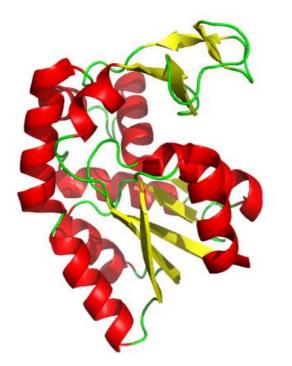

A Combined Molecular Dynamics, Rigidity Analysis Approach for Studying Protein Complexes

Brian Orndorff Dr. Filip Jagodzinski

SOURCE Ellensburg Washington, 15 May 2014

Related Work


Methods


Results

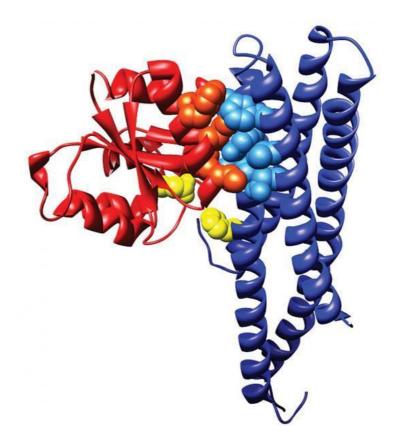
Conclusion

Motivation

Proteins are non-static structures

Barnase "Closed" Conformation Barnase "Open" Conformation

Motivation

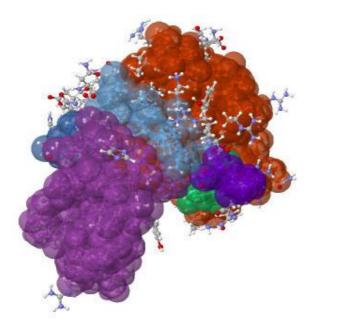

Proteins also can exist as complexes, that are composed of two or more associated polypeptide chains.

Methods

Motivation

Proteins also can exist as complexes, that are composed of two or more associated polypeptide chains.

The membrane-bound sensor histidine kinase (shwon in blue) and its response regulator (shown in red) share contact residues (shown as orange and blue spheres).

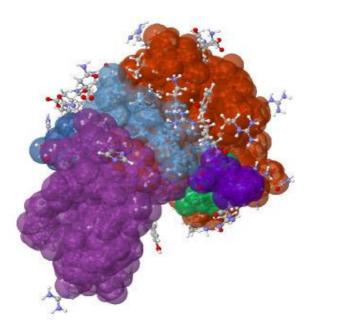


Our Main Objective: Investigate if (and how) polypeptides in a complex affect each other's flexibilities?

Methods

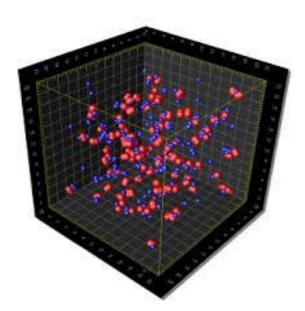
Motivation

Rigidity analysis of a single Protein crystal structure can be misleading


Rigid cluster decomposition of protein 1LZ1

Methods

Conclusion


Motivation

Rigidity analysis of a single Protein crystal structure can be misleading

Rigid cluster decomposition of protein 1LZ1

Full-scale Molecular Dynamics simulation runs are computationally intensive

Microsecond (and longer) MD simulations can require thousands of CPUs and/or thousands of wall-clock hours

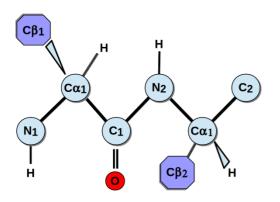
Our Proposal

Step 1: Use <u>short runs of Molecular Dynamics</u> to generate an ensemble of protein complex conformations

Our Proposal

Step 1: Use short runs of Molecular Dynamics to generate an ensemble of protein complex conformations

Step 2: <u>Analyze the rigidity</u> of a subset of the MD generated conformations

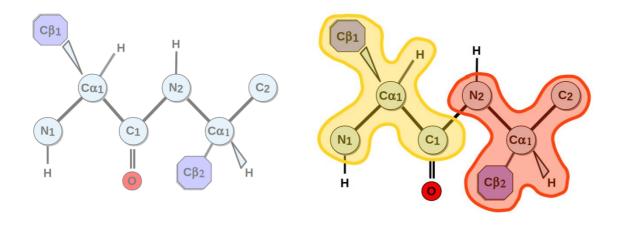

Our Proposal

Step 1: Use short runs of Molecular Dynamics to generate an ensemble of protein complex conformations

Step 2: Analyze the rigidity of a subset of the MD generated conformations

Step 3: Inpsect <u>how the rigidity properties of each conformation</u> <u>in the ensemble of states varies</u>, to infer if (and how) the polypeptides in a complex effect each other's rigidity.

Rigidity Analysis

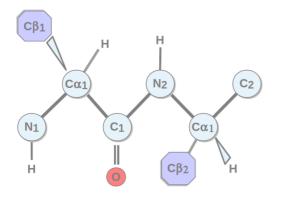

Schematic

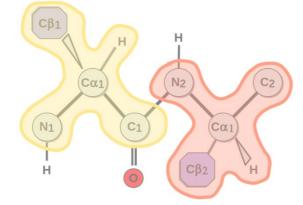
Brian Orndorff, Filip Jagodzinski, A Combined Molecular Dynamics, Rigidty Analysis Approach for Studying Protein Complexes, Slide 11 SOURCE 2014, Ellensburg Washington, 15 May

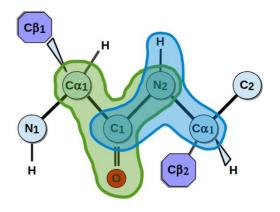
Methods

Conclusion

Rigidity Analysis


Rigid Bodies


Methods


Results

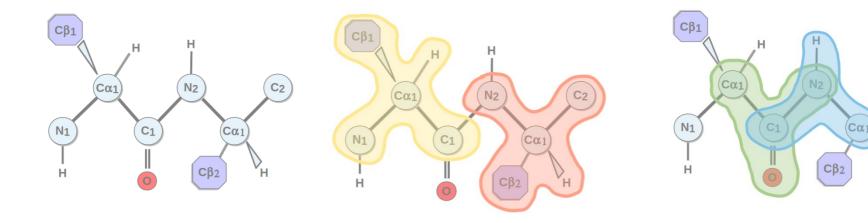
Conclusion

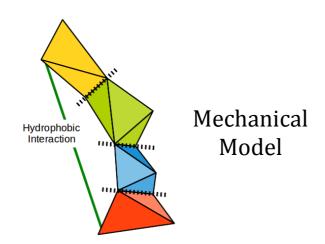
Rigidity Analysis

Overlapping Rigid Bodies

Brian Orndorff, Filip Jagodzinski, A Combined Molecular Dynamics, Rigidty Analysis Approach for Studying Protein Complexes, Slide 13 SOURCE 2014, Ellensburg Washington, 15 May

Methods

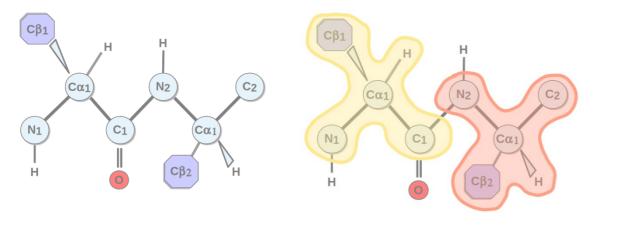

Results

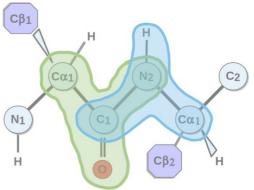

Conclusion

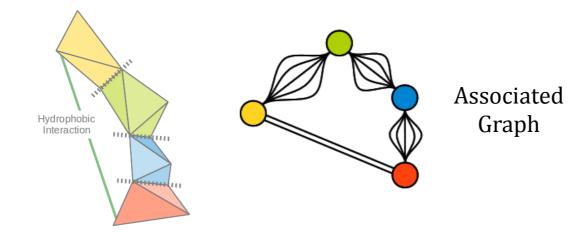
C₂

H

Rigidity Analysis

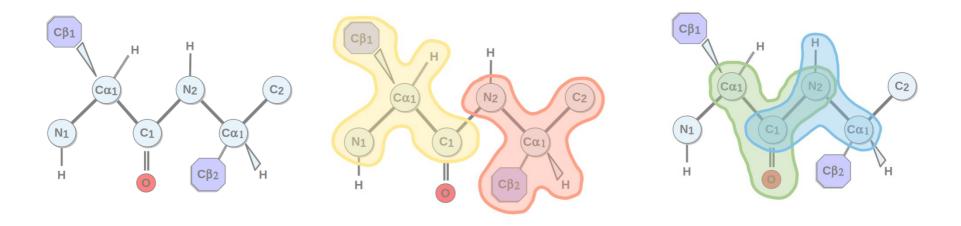


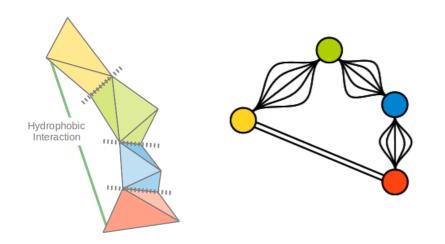

Methods


Results

Conclusion

Rigidity Analysis




Methods

Results

Conclusion

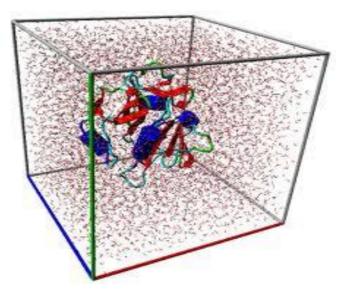
Rigidity Analysis

A pebble game algorithm is used to identify the rigid regions of the associated graph

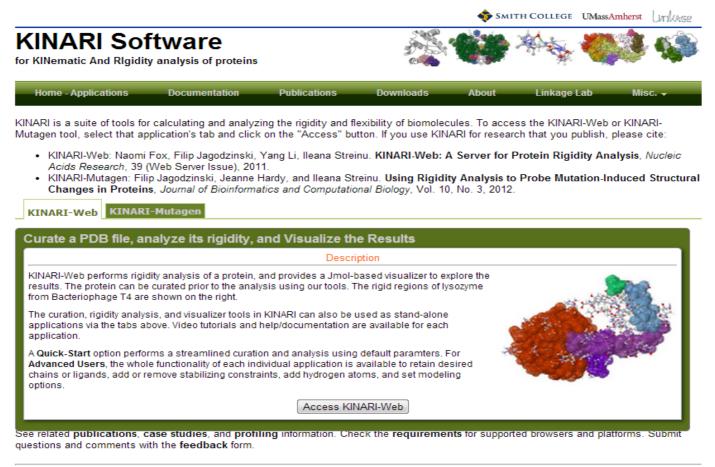
The algorithm's results are used to infer the rigid and flexible regions of the protein structure

Data Set

9 protein X-ray structure files were obtained from the Protein Data Bank


Grouped into 1-chain, 2chain, and 3-chain sets

PDB	#	#	chain	MD	Rigidity
	poly-	chains	length(s)	run-	Analysis
	mers			time	run-time
1lz1	1	1	130	$3 \min$	$5 \min$
4fd9	1	2	92, 92	$2 \min$	$5 \min$
3vb2	1	2	144, 144	$4 \min$	7 min
4bcz	1	2	110, 110	$3 \min$	6 min
3pth	2	2	82, 15	$2 \min$	$5 \min$
3oy6	2	2	253, 23	6 min	4 min
3vz9	2	2	106, 73	$1 \min$	5 min
4g6t	2	2	128, 82	$3 \min$	4 min
4ext	3	3	96, 23, 204	$2 \min$	8 min


Molecular Dynamics

GROMACS v4.5.5

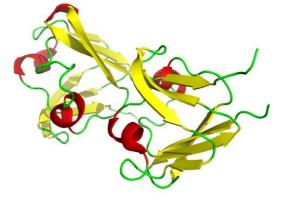
For each PDB structure, we used 10 conformations randomly selected from a 2 picosecond MD simulation

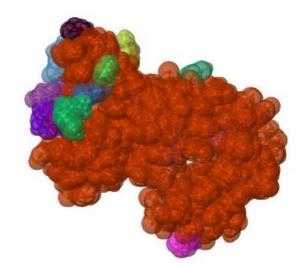
Rigidity Analysis

http://kinari.cs.umass.edu

Rigidity Analysis

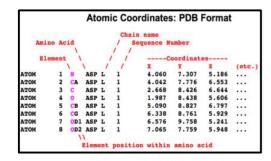
Default Modeling


Largest Rigid Cluster (LRC) was recorded for each protein complex conformation


Rigidity Analysis

Default Modeling

Largest Rigid Cluster (LRC) was recorded for each protein complex conformation

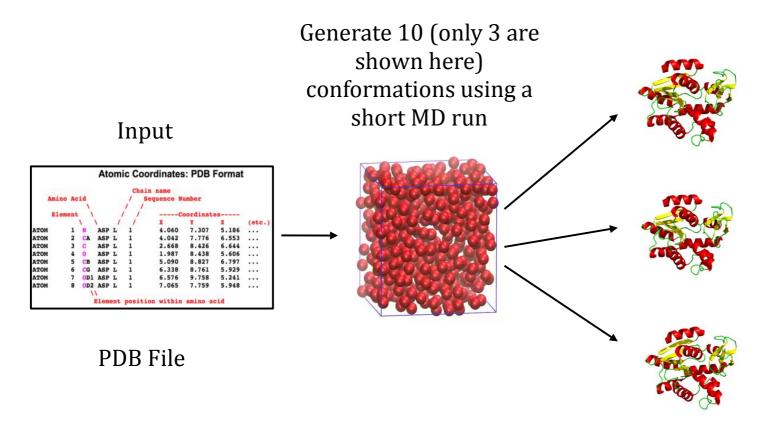


Input protein structure

Calculated Rigid Clusters (same color atoms belong to the same rigid cluster)

Overall Approach

Input


PDB File

Methods

Results

Conclusion

Overall Approach

Methods

Results

Conclusion

Overall Approach

PDB	#	#	chain	MD	Rigidity
	poly-	chains	length(s)	run-	Analysis
	mers			time	run-time
1lz1	1	1	130	$3 \min$	$5 \min$
4fd9	1	2	92, 92	$2 \min$	$5 \min$
3vb2	1	2	144, 144	4 min	7 min
4bcz	1	2	110, 110	$3 \min$	6 min
3pth	2	2	82, 15	$2 \min$	5 min
3oy6	2	2	253, 23	6 min	4 min
3vz9	2	2	106, 73	$1 \min$	$5 \min$
4g6t	2	2	128, 82	$3 \min$	4 min
4ext	3	3	96, 23, 204	$2 \min$	8 min

Methods

PDB	#	#	chain	MD	Rigidity
	poly-	chains	length(s)	run-	Analysis
	mers			time	run-time
1lz1	1	1	130	3 min	5 min
4fd9	1	2	92, 92	$2 \min$	5 min
3vb2	1	2	144, 144	4 min	7 min
4bcz	1	2	110, 110	$3 \min$	6 min
3pth	2	2	82, 15	$2 \min$	5 min
3oy6	2	2	253, 23	6 min	4 min
3vz9	2	2	106, 73	1 min	5 min
4g6t	2	2	128, 82	3 min	4 min
4ext	3	3	96, 23, 204	$2 \min$	8 min

In each case, the run-time of our combined MD, rigidity analysis approach of our 9 proteins took at most 11 minutes.

Proof of Concept

- Group 1: Range of LRC as % of Max(LRC) is < 30
 Group 2: Range of LRC as % of Max(LRC) is > 30
- Group 3: Range of LRC as % of Max(LRC) is greater than 60

but < 60

PDB ID	Range of size of	Range of LRC as $\%$	Group
	LRC	of $Max(LRC)$	
1lz1	1005	0.67	3
3pth	163	0.41	2
3vb2	827	0.82	3
3vz9	379	0.22	1
4bcz	1408	0.79	3
4fd9	1055	0.55	2
3oy6	228	0.08	1
4g6t	362	0.18	1
4ext	1132	0.41	2

Proof of Concept

In some structures, the rigidity varied <u>little</u> across the 10 studied conformations

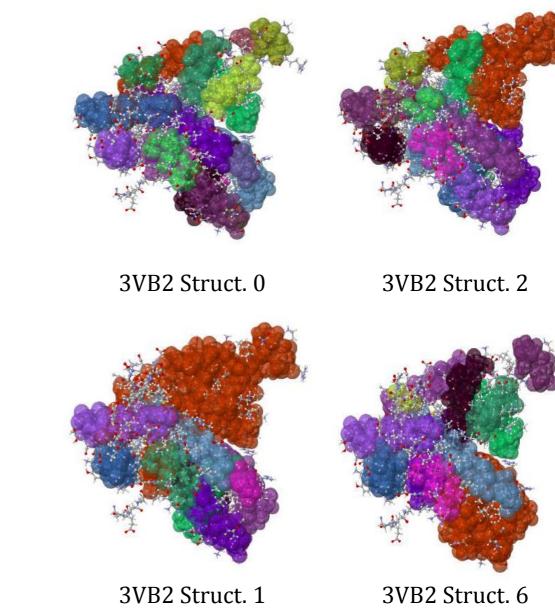
Brian Orndorff, Filip Jagodzinski, A Combined Molecular Dynamics, Rigidty Analysis Approach for Studying Protein Complexes, Slide 28 SOURCE 2014, Ellensburg Washington, 15 May

Methods

Proof of Concept

In some structures, the rigidity varied <u>little</u> across the 10 studied conformations **3VZ9 Struct. 3** 3VZ9 Struct. 2

3VZ9 Struct. 4


3VZ9 Struct. 5

3VZ9 LRC variance : 0.22

Proof of Concept

In other structures, the rigidity varied **greatly** across the 10 studied conformations

Methods

Proof of Concept

In other structures, the rigidity varied **greatly** across the 10 studied conformations

3VB2 LRC variance : 0.82

Methods

Case Study 1

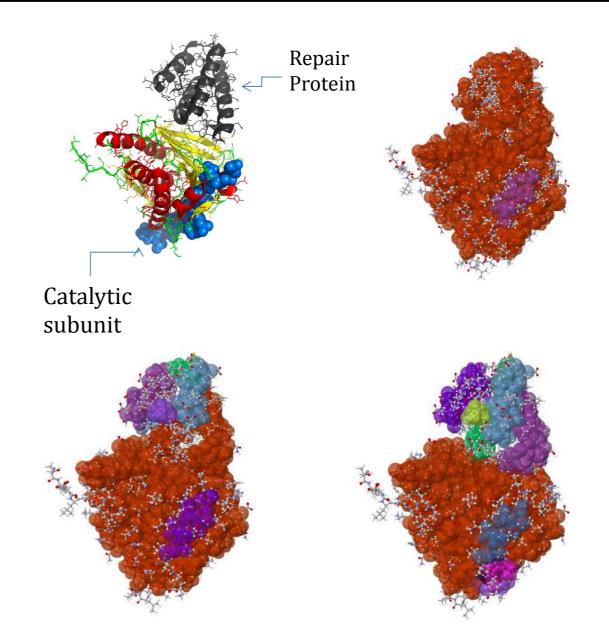
Detalied visual analysis of 4EXT


DNA repair protein RVA1 (black) is thought to play a scaffold role in which it recruits DNA polymerase to help repair damaged nucleic acid bases

Lin W, Xin H, Zhang Y, Wu X, Yuan F, Wang Z (Dec 1999). "The human REV1 gene codes for a DNA template-dependent dCMP transferase". Nucleic Acids Res 27 (22): 4468–75. doi:10.1093/nar/27.22.4468. PMC 148731. PMID 10536157.

Methods

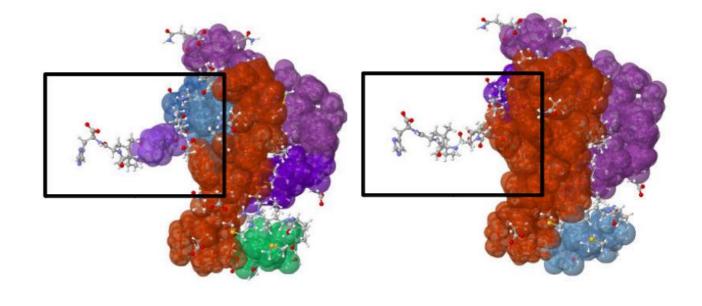
Case Study 1


- Detalied visual analysis of 4EXT
- Catalytic subunit (blue) is closely associated with the repair protein (black)

Methods

Case Study 1

- Detalied visual analysis of 4EXT
- Catalytic subunit (blue) is closely associated with the repair protein (black)
- The combined MD, rigidity analysis approach provides previously unavailable information

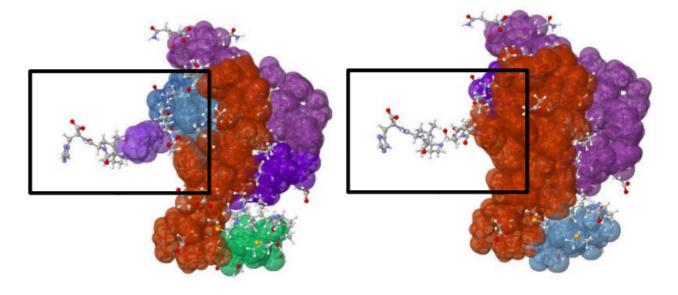

Methods

Case Study 2

Detalied visual analysis of 3PTH

The La family of proteins is characgterized by a nuclear phosphoprotein that recognizes newly synthesized RNA. Structure 3PTH contains a synthetic construct (yet unpublished) coupled with LARP4B.

Dong G, Chakshusmathi G, Wolin SL, Reinisch KM. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 2004 Mar 10;23(5):1000-7. Epub 2004 Feb 19.


3PTH Struct. 1

3PTH Struct 2

Methods

Case Study 2

- Detalied visual analysis of 3PTH
- Ligand has tenuous effect on the protein's rigidity

Again, the combined MD, rigidity analysis approach provides previously unavailable information

3PTH Struct. 1

3PTH Struct 2

Conclusion

Our combined MD, rigidity analysis approach provides information that neither method (rigidity analysis of single PDB structure, or full-length MD run) alone can provide about the rigidity and flexibility of the studied protein complex

Conclusion

Our combined MD, rigidity analysis approach provides information that neither method (rigidity analysis of single PDB structure, or full-length MD run) alone can provide about the rigidity and flexibility of the studied protein complex

Future Work

Reproduce results for 20, 30, etc. MD generated conformations of each structure, to determine an optimal run-time of MD simulation

Measure complex flexibility using a metric other than Size of Largest Rigid Cluster

Incorporate the entire combined MD, rigidity analysis method into a freelyavailable online tool

Thank you

Thanks to Dr. Jim Schwing of CWU's Computer Science Department and Dean Kirk Johnson of CWU's College of the Sciences for funding

> jagodzinski@cwu.edu orndorffb@cwu.edu