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Abstract: We review the latest modeling techniques and propose new hybrid SAELSTM framework
based on Deep Learning (DL) to construct prediction intervals for daily Global Solar Radiation (GSR)
using the Manta Ray Foraging Optimization (MRFO) feature selection to select model parameters.
Features are employed as potential inputs for Long Short-Term Memory and a seq2seq SAELSTM
autoencoder Deep Learning (DL) system in the final GSR prediction. Six solar energy farms in
Queensland, Australia are considered to evaluate the method with predictors from Global Climate
Models and ground-based observation. Comparisons are carried out among DL models (i.e., Deep
Neural Network) and conventional Machine Learning algorithms (i.e., Gradient Boosting Regression,
Random Forest Regression, Extremely Randomized Trees, and Adaptive Boosting Regression). The
hyperparameters are deduced with grid search, and simulations demonstrate that the DL hybrid
SAELSTM model is accurate compared with the other models as well as the persistence methods. The
SAELSTM model obtains quality solar energy prediction intervals with high coverage probability and
low interval errors. The review and new modelling results utilising an autoencoder deep learning
method show that our approach is acceptable to predict solar radiation, and therefore is useful in
solar energy monitoring systems to capture the stochastic variations in solar power generation due to
cloud cover, aerosols, ozone changes, and other atmospheric attenuation factors.

Keywords: LSTM network; sequence to sequence (Seq2Seq) model; autoencoder; solar energy
monitoring; sustainable renewable energy; deep learning

1. Background Review

Demand for cleaner, green energy has been rapidly increasing in last few years as a
result of the negative impacts of fossil fuel-based energies to our environment and their
contributions to climate change. This has produced a growing interest on clear energy
resources such as solar and wind power [1]. According to a report released by the Interna-
tional Renewable Energy Agency (IRENA), despite the COVID-19 pandemic, more than
260 GW of renewable energy capacity have been added in 2020, and this exceeds the previ-
ous record by nearly 50% [2]. One of the current most promising sources of energy is solar
energy [3], particularly in photovoltaics (PV) technology, whose worldwide capacity (year
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2020) has reached about the same level as the wind capacity, mostly because of expansions
in Asia (78 GW), with significant capacity increases in China (49 GW) and Vietnam (11 GW).
In addition, Japan added more than 5 GW, and on the other hand, the Republic of Korea
added nearly 4 GW and the United States added 15 GW [2]. Moreover, the power output
of PV panels is strongly correlated with Global Solar Radiation (GSR), which is influenced
by many factors (for example, latitude, season, and sky conditions, among others) [4].
The GSR is highly intermittent and chaotic, and even the slightest fluctuation in solar radia-
tion can have an impact on power supply security [5]. Considering this, the development
of accurate GSR prediction models, especially those that can capture cloud cover effects on
solar energy generation forecasts, is essential for ensuring an optimum energy dispatch
and management practice. This becomes particularly important as rooftop solar power
generation and its penetration into the grid increases.

There are usually four main types of models used in GSR prediction problems, which
are classified into physical, empirical, statistical prediction, and Machine Learning (ML)-
based models. The physical models look for relationships between GSR and other meteoro-
logical parameters [3], usually by means of Numerical Weather Prediction (NWP) systems.
Despite its strong physical basis, there are challenges such as sourcing and selecting the
inputs for NWP models [6–8], and there are also issues related to the high computation cost
of these models. Among the most common models used is the empirical model, which is
intended to develop a linear or nonlinear regression equation [9]. Although empirical mod-
els are easy and simple to operate, their accuracy is usually limited. Statistical models, such
as the Autoregressive Integrated Moving-Average model (ARIMA) [10] and the Coupled
Autoregressive and Dynamical System (CARDS) [11] model rely on the statistical correla-
tion [12]. Although the precision of these statistical models is usually higher than empirical
models, however, they fail to capture complex nonlinear relationships accurately between
the GSR and other parameters. Furthermore, in statistical modeling process, historical data
are taken into account, while other relevant weather conditions that influence solar GSR
cannot be included [13]. ML-based approaches can be used to overcome this shortcoming
by integrating various types of input data into prediction models, and these models have
the ability to extract complex nonlinear features from multiple inputs [14]. During the
last three decades, a wide range of ML models have been used for GSR prediction, such
as Artificial Neural Networks (ANNs) [15,16], Recurrent Neural Networks (RNN) [14],
evolutionary neural approaches [17,18], Extreme Learning Machines (ELM) [19–22], En-
semble Learning (EL) [23], Multivariate Adaptive Regression Spline (MARS) [24], Gaussian
Processes [25], and Support Vector Machines (SVMs) [26–28], among others. These ML
models offer higher accuracy than empirical and statistical models [29] as well as competi-
tive behavior with less computational burden than NWP models, making them one of the
most popular models that have been used previously in short-term [30], medium-term [31],
and long-term [32] GSR prediction.

Despite having gained extensive attention in the past for several prediction applica-
tions, the ML-based approaches such as neural networks, ELMs, SVRs, etc., also suffer
from a few major drawbacks: (a) selecting the correct input features for a model requires
high expertise, thus making them unreliable and less capable of extracting the nonlinear
features from GSR data [33]; (b) because of less generalization capability, these models are
less effective in learning complex patterns and have the drawbacks of over-fitting, gradient
disappearance, and excessive network training [34]; and (c) these models perform very
well on relatively small datasets, but when the data size is huge, they may be subjected
to instabilities and a rather slow convergence of their parameters [35]. Due to the tedious
selection of features, a degree of over-fitting and somewhat high complexity linked to the
datasets, exploring different promising approaches that relies on Deep Learning (DL) [36]
to predict GSR is becoming the norm.

Models based on DL are proving useful in a multitude of areas for several reasons,
including their ability to extract features faster, their power to generalize, and their capacity
to handle big data [37]. The largest difference between conventional ML models and DL
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models is the number of transformations that the input data undergo before it reaches the
output. In DL models, input data are transformed multiple times before the output is pro-
duced, whereas conventional ML models transform it only once or twice [38]. Consequently,
DL models can learn highly complex patterns from data without any manual intervention
and work extremely well for several applications such as image processing, pattern ex-
traction, classification, and prediction. For instance, Long Short-Term Memory (LSTMs)
networks are trending in solving time-series prediction problems, and thus, many studies
have employed these models for GSR prediction [39–44]. Srivastava and Lessmann [45]
developed an LSTM model using different meteorological parameters such as inputs based
on air pressure, cloud cover, etc.; LSTM outperforms the Feed Forward Neural Networks
(FFNN) and Gradient Boosting Regression (GBR) model for daily GSR prediction.

Aslam et al. [46] analyzed various state-of-the-art DL (LSTM, Gated Recurrent Unit
(GRU)) and conventional ML (RNN, SVR, FFNN) models to predict GSR. Simulation results
show that DL models perform better than the conventional ML models. Brahma and
Wadhvani [47] proposed two different LSTM algorithms, namely Bidirectional LSTM (BiL-
STM), Attention LSTM, and GRU for the prediction of daily GSR, and the results obtained
suggest that BiLSTM has shown higher accuracy than other DL models. Furthermore,
to improve the accuracy of GSR prediction, multiple ML or DL models were combined to
take advantage of each single prediction model. The attention-based CNN model has been
investigated by [48] in a study on the anomaly detection in quasi-periodic time series based
on automatic data segmentation, while the study of [49] developed a data-driven evolu-
tionary algorithm with perturbation-based ensemble surrogate method. Bendali et al. [50]
propose an innovative hybrid method utilizing a genetic algorithm (GA) to optimize a deep
neural network for solar radiation forecasting (GRU, LSTM, and RNN). Zang et al. [13] and
Ghimire et al. [51] proposed a deep hybrid model that combines Convolutional Neural Net-
work (CNN) and LSTM for GSR prediction. Likewise, Husein and Chung [52] proposed a
hybrid, called LSTM-RNN, for daily GSR prediction. For a study in Queensland, Australia,
Deo et al. [53] and Ghimire et al. [54] investigated the use of wavelet transform methods to
improve solar radiation predictions, showing the efficacy of input data decomposition on
the improved performance of wavelet-based models.

In accordance with this review, the following aspects summarize many of the short-
comings of existing studies: (a) many studies used historical records or antecedent values
of GSR to predict the future thereby, ignoring the meteorological factors as inputs; (b) in
the modeling process of these hybrid models, no feature selection algorithm has been used;
(c) model testing results were unable to measure uncertainties in GSR prediction; and (d)
nevertheless, not many studies have focused on the persistence model, which is difficult to
surpass [55], sometimes even by the most advanced models [56].

Therefore, a key objective of this study is to address the research gaps listed above
and develop a new DL hybrid Stacked LSTM Sequence to Sequence Autoencoder method,
denoted as the SAELSTM model, adopted for daily GSR prediction at six solar farms in
Queensland, Australia. The major contributions in developing the DL hybrid stacked
LSTM sequence to sequence autoencoder (i.e., SAELSTM) model can be summarized
as follows: (a) predictors from global climate model (GCM) meteorological data and
ground-based data from Scientific Information for Landowners (SILO) were used for GSR
predictions; (b) a Manta Ray Foraging Optimization (MRFO)-based feature selection process
was implemented to select the best set of features for the problem; (c) LSTM-based seq2seq
architectures were explored for GSR prediction and compared with Deep Neural Network
(DNN), Gradient Boosting Regression (GBM), Random Forest Regression (RFR), Extremely
Randomized Trees (ETR), and Adaptive Boosting Regression (ADBR), and (d) a prediction
interval (PI) was calculated via quantile regression to quantify the level of uncertainty in
the daily GSR prediction.

The structure of the paper is as follows: next, we summarize the most important
characteristics of the main algorithms used in the proposed hybrid DL approach of GSR
prediction, including the MRFO algorithm, LSTM network, the SAELSTM approach, and a
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summary of DL methods for comparison. Section 3 describes the study area considered
and the data available for this study. Section 4 describes the proposed predictive model
development for GSR prediction problems, and Section 5 discusses the results obtained
and describes the comparison with alternative methods. Finally, Section 6 closes the paper
with some conclusions and remarks on the research carried out and the results obtained.

2. Review of Theoretical Framework for ML and DL Techniques
2.1. Manta Ray Foraging Optimization (MRFO)

To develop the proposed DL, hybrid stacked LSTM sequence to sequence autoencoder
(i.e., SAELSTM) model, we have adopted the Manta Ray Foraging Optimization (MRFO)
method for feature selection. The MRFO is a bio-inspired novel algorithm that simulates
the intelligent foraging behaviors of manta rays and the characteristics of their foraging
behaviors [57]. The concept is applicable to our present solar radiation prediction problem
given that the manta rays, on which the MRFO is based, have three distinct foraging
strategies that they use to search for food, which form the fundamental search schemes of
the MRFO to optimize the solution of our proposed solar radiation prediction problem.

Chain foraging: When 50 or more manta rays begin foraging, they line up one after
the other, forming an ordered line. Male manta rays are smaller than females and dive
on top of their back stomachs to the beats of the female’s pectoral fins. As a result,
plankton (prey or marine drifters) lost by past manta rays will be scooped up by those
after them. Through working together in this manner, they can get the most plankton
into their gills and increase their food rewards. This mathematical model of chain
foraging is represented as follows [58]:

M∗m =

{
Mm + (MB −Mm)(r + σ) if m = 1

Mm + r(Mm−1 −Mm) + σ(MB −Mm) if m 6= 1
(1)

σ = 2r
√
|log(r)|) (2)

where (Mm) = individual manta ray (m); r = random uniformly distributed number
in [0, 1]. M∗ and MB = new or best position of manta ray in population, σ = weight
coefficient as a function of each iteration.
It is clear from Equation (1) that the previous manta ray in the chain and the spa-
tial location of the strongest plankton clearly define the position update process in
chain foraging.
Cyclone foraging: When the abundance of plankton is very high, hundreds of manta
rays group together in a cyclone foraging strategy. Their tail ends spiral along with the
heads to form a spiraling vertex in the cyclone’s eye, and the purified water rises to
the surface. This attracts plankton to their open mouths. Mathematically, this cyclone
foraging is divided into two parts. The first half focuses on enhancing the exploration
and is updated as [59]:

M∗m =

{
MR + (MR −Mm)(r + β) if m = 1

Mm + r1(Mm−1 −Mm) + β(MR −Mm) if m 6= 1
(3)

where MR = individual created randomly:

MR = Mmin + r1(Mmax −Mmin). (4)

The adaptive weight coefficient (β) is varied as:

β = 2er2
Iterm−Iterm+1

Iterm sin (2πr2) (5)
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where Iter = current iteration and random uniformly distributed number, and r2 is
over [0, 1].
The second half concentrates on improving the exploitation, so the update is as per:

M∗m =

{
MB + (MB −Mm)(r1 + β) if m = 1

MB + r1(Mm−1 −Mm) + β(MB −Mm) if m 6= 1.
(6)

Somersault foraging: This is the final foraging strategy with manta rays discovering
the food supply and doing backwards somersaults to circle the plankton for attraction.
Somersaulting is a spontaneous, periodic, local, and cyclical action that manta rays
use to maximize their food intake. The third strategy is where an update of each
individual occurs around an optimal position [60]:

M∗m = Mm + S(r3MB − r4Mm). (7)

In Equation (7), S = somersault coefficient (S = 2) controlling the domain of manta
rays, r3 and r4 are random numbers within [0, 1].

Based on a randomly generated number, the MRFO algorithm will switch between
chain foraging and cyclone foraging [60,61]. Then, summersault foraging takes action to
update individuals’ existing positions using the best solution available at the time. These
three distinct foraging processes are used interchangeably to achieve the global optimum
solution of the optimization problem, thus satisfying the predefined termination criterion.

2.2. Long Short-Term Memory Network (LSTM)

Recurrent Neural Networks (RNN) have lately been researched to accomplish the predic-
tion problem due to the rapid development of DL, the rise of computation skills [45,51,52,62],
and the failure of traditional ML methods to effectually reveal the intrinsic association
between time-series data [63]. RNN has a short-term memory based on its recurring pro-
cess in hidden layers correlating with contextual information. Furthermore, because of
the issue related with gradient vanishing and explosion, RNNs are unable to provide
long-term memory [64]. Hence, a Long Short-Term Memory network (LSTM) is proposed
by researchers and has been used extensively in time-series prediction. LSTM is an RNN
deformation structure that controls the memory information of time-series data by adding
memory cells to the hidden layer. Information is passed between cells in the hidden layer
by means of a series of programmable gates (input, output, and forget gate) [65]. LSTM can
maintain the cell state through its gate mechanism, which can solve both short-term and
long-term memory reliance problems, thus avoiding the vanishing gradient and explosion
problem.

Figure 1 depicts the basic LSTM cell with three gates in a memory cell. The function of
input gates is to keep track of the most recent information in a memory cell; the output gate
function is to maintain control over the dissemination of the most up-to-date information
throughout the remainder of the networks. The third gates (forget gates) function is to
determine if the information should be deleted based on the status of the preceding cell.
The equations below (8)–(15) explain how to implement and update the LSTM cell state
and compute the LSTM outputs.

Ft = σ(Wx f Xt + Wh f Ht−1 + B f ) (8)

It = σ(WxiXt + Whi Ht−1 + Bi) (9)

C̄t = σ(WxcXt + Whc Ht−1 + Bc) (10)

Ct = Ft ∗ Ct−1 + It ∗ C̄t (11)

Ot = σ(WxoXt + Who Ht−1 + Bo) (12)

Ht = ot tanh(Ct) (13)
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Yt = σ(Why Ht + By) (14)

σ(x) =
1

1 + exp−x (15)

where Xt = input vector; Yt = output vector; It = input gate outcome; Ft = forget gate
outcome; Ot = output gate outcome; Ct = finishing state in memory block; C̄t = temporary;
σ = sigmoid function; Wx f , Wxi, Wxc, and Wxo are input weight matrices; Wh f , Whi, Whc,
and Who are recurrent weight matrices; Why is output weight matrix; and B f , Bi, Bc, Bo, and
By are the related bias vectors.

Figure 1. Schematic of LSTM with Ft = forget, It = input, Ot = output gate, Ct = cell memory state,
and Ht = hidden state vector.

2.3. Stacked LSTM Sequence-to-Sequence Autoencoder (SAELSTM)

Our proposed DL hybrid stacked LSTM sequence-to-sequence autoencoder (i.e.,
SAELSTM) model has used the approach of Cho et al. [66], who introduced an RNN
encoder–decoder network. This serves as a prototype for a sequence-to-sequence (seq2seq)
model. The Seq2seq paradigm has recently become popular in the field of machine trans-
lation [67–69] and is made up of two parts: an encoder and a decoder, as illustrated in
Figure 2a. Data are received by the encoder, which compresses it into a single vector.
The vector at this point is known as a context vector, and the decoder uses it to create an
output sequence. RNN or LSTM is used by the encoder to transform input into a hidden
state vector. The encoder’s output vector is the latest RNN cell’s hidden state. The encoder
sends the context vector to the decoder. The encoded context vector is utilized as the
decoder network’s starting hidden state, and the output value of the previous time step is
sent into the next LSTM unit as an input for progressive prediction.

Mathematically, an encoder φ is formed by the input layer and the hidden layer, which
compresses input data x from a high-dimensional representation into a low-dimensional
representation Z. In the meantime, a decoder Ψ is formed by the hidden layer and the
output layer, which reconstructs the input data x′ from the appropriate codes. These
transitions in the seq2seq learning can be signified mathematically by the standard neural
network function passed through a sigmoid activation function σ (Equation (15)).

φ : X → Z

x 7→ φ(x) = σ(Wx + b) := z
(16)

Ψ : Z → Z

z 7→ Ψ(x) = σ(W̃z + b̃) := x′
(17)

where W is weight matrices and b is the bias.
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Figure 2. The schematic structure of the proposed sequence-to-sequence model. (a) A basic encoder-
decoder system; (b) An extended encoder-decoder system with LSTM structure.

The encoder and decoder networks of the LSTM seq2seq model utilized in this study
for GSR prediction are shown in Figure 2b. To use this seq2seq learning in GSR prediction,
LSTM layers were stacked on the encoder and decoder parts of the model and called the
stacked LSTM sequence-to-sequence autoencoder (SAELSTM). By stacking LSTMs, we
may be able to improve our model’s prediction capability to comprehend more compli-
cated representations of our time-series data in hidden layers by collecting information at
various levels [70]. Moreover, on the figure, x and o are the input data and output data,
c = encoder context vector and ht and st = hidden states in the encoder and decoder, which
are respectively as follows:

ht = LSTMenc(xt, ht−1) (18)

ht = LSTMdec(ot−1, st−1). (19)

Each encoder LSTM layer calculates context vector c, and this context vector will be
replicated and sent to each decoder unit.

2.4. Benchmark Models

To validate the proposed deep learning hybrid stacked LSTM sequence-to-sequence au-
toencoder (i.e., SAELSTM) model, we adopted popular Machine Learning models: (i) Deep
Neural Networks (DNN) as extensions of artificial neural network ([43,71–77]), (ii) Gradient
Boosting Regressor (GBM) as an ensemble-based Machine Learning model [78–81], (iii) Ran-
dom Forest Regression (RFR) as an ensemble-based Machine Learning model that uses an
ensemble of Decision Trees to predicts outcomes [82–90], (iv) Extremely Randomized Trees
Regression model (ETR) that uses bagging [91], and (v) the Adaptive Boosting Regression
(ADBR) that aims to adaptively solve complex problems [10,92–96].
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3. Study Area and Data Available

The proposed DL hybrid stacked LSTM sequence-to-sequence autoencoder (i.e., SAEL-
STM) model was built for Queensland, which is a region known as Australia’s sunshine
state with 300 days of sunshine per year, a tropical climate, 8 to 9 h of sunshine per day,
and average maximum and minimum temperatures of 25.3 and 15.7 ◦C, respectively [97].
As of March 2021, there are currently 44 large-scale renewable energy projects in Queens-
land (operating, under construction or financially committed). This roughly equates to an
investment of $9.9 billion or 7000 construction jobs, or 5156 megawatts (MW) of renew-
able energy, and 12.6 million tons of carbon that can be saved per year. The state now
has 6200 MW of renewable energy capacity, including rooftop solar PV and accounts for
about 20% of total power consumption [98]. In this study, six solar farms in Queensland,
Australia, ranging in size from 60 to 280 MW, were chosen for the study. The Bouldercombe
solar farm (proposed to be developed by Eco Energy World) located 20 km southwest of
Rockhampton, Queensland with 280 MW capacity. This solar farm will utilize 90,000 PV
on a one-axis tracking system to capture the sun energy. The Bluff solar farm (proposed)
entails the building of a 332 hectare (ha) solar farm with a capacity of 250 MW, which will
generate power using PV panels with rotating axes to capture solar energy and transfer it
to the local electrical grid through transmission lines.

The Blue Grass solar farm project site is 14 km from Chinchilla in Queensland, which
is planned to be in the fully operational stage by the fourth quarter of 2021. This 200 MW
solar farm will provide 420 Gigawatt hours (GWh) of green electricity per year, which is
enough to power about 80,000 Queensland households. The Columboola Solar Farm (under
construction by Sterling & Wilson) with 162 MW capacity project on 410 ha of grazing land
is located in Queensland’s Western Downs and will utilize 407,171 next-generation bifacial
solar panels that produce energy from the sun using both sides of the panel. Planned to
be completed in 2022, the Columboola Solar Farm will generate approximately 440 GWh
of renewable energy per year, which is enough renewable energy to power 75,000 homes
for 35 years. The Broadlea and Blair Athol solar farms (both proposed) with a capacity
of 100 MW and 60 MW are located at Blair Athol and Broadlea of North Queensland,
respectively [99]. The study site details (the statistics of GSR) are shown in Table 1, and
their locations are shown in Figure 3.

Figure 3. The present study area showing six solar energy farms in Queensland Australia where the
deep learning hybrid stacked LSTM sequence-to-sequence autoencoder (i.e., SAELSTM) model was
developed to predict daily GSR.
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Table 1. Statistical summary of daily global solar radiation (GSR; MJm−2day−1) in solar energy farms for Queensland Australia where the proposed deep learning
hybrid SAELSTM model is implemented.

Property Blair Athol Solar Power Station Blue Grass Solar Farm Bluff Solar Farm Bouldercombe Solar Farm Broadlea Solar Farm Columboola Solar Farm

Latitude 22º41′28′′ S 26º40′48′′ S 23º35′53′′ S 23º31′30′′ S 21º51′43′′ S 26º38′10′′ S
Longitude 147º32′31′′ E 150º29′35′′ E 149º02′20′′ E 150º29′56′′ E 148º10′12′′ E 150º17′46′′ E

Capacity (MW) 60 200 250 280 100 162
Median 20.00 19.00 20.00 20.00 20.00 19.00
Mean 20.02 19.28 19.76 19.57 19.85 19.33

Standard deviation 5.80 6.43 5.84 5.83 5.68 6.48
Variance 33.64 41.34 34.10 33.95 32.23 42.05

Maximum 32.00 32.00 32.00 32.00 31.00 33.00
Minimum 4.00 4.00 4.00 4.00 3.00 4.00

Mode 28.00 28.00 28.00 28.00 28.00 29.00
Interquartile range 8.00 9.00 8.00 8.00 8.00 9.00

Skewness −0.38 −0.18 −0.36 −0.36 −0.41 −0.19
Kurtosis 2.65 2.34 2.57 2.54 2.65 2.34
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In the supervised learning process, the predictive model is presented with example
inputs (predictors) and their desired outputs (predictands), and the goal is to learn a general
rule that maps inputs to outputs. Since GSR prediction is the supervised learning, we need
the predictors and predictand. Therefore, this study has used the Global Climate Models
(GCM) meteorological data (cloud parameters, humidity parameters, precipitation, wind
speed, etc.) and ground-based observation data (Evaporation, Vapor Pressure, Relative
Humidity at maximum and minimum temperature, Rainfall, Maximum and Minimum
Temperature) from Scientific Information for Landowners (SILO) as the predictors. As the
GSR (predictands or target) measurements for each site’s precise latitude and longitude are
not publicly accessible, ground truth observations are obtained from the SILO database.

The Department of Science, Information Technology, Innovation and Arts under
Queensland Government (DSITIA) manages the Long Paddock SILO database [100]. GCM
outputs are collected from the online archive (Centre for Environmental Data Analy-
sis) hosting CMIP5 project’s GCM output collection [101]. We adopt data from CSIRO-
BOM ACCESS1-0 (grid size 1.25° × 1.875°) [102], MOHC Hadley-GEM2-CC (grid size
1.25° × 1.875°) [103], and the MRI MRI-CGCM3 (grid size 1.12148° × 1.125°) [104] with
historical outputs spanning 1950-01-01T12:00:00 and 2006-01-01T00:00:00 indexed by longi-
tude, latitude, time, atmospheric pressure (8 levels), or near-surface readings.

Table 2 provides a brief overview of each of the meteorological variables comprised in
the dataset. This final dataset contained 20,455 × 75).

Table 2. Predictor variables for daily GSR. (a) Atmospheric variables from global climate models and
(b) Ground-based observational climate data from Scientific Information for Landowners (SILO) used
to train the proposed Deep Learning hybrid SAELSTM model.

Variable Description Units

G
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la
ti

on
M

od
el

A
tm

os
ph

er
ic

Pr
ed

ic
to

r
V
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clt Cloud Area Fraction %
hfls Surface Upward Latent Heat Flux wm−2

hfss Surface Upward Sensible Heat Flux wm−2

hur Relative Humidity %
hus Near-Surface Specific Humidity gkg−1

pr Precipitation kgm−2s−1

prc Convective Precipitation kgm−2s−1

prsn Solid Precipitation kgm−2s−1

psl Sea Level Pressure pa
rhs Near-Surface Relative Humidity %
rhsmax Surface Daily Max Relative Humidity %
rhsmin Surface Daily Min Relative Humidity %
sfcWind Wind Speed ms−1

sfcWindmax Daily Maximum Near-Surface Wind Speed ms−1

ta Air Temperature K
tas Near-Surface Air Temperature K
tasmax Daily Max Near Surface Air Temperature K
tasmin Daily Min Near Surface Air Temperature K
ua Eastward Wind ms−1

uas Eastern Near-Surface Wind ms−1

va Northward Wind ms−1

vas Northern Near-Surface Wind ms−1

wap Omega (Lagrangian Tendency of Air Pressure) pas−1

zg Geopotential Height m
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Table 2. Cont.

Variable Description Units

G
rn

d.
-b

as
ed

SI
LO T.Max Maximum Temperature K

T.Min Minimum Temperature K
Rain Rainfall mm
Evap Evaporation mm
VP Vapor Pressure Pa
RHmaxT Relative Humidity at Maximum Temperature %
RHminT Relative Humidity at Minimum Temperature %

4. Predictive Model Development

Predictive models with time-series data require cleaning and filtering. Normalization
of input variables, sometimes accomplished by scaling, is crucial in Machine Learning [105].
The intent of this normalization implementation is to eliminate the potential for numerically
prominent variables to be favored over variables with miniature figures. Additionally,
because kernel quantities rely largely on input vectors’ internal multiplication, there are
calculation complications arising from large input variables [106]. Therefore, to overcome
numerical complexities during modeling, the normalization of input vectors is essential.
In this study, Equation (20) is applied so that each input variable is scaled linearly to a
range [0, 1] [107].

xn
i =

xi − xmin
xmax − xmin

(20)

where xi = input vector; the minimum and maximum of measured data are xmin and xmax
is the scaled version of xi.

One of the fundamental concepts in the fields of Machine Learning and data mining
is the concept of feature selection (FS), which enhances the performance of predictive
models tremendously [17]. Furthermore, FS allows for the removal of irrelevant or partially
relevant features, which in turn improves the performance of models [105]. In the course
of time, researchers have applied several meta-heuristic optimization techniques for the
purposes of FS, which overcome the limitations of traditional optimization techniques.
Therefore, in this study, a new FS method based upon a meta-heuristic algorithm called
Manta Ray Foraging Optimization (MRFO) was used. This MRFO mimics the feeding
behavior of manta rays, which are one of the largest marine animals and explained in
Section 2.1.

In FS techniques, one aspect that is critical is evaluation of the selected feature. As the
proposed MRFO is a wrapper-based approach to FS, the evaluation process entails a
learning algorithm (regressor). For this purpose, we used a known regression method,
K-Nearest Neighbor (KNN). In general, FS is designed with two objectives: higher accu-
racy and a lower number of selected features. The combination of higher accuracy and
fewer features selected indicate that the chosen subset is more accurate. This study has
taken these two characteristics into account when creating the fitness function for our
proposed MRFO FS. Due to the need to minimize the features, the root mean square error
(RMSE), which is a complementary measure of regression accuracy, was selected. In this
study, after normalizing all predictor variables, the MRFO FS algorithm is run with the
following configurations:

• Population size N = [10, 20, 50, 80, 100, 200, 300, 500].
• The number of maximum iterations (T) = 50.
• Somersault coefficient (S) = 2.

Similarly, we observed an effect of population size on MRFO performance in terms
of root mean square error (fitness value, FV). To achieve this, we evaluated the proposed
approaches for population sizes of 10, 20, 50, 80, 100, 200, 300, and 500. The convergence
graph (Figure 4) shows the impact of different population sizes on FV for the Broadlea
solar farm. From the convergence graph, it is apparent that increasing the size of the
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population is not always beneficial to FV. Along with this, the higher population size is
computationally inefficient.

Figure 4. Convergence curves for MRFO feature selection on the predictors for the case of Broadlea
solar energy farm.

Therefore, for all other five solar farms, the value of the population size is set to
20 to balance the FV with the algorithm computation time. With this MRFO FS process,
16 meteorological predictors from the pool of 75 (data: 20,455 × 16) are selected for Blair
Athol solar power station, Bluff solar farm, and Bouldercombe solar farm. Whereas for
the Blue Grass solar farm and Columboola solar farm, 17 meteorological predictors (data:
20,455 × 17) are selected. Similarly, for the Broadlea solar farm, only 13 meteorological
predictors (Data: 20,455 × 13) are selected. The predictors from the MRFO feature selection
process for the prediction of GSR for all six solar farms are shown in Table 3.

Table 3 reveals that the optimal set of meteorological predictors are somewhat site-
specific as the MRFO feature selection method selects different predictors for the different
study sites. For example, 16 predictors (in a different order) are selected for the Blair Athol
solar power station, whereas for the Blue Grass solar farm, there are 17 predictors, and
for the Bluff Solar Farm, we have 16 best predictors. Interestingly, for the Broadlea solar
farm, the MRFO feature selection process resulted in 13 meteorological predictors, and for
the Columboola solar farm, there were 17 predictor variables—again in different order or
predictor type. While the exact cause of these diverse list of screened predictors is not clear,
it is possible that the strength of the features related to the measured GSR are different for
the different study sites.
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Table 3. The selected predictor (input) variable using Manta Ray Foraging Optimization (MRFO) feature selection for the proposed deep learning hybrid SAELSTM
model. For abbreviations, readers should refer to Table 2 (example: hur1000 = relative humidity 1000 hPa pressure height).

Blair Athol Solar Power Station Blue Grass Solar Farm Bluff Solar Farm Bouldercombe Solar Farm Broadlea Solar Farm Columboola Solar Farm

Evap Evap Evap Evap Evap Evap
RHmaxT RHmaxT RHmaxT RHmaxT RHmaxT RHmaxT

hfss ua_1000 hfss hfss hfss ua_1000
hur_1000 hfls hur_1000 Rain hur_1000 hfls
ua_5000 hfss ua_5000 ua_1000 Rain hfss

wap_1000 hus_5000 wap_1000 zg_1000 T.Max hus_5000
Rain ta_25000 hus_5000 hus_5000 RHminT wap_1000

T.Max wap_1000 sfcWindmax wap_1000 wap_85000 ta_25000
va_85000 wap_85000 Rain va_85000 wap_1000 Rain
RHminT sfcWindmax T.Max T.Max va_85000 hur_1000

wap_85000 zg_1000 ta_25000 hur_1000 ua_5000 ua_5000
zg_5000 Rain wap_85000 ta_25000 va_50000 wap_85000

va_50000 RHminT zg_1000 wap_85000 zg_5000 RHminT
sfcWindmax ua_5000 RHminT ua_5000 sfcWindmax

hus_5000 T.Max va_50000 sfcWindmax T.Max
hfls va_25000 zg_85000 va_50000 zg_1000

hur_1000 va_25000
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Lastly, before feeding the data into the ML model, training and testing data are created
for the purpose of predicting daily GSR. Training datasets are used to train a model,
and testing datasets are used to estimate the model’s range of capability. Throughout
previous research, it was found that 70-30 % was usually used for data division during
training and testing, and that there is no standard way of dividing data. In this study,
for training, 54 years of data are used (20,089 data points), validation uses 20% of the data
in the training set (4018 data points), and testing uses 1 year of data (365 data points).
Moreover, to prevent look-ahead bias, only the training set was used for optimization, and
the testing set was only used to test the model’s performance to predict the daily GSR.

4.1. Stacked LSTM Sequence to Sequence Autoencoder Model Development

As mentioned in Section 2.3, this study utilizes the LSTM-based seq2seq model in
prediction of GSR for six solar farms of Queensland, Australia. Furthermore, we have
added two layers: namely, a repeat vector layer and a time-distributed dense layer in the
SAELSTM model. The repeat vector layer repeats the context vector received from the
encoder and feeds it to the decoder as an input. This is repeated for n steps, where n is the
number of future steps that must be predicted [108].

Similarly, to maintain one-to-one relationships on input and output, we have employed
a wrapper layer called a time-distributed dense layer. Furthermore, the flattened output of
the decoder is mixed with the time steps if a time-distributed dense layer is not utilized for
sequential data. However, if this layer is used, the output for each time step is received
individually. In particular, the LSTM encoder extracts features from predictor variables
and then passes on the hidden state of its last time step to the LSTM decoder. Each output
time step contains the future variables. The LSTM decoder output is transformed directly
by a fully connected time-wrapped layer to predict output at each subsequent step. The
proposed methodology step-wise is shown in Figure 5.

• The encoder layer of the SAELSTM receives as an input a sequence X of predictor
variables after MRFO FS, which are represented as Xij with i = 1, . . . , l terms to time
series in j = 1, . . . , t time step.

• The encoder recursively handles the input sequence (X) of length t. Then, it updates
the cell memory state vector Ct and hidden state vector ht at time step t. Afterwards,
the encoder summarizes the input sequence in Ct and ht.

• An encoder output is fed through a repeat vector layer, which is then fed into a
decoder layer.

• Afterwards, the decoder layer of SAELSTM adopts Ct and ht from an encoder as initial
cell memory state vector. The initial hidden state vectors C0’ and h0’ for t’ length are
at the respective time step.

• Afterwards, the decoder layer of SAELSTM uses the final vectors Ct and ht passed
from the encoder as initial cell memory state vectors and initial hidden state vectors
C0’ and h0’ for t’ length of time step.

• The learning of features is performed by the decoder as included in the original input
to generate multiple outputs with N-time step ahead.

• Using a time-distributed dense layer, each time step has a fully connected layer that
separates the outputs (GSR). The prediction accuracy of the SAELSTM model can be
evaluated here.
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Figure 5. The stacked LSTM sequence-to-sequence autoencoder (i.e., SAELSTM) architecture used to
predict GSR at six solar energy farms in Queensland, Australia. Note: Detailed description of the
notations in Section 4.3.

It is vital to select hyperparameters sensibly when designing an ML model in order
to achieve optimal performance. For example, hyperparameters include the optimization
and tuning of model structures, the step size of a gradient-based optimization, and data
presentation, all of which have significant effects on the learning process. A grid search
method based on five-fold cross-validation was utilized to optimize all the hyperparameters
in the SAELSTM model. During SAELSTM model training, the activation function ‘ReLU’
is applied to the LSTM layers to handle vanishing gradients, allowing learning to be more
rapid and effective [109]. Furthermore, Adam is chosen as the optimization algorithm with
a constant learning rate of (lr) 0.001; decay rate β1 = 0.9 & β2 = 0.9999 and epsilon (ε)
of 10−8. The Adam optimization algorithm is computationally efficient, has a reasonable
memory requirement, is invariant to gradient rescaling, and is well-suited to handling large
datasets [110]. Additionally, the regularization method called early stopping (es) [111]
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is used in developing predictive models, which quits the training process by controlling
validation loss before a certain number of iterations.

During model development, this study also uses the ‘ReduceLROnPlateau’ scheduler,
which reduces the learning rate when a validation loss stops improving. As a start, ‘Re-
duceLROnPlateau’ uses the default learning rate of the optimizer (0.001). It is configured
with patience (number of epochs with no improvement before the learning rate is reduced)
of 8 and a factor of (lrnew = lr ∗ f actor) 0.2. Table A1 (in the Appendix A) lists the search
space and optimized results. Figure 6 illustrates that the training and validation losses of
the SAELSTM model with optimum parameters (Broadlea solar farm gradually) decrease
as the epoch increases, indicating the satisfactory performance of the SAELSTM training.

Figure 6. Training and validation loss, or mean square error in model development phase. Early
stopping callbacks are used to halt the model if no improvement in loss for a certain number of
predefined epochs is evident.

4.2. Benchmark Model Development

We compared the proposed deep learning hybrid stacked LSTM sequence-to-sequence
autoencoder (i.e., SAELSTM) model with five forecast models: Deep Neural Network
(DNN), Gradient Boosting Regression (GBM), Random Forest Regression (RFR), Extremely
Randomized Trees (ETR), and Adaptive Boosting Regression (ADBR) were performed to
validate its predictive efficacy. All the proposed (SAELSTM) as well as benchmark models
were built using Python under the framework of Keras 2.2.4 [112,113] on TensorFlow
1.13.1 [114,115]. The hyperparameters of the benchmark models are also derived by using
grid search (see Table A1 in Appendix A). The training process of all the models was
conducted on a system that has the CPU type of Intel®Core™i7 with 32GB RAM.

4.3. Performance Evaluation Metrics Considered

In the past, several approaches have been used to evaluate model efficiency. How-
ever, since each metric has its own strengths and weaknesses, the current study uses
a collection of common statistical metrics approaches (e.g., Correlation (r), root mean
square error (RMSE), mean absolute error (MAE), relative root mean square error (RRMSE),
relative mean absolute error (RMAE), Willmott’s Index (WI), Nash–Sutcliffe Equation
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(NS), Legates and McCabe’s (LM), and Explained Variance Score (Evar)) represented be-
low [51,53,54,105,106,116–121] in Equations (21)–(31).

r = ∑n
i=1(GSRm − 〈GSRm〉)(GSRp − 〈GSRp〉)√

∑n
i=1(GSRm − 〈GSRm〉)2

√
∑n

i=1(GSRp − 〈GSRp〉)2
(21)

RMSE =

√
1
n

n

∑
i=1

(GSRp −GSRm)2 (22)

MAE =
1
n

n

∑
i=1
|GSRp −GSRm| (23)

RRMSE =

√
1
n ∑n

i=1(GSRp −GSRm)2

〈GSRm〉 (24)

RMAE =
1
n

n

∑
i=1

|GSRp −GSRm|
GSRp (25)

WI = 1− ∑n
i=n(GSRm −GSRp)2

∑n
i=n(|GSRp − 〈GSRm〉|+ |GSRm − 〈GSRm〉|)2 (26)

NSE = 1− ∑n
i=1(GSRm −GSRp)2

∑n
i=1(GSRm − 〈GSRm〉)2 (27)

LM = 1− ∑n
i=1 |GSRm −GSRp|

∑n
i=1 |GSRm − 〈GSRm〉| (28)

Evar = 1− Var(GSRm −GSRp)

Var(GSRm)
(29)

SS = 1− RMSE(p, x)
RMSE(pr, x)

(30)

RMSEr =
RMSE(p, x)
RMSE(r, x)

(31)

where GSRm and GSRp are the observed and predicted value of GSR, 〈GSRm〉 and 〈GSRp〉
are the observed and predicted mean of GSR, p stands for the model prediction, x stands
for the observation, pr stands for perfect prediction (persistence), and r stands for the
reference prediction.

For a better model performance,

• r can be in the range of −1 and +1, MAE, RMSE = 0 (perfect fit) to ∞ (worst fit);
• RRMSE and RMAE ranges from 0% to 100%. For model evaluation, the precision is ex-

cellent if RRMSE < 10%, good if 10% < RRMSE < 20%, fair if 20% < RRMSE < 30%,
and poor if RRMSE > 30% [122].

• WI, which is improvement to RMSE and MAE and overcomes the insensitivity issues
with differences between observed and predicted not squared. We have from 0 (worst
fit) to 1 (perfect fit) [123].

• NSE compares the variance of observed and predicted GSR and ranges from −∞ (the
worst fit) to 1 (perfect fit) [124].

• LM is a more robust metric developed to address the limitations of both the WI and
ENS [119] and the value ranges between 0 and 1 (ideal value).

• Evar uses biased variance for explaining the fraction of variance and ranges from 0 to 1.
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Furthermore, the overall model performance was ranked using the Global Performance
Indicator (GPI) [125]. GPI was calculated using the six metrics.

GPIi =
6

∑
j=1

αj(gj − yij) (32)

where αj = median of scaled values of statistical indicator, j = 1 for RMSE, MAE, MAPE,
RRMSE, and RRMSE (j = 1, 2, 3, 4, 5), −1 for r; gj = scaled value of the statistical indicator j
for model i with larger GPI indicating a better performance.

We evaluated the model performance with Kling–Gupta Efficiency (KGE) [126] and Ab-
solute Percentage Bias (APB; %) [127]. Mathematically, these metrics are stated as follows:

KGE = 1−

√
(r− 1)2 +

(
〈GSRp〉
〈GSRm〉 − 1

)2

+

(
CVp

CVm

)2

(33)

APB =
∑n

i=1(GSRm −GSRp) ∗ 100)
∑n

i=1 GSRm , (34)

where r is the correlation coefficient, and CV is the coefficient of variation.
This study also use the promoting percentage of absolute percentage bias (λAPB), mean

absolute error (λMAE), and root mean square error (λRMSE) [128] to compare various models
that have been used in the GSR prediction.

λAPB =

∣∣∣∣APB1 −APB2

APB1

∣∣∣∣ (35)

λMAE =

∣∣∣∣RMAE1 − RMAE2

RMAE1

∣∣∣∣ (36)

λRRMSE =

∣∣∣∣RRMSE1 − RRMSE2

RRMSE1

∣∣∣∣ (37)

where APB1, RRMSE1, and RMAE1 refer to the objective model (i.e., SAELSTM) perfor-
mance metrics and APB2, RRMSE2, and RMAE2 refer to the benchmark model perfor-
mance metrics.

Additionally, the performance to prediction direction of movement was measured by
a Directional Symmetry (DS) as follows:

DS =
1
n

n

∑
t=2

dt100% (38)

where:

dt =

{
1 if (GSRm

t − GSRm
t−1)(GSRp

t − GSRm
t−1) > 0

0 otherwise.
(39)

An assessment criterion known as the Diebold–Mariano (DM) test, Harvey, Leybourne,
and Newbold (HLN) was used to test the statistical significance of all models under
study; these statistical tests are done to further evaluate the model prediction performance
and directional prediction performance from a statistical standpoint. When comparing
models, the alternative model outperforms the comparative model when DM statistics > 0,
HLN statistics > 0. The key steps of the DM and HLN tests are defined in previous
literature [129–131].
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4.4. Prediction Interval

To ascertain the importance of the proposed deep learning hybrid stacked LSTM
sequence-to-sequence autoencoder (i.e., SAELSTM) model in solar energy monitoring
systems, this study has generated a prediction interval (PI) using quantile regression to
quantify the level of uncertainty associated with the GSR prediction [132]. With quantile
regression, it is possible to get prediction at different quantile levels and therefore gain a
better picture of the prediction. Quantile regression not only makes it easy to get multiple
quantile prediction, but it also calculates PI [133].

To generate the PI, during training of the proposed (SAELSTM) model as well as
benchmark models, quantile loss function was used instead of RMSE. However, as op-
posed to deterministic prediction, prediction interval provides more information. Since
the uncertainty factor in the prediction affects the decision-making process, it is necessary
to evaluate the PI [134]. These PIs show the upper and lower bounds for the entity being
predicted as well as the corresponding confidence level [135].

In this study, a quantitative measure of the prediction interval’s quality was also
calculated by examining (i) prediction interval coverage probability (PICP), (ii) mean
prediction interval width (MPIW). Theoretically, PI with a higher PICP and a lower MPIW
are best [136] and can be defined by Equations (40) and (41) [137,138].

PICP =
1
T

T

∑
i=1

Ci (40)

MPIW =
1
T

T

∑
i=1

(Ui − Li) (41)

where ci is the binary value 1 if the target value yi is within the PI and otherwise 0, Ui is
the upper limit, Li is the lower limit, and T is the number of testing samples.

5. Results and Discussion

An extensive evaluation of the proposed deep hybrid SAELSTM model compared with
the DL model (DNN) as well as the conventional ML models (GBM, RFR, ETR, and ADBR)
has been conducted after the prediction of GSR at six solar farms located in Queensland,
Australia. To achieve optimal features for the predictor variables, the Manta Ray Foraging
Optimization (MRFO) feature selection algorithm was incorporated. In order to find the
optimal hyperparameter for deep hybrid SAELSTM as well as comparative models, a grid
search method based on five-fold cross-validation was used. Based on predictor metrices
(Sections 4.3 and 4.4) and visual plots, the models were assessed based on prediction results
using the testing dataset. The model that showed the lowest RMSE, MSE, RRMSE, RMAE,
MAPE, and APB values and the highest KGE, NSE, r, LM, and WI was chosen, and finally,
the models were ranked on the basis of GPI.

In terms of statistical metrics r, RMSE, and MAE, Table 4 and Figure 7 analyze the ro-
bustness of the deep hybrid SAELSTM against the comparison DL model and traditional ML
models. In predicting GSR using all six solar farms, the proposed (deep hybrid SAESTM)
model outperformed the alternative models used in this study. The results recorded
the highest r value from the deep hybrid SAESTM model (0.962 ≤ r ≥ 0.954) and the
lowest RMSE and MAE values (2.503 ≤ RMSE (MJm−2day−1) ≥ 2.208 and 1.967 ≤MAE
(MJm−2day−1) ≥ 1.638) in comparison with the other models. Consequently, it was clear
that the deep hybrid SAESTM model is superior to DNN and other comparing models.
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Figure 7. Evaluation of the newly proposed SAELSTM hybrid predictive model with respect to the
counterpart comparison models as measured by the mean absolute error (MAE, MJm−2day−1) in the
testing phase. (Note: names for each model are provided in Tables 3 and 4.)

Table 4. The performance of the proposed deep learning hybrid SAELSTM vs. counterpart compari-
son models in terms of correlation coefficient (r) and root mean square error (RMSE, MJm−2day−1)
in the model’s testing phase.

Predictive Models Blair Athol Solar
Power Station

Blue Grass
Solar Farm

Bluff
Solar Farm

Bouldercombe
Solar Farm

Broadlea
Solar Farm

Columboola
Solar Farm

r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE
SAELSTM 0.956 2.344 0.965 2.340 0.954 2.503 0.951 2.502 0.959 2.208 0.962 2.407
DNN 0.952 2.715 0.959 2.644 0.946 2.696 0.946 2.555 0.954 2.354 0.956 2.634
ADBR 0.952 2.436 0.958 2.601 0.944 2.674 0.938 2.748 0.954 2.377 0.957 2.664
GBM 0.953 2.441 0.956 2.671 0.948 2.580 0.945 2.620 0.957 2.295 0.953 2.759
ETR 0.953 2.445 0.959 2.592 0.947 2.619 0.939 2.733 0.953 2.426 0.955 2.716
RFR 0.952 2.456 0.955 2.660 0.940 2.760 0.939 2.724 0.952 2.420 0.953 2.744

In Table 5, we employed multi-scale WI and NSE criterion to analyze the performance
of the deep hybrid SAELSTM model vs. the DNN, ADBR, GBM, ETR, and RFR models.
For the case of Blue Grass Solar Farm, the optimum values of WI (≈0.930) and NSE
(≈0.863) were produced by the SAELSTM model followed by those for an ETR (WI ≈ 0.908,
NSE ≈ 0.833), the ADBR model (WI ≈ 0.906, NSE ≈ 0.82), the DNN model (WI ≈ 0.904,
NSE ≈ 0.828), the GBM model (WI ≈ 0.902, NSE ≈ 0.823), and the RFR model (WI ≈ 0.902,
NSE ≈ 0.824). Similarly for the other five farms, high performance was yielded by the
SAELSTM model in comparison with other methods.
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Table 5. As per Table 5 but measured in terms of the Willmott’s Index (WI) and Nash–Sutcliffe
coefficients (NSE).

Predictive Models Blair Athol Solar
Power Station

Blue Grass
Solar Farm

Bluff
Solar Farm

Bouldercombe
Solar Farm

Broadlea
Solar Farm

Columboola
Solar Farm

WI NSE WI NSE WI NSE WI NSE WI NSE WI NSE
SAELSTM 0.918 0.834 0.930 0.863 0.916 0.820 0.885 0.799 0.926 0.845 0.925 0.854
DNN 0.885 0.785 0.904 0.828 0.881 0.791 0.881 0.788 0.910 0.824 0.911 0.826
ADBR 0.911 0.821 0.906 0.832 0.897 0.793 0.858 0.757 0.909 0.822 0.902 0.824
GBM 0.911 0.820 0.902 0.823 0.906 0.807 0.874 0.780 0.918 0.833 0.896 0.811
ETR 0.911 0.820 0.908 0.833 0.903 0.801 0.862 0.761 0.906 0.815 0.899 0.817
RFR 0.910 0.818 0.902 0.824 0.891 0.779 0.861 0.762 0.907 0.815 0.899 0.812

The performance of the SAELSTM model was further evaluated using two other
metrics of LM and Evar (Table 6). For the Blue Grass solar farm, the SAELSTM model
with high LM (≈0.665) and Evar (≈0.867) outperformed all the other DL models and the
conventional ML models. Likewise, the SAELSTM model of the other five solar farms (Blair
Athol solar power station, Bluff solar farm, Bouldercombe solar farm, Broadlea solar farm,
and Columboola solar farm) performed substantially better proofing than the deep hybrid
SAELSTM model, indicating its superior accuracy in predicting GSR compared to the other
models developed in this work.

Table 6. As per Table 5 but measured in terms of the Legates and McCabes index (LM) and explained
variance score (Evar).

Predictive Models Blair Athol Solar
Power Station

Blue Grass
Solar Farm

Bluff
Solar Farm

Bouldercombe
Solar Farm

Broadlea
Solar Farm

Columboola
Solar Farm

LM Evar LM Evar LM Evar LM Evar LM Evar LM Evar
SAELSTM 0.630 0.835 0.665 0.867 0.595 0.827 0.600 0.817 0.644 0.845 0.659 0.856
DNN 0.573 0.817 0.628 0.846 0.577 0.798 0.583 0.799 0.605 0.824 0.628 0.831
ADBR 0.616 0.823 0.633 0.842 0.582 0.793 0.568 0.773 0.621 0.829 0.631 0.837
GBM 0.618 0.823 0.612 0.836 0.592 0.807 0.579 0.798 0.626 0.838 0.608 0.825
ETR 0.615 0.824 0.638 0.846 0.591 0.802 0.573 0.779 0.609 0.825 0.617 0.829
RFR 0.612 0.820 0.624 0.833 0.573 0.780 0.581 0.778 0.616 0.821 0.614 0.822

In order to overcome the limitation of the objective metrics, diagnostic plots were used
to show the ability and suitability of the deep hybrid SAELSTM model in GSR prediction.
Figure 8 shows scatter plots of the observed and predicted GSR resulting from the deep
hybrid SAELSTM model, the DL models, and the conventional ML models during the
testing phase at all six solar farms. For better illustration, both the linear fit equation line
and the Coefficient of Determination (R2) [Range = (0,+1); Idealvalue = +1], which gives
a measure on the adequacy of the model [139], have been included. As it can also be seen
by the scatter plot, the SAELSTM model performs the best, since the scatter points are close
to the y = mx + C line in comparison to the other models, which are scattered farther from
the y = mx + C line. The scatter plot concurs with the results of r, RMSE, MAE, LM, NSE,
WI, and Evar metrices as well.
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Figure 8. Scatter plots of the observed (GSRobs) and predicted (GSRpred) daily GSR for solar farms in
Queensland. (Note: the line in red is the least-squares fit line (y = mx + c) to the respective scatter
plots where y is the predicted GSR and x is the observed GSR. Names for each model are provided
in Tables 3 and A1) stated in Appendix A. (a) Blair Athol Solar Power Station, (b) Blue Grass Solar
Farm, (c) Bluff solr Farm, (d) Bouldercombe Solar Farm, (e) Broadlea Solar Farm, (f) Columboola
Solar Farm.
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To compare the model performances in prediction of GSR at the sites that differ
geographically, physically, and climatically, alternative relative metrics such as RRMSE
and RMAE were used. Table 7 presents these statistical metrics showing that the deep
hybrid SAELSTM model had the lowest RRMSE and RMAE compared to the DNN, ADBR,
GBM, ETR, and RFR approaches for all six solar farms. For example, the proposed study
model yielded RRMSE ≈ 11.617% compared with 13.126 for DNN, 12.910 for ADBR, 13.259
for GBM, 12.868 for ETR, and 13.208 for RFR when the Blue Grass solar farm data were
used. In all six sites, the deep hybrid SAELSTM model resulted in the lowest values of
both RRMSE and RMAE, and they were lower than those of the other comparative models,
indicating that the SAELSTM is undoubtedly the best option.

Table 7. As per Table 5 but measured in terms of the relative root mean square error (RRMSE, %) and
relative mean absolute error (RMAE, %) in the testing phase.

Predictive Models Blair Athol Solar
Power Station

Blue Grass
Solar Farm

Bluff
Solar Farm

Bouldercombe
Solar Farm

Broadlea
Solar Farm

Columboola
Solar Farm

RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE
SAELSTM 11.418 10.309 11.617 10.527 12.480 11.514 12.518 11.192 10.840 9.599 11.912 10.904
DNN 13.226 12.038 13.126 11.928 13.441 13.181 12.783 11.546 11.554 10.629 13.035 11.698
ADBR 11.867 10.519 12.910 11.895 13.334 12.329 13.749 12.125 11.668 10.305 13.188 11.955
GBM 11.894 10.465 13.259 12.441 12.866 12.044 13.106 12.035 11.266 10.041 13.657 12.706
ETR 11.910 10.371 12.868 11.790 13.060 12.218 13.671 12.045 11.911 10.501 13.440 12.225
RFR 11.967 10.496 13.208 12.166 13.763 12.542 13.630 11.828 11.881 10.252 13.579 12.337

The predictability of the deep hybrid SAELSTM model is further evaluated by com-
paring promoting percentages, which are presented via incremental performance (λ) of
the objective model over competing approaches, where, for example, λ = RMAESAELSTM
− RMAEDNN tests the difference in relative RMAE of the SAELSTM and DNN model.
During the testing phase, Table 8 contains further details regarding these values, making a
clear comparison study. It is evident that deep hybrid SAELSTM performs better than the
DL model (DNN) and the other conventional ML models (ADBR, GBM, ETR, and RFR).

A graphical analysis of model performance is as important to numerically evaluate
the proposed model. To support our early results, we show in Figure 9a the violon plot
of the deep hybrid SAELSTM model in comparison with the other models developed in
this pilot study utilizing boxplots of the absolute prediction error (|PE| = GSRobs−GSRpred)
in the testing data. As shown in the figure, the distribution above the upper adjacent
values represents the outliers of the extreme |PE|, along with their upper quartile, median,
and lower quartile. The distribution of the |PE| error acquired by the deep hybrid SAEL-
STM model for all sites exhibits a much smaller quartile relative to the DNN, GBM, ADBR,
ETR, and RFR. Additionally, to better understand the model’s precision for real-world
renewable energy applications, the frequency of |PE| has been shown in different error
bands (Figure 9b). The histogram of |PE| within an error bracket of ±1 MJm−2day−1 re-
vealed this frequency that resulted from |PE|. Concurrent with our earlier results, the most
accurate prediction of daily GSR is made by the proposed deep hybrid SAELSTM model.
Remarkably, it is clear that 40% of all the |PE| values are reported within the smallest error
bracket of±1 MJm−2day−1, whereas that for the DNN, GBM, ADBR, ETR, and RFR models
are ≈36%, 37%, 20%, 19%, and 20%, respectively. This result also concurs with the errors
being distributed into larger brackets for the DNN, GBM, ADBR, ETR, and RFR models.
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Table 8. The promoting percentage of comparison, against objective (i.e., deep learning hybrid SAELSTM) model with percentage values indicating the improvement
of the objective model over the benchmark models. Note: λRMAE is the promoting percentages of relative mean absolute error, λRRMSE is the promoting percentages
of relative root mean square error, and λAPB is the promoting percentages of absolute percentage bias.

SAELSTM
Blair Athol Solar

Power Station
Blue Grass
Solar Farm

Bluff Solar Farm Bouldercombe
Solar Farm

Broadlea
Solar Farm

Columboola
Solar Farm

Compared Against λRMAE λRRMSE λAPB λRMAE λRRMSE λAPB λRMAE λRRMSE λAPB λRMAE λRRMSE λAPB λRMAE λRRMSE λAPB λRMAE λRRMSE λAPB

DNN 13% 11% 10% 8% 4% 8% 2% 4% 3% 7% 11% 7% 9% 9% 9% 16% 16% 11%
ADBR 11% 10% 10% 7% 2% 8% 10% 8% 11% 8% 6% 6% 11% 8% 9% 4% 4% 4%
GBM 14% 16% 13% 3% 0% 4% 5% 5% 5% 4% 5% 3% 15% 15% 13% 4% 3% 4%
ETR 11% 8% 9% 5% 0% 6% 9% 7% 10% 10% 10% 8% 13% 12% 11% 4% 4% 4%
RFR 14% 12% 13% 10% 5% 12% 9% 5% 10% 10% 8% 8% 14% 13% 13% 5% 5% 5%
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(a)

(b)

Figure 9. (a) Violin plots of prediction error (PE) generated in the testing phase for daily GSR
prediction. (b) The cumulative frequency of daily forecast error (±1.0 MJm−2day−1) for all tested
sites. (For model names, see Tables 3 and A1 in Appendix A).
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While this study adopted the Nash–Sutcliffe coefficient to evaluate the proposed deep
hybrid SAELSTM model, the three components of the NSE of model errors (i.e., correlation,
bias, ratio of variances or coefficients of variation) were also investigated in Figure 10 to
further check the performance in a balanced way using Kling–Gupta efficiency (KGE).
Hence, the efficacy of the SAELSTM model was further verified using KGE and the absolute
percentage bias (APB). With a relatively high KGE (≈0.914) and a comparatively low
APB (≈8.763), the results showed the superior performance of the deep hybrid SAELSTM
predictive model, far exceeding that for the counterpart models, as illustrated Figure 10a.
Furthermore, the ranking of the models is performed according to the prediction efficiency
using the GPI-based metrics. In general, we note that the GPI takes the values from −0.114
to 0.726, as shown in Figure 10b. Indeed, the highest value (≈0.726) is obtained by the
deep hybrid SAELSTM predictive model that further proves the capability of the proposed
model to forecast daily GSR data.

(a)

(b)

Figure 10. (a, top) Bar plots of prediction error chart showing a comparison of the proposed SAELSTM
model using APB, percentage, and KGE in the testing phase. (b, bottom) Global performance indicator
(GPI) of CLC model compared with other counterpart models. (Note: Names for each model are
provided in Tables 3 and A1 in Appendix A).

To reaffirm the superior performance of the deep hybrid SAELSTM predictive model,
several statistical methods by utilizing the Diebold–Mariano (DM) and the Harvey, Ley-
bourne, and Newbold (HLN) tests were also employed where the statistical significance
of all the predictive models under this study are examined. The purpose of these tests
is to deduce if the deep hybrid SAELSTM predictive model is significantly more accu-
rate than the other comparative models (Table 9a,b). Notably, the models in the column
of these tables are compared with the models in the rows, and if the result is positive,
the model in the column would most likely outperform the model in the row. By contrast,
if it is negative, then the one in the row is superior. Similar to this result, Figure 11 shows
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that the DS (i.e., directional prediction accuracy) of the deep hybrid SAELSTM predictive
model is greater than the other five models (an average of 69.64% compared with 58.62%,
58.57%, 50.16%, 51.12%, and 48.95%, respectively, for the DNN, ADBR, GBM, ETR, and
RFR models). Congruent with the previous findings and taking together the results of
DM, HLN, and DS tests, we argue that the deep hybrid SAELSTM model can predict the
daily GSR data more accurately than the other models. Additionally, the RMSE values
of the deep hybrid SAELSTM model and the comparative counterpart models are now
compared with the RMSE values of the model developed using only the clear-sky index
persistence measure [140], which is denoted as the skill score (SS) and the RMSE ratio
(RMSEr) [141]. Notably, all the comparative models appear to have significantly lower SS
and RMSE values relative to the deep hybrid SAELSTM predictive model, as shown in
Table 9c,d.

Table 9. (a) Diebold–Mariano (DM) test statistics. To interpret this, we compare the column of the table
with rows. For a positive result, the model in the column would be superior and with a negative result,
the model in the row is superior. (b) Harvey, Leybourne, and Newbold statistics. (c) The Skill Score
Metric (SS) for the proposed Deep Learning hybrid SAELSTM, as well as other Deep Learning and
comparative models. (d) The performance of the proposed Deep Learning hybrid SAELSTM model
with comparative benchmark models measured by the ratio of the root mean square error (RMSE).

(a)

Predictive Model SAELSTM DNN ADBR GBM ETR RFR
SAELSTM 1.777 2.219 3.447 2.454 2.526
DNN 0.365 1.491 1.012 1.318
ADBR 1.874 1.175 1.740
GBM −0.890 −0.219
ETR 0.533

(b)

Predictive Model SAELSTM DNN ADBR GBM ETR RFR
SAELSTM 1.862 2.324 3.611 2.570 2.646
DNN 0.383 1.562 1.060 1.381
ADBR 1.963 1.231 1.823
GBM −0.932 −0.230
ETR 0.558

(c)

Solar Energy Farm SAELSTM DNN ADBR GBM ETR RFR

Blair Athol Solar Power Station 0.706 0.682 0.605 0.681 0.680 0.677
Blue Grass Solar Farm 0.730 0.666 0.655 0.648 0.668 0.651
Bluff Solar Farm 0.678 0.632 0.626 0.657 0.647 0.608
Bouldercombe Solar Farm 0.603 0.521 0.586 0.565 0.526 0.529
Broadlea Solar Farm 0.694 0.645 0.652 0.669 0.630 0.632
Columboola Solar Farm 0.715 0.651 0.659 0.625 0.637 0.630

(d)

Predictive Model SAELSTM DNN ADBR GBM ETR RFR
SAELSTM 1.862 2.324 3.611 2.570 2.646
DNN 0.383 1.562 1.060 1.381
ADBR 1.963 1.231 1.823
GBM −0.932 −0.230
ETR 0.558
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Figure 11. The performance of the proposed SAELSTM model compared to other counterpart models
under study in terms of directional symmetry (DS) criteria. (Note: Names for each model are provided
in Tables 3 and A1 in the Appendix A.)

Furthermore, this study has also done the interval prediction (IP), we verify the
mean width (MPIW) and coverage probability (PICP) of the interval, both of which are
indicators of whether the interval is suitable. This IP will can help solar plant managers
better evaluate the effectiveness and safety of the power system as well as manage risks
and costs accurately. The IP evaluation metrics of deep hybrid SAELSTM as well as other
comparative models for all six solar sites are shown in Table 10. Compared to the deep
hybrid model SAELSTM (PCP ≈ 95% and MPIW ≈ 8.50), the ADBR model produced the
higher PICP (97%) and higher MPIW (11.169) using the Columboola solar farm. However,
if PICP exceeds the prediction interval nominal confidence (PINC = 90%), the smaller the
MPIW, the more accurate the model’s prediction. Therefore, we can conclude from Table 10
that the deep hybrid SAELSTM model yielded the low MPIW compared to the other Deep
Learning and conventional ML models. Obviously, the PICP values of all the models under
this study are greater than PINC, but the MPIW varies drastically. For instance, in the
case of Bouldercombe, the metrics (PICP <MPIW>) were 95% <9.483>, 93% <10.685>, 96%
<13.511>, 94% <11.656>, 93% <9.852>, and 93% <11.250> for SAELSTM, DNN, ADBR, GBM,
ETR, and RFR respectively.

Table 10. The prediction interval quality metrics on six benchmarking models (best result in bold).
The best model was assessed with high prediction interval coverage probability (PICP) and low mean
prediction interval width (MPIW).

Predictive Models
SAELSTM DNN ADBR GBM ETR RFR

PICP MPIW PICP MPIW PICP MPIW PICP MPIW PICP MPIW PICP MPIW

Blair Athol Solar Power Station 92% 7.732 93% 10.134 95% 12.208 92% 10.407 92% 8.892 90% 10.088
Blue Grass Solar Farm 93% 8.680 97% 10.453 96% 13.591 93% 11.665 95% 10.378 93% 11.398
Bluff Solar Farm 90% 7.702 95% 10.791 96% 12.239 91% 10.683 91% 9.338 91% 10.436
Bouldercombe Solar Farm 95% 9.483 93% 10.685 96% 13.511 94% 11.656 93% 9.852 93% 11.250
Broadlea Solar Farm 93% 8.411 97% 9.260 95% 11.637 93% 9.815 92% 8.443 91% 9.515
Columboola Solar Farm 95% 8.500 97% 11.169 95% 14.047 94% 11.958 93% 10.111 93% 11.557
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Figure 12 depicts the upper bound and lower bound for the 90% prediction interval
between SAELSTM and other comparative models in daily GSR prediction. Further-
more, to affirm the suitability of the deep hybrid SAELSTM model in IP, we calculate the
RRMSE, RMAE, and KGE of the upper bound, lower bound, and mean of the GSR interval
(Figure 13).

Figure 12. A comparative result showing the upper bound and lower bound for the 90% prediction
interval between the proposed SAELSTM and other comparative models.

Figure 13 shows that the RRMSE and RMAE for the deep hybrid SAELSTM model
is significantly low, whereas the KGE was high, for all lower bounds, mean, and upper
bounds, indicating that the deep hybrid SAELSTM can better reflect the uncertainty of GSR.

As an additional evaluation of the deep hybrid SAELSTM predictive model, the data
of all study sites are divided into four distinct seasons, and the simulations are repeated for
all models.

Figure 14a is a representation of the model in terms of the performance measures of
WI, NSE, KGE, RRMSE, RMAE, and APB for all four seasons. Concurrent with previous
deductions for daily GSR predictions, the proposed deep hybrid SAELSTM model appears
to register the best seasonal performance, with a lower value of RRMSE, RMAE, and APB
and a higher value of WI, NSE, and KGE compared with equivalent metrics for the DNN,
ADBR, GBM, ETR, and RFR models.

The deep hybrid SAELSTM predictive model is seen to produce a lower RMSE for the
spring season (≈2.120 MJm−2day−1), followed by that of Autumn (≈2.244 MJm−2day−1),
Summer (≈2.408 MJm−2day−1), and Winter (≈2.733 MJm−2day−1), as shown in Figure 14b.
In accordance with this finding, we contend that the deep hybrid SAELSTM predictive
model is deemed suitable for both daily and seasonal GSR predictions.
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Figure 13. Performance metrics comparison of the proposed SAELSTM and other comparative
counterpart models for upper, lower, and mean predication in terms of RRMSE, RMAE, and KGE.

(A)

Figure 14. Cont.
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(B)

Figure 14. (A) Seasonal performance evaluation of proposed SAELSTM model compared to other
artificial intelligence-based model in terms of WI, NSE, KGE, RRMSE (%), RMAE (%), and APB, (%).
(a) Summer, (b) Autumn, (c) Winter, and (d) Spring. (B) Seasonal performance evaluation of proposed
SAELSTM model compared to other artificial intelligence-based models in terms of RMSE. (Note:
Names for each model are provided in Tables 3 and A1 in Appendix A).

6. Conclusions, Limitations, and Future Research Directions

The goal of this study has been to develop an end-to-end method of predicting daily
GSR based on a hybrid Deep Learning (DL) Stacked LSTM-based seq2seq (SAELSTM)
model. For this purpose, six solar energy farms located in Queensland, Australia were
selected as the study sites, and a number of predictors from Global Climate Models (GCM)
meteorological data and ground-based observation data from Scientific Information for
Landowners (SILO) were used. To build the proposed DL hybrid SAELSTM model, we
have integrated the Manta Ray Foraging Optimization (MRFO) feature selection process
to select the optimal features. Then, these optimal features are used as the input to the
LSTM-based seq2seq architecture to predict the GSR. Comparisons with a different DL
model (DNN) and conventional ML-based models (GBM, ADBR, ETR, and RFR) have been
carried out.

The simulation results obtained have revealed that the accuracy of the deep hybrid
SAELSTM model is substantially better than comparative models, and they confirm that the
deep hybrid learning models can accurately predict GSR. In addition, prediction intervals
were constructed using quantile regression to quantify the uncertainty in model parameters.
The quality of predictive indicators generated by the proposed deep hybrid SAELSTM model
as well as comparative models are evaluated using PICP and MPIW performance indices.
Comparing the proposed deep hybrid SAELSTM model to other DL as well as conventional
ML models, the results obtained have shown that the deep hybrid SAELSTM model is more
effective and superior for obtaining quality PIs with high PICP and low MPIW. In general,
the proposed SAELSTM model offers superiority and innovations over other models.
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While this study has demonstrated the efficacy of the proposed stacked LSTM sequence-
to-sequence autoencoder model for global solar radiation prediction problems, we admit
that future research in sequence-to-sequence modeling for solar energy should aim to
improve the proposed predictive model by exploring cloud image-based predictions of the
direct normal irradiance or the direct horizontal irradiance that are useful components of
global solar radiation in photovoltaic power systems. In the present study, we have used
only a stacked LSTM-based seq2seq model, but to improve the overall system, other kinds
of deep learning models, such as the deep net, active learning, and transformer-based mod-
els can be tested in future studies so that real-time cloud cover (or rather total sky) images
can be utilized to predict solar energy generation at solar farms and solar rooftop systems
to assist solar-rich nations to reach their cleaner energy targets. The stacked LSTM-based
seq2seq model can also be integrated with wavelet-based or ensemble mode decomposition
approaches (e.g., Refs. [27,53,54] that have been shown to perform exceptionally well
relative to the non-wavelet model. We have not yet investigated the specific effects of
aerosols, atmospheric dust, ozone, and water vapor—all of which subtly affect the direct
normal irradiance and the global horizontal irradiance. Considering that these effects are
paramount in solar energy monitoring systems and especially relevant for behind-the-meter
solar generation estimation, future research could also consider the utility of the stacked
LSTM-based seq2seq model to include these exogenous effects on solar energy prediction.
Advanced predictive frameworks such as deep reinforcement learning in situations where
standard deep learning fails could also be developed in future research. In the renewable
and sustainable energy sector, a deep hybrid based GSR predictive model can also con-
tribute to strategic decisions (such as smart grid integration of solar energy into real-time
energy management systems), as well as enabling governments and investors to make more
informed decisions in the future planning of solar energy system installations. The present
modeling strategies, improved through novel methods such as reinforcement learning,
deep net, active learning, and transformer-based models to directly incorporate sky images
in a PV system power monitoring system, can be used for applications such as physical
modeling of wind and wave energy utilization and climate change scenarios with artificial
intelligence models providing quality predictions.
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Appendix A. Model Development Parameters

Table A1 summarizes the model development parameters.
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Table A1. (a) The proposed Deep Learning hybrid SAELSTM (i.e., stacked LSTM sequence-to-sequence autoencoder) and Deep Neural Network (DNN) models.
(b) The comparison of machine learning models: Random Forest Regression (RFR), Adaboost Regression (ADBR), Gradient Boosting Machine (GBM), and Extremely
Random Tree Regression (ETR). Note: ReLU = Rectified Linear Units.

Predictive Models Model Hyperparameters Hyperparameter
Selection

Blair Athol Solar
Power Station

Blue Grass
Solar Farm

Bluff
Solar Farm

Bouldercombe
Solar Farm

Broadlea
Solar Farm

Columboola
Solar Farm

SAELSTM

Encoder LSTM cell 1 [10,20,30,40,50,60] 20 10 30 20 40 20
Encoder LSTM cell 2 [5,10,15,25] 10 5 25 15 25 15
Encoder LSTM cell 3 [6,8,10,15] 6 6 10 15 15 10
Decoder LSTM cell 1 [80,90,100,200] 100 80 200 100 100 90
Decoder LSTM cell 2 [40,50,60,70,100] 70 60 50 100 60 50
Decoder LSTM cell 3 [5,10,15,20,25,30] 20 15 25 15 30 15
Activation function ReLU
Epochs [300,400,500,600,700] 400 500 300 500 400 500
Drop rate [0,0.1,0.2] 0.1 0.2 0 0 0.2 0.1
Batch Size [5,10,15,20,25,30] 10 15 15 20 10 10

DNN

Hiddenneuron 1 [100,200,300,400,50] 300 100 100 200 100 200
Hiddenneuron 2 [20,30,40,50,60,70] 60 70 40 50 30 20
Hiddenneuron 3 [10,20,30,40,50] 40 30 50 20 10 40
Hiddenneuron 4 [5,6,7,8,12,15,18] 15 18 7 12 15 18
Epochs [100,200,400,500] 500 200 100 200 100 400
Batch Size [5,10,15,20,25,30] 5 10 20 15 15 20

Predictive Models Model hyperparameters Hyperparameter
Selection

Blair Athol Solar
Power Station

Blue Grass
Solar Farm

Bluff Solar
Farm

Bouldercombe
Solar Farm

Broadlea Solar
Farm

Columboola
Solar Farm

RFR

The maximum depth of the tree [5,8,10,20,25] 20 25 8 25 20 10
The number of trees in the forest [50,100,150,200] 150 100 50 100 50 200
Minimum number of samples to split an internal node [2,4,6,8,10] 6 8 10 10 8 10
The number of features to consider when looking for the best split. [’auto’, ’sqrt’, ’log2’] auto auto auto auto auto auto

ADBR

The maximum number of estimators at which boosting
is terminated

[50,100,150,200] 150 200 100 150 200 150

learning rate [0.01,0.001,0.005] 0.01 0.001 0.01 0.01 0.005 0.001
The loss function to use when updating the weights after each
boosting iteration

[‘linear’, ‘square’,
‘exponential’]

square square square square square square

GBM

Number of neighbors [5,10,20,30,50,100] 50 30 20 30 50 20
Algorithm used to compute the nearest neighbors [‘auto’, ‘ball_tree’,

‘kd_tree’, ‘brute’]
auto auto auto auto auto auto

Leaf size passed to BallTree or KDTree [10,20,30,50,60,70] 10 30 20 10 30 10

ETR

The number of trees in the forest [10,20,30] 30 10 10 20 30 20
The maximum depth of the tree [5,8,10,20,25] 8 10 5 8 10 5
The number of features to consider when looking for the best split [’auto’, ’sqrt’, ’log2’] auto auto auto auto auto auto
Minimum number of samples to split an internal node [5,10,15,20] 15 10 20 15 20 15



Energies 2022, 15, 1061 34 of 39

References
1. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy

transformation. Energy Strategy Rev. 2019, 24, 38–50. [CrossRef]
2. Gielen, D.; Gorini, R.; Wagner, N.; Leme, R.; Gutierrez, L.; Prakash, G.; Asmelash, E.; Janeiro, L.; Gallina, G.; Vale, G.; et al.

Global Energy Transformation: A Roadmap to 2050; Hydrogen Knowledge Centre: Derby, UK, 2019. Available online: https:
//www.h2knowledgecentre.com/content/researchpaper1605 (accessed on 1 December 2021).

3. Farivar, G.; Asaei, B. A new approach for solar module temperature estimation using the simple diode model. IEEE Trans. Energy
Convers. 2011, 26, 1118–1126. [CrossRef]

4. Pazikadin, A.R.; Rifai, D.; Ali, K.; Malik, M.Z.; Abdalla, A.N.; Faraj, M.A. Solar irradiance measurement instrumentation
and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend.
Sci. Total Environ. 2020, 715, 136848. [CrossRef]

5. Amiri, B.; Gómez-Orellana, A.M.; Gutiérrez, P.A.; Dizène, R.; Hervás-Martínez, C.; Dahmani, K. A novel approach for global solar
irradiation forecasting on tilted plane using Hybrid Evolutionary Neural Networks. J. Clean. Prod. 2021, 287, 125577. [CrossRef]

6. Yang, K.; Koike, T.; Ye, B. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric.
For. Meteorol. 2006, 137, 43–55. [CrossRef]

7. Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; Muñoz-Marí, J.;
Mosavi, A.; Camps-Valls, G. Machine learning information fusion in Earth observation: A comprehensive review of methods,
applications and data sources. Inf. Fusion 2020, 63, 256–272. [CrossRef]

8. García-Hinde, O.; Terrén-Serrano, G.; Hombrados-Herrera, M.; Gómez-Verdejo, V.; Jiménez-Fernández, S.; Casanova-Mateo, C.;
Sanz-Justo, J.; Martínez-Ramón, M.; Salcedo-Sanz, S. Evaluation of dimensionality reduction methods applied to numerical
weather models for solar radiation forecasting. Eng. Appl. Artif. Intell. 2018, 69, 157–167. [CrossRef]

9. Jiang, Y. Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison
with other empirical models. Energy 2009, 34, 1276–1283. [CrossRef]

10. Al-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA
models using aggregated demand data in Queensland, Australia. Adv. Eng. Inform. 2018, 35, 1–16. [CrossRef]

11. Huang, J.; Korolkiewicz, M.; Agrawal, M.; Boland, J. Forecasting solar radiation on an hourly time scale using a Coupled
AutoRegressive and Dynamical System (CARDS) model. Sol. Energy 2013, 87, 136–149. [CrossRef]

12. Shadab, A.; Said, S.; Ahmad, S. Box–Jenkins multiplicative ARIMA modeling for prediction of solar radiation: a case study. Int. J.
Energy Water Resour. 2019, 3, 305–318. [CrossRef]

13. Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid
CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [CrossRef]

14. Mishra, S.; Palanisamy, P. Multi-time-horizon solar forecasting using recurrent neural network. In Proceedings of the 2018 IEEE
Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 18–24.

15. Elminir, H.K.; Areed, F.F.; Elsayed, T.S. Estimation of solar radiation components incident on Helwan site using neural networks.
Sol. Energy 2005, 79, 270–279. [CrossRef]

16. Al-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting using machine learning methods
enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia.
Renew. Sustain. Energy Rev. 2019, 113, 109293. [CrossRef]

17. Salcedo-Sanz, S.; Deo, R.C.; Cornejo-Bueno, L.; Camacho-Gómez, C.; Ghimire, S. An efficient neuro-evolutionary hybrid
modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia. Appl. Energy 2018,
209, 79–94. [CrossRef]

18. Guijo-Rubio, D.; Durán-Rosal, A.; Gutiérrez, P.; Gómez-Orellana, A.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S.;
Hervás-Martínez, C. Evolutionary artificial neural networks for accurate solar radiation prediction. Energy 2020, 210, 118374.
[CrossRef]

19. Bouzgou, H.; Gueymard, C.A. Minimum redundancy–maximum relevance with extreme learning machines for global solar
radiation forecasting: Toward an optimized dimensionality reduction for solar time series. Sol. Energy 2017, 158, 595–609.
[CrossRef]

20. Al-Musaylh, M.S.; Deo, R.C.; Li, Y. Electrical energy demand forecasting model development and evaluation with maximum
overlap discrete wavelet transform-online sequential extreme learning machines algorithms. Energies 2020, 13, 2307. [CrossRef]

21. Salcedo-Sanz, S.; Casanova-Mateo, C.; Pastor-Sánchez, A.; Sánchez-Girón, M. Daily global solar radiation prediction based on a
hybrid Coral Reefs Optimization–Extreme Learning Machine approach. Sol. Energy 2014, 105, 91–98. [CrossRef]

22. Aybar-Ruiz, A.; Jiménez-Fernández, S.; Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Salvador-González, P.;
Salcedo-Sanz, S. A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction
from numerical weather models inputs. Sol. Energy 2016, 132, 129–142. [CrossRef]

23. AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep learning and statistical
methods. Appl. Comput. Inform. 2020. [CrossRef]

24. AL-Musaylh, M.S.; Al-Daffaie, K.; Prasad, R. Gas consumption demand forecasting with empirical wavelet transform based
machine learning model: A case study. Int. J. Energy Res. 2021, 45, 15124–15138. [CrossRef]

http://doi.org/10.1016/j.esr.2019.01.006
https://www.h2knowledgecentre.com/content/researchpaper1605
https://www.h2knowledgecentre.com/content/researchpaper1605
http://dx.doi.org/10.1109/TEC.2011.2164799
http://dx.doi.org/10.1016/j.scitotenv.2020.136848
http://dx.doi.org/10.1016/j.jclepro.2020.125577
http://dx.doi.org/10.1016/j.agrformet.2006.02.001
http://dx.doi.org/10.1016/j.inffus.2020.07.004
http://dx.doi.org/10.1016/j.engappai.2017.12.003
http://dx.doi.org/10.1016/j.energy.2009.05.009
http://dx.doi.org/10.1016/j.aei.2017.11.002
http://dx.doi.org/10.1016/j.solener.2012.10.012
http://dx.doi.org/10.1007/s42108-019-00037-5
http://dx.doi.org/10.1016/j.renene.2020.05.150
http://dx.doi.org/10.1016/j.solener.2004.11.006
http://dx.doi.org/10.1016/j.rser.2019.109293
http://dx.doi.org/10.1016/j.apenergy.2017.10.076
http://dx.doi.org/10.1016/j.energy.2020.118374
http://dx.doi.org/10.1016/j.solener.2017.10.035
http://dx.doi.org/10.3390/en13092307
http://dx.doi.org/10.1016/j.solener.2014.04.009
http://dx.doi.org/10.1016/j.solener.2016.03.015
http://dx.doi.org/10.1016/j.aci.2019.11.002
http://dx.doi.org/10.1002/er.6788


Energies 2022, 15, 1061 35 of 39

25. Salcedo-Sanz, S.; Casanova-Mateo, C.; Muñoz-Marí, J.; Camps-Valls, G. Prediction of daily global solar irradiation using temporal
Gaussian processes. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1936–1940. [CrossRef]

26. Chen, J.L.; Li, G.S. Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables.
Theor. Appl. Climatol. 2014, 115, 627–638. [CrossRef]

27. Al-Musaylh, M.S.; Deo, R.C.; Li, Y.; Adamowski, J.F. Two-phase particle swarm optimized-support vector regression hybrid
model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand
forecasting. Appl. Energy 2018, 217, 422–439. [CrossRef]

28. Al-Musaylh, M.S.; Deo, R.C.; Li, Y. Particle swarm optimized–support vector regression hybrid model for daily horizon electricity
demand forecasting using climate dataset. In Proceedings of the 3rd International Conference on Power and Renewable Energy,
Berlin, Germany, 21–24 September 2018; Volume 64. [CrossRef]
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