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A B S T R A C T   

Study region: Toowoomba, Queensland, Australia 
Study focus: In this study we derive loss model parameters suitable for use in the dynamic loss 
Australian Representative Basin Model (ARBM) through the calibration of a continuous simula
tion hydrologic model. We compare the derived parameters to those published in the literature, 
and our results highlight the need to develop a database of calibrated loss parameters for urban 
catchments. 
New hydrological insights: The development of design storms for flood modelling commonly uses 
the initial loss/continuous loss model to estimate the conversion of rainfall to runoff. This loss 
model, when applied to pervious areas, uses parameters that have been calibrated for gauged 
rural catchments. These same parameters are often applied to the pervious component of unga
uged urban catchments with minimal understanding of the resulting impact on runoff. This 
research uses a continuous simulation modelling approach to calibrate parameters suitable for use 
in the ARBM loss model built into the hydrological modelling software XPRAFTS. Through a two- 
stage calibration approach, the model offered a satisfactory fit (Nash Sutcliffe Efficiency > 0.5) 
for 9 of the 11 selected storm events, with seven events exceeding a Nash Sutcliffe Efficiency of 
0.75. Events used in the calibration/validation included peak flows as low as 9 m3/s and as high 
as 600 m3/s. Developing these loss model parameters offers new insights into the suitability of a 
dynamic loss model approach in an urban catchment in regional Australia and provides an 
alternative to the parameters already available in the literature which were found to overestimate 
the peak flow in frequent events.   

1. Introduction 

Understanding the hydrologic response of urban catchments to extreme rainfall events is fundamental to making informed engi
neering and planning decisions around urban development, flood mitigation and disaster management (Pathiraja et al., 2012). The 
need for an accurate hydrologic model and an understanding of the uncertainty associated with the model’s results cannot be over
stated. In January 2011, Toowoomba, a regional town in the state of Queensland, Australia, experienced its worst flood on record with 
Gowrie Creek breaking its banks in multiple locations. In addition to inundation, the floodwaters proved hazardous, with high 
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velocities resulting in dangerous conditions for pedestrians and motorists at major road crossings, resulting in the death of at least four 
people. Following this major flooding, a design event hydrologic model was developed as part of the Gowrie Creek Flood Risk 
Management Study undertaken for the Toowoomba Regional Council. A subsequent peer review panel highlighted the need to un
derstand the uncertainty in flood hydrographs being produced by the hydrologic modelling. 

A critical hydrologic parameter that leads to a high level of uncertainty in hydrologic modelling is rainfall loss (Ball et al., 2019). 
Rainfall loss can be defined as the amount of rainfall that does not appear as immediate runoff (Hill et al., 1998). Rainfall losses are 
often accounted for by separating the losses into two categories: the initial loss (interception and infiltration prior to saturation or 
antecedent moisture conditions) and the continuing loss (infiltration post saturation) (Phillips et al., 2014). Most initial loss/con
tinuing loss models greatly simplify the condition of the catchment prior to the event (Cameron et al., 1999). Rainfall losses in the 
catchment can vary as a result of geography, antecedent moisture conditions, and the intensity of the rainfall event (Ball et al., 2019). 
The most commonly used approach for simulating a catchment’s runoff response to rainfall in Australia is the design event method 
(Ball et al., 2019). This method uses the widely adopted initial loss/continuing loss model. While it is simple to implement in practice, 
it assumes that the transformation of rainfall to runoff is probability neutral, i.e. the annual exceedance probability of the design 
rainfall data will always result in a flood of the same annual exceedance probability (Kavetski et al., 2006). The literature offers 
minimal guidance on the adoption of appropriate loss values (Rahman et al., 2002; Tularam and Ilahee, 2007), therefore rural 
catchment based initial loss/continuing loss parameter assumptions continue to be used for urban pervious areas even though the 
suitability of the parameters for use in urban catchments is not well understood (Ball et al., 2019). 

Dynamic loss models differ from initial loss/continuing loss models as they account for the interaction between periods of wetting 
and drying through direct simulation of the physical processes occurring in the catchment (Cameron et al., 1999; Kavetski et al., 2006; 
Muncaster et al., 1999). The impact each loss model has on the estimated rainfall excess is demonstrated in the hyetographs in Fig. 1. 

Increased computational capacity and the availability of (or ability to generate) sub daily rainfall data has allowed for more 
complex modelling with improved representation of the complex physical processes within a catchment (Boughton and Droop, 2003). 
Continuous simulation models seek to overcome the issue of assumed antecedent moisture conditions by modelling a complete 
sequence of rainfall data over a much longer duration than that of a typical design temporal pattern (Blazkova and Beven, 2009; 
Boughton, 2005; Calver et al., 2009; Camici et al., 2011), thereby rejecting the concept of probability neutral conversion of rainfall to 
runoff. Continuous simulation modelling removes the need for assumptions of the antecedent moisture conditions of the catchment, 
and allows for a more accurate accounting of the hydrologic losses (Boughton and Droop, 2003; Muncaster et al., 1999). While 
continuous simulation modelling is no less complex than design event methods, it provides a more realistic ‘design hydrograph’ in 
terms of volume and duration that has a variety of applications (Grimaldi et al., 2021). 

Linsley and Crawford (1974) were one of the early adopters of continuous simulation modelling in an urban catchment with their 
discussion on a computer based continuous simulation model (the Stanford Watershed Model) they developed in the 1960 s and later 
modified for other applications. More recently, Rangari et al. (2015) described a number of urban stormwater models available to 
undertake continuous simulation, however there still appears to be limited published applications or case studies in urban catchments. 
Ling et al. (2015) compared various design flood estimation methods for both urban and rural catchments, however excluded 
continuous simulation modelling from the urban catchment case study. Grimaldi et al. (2021) proposed a step forward and testing for 
the practical use of their continuous simulation approach in an ungauged catchment, however the catchment used in the assessment 
was less than 25% urban. 

Several continuous simulation models of rural catchments have been documented in literature. The study of the Moore River 
catchment in Western Australia, completed by Newton and Walton (2000) using continuous simulation modelling, achieved good 
agreement with both a flood frequency analysis of the stream gauge and design event modelling. Boughton and Hill (1997) compared 
the results of a continuous simulation model for the Boggy Creek catchment in Victoria, Australia against the available stream gauge 
and found good agreement for rare and extreme events. Boughton et al. (2002) followed up this study with an assessment of the Avon 

Fig. 1. (a) Rainfall excess (white area) from the commonly used fixed Initial Loss/Continuing Loss model, with the darker hatch representing initial 
loss and the lighter hatch representing the fixed continuing loss, and (b) Rainfall excess (white area) from a dynamic infiltration loss model with the 
lighter hatch representing the loss (drawn based on the concept of O’Loughlin et al. (1996). 
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River and Spring Creek catchments in Victoria, Australia and found that limited rainfall and stream gauge data offered minimal op
portunity for calibration. The availability of a sufficient length of continuous rainfall data with a small enough time step to accurately 
model the catchment of interest is a key limitation of continuous simulation modelling (Viviroli et al., 2009). However, if data is 
available, continuous simulation modelling is seen as the most rigorous modelling approach for understanding the interaction between 
variables with joint probability as it directly simulates a long period of climatic conditions (Kavetski et al., 2006). 

While there is agreement that continuous simulation models should be used where data permits, there is a disconnect between the 
modelling software used in the literature and the modelling used by practitioners. The abovementioned studies all adopted the rainfall 
excess model, the Australian Water Balance Model (Boughton, 2004), and routed the rainfall excess through the this model (Boyd et al., 
1996). However, industry practitioners generally use software models that have a graphical user interface, including XPRAFTS 

Fig. 2. Gowrie Creek catchment in Toowoomba with key catchment features shown.  
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(XPSolution, 2008), SWMM (EPA, 2015) or URBS (Carroll, 1994). XPRAFTS is a non-linear runoff routing model used extensively 
throughout Australia and the Asia Pacific region and is recommended by Australian modelling guidelines (i.e. Australian Rainfall and 
Runoff (Ball et al., 2019)) for use in catchment hydrologic modelling. Despite its widespread use, the documentation of suitable loss 
parameters for the ARBM dynamic loss model is limited to a set of parameters presented by Goyen (1981) and another documented in 
the Australian Capital Territory stormwater design guidelines (Department of Urban Services, 2021), herein referred to as the ‘ACT 
guidelines’. This is a significant gap in research given Australia’s tropical, temperate, arid and alpine habitats and climate regimes; all 
of which have high variability (Head et al., 2014). Limiting practitioners to either the initial loss/continuing loss model or the ARBM 
model, with parameters based on Goyen’s research, leads to increased uncertainty, especially in ungauged catchments where cali
bration is not possible. 

Using continuous simulation models in urban catchments presents several challenges in addition to the lack of documented input 
loss parameters. The spatial distribution of available rainfall data, as well as the connection of impervious area and hydraulic controls, 
all influence the timing and volume of runoff at the catchment outlet. For example, Dayaratne and Perera (2004) modelled the urban 
Giralang catchment in Canberra and found variations in time to peak with a lag of up to one hour between the modelled and observed 
event as a result of adopting a single representative rain gauge despite a catchment area of only 94 ha. While there is uncertainty in all 
hydrologic modelling approaches, the level of uncertainty declines with model calibration. 

The development of a catalogue of suitable ARBM loss parameters would be a significant achievement for the hydrologic com
munity and would be of particular importance to applied hydrologists working with similar simulation models. The new contribution 
being offer by this paper is the development of loss parameters for a regional urban catchment and highlight the need for a catalogue of 
parameters that can be used more broadly by applied hydrologists across other catchments. This research aims to: 1) develop a 
continuous simulation hydrologic model for an urban catchment, 2) calibrate the ARBM parameters for the Gowrie Creek catchment, 
and 3) compare these model results to existing documented model parameters to assess the need for further cataloguing of region- 
specific parameters both within Australia and internationally. Materials and methods used to develop the model are described in 
Section 2, Section 3 presents the calibration results which are then compared to other documented parameters in Section 4. Finally, our 
conclusions are presented in Section 5. 

2. Materials and methods 

2.1. Study area 

The Gowrie Creek catchment is a heavily urbanised catchment in the city of Toowoomba, in the state of Queensland, Australia. 
Toowoomba is considered to be sub-tropical with an average annual rainfall of 700 mm, the majority of which falls over the wet season 
from November to March. The 51 km2 catchment, shown in Fig. 2, is twice as long as it is wide, and has a well-defined, heavily 
modified creek line. Elevations within the catchment range from 750 m Australian Height Datum (AHD) at the southern and eastern 
extents, to 550 m AHD at the catchment outlet to the north. This significant height difference across the catchment results in sub- 
catchment areas varying in slope from 3% near the valley, to 9% at higher elevations. 

The tributaries within the catchment contain a series of detention basins installed to help reduce flood risk. After the major flooding 
in 2011, additional flood mitigation measures and monitoring stations were installed. Fig. 2 shows the gauge locations, and Table 1 
provides additional details for each gauge. Fifteen rain gauges and one stream gauge currently monitor the catchment, however only 
six of these were in operation during the 2011 flood event. Since 2016, 11 gauges have been found to provide reliable measurements. 

Table 1 
Details of the gauges located within the Gowrie Creek catchment and used in this research.  

Gauge Details 

Number Name Type Owner Location Wet Season with Reliable Rainfall Data 

Easting (m) Northing (m) 

1 Wetalla Rain Toowoomba Regional Council  394414  6957064 2010/11, 2016–2019 
2 Cranley Level Queensland Government  395431  6955810 1969 - present 
3 Dwyer Rain Toowoomba Regional Council  396805  6954647 2016–2019 
4 Toowoomba Airport Rain Toowoomba Regional Council  392716  6952996 2010–2019 
5 Black Gully Rain Toowoomba Regional Council  394846  6952747 2016–2019 
6 Gowrie Creek Rain Toowoomba Regional Council  396532  6951986 2016–2019 
7 Prescott and Goggs Rain Toowoomba Regional Council  396151  6950321 2010/11, 2016–2019 
8 Alderley Rain Toowoomba Regional Council  395935  6948336 2010/11, 2016–2019 
9 Eastern Valley Rain Toowoomba Regional Council  398433  6948899 2016–2019 
10 Drayton Rain Toowoomba Regional Council  393314  6947305 2016–2019 
11 Platz Rain Toowoomba Regional Council  394404  6946760 2016–2019 
12 Middle Ridge Rain Toowoomba Regional Council  396868  6947225 2010/11, 2016–2019 
13 Gabbinbar Rain Toowoomba Regional Council  396983  6945342 2010/11, 2016–2019  
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2.2. XPRAFTS model description 

An XPRAFTS semi-distributed hydrological model was used to represent the Gowrie Creek system. The software outputs runoff 
hydrographs at defined points throughout a catchment based on a user-defined set of catchment characteristics and rainfall data. Key 
user defined catchment characteristics include sub-catchment area, impervious area and loss. 

The pervious area loss within this software is represented by the ARBM dynamic loss approach adapted from the research of 
Chapman (1968, 1970), and is summarised in Fig. 3. This loss approach can be visualised as a series of interconnected buckets of 
varying sizes. Rainfall that isn’t intercepted by trees or plants (Interception Storage Capacity (ISC)) may be captured in minor surface 
depressions (Depression Storage Capacity (DSC)). If the rainfall is intense enough, runoff may result from the DSC, otherwise infil
tration to the Upper Soil Capacity (USC) occurs. Water is redistributed between the USC and the Lower Storage Capacity (LSC) 
depending on the capacity available within the bucket. Water from the LSC can then be drained into the Groundwater Storage Capacity 
(GSC) which contributes to baseflow. The ARBM allows for the simulation of soil moisture depletion through evaporation between 
rainfall events (Fleming, 1974) with evapotranspiration depleting the ISC, DSC, USC and LSC. Any excess rainfall is routed to the 
catchment outlet based on the non-linear runoff-routing method developed by Laurenson (1964). 

Fig. 3. Graphical representation of the ARBM loss model, which forms the basis of runoff generation in the XPRAFTS model, with supporting 
equations for key components of the runoff generation process (drawn based on the concept of XPSolution (2008). 
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The ARBM has 15 input parameters. Goyen (1981) found that nine of these are consistent across all land use types, four have a 
negligible impact on runoff during extreme rainfall events, and two parameters within the infiltration function are highly sensitive: 
sorptivity (S0) and hydraulic conductivity (K0). As sorptivity is a component of hydraulic conductivity, the two parameters are 
degenerate, meaning they cannot be solved in isolation and, therefore, one of the two parameters has to be fixed to allow the infil
tration function to be optimised. For this reason, we fixed sorptivity at 10 mm/min0.5, in line with the results of Goyen (1981). In 
addition to the infiltration function’s sensitivity, it is logical that the DSC would be sensitive given that it directly controls the initial 
conversion of rainfall to runoff. An increasing DSC allows more rainfall to transfer to the USC. Direct measurement of the ARBM 
parameters is difficult, uncertain, costly and impractical (Mein and McMahon, 1982) and, as a result, was not attempted as part of this 
research. 

2.3. Sub-catchment delineation 

The total Gowrie Creek catchment was delineated into 23 sub-catchments (as shown in Fig. 2) based on a 1 m digital elevation 
model derived from an aerial survey captured in 2010. This data, drainage infrastructure data and overland flow mapping completed in 
2018, were supplied by the Toowoomba Regional Council. The urban nature of the catchment required manual catchment delineation 
as automatic methods could not accommodate the hydraulic impact of roads and underground drainage infrastructure. 

While further delineation to increase the number of sub-catchments could have been undertaken, Boyd (1985) showed that for 
natural catchments of this size, the number of sub-catchments should be at the lower end of the 9–45 range. As the catchment being 
assessed is urban, a number closer to the middle of the range was targeted. In addition, Rezaei-Sadr (2020) showed that delineating 
sub-catchments to a size less than 3% of overall catchment offered no improvement in modelling accuracy. The area of the Gowrie 
Creek sub-catchments is approximately 5% of the overall catchment size. 

2.4. Rainfall data and spatial distribution 

The hydrologic model requires rainfall data to be applied to each of the delineated sub-catchments. The rainfall data for all 11 rain 
gauges shown in Fig. 2 was supplied by the Toowoomba Regional Council as a cumulative rainfall total in five-minute increments with 
the accumulation resetting at the end of each day. There were some clear errors in the rainfall data, including increments of rainfall 
significantly higher than would be expected, such as rainfall intensities greater than 500 mm/hr with no corresponding stream gauge 
record. In addition, one of the gauges showed an annual period of no rainfall, suggesting that it had malfunctioned. Periods of 
erroneous data were removed from the datasets to allow the data to be used. 

The rain gauge data needs to be spatially distributed via interpolation to the sub-catchment centroid. Many schemes with varying 
degrees of complexity have been proposed for the spatial interpolation of rainfall (Thiessen, 1911; Shepard, 1968; Delhomme, 1978). 
Statistical approaches, such as Kriging, have been found to perform better than interpolation methods such as Thiessen or Inverse 
Distance Weighted (IDW) to estimate monthly and annual totals (Tabios III and Salas, 1985; Bussières and Hogg, 1989; Creutin and 
Obled, 1982). However, these previous studies or reviews have focussed on sites with an order of magnitude lower spatial density of 
rain gauges (0.01–0.001 per km2) than the Gowrie Creek catchment (0.12–0.22 per km2). Dirks et al. (1998) conducted a comparison 
study of three interpolation methods (Thiessen, IDW and Areal-mean) and a statistical method (Kriging) for Norfolk Island, a small 
catchment with high gauging density similar to the Gowrie Creek catchment. All methods were performed in a comparable manner, 
and Dirks et al. (1998) concluded that the IDW method was the most appropriate choice for practical use due to its minimal 
computational effort. 

The IDW interpolation method proposed by Shepard (1968), and represented in Eq. 1, assumes that the rainfall observations closer 
to a position at which rainfall is to be estimated will have a greater influence on the value. 

Fig. 4. Error associated with the adoption of a different power parameter in the IDW function, with the best performing variable highlighted 
in black. 
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where, Zp = interpolated rainfall value at location of interest (mm), Zi = known rainfall value at i rainfall station, di = distance to i 
rainfall station from location of interest, p = power parameter. 

The adopted power parameter compounds the influence of the nearest observation and, as the power parameter approaches in
finity, the IDW interpolation approaches that proposed by Thiessen (or nearest neighbour) interpolation. The optimum power 
parameter was determined using the leave one out or fictitious point method, where a known observation point (we used gauge 
number 11, Drayton) is left out and the surrounding gauges are used to estimate its rainfall series. The interpolated and observed 
rainfall series for Drayton were evaluated for their Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE), with a lower 
error identifying a better fit. Fig. 4 shows that the error decreases with a reduction in the power parameter. The magnitude of the error, 
however, is not significant enough to suggest that the estimated series is sensitive to the power parameter adopted, and the difference 
in annual rainfall between a power parameter of one and a power parameter of six is only 60 mm. Dirks et al. (1998) reached a similar 
conclusion, and suggested that the default power parameter of two would be suitable. Due to the high density of rainfall gauges and the 
known rainfall variability in the catchment, only the nearest three gauges were used for the interpolation in this research. 

2.5. Impervious area 

Runoff in a hydrologic model is highly sensitive to the impervious fraction of the catchment (Alley and Veenhuis, 1983) as a greater 
impervious fraction results in a higher conversion of rainfall to runoff. The Total Impervious Area (TIA) is generally determined using 
land use mapping and the use of impervious fractions to convert the total area of different land uses to impervious areas only. The 
fraction of the TIA that is directly connected to stormwater infrastructure, including urban roads and rooves, is known as the Effective 
Impervious Area (EIA) (Hartcher and Chowdhury, 2017), and it is well established that the EIA is of greater importance than the TIA 
(Cherkaver, 1975; Beard and Chang, 1979). In this research, the EIA was determined using both a regression analysis and land use 
mapping. 

2.5.1. Determining EIA via regression analysis 
The EIA of the Gowrie Creek catchment was estimated through the analysis of rainfall and streamflow records using the method 

described by Miller (1978). This estimation method has been used extensively in research (Boyd et al., 1993; Chiew and McMahon, 
1999). The assessment involves calculating the gradient of the regression between runoff and rainfall, excluding events with runoff 
from pervious areas as rainfall is linearly proportional to impervious runoff. Rainfall events suitable for the regression analysis were 
chosen by adopting an inter-event time (as proposed by Lloyd, 1990, Aryal et al., 2007 and Rodríguez-Blanco et al., 2012) of two hours 
to separate individual storms, and were then further filtered to consider a minimum rainfall depth of 2 mm and a maximum rainfall 
duration of 10 h. A regression analysis of the remaining events is shown in Fig. 5. The gradient of the line indicates an EIA fraction of 
0.18 or 18%. 

2.5.2. Determining EIA via land use mapping 
Catchment planning mapping was used to estimate the Total Area (TA) of different land uses, including Urban Areas (UA), 

commercial, roads, other development types and open space. With the TA of each land use known, ratios of TA to TIA and TIA to EIA 
for each land use, as detailed in the Queensland Urban Drainage Manual (IPWEAQ, 2016) and presented in Table 2, were used to 
determine the overall catchment EIA of 41%. This is significantly higher than the regression-based EIA (18%) and is likely due to the 
relatively unknown EIA to TIA ratio of differing road types as well as a likely overestimation of the EIA to TIA ratio of UAs due to the 
age of catchment development. The land use mapping method also found the EIA to be 87% of the UA, which doesn’t reflect the 

Fig. 5. Runoff vs Rainfall for over 40 storms selected (represented by the dots) using the method of Miller (1978) to determine the effective 
impervious area as indicated by the gradient of the line (0.18). The regression line indicates a good level of fit. 
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findings of Phillips et al. (2014) who found that across eight catchments it was consistently around 35% of the UA. This compares well 
to the regression-based method which was 38% of the UA. The land use mapping method is therefore overestimating the EIA for the 
catchment and the regression analysis best represents the effective impervious area of the catchment. 

While the land use mapping method overestimated the EIA, it did allow disaggregation to a sub-catchment level. We, therefore, 
adopted the impervious area ratios for each sub-catchment from the land use mapping method while achieving an overall EIA 
equivalent to the regression analysis (18%). The results of this analysis for each sub-catchment was used as the impervious component 
of the hydrologic model and is shown in Fig. 6. 

2.6. Calibration and validation 

2.6.1. Principles 
A two-stage calibration approach, as performed by Dayaratne (2000) and Broekhuizen et al. (2020), was utilised. Stage 1 calibrated 

small historic storm events resulting in runoff from impervious areas only. This was followed by Stage 2, in which larger historic storm 
events that included pervious area runoff were calibrated. 

Table 2 
Ratios of Total Area to Total Impervious Area, and Total Impervious Area to Effective Impervious Area for each land use within the Gowrie Creek 
catchment, used to determine the Effective Impervious Area via land use mapping.  

Land use TA (ha) TIA/TA (%) TIA (ha) EIA (ha) EIA/TIA (%) 

Urban Area (UA) 2417 65  1571 864 36 
Commercial 369 90  333 283 77 
Road Reserve 979 70  685 685 70 
Other Development 523 50  262 262 50 
Open Space 811 0  0 0 0 
Total  5099  2850 2093 41  

Fig. 6. Spatial variation of impervious area throughout the Gowrie Creek catchment (left) and total rainfall isohyets from 2016 to 2019 (right).  
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For the Stage 1 calibration, hydraulic conductivity (Ko) and storage capacities (DSC, USC and LSC) were adjusted until there was no 
runoff from the pervious area. This effectively set a lower limit for these parameters. For the Stage 2 calibration, Ko and DSC were 
adjusted with the aim of making the model’s output hydrograph match the observed. The parameters determined via calibration were 
then used to run the model for several validation events to ensure that parameter performance was consistent across a range of 
observed events. 

To determine calibration appropriateness, the performance statistics detailed by Moriasi et al. (2007) and summarised in Table 3 
were used. The Nash-Sutcliffe Efficiency (NSE) is a coefficient commonly used to determine the predictive power of a hydrologic model 
(McCuen et al., 2006), with a coefficient of 1.0 representing a perfect fit. The RMSE-observation standard deviation Ratio (RSR) is a 
measure of the spread of model results relative to the observed results. RMSE values less than half the standard deviation are generally 
considered to indicate good model prediction (Singh et al., 2005), therefore the lower values of both RMSE and, in turn, RSR rep
resented a good model fit. The percentage of bias (PBIAS) is a measure of the tendency of the modelled result to be above or below the 
observed result (Of et al., 1999), with a PBIAS of 0 representing a perfect fit. Peak flow and volume difference were also assessed. Peak 
flow is an important hydrologic criterion and a key input for hydraulic design. 

2.6.2. Historic storm events 
The continuous simulation model was run for the complete series of available and reliable historic rainfall data, and individual 

storm events were selected for calibration/validation. The selected storm events included 13 events during the 2010/11 wet season as 
well as the wet seasons between 2016 and 2019, as summarised in Table 4. 

There was a distinct lack of large (Stage 2) calibration/validation flood events for the study catchment. Inspection of the stream 
gauge data at the outlet of the catchment highlighted that the 2010/11 wet season was the last significant wet season for the 
catchment. There were no subsequent wet seasons with events exceeding the peak flow of Event 13. No reliable rainfall data prior to 
the 2010/11 wet season was available for use. 

3. Calibration/validation results and discussion 

3.1. Stage 1 calibration 

Eleven events were assessed as part of the Stage 1 calibration/validation process, ranging in observed peak flow from 9 m3/s to 
79 m3/s. The calibration process confirmed that the DSC was a key calibration parameter as the volume of runoff was sensitive to this 
parameter. This is evident in Fig. 7, which shows the difference (%) between the volume of modelled runoff to the volume of observed 
runoff with an increasing DSC. The results also show that Events 3 and 4 were suitable for use in the calibration process due to the 
notable change with increasing DSC. 

Comparing the performance statistics of NSE, PBIAS, peak flow difference and RSR for Events 3 and 4 (Fig. 8), a DSC of 7 mm 
clearly resulted in the best fit. Visual inspection of the model discharge against the observed discharge at the catchment outlet (Fig. 10) 
also suggests the model is representing the observed flows well. The DSC of 5 mm performed best for Event 4 in terms of PBIAS and 
RSR, but performed very poorly in NSE and peak flow difference for Event 3, suggesting that it is not suitable for other events. When 
calibrating the DSC, a Ko of 0.3 mm/min was adopted. The sensitivity of the model to Ko was also investigated, with the results 
(presented in Fig. 9) showing that 0.3 mm/min is optimum. 

When adopting a DSC of 7 mm and Ko of 0.3 mm/min for the nine validation events, six performed satisfactorily, with NSE values 
ranging from 0.50 to 0.92 (NSE results for all events are presented in Fig. 13). While NSE is considered a key performance indicator, 
peak flow and volume were also critical to further justify the impervious fraction and spatial distribution of rainfall. Of the three Stage 
1 events that performed unsatisfactorily, all produced peak flows within 20% of the observed, and two produced volumes within 
approximately 30% of the observed. These results suggest that the adopted impervious fraction is representative of the catchment, as a 
higher impervious fraction would result in a higher peak flow and increased volume. In addition, visual inspection of the Stage 1 
calibration results showed that the shape of the modelled hydrograph matched the observed, suggesting the interpolated rainfall is 
representing the ungauged rainfall. 

It was expected that, given the relatively small magnitude of observed flow used in the Stage 1 events, some results would be 
unsatisfactory. Smaller flow events often correspond to localised storms that may only fall over some sub-catchments but are intense 
enough to produce runoff from those sub-catchments. Distributing the recorded rainfall (if it did in fact fall over the rain gauge) over 
the entire sub-catchment may, therefore, not reflect the nature of the event. Despite this, the relatively small number of unsatisfactory 

Table 3 
Performance ratings for different model statistics, including the Nash-Sutcliffe Efficiency, the RMSE-observation standard deviation ratio, the Per
centage of Bias, and the Peak flow/Volume difference as detailed in Moriasi et al. (2007).  

Performance Rating Model Statistic 

NSE RSR PBIAS Peak Flow/ Volume Difference 

Very Good 0.75 – 1.0 0.0 – 0.5 < +− 10  
Good 0.65 – 0.75 0.5 – 0.6 + − 10 – + − 15  
Satisfactory 0.50 – 0.65 0.6 – 0.7 + − 15 – + − 25 + − 20 
Unsatisfactory < 0.5 > 0.7 > +− 25 > +− 20  
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validation results suggests that the model represents the hydrologic response of the catchment well. 

3.2. Stage 2 calibration 

As expected, the Stage 2 calibration was sensitive to both DSC and K0. However, through the Stage 2 calibration, it was found that 
the impact of DSC and K0 on the calibration process was similar; a decreasing DSC or K0 value resulted in an increase in peak flow. The 
K0 value of 0.3 mm/min adopted as part of the Stage 1 calibration to limit pervious area runoff, provided the lower limit for calibration 
as part of Stage 2. 

The DSC parameters assessed as part of Stage 1 were also assessed in Stage 2. The results in Fig. 12 show that the NSE and peak flow 
generally increased with decreasing DSC, however, Event 12 appeared to reach a maximum NSE when DSC was near 7 mm, and the 
peak flow increase plateaued when DSC approached 5 mm. In addition, the Stage 1 calibration highlighted that a DSC less than 6 mm 
resulted in a very poor calibration for Event 3, suggesting that the relatively improved performance of Event 12 with decreasing DSC 
may be overstated. 

Given that the results presented in Fig. 11 show that the model generally underestimated the recorded peak flow, increasing the K0 
value above 0.3 mm/min would only serve to reduce the peak flow further. Comparing the modelled hydrographs to the observed 
flows (Fig. 12) further highlights how both events, while visually achieving the hydrograph shape, underestimated both volume and 
peak flow. Event 13 seems to show an observed second smaller peak approximately one hour after the initial peak that wasn’t apparent 
in the model. While the model did show a second peak, it was much closer to the first peak, resulting in a broadening out of the 
hydrograph. It is known that during this event, the stream gauge malfunctioned, and the results were interpolated from field obser
vations after the event. It is likely that this interpolation overestimated the nature of the event and was the cause of the discrepancies 
shown. 

3.3. Other ARBM parameter sensitivity 

The ARBM parameters of DSC and Ko were identified by both the literature and this research as the most sensitive in estimating the 
pervious area loss. A sensitivity analysis of the other ARBM parameters, as defined in Fig. 3, was undertaken to ensure that they were 
also optimised as part of the two-stage calibration approach. The sensitivity analysis reduced the other ARBM parameters by 20%, 
while keeping the DSC and Ko at their calibrated values, with the results presented in Fig. 13 (Stage 1 calibration events) and Fig. 14 

Table 4 
Chosen Calibration and Validation events.  

Event Number Start Date Start Time (hrs) End Time (hrs) Calibration Validation 

Stage 1 
1 December 16, 2010 1400 1800  x 
2 December 11, 2010 1000 2100  x 
3 December 19, 2010 0900 2030 x  
4 January 2, 2011 1800 2230 x  
5 October 2, 2017 1230 0500  x 
6 October 15, 2017 1230 2100  x 
7 October 21, 2017 0730 1830  x 
8 October 26, 2017 1700 1930  x 
9 October 12, 2018 1700 0400  x 
10 October 21, 2018 1300 1800  x 
11 October 24, 2018 1900 2200  x 
Stage 2 
12 December 27, 2010 1000 1530 x  
13 January 10, 2011 1230 1700  x  

Fig. 7. Difference in volume between modelled and observed Stage 1 events with increasing DSC (in mm). The large variability in volume difference 
shown in Event 3 and Event 4 make them suitable for calibration. 
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(Stage 2 calibration event). The sensitivity analysis confirmed that the other ARBM parameters were optimised, as one of the Stage 1 
calibration events (Event 4) produced pervious area runoff. In addition, there was an insignificant increase in the peak flow/volume in 
the Stage 2 calibration event. It is also worth noting that increasing the sensitivity of the other ARBM parameters was not needed as the 

Fig. 8. Statistical performance of Events 3 and 4 with increasing DSC (in mm). The optimum DSC for each statistic is highlighted in black, and 
shows that a DSC of 7 mm performed best in terms of NSE and RSR, while still performing satisfactorily in both peak flow difference and PBIAS. The 
satisfactory text is located either above or below the line to show where the satisfactory limits are. 

Fig. 9. Statistical performance of Events 3 and 4 with increasing Ko. The optimum Ko for each statistic is highlighted in black, and shows that a Ko of 
0.3 mm/min performed best in terms of NSE and RSR, while still performing satisfactorily in both peak flow difference and PBIAS. The satisfactory 
text is located either above or below the line to show where the satisfactory limits are. 

I.W. Brown et al.                                                                                                                                                                                                       



Journal of Hydrology: Regional Studies 40 (2022) 101021

12

parameters had already been reduced to ensure no pervious area runoff from the Stage 1 events. Increasing the other ARBM parameters 
by 20% would produce the same result as the calibrated parameters for the Stage 1 events, while potentially reducing the peak flow/ 
volume in the Stage 2 events. (Fig. 15). 

Fig. 10. Comparison of modelled hydrograph to observed values for Stage 1 calibration Event 3 (left) and Event 4 (right).  

Fig. 11. Statistical performance of Event 12 with increasing DSC. The optimum DSC for each statistic is highlighted in black. The satisfactory text is 
located either above or below the line to show where the satisfactory limits are. 

Fig. 12. Comparison of modelled hydrograph to observed values for Stage 2 calibration Event 13 (left) and validation Event 12 (right). The 
calibration performed well with the modelled peak flow within 10% of the observed. 
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4. Discussion on loss parameters and calibration challenges 

4.1. Loss model parameter comparison to literature 

The calibrated ARBM parameters determined from this study are presented in Table 5. The parameters recommended by Goyen 
(1981) for residential lawns, determined through calibration of a number of catchments in Canberra, along with parameters docu
mented in the ACT guidelines (Department of Urban Services, 2021) are also shown. While the infiltration parameters (S0 and K0) are 
somewhat comparable, the storage capacities are significantly different, most notably the DSC. This result is surprising as Goyen’s 

Fig. 13. NSE performance of all 13 storm events with calibration events highlighted in black.  

Fig. 14. Hydrographs comparing the calibrated and sensitivity ARBM parameters to the observed flow for Event 1 (left) and Event 4 (right). The 
results showed that while Event 1 was no sensitive to the change in ARBM parameters, Event 4 was highly sensitive, with a noticeable increase in 
both peak flow and volume. The volume increase is likely the result of pervious area runoff that wasn’t evident in the observed hydrograph based on 
the steeper gradient of the falling limb. 

Fig. 15. Hydrograph comparing the calibrated and sensitivity ARBM parameters to the observed flow for Event 12. The results showed that Event 
12 was not sensitive to the change in ARBM parameters. 
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parameters are based solely on pervious area, whereas our study has some impervious areas included in the pervious area component 
of the model due to the impervious area component reflecting EIA only. This is a key contribution of this research and illustrates the 
need to develop a catalogue of ARBM parameters that can be used by applied hydrologists when investigating catchments with similar 
geographical or climatic conditions. 

Adopting values in line with Goyen (1981) or the ACT guidelines resulted in runoff from the pervious areas in the Stage 1 events, 
and given the high proportion of pervious area within the catchment, the discharge flow rate and volume at the outlet of the catchment 
were significantly higher, as highlighted in Fig. 16. 

4.2. Overcoming calibration challenges 

Currently continuous simulation modelling in urban catchments is rarely undertaken in practice or reported in the literature. The 
challenges faced in the development of our continuous simulation model for the Gowrie Creek catchment demonstrate the reasons for 
its limited use. 

Rainfall data provided for the catchment seemed reasonable on paper however, the rainfall isohyets provided in Fig. 4 show the 
significant spatial variation across what would be considered a relatively small catchment. The use of the IDW method of interpolation 
seemed to overcome this issue as the shape and magnitude of the hydrographs presented generally reflected the observed. However, to 
achieve the results presented, a lag of 30 min had to be applied to the modelled output. It is believed that this lag is not uncommon 
given the previously mentioned issues faced by Dayaratne and Perera (2004). Inspection of the input data highlighted that the lag is 
likely to be a combination of rainfall being recorded regularly (five minutes) while stream gauge records can have timesteps of up to 
30 min. In addition, the hydrologic model’s response to rainfall, on impervious areas in particular, may not represent real conditions, 
especially for small events. 

The amount of impervious area, in particular EIA, is a vital input to an urban hydrological model. While it is difficult to directly 
source this data, the methods detailed in the study seem to have produced a value that represents the catchment well, given that 10 of 
the 11 Stage 1 calibration events produced peak flows within 20% of the observed. The lack of significant rainfall events in the 
catchment within the period of data available suggests that smaller, impervious runoff only events may form a critical part of a flood 
frequency analysis. 

It is recognised that the lack of rainfall events does impact the validity of the Stage 2 calibration. Investigation of the stream gauge 
data shows that a peak flow above that of calibration Event 12 has only been recorded seven times, with all but two of these occurring 
prior to 2010, and one being validation Event 13. There was an event recorded early in January 2011, unfortunately the rain gauge 

Table 5 
Calibrated ARBM parameters for the Gowrie Creek catchment and Comparative Values from Goyen (1981) and the ACT guidelines.  

Parameter Description Gowrie Creek Comparative Value Unit 

Goyen (1981) ACT guidelines 

Storage Capacities 
CAPIMP Impervious  2  0.5  0.5 mm 
ISC Interception  3  1.0  1.0 mm 
DSC Depression  7  1.0  1.0 mm 
USC Upper Soil  40  12.5  25 mm 
LSC Lower Soil  70  25  50 mm 
GSC Groundwater  0  0  0 mm 
Infiltration 
S0 Dry Sorptivity  10  10  3 mm/min0.5 

K0 Hydraulic Conductivity  0.3  0.84  0.33 mm/min 
LDF Lower Soil Drainage Factor  0.1  0.05  0.05 – 
KG Constant Groundwater Recession Rate  0.94  0.94  0.94 – 
GN Variable Groundwater Recession Rate  1.0  1.0  1.0 – 
ER Evapotranspiration  7.0  10  10 mm/hr  

Fig. 16. Hydrographs comparing the calibrated, Goyen (1981) and the ACT guidelines ARBM parameters to the observed flow for Event 1 (left) and 
Event 4 (right). 
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data provided did not cover the full extent of the event and was, therefore, not used in the calibration. However, this does not detract 
however from the findings of this research and highlights the need for further cataloguing of ARBM parameters for wider adoption of 
continuous simulation modelling by applied hydrologists. 

5. Conclusions 

Predicting the hydrologic response of urban catchments to extreme rainfall events is fundamental to making informed engineering 
and planning decisions associated with urban development, flood mitigation and disaster management. Improving the uncertainty in 
all hydrologic modelling requires careful model calibration including the utilisation of appropriate model parameters for the specific 
catchment. 

This paper focussed on determining catchment specific loss parameters for the Gowrie Creek catchment in Toowoomba, Australia 
as part of the model calibration. It developed and calibrated a continuous simulation hydrologic model for an urban catchment and 
then determined the ARBM parameters suitable for the Gowrie Creek catchment. These parameters have been documented within this 
paper and offer new values for the possible use by applied hydrologists dealing with similar catchment and climatic conditions. We 
then simulated other documented ARBM parameters to highlight the need for further cataloguing of suitable parameters both within 
Australia and internationally. 

Despite the challenges discussed, this research effectively calibrated an urban continuous simulation model using modelling 
software widely used in industry. The performance of the model, in particular the NSE and peak flow, showed that the model could 
produce suitable design hydrographs for the catchment if a sufficient length of rainfall data was available. It also showed that loss 
model parameters available in the literature, in particular those provided by Goyen (1981), may significantly overestimate peak flows 
for small events. This research has provided industry with an additional set of loss parameters that may be applicable to other urban 
catchments whilst highlighting the gap that is preventing widespread industry adoption of continuous simulation models like 
XPRAFTS. By documenting a new set of parameters, this research may help improve confidence in the modelling of similar ungauged 
catchments, or at least highlight the variability likely to be experienced in urban catchments throughout Australia. This research also 
highlights that assumptions around impervious fractions and catchment losses may be overestimating urban catchment runoff. 
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