs. observed MSL of (a) Fiji Island, (b) Marshall Island, and
(c) PNG using CEEMDAN-CNN-GRU and CNN-GRU model in the testing phase. A least square
regression line and coefficient of determination (r2) with a linear fit equation are shown in each
sub-panel.

Table 4. Legates and McCabe Index results of the hybrid CEEMDAN-CNN-GRU vs. benchmark
(CNN-GRU, CEEMDAN-GRU, GRU) models for three study sites.

Models Fiji Marshal Island PNG

CEEMDAN-CNN-GRU 0.9168 0.9271 0.9207

CEEMDAN-GRU 0.7087 0.8034 0.8034

CEEMDAN-DT 0.6289 0.7321 0.4824

CEEMDAN-SVR 0.3626 0.3139 0.5702

CNN-GRU 0.8213 0.8545 0.8778

GRU 0.7085 0.8254 0.8026

DT 0.372 0.5631 0.4824

SVR 0.3392 0.2943 0.3672



Remote Sens. 2022, 14, 986 17 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 25 
 

 

value of GRU is higher than the CEEMDAN-SVR/DT value which can happen due to re-

dundancy in the input data. Figure 13 shows the visualisation of LM values of the hybrid 

deep learning approach (i.e., CEEMDAN–CNN-GRU), the benchmark models (i.e., 

CEEMDAN-GRU, CNN-GRU, and CEEMDAN-DT, etc.) and standalone models (GRU, 

DT and SVR) for the three Pacific Island countries. For the hybrid deep learning model, 

the LM index indicates a notably better result. Figure 12 shows that for PNG, the maxi-

mum value of LM was 0.927, and the least value was 0.917 for Fiji Island. The CEEMDAN-

CNN-GRU model ranges from 0.916 to 0.927, while the CNN-GRU model’s range is 0.821 

to 0.878. The standalone models (GRU, DT, and SVR) show lower LM values than the 

hybrid deep learning models. Combining the feature extraction algorithm (i.e., 

CEEMDAN) and feature selection algorithm (i.e., NCA) with significant lags with the 

CNN-GRU model significantly improves MSL for the Pacific islands. However, the hybrid 

DL models have a high computational cost when compared to standalone models. The 

numerical simulations take more time as it needs to be processed through three different 

algorithms (CEEMDAN-CNN-GRU). 

 

Figure 13. Bar graphs showing the Legate–McCabe’s Index (LM) with the proposed hybrid deep 

learning approach (CEEMDAN-CNN-GRU) in comparison with standalone models in the testing 

phase. 

Time series plots were used to understand forecasting ability and the comparison 

between standalone and hybrid models. Figure 14 represents the forecasted and observed 

MSL time series plot. It shows the forecasted and observed MSL of the Fiji station with 

CEEMDAN-CNN-GRU. The research results indicate that the proposed CEEMDAN-

CNN-GRU model is closer to the observed MSL. The application of the NCA and 

CEEMDAN algorithm showed notable MSL improvement. 

Figure 13. Bar graphs showing the Legate–McCabe’s Index (LM) with the proposed hybrid deep learn-
ing approach (CEEMDAN-CNN-GRU) in comparison with standalone models in the testing phase.

Time series plots were used to understand forecasting ability and the comparison
between standalone and hybrid models. Figure 14 represents the forecasted and observed
MSL time series plot. It shows the forecasted and observed MSL of the Fiji station with
CEEMDAN-CNN-GRU. The research results indicate that the proposed CEEMDAN-CNN-
GRU model is closer to the observed MSL. The application of the NCA and CEEMDAN
algorithm showed notable MSL improvement.
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6. Conclusions

To study the effectiveness of aggregated significant antecedent satellite-driven vari-
ables and tide gauge mean sea level data, this study has successfully implemented a trend
assessment to determine the mean sea level rise from 1994 to 2020 and forecasted daily
mean sea level (MSL) for three Pacific Island States. Firstly, the harmonic trend analysis
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has shown an increase in the past 26 years. This increase is significant and coincides with
the global trend on sea level rise with climate change. This study can help to estimate
what the rise might be in the next decade in these small islands and will be very useful for
stakeholders in planning and taking important decisions on adaptation strategies.

Secondly, artificial intelligence models can also use climate and environment variables
can also be used to forecast the mean sea level values as shown for the testing phase in
this study. The NCA feature selection algorithm was able to screen the crucial features of
the study’s dataset to optimise the predictor inputs. The findings have shown superior
performance by the objective model of CEEMDAN-CNN-GRU for each station when
compared to all other benchmark models. NCA feature selection algorithm has shown to
be an effective option for extracting the useful features of the predictors. It should be noted
that the hybrid models do have a high computational cost as the data inputs are processed
through more than one modelling platform. The performance metrics show that the NCA
and CEEMDAN-optimised models had better performance and higher efficiency metrics
(i.e., r, NS, and WI) and lower error metrics (i.e., MSE and RMSE). In MSL forecasting, the
performance of the standalone models (GRU, DT and SVR) was poor when compared to
the hybrid models. GRU performed better on three stations among the standalone models,
with correlation coefficients ranging from 0.955 to 0.984. The proposed harmonic mean sea
level trend analysis and DL hybrid model can also be used for other Pacific Island counties
for MSL forecasting.

Author Contributions: Conceptualisation, N.R. and Z.G.; methodology, N.R.; software, N.R., A.A.M.A.;
validation, N.R.; formal analysis, N.R.; investigation, N.R., Z.G., Y.S., A.A.M.A.; resources, N.R.,
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Appendix A.2. Tables

Table A1. Description of the global pool of 53 predictor variables used to design and evaluate the
hybrid CEEMDAN-CNN-GRU predictive model for mean sea level forecasting.

Variable ID Description of Variables Acronyms Units

Model: GLDAS 2.0

1 Average Surface Skin temperature SurT K

2 Plant canopy surface water P kg m−2 s−1

3 Canopy water evaporation Cw kg m−2 s−1

4 Direct evaporation from bare soil Ev W m−2

5 Snow evaporation Sn W m−2

6 Evapotranspiration Evp W m−2

7 Ground water storage GWS W m−2

8 Net long-wave radiation flux Lw kg m−2 s−1

9 Ground heat flux Gh m

10 Sensible heat net flux Sh K

11 Latent heat net flux Lat kg m−2

12 Baseflow-groundwater runoff Bg W m−2
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Table A1. Cont.

Variable ID Description of Variables Acronyms Units

Model: GLDAS 2.0

13 Snow melt daily 0.25 Snm kg m−2 s−1

14 Storm surface runoff SSR kg m−2 s−1

15 Snow depth daily S kg m−2

16 Snow surface temperature St kg m−2 s−1

17 Profile soil moisture PSM kg m−2

18 Root zone soil moisture Szn kg m−2

19 Surface soil moisture Ssm kg m−2

20 Snow depth water equivalent Sdw kg m−2 s−1

21 Net short-wave radiation flux Swr kg m−2 s−1

22 Transpiration Tr mm

23 Terrestrial water storage TWS mm

Model: MODIS-Terra

24 Aerosol optical depth 550 nm (Dark Target) AOD -

25 Scattering angle: mean of daily mean S degrees

26 Combined dark target and deep blue AOD at 0.55 µ for land C -

27 Precipitable water vapor 440 to 10 mb: Mean r cm

28 Precipitable water vapor surface to 680 mb rw cm

29 Precipitable water vapor total col: Mean of level-3 QA weighted rvp cm

30 Cirrus reflectance: Daily mean Cr -

31 Ice Cloud Effective Particle Radius: Daily mean Ice -

32 Liquid Water Cloud Effective Particle Radius: Daily mean LW -

33 Cloud Fraction from Cloud Mask: Day Mean CF -

34 Cloud Fraction from Cloud Mask: Mean CFm -

35 Cloud Fraction from Cloud Mask: Night Mean Cnm -

36 Combined Cloud Optical Thickness: Mean CC -

37 Ice Cloud Optical Thickness: Mean IC microns

38 Liquid Water Cloud Optical Thickness: Mean Lm microns

39 Cloud Top Pressure (Day): Mean CP hPa

40 Cloud Top Pressure: Mean CPm hPa

41 Cloud Top Pressure (Night): Mean CPnm hPa

42 Cloud Top Temperature: Mean CTm K

43 Cloud Top Temperature (Day): Mean CTdm K

44 Cloud Top Temperature (Night): Mean CTnm K

45 Ice Cloud Water Path: Mean IC g/m2

46 Liquid Water Cloud Water Path: Mean LQ g/m2

47 Aerosol Optical Depth 550 nm (Deep Blue, Land-only) A550 -



Remote Sens. 2022, 14, 986 21 of 25

Table A1. Cont.

Variable ID Description of Variables Acronyms Units

Model: GLDAS 2.0

48 Deep Blue Angstrom Exponent for land (0.412–0.47µ): Mean D -

49 Water vapor near-infrared—clear column (bright land and ocean
sunlight only) Wvi cm

50 Water vapor near infrared—cloudy column: Mean Wvm cm

Model: MERRA-2

51 2 m air temperature—daily max Tmax K

52 2 m air temperature—daily mean Tr K

53 2 m air temperature—daily min Tmin K

Objective Variable

54 Mean sea level MSL m

Table A2. (a) The full range of tested hyperparameters in designing the hybrid CNN-GRU and the
GRU predictive model through an extensive grid search process. (b) Optimally selected hyperparam-
eters. ReLU stands for Rectified Linear Units, SGD stands for stochastic gradient descent optimiser.

Model Model Hyper-Parameter Names Search Space for Optimal Hyper-Parameters

(a) Tested Range of Model Hyper-Parameters

CNN-GRU

Filter 1 [70, 80, 100, 150]

Filter 2 [70, 80, 100, 150]

Filter 3 [70, 80, 100, 150]

GRU Cell Units [40, 50, 70, 80, 100, 150]

Epochs [500, 800, 1000]

Activation function [ReLU]

Optimiser [Adam], [SGD]

Batch Size [5, 10, 20, 50, 100]

GRU

GRU Cell1 [70, 80, 100, 110]

GRU Cell 2 [70, 80, 100,150, 200, 210]

Epochs [500, 800, 1000]

Activation function [ReLU]

Optimiser [Adam], [SGD]

Batch Size [5, 10, 20, 50, 100]
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Table A2. Cont.

Model Model Hyper-Parameter Names Search Space for Optimal Hyper-Parameters

(b) Optimally Selected Hyper-parameters

CNN-GRU

Convolution Layer 1 (C1) 80

C1- Activation function ReLU

C1-Pooling Size 1

Convolution Layer 2 (C2) 70

C2- Activation function ReLU

C2-Pooling Size 1

Convolution Layer 3 (C3) 80

C3- Activation function ReLU

C3-Pooling Size 1

GRU Layer 1 (L1) 200

L1- Activation function ReLU

GRU Layer 2 (L2) 60

L2- Activation function ReLU

Dropout rate 0.2

Optimiser Adam

Padding Same

Batch Size 5

Epochs 1000

GRU

GRU Cell 1 (G1) 110

G1- Activation function ReLU

GRU Cell 2 (G2) 250

G2- Activation function ReLU

Epochs

Optimiser SGD

Dropout rate 0.2

Batch Size 15

Epochs 1000
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