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Tag der mündlichen Prüfung: 14. Februar 2020



Zusammenfassung (Summary in German)

Man soll die Dinge so einfach machen wie möglich – aber nicht einfacher.
(Albert Einstein)

Wodurch zeichnen sich lebende Systeme aus? Das ist eine der Fragen, die Erwin Schrödinger in
seinem berühmten Buch

”
Was ist Leben?“ aufwirft. Seine Antwort ist überraschend prägnant:

Lebende Systeme halten sich vom Gleichgewicht fern und schaffen Ordnung aus Unordnung.
Diese bemerkenswerten Fähigkeiten von Organismen, sich selbst in vielschichtige Muster zu
organisieren und große Strukturen aufzubauen, steht auch im Mittelpunkt meiner Arbeit.
Ziel ist es, generische Prinzipien der Selbstorganisation und Strukturbildung mit Hilfe von
theoretischen Studien aufzuzeigen. Zu diesem Zweck wurden mehrere konzeptionelle Modelle
untersucht, die durch unterschiedliche biologische Gegebenheiten motiviert sind. Alle diese
Modelle umfassen Nichtgleichgewichtsprozesse, die für die Zwecke des jeweiligen biologischen
Systems maßgeblich sind. Diese Arbeit ist gemäß den beiden Kernthemen Selbstorganisation
und Strukturbildung in zwei Teile gegliedert.

1. Zytoskelettfilamente und molekulare Motoren
In Zusammenarbeit mit Mareike Bojer, Moritz Striebel und Erwin Frey
Der erste Teil meiner Dissertation beinhaltet drei Projekte und beschäftigt sich mit der Selbst-
organisation im Kontext des Zellzytoskeletts. Diese Struktur ist entscheidend für verschiedene
Charakteristika lebender Organismen, die vom intrazellulären Transport bis hin zur Chromo-
somentrennung reichen, und beruht auf den Wechselwirkungen zwischen Motorproteinen und
Zytoskelettfilamenten. Beispielsweise bewegen sich Motorproteine nicht nur zufällig innerhalb
der Zellen, sondern werden auch gezielt entlang der Filamente transportiert. In den ersten
beiden Projekten haben wir uns die Frage gestellt, welche Rolle das Zusammenspiel die-
ses gerichteten Transports mit der Diffusion für die Musterbildung und Längenregulierung
von Filamenten spielen könnte. Anhand von konzeptionellen Modellen haben wir festgestellt,
dass gerichteter Transport – wenngleich er als Nichtgleichgewichtsprozess für die Bildung von
Mustern erforderlich sein kann – in begrenzten Geometrien als Transportmittel potentiell in-
effizient ist. Dies ist auf die Bildung von

”
Staus“ zurückzuführen, die starke Korrelationen

zwischen den Teilchen hervorrufen und zu sehr langsamer Bewegung führen. Eine endliche
Diffusionsgeschwindigkeit hingegen kann eine wichtige Komponente für das Auftreten von
selbstorganisierten Oszillationen in der Filamentlänge darstellen. Der Grund dafür ist, dass
die Diffusion auf der Zeitskala anderer intrinsischer Prozesse (wie der Wachstumsdynamik
von Filamenten) zu langsam ist, um ein Gleichgewicht im System herzustellen, und statt-
dessen zu Zeitverzögerungen zwischen den verschiedenen Dynamiken führt. Die Ergebnisse
dieser Projekte wurden in zwei Publikationen veröffentlicht, die in den Kapiteln 2.5 und 3.5
abgedruckt sind. Ich habe als einzige Erstautorin an der ersten Veröffentlichung mitgewirkt.
Für die zweite Veröffentlichung teile ich mir die Erstautorenschaft mit Mareike Bojer.
Das dritte Projekt beschäftigt sich mit der kollektiven Dynamik in Filamentnetzwerken, die



durch Motorproteine verknüpft sind. Durch diese Vernetzung werden nicht nur Motoren ent-
lang von Filamenten transportiert, sondern umgekehrt werden auch Filamente durch Motor-
proteine, die Kräfte auf die Filamente ausüben, in Bewegung gesetzt. Was sind die wichtigs-
ten Einflussfaktoren auf die entstehende Filamentdynamik im Netzwerk? Um diese Frage zu
beantworten, haben wir ein mesoskopisches Modell für nematische Filamentnetzwerke entwi-
ckelt. Unsere Analyse dieses Modells legt den folgenden Mechanismus für die Kraftausbrei-
tung durch die Motoren nahe: Aufgrund der Vernetzung durch Motoren pflanzen sich die
erzeugten Kräfte über eine charakteristische Reichweite im Netzwerk fort. Diese Reichweite
ist groß, wenn die Filamentwechselwirkungen im Vergleich zur Dissipation in der umgebenden
Flüssigkeit stark sind. Dann interagieren alle Filamente effektiv miteinander und die lokalen
Filamentgeschwindigkeiten werden durch globale Netzwerkeigenschaften bestimmt. Im Ge-
gensatz dazu wird die lokale Filamentgeschwindigkeit bei hoher Dissipation im Fluid stark
von den lokal erzeugten Kräften beeinflusst. Dieser Kraftausbreitungsmechanismus eröffnet
eine mechanistische Perspektive auf die Selbstorganisation von Filamentnetzwerken. Ein Ma-
nuskript, das diese Ergebnisse umfasst, wurde veröffentlicht und ist in Kapitel 4.5 abgedruckt.
Moritz Striebel und ich teilen uns die Erstautorenschaft.

2. Stochastische Effekte bei der Bildung heterogener Strukturen
In Zusammenarbeit mit Florian Gartner, Patrick Wilke, Philipp Geiger und Erwin Frey
Der zweite Teil meiner Arbeit beschäftigt sich mit der Bildung heterogener Strukturen. Dieser
Prozess ist nicht nur für Zellen wichtig, sondern auch für die künstliche Herstellung komple-
xer Nanostrukturen. Im ersten Projekt haben wir die Bedingungen untersucht, die erfüllt
sein müssen, damit solche Prozesse robust und zuverlässig funktionieren. Zu diesem Zweck
haben wir ein konzeptionelles Modell für die Assemblierung von Ringen entwickelt, deren
Heterogenität durch einen Parameter bestimmt wird. Wir haben festgestellt, dass der Auf-
bau heterogener Strukturen starken stochastischen Effekten unterworfen ist. Tatsächlich kann
es passieren, dass in stochastischen Simulationen keinerlei Strukturen fertiggestellt werden,
obwohl eine Beschreibung unter Vernachlässigung von Korrelationen eine perfekte Ausbeute
vorhersagt. Diese

”
stochastische Ertragskatastrophe“ tritt auch in Systemen mit relativ hohen

Teilchenzahlen auf.
Wie können Schwankungen in diesen makroskopischen Systemen einen so starken Einfluss
haben? Und welche Strategien gibt es, um einen robusten Aufbau heterogener Strukturen
zu erreichen? Diese Fragen werden im zweiten Projekt behandelt, in dem wir eine effektive
Theorie für das Auftreten stochastischer Effekte in unserem konzeptionellen Modell formu-
liert haben. Es basiert auf der Intuition, dass Schwankungen in der relativen Verfügbarkeit
der verschiedenen Ringbausteine zur Nukleation von zu vielen Strukturen führen können.
Wenn die Ressourcen endlich sind, können diese Strukturen nicht vervollständigt werden und
die Ausbeute ist gering. Die Verringerung des Ungleichgewichts zwischen den verschiedenen
Bausteinen erscheint daher als eine vielversprechende Strategie zur Verbesserung des Struk-
turbildungsprozesses und wir diskutieren konkrete Wege, wie dieses Prinzip in der Praxis
umgesetzt werden könnte. Ein Manuskript zu den Ergebnissen des ersten Projekts wurde
veröffentlicht und ist in Kapitel 7.5 abgedruckt. Für dieses Projekt teile ich mir die Erst-
autorenschaft mit Florian Gartner und Patrick Wilke. Ein Manuskript zu den Ergebnissen
des zweiten Projekts ist derzeit in Vorbereitung. Florian Gartner und ich wirken beide als
Erstautoren mit. Der Manuskriptentwurf ist in Kapitel 8.5 abgedruckt.



Synopsis

Everything must be made as simple as possible – but not simpler.
(Albert Einstein)

What are the characteristic properties of living systems? This is one of the questions Erwin
Schrödinger raises in his famous book “What is life?”. His answer is surprisingly concise:
Living systems keep themselves out of equilibrium, creating order from disorder. This re-
markable ability of organisms to self-organize into complex patterns and to assemble large
structures also lies at the heart of my thesis. The goal is to elucidate generic principles of
self-organization and self-assembly by means of theoretical modeling. For this purpose, sev-
eral conceptual models which are inspired by different biological settings were studied. All
of these models comprise non-equilibrium processes which are crucial for the purpose of the
respective biological system. This thesis is organized into two parts, in accordance with the
two main themes of self-organization and self-assembly.

1. Cytoskeletal filaments and molecular motors
In collaboration with Mareike Bojer, Moritz Striebel and Erwin Frey
The first part of my thesis contains three projects and is concerned with self-organization in
the context of the cell cytoskeleton. This structure is crucial for various features of living
organisms ranging from intracellular transport to chromosome segregation, and relies on the
interactions between motor proteins and cytoskeletal filaments. For instance, motor proteins
do not only diffuse within cells but are also transported in a directed fashion along the
filaments.
In the first two projects, we asked what role the interplay of this directed transport with
diffusion could have for pattern formation and length regulation of filaments. By means
of conceptual modeling, we found that - although directed transport as a non-equilibrium
process may be necessary for patterns to form - in confined geometries it can be inefficient
as a means of transport. This is due to the formation of “traffic jams” that introduce strong
correlations between particles and lead to very slow motion. A finite diffusion speed, on
the other hand, can provide an important factor for the occurrence of self-organized filament-
length oscillations. The underlying reason is that on the time scale of other intrinsic processes
(such as the growth dynamics of filaments), diffusion is too slow to equilibrate the system
and instead leads to time delays between the different dynamics. The results of these projects
are published in two publications which are reprinted in sections 2.5 and 3.5. I contribute
as single first author to the first publication. For the second publication I share co-first
authorship with Mareike Bojer.
The third project is concerned with collective dynamics in networks of filaments which are
crosslinked by motor proteins. Due to this crosslinking, not only motors are transported
along filaments but also, conversely, filaments are set into motion by motor proteins that
exert forces on them. What are the main determinants for the emerging filament dynamics



in the network? To address this question, we set up a mesoscopic model for nematic filament
networks. Our analysis of this model suggests a mechanism for force propagation by motor
crosslinking: Any force generated at one position is propagated through the network over a
characteristic range. This range is large if filament interactions are strong compared to the
dissipation in the surrounding fluid. Then all filaments effectively interact with each other
and the local filament velocities are determined by global network features. In contrast, if
dissipation in the fluid is high, the local filament velocity correlates strongly with the locally
generated forces. This force propagation mechanism offers a mechanistic perspective on the
self-organization of cytoskeletal networks. A manuscript incorporating these findings has been
published and is reprinted in section 4.5. Moritz Striebel and I share co-first authorship.

2. Stochastic effects in heterogeneous self-assembly
In collaboration with Florian Gartner, Patrick Wilke, Philipp Geiger and Erwin Frey
The second part of my thesis deals with the self-assembly of heterogeneous structures. This
process is important not only for cells but also for the artificial fabrication of complex nano-
structures. In the first project, we examined conditions that must be met for such processes
to function in a robust and resilient way. To this end, we considered a conceptual toy model
for the assembly of rings, whose heterogeneity is set by one parameter. We found that the
assembly of heterogeneous structures is subject to strong stochastic effects. Indeed, yield
can be zero in stochastic simulations although a deterministic mean-field description predicts
perfect yield. This “stochastic yield catastrophe” occurs even in systems with relatively high
particle numbers.
How can fluctuations in these macroscopic systems have such a strong, detrimental effect?
And which strategies exist to guide robust assembly of heterogeneous structures? These
questions are addressed in the second project where we formulated an effective theory for the
occurrence of stochastic effects in our conceptual model. It is based on the intuition that
fluctuations in the relative availability of the different constituents can lead to the nucleation
of too many structures. If the resources are finite, these structures then cannot be completed
and the yield is low. Decreasing the imbalance between species thus appears as a promising
strategy to improve assembly efficiency and we discuss tangible ways for its practical imple-
mentation. A manuscript about the results of the first project has been published and is
reprinted in section 7.5. For this project I share co-first authorship with Florian Gartner and
Patrick Wilke. The results of the second project are currently in preparation for submission
with Florian Gartner and me as shared co-first authors. The manuscript draft is reprinted in
section 8.5.
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8. Träuble, F., Gartner, F. M., Graf, I. R., & Frey, E. (2020). Topological properties of self-
assembly reaction networks determine robustness to stochastic effects. In preparation. [8]

https://doi.org/10.1103/PhysRevLett.118.128101
https://doi.org/10.1103/PhysRevLett.118.128101
https://doi.org/10.1103/PhysRevE.98.012410
https://doi.org/10.1103/PhysRevE.98.012410
https://doi.org/10.1016/j.bpj.2019.11.3387
https://doi.org/10.1016/j.bpj.2019.11.3387
https://doi.org/10.7554/eLife.51020
https://doi.org/10.7554/eLife.51020
https://doi.org/10.1371/journal.pcbi.1005747


ii



Abstracts of the projects

Living systems are characterized by their abilities to continuously evolve and self-replicate
and to generate patterns and structures. These abilities rely on a constant dissipation of
energy that keeps living systems far from equilibrium [9, 10]. While universal properties
of, in principal, arbitrarily complex systems in equilibrium have been formulated with the
help of Statistical Physics, the systematic study of non-equilibrium systems is still in its
infancy. An important role of physics for the research of biological systems is therefore the
formulation and investigation of generic principles. The hope is that – in analogy to other
fields of physics – these principles apply in different contexts, help to develop predictive
theories and do not depend on details of the system. One particular example is the idea that
living systems have evolved towards some sort of “optimum”. This optimality principle has
been successfully related to different aspects of life, ranging from the genetic code (e.g. [11])
and flow in transport networks (e.g. [12, 13]) to information transmission in gene networks
(e.g. [14, 15]) and more generally in biological systems (e.g. [16]).

In a similar spirit, this thesis aims at elucidating principles underlying self-organization and
self-assembly processes in different non-equilibrium systems. The approach adopted is in
terms of conceptual, theoretical modeling: Our aim is not to describe a specific biological
system in detail but to identify generic mechanisms that may serve as core principles in more
elaborate models. In a bottom-up way, we thus try to reduce the respective system to its es-
sential parts1, providing a platform with which we can understand the particular mechanism
in detail. The main focus of my doctoral studies has been on two topics.
The first one is concerned with the interactions of motor proteins and cytoskeletal filaments
in several biological contexts. In particular, our aim was to elucidate general principles for
the motion of molecular motors along filaments in a confined geometry (chapter 2), for the
potential role of active transport and diffusion for filament length regulation (chapter 3) and
for filament dynamics in networks crosslinked by molecular motors (chapter 4). In all these
different contexts, interactions between individual elements (filaments or motor proteins) lead
to intriguing, and in parts counterintuitive, collective behavior and self-organized patterns.
The most important take-home messages can be formulated as follows: 1) In confinement,
directed transport of motors which are subject to excluded volume effects can be surpris-
ingly inefficient due to strong nearest-neighbor correlations (chapter 2). 2) Diffusion-limited
transport can lead to the occurrence of self-organized length oscillations if the timescale for
equilibration by diffusion is long compared to the growth and shrinkage dynamics (chapter 3).
3) Local forces exerted by motor proteins between neighboring filaments in networks are prop-
agated over a characteristic length, which is determined by the ratio of motor forces to the
drag in the surrounding fluid (chapter 4).
It would be very enlightening to experimentally test these ideas using for instance microflu-
idics technology [17–19] or reconstituted in vitro systems of purified components [20–23].

1with “essential” referring to the specific question asked
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The second topic deals with the self-assembly of heterogeneous structures. Based on a con-
ceptual model, we investigated which role stochasticity and finite resources play for assembly
efficiency. While perfect yield can always be achieved in a deterministic description of the
process, which is valid in the limit of infinite particle numbers, finite systems are susceptible
to fluctuations. Intriguingly, even systems with large numbers of particles can be subject
to strong stochastic effects that completely suppress yield (chapter 7). Heuristically, this
“stochastic yield catastrophe” is due to stochastic variations in the availability of the differ-
ent constituents for binding. These fluctuations lead to undesirable nucleation events and
ultimately to low assembly yield. We quantified this heuristic picture by an effective theory
that allowed us to disentangle the various sources of stochasticity in terms of their relevance
to assembly efficiency. Focusing on the most detrimental source of fluctuations, we proposed
and implemented different supply control strategies to improve the assembly yield (chapter 8).
These strategies might prove useful for the design of artificial self-assembly systems [24–28]
and might be reflected in assembly principles of macromolecular structures such as the ribo-
some [29, 30] or the flagellar motor [31, 32] in cells.

1. Transport mechanisms in a confined geometry
With Erwin Frey

Summary
In this project, we investigated a conceptual stochastic model that is motivated biologically by
the interplay of active transport of motor proteins along cytoskeletal filaments and of diffusive
motion in the cytoplasm. The model was studied both in terms of stochastic simulations with
Gillespie’s algorithm [33] and by analytical calculations based on the theory of stochastic
processes. We found that correlations between motor proteins, induced by excluded volume
interactions, can markedly affect the active transport properties in a confined geometry. In
particular, while active transport is very efficient for single motor proteins, collective effects
can lead to the formation of “traffic jams” that slow down the motor flux considerably.
We quantified this correlation effect by deriving an exact identity which relates the nearest-
neighbor correlations to the motor densities and allows to analytically predict the densities
and currents. In a biological context, these findings suggest that diffusion might play an
important role for protein transport in confinement.

Background
While diffusion can be an efficient means of transport on short length or large timescales,
transport of material against a concentration gradient or over long distances requires active
processes that keep the system out of equilibrium. One way to achieve active motion in
cells is via so-called molecular motors that “walk” in a directed fashion along quasi one-
dimensional cytoskeletal filaments (for recent reviews see for instance [34–36]). These motors
consume chemical energy and transport cargo, which can then accumulate at specific places.
For instance, it has been observed experimentally that due to motor transport along actin
filaments different proteins accumulate at the tips of filopodia or stereocilia [37–40]. The
geometry of these cellular protrusions is rather distinct: While filopodia and stereocilia are
connected to the cell body (or a reservoir) at one end, their other end extends into the
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surrounding environment [41–43]. Due to the enclosure by the membrane, mass is conserved
at this outer end. This mass conservation and the resulting no-flux boundary condition at
the tip may lead to interesting phenomena when coupled to the directed transport of motors
towards the periphery: If active currents along the filaments arise, these currents need to be
counterbalanced by opposing diffusive fluxes. This requirement already hints to the fact that
a finite diffusion speed may influence transport in confinement.

Research questions
Which physical principles govern the interplay between active transport, an intrinsically non-
equilibrium process, and diffusion in a confined geometry? What role do collective effects
play for transport efficiency?

Results
To approach these questions, we considered a simplified, conceptual model. This model builds
on the totally asymmetric simple exclusion process (TASEP) [44–46] as a model for active,
directed transport and extends it by a second lane mimicking the diffusion in the cytoplasm.
The geometry is taken to be half-closed with particle exchange with a reservoir at the base
and mass conservation at the tip, as it is the case for cellular protrusions.
The steady-state density profile is characterized by a localized domain wall.
In contrast to a single-lane TASEP, which exhibits three different phases [47–49], there is
only one generic steady-state density profile in our model. It is characterized by a localized
domain wall [50–53] that separates a low-density region towards the base from a high-density
region towards the tip. In the limit where the high-density region shrinks to a few lattice sites,
the model exhibits tip localization of motor proteins, which is reminiscent of experimental
findings for several motors in filopodia or stereocilia [37–40].
Diffusion is important for tip localization and motor transport.
Our analysis suggests that tip localization is markedly affected by the diffusion in the cyto-
plasm and by microscopic properties at the tip such as the unbinding rate from the filament.
Furthermore, we identified a task sharing mechanism between the active transport and the
diffusive motion. While the activity of motors is crucial for generation and maintenance of
gradients (which could not be achieved by diffusion alone), diffusion is essential for transport
of proteins to the tip. This is surprising because a priori active, directed motion would appear
to be much more efficient for motor transport as compared to diffusion.
Correlations due to volume exclusion strongly reduce active transport efficiency.
The importance of diffusion for motor transport is due to strong correlations between motors
on the TASEP lane, induced by excluded volume effects. These correlations greatly reduce
the active current as compared to a mean-field prediction. As a result, collective active trans-
port becomes rather inefficient in contrast to active transport of single motors. By deriving
an exact moment identity we quantified this effect analytically.

Relevance and outlook
Our results might prove useful in two regards. From a theoretical point of view, the moment
identity, which relates the neighbor correlations to the densities in the system, can in principle
be generalized to other systems where a TASEP lane is coupled to another lattice. In this way,
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it might contribute to the quantification of correlations and the prediction of active currents
also in more elaborate models for motor transport in confined geometries.
On a broader perspective, our results may be beneficial for the conceptual understanding of
collective phenomena in systems where active, non-equilibrium and passive, diffusive transport
are combined. The interplay of these intrinsically different types of transport is relevant in
different contexts ranging from cell migration to cell polarization [54–56].

Publication and contribution
This project builds on and extends work performed during my Master thesis [57] and has
been published in Physical Review Letters.
I contributed as single first author to this publication. Erwin Frey and I designed the project
and wrote the paper. I conceived the theory and performed the entire analysis. Erwin Frey
supervised the research.
The publication is reprinted in section 2.5.

2. Coupling filament length regulation to motor transport
With Mareike Bojer and Erwin Frey

Summary
In this project, we investigated what role the interplay of active transport and diffusion might
have for length regulation of filaments in a confined geometry. To this end, we extended the
model of the previous project by stochastic growth and shrinkage of the system size. Motor
proteins that reach the end of the TASEP lane shrink the system (TASEP and diffusion lane)
by one lattice site, corresponding to motors that depolymerize the filament at the end, e.g.
kinesin-8 [58–62]. Conversely, the system grows spontaneously by addition of lattice sites to
the end, corresponding to spontaneous attachment of tubulin dimers [63, 64]. Intriguingly,
the combination of motor-induced shrinking, spontaneous growth and diffusion leads to self-
organized oscillations if equilibration by diffusion is slow compared to the length changing
dynamics. These effects are due to cumulative crowding of motors in the tip region, which
occurs since the equilibration of the motor density with the reservoir is time-delayed with
respect to the growth and shrinkage dynamics. Such time delays, introduced by slow diffusion,
also seem to be important for other protein systems such as the Par or Pom system [65, 66].

Background
Cytoskeletal filaments such as microtubules and actin filaments are not static structures as
we implicitly assumed in the first project but can be highly dynamic. Unless stabilized by
drugs, they constantly grow and shrink by addition or removal of subunits to or from the ends.
Microtubules mostly grow and shrink at one end. Interestingly, their steady-state behavior
is not characterized by a roughly constant length with fluctuations around the mean but
instead by extended phases of growth and fast shrinkage (“dynamic instability”; [63, 67]).
In contrast, actin filaments typically grow at one end and shrink at the other end, leading
to so-called treadmilling (e.g. [68]). The process of attachment and detachment of subunits
can, however, not be entirely random. If this were the case, filaments would not exhibit
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a preferred length but instead the length dynamics would follow a random walk. For this
reason, there needs to be some sort of length control mechanism (for a recent review see [69]).
Intriguingly, typical lengths of filaments are of the order of micrometers whereas the individual
subunits (tubulin or actin) are nanometer scaled [68, 70–72]. So, although length control
mechanisms operate on far smaller scales than those of the filaments, the mechanisms require
some type of feedback between the length of the large-scale structure and the attachment and
detachment dynamics of the small subunits. Several scenarios for how such feedback might be
realized have been discussed theoretically and suggested by experimental findings (for recent
reviews see [69, 73–75]): A very straightforward way would be to have only a finite number
of subunits and, correspondingly, a hard upper bound on the filament length. Such a limiting
pool mechanism has been suggested, for instance, for cilia length control [76]. Alternatively,
the length dynamics may be coupled to active transport along filaments. Examples include
intraflagellar transport where tubulin monomers are transported by kinesins to the tips of cilia
or flagella [69, 73, 77–79] and active transport of length-regulator proteins by myosins [41,
42, 80] or kinesins [59, 60, 62, 81, 82].

Research questions
What influence does a finite diffusion speed have on length regulation in confinement? Could
it, in combination with active transport, change the underlying self-organization process qual-
itatively?

Results
To make a step forward in answering these questions, we considered a stochastic lattice-gas
model with dynamically changing system size. It is based on the model investigated in the
previous project and couples active transport to a length (system-size) regulation mechanism.
While the system size extends spontaneously, shrinkage happens due to motors that effectively
act as depolymerases once they have walked to the tip of the filament (TASEP lane). In the
model, this system-size dynamics also affects the surrounding cytoplasm that extends and
shrinks simultaneously with the filament. As a result, there is an intricate coupling between
active transport, diffusion and length (system-size) regulation.
For fast growth dynamics, the system exhibits robust periodic changes in length.
For small growth rates, the length dynamics behaves stochastically with a well-defined average
length. Surprisingly, however, for large spontaneous growth rates the system size exhibits
robust temporal patterns. More specifically, the size periodically displays extended phases of
growth and shrinkage.
The self-organized length oscillations are due to slow diffusion and cumulative crowding of
motors in the tip region.
If the growth rate is fast compared to diffusion, the changes in length happen on a timescale
on which the motor densities in the cytoplasm cannot be equilibrated by diffusion. This
separation of timescales results in continuous accumulation of motors in the tip region and in
a time delay between the growth and shrinkage dynamics. Due to this time delay, extended
phases of growth and shrinkage emerge and instead of relaxing towards a stable fixed point,
the system shows robust temporal patterns.
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Relevance and outlook
The observed oscillations in the system size are at first sight qualitatively similar to the
dynamic instability of microtubules [63, 67]. However, while the dynamic instability of mi-
crotubules is characterized by extended phases of rather slow growth and short phases of rapid
shrinkage, the oscillations observed in our model are rather symmetric with respect to growth
and shrinkage. One reason for this symmetry is that we did not include any non-linear effects
into the growth or shrinkage dynamics. Including such nonlinearities could be an interesting
question for future research.
On a broader perspective, our model suggests that slow diffusion can be an important factor
for the occurrence of self-organized oscillations. The underlying reason is that - while dif-
fusion tends to equilibrate systems on long timescales - equilibration may not take place on
the timescale of other intrinsic processes (such as the growth dynamics in our case). This
can lead to time delays between different dynamics of the system and, correspondingly, to
oscillatory behavior. Similar diffusion-induced time delays and periodic temporal patterns
have been observed in other protein systems [65, 66] as well.

Publication and contribution
This project was partially based on Mareike Bojer’s Master thesis [83], which I supervised
together with Erwin Frey. It has been published in Physical Review E.
Mareike Bojer and I contributed equally to this publication. Erwin Frey and I designed the
project. Mareike Bojer performed the numerical analysis and conceived and executed the
mathematical analysis for the adiabatic limit. I conceived and executed the mathematical
analysis for the effective theory. Mareike Bojer, Erwin Frey and I wrote the paper. Erwin
Frey supervised the research.
The publication is reprinted in section 2.5.

3. Collective filament dynamics in nematic filament networks
With Moritz Striebel and Erwin Frey

Summary
The goal of this project was to examine the collective dynamics of filaments in cytoskeletal
networks crosslinked by motor proteins. For this purpose, we set up an effectively one-
dimensional, agent-based model, which focuses on known mechanistic interactions between
two microtubules crosslinked by a single kinesin motor [84–87] but coarse-grains other micro-
scopic details such as motor densities. The mechanistic interactions between the filaments
are implemented in terms of forces between pairs of filaments that depend on the relative
velocities of the filaments and their spatial overlap. By deriving a continuum theory for this
mesoscopic agent-based model, we identified a mechanism for force propagation through the
network: Due to the crosslinking between filaments, any force that is generated locally be-
tween two filaments is propagated through the network over a characteristic lengthscale. This
characteristic lengthscale is set by the antagonism between the motor forces and the drag in
the fluid and is a control parameter of the dynamics. For biologically realistic parameters,
local forces are translated over long distances and the local filament dynamics is essentially
determined by the collective action of all motors. This insight provides an explanation as to
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why the filament velocities in recent experiments [88] and in the spindle apparatus [89–91]
depend only weakly on the local network features. To test our model predictions, we propose
a feasible in vitro experiment.

Background
The cytoskeleton is crucial for diverse tasks ranging from force and motion generation to
chromosome segregation [92, 93]. Its ability to perform these tasks is largely based on the
interactions between cytoskeletal filaments and motor proteins: Molecular motors such as
kinesin-5 crosslink pairs of microtubules [94] and thereby arrange the microtubules in large
networks. These networks are not static structures. Quite the contrary, the crosslinking
motor proteins constantly exert forces on the filaments and move them around [23, 35, 64,
95]. The forces depend on the relative orientation of the microtubules [94]: A single motor
with two binding domains that crosslinks and walks on two antiparallel filaments slides these
filaments past one another. In contrast, two crosslinked parallel microtubules remain static.
This behavior suggests that the velocity of a microtubule should strongly depend on the ratio
of parallel to antiparallel interaction partners, i.e. the local polarity in the network [96–98]. In
particular, no motion is expected in regions with only parallel microtubules. This intuition,
however, is in conflict with experimental findings for metaphase spindles in Xenopus egg
extracts [89–91]. While the local polarity of the microtubule network varies notably along the
spindle axis, the velocity of microtubules is fairly constant, in particular if dynein, a minus-end
clustering motor [99, 100], is inhibited. At first sight, one might be tempted to argue that this
may well be due to the fact that the spindle is a complex machinery with many other proteins
involved. However, the same behavior has also been observed in recent in vitro experiments
with purified components consisting of kinesin-14 XCTK2 and microtubules only [88].

Research questions
How do the local forces between the filaments manifest in terms of collective filament motion?
What is the underlying mechanism determining the relation between the local network polar-
ity and the local filament velocities? How does such a mechanism relate to the experimental
findings of polarity-independent filament velocities?

Results
To develop a mechanistic understanding with regard to these questions, we considered a
mesoscopic model for the dynamical rearrangement of microtubules in nematic networks.
The microtubules are modeled as hard rods and the force generation by crosslinking motors
is incorporated by effective interactions between filaments that depend on the relative orien-
tation and motion of the microtubules and on their spatial overlap. By deriving a non-local
continuum theory from these mesoscopic interactions, we identified a mechanism for collective
filament motion.
Owing to the crosslinking of filaments by motor proteins, locally generated forces are propa-
gated through the network over a characteristic length.
The local force exerted by a motor protein does not only influence the directly crosslinked
filaments but is propagated by subsequent crosslinking motors to all filaments that are part of
one network patch. As a result, the local microtubule velocity does not solely depend on the
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local polarity but rather on an averaged polarity in an effective interaction range (“ambient
polarity”). More concretely, the local microtubule speed is determined by the convolution
of the polarity profile with an interaction kernel that decays exponentially with the distance
measured in units of a characteristic propagation length. This characteristic propagation
length depends on the efficiency of force propagation through the network and thus on the
relative strength of the motor forces compared to the filament drag in the fluid.
For large drag in the fluid (high dissipation), any force only has a local effect.
If the fluid drag is high or motor forces are weak, local forces exerted on the filaments are
dissipated quickly and the effective interaction range is small. As a result, only the interac-
tions with the nearest-neighbor filaments are decisive for filament motion and the filament
velocities strongly depend on the local polarity.
For heavily crosslinked filaments, the local filament dynamics depends on the global polarity
in the network.
If the dissipation in the fluid is very small or the crosslinking between filaments is very strong,
local forces between the microtubules are translated through the entire network and the effec-
tive interaction range (the characteristic length) is very large. Consequently, all microtubules
in the network experience the same ambient polarity, irrespective of their location or the
local polarity. The local filament velocity is then independent of the local polarity, in agree-
ment with experimental findings in the spindle apparatus [89–91] and in reconstituted in
vitro systems [88]. Interestingly, for biologically plausible parameter values, the characteristic
propagation length is of the same order as the spindle size. This suggests that the spindle is
indeed in the regime where the filament velocities are approximately independent of the local
polarities according to our theoretical framework.
Our model predicts that the velocity distribution of filaments depends on the characteristic
length.
In in vitro experiments with filament gels, the local polarity in the filament is not constant
but exhibits spatial fluctuations [88]. If the characteristic propagation length is large, filament
velocities, however, should not strongly depend on the local polarities and the distribution
of filament velocities should be narrow. In contrast, if the interaction range is small, the
filament velocities will reflect the spatial fluctuations of the polarity profile and the distri-
bution of filament velocities should be broad. Thus, our theory predicts that the velocity
distribution strongly depends on the characteristic propagation length. We propose a specific
in vitro experiment to test this prediction, and we substantiate our suggestion by conducting
an in silico study which is intended to mimic the experimental setup.

Relevance and outlook
The results of our study offer a new mechanistic perspective on the emergence of collective
motion in nematic filament networks. This perspective provides a common explanation for
two seemingly conflicting findings: While in dilute systems there is a strong correlation be-
tween the local filament dynamics and the local network polarity [96–98], experiments with
metaphase spindles in egg extract [89–91, 101] or with reconstituted systems [88] suggest
polarity-independent filament velocities. Our theory indicates that these findings can be
understood in terms of an intrinsic lengthscale of the system which determines the effective
interaction range of filaments and scales with the ratio of motor forces to drag in the surround-
ing fluid. For dilute systems, this characteristic length is small and the filament dynamics is
determined by local network properties. For heavily crosslinked networks, on the other hand,
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it can be comparable to the system size and effectively all microtubules interact with each
other. The filament dynamics then depends on the global polarity only.
On a broader perspective, we believe that our work can contribute towards the establishment
of a concise theoretical framework for the self-organization in filament networks. Indeed, we
extended our analytical calculations also to systems with several types of crosslinking mo-
tors, ranging from passive crosslinkers to motors with one passive and one active head. For
these more complicated systems, the mechanism of force propagation remains unchanged.
Our mesoscopic model could be extended in additional interesting ways. For instance, it
remains a question for future research how the force propagation mechanism generalizes to
three-dimensional networks where filaments are not necessarily aligned in a nematic order.
Finally, it would be enlightening to combine a recently established hydrodynamic framework
for filament gels [88] with our finding of an exponential interaction kernel with characteristic
decay length. Such a combination could provide valuable insight into whether hydrodynamic
interactions are important for force propagation and collective filament dynamics in networks.

Publication and contribution
The results of this project are reported in a manuscript, which – at the time of the original
submission of this thesis – had been in press in Biophysical Journal. While preparing the
final version of this work, the manuscript has been published there.
Moritz Striebel and I contributed equally to this publication that will also be part of Moritz
Striebel’s thesis. Moritz Striebel, Erwin Frey and I designed the project. Moritz Striebel
performed the numerical analysis, I conceived and executed the mathematical analysis for the
in silico study. All other investigations were done by Moritz Striebel and me in cooperation.
Moritz Striebel, Erwin Frey and I wrote the paper. Erwin Frey supervised the research.
A publication preprint is reprinted in section 4.5.

4. Stochastic yield catastrophes for heterogeneous structures
With Florian Gartner, Patrick Wilke, Philipp Geiger and Erwin Frey

Summary
The goal of this project was to elucidate principles for robust and efficient self-assembly.
One well-known principle in the field is that in order to produce high yield, nucleation of
new structures must be slow compared to the growth of existing structures (“slow-nucleation
principle”; [102–109]). It is widely accepted that this principle applies both to the assembly
of virus capsids [110, 111] as well as for the assembly of DNA origami [112–114] or so-called
information-rich structures [115, 116]. While virus capsids can be made from only a few
different building blocks, DNA origami and information-rich structures consist of a large
number of different constituents. So, what role does the heterogeneity of a structure play
for the assembly process? To address this question, we considered a conceptual toy model
for the assembly of ring structures whose heterogeneity is set by one parameter. In the
deterministic limit of many particles per species, there are two scenarios to robustly achieve
high yield, irrespective of the heterogeneity of the target structure. In accordance with the
slow-nucleation principle, these scenarios correspond either to an implementation of a small
dimerization rate or to a slow provision of constituents. In the case of reduced resources,
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however, these two possibilities are not equivalent any more for heterogeneous structures.
While slow dimerization reliably leads to high yield, slow provision of constituents is subject
to strong stochastic effects. These findings highlight the role of fluctuations in self-assembly
and suggest that cells use sophisticated control strategies to avoid stochastic effects.

Background
One of the fascinating characteristics of cells is their ability to self-assemble complex, biomolec-
ular structures such as the ribosome [29, 30], microtubules [117–119] or the flagellar motor [31,
32, 120] from elementary building blocks. Similarly, also viruses constantly face the challenge
to assemble their outer shell (“virus capsid”) from small proteins [110, 111]. While some
viruses form highly complex shells with many different building blocks, others assemble cap-
sids from only a few different subunits. From a theoretical point of view, the assembly of
the latter more homogeneous virus capsids has been understood very well [102, 110, 111,
121–123]. For instance, it has been found that for high assembly yield, nucleation of new
structures should be slow compared to the growth of larger structures [102–104]. In this way,
once a structure has nucleated, it is very likely to grow into the final target structure before
other structures nucleate. This sequential production of structures is beneficial because it
circumvents kinetic traps [102, 121, 123, 124] which may otherwise arise due to competition
for resources. Interestingly, this slow-nucleation principle does not only apply to the assembly
of homogeneous structures but has also been found for the assembly of heterogeneous struc-
tures [109] or so-called “structures with addressable complexity” [108] made, for instance,
from DNA bricks [105, 107] or single-stranded DNA tiles [106]. This observation raises the
question whether, more generally, the same principles apply for the self-assembly of both
homogeneous and heterogeneous structures.

Research questions
Does the heterogeneity of the target structure qualitatively change the assembly process? Un-
der what conditions can irreversible self-assembly processes proceed efficiently and robustly?

Results
To tackle these questions, we set up a conceptual model for the self-assembly of ring struc-
tures with a well-defined size made from different species of particles. In order to interpolate
between homogeneous and heterogeneous structures, the size of the target structure and the
number of species can be different. For only one species in the system, the target structures
are homogeneous, whereas for larger numbers of species (and fixed target size) the hetero-
geneity is larger as well. There is a fixed number of particles per species and the particles of
each species are provided (“activated”) stochastically at a fixed rate. Once active, monomers
can dimerize or attach to polymers. Correspondingly, polymers grow by monomer attachment
until they have reached the target size. The efficiency of the assembly process is characterized
in terms of the assembly yield which is proportional to the number of target structures.
In the deterministic limit, assembly yield does not depend on the heterogeneity of the target
structure.
If the number of particles in the system is very high (“deterministic limit”), there are two
ways to achieve high assembly yield in accordance with the slow-nucleation principle: either
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by decreasing the dimerization rate or by decreasing the activation rate. In the first scenario,
nucleation of new structures (dimer formation) is suppressed directly by control on the molec-
ular level. In contrast, in the second case, nucleation is slowed down indirectly due to supply
control. The efficacy of both scenarios is independent of the heterogeneity of the structure.
Indeed, using symmetry arguments we showed analytically that systems with distinct hetero-
geneity of the target structure behave deterministically equivalently.
Self-assembling heterogeneous systems are generally subject to stochastic effects.
This equivalency, however, breaks down if the resources are reduced. While the assembly
of homogeneous structures proceeds as expected deterministically, for heterogeneous target
structures, stochastic simulations show that the yield saturates at an imperfect value for small
activation rates. This saturation value is the smaller, the smaller the number of particles in
the system, and is zero below a threshold value of the number of particles, which depends on
the target structure size. These findings are in stark contrast to the deterministic description
in terms of mean-field rate equations, which always predicts perfect yield in the limit of slow
particle supply, irrespective of the number of particles and the heterogeneity of the target
structure. Thus, fluctuations can markedly affect the assembly of heterogeneous structures
(“stochastic yield catastrophe”).
For heterogeneous structures assembly yield can be a non-monotonic function of the deter-
ministic nucleation speed.
The same stochastic effects lead to another, counterintuitive behavior for heterogeneous struc-
tures. When slow activation and slow dimerization occur together, the assembly yield can
be a non-monotonic function of the activation rate. Deterministically, a slower activation
rate always corresponds to a slower nucleation probability and thus to higher yield. This is
not true any more for reduced resources due to the occurrence of stochastic effects. Then,
fluctuations in the relative activation levels of the different species lead to transient unavail-
ability of species for binding, which ultimately leads to an effective enhancement of nucleation
compared to growth (for details see project 5).

Relevance and outlook
It is important to note that the results of our model do not contradict the slow-nucleation
principle. Irrespective of the effect of fluctuations or the heterogeneity of the target structure,
favoring nucleation compared to growth leads to low assembly yield. However, while in the
deterministic limit, there exist various equivalent ways to limit nucleation, this is more subtle
in the case of reduced resources. For instance, reducing the activation rate of monomers is
deterministically a promising strategy to slow down nucleation. If fluctuations are present,
though, the nucleation of new structures might be reinforced instead. As a result, our results
indicate that the slow-nucleation principle has to be interpreted in terms of the corresponding
stochastic framework.
Our conceptual model certainly describes an idealized self-assembly process. To begin with,
all species are present precisely in their relative stoichiometric concentrations. Furthermore,
defect binding is not accounted for. Relaxing either of these two assumptions is expected to
lead to additional stochastic effects (compare also [125]). Indeed, in a follow-up project [7]
we considered an extension of the model which additionally allows for defect binding. The
stochastic effects get even more pronounced in this case since fluctuations do not only enhance
nucleation but also defect formation. By isolating the stochasticity in the original model from
these additional stochastic effects, we demonstrated that fluctuations in the availability of
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particles can themselves lead to a significant decrease of assembly efficiency in an otherwise
ideally constructed system.
To test the robustness of our results, we also considered some modifications of the original
model. These modifications include choosing a different geometry of the target structure,
which does not require a linear assembly path and is non-periodic, and allowing for additional
polymer-polymer binding. In both cases, we observed the same stochastic effects, albeit
weakened.
Finally, it would be very interesting to test our model predictions with the help of DNA
origami [112–114]. One approach may be to generalize the method presented in Ref. [126] to
the case of heterogeneous ring structures.

Publication and contribution
The results of this project are reported in a manuscript, which – at the time of the original
submission of this thesis – had been under review for publication. While preparing the final
version of this work, the manuscript has been accepted and published in eLife.
Florian Gartner, Patrick Wilke and I contributed equally to this publication, which will also
be part of Patrick Wilke’s, Florian Gartner’s and Philipp Geiger’s theses. Florian Gartner,
Patrick Wilke, Philipp Geiger, Erwin Frey and I designed the project. Florian Gartner and
Patrick Wilke performed the numerical analysis. Florian Gartner and I performed the math-
ematical analysis. Philipp Geiger designed the illustrations. Florian Gartner, Patrick Wilke,
Philipp Geiger, Erwin Frey and I wrote the paper. Erwin Frey supervised the research.
A publication preprint is reprinted in section 7.5

5. Understanding and guiding the assembly of heterogeneous structures
With Florian Gartner and Erwin Frey

Summary
Motivated by the findings of the stochastic yield catastrophe in the previous project, the goal
of this project was to gain a more quantitative understanding of the effect of fluctuations on
the assembly dynamics of heterogeneous structures. In particular, while it is intuitive that
stochasticity might play some role in the assembly process, the strength of the stochastic
effects is surprising. Furthermore, a priori it is not clear how the different sources of stochas-
ticity (demographic noise due to the stochastic supply/activation of particles vs. reaction
noise due to the randomness in binding) contribute to the occurrence of the stochastic yield
catastrophe. To address these questions, we formulated an effective theory for the conceptual
model introduced in the previous project. It relies on our intuitive perception that the main
contribution to the stochastic effects comes from fluctuations in the relative availability of
the different species for binding. Consequently, the focus of the effective theory lies on a
characterization of the demographic noise which is introduced by these fluctuations in the
activation of particles. In return, reaction noise is neglected. Although the predictions of
this effective theory are not in perfect agreement with the results of the full stochastic model,
the qualitative phenomenology is captured well. This suggests that demographic noise is in-
deed the main cause of the stochastic yield catastrophes. Based on this insight, we proposed
and investigated two strategies to improve the assembly yield by reducing the variability be-
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tween species. Instead of favoring a specific assembly path [7, 109], these strategies lead to
more “uniform” growth behavior. On a broader perspective, reducing the variability between
species may turn out to be a beneficial assembly strategy for living systems and nanotechno-
logical applications.

Background
In order for structures to be multi-functional and to exhibit predefined morphologies, it is
beneficial to be composed of many distinct components that can fulfil specific tasks or bind to
specific locations [27, 115, 116, 127]. Understanding the principles underlying the assembly
dynamics of such heterogeneous structures is thus expected to not only provide insights into
the assembly processes in living organisms but also to be important for nanotechnological
applications. In the previous project, we discussed one such aspect of the assembly of hetero-
geneous structures: The assembly process can be subject to strong stochastic effects which
completely suppress the yield (“stochastic yield catastrophe”), in particular if the supply
of the different species (elementary building blocks) occurs stochastically. Intuitively, this
stochastic yield catastrophe is due to fluctuations in the availability of the different species
for binding. In light of recent work [109], this seems surprising at first. In this work, it
was shown that the assembly yield can be improved considerably by using non-stoichiometric
concentrations for the different building blocks. Effectively, this means that the variability
between species is increased since some species are present in excess compared to the other
ones. How can these findings be reconciled with our intuitive understanding of the stochastic
yield catastrophe, namely that the suppression of the yield is due to large fluctuations in the
availability of the different species? There are two crucial differences. First, in Ref. [109],
the variability between species is increased in a very controlled and coordinated fashion: All
species in a small segment of the target structure (and only these) are supplied in excess. This
strategy favors a very specific assembly path where nucleation happens in the small “excess
segment” and structures then grow from these specific initial seeds. In contrast, in our model
the fluctuations in the relative availability of the species are distributed irregularly in the ring
structure. This leads to many different nucleation seeds and, correspondingly, to competing
assembly pathways. The second difference is that the dynamics in Ref. [109] follows the de-
terministic chemical Master equations. As a result, the stochastic effects we described in the
previous project should not be relevant there. Still, the same idea of favoring a very specific
assembly pathway can also be used to control these stochastic effects: In another project (that
will not be part of my thesis) we implemented a “just-in-sequence” supply control strategy [7].
This strategy is based on feedback between the subsequent building blocks in the favored as-
sembly pathway. Generally speaking, supply of one species of building blocks only starts once
the previous species (in the desired assembly path) has been fully supplied. Consequently,
the building blocks can attach one after the other to the growing structures and the assembly
efficiency is very high. With respect to our results, this raises the question whether assembly
yield can also be improved by a complementary strategy, namely by decreasing the variability
between species. To answer this question, a quantitative understanding of the occurrence of
the stochastic yield catastrophe is necessary.

Research questions
Why is the self-assembly of heterogeneous structures subject to such strong stochastic effects?
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What role do the different sources of stochasticity play for the assembly process? What are
possible strategies to control stochastic effects and to kinetically guide the assembly dynamics?

Results
To answer these questions, we developed an effective theory for the conceptual model pre-
sented in the previous project. It is based on the intuition that the stochastic yield catastrophe
is mainly due to demographic noise in the supply, which entails fluctuations in the availabil-
ity of the different species for binding. The basic idea behind this intuition is the following:
A temporary unavailability of species for binding (for instance due to low activation of the
species) blocks those structures from growing that would otherwise bind to a monomer of
an unavailable species. As a result, nucleation of new structures is effectively favored com-
pared to growth. In accordance with the slow-nucleation principle, yield is thus low since too
many structures compete for the same resources. To quantify this intuition, we employed a
“fluctuation-corrected” mean-field ansatz and extended the deterministic mean-field dynam-
ics for the time evolution of the polymer size distribution by a second state. In short, instead
of only considering one state per structure size as it can be done in the deterministic limit [4],
we derived an effective dynamics for two polymer states: One state describes polymers that
can grow by currently available species whereas the other one corresponds to polymers that
are blocked due to the unavailability of the neighboring species. We used methods from the
theory of stochastic processes and a quasi-stationary approximation to estimate the effective
transitions between the different states.
Demographic noise appears to be crucial for the occurrence of the stochastic yield catastrophe.
As expected from the many simplifications which we made to establish the effective theory,
there are quantitative deviations between its predictions and the results from stochastic sim-
ulations. However, the effective theory captures the different phenomena of the stochastic
simulations qualitatively correctly (see also project 4 for a description of these phenomena).
Yield saturates at an imperfect value for small activation rates and this saturation value
is smaller for smaller numbers of particles in the system. Furthermore, yield can become
a non-monotonic function of the deterministic nucleation speed if slow activation and slow
dimerization occur simultaneously. This qualitative agreement suggests that indeed demo-
graphic noise (and not the reaction noise, which we neglect) contributes substantially to the
strong stochastic effects.
Decreasing the fluctuations in the relative availability of the different species improves the
assembly yield.
We used this insight to propose and implement two control strategies to improve the efficiency
of the self-assembly of heterogeneous structures. The first strategy relies on providing the
particles in so-called bursts (or batches). In this case, not all the particles of all species are
activated simultaneously but instead the particles are “presorted” in smaller batches which
are supplied one after the other. If the number of particles per batch is the same for all
species (or at least only exhibits “small” fluctuations), such a procedure effectively aligns
the supply levels of all species. Thus, it reduces the variability between species. The second
strategy relies on self-inhibitory feedback. It is implemented in a way that the free monomers
of each species inhibit further activation of the species. As a result, species that have been
activated more (and correspondingly have more free monomers) suppress their own activation
and the supply levels are again effectively aligned. Both strategies considerably increase the
assembly yield. Furthermore, a strong negative correlation between inter-species variability
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and assembly yield can be observed. Taken together, our results suggest that decreasing the
inter-species variability, for instance via supply control, may be a profitable strategy to en-
hance assembly efficiency.

Relevance and outlook
As indicated above, our effective theory is strongly based on the intuition we developed over
time but has not been derived from first principles. As a result, it would be very interesting
to investigate whether more rigorous approaches could be employed to formulate a stochastic
theory. Furthermore, it is a question for future research to derive scaling laws from such a
stochastic theory or our effective theory. These could include the dependency of the threshold
number of particles (above which yield sets in) on the target structure size, or the scaling of the
threshold activation rate (below which stochastic effects occur) with the number of particles
or the size of the target structure. We expect such or similar scaling laws to be relevant for
nanotechnological applications because they could give estimates on the feasibility of different
assembly schemes. Related to this point, it would be exciting to test the suggested supply
control strategies in experiments and to investigate whether the underlying principles could
be relevant for intracellular self-assembly.
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The results of this project are reported in a manuscript that is currently in preparation.
Florian Gartner and I contributed equally to this project, which will also be part of Florian
Gartner’s thesis. Florian Gartner, Erwin Frey, and I designed the project. Florian Gartner
and I performed the numerical analysis. I conceived and executed the mathematical analysis.
Florian Gartner, Erwin Frey and I wrote the paper. Erwin Frey supervised the research.
The manuscript preprint is reprinted in section 8.5.
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Cytoskeletal filaments and molecular
motors





1 Introduction: The role of the cytoskeleton
in living systems

Living systems exhibit an astonishing complexity and variety of functions and abilities: Cells
replicate and divide, change and maintain their shapes, move in free space and through narrow
constrictions and generate sophisticated patterns, both intracellular and in the collective with
other cells. These capabilities rely on a robust and at the same time dynamic spatio-temporal
organization of their “elementary building blocks” like proteins, lipids or DNA. How can a
robust and dynamic organization emerge from interactions of a large number of constituents
that are themselves highly dynamic?
To address such questions, it has proven very useful to combine insights from biology (such
as the identification of protein interactions), with experimental and theoretical methods of
physics. Experimental methods include for instance optical tweezers [128, 129] (for recent
reviews see e.g. [130, 131]) and fluorescence techniques [132–135] (for recent reviews see
also [136–138]). On the theoretical side, the techniques range from the theory of stochas-
tic processes and non-equilibrium systems to nonlinear dynamics. We will mention some
specific models and approaches in section 1.2.
One archetypical class of structures that is highly organized and is simultaneously composed
of very dynamic structural elements is the cell cytoskeleton (for reviews see e.g. [92, 93, 139]).
It corresponds to a network of cytoskeletal filaments which are crosslinked by proteins, and
provides mechanical stability to cells. At the same time the cell cytoskeleton is also crucial for
dynamic processes such as cell motion, shape changes or cell division. A prominent example
is the mitotic spindle which is necessary for chromosome segregation during cell division and
is based on the microtubule cytoskeleton (for recent reviews see [140–143]). To establish and
coordinate its internal organization and to regulate its dynamics, interactions between the
microtubules and associated motor proteins are central. For instance, by consuming chemical
energy, motor proteins can “walk” on the filaments in a directed fashion (for reviews see e.g.
[34–36, 95, 144]). This non-equilibrium process can be coupled to transport of cargo which
then accumulates at specific places. Alternatively, so-called crosslinking motor proteins link
two filaments and can thereby generate forces on these filaments. This force generation due to
crosslinking is particularly important for the mitotic spindle where it is thought to contribute
to polarity sorting [89, 99, 142, 143, 145, 146].
The goal of this introductory chapter is to discuss these properties and the underlying in-
teractions between the cytoskeletal filaments and motor proteins in more detail; section 1.1.
Furthermore, a short summary of some theoretical approaches to describe the different levels
of the cytoskeleton will be given in section 1.2.
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1.1 Biological background: Cytoskeletal filaments and motor
proteins

In this section, we give a summary of some of the biological aspects of cytoskeletal filaments
and molecular motors. We put some emphasis on the properties that are conceptually relevant
to the projects discussed in this first part of the thesis. As we will see later, throughout these
projects, we will model cytoskeletal filaments as single, hard rods on which molecular motors
walk in a directed fashion, and, correspondingly, we will neglect many of the other properties.
Nonetheless, to give a more complete picture about filaments and motors, we also include
other aspects in this summary.

1.1.1 From microtubules to actin filaments

There are three main types of cytoskeletal filaments: microtubules, actin filaments and inter-
mediate filaments (see for instance [92, 93, 139] for reviews). All of these filaments assemble
into larger networks and interact with molecular motors. While microtubules and actin fila-
ments are polar structures and serve as tracks for molecular motors, intermediate filaments
are transported as cargo by the different motor proteins.
Since this first part of the thesis will be mostly concerned with the theoretical description
of phenomena that rely on the directional movement of motors along microtubules or actin
filaments, we will focus on these two types of filaments.

Microtubules

Microtubules are long and stiff polymer filaments made from tubulin dimers (e.g. [72, 118,
147]). These tubulin dimers contain two distinct subunits (α and β) which provide a di-
rectionality to the dimer. Upon polymerization, the tubulin dimers bind to each other in
a head-to-tail fashion and thereby form long protofilaments. Typically, 13 protofilaments
assemble laterally into a cylindrical form, the microtubule. Due to the directionality of the
dimers, microtubules are polar structures with one so-called plus and one minus end. This
polarity is crucial for the directional movement of motor proteins along the microtubule (see
also below).
These properties of microtubules are reflected in our models as follows:

1. Microtubules are modeled as (infinitely) stiff rods with only one protofilament.

2. Microtubules are considered as polar objects on which motors move in a directed fashion
(see also below).

3. While we do not explicitly include the different subunits of the protofilaments, we
model the discrete nature of the microtubules: Motors do not slide continuously along
the filaments but they make discrete steps (see also below).

Apart from these properties, microtubules also exhibit interesting growth behavior (e.g. [23,
63, 67, 72, 148–150]): Due to the polarity of microtubules, it vastly differs between both ends.
While growth and shrinkage (polymerization and depolymerization) are fast at the plus end,
the minus end is rather static. If the microtubules are not stabilized by microtubule-associated
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proteins, the dynamics at the plus end shows quite peculiar behavior: Instead of stochastic
fluctuations around a mean microtubule length, microtubules exhibit a so-called “dynamic
instability” [63, 67]. This dynamic instability is characterized by stochastic switches between
phases of fast shrinkage (“catastrophes”) and prolonged phases of slower growth (“rescues”).
In the second project (chapter 3), we are also concerned with length regulation of filaments
by motor proteins (see also below). While exhibiting some similarities with this dynamic
instability of microtubules, our motivation was not to study a particular biological system
but to conceptually understand which role active transport and diffusion may have for length
regulation in confinement.

On a broader perspective, microtubules are essential elements of a number of cellular struc-
tures, ranging from the mitotic spindle to cilia and flagella (see e.g. [72]). In all these cases,
the interactions between the microtubules and its associated motor proteins are crucial.
We will come back to different types of motor-microtubule interactions below.

Actin filaments

On a coarse-grained scale, actin filaments are quite similar to microtubules: They are polar
structures which are made from smaller, discrete subunits and serve as tracks for molecular
motors [42, 68, 71, 93, 139, 151].
In our models we will thus not explicitly distinguish between actin filaments and microtubules
when considering collective transport properties along filaments (chapter 2) and a conceptual
model for length regulation in confinement (chapter 3).

For completeness, however, we want to mention some difference which might be relevant for
more detailed studies:
Instead of being composed of tubulin, actin filaments are made from F-actin, which arranges
in a double-helix form. These double-helices are much thinner as compared to microtubules
(roughly 7nm in diameter compared to roughly 25nm for microtubules [93]) and, correspond-
ingly, individual actin filaments are approximately 100 times more flexible than microtubules.
When crosslinked into bundles and networks, their persistence length increases considerably
(e.g. [92, 152]). Thereby, they can generate strong forces, for instance, for the elongation of
filopodia or cell migration (see for instance [43, 153] for reviews). This force generation is
also closely related to the polymerization and depolymerization dynamics of actin filaments.
Similarly to microtubules, the two ends of the actin filament show very distinct growth dynam-
ics [43, 68, 71, 153]. However, in this case growth and shrinkage do not occur preferentially
at the same end but at opposite ends. While the so-called pointed end preferentially depoly-
merizes (if not stabilized), the so-called barbed end tends to polymerize. As a result, actin
filaments show treadmilling behavior where the filaments are constantly turned over [68].

1.1.2 Motor proteins and their interactions with filaments

Motor proteins are responsible for a variety of tasks in cells that largely rely on energy
consumption (see e.g. [35, 144, 154, 155]). By ATP hydrolysis motor proteins transform
chemical energy into mechanical energy and motion along filaments. Thereby they can not
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only transport material in a directed fashion through the cell but, for instance by crosslinking
several filaments and walking on them, they also generate forces (chapter 4). Indeed, one has
to apply forces on the order of several pN to prevent motors from walking along the filaments
(“stall force”; e.g. [86, 156]). This order of magnitude is similar for the different types of
motors that move along microtubules and actin filaments, respectively.
Overall, there are three main families of motor proteins: kinesins, dyneins and myosins (see
e.g. [157–159], respectively). While myosins interact with and walk on actin filaments, kinesins
and dyneins interact with microtubules.
We will briefly discuss the interactions between motors and cytoskeletal filaments which are
directly relevant to this thesis next.

Directed transport of motor proteins along cytoskeletal filaments

One of the major roles of motor proteins is to transport cargo to specific parts of the cell.
This is achieved by the directed motion of motor proteins along cytoskeletal filaments [34,
151]. Kinesins such as kinesin-8 [58, 59] or kinesin-5 [94] usually walk towards the plus end of
the microtubule [160]. In contrast, dyneins are minus-end-directed motors [158, 161]. Both
kinesins as well as dyneins are rather processive motors, meaning that they walk along the
microtubules over long distances before detaching from the filament [144, 155, 157, 161–163].
While most myosins are non-processive [144, 155, 163], there are also several myosin motors
which are crucial for transport of cargo to the distal tips of cellular protrusions and which,
hence, walk over long distances as well: Myosin-5, which occurs in homodimeric form in
microvilli [39, 154, 161, 164, 165], myosin-10, which is a high-duty-ratio motor in filopodia
and spends most of its time tightly bound to actin [39, 40, 43], and myosin-3a [39, 165–167]
and myosin-15a [38, 39, 168], which transport regulating proteins to the tips of stereocilia.
The conceptual models we considered for the interplay between directed motor transport and
diffusion in a confined geometry (chapters 2 and 3) are motivated by this processive, directed
motion along filaments. We will, thus, always assume that the rate of motor detachment from
the filament is very small compared to the stepping rate along the filaments.

Instead of transporting cargo along the filaments, motors are also crucial for the formation
of filament networks. Since chapter 4 deals with such filament networks, we describe this
crosslinking interaction between motors and filaments next.

Crosslinking motor proteins

The organization of cytoskeletal filaments into higher-order structures relies on the crosslink-
ing action of several motor proteins [92]. Due to the flexibility of actin filaments, crosslinking
of actin filaments into actin bundles or networks is particularly important for providing sta-
bility and rigidity [42, 43, 92, 153]. While the formation of networks of microtubules relies
on crosslinking proteins as well, the effects of these proteins are also strongly associated with
filament motion. This is an aspect that we explore in more detail in chapter 4.
The basic idea is as follows: Motors with two binding domains can link two filaments and
walk along both of them simultaneously [143, 153]. As a result, they exert forces on the fila-
ments and - depending on the relative orientation of the filaments - cause relative or uniform
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motion (see also Fig. 1.1 for an illustration): Antiparallel microtubules (i.e. with opposite
polarity) are slid apart whereas parallel microtubules stay put (see e.g. Ref. [94] for kinesin-5
and Refs. [169, 170] for kinesin-14). In addition to motors that slide microtubules apart, there
are also kinesins [171] and dyneins [95, 145] that focus microtubules into poles [23].
In chapter 4, we will not focus on this pole formation but instead on a conceptual description
of the orientation-dependent motion generation by crosslinking motor proteins in filament
networks. One of the questions we address is how the behaviour of filament pairs affects the
movement of filaments in large networks. Our conceptual model suggests that crosslinking of
motor proteins is not only crucial for force generation but also for force propagation through
the network.

+

-+

- + -

+-
force

force

motion

A) B)

Figure 1.1 | Illustration of the effect of motor crosslinking on the filament dynamics
(adapted from [3]). Microtubules (green) are crosslinked by a motor protein (red) that
walks with its two heads on both filaments simultaneously. A) A motor that crosslinks two
parallel microtubules does not exert any net force on the filaments. It walks with both
heads in the same direction (here: towards the plus end of the microtubule; left) and does
not get stretched. B) In contrast, a motor that crosslinks two antiparallel microtubules gets
stretched due to the directed motion along the filaments. It thus exerts a restoring force in
the opposite direction (the motor that walks to the plus end of the upper microtubule at
the left exerts a force on the microtubule to the right and vice versa). The microtubules are
pushed towards their minus ends.

The final interaction between motors and filaments that we want to mention concerns length
regulation of filaments by motor proteins. This interaction conceptually underlies the project
discussed in chapter 3.

Length regulation of filaments

As mentioned before cytoskeletal filaments can be highly dynamic [23, 43, 63, 67, 68, 71, 72,
148–150, 153]. They steadily grow and shrink by polymerization and depolymerization at their
ends, unless stabilized by drugs. If these processes were entirely random, however, the filament
length would perform a (biased) random walk with reflecting boundary at length zero [69].
The resulting length distribution would be exponential (if the growth rate is smaller than
the shrinkage rate; otherwise the average length diverges). While such a length distribution
would not per se be in disagreement with possible length distributions one could obtain from a
stochastic dynamics similar to the dynamic instability of microtubules [63, 67], the dynamics
would be completely different. Typically, there would be no extended phases of growth and
no phases of rapid shrinkage. Furthermore, tightly controlled and peaked length distributions
of filaments, which are, for instance, necessary for the staircase patterns of stereocilia in hair
cells [41, 42], would not occur. As a result, some sort of length control mechanism is expected
to take place (for recent reviews on length and size control see [69, 73, 79]). One possibility is
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by coupling the length dynamics to directed transport along filaments. For instance, tubulin
is transported by kinesins to the tips of flagella or cilia [77, 78]. This process relies on so-
called intraflagellar transport. Alternatively, length control also occurs via active transport
of regulator proteins by myosins [41, 42, 80] or via directed motion by kinesins [59, 60, 62,
81, 82]. In the case of microtubules, it is known, for instance, that kinesin-8, a plus-end
directed motor, also acts as depolymerase once it has reached the end of the microtubule [59,
172]. Since the motor density at the tip increases with increasing length (cf. antenna profile
in Ref. [82]), depolymerization is faster for larger lengths, thus providing a negative feedback
mechanism.
For the conceptual model of length regulation in confinement discussed in chapter 3, we
took inspiration from this length regulation mechanism by kinesin. More concretely, the
specific choice of length dynamics was motivated by experimental studies of microtubules
where motor-induced depolymerization [58–62] was observed.

Taken together, all these phenomena highlight the intricate relationship between filaments
and motor proteins and illustrate their broad interaction scheme.

1.2 Theoretical approaches

In this section, we give a very brief summary of some theoretical approaches to describe
certain parts and properties of the cell cytoskeleton.
In general, there is a large variety of models with very different emphases. Correspondingly,
the level of description varies considerably. First, there is a line of research that focuses
on the collective transport of motor proteins along single cytoskeletal filaments in terms of
the totally asymmetric simple exclusion process (TASEP [44–46]; see also below). In these
studies, filaments are typically modeled as one-dimensional rigid objects along which the
motor proteins move. Furthermore, to account for the discrete nature of the filaments (in
terms of tubulin dimers or F-actin; see section 1.1) and the corresponding discrete stepping
behavior of the motor proteins, the filaments are represented as lattices with individual sites
instead of continuous objects. Finally, bending properties or lateral interactions between
several filaments are ignored.
In contrast, if the goal is to identify rheological properties of the cytoskeleton, the focus lies
more on a description of, for instance, the viscoelastic behavior (see e.g. [173, 174]). Such
descriptions are often in terms of hydrodynamic theories or so-called active gels ([174–176];
see also below). These theories rely on the identification of slow variables and symmetries
and constitute coarse-grained descriptions on sufficiently large length- and timescales.
In the following, we will discuss some approaches that are directly relevant to this thesis in
more detail.

1.2.1 Transport along rigid filaments: Totally asymmetric simple exclusion
process

The first model that is directly relevant for the conceptual models discussed in chapters 2
and 3 is the totally asymmetric simple exclusion process (TASEP). The TASEP was initially
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βα ν

Figure 1.2 | Illustration of the totally asymmetric simple exclusion process (TASEP) with
open boundaries (adapted from [2]). Particles are injected at one end at rate α and jump
forward one site at a time towards the other end. A jump occurs at rate ν provided that
the site in front of the particle is empty (exclusion). At the other end, particles leave the
lattice at rate β.

introduced in Refs. [44, 45] as a model to describe ribosome movement and interacting Markov
processes, respectively, and has become a paradigmatic model for non-equilibrium dynamics
since then [46]. It exhibits rich phase behavior and, in particular, boundary-driven phase tran-
sitions [47] – despite its simplicity: Particles jump unidirectionally along a one-dimensional
lattice (see also Fig.1.2 for an illustration). A jump occurs at rate ν ≡ 1 but only if the site
in front of the particle is empty (exclusion). Furthermore, in the case of open boundaries,
particles are injected at one end at rate α, provided that the first site of the lattice is free.
Finally, particles leave the system at rate β at the other end.

This TASEP dynamics with open boundary conditions has been solved exactly by either em-
ploying a matrix-product ansatz [177] or by solving the recursion relation [48, 49]. These exact
solutions have confirmed the phase diagram as obtained through mean-field arguments [47].
In the following, we motivate this phase diagram in a very phenomenological (and incomplete)
way. The essential steps follow the analyses presented in Refs. [51, 52, 178, 179]. We start
from the mean-field approximation, then present the resulting continuity equation and finally
a phenomenological approach to determine the phase diagram.

In a mean-field approximation, the correlations between different states are neglected and
higher-order moments are replaced by averaged quantities. In the case of the TASEP, one
assumes that the following equality for the densities at subsequent sites i and i + 1, ρi and
ρi+1, holds:

〈ρiρi+1〉 = 〈ρi〉〈ρi+1〉 ∀i.

That is, correlations between the neighboring lattices sites are assumed to be negligible.
In order to determine the time evolution of the densities, we will combine this mean-field
description with a continuum approximation in which the densities at the single lattice sites
ρi are replaced by a continuous density ρ(x), x ∈ [0, L] where L denotes the length of the
lattice. This continuum limit makes sense if the lattice spacing a ≡ 1 is small compared to
the lattice length L, i.e. if there are many lattice sites in the lattice. Since there is no in- or
outflux of particles along the lattice, the mass in the bulk of the system is conserved. The
density ρ(x) thus satisfies a continuum equation with a flux J :

∂tρ(x, t) = −∂xJ(x, t).

In order to motivate this flux J , we will look at the flux Jn for non-interacting particles
moving along the lattice, first. Since the flux describes the number of particles crossing a
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certain position in the lattice per time, Jn is proportional to the number of particles in the
lattice and, thus, to the density ρ. However, due to the interactions between particles, the
collective flux J does not equal the flux Jn but decreases for increasing density due to the
exclusion. For a fully occupied lattice, ρ ≡ 1, no flux is possible and, correspondingly, the
flux should be zero, J = 0. Conversely, an almost empty lattice should not influence the
single-particle flux Jn considerably and in the limit of small ρ the fluxes J and Jn should
agree. Combining these phenomenological arguments motivates why the flux is given by

J = ρ(1− ρ). (1.1)

As a result, we have

∂tρ = −∂xJ = −∂x (ρ (1− ρ)) = (2ρ− 1)∂xρ.

This equation implies that in steady-state (where ∂tρ(x, t) = 0) the density has to be constant:
ρ ≡ const.

In general, however, a constant density violates the boundary conditions. At the left end,
x = 0, influx happens at rate α and, correspondingly, the density is given by ρ(0) = α in
steady-state. In contrast, at the other end, x = L, particles leave the system at rate β,
leading to a steady-state density ρ(L) = 1− β there. So, unless α = 1− β and ρ(0) = ρ(L),
the density profile cannot be constant everywhere. Indeed, it is insightful to describe the
density profiles with the help of shocks or so-called domain walls that connect two different
(constant) densities on the left and right [51, 53, 180]. These shocks are per se not static but
can move through the system at a velocity V . Due to mass conservation, the relative flux
difference between the right- and left-hand side of the shock front J+ − J− must correspond
to the accumulation rate of mass due to the moving front, V (ρ+ − ρ−):

V (ρ+ − ρ−) = J+ − J−,

where ρ± and J± denote the densities and fluxes at the right-, +, and left-hand, −, side of
the shock front, respectively. As a result,

V =
J+ − J−
ρ+ − ρ−

= (1.2)

=
ρ+(1− ρ+)− ρ−(1− ρ−)

ρ+ − ρ−
= 1− ρ+ − ρ−. (1.3)

What does this equation imply for a shock wave that connects densities ρ− = α and ρ+ = 1−β,
corresponding to the reservoir densities at both ends? Phenomenologically, we can argue as
follows: According to Eq. 1.3, a shock wave which connects densities α and 1− β exhibits a
shock velocity V = β − α. For β > α, the domain wall thus moves to the right of the system
(V > 0), whereas for β < α it moves to the left (V < 0). Correspondingly, for β > α, the
region with density ρ− = α extends until it almost reaches the right boundary – a so-called
boundary layer forms. In this case, the bulk of the system is thus determined by the left
boundary condition α. In contrast, for β < α, the density in the bulk is ρ+ = 1 − β and is
controlled by the right boundary.

Indeed, this is not the full story because there also exists a special bulk density ρm = 1/2
(“maximal current” phase; [47–49, 177]) which maximizes the current J(ρ) in the system.
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Applying Eq. 1.3 to a domain wall connecting a density of α at the left to a density of
ρm = 1/2 at the right yields the following domain velocity:

V =
1
4 − α(1− α)

1
2 − α

.

This velocity is positive (negative) if α < 1/2 (α > 1/2). As a result, phenomenologically,
if α < 1/2 the domain wall moves to the right and the density α dominates. In contrast, if
α > 1/2 the domain wall moves to the left and the maximal current density ρm is established
in the bulk.

Using an analogous argument for a domain wall between the maximal current density ρm and
the density ρ+ at the right boundary and considering all possible combinations of domain
walls yields the following phase diagram for the TASEP (see also [47–49, 177]):

• If β > α and α < 1/2 the bulk density ρb is determined by the left boundary and is
given by ρb = α (low density (LD) phase).

• If β < α and β < 1/2 the bulk density ρb is determined by the right boundary and is
given by ρb = 1− β (high density (HD) phase).

• If α, β > 1/2 the bulk density is given by the maximal current density ρb = ρm (maximal
current (MC) phase).

As we will see in chapter 2, our conceptual model for active transport in a confined geometry,
which is also based on the TASEP, only exhibits one generic steady-state density profile: a
localized domain wall connecting a low density at one side to a high density at the other side,
similar to models with so-called Langmuir kinetics [53, 181]; see below. Furthermore, in this
system, the current is not captured well by the mean-field prediction J = ρ(1 − ρ), Eq. 1.1,
due to strong correlations between particles. To determine the (fluctuation-corrected) domain
wall profile and the actual current, we used an exact moment identity and the domain wall
approach given in Eq. 1.2 with the exact expressions for the currents.

Extensions of the TASEP

Apart from being a model for the study of non-equilibrium systems, the TASEP has also
been applied to describe several biological processes including transport along filaments (for
reviews see for instance [46, 163]). For this purpose, it has been extended in various ways.
Here, we will only shortly mention those extensions that are closely related to this thesis.
There are, however, many other interesting aspects that have been taken into account such
as interactions between multiple types of motors with different stepping behavior [182].
First, to account for motor attachment and detachment along the filament, the so-called
TASEP-LK (TASEP with Langmuir kinetics) has been introduced [53, 181]. In this case,
motors do not only enter the lattice at the first site but can attach anywhere at a fixed rate.
Conversely, the motors do not only exit the lattice at the last site but can in principle detach
anywhere. This additional dynamics can lead to phase coexistence and localized domain walls
if there is competition between the Langmuir and the TASEP dynamics.
In the TASEP-LK model, attachment of motors along the filaments occurs at a constant rate,
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corresponding to the coupling to a reservoir with constant density. However, in particular in
crowded environments, diffusion may be slow on the timescale of the motor dynamics and,
correspondingly, the reservoir (cytosol) may not be spatially uniform. Several studies took
this non-uniform density into account and examined models where the TASEP is coupled to a
second lattice with diffusive motion [181, 183–187]. This aspect of coupling directed transport
to diffusive motion also underlies the project discussed in chapter 2.
Finally, a different line of research is concerned with possible length regulation mechanisms.
To this end, dynamic lattices (e.g. [81, 82, 188–192]) and systems with finite resources (motors
and/or filament subunits; e.g. [193–195]) have been studied. Recent work of our group shows,
for instance, that coupling of motor-induced depolymerization and finite tubulin and motor
resources can lead to bistability [195].
The conceptual model discussed in chapter 3 combines a similar length regulation mechanism
with a finite diffusion in the cytosol.

1.2.2 Mechanical properties of filament networks: Hydrodynamic theories and
active gels

To conclude this chapter, we briefly mention some complementary approaches for the study of
the cell cytoskeleton. While the TASEP and variants thereof have a strong focus on collective
transport properties of molecular motors, there is also great interest in understanding col-
lective properties of large biopolymer networks. For instance, cell motility strongly depends
on the contractility of the actin network (see e.g. [196]). To understand such mechanical
properties it has proven useful to turn to hydrodynamic theories or so-called active (polar)
gels (for reviews on this topic see e.g. [173–176, 196–198]). These theories rely on symmetries,
local conservation laws and force balances. Thereby, they constitute coarse-grained descrip-
tions which are valid on large length- and timescales, corresponding to the slow modes of the
conservation laws. This level of characterization in terms of a few macroscopic variables is
convenient because it does not require a detailed knowledge of the microscopic interactions.
Conversely, the resulting theories are often phenomenological and it is not always straightfor-
ward how to connect the macroscopic parameters to microscopic interactions. It is in principle
possible to circumvent this limitation by explicitly deriving coarse-grained descriptions from
microscopic interactions (e.g. [199–201]). In general, this derivation is, however, difficult and
usually involves some approximation techniques [175, 196].
The project described in chapter 4 is conceptually similar: Starting from mesoscopic inter-
actions between filaments due to motor crosslinking, our goal was to derive a relationship
between the network polarity and the local microtubule velocities. To this end, we first es-
tablished a non-local continuum theory for coarse-grained variables. From this theory we
then deduced an analytic expression relating the local microtubule velocity to the network
polarity. Note, though, that such a procedure was possible also due to the relative simplicity
of the conceptual model which is effectively one-dimensional.



2 Transport mechanisms in a confined
geometry

Except in mathematics, the shortest distance between point A and point B is seldom a
straight line.

(Albert Einstein)

The goal of this chapter is to summarize the most important findings of our project on
the interplay of directed transport and diffusion in confined geometries. The corresponding
manuscript has been published in Physical Review Letters 118, 128101 (2017). This chapter
is based on and uses parts of this publication [1], which is also reprinted in section 2.5.

2.1 Motivation

This project is motivated by the directed and processive motion of motor proteins along
actin filaments in cellular protrusions such as stereocilia and filopodia (as briefly described in
section 1.1). These protrusions have a characteristic half-closed geometry (see also Fig. 2.1
(A) for an illustration). At the base (left end) they are connected to the cell body whereas
everywhere else they are enclosed by a membrane. As a result, there is mass conservation
everywhere except at the base. Furthermore, motors that move along the filament may detach
from it and then diffuse in the cytosol. Conversely, motors in the cytosol can attach to the
filament and then perform directed motion.

While the motivation for the conceptual model presented in the next section 2.2 originates
from these aspects of the motor dynamics in cellular protrusions, the model is not intended to
describe this biological setting accurately. For this purpose, one would have had to incorporate
many others factors such as treadmilling or aggregation in filament bundles (see section 1.1
and e.g. [39, 41, 153]).

Instead, also from a purely theoretical point of view, the coupling of a non-equilibrium process
(active, directed transport) to an equilibrium process (diffusion) in a confined geometry seems
interesting to study: At steady-state, the closure at the tip enforces a no-flux boundary
condition which opposes the direct motion along the filaments. The fluxes along the filament,
thus, need to be balanced by opposite diffusive fluxes. This argument already insinuates that
diffusion may play an important role in this system. We will see in section 2.3 that this is
indeed the case.

Correspondingly, as mentioned in the abstract of the project, the driving questions are:
Which physical principles govern the interplay between active transport, an intrinsically non-
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equilibrium process, and diffusion in a confined geometry? What role do collective effects
play for transport efficiency?

β

B)A)

Figure 2.1 | A) Illustration of motor transport and diffusion in cellular protrusions with
half-closed geometry (taken from [2]). At the left end, the protrusion is connected to the
cell body which acts as a motor reservoir: Motors are exchanged between the protrusion
and the cell body. In the protrusion, motors either diffuse in the cytoplasm or move in a
directed fashion along the filaments towards the tip of the protrusion. Diffusing motors in
the cytoplasm may attach to the filament and then move in a directed fashion. Conversely,
motors on the filament may detach from it and then start to diffuse. B) Conceptual model
(adapted from [2]). Directed transport along filaments is modeled as a TASEP (see also
section 1.2.1) with hopping rate ν = 1 and the diffusion as a SSEP (symmetric simple exclu-
sion process) with hopping rate ε. Both lanes are coupled via attachment and detachment
kinetics at rate ω each. The system is closed at the tip (right), so there is no out- and influx
there. In contrast, motors are injected at rate α from the reservoir at the base (left) into
the SSEP lane. Outflux occurs at the same rate as for diffusion, ε. For the tip dynamics, we
consider two variants: In model A, there is only detachment from the TASEP lane at rate β
but no attachment. In model B, the tip dynamics is the same as in the bulk. All processes
respect the exclusion of particles.

2.2 Model

Inspired by these questions, we consider a conceptual two-lane lattice-gas model (see also
Fig. 2.1 B for an illustration). Both lattices have the same length l ≡ 1 with sites i ∈
{0, . . . , L}, L� 1 and lattice spacing a = 1/L. One lane models the motor dynamics in the
cytosol (diffusion) and the other one the directed motion along the filaments. As motivated
in section 1.2.1, this directed motion is described by the totally asymmetric simple exclusion
process (TASEP) with hopping rate ν = 1 towards the right end (tip of the protrusion).
Diffusion, on the other hand, is represented by the so-called symmetric simple exclusion
process (SSEP). As in the TASEP, there is exclusion between particles, so there can be at
most one motor per lattice site1. Instead of performing directional motion along the lattice
as in the TASEP, motors jump either one site to the left or one to the right, at equal rate ε
each, corresponding to unbiased motion. Motivated by the geometry depicted in Fig. 2.1 A

1The exclusion on the TASEP lane is motivated by the discrete nature of cytoskeletal filaments in terms of
tubulin dimers or F-actin subunits (see also section 1.1) and hard-core interactions between motors. On
the SSEP lane, the motivation was to have an upper bound on the number of particles in the narrow
protrusion. Indeed, we show in the Supplementary Material of the publication [1] that in the steady state,
up to rescaling of rates, the system with strict particle exclusion (“carrying capacity” of one particle) is
equivalent to a system with finite carrying capacity Ndiff .
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the system is closed at the tip, i.e. there is no outflux of motors there and mass is conserved.
At the base (left end), motors leave the system via the SSEP lane (cytosol) at the same rate
as for the diffusive motion, ε. This is supposed to correspond to diffusion of motors out of
the protrusion. Conversely, motors also enter the SSEP lane (cytosol) at the left end at rate
α. There is no direct influx of motors from the reservoir into the TASEP lane but motors
can transition from the SSEP lane to the neighboring site on the TASEP at rate ω, provided
that the site on the TASEP is empty. This effectively corresponds to attachment of motors
to the filament. Conversely, motors on the TASEP lane can “detach” from it and transition
to the neighboring site on the SSEP lane, again respecting the exclusion between motors. For
convenience, this happens at the same rate as the attachment, ω. The rate ω is taken to be
small, ω ≡ Ω/L� ν = 1, effectively leading to processive motion along the filaments (see also
section 1.1) and introducing competition between the attachment/detachment kinetics along
the entire lattice and the transport dynamics (see also the TASEP-LK [53, 181]). Finally,
in one version of the model (“model A”), the attachment and detachment dynamics at the
right end (tip) is different from the one in the bulk: Motors detach at rate β � ω from the
TASEP to the SSEP lane (and there is no attachment). This might be the realistic scenario
if the detachment rate at the end is strongly enhanced due to the tendency of motors to
“continue walking” on the filament. If this is not the case, “model B” might be the more
realistic description: There, the dynamics at the tip is the same as in bulk.

2.3 Results

What is the characteristic behavior of this system in the steady-state? To answer this question,
we consider the dynamics in the bulk of the system, first. The number of particles nTi at site
i of the TASEP lane changes either by jumps along the TASEP lane, i.e. from sites i−1
to site i or from site i to site i+1, or by detachment or attachment kinetics from site i of
the TASEP lane to the SSEP lane or vice versa. In case of a jump along the TASEP lane
from site i−1 to site i the occupancy at site i increases by 1 whereas for a jump out of site
i to site i+1, it decreases. On average, these events happen at rates 〈nTi−1(1 − nTi )〉 and
〈nTi (1− nTi+1)〉, respectively. Here, 〈. . .〉 denotes the (ensemble) average and the terms in the
brackets (. . .) are due to the exclusion. Similarly, the rates for the attachment and detachment
are ω〈nSi (1 − nTi )〉 and ω〈nTi (1 − nSi )〉 where nSi denotes the number of particles at site i of
the SSEP lane. Combining these terms and using a similar argument for the dynamics of the
SSEP lane yields the following dynamics:

∂tρ
T
i = ρTi−1 − fi−1 − ρTi + fi + ω

(
ρSi − ρTi

)
, (2.1)

∂tρ
S
i = ε

(
ρSi+1 + ρSi−1 − 2ρSi

)
+ ω

(
ρTi − ρSi

)
, (2.2)

where ρ
T/S
i = 〈nT/Si 〉 is the average density of particles on the TASEP or SSEP lane. Fur-

thermore, fi = 〈nTi nTi+1〉 is the correlator between the occupancies of two neighboring sites
on the TASEP lane.

Adding those two equations results in

∂t(ρ
T
i + ρSi ) = ρTi−1 − fi−1 − ρTi + fi + ε

(
ρSi+1 + ρSi−1 − 2ρSi

)
(2.3)
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for the time evolution of the combined density ρTi + ρSi in the bulk. By introducing the local
currents JT

i and JS
i on the TASEP and SSEP lane

JT
i = ρTi − fi (2.4)

and

JS
i = ε

(
ρSi − ρSi+1

)
(2.5)

for i = 0, . . . , L− 1, the equations for the time evolution, Eqs. 2.1 and 2.2, are simplified to

∂t(ρ
T
i + ρSi ) = JT

i−1 + JS
i−1 − JT

i − JS
i . (2.6)

In the steady-state ∂t(ρ
T
i + ρSi ) = 0, it thus follows:

JT
i−1 + JS

i−1 = JT
i + JS

i = const = 0, (2.7)

where the last equality follows from the no-flux boundary condition at the tip: JT
L = JS

L = 0.
Indeed, there is also an effective no-flux boundary condition at the base: There is no influx
into the TASEP lane and the overall mass in the system has to be conserved in steady-state.
Thus, the in- and out-flux into the SSEP lane have to balance exactly and there can be no
overall (combined TASEP and SSEP) flux through the system.

Performing a continuum limit with lattice size a → 0 and using the scaling of ω = Ω/L, it
can be shown (see [1] or the publication reprint in section 2.5) that to lowest order in a, the
TASEP density is given by a domain wall connecting a density of 0 on the left to a density
of 1 on the right (see also Fig. 2 in the publication):

ρT(x) =

{
0 for x ∈ [0, z[

1 for x ∈ ]z, 1],
(2.8)

where z ∈]0, 1[ denotes the position of the domain wall. Indeed, this domain-wall profile is
the generic steady-state profile of the system and, in particular, there is no maximal current
phase. The reason is that diffusion is too slow to exhibit a current of the order of the maximal
current J = 1/4 (at least not if the rate for diffusion ε is of the order of the jump rate ν and
not considerably larger).

Intuitively, the domain wall profile comes from the fact that the system is closed at the tip.
Due to the closure, motors that move towards the tip accumulate there and form a “traffic
jam” with a very high density at the tip. Furthermore, since transport along the empty part
of the filament is fast, all particles that attach to the filament quickly catch up with the end
of the traffic jam. As there is no direct influx from the left onto the filament, the density
close to the base is thus small.

To determine the domain wall position, it is enlightening to go back to Eq. 2.1. In the steady
state it reduces to

fi − fi−1 = ρTi − ρTi−1 + ω
(
ρTi − ρSi

)
. (2.9)

Due to the simple recursive form, it is straightforward to derive the following moment identity
from it:

fi = ρTi + ω
i∑

j=0

(
ρTj − ρSj

)
. (2.10)
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where fi = 〈nTi nTi+1〉 as before. It will turn out that this is a crucial equation to go beyond
mean-field theory and to predict the active current in the system (see below). The reason is
that it relates the nearest-neighbor correlations to the densities in the system.

First, however, considering i = L − 1 and the boundary conditions at the tip (see [1] or the
publication reprint in section 2.5), yields

model A : ω
L−1∑

i=0

(
ρTi − ρSi

)
= −β

(
ρTL −

〈
nTLn

S
L

〉)
(2.11)

model B : ω
L∑

i=0

(
ρTi − ρSi

)
= 0. (2.12)

In essence, these equations constitute mass-balance equations which quantify that in the
steady state the total flux from the SSEP to the TASEP lane needs to equal the flux in the
opposite direction: In model A, there is only detachment at the last site (see also section 2.2),
so the exchange of particles in the bulk of the system (sites i ∈ {0, . . . , L − 1}) needs to be
balanced by the detachment at the tip, −β

(
ρTL −

〈
nTLn

S
L

〉)
. In contrast, in model B, the rules

for attachment and detachment are the same everywhere and, correspondingly, the exchange
at the tip is given by −ω〈nTL(1− nTL)− nSL(1− nTL)〉 = −ω

(
ρTL − ρSL

)
.

Equations 2.11 and 2.12 can be used to determine the position of the domain wall z (see [1]
or the publication reprint in section 2.5):

model A : z = 1− l cosh−1
(
σ cosh

(
1

l

))
(2.13)

model B : z = 1− l sinh−1
(
σ sinh

(
1

l

))
. (2.14)

where l :=
√
D/ω =

√
εa2/ω can be understood as the typical dwell length for motors in

the cytoplasm before attaching to the filament (D := εa2 is the diffusion constant in the
cytoplasm). σ := α

α+ε corresponds to the reservoir density in the cell body.

The interesting point about these equations is that they predict a very different dependency
of the domain wall position z on the dwell length (see also Fig. 3 in the publication), in
particular with regard to a value of “z = 1”. This situation corresponds to a domain wall
located at the tip of the system and, thus, to a system in which the TASEP lane is basically
empty, except for the tip region (tip localization). While for model A, z = 1 can occur
for finite dwell length l, for model B tip localization is only attained in the limit where the
reservoir density σ → 0. The crucial point is that due to the symmetry of the attachment and
detachment kinetics in model B, the total density on the TASEP lane needs to equal the total
density on the SSEP lane (compare also Eq. 2.12). Thus, unless the density on the SSEP lane
is small (corresponding to small reservoir density σ), the total density on the TASEP is not
small either. In contrast, for model A there is fast detachment from the tip of the TASEP
lane if diffusion is sufficiently fast (large l) and the motors do not accumulate considerably in
the tip region of the SSEP lane. As a result, the jamming on the TASEP lane is reduced and
tip localization (in the absence of large traffic jams) is possible.
This deviation between both models highlights the importance of boundary conditions for
TASEP-based systems.
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To conclude this chapter, we shortly mention another interesting feature of this model, namely
that the mean-field prediction for the current-density relation in the original TASEP J =
ρT (1− ρT ), Eq. 1.1, does not capture the current along the TASEP lane even approximately.
Indeed, if one compares the mean-field prediction for the current along the TASEP lane,
obtained from the density profile in a stochastic simulation, to the actual current in the
simulation (see Fig. S2 in [1] or the publication reprint in section 2.5), they can differ by
orders of magnitude2. The reason is that on the TASEP lane, there are strong nearest-
neighbor correlations that suppress the current considerably. These are due to the traffic
jams that form and are particularly pronounced in the domain wall region (at the left end of
the traffic jam).

These correlations can be captured analytically due to the exact moment identity, Eq. 2.10.
In short, one can use the exact formula for the TASEP current, Eq. 2.4, to employ a domain
wall ansatz [51, 53, 180] (see also section 1.2.1) with site-dependent hopping rates (see [1] or
the publication reprint in section 2.5)

wl,i =
JLD,i

ρTHD,i − ρTLD,i
wr,i =

JHD,i

ρTHD,i − ρTLD,i
(2.15)

to the left and right from site i, respectively. Here, JLD,i and JHD,i are the TASEP currents
at site i on the left (“low-density”; LD) and right (“high density”; HD) of the domain wall,
respectively. ρTLD,i and ρTHD,i denote the corresponding TASEP densities in the low- and high-
density phase. In this way, one obtains a fluctuation-corrected density profile on the TASEP
lane

ρT(x) ≈ erf ((x− z)/W (z)) + erf (z/W (z))

erf ((1− z)/W (z)) + erf (z/W (z))
, (2.16)

where W (z) =
√

2σal sinh (z/l) corresponds to the width of the domain wall (which depends
on the average position of the domain wall z). Thus, in contrast to the lowest-order domain
wall profile given in Eq. 2.8, the domain wall indeed exhibits a finite width, in quantitative
agreement with the density profile on the TASEP lane as obtained from stochastic simulations
(see Fig. 2 in [1] or in the publication reprint in section 2.5). It turns out that this correct
capturing of the width of the domain wall is crucial to obtain the exact current from the
moment identity, Eq. 2.10. Indeed, if one uses a refined mean-field approach to determine the
density profile on the TASEP lane, the width of the domain wall and the resulting prediction
for the covariances are underestimated (see Fig. 2 in the publication). As a result, the
current is strongly overestimated. This strong suppression of the current along the TASEP
lane suggests an important role of diffusion for motor transport in confined geometries.

2.4 Key points

From my point of view, there are four take-home messages:

• Due to the confined geometry (the mass conservation at the tip), there is only one
generic density profile, namely a domain wall that connects a very low density towards
the base to a very high density towards the tip.

2The deviation scales with Ω and is particularly strong in the figure due to the small value of Ω.
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• Due to the formation of these “traffic jams”, there are strong nearest-neighbor correla-
tions on the TASEP lane. These suppress the current on the TASEP lane considerably
as compared to the mean-field prediction, Eq. 1.1.

• This suppression of the TASEP current suggests that diffusion can have an important
role for transport in confined geometries – at least if particles are subject to excluded
volume interactions.

• From the recursive structure of the TASEP dynamics, Eq. 2.9, an exact moment identity,
Eq. 2.10, can be derived. It relates the nearest-neighbor correlations to the densities
in the system and allows to analytically calculate a fluctuation-corrected density profile
and the currents in the TASEP and SSEP lanes.

In the spirit of the quote at the beginning of the chapter, one could figuratively say that the
fastest way (shortest distance) to reach a target is not always by directed transport (in a
straight line).
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2.5 Publication: Generic Transport Mechanisms for Molecular
Traffic in Cellular Protrusions, PRL 118, 128101 (2017)

This section is a publication reprint of the following manuscript published in Physical Re-
view Letters 118, 128101 (2017).
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Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of
biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay
between active and diffusive transport and mass conservation leads to localized domain walls and
tip localization of the motors. We identify a mechanism for task sharing between the active motors
(maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy
consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong
nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate
analytically using an exact moment identity, and might prove useful for the understanding of correlations
and active transport also in more elaborate systems.

DOI: 10.1103/PhysRevLett.118.128101

Linear protrusions of cells, such as, for instance,
filopodia or stereocilia, perform multiple tasks in living
organisms, ranging from cell migration and signal trans-
duction to wound healing. They contain actin filaments
cross-linked into bundles by actin-binding proteins [1–4],
and molecular motors of the myosin family which interact
with actin filaments and walk on them in a persistent,
unidirectional fashion towards the tip of the protrusion
[3–9]. These motors play an important role in the biological
function of protrusions [1,4,5]. In particular, they are
known to localize to the tips of filopodia and stereocilia,
and are (jointly) responsible for length control [2–12].
Motivated by these observations, various models have

been investigated. Some are detailed mathematical models
addressing specific biological issues. These include the
role of motor transport in shaping the concentration profile
of G-actin at the base of protrusions [13], the localization of
different proteins along stereocilia [14], and the effect
of myosin X on filopodial growth [15]. Complementary,
simplified conceptual models have been studied asking
how the interplay between active and diffusive transport in
open systems may lead to nonequilibrium phase transitions
and ensuing steady states with interesting correlations and
nontrivial density profiles [16–20]. The latter are based on
the totally asymmetric simple exclusion process (TASEP)
[21,22], a lattice-gas model which, despite its simple
structure, has become a paradigm for nonequilibrium
dynamics [23,24].
Here we present and analyze a conceptual model

capturing two basic properties of the motion of persistent,

plus-end directed motors inside narrow, elongated cellular
protrusions. First, there is an interplay between two
genuinely different types of dynamics: directed (active)
transport with steric hindrance along actin filaments, and
diffusive motion in the cytoplasm. These are coupled by
particle exchange between the filament and the cytoplasm.
Second, the half-closed geometry of cellular protrusions
is special: At one end, the protrusions are connected to the
cell body and thus to a reservoir, whereas everywhere
else protein diffusion is confined by the cell membrane,
so that mass conservation and resource limitation play an
important role there. The combination of mass conservation
(closure) on the one hand and the interplay of equilibrium
(diffusion) and nonequilibrium (active transport) processes
on the other hand is intrinsically interesting to study as
closure in a system entails no-flux boundary conditions that
oppose currents from active transport. Here, we want to
examine the interplay of these mechanisms with the help of
an abstract model that is motivated biologically but has a
level of description that makes it possible to understand
all the processes accounted for. We identify generic
mechanisms based on correlations and nonequilibrium
physics that could be of importance for biological systems
as cellular protrusions but, inevitably, predictions for
biological systems are qualitative.
Specifically, we consider a two-lane lattice-gas model in

a half-closed geometry [Fig. 1] in steady state, similar to
Ref. [25]. One lane represents the actin filament and the
second lane the cytoplasm. While there is a rich literature
on the nonequilibrium dynamics of two-lane systems
[20,25–43], very few of these studies address how the
physics of nonequilibrium steady states is affected by a
half-closed geometry [25,42]. We are interested in the limit
where the actin filament and the cytoplasm are coupled
weakly by attachment and detachment processes, while
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Ref. [25] focuses on the strong coupling limit. Our analyses
show that, due to the closure of the system at the tip, there
is only one type of density profile, namely, domain walls
(DW) separating a high- and a low-density region. The
limit where the width of the high-density region becomes
microscopically small (of the order of a few lattice sites)
corresponds to tip localization. Furthermore, correlations in
such systems have not received much attention, and we
want to investigate nearest-neighbor (NN) correlations on
the filament. In a biological context, this is related to
efficient transport on actin filaments and to the significance
of steric hindrance of motors there. We find that those
correlations reach high values close to the DW, and the
transport current along the filament is strongly reduced
compared to its mean-field (MF) prediction. This suggests
an important role for the cytoplasm, namely, to transport the
proteins to the tip. Conversely, active transport effectively
sets up and maintains a gradient of motor proteins.
Our model consists of two coupled sublattices [Fig. 1],

namely, a TASEP and a SSEP (symmetric simple exclusion
process) lane of Lþ 1 sites ∈ f0; 1;…; Lg. The dynamics
on lane 1 (TASEP) are governed by a rate ν at which
particles jump forward one site towards the right (tip)
provided that the site in front of them is empty (exclusion).
This corresponds to the directional motion of the motors on
the filament that is oriented towards the tip. By convention,
we measure time in units of ν (i.e., set ν ¼ 1) and length in
units of the system size (i.e., the lattice spacing is a ¼ 1=L
and the total length La ¼ 1). In lane 2 (SSEP) particles
jump nondirectionally between neighboring sites, at rate ϵ
again respecting exclusion. This represents the diffusive
motion in the cytoplasm that is taken to be effectively one-
dimensional in the thin cylinderlike protrusions (the steady-
state behavior of a system with several lanes for diffusion
arranged on a cylinder around the TASEP can be reduced to
the steady-state behavior of this model [44]). Particles enter
or exit the system only at site 0 of lane 2 (base) but not at
site 0 of lane 1. At rate α a particle is injected provided the
site is empty and at rate ϵ a particle leaves the system. This
reflects the exchange of motors between the protrusion base
and the cell body. In the bulk both lanes are coupled via a

rate ω at which particles jump from site i∈ f0;1;…;L−1g
of lane 1 to site i of lane 2 or vice versa (each respecting
exclusion). Since the biochemistry at the tip is only poorly
understood, at site L we consider two extreme cases: In
model A, particles jump from site L of lane 1 to site L of
lane 2 at rate β ≫ ω (respecting exclusion) but not in the
opposite direction. This describes a scenario where motors
at the tip detach mainly due to the lack of a filament subunit
in front of them. In model B, the exchange rates between
the lanes at sites L are the same as in the bulk. The
comparison of both models stresses that seemingly minor
changes in a nonequilibrium system may have a strong
influence on the dynamics [45], and highlights the rel-
evance of the biochemistry at the filament tip for the motor
density profile. In the following, when considering the
continuum limit a → 0, we focus on the mesoscopic limit
for ω [18,19]; i.e., we keep Ω ¼ ω=a fixed, thus ensuring
the number of jumps between lanes is of the same order
as that of entry or exit events (persistent motors) and
implementing weak coupling between the diffusive and the
directed motion. For simplicity, we take the attachment and
detachment rates to be equal. However, the qualitative
results do not change for different attachment and detach-
ment rates ωA ≠ωD as long as both are still taken in the
mesoscopic limit (not shown here).
A single TASEP exhibits three phases, namely, a

maximal current (MC), a low- (LD) and a high-density
(HD) phase [16]. Moreover, on the phase boundary
between the LD and HD phase the steady-state profile is
given by a DW that performs a random walk. Because of
the closure at the tip, we do not find a MC phase in our
system [44], but instead observe localized DWs [17,18].
That is, the generic steady-state TASEP profile ρTðxÞ for
both models is given by a localized DW separating low
density at the base from high density at the tip [Fig. 2]. For
generic parameters, the filament current is thus compara-
tively small, and restricted to a small part of the system.
This might be beneficial from a biological point of view,
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FIG. 1. Illustration of the two-lane lattice-gas model comprised
of a TASEP and a SSEP with hopping rates ν and ϵ, respectively.
The lanes are coupled via a symmetric attachment and detach-
ment rate ω ≪ ν. In model A, detachment from the last site is
given by β ≫ ω, while in model B exchange between the lanes is
fully symmetric. At the tip of the systems mass conservation
holds, and at the base particles can enter the SSEP lane at rate α
and exit at rate ϵ.

FIG. 2. Representative steady-state DW profile ρTðxÞ (left)
with covariances CovðxÞ (right) on the TASEP lane are shown
exemplarily for model A with L ¼ 50, β ¼ 0.2, Ω ¼ 0.001,
α ¼ 0.1, and ϵ ¼ 0.025. The covariances are nonzero only in
the vicinity of the DW. Using the fluctuation-corrected profile
from DW theory, our predictions (dotted green curves) fit the
simulation result (filled red circles) very well. If we use the
refined MF profile (dot-dashed blue) instead of a step function
(dashed black curve), the width of the DWand the strength of the
covariances are strongly underestimated [44].
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since every motor step on the filament consumes ATP. The
position of the DW depends on the model parameters, and
is shifted towards the tip (base) for smaller (higher) values
of σ ≔ α=ðαþ ϵÞ [44]. This ratio can be thought of as the
motor density in the cell body, and thus the value for the
cytoplasmic density at the protrusion base. The width of
the DW decreases with increasing L and with increasing
distance from the tip [44]. Generically, when describing the
DW as a random walker (see below), we observe that its
motion is mainly confined to a small part of the system.
Hence, we assume for the moment that the DW is fully
localized and adopt a step-function ansatz for ρTðxÞ that
holds to lowest order in a: ρTðxÞ ¼ 0 for x ∈ ½0; z½, and
ρTðxÞ ¼ 1 for x ∈&z; 1&. First, we determine the position z
of the DW to find out whether tip localization (i.e., z≈1)
occurs for certain parameter ranges or not. For this purpose
we derive a mass-balance equation relating the total
average occupancies of the TASEP (T) and the SSEP (S).
We denote by n μi the occupation number on site i ∈
f0;…; Lg of lane μ ∈ fT; Sg; i.e., we write n μi ¼ 0 if site
i of lane μ is empty and n μi ¼ 1 if it is occupied. Since
n μi ∈ f0; 1g, we have hn μi i ¼ Probfn μi ¼ 1g; ensemble
averages are denoted by hi. The steady-state condition in
the bulk corresponds to a flux balance [44]: ðρTi−1 − fi−1Þ −
ðρTi − fiÞ ¼ ωðρTi − ρSi Þ with the correlator fi ¼ hn Ti n Tiþ1i
and the average occupancy ρμi ¼ hn μi i. The difference of the
TASEP currents, from site i − 1 to site i and from site i to
site iþ 1, (left-hand side) must equal the current between
sites i of the TASEP and SSEP, ωðhn Ti ð1 − n Si Þi−
hn Si ð1 − n Ti ÞiÞ, (right-hand side). It follows that fi ¼ f0þ
ρTi − ρT0 þ ω

Pi
j¼1ðρTj − ρSj Þ. At the base, there is no direct

flux from the cell body into the filament; so the boundary
condition is f0 ¼ ρT0 þ ωðρT0 − ρS0Þ and we find the follow-
ing exact moment identity,

fi ¼ ρTi þ ω
Xi

j¼0

ðρTj − ρSj Þ: ð1Þ

The systems are both closed at the tip but, due to the
different attachment and detachment behavior, the boun-
dary conditions read fL−1 ¼ ρTL−1 − βhn TLð1 − n SLÞi, and
fL−1 ¼ ρTL−1 þ ωðρSL − ρTLÞ for models A and B, respec-
tively. Combining these with Eq. (1), the following exact
mass-balance equations can be derived for model A,

ω
XL−1

j¼0

ðρTj − ρSj Þ ¼ −βðρTL − hn TLn SLiÞ; ð2Þ

and similarly for model B, ω
PL

j¼0ðρTj − ρSj Þ ¼ 0. These
equations relate the average occupancy on the two lanes in
such a way that the total influx into the TASEP lane equals
the total outflux from it [46]. Interestingly, these equations
reveal that a global detailed balance holds for the total
exchange between the two lanes, rather than local detailed
balance for any pair of sites (cf. adsorption equilibrium in

Ref. [25]). The moment identity and the mass-balance
equations are useful in two ways: (i) By using the DW
ansatz, we are able to find an analytic formula for the DW
position; (ii) the moment identity enables us to express
covariances with respect to NNs on the TASEP lane in
terms of densities.
To address the first issue, we determine the average

density ρSðxÞ on the SSEP lane corresponding to the fully
localized DW ansatz by solving the bulk equation for the
SSEP. For that, we implement the continuum limit and,
for model A, assume hn TLn SLi≈ρTLρ

S
L [44]. Note, that we

only need this MF approximation for the tip densities of
model A. This is due to the otherwise symmetric attachment
and detachment rates and the diffusive motion in the
cytoplasm, for both of which the correlations drop out in
the dynamical equation. With the resulting equation for
ρSðxÞ we can then conclude z ¼ 1 − l cosh−1 ½σ coshð1=lÞ&
and z ¼ 1 − l sinh−1 ½σ sinhð1=lÞ& for models A and B,
respectively, where l ≔

ffiffiffiffiffiffiffiffiffiffi
D=ω

p
with D ≔ ϵa2 being the

diffusion constant in the cytoplasm [44]; l can be under-
stood as the typical dwell length for motors in the
cytoplasm before attaching to the filament. Comparing
these expressions with our stochastic simulation results
[47] we find excellent agreement [Fig. 3].
The phase diagrams for the two models are qualitatively

different. For model A, one can switch between the DW
phase (z ≪ 1) and the tip-localization phase (z≈1) by only
slightly increasing the dwell length l. In contrast, for model
B, tip localization is attained only as σ → 0, even for large l

FIG. 3. Phase diagrams for the DW position z (color-coded) for
L ¼ 50 and Ω ¼ 0.001 for model A (upper panel, β ¼ 0.2) and
model B (lower panel) as a function of the typical dwell length l
in the cytoplasm and the cytoplasmic density at the protrusion
base σ: the simulation results are shown on the left, the theoretical
predictions for the DW position are shown on the right. The black
thick lines in the diagrams for model A show the phase boundary
z ¼ 1 as obtained from theory. The dashed black lines in the
diagrams obtained from theory are, from right to left respectively,
contour lines of constant z ¼ 0.2, 0.4, 0.6, and additionally,
z ¼ 0.8 for model B.
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[44]. This can be understood from the symmetry between
the attachment and detachment processes in model B,
which should also be reflected in a symmetry in occupancy
between the filament and the cytoplasm. For large l, the
cytoplasm becomes well-mixed with constant density σ. So,
the average density on the filament is σ as well, which is
realized for a DW position z ¼ 1 − σ. For model A, fast
diffusion in the cytoplasm leads to rapid diffusion of the
motors away from the tip. Therefore, the exit rate at the tip
is high and motors quickly leave the tip of the filament, thus
enabling tip localization but reducing large jamming. For
small but finite σ, there is tip localization also if the typical
dwell length is smaller than the system size, l ≤1. That is,
even if the motors have a relatively smallD, tip localization
can occur if the tip has an enhanced detachment rate
(model A). For model B, even by increasing l well beyond
the system size, tip localization occurs only for very low
motor density σ at the base.
These features may have interesting biological implica-

tions: A higher detachment rate at the actin filament’s end
would promote tip localization, but simultaneously avoid
jamming. As a result, motor exchange between filament
and cytoplasm occurs primarily near the tip (where the DW
is located) and the motors at the tip can be continuously
replenished by new ones delivered through the cytoplasm.
Furthermore, energy consumption (ATP hydrolysis) is low,
as the filament current is kept small and mainly restricted
to the tip area. Transport to the tip is facilitated mainly
by diffusion in the cytoplasm, which does not consume
chemical energy. In summary, energy from ATP hydrolysis
could efficiently be used to localize motors to the filament
tip, while material transport is facilitated by diffusion in
the cytoplasm [44].
In this regard, the model is also interesting from a

theoretical point of view, as it allows for the calculation
of the filament current JTi ¼ ρTi − fi that depends on NN
correlations or, equivalently, the NN covariances

Covi ≔ hn Ti n Tiþ1i − ρTi ρ
T
iþ1 ¼ fi − ρTi ρ

T
iþ1 ð3Þ

on the TASEP lane. To go beyond MF, we use Eq. (1),
which relates fi to the average densities, and find
Covi ¼ ρTi ð1 − ρTiþ1Þ þ ω

Pi
j¼0ðρTj − ρSj Þ, which, in the

continuum limit, translates to

CovðxÞ¼ ρTðxÞ½1−ρTðxþaÞ&þΩ
Z

x

0
dyðρT −ρSÞ: ð4Þ

The value of the first term in Eq. (4) depends sensitively on
the width and shape of the DW (the density profile ρTðxÞ is
increasing with x, so that ρTðxÞ½1 − ρTðxþ aÞ& is maximal
if both ρTðxÞ and ρTðxþ aÞ are close to 0.5). Therefore,
one needs to refine the fully localized DWansatz, by taking
into account the stochastic dynamics of the DW position.
Following Refs. [48,49] we consider the DW as a random
walker with (site-dependent) hopping rates depending on

currents and densities in the low- and high-density regions.
For small a we find

ρTðxÞ≈erf½ðx − zÞ=WðzÞ& þ erf½z=WðzÞ&
erf½ð1 − zÞ=WðzÞ& þ erf½z=WðzÞ&

; ð5Þ

where WðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σal sinh ðz=lÞ

p
[44]. This fluctuation-

corrected DW profile, as well as the covariance obtained
from it, agree very well with our simulation data [Fig. 2].
If one uses a refined MF method instead, accounting
for second-order spatial derivatives, the DW width
and the strength of the correlations are both markedly
underestimated [44].
In general, covariances are nonzero only close to the

DW, but there they can reach quite high values of around
0.2. We have Covi ¼ ρTi ð1 − ρTiþ1Þ − JTi , where the first
term corresponding to the MF current dominates.
Therefore, the actual current JTi ¼ ω

Pi
j¼0ðρSj − ρTj Þ can

be orders of magnitude smaller than the MF current, and
scales with the particle exchange rate ω [44]. That is,
density correlations dominate in such a way that they
suppress the TASEP current substantially. This demon-
strates that, even if basic properties of the single TASEP
are captured well by MF theory, correlation effects in
TASEP-based systems should be studied more closely and
might lead to unanticipated features [50–52].
The covariances are non-negative everywhere, Covi ≥0,

so the conditional probabilities obey the inequalities
Probfn Ti ¼ 1jn Tiþ1¼ 1g≥Probfn Ti ¼ 1g and Probfn Tiþ1¼1j
n Ti ¼1g≥Probfn Tiþ1¼1g at any site, implying that particles
typically form clusters. As a result, from the DW region
onwards (where the covariances are highest), the mean time
a particle spends at a certain site is increased considerably
compared to freely moving motors. This is due to the
effective jump rate on the filament, which is decreased by
excluded-volume effects. Thus, in the case of tip localiza-
tion, particles spend more time near the tip than in the
main part of the filament. This prolongation of the
residence time is further enhanced by the exclusion in
the cytoplasm that prevents motors from detaching if the
cytoplasmic tip density is high. This is especially important
for model A, where the cytoplasmic tip density takes a
value of ≈1, which is much higher than in the bulk [44].
Biologically, the extended residence time at the tip might
facilitate the tasks of the motors or their cargo at the tip.
Our results all essentially rely on the exact moment

identity and the exact mass-balance equations. The deri-
vation of both depends on the TASEP dynamics and the
coupling between the two lanes, but not at all on the
dynamics of the second (here SSEP) lane. Hence, those
equations do not change if this dynamics on the second lane
is modified, and we expect them to be useful for other
model systems in which a TASEP lane is coupled to
another lattice via attachment and detachment kinetics.
To our best knowledge, the moment identity has not been
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mentioned before. We believe that it might open doors in
the understanding of correlations and the prediction of
active currents also in more elaborate models. Furthermore,
both equations could easily be generalized to the case of
different attachment and detachment rates.
Our models could also be varied in other interesting ways.

One could account for the three-dimensional geometry or for
polymerization and depolymerization of the filament and the
accompanying changes in length. Nevertheless, we expect
that some of the phenomena seen here should be robust
against such modifications. Tip localization, which is mostly
based onmass conservation at the tip, should still be present.
Second, the TASEP current might still be suppressed, and
the roles of the TASEP and the diffusive lane in being
responsible for tip localization and motor transport, respec-
tively, should remain untouched. This seems to be supported
by more elaborate models in a related context [13,15].
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1

Supplemental Material:
Generic transport mechanisms for molecular tra�c in cellular protrusions

This Supplemental Material gives details on the mathematical analysis of the lattice gas model. We will explain
more thoroughly why the generic steady-state TASEP density profile is given by a domain wall and why there is no
maximal current phase. Furthermore, the calculation of the density profiles both for TASEP and SSEP are shown
explicitly and the analytic expressions for the position of the domain wall are derived. It is demonstrated how domain
wall theory is used concretely to improve on the mean-field TASEP density profiles, and on the prediction for the
covariances. Those are relevant to see how the actual TASEP current di↵ers from the expected mean-field current.
We also display a comparison of the di↵erent currents (on the TASEP, on the SSEP and those for attachment and
detachment) for a parameter set of model A where tip localisation occurs. Finally, we show that the steady-state
behaviour of a geometry with several lanes for di↵usion arranged on a cylinder around the TASEP lane can be reduced
to the steady-state behaviour of our model by scaling the parameters for di↵usion and attachment/detachment with
the number of lanes for di↵usion. The same holds true for a model where instead of exclusion on the lane for di↵usion
a finite carrying capacity Nmax > 1 is used.

CALCULATION OF THE DENSITY PROFILES

To set the stage, let us denote by nµ
i the occupation number on site i 2 {0, . . . , L} of lane µ 2 {T, S}, i.e. we will

write nµ
i = 0 if site i of lane µ is empty and nµ

i = 1 if it is occupied (T: TASEP, S: SSEP). The common bulk master
equations of the Markov processes, corresponding to model A and B as shown in Fig. 1, are given by

dProb{nT
i }

dt
= Prob{nT

i�1, n
T
i } � Prob{nT

i , nT
i+1} + !

⇣
Prob{nS

i , nT
i } � Prob{nT

i , nS
i }
⌘

,

dProb{nS
i }

dt
= ✏

⇣
Prob{nS

i�1, n
S
i } + Prob{nS

i+1, n
S
i } � Prob{nS

i , nS
i+1} � Prob{nS

i , nS
i�1}

⌘
+

+ !
⇣
Prob{nT

i , nS
i } � Prob{nS

i , nT
i }
⌘

,

where Prob{nµ
i } denotes the probability that nµ

i = 1 and Prob{nµ
i , n⌫

j } the one that nµ
i = 1 and n⌫

j = 0. The term

Prob{nT
i�1, n

T
i }�Prob{nT

i , nT
i+1} is due to the jump process on the TASEP lane that respects the exclusion property

and occurs at bare rate ⌫ = 1. The terms proportional to ! describe the exchange between the lanes, again respecting
the exclusion. And finally, the term proportional to ✏ describes the di↵usion on the SSEP lane. Note that we assume
exclusion not only on the filament but also in the cytoplasm. This is based on the idea that, due to the finite size
of particles, there should be a maximal number inside any finite volume element, introducing a carrying capacity
Nmax. If we assume that the maximal e↵ective attachment and detachment rate stay the same, i.e. if we assume that
attachment happens at rate !

�
nS
�
1 � nT

��
and detachment at rate !

�
nT
�
Nmax � nS

��
where nS 2 {0, 1, . . . , Nmax},

the case Nmax finite but arbitrary can be reduced to Nmax = 1 by redefinition of the parameters, and in the following
we will focus only on the case Nmax = 1. We will, however, come back to this case again in the last paragraph of the
Supplemental Material when we discuss the case of several lanes for di↵usion.

The bulk master equations can be rewritten in terms of averages over the occupation numbers by using that
hnµ

i i = Prob (nµ
i = 1) = Prob{nµ

i } and hnµ
i (1 � n⌫

i )i = Prob{nµ
i , n⌫

i } hold, as each site can be either empty or
occupied by one particle/motor:

@t⇢
T
i = ⇢T

i�1 � fi�1 � ⇢T
i + fi + !

�
⇢S

i � ⇢T
i

�
, (S1)

@t⇢
S
i = ✏

�
⇢S

i+1 + ⇢S
i�1 � 2⇢S

i

�
+ !

�
⇢T

i � ⇢S
i

�
, (S2)

where fi =
⌦
nT

i nT
i+1

↵
is the nearest-neighbour correlator for the TASEP. Summing both equations we find

@t(⇢
T
i + ⇢S

i ) = ⇢T
i�1 � fi�1 � ⇢T

i + fi + ✏
�
⇢S

i+1 + ⇢S
i�1 � 2⇢S

i

�
(S3)

for the time evolution of the combined density ⇢T
i + ⇢S

i in the bulk. At the left boundary (base) we find

@t⇢
T
0 = �⇢T

0 + f0 + !
�
⇢S
0 � ⇢T

0

�
(S4)

@t⇢
S
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0) � ✏⇢S
0 + ✏

�
⇢S
1 � ⇢S

0

�
+ !

�
⇢T
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0

�
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for both models. For the TASEP lane there is only outflux from site 0 to site 1 or exchange with site 0 of the SSEP
lane. On the SSEP lane, there is influx at rate ↵ (respecting the exclusion at site 0 of the SSEP), outflux with the
di↵usion rate ✏, di↵usion between site 0 and site 1 and exchange with site 0 of the TASEP. The behaviour at the right
boundary (tip) di↵ers between the models and is given by

@t⇢
T
L = ⇢T

L�1 � fL�1 � �
�
⇢T

L �
⌦
nT

LnS
L

↵�
(S5)
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�
⇢S

L�1 � ⇢S
L

�
+ �

�
⇢T

L �
⌦
nT

LnS
L

↵�

for model A, and by

@t⇢
T
L = ⇢T

L�1 � fL�1 + !
�
⇢S

L � ⇢T
L

�
(S6)

@t⇢
S
L = ✏

�
⇢S

L�1 � ⇢S
L

�
+ !

�
⇢T

L � ⇢S
L

�

for model B. For model A, at site L of the TASEP lane there is influx from the neighbouring site L � 1 and outflux
to site L of the SSEP lane at bare rate � respecting the exclusion. For site L of the SSEP lane there is di↵usion
between sites L � 1 and L of the SSEP lane and influx from site L of the TASEP lane. For model B, we have the
same behaviour except that the asymmetric exchange between sites L of the TASEP and SSEP lane is replaced by
the symmetric exchange !

�
⇢T

L � ⇢S
L

�
. Since the exchange terms drop out when considering the time derivative of

⇢T
L + ⇢S

L, at the tip of both models it holds

@t(⇢
T
L + ⇢S

L) = ⇢T
L�1 � fL�1 + ✏

�
⇢S

L�1 � ⇢S
L

�
= JT

L�1 + JS
L�1, (S7)

and at the base

@t(⇢
T
0 + ⇢S

0) = �⇢T
0 + f0 + ↵(1 � ⇢S

0) � ✏⇢S
0 + ✏

�
⇢S
1 � ⇢S

0

�
= �JT

0 + ↵(1 � ⇢S
0) � ✏⇢S

0 � JS
0 (S8)

where we introduced the local currents

JT
i = ⇢T

i � fi (S9)

and

JS
i = ✏

�
⇢S

i � ⇢S
i+1

�
(S10)

for i = 0, . . . , L � 1 on the filament and in the cytoplasm, respectively. With that Eq. (S3) translates to

@t(⇢
T
i + ⇢S

i ) = JT
i�1 + JS

i�1 � JT
i � JS

i . (S11)

Note that we can introduce currents J
T/S
�1 and J

T/S
L as well. However, as the system is closed at the tip J

T/S
L ⌘ 0,

and since there is no direct influx from the left into the TASEP JT
�1 = 0. In order to be consistent with the structure

of Eq. (S11) where the currents appear as Ji�1 � Ji, we define

JS
�1 = ↵(1 � ⇢S

0) � ✏⇢S
0 (S12)

so that

@t(⇢
T
0 + ⇢S

0) = �JT
0 + JS

�1 � JS
0

holds.
As mentioned above, we are interested in the steady-state behaviour of the system and therefore set @t⇢

T/S
i ⌘ 0 for

all i. In particular, we have

0 = @t

LX

i=0

(⇢T
i + ⇢S

i ) = JS
�1

where we used Eqs. (S7), (S8), (S11). As a result,

⇢S
0 =

↵

↵ + ✏
:= �, (S13)
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and the parameter � as used for the phase diagrams in Fig. 3 can be identified as the motor density in the cell body.
To proceed, let us now use the continuum limit where a = 1

L ! 0. That is, we will replace the discrete lattice by
the continuous space [0, 1] and the average occupation numbers are replaced by a continuous density

⇢µ
i ! ⇢µ (x = xi) where xi = ia.

With that, we can substitute ⇢µ(xi) ± a@x⇢
µ(xi) + 1

2a2@2
x⇢

µ(xi) + O(a3) for ⇢µ
i±1 and the currents are

JT(x) = ⇢T(x) � f(x)

JS(x) = �a✏@x⇢
S(x) � 1

2
a2✏@2

x⇢
S(x) + O(a3)

where f(x) is the continuous version of fi. In the steady-state Eq. (S11) translates to

0 = �a@x(JT + JS) +
1

2
a2@2

x(JT + JS) + O(a3) =

= �a@x(⇢T(x) � f(x)) + O(a2)

to first order in a and thus, we have ⇢T(x) � f(x) = const to lowest order in a. Using Eq. (S7) or (S8) we conclude
that const = 0 or that the combined current JT

i +JS
i must be constant and zero everywhere. This corresponds to the

fact that the system is closed at the tip so that in steady state on average there is no influx into the system from the
base. Therefore,

⇢T(x) ⌘ f(x)

or, equivalently,

Prob{nT
i } = ⇢T

i = fi =
⌦
nT

i nT
i+1

↵
= Prob{nT

i , nT
i+1} = Prob{nT

i+1|nT
i }Prob{nT

i }

holds to lowest order in a where we defined Prob{nT
i , nT

i+1} = Prob
�
nT

i = 1, nT
i+1 = 1

�
and Prob{nT

i+1|nT
i } =

Prob
�
nT

i+1 = 1|nT
i = 1

�
analogously to before. This implies that either

⇢T
i = Prob{nT

i } = 0 (S14)

or

Prob{nT
i+1|nT

i } = 1.

The latter implies that, whenever site i is occupied, site i + 1 is occupied with probability 1 as well. Hence, if there
is some site j occupied at some time, any site i > j is occupied at that time as well. It follows that to lowest order
in a the density suddenly jumps from zero (S14) to maximal density

⇢T
i = 1. (S15)

This means that to lowest order the steady-state TASEP profile is given by a step function separating a region of 0
density on the left (towards the base) from a region of density 1 on the right (towards the tip) and, in particular,
there is no maximal current phase as it occurs for TASEP alone. Instead, the generic TASEP profile is given by a
domain wall and we make the following fully-localised-DW ansatz:

⇢T(x) =

(
0 for x 2 [0, z[

1 for x 2 ]z, 1]
(S16)

where z 2 [0, 1] is the position of the domain wall (step) that we will determine later.
We will now use this ansatz to determine the steady-state density profile for the SSEP lane depending on z. For

this purpose, let us go back to Eq. (S2) that is given by

0 = ✏a2@2
x⇢

S(x) + ⌦a(⇢T(x) � ⇢S(x))
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in the continuum limit in the steady state. This equation can be solved in the two regions x < z and x > z as

⇢S(x) =

8
<
:

A1 cosh
⇣q

⌦
✏ax
⌘

+ A2 sinh
⇣q

⌦
✏ax
⌘

for x 2 [0, z[

1 + B1 cosh
⇣q

⌦
✏ax
⌘

+ B2 sinh
⇣q

⌦
✏ax
⌘

for x 2 ]z, 1].

The constants A1, A2, B1 and B2 can be determined from the boundary conditions: Eq. (S5) yields �
�
⇢T

L �
⌦
nT

LnS
L

↵�
=

0 to lowest order in a for model A, and assuming that nT
L and nS

L are uncorrelated (mean-field assumption that is
supported by the simulations) we conclude that

⇢S
L = 1

for model A, unless ⇢T
L = 0 and so z = 1. For model B, we can use Eq. (S6) and find

@x⇢
S(1) =

⌦

✏

�
1 � ⇢S(1)

�
,

again unless z = 1. This latter case needs to be treated separately. This can be done for instance by regarding the
”domain wall“ as a boundary layer with slope (⇢S(1)right � ⇢S(1)left)/a where ⇢S(1)right is the density at the very last
site L and ⇢S(1)left is the limit x ! 1 of the low-density phase. Basically, this case can be understood as the limit
where the domain wall is shifted to the right out of the system. As long as ✏ 2 O(a0), the generic density profile is
given by a domain wall separating density 0 on the left from density 1 on the right, that is ⇢T 2 {0, 1} holds to lowest
order in a. In the limiting cases ⇢T ⌘ 1 the density reaches the value of 1 in only a few lattice sites from the base,
whereas in the case ⇢T ⌘ 0 the density has a very small spike (boundary layer) only at the tip. The details of this
calculation are, however, out of the scope of this letter and we will carry on with the treatment of the case z 6= 1.

For both models we have Eq. (S13) for the boundary condition at the base. Requiring that both the di↵usive
steady-state density profile and the derivative thereof is continuous (it can be seen from Eq. (S2) that

�
⇢S

i+1 � ⇢S
i

�
��

⇢S
i � ⇢S

i�1

�
= O(a) holds), the following expression for the SSEP profiles can be derived:

⇢S(x) =

(
� cosh

�
x
l

�
+
�
coth

�
1
l

� �
cosh

�
z
l

�
� �

�
� sinh

�
z
l

��
sinh

�
x
l

�
for x 2 [0, z[

1 �
�
cosh

�
z
l

�
� �

� �
cosh

�
x
l

�
� coth

�
1
l

�
sinh

�
x
l

��
for x 2 ]z, 1]

(S17)

for model A and

⇢S(x) =

(
� cosh

�
x
l

�
+
�
�
�
cosh

�
z
l

�
� �

�
� sinh

�
z
l

��
sinh

�
x
l

�
for x 2 [0, z[

1 �
�
cosh

�
z
l

�
� �

� �
cosh

�
x
l

�
� � sinh

�
x
l

��
for x 2 ]z, 1]

(S18)

for model B where

l =

r
✏a

⌦
=

r
✏a2

!
=

r
D

!

with the di↵usion constant D = ✏a2 and

� =
sinh

�
1
l

�
+ a

l cosh
�

1
l

�

cosh
�

1
l

�
+ a

l sinh
�

1
l

� ⇡ tanh

✓
1

l

◆
.

To illustrate the di↵erences between the two models, Fig. S1 shows typical density profiles on the SSEP lane for
both cases. As one can see, the density profiles di↵er significantly between the two models. For model A, the density
generically increases considerably from the protrusion base with density � towards the tip with density 1 (unless
z = 1). In contrast, the density for model B at the tip reaches a value that is only slightly larger than the value at
the base. The fact that for model A the cytoplasmic density at the tip reaches a value very close to 1 is also the
reason why for model A, the exclusion in the cytoplasm has a much higher influence on the residence time at the tip
compared to model B where the cytoplasm is occupied quite homogeneously and where exclusion at the tip is not
more important than in the bulk.

Using Eqs. (S17) and (S18) we now have expressions for the steady-state density profiles that only depend on one
quantity, namely z, the position of the domain wall. Using the mass-balance equations [Eq. (2) and the corresponding
one for model B], this enables us to find an analytic formula for z.



5

FIG. S1. Steady-state SSEP density profiles are shown examplarily for model A (left panel) with L = 50, � = 0.2, ⌦= 0.001,
↵= 0.1 and ✏= 0.025 and for model B (right panel) with L = 50, ⌦= 0.001, ↵= 0.2 and ✏= 0.3. The simulation results (filled
red circles) agree well with the theoretical prediction (dotted green curve) according to Eq. (S17) and (S18), respectively. For
model A, the density is increasing towards the tip where it has a high slope and reaches a value of 1. For model B, the density
is more homogeneous and has a small slope at the tip.

POSITION OF THE DOMAIN WALL

In order to determine the position of the domain wall, we go back to Eq. (S1). In the steady state this reduces to

fi � fi�1 = ⇢T
i � ⇢T

i�1 + !
�
⇢T

i � ⇢S
i

�
.

Hence, we can write

fi = f0 +
iX

j=1

(fj � fj�1) = f0 +
iX

j=1

�
⇢T

j � ⇢T
j�1 + !

�
⇢T

j � ⇢S
j

��
= f0 + ⇢T

i � ⇢T
0 + !

iX

j=1

�
⇢T

j � ⇢S
j

�
.

Using Eq. (S4) we can rewrite f0 = ⇢T + !
�
⇢T
0 � ⇢S

0

�
and, thus,

fi = ⇢T
i + !

iX

j=0

�
⇢T

j � ⇢S
j

�
. (S19)

This is the moment-identity [Eq. (1)]. It is an important result for us as it gives an exact relation between the
nearest-neighbour correlator fi =

⌦
nT

i nT
i+1

↵
and the average densities. We will use it later to predict the covariances

and the TASEP current in the system. This will allow us to make a sharp distinction between the actual TASEP
current JT

i and the mean-field current JT
MF,i = ⇢T

i

�
1 � ⇢T

i+1

�
.

From the moment-identity, Eq. (S19), we can also easily deduce the mass-balance equations [Eq. (2) and the
corresponding one for model B] by using the boundary conditions at the tip [Eq. (S5) for model A and (S6) for model
B] and the moment-identity for i = L � 1:

model A : !

L�1X

i=0

�
⇢T

i � ⇢S
i

�
= ��

�
⇢T

L �
⌦
nT

LnS
L

↵�

model B : !

LX

i=0

�
⇢T

i � ⇢S
i

�
= 0.

In order to determine z we will now insert the domain wall ansatz, Eq. (S16), for the TASEP together with the
respective SSEP profile into the respective mass-balance equation. For this purpose, we need to write the mass-balance

equations in the continuum limit: Using that
R 1

0
dx ⇢T(x) = 1 � z and that

PL
i=0 ⇢

µ
i ⇡

R L

0
di ⇢µ(ia) = 1

a

R 1

0
dx ⇢µ(x)

we find to lowest order in a:

model A : ⌦

✓
1 � z �

Z 1

0

dx ⇢S(x)

◆
= ��

�
⇢T(1)

�
1 � ⇢S(1)

��
= �✏a@x⇢

S(1)

model B : 1 � z �
Z 1

0

dx ⇢S(x) = 0
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where for model A the mean-field assumption
⌦
nT

LnS
L

↵
⇡ ⇢T

L⇢
S
L was used again, together with Eq. (S5). Inserting the

explicit densities (S17) or (S18) into these expressions, integrating and cancelling common factors results in

model A : � cosh

✓
1

l

◆
= cosh

✓
1 � z

l

◆
(S20)

model B : � sinh

✓
1

l

◆
= sinh

✓
1 � z

l

◆
. (S21)

Those directly lead to the expressions for the domain wall given in the main text:

model A : z = 1 � l cosh�1

✓
� cosh

✓
1

l

◆◆
(S22)

model B : z = 1 � l sinh�1

✓
� sinh

✓
1

l

◆◆
. (S23)

We see that z is shifted towards the tip (base) for smaller (higher) values of � := ↵
↵+✏ . It is interesting to note

that for model A the limit z % 1 is reached for finite values of the parameters �, ! and ✏ when � cosh
�

1
l

�
= 1

or l = 1/ cosh�1(1/�), whereas for model B, z % 1 is only possible in the limit � ! 0. This is also reflected in
the fact that � cosh

�
1
l

�
= cosh

�
1�z

l

�
lacks a real solution for z if � cosh

�
1
l

�
< 1. That is, for model A there are

parameter regimes where there is no domain wall and where to lowest order the density is zero everywhere. For model
B, this case only occurs in the limit where the cytoplasmic density at the base is zero. Even for large l we have
z = 1 � l sinh�1

�
� sinh

�
1
l

��
⇡ 1 � l sinh�1

�
�
l

�
⇡ 1 � � and thus, z < 1 unless � = 0.

REFINED MEAN-FIELD TASEP DENSITY PROFILE

Certainly, the TASEP profile is not just given by a plain step function but has a smooth form that separates the
two density regions via an intermediate region where the density increases strongly but whose width is finite. This is
due to fluctuations in the stochastic system that soften this transition. Our first approach to resolve this finite width
relies on an idea similar to the method used in [39], namely to split the system into a part around the domain wall
and the parts further away from it. By this, only parts of the terms contribute, respectively, and assuming a steep
domain wall for the TASEP one can neglect the terms stemming from the exchange with the di↵usive lane in this
narrow region: Reconsidering equation (S1) we realize that in the steady state it can be approximated as

0 = a@x

�
⇢T
�
⇢T � 1

��
+

1

2
a2@2

x⇢
T + ⌦a

�
⇢S � ⇢T

�

where we used the continuum limit and a mean-field assumption for the nearest-neighbours on the TASEP: fi =⌦
nT

i nT
i+1

↵
⇡ ⇢T

i ⇢
T
i+1. If we want to investigate the vicinity of the domain wall x ⇡ z this can be done by considering

x̃ := (x � z)/a that is very large away from the domain wall. Using this coordinate system the above equation looks
like follows:

0 = @x̃

�
⇢T(x̃)

�
⇢T(x̃) � 1

��
+

1

2
@2

x̃⇢
T(x̃) + ⌦a

�
⇢S(x̃) � ⇢T(x̃)

�
.

Dropping the term of order O(a), we end up with

⇢T(x̃)
�
⇢T(x̃) � 1

�
+

1

2
@x̃⇢

T(x̃) = const

where const can be estimated from the boundary conditions for x̃ ! ±1: we have ⇢T(x = 0) = 1 � ⇢T(x =
1) = 0 and @x⇢

T(x)
��
x=0/1

⇡ 0, and hence, using x̃ ! ±1 we find that const ⇡ 0. As a result, after integrating

⇢T(x̃)
�
⇢T(x̃) � 1

�
+ 1

2@x̃⇢
T(x̃) = 0 with respect to x̃, using that ⇢T(z) = 1

2 , and rescaling we find

⇢T(x) ⇡ 1

2


1 + tanh

✓
x � z

a

◆�

for the refined mean-field TASEP density profile. Contrary to the step profile, Eq. (S16), it exhibits a finite width
that scales like a or inversely proportionally to L. But as one can infer from Fig. 2 it still underestimates the actual
width due to fluctuations that are ignored by the mean-field assumption for the nearest-neighbours on the TASEP.
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DOMAIN WALL THEORY

This is why we also pursue another approach to refine our prediction for the domain wall, namely by going beyond
mean-field theory and treating the domain wall as a random walker that moves in a non-uniform potential with
reflecting boundaries. This technique has been introduced in Ref. [48] for the TASEP and, more generally, for shock
waves in Ref. [49]. It has been applied to TASEP-LK in Refs. [18, 19] using non-uniform hopping rates. We follow
their ideas and describe the domain wall by site-dependent hopping rates

wl,i =
JLD,i

⇢T
HD,i � ⇢T

LD,i

wr,i =
JHD,i

⇢T
HD,i � ⇢T

LD,i

(S24)

to the left and right from site i, respectively. Here, JLD,i (JHD,i) denotes the steady-state TASEP current at site i
under the assumption that site i is in the low-density (high-density) phase, i.e. on the left (right) of the domain wall.
⇢T
LD,i and ⇢T

HD,i are the respective TASEP densities in the low- and high-density phase. The heuristic reason why the
hopping rates have the above form, Eq. (S24), is that the low-density current JLD,i should just correspond to the
current arriving at the left of the domain wall and causing the domain wall to move one step to the left. Thereby, at
site i the density increases by ⇢T

HD,i � ⇢T
LD,i at rate wl,i. Similarly, the high-density current JHD,i should correspond

to the current leaving the region at the right of the domain wall, and causing the domain wall to move one step to
the left. This happens at rate wr,i and the density decreases by ⇢T

HD,i � ⇢T
LD,i.

From the detailed balance condition ps,iwr,i = ps,i+1wl,i+1 it is easy to see that the stationary distribution of the
shock position ps,i satisfies

ps,i /
1

wl,i
exp

2
4�

i�1X

j=1

ln

✓
wl,j

wr,j

◆3
5 . (S25)

We will show next that wl,iz
= wr,iz

holds for iz being the discrete domain wall position (iz = z/a): From Eq. (S1)
as well as from the definition of the local TASEP current, Eq. (S9), we know that JT

i = JT
i�1 + !

�
⇢S

i � ⇢T
i

�
. Hence,

we have

JT
i = JT

0 + !
iX

j=1

�
⇢S

j � ⇢T
j

�
, or

JT
i = JT

L�1 � !
L�1X

j=i+1

�
⇢S

j � ⇢T
j

�
.

As mentioned after introducing JLD/HD,i in Eq. (S24), JLD/HD,i denotes the TASEP current at site i assuming
that this site is in the low-density (high-density) region. That is, we can calculate JLD,i (JHD,i) by using the above
iterations starting from i = 0 (i = L � 1) and assuming that between site 0 (site L � 1) and site i the densities are
given in the low-density (high-density) phase:

JLD,i = JLD,0 + !
iX

j=1

�
⇢S
LD,j � ⇢T

LD,j

�
, or (S26)

JHD,i = JHD,L�1 � !
L�1X

j=i+1

�
⇢S
HD,j � ⇢T

HD,j

�
. (S27)

We want to compare those two currents right at the domain wall i = iz. For this purpose, we use that JLD,j = JT
j

for j < iz and JHD,j = JT
j for j > iz since we chose z in such a way that the densities to the left (right) of the fixed

domain wall iz are in the low-density (high-density) phase. As a result,

JHD,iz
� JLD,iz

= JHD,L�1 � !
L�1X

j=iz+1

�
⇢S
HD,j � ⇢T

HD,j

�
� JT

0 � !

izX

j=1

�
⇢S

j � ⇢T
j

�
= JT

L�1 � !
L�1X

j=0

�
⇢S

j � ⇢T
j

�
= 0

for both models: JT
L�1 = �

�
⇢T

L �
⌦
nT

LnS
L

↵�
for model A and JT

L�1 = !
�
⇢T

L � ⇢S
L

�
for model B and, hence, the above

holds due to the respective mass-balance equation. It follows that

wl,iz = wr,iz (S28)
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and, thus, ln
⇣

wl,iz

wr,iz

⌘
= 0. Similarly, we have ln

⇣
wl,j

wr,j

⌘
< 0 for j < iz and ln

⇣
wl,j

wr,j

⌘
> 0 for j > iz such that the domain

wall preferably walks towards the (fixed) domain wall position iz than away from it. Therefore, the exponential in
Eq. (S25) has a maximum at i = iz and taking the continuous version of this equation

ps(x) / 1

wl(x)
exp


�1

a

Z x

0

dx0 ln

✓
wl(x

0)
wr(x0)

◆�
(S29)

we can use the method of steepest descent to approximate

1

wl(x)
exp


�1

a

Z x

0

dx0 ln

✓
wl(x

0)
wr(x0)

◆�
⇡ 1

wl(z)
exp


�1

a

Z z

0

dx0 ln

✓
wl(x

0)
wr(x0)

◆�
exp


� 1

2a
(x � z)2@x ln

✓
wl(x)

wr(x)

◆����
x=z

�

where wl(x) and wr(x) is the continuous version of wl,i and wr,i, respectively. Since wl(x)
wr(x) = JLD(x)

JHD(x) , we conclude

ps(x) / exp


� 1

2a
(x � z)2

J 0
LD(z)JHD(z) � J 0

HD(z)JLD(z)

JLD(z)JHD(z)

�
= exp


� 1

2a
(x � z)2

J 0
LD(z) � J 0

HD(z)

JLD(z)

�
= (S30)

= exp


� (x � z)2

W (z)2

�

where we used that JLD(z) = JHD(z) [Eq. (S28)] and defined the width W (z) by

W�2(z) =
J 0

LD(z) � J 0
HD(z)

2aJLD(z)
.

To find a formula for ⇢T(x) we realize that

⇢T(x) = ⇢T
HD(x)

Z x

0

dx̃ ps(x̃) + ⇢T
LD(x)

Z 1

x

dx̃ ps(x̃) ⇡
Z x

0

dx̃ ps(x̃)

since as along as the shock position is left (right) of x there is a high-density (low-density) region at x and since we
can approximate ⇢T

HD(x) ⇡ 1 and ⇢T
LD(x) ⇡ 0 to lowest order. Using Eq. (S30) we can determine ⇢T(x) as

⇢T(x) ⇡
R x

0
dx̃ exp

⇣
� (x̃�z)2

W (z)2

⌘

R 1

0
dx̃ e

⇣
� (x̃�z)2

W (z)2

⌘ =
erf
⇣

x�z
W (z)

⌘
+ erf

⇣
z

W (z)

⌘

erf
⇣

1�z
W (z)

⌘
+ erf

⇣
z

W (z)

⌘ (S31)

where erf is the error function. Here, we used that we need to normalize ps(x) such that
R 1

0
dx̃ ps(x̃) = 1.

In order to use this formula we still need to determine the width W (z) more concretely. For this purpose, we
must make some assumption on how we treat the di↵usive (SSEP) lane when considering the low- and high-density
currents. We are not aware of previous attempts that apply domain wall theory in case where a TASEP is coupled
to another lattice that is occupied stochastically as well. Then the attachment and detachment rates for the TASEP
not only depend on the TASEP occupancy but also on the occupancy on the other lattice. The di�culty with this
situation is that it is a priori not clear if one should assume that the occupancy on the coupled lattice is fixed, that
is, does not change very much if the domain wall is shifted towards the left or right, or if one should look at the
momentary steady-state density corresponding to a certain position of the domain wall. For simplicity, we chose the
first ansatz that seems to be working well. That means, we use Eqs. (S17) and (S18) for the SSEP density profile
with the calculated fixed position of the domain wall z given by Eqs. (S20) and (S21) and we assume that this
SSEP density does not change considerably when the domain wall is shifted shortly to some other position 6= z, i.e.
⇢S
LD(x) = ⇢S

HD(x) = ⇢S(x).
With that in mind, using Eqs. (S26) and (S27), we find that

JLD(x) = ⌦

Z x

0

dx̃ ⇢S(x̃)

and obtain

model A : JHD(x) = �⌦

Z 1

x

dx̃
�
⇢S(x̃) � 1

�
� ✏a@x⇢

S(1)

model B : JHD(x) = �⌦

Z 1

x

dx̃
�
⇢S(x̃) � 1

�
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FIG. S2. Comparison between the mean-field current (left panel) and the actual current (right panel) for model A with L = 50,
� = 0.2, ⌦ = 0.001, ↵ = 0.1 and ✏ = 0.025. The mean-field current (filled blue (grey) circles) is obtained from the average
densities in a simulation. On the right, we show the actual currents as measured directly in a simulation (filled red (dark grey)
circles), as obtained from the average densities and the nearest neighbour correlations in the simulation using JT

i = ⇢T
i � fi

(filled orange (grey) circles) and as predicted by the theory from Eq. (S32) (dotted green (light grey) curve).

where we used that ⇢T
LD(x) ⇡ 0 and ⇢T

HD(x) ⇡ 1. As a result, J 0
LD(x) = ⌦⇢S(x) and J 0

HD(x) = ⌦
�
⇢S(x) � 1

�
so that

W (z) =

s
2a

Z z

0

dx̃ ⇢S(x̃) =

r
2�al sinh

⇣z

l

⌘

where the last equality results from integrating ⇢S and then using the defining equation for z. Interestingly, the result
in this form agrees for both models.

We observe that the width W (z) increases with increasing z or decreasing distance from the tip. Furthermore, in
the limit a ! 0 it holds that l ! 0 (if we keep ✏ constant) so that we can approximate arccosh

�
� cosh

�
1
l

��
⇡ 1

l +ln (�)

and, similarly, arcsinh
�
� sinh

�
1
l

��
⇡ 1

l + ln (�). Thus, z ⇡ �l ln (�) for both models in the limit a ! 0 [Eqs. (S22),
(S23)]. With that we find

W (z) ⇡ a
3
4 ✏

1
4

⌦
1
4

�
1 � �2

� 1
2

in the limit a ! 0 and so the width of the domain wall decreases with decreasing a or increasing number of sites L.
Note that in order to calculate the position of the domain wall z by the mass-balance equation, we can use the step

function instead of the refined profiles. This is due to the fact that there the errors more or less cancel since only the
sum

PL
i=0 ⇢

T
i over the densities on the left and on the right of the domain wall enters. However, this approximation

gets worse the closer the calculated z is to 0 or 1 since then, the errors are not symmetric anymore. As a result, also
the approximation, Eq. (S31), deteriorates. Certainly, if there is no solution for z, e.g. for some parameters in model
A, we can not use this ansatz either. Furthermore, if ✏ is too large, we expect our approximation that ⇢S(x) does not
change when the domain wall is shifted to deteriorate as well.

COVARIANCES AND CURRENTS

Another point we want to emphasize is that in the system the nearest-neighbour correlations of the TASEP sig-
nificantly modify the TASEP current in the sense that the mean-field prediction for it overestimates the current by
orders of magnitude. The reason lies in the covariances that reach very high values of around 0.2 in the region of
the domain wall (see for example Fig. 2). As we have shown above in Eq. (S19) the nearest-neighbour correlator

fi =
⌦
nT

i nT
i+1

↵
is given by fi = ⇢T

i + !
Pi

j=0

�
⇢T

j � ⇢S
j

�
. Therefore, the covariances are given by

Covi = ⇢T
i (1 � ⇢T

i+1) + !

iX

j=0

(⇢T
j � ⇢S

j ) = JT
MF,i + !

iX

j=0

(⇢T
j � ⇢S

j ).

Due to the first term, the mean-field current, which is large (⇡ 0.2) in the region of the domain wall, also the
covariances are non-zero and large there. However, since the mean-field current gives the main contribution to the
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FIG. S3. Illustration of the di↵erent currents in model A with L = 200, � = 0.2, ⌦ = 0.1, ↵ = 0.1 and ✏ = 1.55. This choice
of parameters corresponds to a domain wall position of z ⇡ 0.88 so that the TASEP occupancy is concentrated on a small
region around the tip. The left panel shows a comparison of the current JT(x) on the TASEP (filled red (dark grey) circles)
and the currents JS

left(x) on the SSEP towards the base (left) (filled orange (light grey) squares) and JS
right(x) towards the tip

(right) (filled green (grey) diamonds). The TASEP current corresponds to the net SSEP current towards the base, that is the
di↵erence between the SSEP current towards the base and towards the tip. Both SSEP currents, however, are much larger than
the TASEP current suggesting that the motors are mainly transported by the cytoplasm (SSEP) rather than by the filament
(TASEP). The right panel shows both the attachment current Jon(x) (filled purple (dark grey) downward facing triangles)
and the detachment current Jo↵(x) (light blue (light grey) upward facing triangles). Both currents are enhanced considerably
towards the tip region. As a result, motor exchange happens primarily around the tip region. Furthermore, the maximum
of the attachment current is located a little further away from the tip than the maximum of the detachment current so that
typically motors attach to the filament, walk a short distance on the filament, detach near the tip and can then di↵use in the
cytoplasm back to the cell body or reattach again. Note that the detachment current is particularly high at the last site due
to the higher detachment rate at the tip. All currents are measured directly from the simulation that is counting the number
of jumps per time.

covariances, this implies that the actual current

JT
i = ⇢T

i � fi = !
iX

j=0

�
⇢S

j � ⇢T
j

�
= JT

MF,i � Covi (S32)

is much smaller than predicted from a mean-field theory. To illustrate this further, in Fig. S2 we show a comparison
of the mean-field current on the left as obtained from simulations using the average densities, and of the actual current
on the right as obtained directly from the simulation (filled red (dark grey) circles), from the average densities and
nearest-neighbour correlations in the simulation (filled orange (grey) circles) and from Eq. (S32) (dotted green (light
grey) curve). Certainly, this discrepancy scales with ⌦ (and the other parameters) and the case shown here is extreme
as ⌦ = 0.001 was chosen. However, the fact that both currents di↵er by orders of magnitude is robust and also occurs
for ⌦ being of the order of the other jump rates [Fig. S3]. This shows that a mean-field description fails to capture
essential properties of our model system.

Furthermore, from the fact that the covariances are non-zero everywhere Covi � 0 and that we can rewrite

Covi =
⌦
nT

i nT
i+1

↵
� ⇢T

i ⇢
T
i+1 = Prob{nT

i , nT
i+1} � Prob{nT

i }Prob{nT
i+1} =

= Prob{nT
i |nT

i+1}Prob{nT
i+1} � Prob{nT

i }Prob{nT
i+1}

we can conclude that Prob{nT
i |nT

i+1} � Prob{nT
i }. And from using a similar argument and only interchanging the

roles of i and i + 1 we find Prob{nT
i+1|nT

i } � Prob{nT
i+1}. This tells us that, in particular from the domain wall

region onwards where covariances are high, the motors preferentially cluster and hinder each other e↵ectively so that
the mean time a particle spends at a certain site is increased considerably with respect to freely moving motors.
Eventually, this leads to the substantial di↵erence between the actual current and the mean-field current.

Potentially, those results are also important from a biological point of view. In case of an enhanced detachment
rate at the filament’s tip (model A), tip localisation is facilitated [Fig. 3] and large tra�c jams can be avoided. In
this case there is only high filament density in a small region around the tip so that motors spend more time in the
tip region than in the other part of the filament, a feature that might be favoured biologically as then the motors
or their cargo might have more time to perform the necessary tasks at the tip. Furthermore, transport to the tip
might be strongly promoted by di↵usion in the cytoplasm (SSEP) whose currents in both the direction of the tip
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ν

ω

nTi
nS,1i

nS,4i

nS,3i

nS,2i
FIG. S4. Illustration of the generalised model with several (here: 4) lanes for di↵usion: the three-dimensional view is shown
on the left-hand side, the profile is illustrated on the right-hand side. As before the dynamics on the filament (red) are given
by a TASEP with jump rate ⌫ = 1 but now the dynamics in the cytoplasm is modelled by several lanes for di↵usion (blue),
each with di↵usive rate ✏ and respecting the exclusion. The lanes for di↵usion are arranged in a cylinder-like fashion around
the TASEP and each can interact with the TASEP by attachment/detachment processes at rate ! respecting the exclusion.
Apart from the di↵usion along the cylinder axis there is also lateral di↵usion between neighbouring lanes of di↵usion. This
di↵usion happens at rate ✏lat and again respects the exclusion. At the base (not shown) there is influx at rate ↵ into every lane
for di↵usion and outflux at the di↵usive rate ✏.

and of the base significantly exceed the filament (TASEP) current [Fig. S3]. Certainly, in case of our original model
where exclusion in the cytoplasm occurs at occupancy 1, the motors cannot really bypass each other, so that the
motors do not circulate very often. This, however, should be greatly enhanced in the generalised model with carrying
capacity Nmax > 1 (see next chapter) or in a real biological system where the motors can overtake each other in
the cytoplasm. The fact that the filament current is strongly suppressed by excluded volume e↵ects might also be
beneficial from a biological point of view as every motor step on the filament consumes ATP contrary to di↵usion
in the cytoplasm. Thus, transport of motors by the cytoplasm rather than by the filament might be advantageous
energetically. Moreover, both the attachment and detachment current Jon and Jo↵ are mainly restricted to the tip
area [Fig. S3] so that motor exchange between the filament and the cytoplasm occurs primarily near the tip where the
cargo is used. Taken together, tip localisation and the suppression of the filament current might be beneficial from
a biological point of view as then energy consumption is low and motors could be e�ciently transported to the tip
by the cytoplasm. Near the tip they attach to the filament, have an enhanced residence time on the filament due to
steric hindrance between the motors and then detach at the tip back into the cytoplasm.

CYLINDRICAL GEOMETRY WITH SEVERAL LANES FOR DIFFUSION

Finally, we want to deal with a generalisation of our model where instead of one lane for di↵usion we have several
lanes for di↵usion arranged on a cylinder around the filament. For an illustration of the case with Ndi↵ = 4 lanes for
di↵usion please refer to Fig. S4. The three-dimensional view is shown on the left-hand side, the profile is illustrated
on the right-hand side. As before the dynamics on the filament (red) are given by a TASEP lane with jump rate ⌫ = 1
but now the dynamics in the cytoplasm is modelled by several lanes for di↵usion (blue), each with di↵usive rate ✏
and respecting the exclusion. The lanes for di↵usion are arranged in a cylinder-like fashion around the TASEP lane,
and each can interact with the TASEP lane by attachment/detachment processes at rate ! respecting the exclusion.
Apart from the di↵usion along the cylinder axis there is also lateral di↵usion between neighbouring lanes of di↵usion.
This di↵usion happens at rate ✏lat and again respects the exclusion. At the base (not shown) there is influx at rate
↵ into every lane for di↵usion and outflux at the di↵usive rate ✏.

In the following, we will show that we can reduce the steady-state behaviour of this more elaborate model to
the steady-state behaviour of our model by scaling the parameters for di↵usion and attachment/detachment by the
number of lanes for di↵usion Ndi↵ : ! ! !Ndi↵ , ✏ ! ✏Ndi↵ . Here, we only consider the case where we have the
same attachment and detachment kinetics at the tip than in the bulk (model B), but an analogous generalisation
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and argument can be done for model A or di↵erent rates for attachment and detachment. Let us denote by nT
i the

occupancy at site i of the TASEP (as before) and by nS,m
i the occupancy at site i of the m = 1, . . . , Ndi↵ -th lane for

di↵usion. We start by m = 1 at an arbitrary lane for di↵usion and then consecutively number the lanes for di↵usion
in clockwise order. Since the lanes are arranged on a cylinder we have periodic boundary conditions and identify
nS,Ndiff+1

i ⌘ nS,1
i . With this convention we have the following bulk master equations, written straight away in terms

of the averages over occupancies ⇢µ,m
i = hnµ,m

i i and fi =
⌦
nT

i nT
i+1

↵
:

@t⇢
T
i = ⇢T

i�1 � fi�1 � ⇢T
i + fi +

NdiffX

m=1

!
⇣
hnS,m

i (1 � nT
i )i � hnT

i (1 � nS,m
i )i

⌘
(S33)

@t⇢
S,m
i = ✏

⇣
⇢S,m

i+1 + ⇢S,m
i�1 � 2⇢S,m

i

⌘
+ !

⇣
hnT

i (1 � nS,m
i )i � hnS,m

i (1 � nT
i )i
⌘

+ ✏lat

⇣
⇢S,m+1

i + ⇢S,m�1
i � 2⇢S,m

i

⌘
.

At the base we find

@t⇢
T
0 = �⇢T

0 + f0 +

NdiffX

m=1

!
⇣
hnS,m

0 (1 � nT
0 )i � hnT

0 (1 � nS,m
0 )i

⌘
(S34)

@t⇢
S,m
0 = ↵� (↵ + ✏)⇢S,m

0 + ✏
⇣
⇢S,m
1 � ⇢S,m

0

⌘
+ !

⇣
hnT

0 (1 � nS,m
0 )i � hnS,m

0 (1 � nT
0 )i
⌘

+ ✏lat

⇣
⇢S,m+1
0 + ⇢S,m�1

0 � 2⇢S,m
0

⌘

and at the tip

@t⇢
T
L = ⇢T

L�1 � fL�1 +

NdiffX

m=1

!
⇣
hnS,m

L (1 � nT
L)i � hnT

L(1 � nS,m
L )i

⌘
(S35)

@t⇢
S,m
L = ✏

⇣
⇢S,m

L�1 � ⇢S,m
L

⌘
+ !

⇣
hnT

L(1 � nS,m
L )i � hnS,m

L (1 � nT
L)i
⌘

+ ✏lat

⇣
⇢S,m+1

L + ⇢S,m�1
L � 2⇢S,m

L

⌘
.

Due to the exclusion property on both the TASEP as well as on the lanes for di↵usion the state space of the system
is finite. Furthermore, it is an irreducible continuous-time Markov process so there exists a unique steady-state. This
is important since then the cylindrical symmetry of the system must be reflected in this steady-state. This is why

we can assume that in the steady-state
D
nS,m

i

E
=
D
nS,n

i

E
and hnS,m

i nT
i i = hnS,n

i nT
i i holds for all m, n. As a result,

the terms proportional to ✏lat drop out in Eqs. (S33)-(S35) and we can define the total occupancy at site i in the
cytoplasm

nS
i ⌘

NdiffX

m=1

nS,m
i

and the corresponding average ⇢S
i as the sum of the (average) occupancies at sites i of all the lanes for di↵usion taken

together. Using this quantity we can rewrite Eqs. (S33)-(S35) in steady-state as follows:

0 = ⇢T
i�1 � fi�1 � ⇢T

i + fi + !
�
hnS

i (1 � nT
i )i � hnT

i (Ndi↵ � nS
i )i
�

(S36)

0 = ✏
�
⇢S

i+1 + ⇢S
i�1 � 2⇢S

i

�
+ !

�
hnT

i (Ndi↵ � nS
i )i � hnS

i (1 � nT
i )i
�

for the bulk master equation,

0 = �⇢T
0 + f0 + !

�
hnS

0(1 � nT
0 )i � hnT

0 (Ndi↵ � nS
0)i
�

(S37)

0 = ↵Ndi↵ � (↵ + ✏)⇢S
0 + ✏

�
⇢S
1 � ⇢S

0

�
+ !

�
hnT

0 (Ndi↵ � nS
0)i � hnS

0(1 � nT
0 )i
�

for the base and

0 = ⇢T
L�1 � fL�1 + !

�
hnS

L(1 � nT
L)i � hnT

L(Ndi↵ � nS
L)i
�

(S38)

0 = ✏
�
⇢S

L�1 � ⇢S
L

�
+ !

�
hnT

L(Ndi↵ � nS
L)i � hnS

L(1 � nT
L)i
�
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for the tip. From these equations it becomes apparent that the cylindrical system with Ndi↵ lanes for di↵usion is
equivalent to the above mentioned generalisation of our model where exclusion on the filament does not happen
at occupancy of 1 but at a maximal occupancy or carrying capacity of Nmax = Ndi↵ that is reflected in the term
Ndi↵ � nS

i . To show that the steady-state behaviour of those two generalisations of our model are cast by the
steady-state behaviour of our model, we next introduce the quantity

ñS
i =

1

Ndi↵
nS

i =
1

Ndi↵

NdiffX

m=1

nS,m
i

and the corresponding average occupancy ⇢̃S
i at site i of one lane for di↵usion. In terms of ñS

i we find

0 = ⇢T
i�1 � fi�1 � ⇢T

i + fi + !Ndi↵

�
⇢̃S

i � ⇢T
i

�
(S39)

0 = ✏Ndi↵

�
⇢̃S

i+1 + ⇢̃S
i�1 � 2⇢̃S

i

�
+ !Ndi↵

�
⇢T

i � ⇢̃S
i

�

for the bulk and

0 = �⇢T
0 + f0 + !Ndi↵

�
⇢̃S
0 � ⇢T

0

�
(S40)

0 = ↵Ndi↵ � (↵ + ✏)Ndi↵ ⇢̃
S
0 + ✏Ndi↵

�
⇢̃S
1 � ⇢̃S

0

�
+ !Ndi↵

�
⇢T
0 � ⇢̃S

0

�

0 = ⇢T
L�1 � fL�1 + !Ndi↵

�
⇢̃S

L � ⇢T
L

�
(S41)

0 = ✏Ndi↵

�
⇢̃S

L�1 � ⇢̃S
L

�
+ !Ndi↵

�
⇢T

L � ⇢̃S
L

�

for the base and the tip where we used that hñS
i (1 � nT

i )i � hnT
i (1 � ñS

i )i = ⇢̃S
i � ⇢T

i .
In summary, if we replace ! ! !Ndi↵ , ✏ ! ✏Ndi↵ and ↵ ! ↵Ndi↵ in our model we can deduce from the steady-state
behaviour of our model the steady-state behaviour of these generalised models. Certainly, to stay within the scope of
our considerations, this implies that we need !Ndi↵ to be much smaller than 1 (order a) and ✏Ndi↵ to be of the order
of 1 implying that the ”total attachment/detachment rate“ ⌦Ndi↵ and the ”total di↵usion rate“ ✏Ndi↵ should be of
the order of the hopping constant ⌫ = 1.
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3 Coupling filament length regulation to
motor transport

Living matter evades the decay to equilibrium.
(Erwin Schrödinger)

The goal of this chapter is to summarize the most important findings of our project on the
influence of directed transport and diffusion on length regulation in confined geometries. The
corresponding manuscript has been published in Physical Review E 98, 012410 (2018). This
chapter is based on and uses parts of this publication [2], which is also reprinted in section 3.5.

3.1 Motivation

Motivated by the finding of the previous project that diffusion may play an important role for
transport in confined geometries, the goal of this project was to examine whether diffusion
might also be important for length regulation of filaments in confined geometries. To this end,
we extended the model of the previous project by additionally accounting for a length dynam-
ics of the lattices. In particular, we took inspiration from experiments where motor-induced
depolymerization at the tip of microtubules was observed [58–62] (see also section 1.1).

While this choice reflects particular biological findings, our goal was not to quantitatively
model a specific system – similar as in the case of the previous project. Instead, the model
presented in the following section 3.2 allows us to study the role of diffusion and active
transport for length regulation in confinement. It should be understood as an exemplary
model that identifies certain principles that may be important also for more elaborate models
or biological systems.

As mentioned in the abstract of the project, the driving questions are:
What influence does a finite diffusion speed have on length regulation in confinement? Could
it, in combination with active transport, change the underlying self-organization process qual-
itatively?

3.2 Model

We consider the two-lane lattice-gas model as illustrated in Fig. 3.1. As in the model dis-
cussed in the previous chapter (Fig. 2.1), directed transport is modeled by a TASEP (see also
section 1.2.1) and this TASEP lane is coupled to a second lane for diffusion (diffusion lane;
DL). In contrast to the previous model, however, diffusion is not subject to exclusion. This
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is partially in order to avoid ambiguity that might arise from the additional length dynam-
ics of the lattices (see below). On the DL motors thus hop at equal rate ε to the left and
right, irrespective of the number of motors at the target site. Similarly, detachment from the
TASEP lane to the DL occurs always at rate ω, independent of the occupancy on the DL. At-
tachment from the DL to the TASEP lane at rate ω is subject to exclusion as in the previous
model. The crucial additional element of this model is that both lattices shrink and grow.
While growth (polymerization) occurs spontaneously at rate γ, shrinkage (depolymerization)
is motor-dependent. If a motor reaches the right end of the TASEP lane, it depolymerizes the
TASEP lane and simultaneously the DL by one lattice site. At the same time, all motors that
have been on the last site of the TASEP lane or DL before the shrinkage event, including the
one responsible for the depolymerization, are shifted to the new DL tip site. This ensures that
there is mass conservation at the tip. If there were exclusion on the DL an implementation of
the mass conservation would not be as straightforward. One could, for instance, implement
a rule that somehow shifts all particles on the DL towards the base in order to make space
for the depolymerizing (and detaching) motor at the tip of the TASEP lane. Alternatively,
the depolymerizing motor could be put to the closest empty site on the DL. In both cases,
however, one would introduce a somewhat artificial flux.

For the analysis of the model and its dynamics, we focused on the dependence on the spon-
taneous polymerization rate γ and rescaled time in a way that ν ≡ 1. The other parameters
were fixed as follows: As in the previous model, attachment and detachment are supposed
to be slow compared to the dynamics along the TASEP, corresponding to the processivity of
the molecular motors (see also section 1.1). So, we chose ω = 1/L0 where L0 = 100 is the
initial length of the system1. To obtain a diffusion constant that is of the order of molecular
motor diffusion in the cytosol, we chose ε = 5.0. The influx rate α = 0.1 is chosen so that the
reservoir density is rather small. Finally, the depolymerization rate is δ = 1.0.

3.3 Results

Based on previous studies where motor-induced shrinkage is coupled to spontaneous growth,
we would have expected to observe a length dynamics with a well-defined, self-controlled
average length and stochastic fluctuations around this average value (e.g. [82] or see [69] for
a review on different length regulation mechanisms). While this is indeed the case for small
growth rates γ (see Fig. 5(a) in [2] or in the publication reprint in section 3.5), a qualita-
tively different behavior is observed for large growth rates2. In this case, the system exhibits
extended phases of growth and shrinkage (see Fig. 5(b) in [2] or in the publication reprint in
section 3.5). On closer inspection, one realizes that this temporal dynamics is dominated by an

1Note that since we focus on the steady-state behavior, the initial length L0 (for fixed ω = Ω/L0) does not
modify the dynamics in any way.

2“Large growth” rates should always be understood as intermediate growth rates γ / 0.2. Indeed Ref. [82]
suggests that length regulation is not possible for much larger growth rates. Intuitively, for γ > 1, there can
be no length regulation because then growth is so fast that the motors can not catch up with the growing
tip.
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Figure 3.1 | Illustration of the conceptual model (taken from [2]). The lattice-gas model
is composed of two lanes which model directed transport (TASEP; see also section 1.2.1)
and diffusion (diffusion lane; DL), respectively. Motion on the TASEP lane is subject to
exclusion whereas motion on the DL is not. Correspondingly, a motor on the DL hops to its
left or right neighboring site at rate ε each, irrespective of the occupancy there. Attachment
of motors from the DL to the TASEP lane at rate ω only occur if the site on the TASEP
lane is empty whereas detachment from the TASEP lane to the DL occurs always at this
rate ω. Furthermore, as compared to the model discussed in the previous chapter (Fig. 2.1),
the lattices can also grow and shrink. Growth (polymerization) occurs spontaneously at rate
γ whereas shrinkage (depolymerization) is motor-induced. If a motor reaches the tip of the
TASEP lane, at rate δ it shrinks the TASEP and the diffusion lane by one lattice site and
detaches from the TASEP to the DL. Simultaneously, all motors that were at the tip (of
either the TASEP or the DL) before the shortening event, including the one responsible for
it, are shifted to the new DL tip site. As in the previous model (Fig. 2.1), there is influx
from the reservoir on the left into the DL at rate α and outflux at rate ε.

underlying quasi-periodic length-changing pattern3. To quantify this pattern, we considered
the following ensemble autocorrelation function C(t):

C(t) := 〈Cov (L (τ) , L (τ + t))〉/σ2 , (3.1)

where L(τ) and L(t + τ) denote the lengths at times τ and t + τ , respectively, and σ is the
standard deviation of the length. Furthermore, Cov(X,Y ) is the covariance between random
variables X and Y and 〈. . .〉 denotes the ensemble average. As shown in Fig. 4 in [2] or in
the publication reprint in section 3.5, for small growth rates γ this autocorrelation function
decays exponentially with time. This corresponds to a typical situation where there is an
internal relaxation time over which a perturbation in the steady-state dynamics decays. In
contrast, for larger growth rates, the autocorrelation function shows oscillatory behavior with
a smaller oscillation frequency for larger growth rates. Note that due to the stochasticity in
the dynamics, the autocorrelation is still enveloped by an exponential decay. Taken together,
this suggests that the length dynamics for large growth rates corresponds to quasi-periodic
oscillations.

Where do these self-organized oscillations come from? To better understand this observation,
it is insightful to consider the oscillatory behavior in more details. Fig. 5 (c) in [2] or in the

3Here, “quasi-periodic” refers to the fact that the system is stochastic and does not exhibit a perfect periodic
behavior but that concomitantly the pattern is characterized by a typical oscillation frequency (see below).
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Figure 3.2 | Illustration of the intuitive idea for the occurrence of length oscillations (taken
from [2]). If the system is short and empty (A), there will be influx of particles from the
reservoir and the lattices will grow spontaneously (B). The injected particles get transported
along the TASEP lane towards the tip while the system still grows and new particles enters
(C). At some point, the particles “catch up” with the tip and start to accumulate there.
As a result, motor-induced shrinkage starts to dominate and turns the growth phase into
a shrinkage phase (D). Due to the shrinkage, the crowding of motors in the tip region
continuously increases while there is still influx from the reservoir since the density at the
left end of the system is still low (if diffusion is slow to equilibrate the density on the DL;
E). Once the system is very short, the accumulated motors quickly leave the system (F) and
the whole process starts over (A).

publication reprint in section 3.5 shows a zoom in on one oscillation period. Strikingly, while
the length dynamics (gray) exhibits (more or less) symmetric phases of growth and shrinkage,
the dynamics of the total number of particles in the system (red) shows a sawtooth-shaped
pattern. Initially, for increasing length, the number of particles increases, as expected. If
the system grows the average density in the system decreases and there should be an influx
of particles from the reservoir. However, when the length already starts to shrink, the total
number of particles in the system still increases. Only when the system is very short, the total
occupancy suddenly drops to a much smaller value. Thus, the dynamics of the total particle
number is time-delayed with respect to the length dynamics, suggesting that the density on
the DL does not equilibrate on the timescale of the length changes. If this were the case, the
instantaneous length would be immediately reflected by the density on the DL and the in- and
outflux would instantly adapt to the length dynamics. This limit corresponds to the model
discussed in Ref. [82] where length control and a peaked length distribution were observed.
In our model, the time delay between the length and particle dynamics manifests itself in
terms of strong motor crowding in the tip region of the DL (see also Fig. 5 (c) in [2] or in
the publication reprint in section 3.5 where the dynamics of the number of particles in a tip
region of 20 sites from the tip is compared to the number of particles in the rest of the lattice).
Due to the rather slow diffusion this crowding at the tip is, however, not “communicated” to
the base (left end) of the system which is connected to the reservoir. As a result, there is still
influx of particles (and consequently further accumulation of motors in the tip region) even
if the length already decreases.

Taken together, these findings suggest the following intuition for the occurrence of the length
oscillations (see also Fig. 3.2 for an illustration): Consider an empty system. Then the only
processes that occur are growth (which is spontaneous) and influx of particles. These particles
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are subsequently transported towards the tip. Since growth is always slower than the hopping
of particles on the TASEP (as otherwise there could not be any length control and the system
would increase indefinitely), the injected particles catch up with the tip at some point. As
a result, as they cannot exit the system in the tip region and since diffusion is too slow
to transport them back, they start to accumulate there. Eventually, this accumulation will
be so large that the motor-induced depolymerization outperforms spontaneous growth and
the system starts to shrink. This provides a positive feedback mechanism for the shrinking
dynamics as the shortening itself enhances crowding which, in turn, augments shrinking. The
system thus shrinks until after a certain time delay the system is so short that the particles at
the tip actually diffuse fast enough to leave the system by moving back into the reservoir on the
left. The system empties and the whole process starts again. In sum, the periodic behaviour
intuitively comes from a positive feedback mechanism with time delay which crucially depends
on the finite diffusion speed in the cytosol (on the DL).

To check the validity of this intuitive argument, we formulated an effective model for which we
can make (partially) analytic predictions and compared them to the results from simulations.
The basic idea is to qualitatively divide the system into four regions (see Fig. 7 in [2] or in
the publication reprint in section 3.5). This division is based on the intuitive picture and is
supposed to reflect that different parts of the system are dominated by different dynamics
(influx, growth/shrinkage, accumulation of particles). For details, please refer to chapter IV
in [2] or in the publication reprint in section 3.5. Intriguingly, despite many simplifications,
this effective model is in quite good quantitative agreement with the full stochastic model. In
particular, it recovers the correct shape of the temporal pattern: While the length dynamics
is symmetric with respect to growth and shrinkage, the dynamics of the tip density exhibits
a saw-tooth shape (see Fig. 8 in the publication).

Furthermore, in agreement with the stochastic simulations, the average maximal length of the
system is larger for larger growth rates whereas the average minimal length is slightly smaller
for larger growth rates (see Fig. 9 in the publication). The latter finding is, at first sight,
rather unintuitive. Why should the minimal length decrease if the growth rate increases? The
underlying reason is that for larger growth rates, more particles accumulate at the tip before
the system switches from the growth to the shrinkage phase. As a result, not only the growth
speed is larger but also the shrinkage speed. Consequently, the system shrinks to a smaller
value before diffusion is fast enough to equilibrate the system and to turn the shrinkage back
into a growth phase. Nonetheless, as can be seen from Fig. 9 in the publication, this effect is
rather weak. Indeed, the analytic expression of the minimal length lmin for the effective model
(see chapter IV in [2] or the publication reprint in section 3.5) provides some quantitative
insight:

lmin ≈ λ ln

[
2λF

γ∆ ln(2)

]
, (3.2)

where λ is the intrinsic length scale of the system:

λ ≡
√
ε

ω
. (3.3)

It can be interpreted as the typical dwell length in the cytosol and so the average distance
covered by a particle by diffusion before it attaches to the TASEP lane. Furthermore, ∆ =
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1/ω + λ corresponds to the typical “cycling time” of motors in the tip region, i.e. the typical
time it takes a motor that has just depolymerized the lattice at the tip to diffusive a bit,
reattach to the TASEP lane and walk back to the tip. Finally, F = 2λ3/

(
1 + 2λ+ 2λ2 + λ3

)
.

Eq. 3.2 suggests that the minimal length is mostly determined by the dwell length λ on the
diffusion lane. If the system size is much smaller than this length, motors that depolymerized
the system at the tip are very likely to leave the system back into the reservoir. In contrast,
if the system is much larger than the dwell length, the motors in the tip region “cycle” in the
tip region and depolymerize the TASEP lane over and over again.
The growth rate γ only enters logarithmically.

Finally, the effective model correctly reflects the fact that the oscillation frequency is larger
for smaller growth rates γ (see Fig. 10 in [2] or in the publication reprint in section 3.5). This
behavior is not obvious from the intuitive picture alone. There are two possible, competing
mechanisms: On the one hand, for larger growth rates, the amplitude of the oscillation
increases and, thus, the oscillation frequency could decrease. On the other hand, a larger
growth rate corresponds to faster growth and shrinkage dynamics. As a result, a larger
growth rate could also entail a larger oscillation frequency. It seems that these two opposing
effects are correctly balanced in the effective model.

In conclusion, the effective model seems to capture the most important aspects of the self-
organized oscillations observed in stochastic simulations. This indicates that the intuitive
picture constitutes an – at least to some degree – correct description of the temporal patterning
mechanism. Nonetheless, in my opinion, the effective model has its own value because it
identifies important control parameters of the dynamics, such as the dwell length on the
diffusion lane. Overall, these results allow the conclusion that a finite diffusion speed can be
an important factor for the occurrence of (self-organized) oscillations. If diffusion is too slow,
densities in the system do not equilibrate on other relevant timescales of the system (such as
the length dynamics in this case). As a result, time delays can arise that ultimately lead to
periodic behavior. Such diffusion-induced time delays have been associated with oscillatory
behavior in other protein systems as well [65, 66], suggesting that this phenomenon might
also be relevant for more elaborate systems.

3.4 Key points

From my point of view, there are two take-home messages:

• Length regulation in confinement can lead to self-reinforcing crowding of particles.

• Diffusion can play an important role for the occurrence of self-organized oscillations
if the timescale for equilibration due to diffusion is large compared to other intrin-
sic timescales. This is due to time delays that build up as a result of this timescale
separation.

Metaphorically speaking, in case of slow diffusion, systems might indeed “evade the decay to
equilibrium”, as suggested by the quote at the beginning of the chapter.
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The totally asymmetric simple exclusion process (TASEP) is a paradigmatic stochastic model for nonequilib-
rium physics, and has been successfully applied to describe active transport of molecular motors along cytoskeletal
filaments. Building on this simple model, we consider a two-lane lattice-gas model that couples directed transport
(TASEP) to diffusive motion in a semiclosed geometry, and simultaneously accounts for spontaneous growth
and particle-induced shrinkage of the system’s size. This particular extension of the TASEP is motivated by the
question of how active transport and diffusion might influence length regulation in confined systems. Surprisingly,
we find that the size of our intrinsically stochastic system exhibits robust temporal patterns over a broad range of
growth rates. More specifically, when particle diffusion is slow relative to the shrinkage dynamics, we observe
quasiperiodic changes in length. We provide an intuitive explanation for the occurrence of these self-organized
temporal patterns, which is based on the imbalance between the diffusion and shrinkage speed in the confined
geometry. Finally, we formulate an effective theory for the oscillatory regime, which explains the origin of the
oscillations and correctly predicts the dependence of key quantities, such as the oscillation frequency, on the
growth rate.
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I. INTRODUCTION

Understanding collective transport phenomena is an im-
portant challenge in theoretical physics, with possible impli-
cations for biology and materials science. One-dimensional,
asymmetric simple exclusion processes form a prominent class
of idealized theoretical models that are amenable to detailed
mathematical analyses; see for instance Ref. [1] for a review.
Interestingly, these models appeared simultaneously in the
mathematical literature as conceptual models with which to
study interacting Markov processes [2] and in the biological
literature as idealized models for ribosomes moving along
mRNA during translation [3]; for recent reviews see Refs. [4,5].

The simplest version of such a model is the totally asymmet-
ric simple exclusion process (TASEP). In this one-dimensional
stochastic lattice-gas model, particles move stepwise and
unidirectionally from lattice site to lattice site at a constant
(hopping) rate, provided that the next site is vacant. Models
of this class have been used to study the collective, directed
transport of molecular motors along microtubules. In that
context, the TASEP has been extended to include the exchange
of particles between the lattice (microtubules) and the sur-
rounding environment (cytosol) in terms of Langmuir kinetics
[6–9]. The traffic jams predicted by these models have recently
been observed experimentally [10,11], suggesting that these
idealized lattice gases are indeed suitable for describing the
collective dynamics of molecular motors.

*These authors contributed equally to this work.
†Corresponding author: frey@lmu.de

In a further interesting line of research, extensions of the
TASEP to dynamic lattices have been developed [12–28].
On the one hand, motivated by the transport of vesicles
along microtubules that facilitate growth of fungal hyphae,
or by growth of flagellar filaments, TASEP models have
been considered in which a particle that reaches the end of
the lattice may extend it by a single site [12,14,15,17,22].
On the other hand, in efforts to quantify experimental ob-
servations of motor-mediated microtubule depolymerization
in vitro, dynamic lattice-gas models have proven useful for
probing the regulation of microtubule length by motors that
show unidirectional [16,18,29,30] or diffusive motion [31–33].
Recently, these models for depolymerizing molecular motors
have been extended towards dynamic microtubules, in order
to study the interplay between lattice growth and shrinkage
[19–21,23,24,26], and to understand the basic principles un-
derlying cellular length control mechanisms [34,35].

There are many possible extensions of these models, which
are both interesting in their own right and can help us to
understand important biological processes. Examples include
large networks of biofilaments [36–38], limited protein re-
sources [6,39–45], the fact that proteins in the cytosol do
not form a spatially uniform reservoir because their dynamics
is limited by diffusion [6,46–51], and that proteins may be
spatially confined, as they are in fungal hyphae or filopodia
[6,9,46,51,52].

In this paper our goal is to study the interplay between
diffusive motion and directed transport as a possible mecha-
nism for length regulation under confinement [Fig. 1(a)]. This
relationship is of great interest because, in contrast to diffusion,
directed transport is an intrinsically nonequilibrium process. It
leads to currents of motors directed towards the growing or

2470-0045/2018/98(1)/012410(19) 012410-1 ©2018 American Physical Society
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FIG. 1. (a) Illustration of the dynamics in cellular protrusions. Movements of molecular motors are indicated by black arrows, and are
restricted to the cell body and the protrusion by the cell membrane. On the filament the motors move unidirectionally towards the protrusion
tip, while their motion in the surrounding cytoplasm is diffusive. (b) Illustration of the two-lane lattice-gas model. We consider a two-lane
lattice-gas model consisting of a TASEP or transport lane [TL, upper lane, occupied by orange (light gray) particles] and a diffusive lane [DL,
lower lane, occupied by blue (dark gray) particles] with hopping rates ν ≡ 1 and ε, respectively. The lanes are coupled by attachment and
detachment kinetics at rate ω, respecting exclusion for transfer from the DL to TL. Entry and exit occurs via the first DL site only, at rates α and
ε, respectively. The system spontaneously grows by simultaneously appending a site to the TL and DL tip at rate γ , while both lanes shrink by
a site, at rate δ, if the TL tip is occupied by a particle. In the latter case, particle conservation is ensured by shifting all particles of the previous
TL and DL tip site to the new DL tip site. (c) Illustration of the particle currents and density profiles. The density profile on the TL (DL), ρ(x)
[η(x)], is displayed in orange (light gray) in the upper panel [blue (dark gray) in the lower panel]. The density ρ(x) is discontinuous at the last
TL site, with ρ− referring to the left and ρ+ to the right limit. The currents (black arrows) come from entry α, exit εη0, diffusion D, attachment
and detachment J D→T , directed movement J T , and detachment due to depolymerization ρ+δ.

shrinking end (tip) and so to a strong interaction between the
motors and the growing or shrinking end. The combination
of transport with diffusion in a semiclosed geometry has
recently been studied with a conceptual model [51]. This model
assumes a fixed length for the system and suggests an important
role for diffusion in the transport of motors to the tip. While
biologically motivated exclusion in this model, and also more
generally, can change the dynamics qualitatively, here we here
focus on the low-density regime where exclusion only has a
minor quantitative influence. Instead we extend the previous
model by including length regulation. This is motivated by
polymerization and depolymerization of filaments in highly
dynamic cellular protrusions. For the particular choice of the
growth and shrinkage dynamics, we draw our inspiration from
experimental studies of microtubules, in which motor-induced
depolymerization [29,30,53–55] and growth by attachment of
tubulin heterodimers [56,57] were found. Other choices such
as the “opposite” scenario where polymerization is motor-
dependent and depolymerization is spontaneous, or a system
with two types of motors, namely polymerizing and depoly-
merizing ones, are also expected to give rise to interesting
phenomena but are out of the scope of the present paper.

While our motivation originates from specific biological
processes, we do not want to study a particular biological
system. Rather our lattice-gas model (Fig. 1) provides us
with an exemplary model to examine the combined role of
diffusion and active transport for length regulation under a
confined geometry. Unexpectedly, we find that the size of our
intrinsically stochastic system shows periodic behavior when
diffusion is slow compared with the growth and shrinkage
dynamics. This indicates that diffusion-limited transport can be
an important ingredient for the occurrence of (self-organized)
oscillations.

This paper is organized as follows. In Sec. II we explain the
processes incorporated into the stochastic lattice-gas model
and show analytical calculations for the simplest possible
scenario, the stationary state, to gain a basic understanding. To
check these results and explore a broader parameter regime, we
continue in Sec. III with numerical simulations. We determine

the dependence of the stationary length on the growth rate and
find a parameter regime in which length oscillations occur.
For this oscillatory behavior we then develop an intuitive
explanation. Finally, in Sec. IV we derive an effective theory
from this intuitive explanation, and compare its predictions to
the results from stochastic simulations. We conclude with a
summary and discussion in Sec. V. Readers who are primarily
interested in the phenomenology may want to skip the more
technical part of Sec. II B. It aims at giving a mathematical
intuition about the processes constituting the presented model.

II. MODEL DEFINITION AND MATHEMATICAL
ANALYSIS

A. Stochastic lattice-gas model

As outlined in the Introduction, we consider a two-lane
lattice-gas model in a semiclosed geometry [Fig. 1(b)], and
extend previous work [51] by combining it with a length-
regulation mechanism. One lane, the TASEP or transport lane,
TL, emulates the directed transport along filaments in cellular
protrusions in terms of a totally asymmetric simple exclusion
process (TASEP) [3,58,59]. It is characterized by a rate ν at
which particles hop unidirectionally along the lattice, from
the base towards the growing or shrinking end (tip). Particles
exclude each other; i.e., there can be at most one particle at any
lattice site and, consequently, particles can only hop forward if
the site ahead of them is empty. Later we will see that exclusion
is not essential for the qualitative findings discussed in this
paper. We measure all rates in units of ν and thus set ν ≡ 1.

The second lane, the diffusion lane, DL, mimics diffusive
transport of motors in the cytosol [Fig. 1(b)], and describes it
as effectively one-dimensional: Particles perform a symmetric
random walk with hopping rate ε to the left and right. As the
density of motor proteins in the cytosol is small, we assume no
particle exclusion on the DL. Hence the hopping probability is
not influenced by the occupancy of the neighboring sites.

Moreover, molecular motors constantly cycle between the
filaments and the surrounding cytosol by attaching to the
filaments and detaching into the cytosol. This motion is
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represented as follows: At a rate ω, a particle from the DL
can attach to the corresponding TL site, if it is vacant, and a
particle from the TL can always attach to the corresponding
DL site.

Particles can enter the system only from a reservoir via the
first DL site, corresponding to motors entering the protrusion
from the cell body, and similarly can only leave the system
via that same site. Entry occurs at rate α, and particles diffuse
out at a rate equal to the hopping rate ε. We do not model
the dynamics in the cell body explicitly, as diffusion in the
cell body is three-dimensional and we expect that, as a result,
entry and exit events should be roughly uncorrelated. We thus
approximate the cell body as an infinite reservoir.

The lanes grow by the spontaneous addition of a TL site to
the TL tip at rate γ , accompanied by the simultaneous exten-
sion of the DL by one site. Motor-induced depolymerization is
realized by cutting off the TL tip site at rate δ. The cytoskeletal
filament is considered to span the protrusion, meaning that
with shrinking filament the length of the cytosolic volume
shrinks as well. So, when the TL shrinks by one site the DL is
simultaneously reduced by one site and all leftover particles,
including the one responsible for the shortening event, are
shifted to the new DL tip site. Thus, the DL tip site can be
easily populated by several particles at once. Since the motors
can neither penetrate the membrane nor leave the system at the
tip, they remain in the cytosol at the tip even when the system
shrinks.

In summary, a typical particle journey would start by the
particle’s entry into the system at the first DL site, followed by
diffusion on this lane until it attaches to the TL and begins to
hop towards the tip. Once there, it eventually cuts off the site it
is occupying and joins the other particles from the previously
“lost” DL site on the new DL tip site. Each of these particles
then diffuses on the DL until it reattaches to the TL or leaves
the system at the DL’s first site.

B. Mathematical analysis: Adiabatic limit

To gain a better quantitative understanding of the system,
we analyzed the stochastic dynamics of the lattice-gas model in
terms of a set of master equations, and employed a mean-field
approximation to derive a set of rate equations for the density
of motors on the TL and DL. The analysis follows Refs. [51]
and [19], and is discussed in detail in Appendix A. Here, we
will discuss the main results and their interpretation, focusing
on the low-density limit and the limit of slow length change
compared with particle movement, i.e., ν ≡ 1 � γ .

To begin with, let us introduce a set of random variables to
describe the state of the system: L(t) denotes the lattice length
at time t ; configurations on the TL are indicated by a tuple of
random variables (ni)li=0, with ni describing the occupancy of
lattice site i. Each lattice site occupancy can assume the value
ni = 1 (occupied) or ni = 0 (empty) due to mutual exclusion.
We use l to denote the actual value of L(t) at a specific time.
The random variables (mi)li=0 representing the DL occupancy
can take values in N0 (no exclusion).

The dynamics of the two-lane model is a difficult stochastic
many-body problem, in which the bulk dynamics and the size
of the system are mutually coupled. In the limit where the
bulk dynamics is much faster than the length changes, we may

however assume that on the timescale over which the length of
the lattice changes, the distribution of particles on the lattice is
stationary (adiabatic assumption). Thus we can decouple the
equations for the length change and particle movement, which
simplifies the mathematical analysis considerably. Using a
mean-field approximation (see Appendix A) one obtains occu-
pancy densities. We denote these as ρi = 〈ni〉 and ηi = 〈mi〉,
where averages are ensemble averages.

In the adiabatic limit, the stochastic dynamics of the
lattice length is a simple birth-death (polymerization-
depolymerization) process. Thus the system length changes
as

∂tL(t) = γ − δρ+(L), (1)

with the TL tip density denoted by ρ+. Spontaneous polymer-
ization occurs at rate γ and motor-induced depolymerization
at rate δ. L now refers to the average length and is no longer a
stochastic variable. In the following, we will only consider the
stationary case (and denote the stationary length by L). Thus
the length change equation (1) yields a condition on the TL tip
density:

ρ+ = γ

δ
. (2)

In the remaining part of this section we will formulate the
current-balance equations for both lanes to derive a length-
dependent expression for the particle density at the tip. Solving
for the length L yields the main result of this section, Eq. (13).
From the analysis it becomes apparent that the relevant length
scale, denoted by λ [Eq. (7)], corresponds to the average
distance a particle diffuses on the DL, before it attaches to
the TL. Furthermore, apart from the adiabatic assumption,
meaning that the particle occupancy equilibrates fast in com-
parison to the length dynamics, we make use of three more
approximations: first, a mean-field approximation neglecting
correlations between the occupancies at different lattice sites,
justified by the low-density regime, second, the continuum
limit requiring that the number of lattice sites is large, and
third, a mesoscopic limit implying that the total attachment
and detachment rates over the entire lattice are comparable
to the hopping rate on the TL. A reader not interested in the
mathematical details of the dynamics may want to skip the
remaining part of this section.

The density profiles on the TL and DL bulk, ρi and ηi for
i = 1, . . . ,L, are determined by the current balance for each
lane and site [see also Fig. 1(c)],

(TL) 0 = +JD→T
i + (

J T
i − J T

i+1

)
, (3a)

(DL) 0 = −JD→T
i + Di, (3b)

where we have defined the transport current on TL as J T
i :=

ρi−1(1 − ρi), and the exchange current between TL and DL as
JD→T

i := ω(1 − ρi)ηi − ωρi . Moreover, diffusion on the DL
is described by Di := ε(ηi+1 − ηi) − ε(ηi − ηi−1).

At the left boundary (base of the protrusion) which is
coupled to the reservoir one finds

0 = +JD→T
0 − J T

1 , (4a)

0 = −JD→T
0 + ε(η1 − η0) − εη0 + α. (4b)
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The density current onto the TL’s first site is due to particle
transfer from the first site of the DL, JD→T , and the transport
current on the TL, J T . For the first site of the DL there is the
diffusive current onto the neighboring DL site as well as the
exchange with the first site of the TL. Furthermore, at rate α

particles enter the first site of the DL from the reservoir. This
gives the corresponding influx current α. At diffusion rate ε

particles also exit the system from the first site of the DL,
which leads to a current of −εη0 out of the system.

To solve these equations, we employ a continuum approx-
imation, assuming that the lattice spacing is smaller by far
than the lattice length. In other words, we perform a Taylor
expansion in the ratio of lattice spacing a ≡ 1 to system size,
and only keep terms up to second order. In this way, we obtain
the following continuous currents with x ∈ [0,L],

J T (x) = [ρ(x) − ∂xρ(x)][1 − ρ(x)], (5a)

JD→T (x) = ω[1 − ρ(x)]η(x) − ωρ(x), (5b)

D(x) = ε∂2
x η(x), (5c)

and rewrite the flux balances accordingly. From the flux
balances for the first sites η(0), ∂xη(0), and ρ(0) are determined
to be

η(0) = α

ε
, (6a)

∂xη(0) = λ−2 η(0), (6b)

ρ(0) = ω η(0), (6c)

having defined the length scale

λ ≡
√

ε

ω
. (7)

Thus the motor density at the first DL site, η(0), equals the
ratio of the particle influx rate to the particle outflux rate. ρ(0)
is given by the DL density at the first site from which transfer
to the first TL site occurs. The length scale λ can be interpreted
as the average distance (in units of the lattice spacing) covered
by a particle on the DL by diffusion before it attaches to the TL,
and it is closely related to the root mean square displacement
∝ √

εt after the typical attachment timescale t = 1/ω. It will
turn out that λ is the intrinsic length scale of the system and
most distances on the lattice will be measured with respect to
this quantity. The three boundary conditions [Eq. (6)] will now
be used as initial conditions for the bulk equations.

First, in the low-density limit, ρ 
 1, ρ 
 η, we decou-
ple the two equations [Eq. (3)]. Note that ρ 
 1 implies
that (1 − ρ) ≈ 1, which is equivalent to lifting the particle
exclusion. With the two initial conditions, Eqs. (6a) and
(6b), we solve the resulting second-order differential equation,
∂2
x η(x) = η(x)/λ2, to give

η(x) = η(0)

[
1

λ
sinh

(x

λ

)
+ cosh

(x

λ

)]
. (8)

Sorting the bulk current balance on the TL by orders of 1/L

implies that the TL density is the integral of the DL density that
has attached to the TL, ω

∫ x

0 η(y)dy = ρ(x) − ρ(0), yielding

ρ(x) = ρ(0) + α

λ

[
1

λ
cosh

(x

λ

)
+ sinh

(x

λ

)
− 1

λ

]
. (9)

The resulting density profile for the low-density phase has
a functional form similar to the density profile found in
Ref. [51] although a static lattice was considered in that case.
In particular, the exponential density increase toward the tip
can be reproduced.

Regarding the last site, we expect a discontinuity in the
density profile, as the hopping rules change discontinuously
to accommodate growth and shrinkage. The left limit ρ− [see
also Fig. 1(c)] is determined by the bulk density, while the right
limit ρ+ is fixed by the stationarity condition on the length, i.e.,
ρ+ = γ /δ, Eq. (2). The system is closed everywhere except at
the first site, and consequently, the flux to the last site has to
equal the flux out of the TL onto the DL, which is ρ+δ to first
order,

J T (L) = ρ+δ. (10)

This equality gives us an implicit condition on the system
length L.

The equations for the tip dynamics become more trans-
parent when formulated in the comoving reference frame, as
otherwise the last site is not necessarily L. In this frame two
additional currents add to the bulk current in the previously
used reference frame, the currents from relabeling due to a
growth or a shrinkage event:

J T (x) = ρ(x)[1 − ρ(x)] − γρ(x) + δρ+ρ(x). (11)

Solving the flux balance (10) yields

ρ(L) = 1
2 (1 −

√
1 − 4γ ) ≡ ρ−, (12)

where ρ− can be interpreted as the left limit of the density
at the last site. Approximating the hyperbolic functions as
exponential functions with positive argument (1 
 λ 
 L),
we obtain

L = λ ln

[
2

λ

α
[ρ− − ρ(0)]

]
. (13)

The higher the particle density on the TL, the faster the
system depolymerizes. Hence, a smaller value of λ results in
a smaller steady-state length. This reasoning not only applies
for the prefactor but also for the numerator of the argument
in the logarithm. Here the influx into the diffusive lane (α)
is weighted by 1/λ. ρ− corresponds to the critical density
that depolymerizes the system at exactly the speed that is
necessary in order for polymerization and depolymerization
to be balanced on average. The bigger the critical density, the
higher the stationary particle density on the TL and the longer
it takes to fill the system. Thus the system has more time to
grow.

III. NUMERICAL ANALYSIS

So far, we derived analytical expressions for the limit of
slow length change with respect to particle density equilibra-
tion. Now we want to explore the full regime, which informs us
about the phenomenology of the model beyond the adiabatic
regime. We therefore perform stochastic simulations of the
lattice-gas model defined in Sec. II A employing Gillespie’s
algorithm [60]. The numerical results will also be used to check
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the approximate analytical description for the adiabatic case,
which was obtained by using a mean-field analysis.

A. Choice of parameter space and numerical method

For the numerical analysis of the system we focus on the
dependence on the growth rate γ , while keeping the other
parameters fixed. The variation of γ causes a qualitative change
in the dynamics: For small γ , the adiabatic assumption should
be valid, and we expect a well-defined length, whereas for
large γ Ref. [19] suggests that length regulation is no longer
possible [61]. We want to focus the analysis on what happens
in an intermediate regime of γ : The initial length L0 was
set to L0 = 100. We fix as attachment and detachment rate
ω = 1/L0, as influx rate α = 0.1, as diffusion rate ε = 5.0
[62], and as depolymerization rate δ = 1.0; in each case these
parameters are expressed in terms of the hopping rate on the
TL ν ≡ 1. The choice of � = ωL0 ≡ 1 to be of the order
of the other rates is motivated by the processivity of the
molecular motors, which can walk over long distances along
the cytoskeletal filament before detaching [63]. It is also the
theoretically interesting case as it guarantees that the number
of attachment and detachment events over the length of the
system competes with the other rates [7,8]. For simplicity, we
choose the same rate for attachment and detachment. However,
we do not expect the qualitative results to change for different
attachment and detachment rates as long as both are still taken
to be small. Moreover, α and ε together are chosen such
that the density at the first site of the DL is rather small. As
shown in Ref. [19], length control in their system, that is, the
system neither shrinks to zero size nor grows without bound,
is only feasible in the low-density parameter regime. Lastly, δ

is chosen to be equal to the hopping rate.
We only took into account simulations where the system

did not shrink to zero length but a stationary state was reached.
Accordingly, we also chose the interval for the growth rate
in such a way that most simulations fulfilled this criterion.
The choice of L0 (for fixed ω = �/L0) did not influence the
results in any way, as we discarded the initial behavior before
the stationary state.

B. Stochastic simulations and model phenomenology

1. Mean length

We tested the analytical insights described in Sec. II B by
comparing them to the results of stochastic simulations. To
begin with, we determined the mean length of the system as
a function of the growth rate γ , as shown in Fig. 2. For small
growth rates, the length increases sublinearly with the growth
rate, up to an inflection point from which it then increases
superlinearly. As expected, the numerical result agrees nicely
with the analytical results in the adiabatic limit as the growth
rate tends to zero: γ → 0 (i.e., when the growth and shrinkage
dynamics are slow relative to the particle dynamics). However,
the simulation results deviate strongly from the predictions for
larger growth rates γ . As the adiabatic assumption was the
only critical assumption in the theoretical analysis [64], the
numerical simulations tell us that this approximation cannot be
valid for larger growth rates. On the contrary, with increasing
growth rates, the particle configuration on the lattice no longer

FIG. 2. Mean system length. Mean length of the system is plotted
as a function of the growth rate γ . The analytical result (red, solid line)
agrees well with the results from stochastic simulations (gray, filled
circles) for small growth rates, γ 
 1, where the adiabatic assumption
is expected to hold. For increasing growth rates the numerical data
show an inflection point at which they begin to deviate strongly from
the results in the adiabatic limit. This indicates that the dynamics
shows qualitatively new behavior for large growth rates.

equilibrates on the timescale of the length changes. As a
result, there must be a time lag between the length change and
the equilibration of the motor configuration, and this could
possibly lead to interesting dynamics. To explore this further,
we next study the length distribution.

2. Length distribution

Figure 3 shows the length histograms for different values
of the growth rate γ . In the inset, we also show the minimal
and maximal lengths in comparison to the average length and
the standard deviation of the length. We observe that for larger
growth rates the length distributions become broader, while all
are right-skewed. This right-skewness implies that we cannot
approximate them as Gaussian distributions as it was done
in Ref. [19], and so it is not feasible to use a van Kampen

FIG. 3. Length histograms for different growth rates γ and a
simulation time of 107. The larger the growth rate, the longer the
average length and the broader the length distribution. The distribu-
tions are right-skewed in contrast to a Gaussian. Inset: The average
length (squares), the standard deviation (bars) of the average length,
and the maximum length reached (right-pointing triangles) increase
nonlinearly with larger growth rates, while the minimum length
attained (left-pointing triangles) remains essentially constant. The
shaded areas [green (gray), orange (light gray), and red (dark gray)]
correspond to the value of the growth rate γ in the corresponding
length histograms.

012410-5



MAREIKE BOJER, ISABELLA R. GRAF, AND ERWIN FREY PHYSICAL REVIEW E 98, 012410 (2018)

FIG. 4. Autocorrelation function. The autocorrelation functions,
each of an ensemble of 1000 runs, for several growth rates γ are
compared. The autocorrelation function for the smallest growth rate
γ = 0.005 (purple line with squares) almost immediately decays to
zero, while the autocorrelation of γ = 0.14 (blue line with trian-
gles) oscillates with a frequency comparable to the observed length
oscillations.

system-size expansion to obtain higher moments of the length
distribution analytically.

From the analysis of the numerical results, we make the
following observations: The standard deviation of the length
increases with the growth rate. Moreover, the maximum length
attained also increases with growth rate, namely faster than
linearly. In contrast, the minimum length reached remains
rather constant. This is surprising as, intuitively, a larger growth
rate should also lead to a larger minimal length. Might this
be connected with the suspected time lag between the length
change and the equilibration of the motor configuration? To
answer this question, we looked at a simple temporal quantity
first, namely the autocorrelation function.

3. Autocorrelation

Figure 4 shows the ensemble autocorrelation function for
different values of the growth rate γ . It can be stated in
terms of the covariance between lengths at times τ and t + τ ,
Cov(L(τ ),L(τ + t)), as follows:

C(t) := 〈Cov(L(τ ),L(τ + t))〉/σ 2, (14)

where 〈. . .〉 denotes the ensemble average and σ is the standard
deviation of the length.

In general, we would expect the autocorrelation function
C(t) to decay exponentially with time, yielding an autocorre-
lation time that is equal to the typical internal relaxation time,
i.e., the timescale on which a perturbation in length influences
the length dynamics. This is indeed the case for a small
growth rate (γ = 0.005 in Fig. 4). However, for larger growth
rates, while still being enveloped by an exponential decay, the
autocorrelation function oscillates with an oscillation period
that increases with the growth rate. This indicates that for large
growth rates the length is oscillating and that there might be two
qualitatively different limits for the length-changing dynamics,
namely for small and large growth rates, respectively. To study
this issue further, we looked at individual time traces of the
system length for small and large growth rates.

4. Time traces

Visual inspection of the time traces (Fig. 5) confirms the
impression gained from the autocorrelation function that for
small growth rates the length of the system fluctuates stochas-
tically. In contrast, for large growth rates, the fluctuations in
length are very small with respect to a dominant underlying
quasiperiodic length-changing pattern, which shows roughly
the same oscillation frequency as the corresponding autocorre-
lation function. This is striking, as one would not automatically
assume that enhancing the spontaneous growth rate could lead
to a quasiperiodic pattern.

What might account for such behavior? The first question
that comes to mind is whether the system is actually in a
stationary state and, if that were the case, how could it be
reconciled with an oscillatory behavior. In this respect, the
most obvious quantity to look at is the total number of particles
that are either on the TL or on the DL. Is this quantity noisy
or does it also show oscillatory behavior for large growth
rate γ ? For small γ , the total particle number behaves highly
stochastically, as expected [Fig. 5(a)]. For large polymerization
rates γ , we observe that not only the length but also the
total particle number shows oscillatory behavior. Surprisingly,
however, the time trace of the total particle number looks very
different from the time trace of the system length: Instead
of being rather symmetric within one period, the time trace
for the total particle number has a sawtooth-like shape; i.e.,
the total particle number increases steadily almost during
the whole period before abruptly and drastically decreasing
[Fig. 5(b)]. Hence, the influx of particles dominates the
outflux for most of the time and, in addition, the total particle
number does not change synchronously with the length. Rather,
the dynamics of the total particle number is time-delayed
with respect to the length dynamics—contrary to what one
would expect if the density on the DL were more or less
equilibrated.

This suggests that the DL occupancy is far from homo-
geneous and that there is an intricate interaction between the
motors and the length dynamics: From the equation of motion
for the length L (here considered as a stochastic variable),
∂tL = γ − δn+ with n+ being the particle number at the TL
tip, one expects that the instantaneous value of n+ should be a
key quantity for the length dynamics. It is determined by the
currents along the TL and from the DL tip back to the TL tip
or to the base. To garner information about these currents, we
determined not only the total number of motors but also the
number of motors located in the immediate vicinity of the tip on
both the TL and DL; for specificity we chose the size of the “tip
neighborhood” to be 20 sites. We refer to the number of motors
in the tip neighborhood and in the remaining part of the lane
as “tip occupancy” (“tip occ.”), and “bulk occupancy” (“bulk
occ.”), respectively. These quantities are shown in Fig. 5(c) for
one oscillation period.

Based on the numerical results we can make several ob-
servations. First, since there are typically more particles in
the DL tip region of only 20 sites than on the remaining
part of the DL, the DL tip density is far higher than the DL
bulk density, indicating a considerable crowding of particles at
the tip. Second, the DL tip occupancy in particular increases
over almost the whole oscillation period before drastically
decreasing only at the very end (similarly to the total particle
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FIG. 5. Time traces for filament length, total particle number, DL occupancy, and TL occupancy for a full simulation time of 107. (a) System
length (gray) and total particle number [red (dark gray)] dynamics for a long time interval and small growth rate γ = 0.01. Both the length and
the total particle number change stochastically. (b) System length (gray) and total particle number [red (dark gray)] dynamics for a large growth
rate γ = 0.14. We observe length oscillations and a sawtooth-shaped behavior of the total particle number. (c) Zoom-in for large γ = 0.14.
Upper panel: System length (gray) and total particle number [red (dark gray)] dynamics. Middle panel: Occupancy of the TL [orange (light
gray), lower line] and DL [blue (dark gray), upper line] tip neighborhood, which is chosen to consist of 20 sites from the tip. Lower panel:
Occupancy of the TL [orange (light gray), lower line] and DL [blue (dark gray), upper line] bulk, which corresponds to the whole lane except
the tip neighborhood. We observe that the tip neighborhood is densely occupied compared with the bulk.

number). Hence, although the system is already shrinking, the
DL tip density continues to increase. This suggests that there is
no communication between the DL tip density and the reservoir
throughout most of the shrinkage phase: as diffusion is finite,
there is no instantaneous equilibration between the (higher)
density at the tip and the reservoir density. Only when the
system is already very short, the cluster at the tip is released
into the reservoir.

This suggests the following mechanism (see Fig. 6): Dif-
fusion of the particles is slow relative to shrinkage, so that as
shrinkage proceeds the particles cluster more and more at the
tip and do not come into contact with the reservoir at the left
end [Fig. 6(e)]. Hence, they cannot leave the system as long
as its length is not yet sufficiently short for diffusion to be
competitive. Only when the length of the system falls below a
critical value [Fig. 6(f)] can the motors diffuse fast enough to
reach the first site of the DL and get out of the system. This then
happens quickly, as the reservoir particle density is very low
and many motors have accumulated at the DL tip that all exit
the system at around the same time, equilibrating the DL tip
density with the reservoir density. Following this reasoning,
this critical length should then depend on the diffusion rate
ε together with the effective shrinkage speed, as these two
parameters determine the typical length that the particles can
move away from the tip before the system further shrinks. If
the system then becomes depleted of particles [Fig. 6(a)], there
are no more particles at the TL tip and, as shrinkage is assumed
to be particle-induced, the system can only grow. Since even
for “large” growth rates γ , growth is considerably slower than
the TL hopping rate, γ 
 1, particles begin to move toward
the tip as the system grows [Fig. 6(b)] and finally reach the
tip and accumulate there [Fig. 6(c)], turning the growth phase
into a shrinkage phase (particles “catch up” with the TL tip)
[Fig. 6(d)].

Notably, this mechanism, which is based on the particle
accumulation at the DL tip, heavily relies on the particle
conservation, since particles can leave the tip region only
via the diffusive lane. If this were not the case, particles
could simply leave the tip region via an exit rate, effectively
reducing the clustering at the tip and so shortening the extended
shrinkage phase.

FIG. 6. Intuitive picture for the occurrence of length oscillations.
Starting from a short and empty system (a), the only two processes
possible are growth and influx of particles from the reservoir into the
system (b). Once attached to the TL particles start walking towards
the tip, away from the reservoir, and the system grows while new
particles enter (c). Since growth is slow compared with transport of
particles on the TL, the particles on the TL “catch up” with the tip.
Furthermore, due to the finite diffusion and the closure at the tip, the
particles then begin crowding at the tip, turning the growth phase into
a shrinkage phase (d). During the shrinkage phase more and more
particles accumulate at the tip as new particles still enter from the
reservoir on the left while the system shrinks from the right (e). Only
when the system has become very short is diffusion of particles fast
enough that particles which accumulate at the tip can leave the system
by exiting into the reservoir (f), leaving behind a short and empty
system (a), from which the next oscillation cycle can begin anew.
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FIG. 7. Schematic of the effective model. We split the system into
four regions, and use an effective description of the DL, restricting
our analysis to the TL. In the in-region we have attachment at an
effective in-rate αeff and detachment at rate ω. The bulk region links
the in-region to the tip neighborhood and we assume that in the bulk
attachment and detachment balance. For the tip neighborhood we
assume that particles which have detached at the tip a time 1/ω earlier
reattach to the TL in the tip neighborhood and need another time
� − 1/ω to reach the TL tip again, yielding a recursion relation for the
tip density ρ+

it . Finally, at the tip we have detachment at rate δρ+, and
the corresponding shrinkage of the system, and spontaneous growth.
The tip and the tip neighborhood are described in the comoving frame.

IV. EFFECTIVE THEORY FOR THE
OSCILLATORY REGIME

So far, we have built up a heuristic mechanism from an
analysis of the numerical data. To examine the validity of the
suggested heuristic mechanism, and to gain a more quantitative
understanding of the oscillations in the parameter regime con-
sidered, we now construct an effective, semiphenomenological
theory. The effective theory incorporates the main ideas of the
heuristic picture, and we will check how closely its predictions
fit the numerical results.

The theory is based on an effective description of the
diffusion lane, and on the idea that, depending on where
particles detach from the TL, they either reattach to it after an
average time 1/ω (which is the inverse of the attachment rate),
or leave the system. We first divide our system qualitatively
into four regions (see Fig. 7). From base to tip, these are the
“in-region”, the “bulk”, the “tip neighborhood”, and the “tip”:

(1) The in-region is close to the base: Here, newly entered
particles attach to the TL (via DL), and detach from the TL at
rate ω.

(2) The tip: The last site on the TL at which growth and
shrinkage (together with detachment of the triggering particle)
occur.

(3) The tip neighborhood: Here, particles that have previ-
ously detached from the tip reattach to the TL. We neglect
detachment and further reattachment, as we assume that
particles which detach in the tip neighborhood reattach in the
same region, balancing each other out.

(4) The bulk: This merely serves as a linker region between
the “in-region” close to the base and the “tip neighborhood”
close to the tip. Here, we assume that attachment and detach-
ment of particles balance each other out (particles that detach
there also reattach there).

In summary, we assume that particles that enter the system,
and do not immediately leave it again, attach to the TL in the

in-region. They then either detach there again and return to the
reservoir, or they walk on the TL towards the tip. Furthermore,
particles that detach at the tip reattach to the TL in the tip
neighborhood after an average time 1/ω. Moreover, growth
and shrinkage occur at the tip.

Note that the division of the system into those regions is
motivated by key components of the system dynamics such as
the coupling to the reservoir at the base, the particle dynamics
on and between the lanes, and the length-changing dynamics
at the tip. It is however a theoretical construct and instead of
fixed boundaries there will be continuous transitions between
the different regimes in the real system.

As we have seen in Sec. III B, the total number of particles in
the system increases almost throughout the oscillation period,
including the greater part of the shrinkage phase. As a first
step, we determine the effective rate at which particles enter
the system, and then attach to the TL. This rate will not equal
the “bare” in-rate α, as particles can also leave the system again
before attaching.

What is the probability, Prob(leaving), that a particle that
has just entered leaves the system again before attaching to
the TL? To answer this question we assume that the length of
the system is considerably larger than the length of a typical
journey of a particle on the DL before it attaches to the TL,
and discuss the influence of a short length separately below. By
carefully keeping track of all possible exit paths we determine
Prob(leaving) as

Prob(leaving) = 1 −
√

ωε

ε̃
+ O(ω)

(see Appendix C 1), where we allow the exit rate from the
system, ε̃, to be different from the diffusion rate ε. As a result,
the effective on-rate onto the TL is given by

αeff ≈ α

ε̃

√
ωε (15)

to lowest order in ω. It is proportional to the ratio of particle
influx α to particle outflux ε̃ from and back into the reservoir
itself, which can be interpreted as the density in the reservoir.
Furthermore, the effective on-rate onto the TL increases with
the attachment rate ω, as expected, and with the diffusion rate ε,
since for a higher diffusion rate (compared with the exit rate ε̃)
particles diffuse further into the system. Using this effective
entrance rate we now proceed to our effective TASEP model.

First, we estimate the length of the in-region lI , since—due
to attachment and detachment here—its length influences the
density. To do so we model a typical particle on the DL (which
does not leave the system immediately) until it attaches to the
TL, as a symmetric random walker with reflecting boundary at
x = 0. Attachment to the TL follows a Poisson process at rate
ω. Assuming that the particle starts at x = 0, and diffuses with
diffusion constant ε (lattice spacing 1), we find that the average
lattice site until which the particle has diffused when attaching
to the TL is given by 〈x〉 ± σ (x) = √

ε/ω(1 ± √
2 − 4/π ) =

λ(1 ± 0.85) (see Appendix C 2). Here λ = √
ε/ω is a charac-

teristic length scale of the system (see Sec. II B).
Since we assume the in-region to extend from the base into

the system, we will approximate it as the region [0,2λ] on
symmetry grounds. The left (right) boundary corresponds to
the average distance a particle travels before attaching to the
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TL (λ) minus (plus) the standard deviation (also λ). The length
of the in-region is determined by the characteristic length scale
λ:

lI ≈ 2λ. (16)

With this, we now determine the density profile in the
in-region, which we assume to equilibrate quickly on the
timescale of the oscillations. Furthermore, we assume that at-
tachment is evenly distributed over the whole in-region, yield-
ing an attachment rate of αeff/lI per site. In the low-density
and continuum limit, together with the hopping transport on
the TASEP and detachment of particles at rate ω, this yields
a density profile in the in-region ρ̃(x) = αeff [1 − e−ωx]/(lIω),
x ∈ [0,lI ] (see Appendix C 2). In particular, the density at the
right end of the in-region is given by

ρ̃(lI ) = α

2ε̃
[1 − e−2

√
εω]. (17)

It increases with the density in the reservoir, α/ε̃, and also with
both the diffusion rate ε and the attachment and detachment
rate ω. Note that we measure time in units of the hopping rate
ν ≡ 1 on the TASEP, and length in units of the lattice spacing
a ≡ 1.

We introduced the bulk region in order to interpolate be-
tween the densities in the in-region and in the tip neighborhood.
Since the bulk region is sufficiently far from the reservoir and
from the tip (at least when the length of the system L � 4λ)
we assume that attachment and detachment approximately
balance, and so the density is approximately constant and equal
to ρ̃(lI ) [Eq. (17)].

For the analysis of the dynamics in the tip neighborhood
and at the tip, we switch to a different reference frame, namely
starting at the tip and reaching into the tip neighborhood,
comoving with the tip. The tip neighborhood represents that
part of the system within which particles that have detached
from the TL tip typically diffuse on the DL before reattaching
to the TL. Thus, we assume that the tip neighborhood has
the same length as the in-region lT = lI = 2λ as for both
the average distance traversed before attaching to the TL is
essential. We will now substantiate the idea that particles
that have detached from the tip reattach back to the TL: We
suppose that particles that detach at the tip reattach to the TL
on average after time 1/ω. Furthermore, they then walk to
the tip during an additional average time lT /2 = λ, since on
average they attach to the TL at a distance lT /2 away from
the tip and take one directed step during time 1/ν = 1. So, the
tip density at time t , ρ+(t), influences the tip density at time
t + 1/ω + λ ≡ t + �, ρ+(t + �). We determine ρ+(t + �)
as the steady state of the dynamics in the tip neighborhood and
at the tip that results from the usual TASEP dynamics in the
low-density and continuum limit combined with growth and
shrinkage, and attachment at rate δρ+(t)/lT per site in the tip
neighborhood (see Appendix C 3).

In summary, we imagine that particles that enter the tip
region start “cycling” there: They detach at the tip, diffuse in
the tip neighborhood, reattach to the TL, walk back to the tip,
detach again and so on (Fig. 7). As long as ε < 1/ω, the average
distance λ to the tip after reattaching to the TL is less than the
average walking distance 1/ω on the TL, so most particles that
reattach to the TL reach the tip.

This procedure yields a recursion relation for the tip densi-
ties ρ+

it at times tit = it × � (see Appendix C 3 for an explicit
formula) that could, in principle, be used to determine the time
evolution of the tip density. So far, however, we have implicitly
assumed that the length of the system, l, is infinitely long,
l � λ, and we have not considered how the physics changes for
comparatively short system lengths. In particular, we ignored
the fact that the shorter the system, the less likely particles that
have previously detached from the tip are to reattach to the TL,
as they may now leave the system beforehand. So, there will
be some minimal length at which the majority of particles that
had previously been in the tip region has left the system. From
about this point the system starts growing again.

To estimate this minimal length, we consider a 1D system
with injection of particles (=detachment) at rate r at site l

(tip), symmetric diffusion at rate ε within the system, outflux
(=reattachment) of particles at rate ω everywhere, and an
additional outflux of particles at rate ε̃ at site 0. In the steady
state and with a continuum approximation, the reattachment
probability of a particle detaching at the tip at length l can be
approximated as

preattach(l) ≈ 1 − F exp

(
− l

λ

)
(18)

for l � λ (see Appendix C 4), where

F = 2λ3

ϕ + 2ϕλ + (1 + ϕ)λ2 + λ3
. (19)

Here, ϕ = ε/ε̃ is the ratio between the diffusion rate and the
exit rate. As expected, the reattachment probability decreases
with decreasing length l, and has the characteristic length scale
λ. Furthermore, F increases with decreasing ϕ, and so the
reattachment probability decreases with decreasing ϕ. As a
result, for a larger exit rate compared with the diffusion rate
(small ϕ), the reattachment probability is small.

We have chosen the time interval � in such a way that during
time � a given particle that has detached at the tip diffuses in
the DL, reattaches, and walks back on the TL to the tip. So, in
order for a particle to remain in the system, it needs to reattach
to the TL each time it has detached and so, it needs to reattach
back for all lengths lit the system attains at times tit = it × �.
We have psurvival({lit}it=1,...,n) = ∏n

it=1 preattach(lit) after a series
of lengths {lit}it=1,...,n. We further define the minimal length
as the length where approximately 50% of the particles that
were in the system at maximal length have left it. Making the
rough assumption that the system shrinks at a constant velocity
v ≈ γ /2, which is half the maximal growth speed, we find

lmin ≈ λ ln

[
2λF

γ� ln(2)

]
, (20)

with F as defined before, Eq. (19) (see Appendix C 4). This
means that, to leading order, the minimal length is determined
by the typical length scale λ. The weak logarithmic dependency
on the inverse growth rate 1/γ arises from the fact that the
growth (and shrinkage) speed scales with γ .

Taking these considerations together, we find the following
recursion relation for the tip densities ρ+

it and the lengths lit at
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times tit = it × �:

ρ+
it =

{[
ρ+

it−1δ
2 1(lit−1−lmin) − A

] +
√[

ρ+
it−1δ

2 1(lit−1−lmin) − A
]2 + 2B

[
ρ+

it−1δ 1(lit−1−lmin) + C
]}/

B, (21a)

lit = lit−1 + γ� − ρ+
it−1δ�, (21b)

with initial condition ρ+
0 = 0 and l0 = 0 (which, however, does

not influence the long-term behavior, as in the case of the
stochastic simulation). Furthermore,

A = δ(1 − γ ) + γ (1 − γ ) − δρ̃(lI )(2 − γ ), (22)

B = 2δ[δ(1 − ρ̃(lI )) + γ ], (23)

C = (1 − γ )ρ̃(lI ), (24)

where we use ρ̃(lI ), lmin, and � as defined before. Equation
(21b) derives from the growth and shrinkage dynamics (con-
stant growth at rate γ and motor-induced shrinkage at rate δρ+)
during the time interval �, and 1 denotes the Heaviside step
function.

Solving this recursion relation numerically, we now com-
pare the predictions of our effective theory to the outcomes
of simulations. To begin with, let us look at the result of the
recursion relation, Eq. (21), itself, which is shown in Fig. 8.
In line with the stochastic simulations [Fig. 5(c)], the length
changes periodically with relatively symmetrical growth and
shrinkage phases, while oscillations of the tip density, in
contrast, follow a sawtooth pattern.

For a more quantitative comparison, we have numerically
determined several quantities from the recursion relation and
compared them to the results from simulations. In accordance
with the stochastic simulation, we find that the minimal length
is largely independent of the growth rate γ (Fig. 9) with a tiny
decrease in minimal length for increasing growth rate in both
stochastic simulations and the analytic prediction. This is what
we would expect, as the turning point from shrinkage to growth
should mainly be determined by the point at which diffusion
(rate ε) is fast enough relative to the shrinkage dynamics to
enable the tip cluster to equilibrate with the reservoir, and thus
the system to quickly deplete.

FIG. 8. Solution of the recursion relation for the tip density
(orange, solid line) and the length (gray, dashed line) as a function
of the iteration step, for γ = 0.14. Both show periodic behavior, but
while the growth and shrinkage phases are rather symmetric for the
length dynamics, the tip density exhibits a sawtooth shape.

Second, not only the turning points from shrinkage to
growth, but also the inflection points from growth to shrinkage
are important. In numerical simulations, not only the max-
imally reached length during the full simulation (see again
Fig. 3 for more details) but also the average maximal length of
the system per oscillation period increases faster than linearly
with the growth rate (Fig. 9). This behavior is reproduced by
our effective theory insofar as it also exhibits a faster than
linear increase in the maximal length per oscillation period
with the growth rate γ over the parameter range considered.
Comparing the prediction of the effective theory with the
average maximal length per period from simulations, we find
quite good quantitative agreement.

Apart from its amplitude (difference between maximal
and minimal length), the oscillation is also characterized by
its frequency. Only with the suggested intuitive mechanism
in mind, it is not clear a priori how the frequency should
depend on the growth rate γ : There are two possible, opposing
mechanisms. On the one hand, growth (and shrinkage [65])
increase with larger growth rate γ , so the oscillation period
(frequency) should decrease (increase) with growth rate γ . On
the other hand, for larger growth rate, the amplitude increases
as well, namely faster than linearly, and so, the oscillation
period (frequency) should increase (decrease). Furthermore, it
is not clear how fluctuations in length influence the oscillation
frequency. In summary, it is difficult to predict from the

FIG. 9. Minimal and maximal length. The average minimal (max-
imal) length per oscillation period from stochastic simulations is
compared with the prediction from the effective theory. From the
stochastic simulations we determined the minimal and maximal
length for each oscillation period, and the average minimal (maximal)
length is depicted with orange squares (green circles), with error
bars representing the corresponding standard deviation. Note that the
average minimal length is approximately independent of the growth
rate, in contrast to the average maximal length. The prediction from
the effective theory is shown with red lines. As in the stochastic
simulations the maximal length (solid line) increases with the growth
rate γ , whereas the minimal length (dashed line) is only weakly
dependent on the growth rate, decreasing slightly with increasing
growth rate.
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FIG. 10. Oscillation frequency. The oscillation frequency from
stochastic simulations is compared with the prediction from the
effective theory. We determined the length oscillation frequency from
the stochastic simulations, first, by determining the autocorrelation
oscillation frequency (freq via autocorr, purple squares), second,
by evaluating the distribution of duration between two adjacent
minima (freq via hist, orange circles), and third, by performing a
Lomb-Scargle analysis comprising a sine fit (freq via L. S., blue
left-pointing triangles). For the distribution approach, where a bound
on the maximal frequency is used as explained in Appendix B, the
distribution average and standard deviation (error bars) are depicted.
For the Lomb-Scargle analysis the most probable frequency is shown.
Clearly, for all methods the oscillation frequency decreases with larger
growth rates. For very small rates noise masks the oscillation, such
that the methods employed cannot determine the frequency correctly.
Thus, results from the stochastic simulations are only shown for
growth rates � 0.06. The predicted oscillation frequency from the
effective theory is shown as a solid red line. It displays the same
qualitative behavior as the result from stochastic simulations.

intuitive picture alone how the oscillation frequency depends
on the growth rate.

We can, however, use our effective theory and the recursion
relation to numerically determine the “analytical” oscillation
frequency. We find that the analytical oscillation frequency
decreases with increasing growth rate γ (Fig. 10). As men-
tioned above, visual inspection of the autocorrelation functions
already suggests that the same is true for the stochastic
simulations, and this is confirmed by different methods to
determine the oscillation frequency from the stochastic simula-
tions (Fig. 10): In both the simulation results and the analytical
prediction, the oscillation frequency at γ = 0.14 is around half
of its value at γ = 0.08. Note that for smaller growth rate γ

it is very hard to determine an oscillation frequency from the
stochastic simulations as the oscillation is largely obscured by
stochastic noise.

All in all, in the parameter regime considered, our effective
theory agrees nicely with the results from stochastic simula-
tions (Sec. III), supporting the intuitive picture on which the
effective theory is built.

V. SUMMARY AND DISCUSSION

In summary, we have studied a semiclosed system con-
sisting of two coupled lanes, a TASEP lane and a diffusive
lane which, at the tip, spontaneously grow, and shrink when
a particle reaches the tip of the TASEP lane. We find two
qualitatively different regimes for small and large growth rates,

respectively, which differ in the dynamics of length change: For
small growth rates, length change is mainly stochastic, while
for large growth rates oscillatory patterns dominate.

The occurrence of those oscillatory patterns relies on the
accumulation (crowding) of particles at the dynamic tip during
the shrinkage phase [Fig. 6(d)]. This crowding leads to a
positive feedback mechanism for shrinking [Fig. 6(e)], as each
particle that reaches the TASEP lane tip further shrinks the
system. The crowding is resolved only after a time delay,
namely when the system size becomes comparable to the finite
diffusion length. Then exchange of particles can occur between
the tip region and the reservoir at the base, and the tip density
equilibrates with the reservoir density [Fig. 6(f)], finally
turning the shrinkage phase into a growth phase [Fig. 6(a)].
As transport on the TASEP lane is fast compared with the
growth of the system, particles entering the system from the
reservoir [Fig. 6(b)] “catch up” with the growing tip, and start
accumulating there [Fig. 6(c)]. As soon as the crowding reaches
a critical value, the whole process begins over again.

We provide a deeper quantitative understanding of the
length oscillations by formulating an effective theory. It relies
on the intuitive explanation we propose for the occurrence of
the oscillations, namely cumulative crowding of motors at the
tip due to finite diffusion, and correctly predicts the dependence
of the oscillation frequency and amplitude on the growth rate,
validating our intuitive picture.

From this intuitive picture it is evident that the emergence of
the periodic behavior crucially depends on the finite diffusion
speed, which—together with particle confinement—enables
crowding of particles. To our knowledge, oscillatory patterns
have not been observed in any similar lattice-gas model.
We attribute this to the fact that in those models diffusion
had not been taken into account explicitly, or only in terms
of a homogeneous reservoir, corresponding to infinitely fast
diffusion.

In our system, in the limit of infinitely fast diffusion, the
equilibration between the DL tip and the reservoir takes place
infinitely fast, and the density on the DL is homogeneous. So, in
this limit our model reduces to the model discussed in Ref. [19].

On a broader perspective, the time delay due to a finite
diffusion speed in a confined geometry also seems to be crucial
for the occurrence of oscillatory behavior in other systems,
such as in recent models for the Par or Pom protein systems
[66,67] and for mass-conserving reaction-diffusion systems
[68]. In general, delay times have been associated with periodic
behavior in well-mixed systems as well [69,70]. Based on our
analysis, we believe that it would be interesting to further
explore how time delays can emerge intrinsically in a spatially
extended nonequilibrium system, and under what conditions
this leads to robust oscillations.
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APPENDIX A: ANALYTIC APPROACH

In the following we perform in detail the calculations lead-
ing to the steady-state density profiles as sketched in Sec. II B.
In particular, we will elaborate on the used approximations,
i.e., the adiabatic assumption, the mean-field approximation,
the continuum limit, and the mesoscopic limit. We start with
some comments on the used notation.

We denote the first, i.e., the leftmost, site by “0” and the
last site by “L”. Indices will be used to denote site numbers.
Moreover, the results below are stated in terms of ρj (t)(t), i.e.,
using the index at time t , not t + dt . This is necessary to

clarify as site indices change due to length changes. Occupancy
numbers n will be approximated by occupancy densities ρ (η)
on the TL (DL). Often we simply denote 〈L〉 by “L”. “〈 〉”
represents the ensemble average.

We begin with the adiabatic assumption which allows us
to decouple length change and particle dynamics. We perform
the argument exemplarily for the TL. The first step is to write
down the probability for a certain lattice site to be occupied.

Any tuple of length l with entries zero (=empty) or one
(=occupied) describes a possible state of the TL with length l,
e.g., (n0 = 1,n1 = 0,n2 = . . . , . . . ,nl = 1). Let us denote the
complete set of such tuples as �(l), and the number of elements
it contains by |�(l)|. (ni)li=0,j describes the j th element of this
set. In this notation the probability of a site i to be occupied
with one particle at time t + dt can be written as

P(ni(t+dt)(t + dt) = 1) =
∞∑
l=0

|�(l)|∑
j=1

P[ni(t+dt)(t + dt) = 1 | (ni)
l
i=0,j (t),L(t) = l]P[(ni)

l
i=0,j (t) | L(t) = l]P[L(t) = l]. (A1)

The first factor is the probability that site i is occupied at
time t + dt under the condition that the system was l sites
long at time t and its state was (ni)li=0,j . The second factor
gives the probability that the system was in state (ni)li=0,j at
time t under the condition that its length was l and the last
term corresponds to the probability that the system was l sites
long. Every possible state at fixed length and any length could
contribute, hence the sums. The difficulty is that the length
distribution P(L(t) = l) itself again depends on the occupancy
numbers {ni}, in particular on the TL tip occupancy nT

l :

∂tP(L = l) = δnT
l+1P(L = l + 1) + γ P(L = l − 1)

− (
δnT

l + γ
)
P(L = l), (A2)

where the first two terms describe the probability gain due
to a shrinkage or growth event of a longer or shorter length,
respectively, while the last term represents the corresponding
probability loss.

To tackle this problem analytically, we assume that the
length changing dynamics happens at a far longer timescale

than the particle hopping. Thus both dynamics can be decou-
pled. We refer to this simplification as adiabatic assumption.
It is untenable for large growth rates, as confirmed in the
simulations, but suitable for small growth rates. In this regime
the assumption implies that we can take the particle densities
to adapt instantaneously to the current length and correspond-
ingly that we can replace the (changing) length by a constant
length when describing the particle occupancy dynamics.
Thus, for the occupancy number dynamics, Eq. (A1), we
choose the, by this assumption constant, length to equal the
average lattice length. Mathematically this can be expressed by
setting P(L(t) = l) ∝ δ(l,〈L〉) where δ(i,j ) is the Kronecker
delta. On the other hand, in Eq. (A2) for the length changing
dynamics the actual occupancy nT

l can be replaced by its
time average. The time average is equivalent to the ensemble
average, ρl at length l, that is, the average tip occupancy
at length l (in contrast to the average occupancy at site l

for arbitrary length or the one for average length 〈L〉). We
find

P(ni(t+dt)(t + dt) = 1) =
|�(〈L〉)|∑

j=1

P
[
ni(t+dt)(t+dt)=1 | (ni)

〈L〉
i=0,j (t)

]
P
[
(ni)

〈L〉
i=0,j (t)

]
(A3)

and

∂tP(L = l) = δρl+1P(L = l + 1) + γ P(L = l − 1)

− (δρl + γ )P(L = l). (A4)

So, applying the adiabatic assumption, we can decouple the
occupancy number and length dynamics and proceed.

From now on, we will furthermore restrict ourselves to the
stationary state of the system,

∂t 〈ni〉 != 0

and L ≡ 〈L〉. The next approximation to solve the coupled
set of occupancy equations is to eliminate the correlations
between occupancies at different sites by using the mean-field
approximation

〈ninj 〉 ≈ 〈ni〉〈nj 〉 ≡ ρiρj .

The equations for the occupancy dynamics at any site are then
given by

0 = ∂tρ0 = −νρ0(1 − ρ1) − ω(ρ0 − η0 + ρ0η0),

0 = ∂tρi = ν[ρi−1(1 − ρi) − ρi(1 − ρi+1)]

− ω(ρi − ηi + ρiηi),
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0 = ∂tρL = −γρL + δρL(ρL−1 − 1) + νρL−1(1 − ρL),

0 = ∂tη0 = α − ε(2η0 − η1) + ω(ρ0 + ρ0η0 − η0),

0 = ∂tηi = ε(ηi+1 + ηi−1 − 2ηi) + ω(ρi + ρiηi − ηi),

0 = ∂tηL = −γ ηL + δρL(1 + ηL−1) + ε(ηL−1 − ηL),

with i denoting any bulk site. The corresponding flux balances
are

(TL) 0 = +JD→T
0 − J T

1 , (A5)

(DL) 0 = −JD→T
0 + ε(η1 − η0) − εη0 + α, (A6)

(TL) 0 = +JD→T
i + (

J T
i − J T

i+1

)
, (A7)

(DL) 0 = −JD→T
i + Di, (A8)

for the first site and the bulk, respectively.
Moreover, although the lattice is growing and shrinking,

its length L is typically 100 up to 1000 times larger than
the remaining parameters and densities. Thus it is justified to
consider the limit where the lattice spacing ξ tends to zero
when the total length of the system is rescaled to 1.

The second step is thus to apply the continuum limit by
replacing the lattice by a smooth interval [0,1]. Note that this
is different from the choice in Sec. II B, where the interval is
set to [0,L] in order to keep the notation cleaner. Here we want
to clearly see the orders of the following Taylor expansion. We
further define the occupancy density (also named ρ) to be the
smooth function satisfying ρ(ξ i/L) = ρi with i = 1, . . . ,L −
1 denoting the lattice site index. We set ξ = 1 in order to rescale
the system size to 1. ρ can then be Taylor-expanded in the limit
1/L → 0:

ρ

(
x ± 1

L

)
= ρ(x) ± 1

L
∂xρ(x) + 1

2L2
∂2
xρ(x) + O

(
1

L3

)
.

For the currents this expansion gives

J T (x) =
[
ρ(x) − ∂x

L
ρ(x)

]
[1 − ρ(x)], (A9)

JD→T (x) = ω[1 − ρ(x)]η(x) − ωρ(x), (A10)

D(x) = ε
∂2
x

L2
η(x). (A11)

Moreover, we focus on the mesoscopic limit [7,8] of ω. This
implies that ω = �/L0, with L0 denoting the initial length, is
treated as order 1/L. Consequently, JD→T (x) has no 0th order
contribution.

As the DL is the only source of particles on the TL, we will
at first solve the equation for the diffusive lane and use it to
obtain the TL density profile. We begin at the left boundary.

(DL) 0 = −εη(0) + α − JD→T (0) + ε
∂x

L
η(0); (A12)

thus, to 0th order in the lattice spacing we are left with 0 =
−εη(0) + α, concluding

η(0) = α

ε
. (A13)

For the TL we have

0 = ω[1 − ρ(0)]η(0) − ωρ(0) − ρ(0)

[
1 − ρ(0) − ∂x

L
ρ(0)

]
,

(A14)

implying 0 = −ρ(0)[1 − ρ(0)] + O(1/L). This equation has
two solutions, either the first site is always occupied or always
empty. To lowest order, as we only treat the low-density limit,
the site has to be empty, i.e., ρ(0) = 0. To first order, we obtain
0 = ωη(0) − ρ(0), thus

ρ(0) = ωη(0). (A15)

The first order equation for the DL is

ω{[1 − ρ(0)]η(0) − ρ(0)} = ε
1

L
∂xη(0). (A16)

With ρ(0) = 0 to 0th order, we obtain

∂x

L
η(0) = λ−2η(0), (A17)

with

λ ≡
√

ε

ω
. (A18)

Having solved the boundary equations, we apply these results
to solve the bulk equations. By adding the DL bulk dynamics
equation corresponding to Eq. (A8)

(DL) 0 = −JD→T + ε
∂2
x

L2
η(x) (A19)

to the TL bulk dynamics equation derived from Eq. (A7)

(TL) 0 = JD→T (x) + ∂x

L
ρ(x)[2ρ(x) − 1], (A20)

we obtain the first order TASEP bulk equation 0 =
∂xρ(x)[2ρ(x) − 1]. As we are in the low-density limit, the
solution ρ(x) = 1/2, corresponding to the maximal current
solution, can be ruled out, thus ∂xρ(x) = 0. Using our results
from the left boundary as initial values, we conclude that the
constant density equals ρ(x) = ρ(0) = 0 to first order. We
conclude that the occupancy is constant and thus equals the
occupancy at the first site. To first order, it has been determined
to equal zero [Eq. (A15)], thus ρ(x) = ρ(0) = 0. Inserting this
result to the second order DL equation gives

ε
∂2
x

L2
η(x) = ωη(x), (A21)

which is solved by

η(x) = A sinh
xL

λ
+ B cosh

xL

λ
. (A22)

Using our boundary conditions, η(0) = α/ε [Eq. (A13)] and
(∂x/L)η(0) = λ−2η(0) [Eq. (A17)], gives

η(x) = η(0)

(
1

λ
sinh

xL

λ
+ cosh

xL

λ

)
. (A23)

We continue with the second order equations of the TL bulk,

0 = ω[1 − ρ(x)]η(x) − ωρ(x) + ∂x

L
ρ(x)[2ρ(x) − 1].

(A24)
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Upon employing that the first order value of ρ is zero
[Eq. (A15)], we are left with

0 = ωη(x) − ∂x

L
ρ(x), (A25)

which is solved by

ρ(x) = ρ(0) + α

λ

(
1

λ
cosh

xL

λ
+ sinh

xL

λ
− 1

λ

)
. (A26)

In summary, we have found analytic expressions for the steady-
state TL and DL occupancy densities in the adiabatic limit.

APPENDIX B: OSCILLATORY BEHAVIOR

In Sec. III we have learned about the existence of a
parameter regime where the length change exhibits oscillatory
behavior. Following up on these investigations, we want to
further discuss the methods used. Moreover we want to
examine the occupancy densities at the system tip when the
system switches from growth to shrinkage.

As the time intervals between two events in the simulation
are not uniformly spaced, we performed a Lomb-Scargle
analysis instead of a Fourier analysis [71] to determine the
average oscillation frequency (see Fig. 10). The algorithm
essentially fits a sine function to the data and checks which
frequency matches the data best. We deduced the frequency
with the smallest false alarm probability as well as the second
and third best choice. For larger γ values, the frequency
decreases with increasing growth rate and reassuringly, the
three best frequencies agree quite well. For small growth rates,
the results should not be taken seriously, as there are also no
visible oscillations in the time traces.

Moreover, we determined the minima and maxima of a time
series of the length. This was done by cutting off the data of
length for lengths larger than the initial length L0 (which is 2–3
times larger than the minimum average length and smaller than
the average length). Within each of the remaining intervals we
determined the minimal length, while sorting out all minima
that occurred very quickly after each other, i.e., in less time than
a threshold �T . This threshold excludes small fluctuations
around L = L0 and is chosen in a way to minimize artifacts of
chopping off the length at L0. We used �T = 800. Note that
our choice of �T does influence the frequency results as it
restricts the maximal frequency. Between each two minima,
we then determined the maxima. The respective averages
and standard deviations for the maximally and minimally
obtained system length during an oscillation period are plotted
in Fig. 9. The maxima clearly increase with larger growth rates,
whereas the minima remain rather constant. The latter further
supports our intuition of a particle cluster at the DL tip, which
equilibrates with the reservoir only when the system length
is small enough for diffusion to be comparable to shrinkage.
From the temporal distance of the minima, the oscillation
frequency was deduced (see Fig. 10). The values agree with
the result of the Lomb-Scargle analysis mentioned before.
As a third method to determine the oscillation frequency
we extracted the frequency from the autocorrelation function
[Eq. (14)]. We searched for the first 2–4 maxima and minima

of the autocorrelation function and averaged their distance. For
smaller grow rates we had to reduce the number of maxima and
minima, as the number of oscillations reduced from >4, to 2
and even 1 in the case of γ = 0.005. The extracted frequencies
are also shown in Fig. 10.

Figure 11 shows the TASEP tip neighborhood (i.e., 20 tip
sites) occupancy at the oscillation maxima corresponding to
the turning point between a phase of growth and a phase of
shrinkage. The blue upper line represents the mean of the
TASEP tip neighborhood occupancy (red squares). The results
vary strongly; thus we checked related observables. But also
the maximal tip neighborhood occupancy (gray left-pointing
triangles) within ten time steps—five before the maximum is
reached and five thereafter—and the average (yellow right-
pointing triangles) fluctuate. Nevertheless we see that nearly
all measurements of the maximal tip neighborhood occupancy
(gray left-pointing triangles) lie above the critical density
(purple lower line), being γ times the tip neighborhood size
(here 20 sites) as the length change is given by ∂tL = γ − δρ+
(as δ = 1). When we compare the critical density to the mean
density for a time interval covering more than one oscillation
period, and not just at the time points where the amplitude
is maximal, the values coincide. It can further be noted that
none of the observables of the turning point tip occupancy
increases for larger amplitudes, i.e., system lengths (for a
fixed growth rate). These observations further support our
intuition that the length grows until a critical occupancy density
at the tip (depending solely on the growth rate) has been
reached, triggering the switch to the shrinking phase. As shown
in the time trace plot, Fig. 5, in Sec. III, the total occupancy
density follows a sawtooth-like trajectory. This is due to a
constant influx from the reservoir during the growth phase and
most of the shrinkage phase. Only at the end of the shrinkage
phase the cluster at the tip communicates with the reservoir
and is quickly emptied.

FIG. 11. Occupancies of the TASEP lane tip neighborhood, i.e.,
here the 20 last sites, at the time point or time interval when the length
reaches its maximum during one oscillation period. They have been
measured for several periods and are shown for a growth rate of 0.14.
The occupancy at these time points (red squares) and their average
(upper blue line) as well as the occupancy average (yellow right-
pointing triangles) and maximum (gray left-pointing triangles) over a
time period of ten events—five before and five after the maximum—is
depicted. Moreover, the critical density for switching from growth to
shrinkage (lower purple line) is shown.
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APPENDIX C: DETAILED CALCULATIONS FOR THE
EFFECTIVE THEORY

In this section we elaborate on the mathematical details for
the effective theory. First, in Appendix C 1 we determine the
effective in-rate from the reservoir onto the TL. In order to
estimate the density in the bulk, we infer the length of the
in-region; see Appendix C 2. Finally, we deduce the recursion
relation for the tip density in Appendix C 3, and the minimal
length in Appendix C 4.

1. Effective in-rate αeff

In this subsection, we comment on how we determine the
effective rate at which particles enter the system and then
attach to the TL. This rate will not equal the “bare” in-rate
α as particles can also leave the system before attaching. What
is the probability that a particle that enters from the reservoir
leaves the system again, before attaching to the TL? To answer
this question, let us consider a situation where the length of
the system is considerably larger than the length of a typical
journey of a particle on the DL before attaching to the TL,
the latter of which we estimate as λ ± λ (see later). Here,

λ = √
ε/ω is the characteristic length scale of the system. In

this case of large length, the probability that a given particle that
enters the DL leaves back into the reservoir before attaching
to the TL, Prob(leaving), is given by

Prob(leaving) =
∞∑

j=0

pqjAj , (C1)

where p = ε̃/(ε̃ + ε + ω) is the probability that a particle exits
from the first DL site back into the reservoir [72]. The quantity
q = ε/(ε̃ + ε + ω) is the probability that a particle proceeds
to diffuse into the protrusion and A is the probability that a
particle that starts at the first site of the DL returns to the first
site of the DL without attaching to the TL in between. Since
returning to the first site of the DL without attaching to the TL
in between can only happen after an even number of steps on
the DL, this probability A comprises the probabilities that the
particle diffuses back to the first site of the DL in exactly 2j

steps, j ∈ N, without attaching to the TL. The latter are given
by the product of the probability that a symmetric random
walker returns back to its starting point after exactly 2j steps
and the probability that the particle stays on the DL in each
step. Taken together we determine A as follows:

A = Prob(return to site 1 without attaching to TL) =
∞∑

j=1

Prob(return to site 1 in exactly 2j steps without attaching to TL)

=
∞∑

j=1

Prob(return to site 1 in exactly 2j steps | not attaching to TL during the 2j steps)

× Prob(not attaching to TL during the 2j steps)

=
∞∑

j=1

f2j

(
2ε

2ε + ω

)2j−1

= 2ε + ω

2ε

(
1 −

√
ω(4ε + ω)

2ε + ω

)
,

where f2j = ( 2j

j
)/[(2j − 1)22j ] is the probability that a sym-

metric 1D random walker returns to its starting point for the
first time in exactly 2j steps. Note that the probability that the
particle does not attach during the 2j steps only has 2j − 1
terms 2ε/(2ε + ω) as the first step into the protrusion is already
accounted for by the probability q in Prob(leaving), Eq. (C1).
Combining the result for A with the explicit formulas for p

and q we find

Prob(leaving) = 1 − ω + √
ω(4ε + ω)

ω + √
ω(4ε + ω) + 2ε̃

.

We approximate this formula for small ω by Taylor expanding
up to first order in ω:

Prob(leaving) = 1 −
√

ωε

ε̃
+ 2ε − ε̃

2ε̃2
ω + O(ω3/2).

The effective in-rate is given by the “bare” in-rate α

weighted by the probability that a particle that enters from
the reservoir attaches to the TL. The latter probability is
just 1 − Prob(leaving). This implies that the effective in-rate

is given by

αeff = α
ω + √

ω(4ε + ω)

ω + √
ω(4ε + ω) + 2ε̃

≈ α

ε̃

√
ωε (C2)

to lowest order in ω.

2. Length of the in-region and density in the bulk

To continue we now estimate the length of the “in-region” lI
since—due to the attachment and detachment—the density at
the end of the in-region depends on the length. For this, we look
at a symmetric random walk with reflecting boundary at x = 0
as we want to find out the typical journey of a particle on the
DL that is eventually attaching to the TL (and thus not leaving
the system again). Using the initial condition p(x,t = 0) =
δ(x), the probability distribution of such a process is given
by p(x,t) = e−x2/(4εt)/

√
πεt for x � 0 where ε is the dif-

fusion constant (lattice spacing 1). To determine the average
distance a particle travels on the DL before attaching to the TL,
〈x〉attach, and its standard deviation, σattach, we need to take
two processes into account. First, we need to find out how the
time at which the particle attaches to the TL is distributed
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and, second, how far a particle travels until a certain time
point. Using that the attachment process is a Poisson process
of rate ω, where the time until an attachment event happens has
the probability distribution f (t) = Prob(T = t) = ωe−ωt , we
calculate the mean and variance as 〈x〉attach = ∫ ∞

0 dt f (t)〈x(t)〉
and σ 2

attach = ∫ ∞
0 dt f (t)[〈x2(t)〉 − 〈x(t)〉2]. Here, 〈x(t)〉 and

〈x2(t)〉 − 〈x(t)〉2 are the mean and variance of the traveled
distance of the symmetric random walk until time t . For
those quantities we find 〈x(t)〉 = 2

√
εt/π and 〈x(t)2〉 = 2εt

from the above probability distribution p(x,t). As a re-
sult, 〈x〉attach = √

ε/ω = λ and σattach = λ
√

2 − 4/π ≈ λ =
〈x〉attach. Therefore, 〈x〉attach ± σattach ≈ λ ± λ, which means
that the standard deviation is approximately the same as the
mean. We will thus approximate the length of the in-region as
twice the average distance a particle travels before attaching
to the TL:

lI ≈ 2λ. (C3)

With this relation, we now determine the density profile in
the in-region which we assume to equilibrate quickly on the
timescale of the oscillations. Let us denote by ρ̃i the density at
site i from the base. Then, we approximate the time evolution
of the density at site i = 1, . . . ,LI as

0 = ∂t ρ̃i ≈ ρ̃i−1 − ρ̃i + αeff

LI

− ωρ̃i

in the low-density limit with the boundary condition ρ̃0 ≈ 0.
Here, LI = Round(lI ) is the integer length of the in-region
within which we assume homogeneous attachment (at rate
αeff/LI per site). Performing a continuum limit i → x, x ∈
[0,lI ], and considering only the first derivative with respect to
x, we have

0 = −∂xρ̃(x) + αeff

lI
− ωρ̃(x)

with the solution ρ̃(x) = αeff (1 − e−ωx)/(lIω). So, in particu-
lar, we obtain for the particle density at the end of the in-region

ρ̃(lI ) = α

2ε̃
(1 − e−2

√
εω),

where we combined all the above results.

3. Recursion relation for the tip density

As mentioned in Sec. IV, for the analysis of the tip neighbor-
hood and the tip, we go to a different reference frame, namely
starting at the tip and reaching into the tip neighborhood,
comoving with the tip. By ρ0 ≡ ρ+ we denote the density at
the tip and by ρi the density at the ith site from the tip. Since
we defined the tip neighborhood to be the region where motors
that have previously detached at the tip reattach to the TL, we
assume that the tip neighborhood has the same length as the
in-region lT = lI = 2λ as for both the average distance before
attaching to the TASEP becomes essential.

Note that we ignore the influence of the growth and
shrinkage dynamics on the average distance before attaching.
This, however, should be legitimate in our parameter regime:
Assume that we look at a symmetric random walk on a lattice
with one reflecting boundary at the left end where also new
particles are injected. At each site, the particles can leave the
system at rate ω, and the reflecting boundary moves at rate

v > 0 to the right (or, in the case of v < 0, at rate −v to the
left). Then, in the comoving frame (moving with the reflecting
boundary), the steady-state profile is proportional to e−x/λ̄ with
the length scale λ̄ = 2ε/(v + √

v2 + 4εω) which corresponds
to the average traveled distance before leaving the system via
ω. In our case, the velocity is not constant but if we assume
that the velocity is homogeneously distributed in [−γ,γ ], we
get an average length scale which is very close to λ for our
choice of parameters.

Let us now go back to the densities in the tip neighborhood
and right at the tip. By taking into account the reattachment of
motors that have detached at the tip an (average) time 1/ω

before, the growth and shrinkage dynamics, and the usual
hopping, we find, for the time evolution of the density ρi in the
low-density limit,

∂tρi = ρi+1−ρi+δρ+
before

lT
+γ (ρi−1 − ρi)+δρ+(ρi+1 − ρi),

(C4)

and for the tip density ρ0 = ρ+,

∂tρ
+=ρ1−γρ+−δρ+(1−ρ1). (C5)

Note, however, that in the last equation for the tip density we
take exclusion into account explicitly by assuming that the
occupancy at the tip is exactly 1 in the case of a shrinkage
event (last term). If exclusion was lifted, there could be more
than one particle at the tip and several particles would then
be simultaneously released into the cytosol in the case of a
shrinkage event.

For the time evolution of ρi , Eq. (C4), we assume that the
particles that have previously detached at the tip (at rate δρ+

before,
corresponding to a previous tip density ρ+

before) homogeneously
reattach to the TL in the tip neighborhood. To proceed we now
make the following ansatz: We assume that for a tip density
ρ+

before at time t we can determine the tip density at time t ′ =
t + 1/ω + λ = t + � by solving Eqs. (C4) and (C5) for ρ+ in
the steady state. The idea behind this is that a particle that has
detached at the tip needs on average 1/ω to reattach to the TL,
and then has to walk on average λ sites to get back to the tip
(we measure time in units of ν ≡ 1, and length in units of the
lattice spacing a ≡ 1). Using the continuum approximation in
Eq. (C4) and considering only zero- and first-order terms, we
find for the density in the tip neighborhood

ρ(x) = ρ̃(lI ) + δρ+
before

lT

1

1 + δρ+ − γ
(lT + 1 − x),

where we used the boundary condition ρ(lT + 1) = ρ̃(lI ). As
a result, the density at the site next to the tip is given by

ρ1 = ρ(1) = ρ̃(lI ) + δρ+
before

1 + δρ+ − γ
. (C6)

Combining this with Eq. (C5) we solve for ρ1 and find an
equation for the tip density ρ+ in terms of the previous tip
density ρ+

before:

(δ + γ )ρ+(1 − γ + δρ+)

= (1 + δρ+)[(1 − γ+δρ+)ρ̃(lI ) + δρ+
before].

012410-16



SELF-ORGANIZED SYSTEM-SIZE OSCILLATION OF A … PHYSICAL REVIEW E 98, 012410 (2018)

Bearing in mind that the tip density should be positive, this
equation is solved by

ρ+ = [
δ2ρ+

before − A

+
√

(δ2ρ+
before − A)2 + 2B

(
δρ+

before + C
)]

/B,

where ρ̃(lI ) = α(1 − e−2
√

εω)/(2ε̃) (see above) and

A = δ(1 − γ ) + γ (1 − γ ) − δρ̃(lI )(2 − γ ),

B = 2δ[δ(1 − ρ̃(lI )) + γ ],

C = (1 − γ )ρ̃(lI ).

So, this equation relates the previous tip density ρ+
before at time

t to the tip density ρ+ at time t + �. Iterating this procedure,
we find a recursion relation for the tip densities ρ+

it at times
tit = it × �:

ρ+
it = [

δ2ρ+
it−1−A+

√
(δ2ρ+

it−1−A)2+2B
(
δρ+

it−1+C
)]

/B.

(C7)

4. Minimal length

So far, we have considered the situation where the length of
the system is much longer than the average distance a particle
typically travels on the DL. However—if the system is too
small—the particles do not reattach to the TL as they leave the
system too quickly. As a result, most of the particles will have
left the system before the system is shrunk to zero, and the
system will regrow from a minimal length larger than zero. To
estimate this minimal length, let us consider a 1D system of
length l with injection of particles at rate r at site l, symmetric
diffusion at rate ε within the system, outflux of particles at rate
ω everywhere, and an additional outflux of particles at rate ε̃ at
site 0. In the steady state and with a continuum approximation
we thus have

0 = ∂tp(x,t) = ε∂2
xp(x,t) − ωp(x,t),

0 = ∂tp(0,t) = ε∂xp(0,t) − (ω + ε̃)p(0,t),

0 = ∂tp(l,t) = −ε∂xp(l,t) − ωp(l,t) + r.

Those equations are solved by

p(x) = re
(l−x)

λ

ω

× ϕλ(1 + e
2x
λ ) + (ϕ + λ2)(−1 + e

2x
λ )

λ(2ϕ + λ2)(1 + e
2l
λ ) + [ϕ + (ϕ + 1)λ2](−1 + e

2l
λ )

,

where ϕ = ε/ε̃ is the ratio between the diffusion and the exit
rate. So, we determine the (steady-state) probability that a
particle that enters the system at site l (the tip) exits it via
the rate ε̃ (back into the reservoir) and not via ω (attaching to
the TL) as pexit = p(0)ε̃/r , which yields

pexit = 2λ3e
l
λ

λ(2ϕ+λ2)(1+e
2l
λ )+[ϕ+(ϕ+1)λ2](e

2l
λ −1)

.

As a result, the reattachment probability for a particle detaching
at the tip at length l is approximated as

preattach(l) ≈ 1 − Fe− l
λ (C8)

for l � λ. Here, F = 2λ3/[ϕ + 2ϕλ + (ϕ + 1)λ2 + λ3]. This
means that the probability that a particle has not yet left the
system after a series of lengths {lit}it=1,...,n is given by

psurvival({lit}it=1,...,n) =
n∏

it=1

preattach(lit)

or, equivalently,

ln[psurvival({lit}it=1,...,n)] =
n∑

it=1

ln[preattach(lit)].

Assuming that the system shrinks at constant velocity v:
l(t) = l0 − vt , and taking into account that in our effective
system each length is realized for time � (during this time
a particle that has detached potentially reattaches and walks
back to the tip), we identify the length dynamics until time t

with {l0,l0 − v�, . . . ,l0 − v�(t/�)}. Approximating the sum
as an integral, we then deduce the “survival” probability until
time t as

ln[psurvival(t)] ≈
t
�∑

k=0

ln[preattach(l0 − v�k)]

≈
∫ t

�

0
dk ln[preattach(l0 − v�k)]

= 1

�

∫ t

0
dt ′ ln[preattach(l(t ′))]

= 1

v�

∫ l0

l(t)
dl ln[preattach(l)]

≈ 1

v�

∫ ∞

l(t)
dl ln[preattach(l)], (C9)

where we used the coordinate transformations t ′ = k�, l(t ′) =
l0 − vt ′, and approximated the maximal length of the system
l0 by ∞ as for maximal length the reattachment proba-
bility should be close to 1. Approximating the logarithm
as ln [preattach(l)] ≈ −1 + preattach for preattach � 0.9 we thus
find

ln [psurvival(t)] ≈ − 1

v�

∫ ∞

l(t)
dl [1 − preattach(l)].

Finally, using Eq. (C8) for 1 − preattach(l) for l � λ we get

ln [psurvival(t)] ≈ −λF

v�
e− l(t)

λ .

Defining the average minimal length as the length where
the probability that a particle that was in the system at
maximal length has left the system is just 0.5 we find lmin ≈
λ ln {λF/[v� ln(2)]}. For the (constant) velocity we make a
very crude approximation, namely v ≈ γ /2, and we have

lmin ≈ λ ln

[
2λF

γ� ln(2)

]
.
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4 Collective filament dynamics in nematic
filament networks

The whole is more than the sum of its parts.
(Aristoteles)

The goal of this chapter is to summarize the most important findings of our project on the
collective filament motion in filament networks crosslinked by motor proteins. The corre-
sponding manuscript has been published1 in Biophysical Journal. This chapter is based on
and uses parts of this publication [3], which is also reprinted in section 4.5.

4.1 Motivation

The goal of this project was to understand how collective filament dynamics in filament
networks emerges from interactions between individual filaments and motor proteins. This
questions was motivated by the mitotic spindle which is responsible for chromosome segrega-
tion during cell division (for recent reviews see e.g. [99, 140–143]). The spindle is composed,
amongst other things, of microtubules and motor proteins and has a characteristic oval shape
with two poles. It has been observed that the interaction between motor proteins and mi-
crotubules leads to a flux of microtubules towards these poles [101, 202–205]. The idea is
that by crosslinking two microtubules with opposite polarity (“antiparallel microtubules”)
and walking on them in a directed fashion, kinesin-5 motors drive the sliding of these micro-
tubules past each other (see also section 1.1 and Fig. 1.1). In contrast, if kinesin-5 crosslinks
two individual parallel microtubules, they remain static [94]. Transferring these interactions
between a single motor and a pair of filaments to filament networks, one would intuitively
expect that the local sliding velocity of microtubules should strongly depend on the local
polarity in the network, that is, the proportion of antiparallel to parallel interaction partners.

However, this intuition not only contradicts findings in mitotic spindles in Xenopus egg ex-
tract [89–91] but also recent experiments with heavily crosslinked filament gels in vitro [88]: In
the mitotic spindle the polarity along the microtubule axis was measured to vary greatly from
one pole to the other [91] whereas simultaneously the flux of microtubules is rather constant,
especially if dynein, a minus-end clustering motor, is inhibited [89, 90]. The same phenomenon
of a polarity-independent filament velocity was also recently observed in a kinesin-microtubule
gel made of purified components and described in terms of a hydrodynamic theory [88]. With
the help of photo-bleaching, local velocities of microtubules and network polarities were mea-
sured at different positions in the heavily crosslinked filament gel. Intriguingly, it was found
that the local microtubule velocity is largely independent of the local network polarity. Where

1At the time of the original submission of this thesis, the manuscript had been in press in Biophysical Journal.
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does this polarity-independent velocity come from? This question lies at the heart of this
project. Starting from mesoscopic interactions between microtubules due to crosslinking mo-
tors, our goal was to elucidate a biophysical mechanism that determines the relation between
the local filament velocities and the local network polarity.

As mentioned in the abstract of the project, the driving questions are:
How do the local forces between the filaments manifest in terms of collective filament motion?
What is the underlying mechanism determining the relation between the local network polar-
ity and the local filament velocities? How does such a mechanism relate to the experimental
findings of polarity-independent filament velocities?

4.2 Model

We consider the conceptual model as illustrated in Fig. 4.1. The system of size S is effectively
one-dimensional and microtubules are modeled as hard rods of fixed length L� S that can be
either oriented to the left (+) or to the right (−). The microtubules are randomly distributed
in the system and are randomly oriented. Microtubules effectively interact with each other
due to crosslinking by motor proteins (which are not modeled explicitly) and are thereby

set into motion. The velocity of microtubule i oriented to the left/right is denoted by v
(±)
i ,

respectively.

A motor crosslinking two parallel microtubules favors uniform motion of both microtubules
whereas a motor crosslinking to antiparallel microtubules favors a relative velocity 2Vm of
twice the motor velocity Vm between the microtubules (see Fig. 4.1 A for an illustration).
These interactions are motivated by the experimental findings on kinesin-5 described in sec-
tions 1.1 and 4.1 where two parallel filaments crosslinked by a motor protein remained static,
whereas two crosslinked antiparallel microtubules were slid apart by twice the motor velocity.
Assuming a linear force-velocity relation (see e.g. [84–87]), the forces between two parallel
(++
−−) and antiparallel (+−−+) microtubules crosslinked by a single motor are taken to be

F
(++
−−)

ij = Fm

(
v
(±)
j − v(±)i

2 Vm

)
, F

(+−)
ij = −F (−+)

ji = Fm

(
1 +

v
(−)
j − v(+)

i

2 Vm

)
. (4.1)

Here Fm corresponds to the motor force and Fij denotes the force that filament j exerts

on filament i. The force between two parallel microtubules, F
(++
−−)

ij , is zero if their relative

velocity is zero, v
(±)
j −v

(±)
i = 0. In contrast, the force between two antiparallel microtubules,

F
(+−−+)

ij , is zero if their relative velocity is twice the motor velocity, v
(+)
i −v

(−)
j = 2Vm. If the

two microtubules do not move relative to each other v
(+)
i −v

(−)
j = 0, the motor acts with a

force of ±Fm on them.

In principle, each microtubule can interact (be crosslinked) with all microtubules that share
an overlap with it (see Fig. 4.1 C for an illustration). To effectively account for the dimen-
sional reduction of nematic networks in three dimensions to only one dimension in the model,
we introduce a parameter N which denotes the average number of interaction partners per
microtubule. These interaction partners per microtubule are drawn randomly from all pos-
sible interaction partners. Furthermore, we assume that the density of motors is constant
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Figure 4.1 | Illustration of motor crosslinking of microtubules and of the conceptual model
(taken from [3]) A) Interactions between two microtubules (green) due to crosslinking by
a motor protein (red). If the microtubules are oriented in the same direction (left), the
motor resists relative motion of the microtubules because it gets stretched otherwise. In
contrast, if the microtubules are oriented in the opposite direction (right), the motor is not
stretched if the relative velocity between the microtubules equals twice the motor velocity
Vm. B) Sketch of a reconstituted system of motors (springs) and microtubules (elongated
ellipses) in a nematic arrangement where all microtubules are more or less oriented along
one axis. C) Sketch of the quasi-one-dimensional model. Microtubules are modeled as hard
rods which are either oriented to the left (+) or to the right (−). Each microtubule has on
average N interaction partners that are drawn randomly from all microtubules that share
an overlap with the respective microtubule. For instance, the microtubule in the center
of the highlighted region (dark blue) could, in principle, interact with all microtubules in
the highlighted region. From all these microtubules with some overlap, the colored ones
were drawn randomly to interact with the microtubule in the center (parallel interaction
partners are in light blue and antiparallel interaction partners in light red). Two interacting
microtubules exert forces on each other that depend on their relative orientation and relative
velocity. The explicit force-velocity relations are given in A.

and that each microtubule is on average crosslinked by Nm motor proteins. Since we do
not model the motors explicitly, the constant density and the average number of crosslinkers
per microtubule are incorporated by a weighting factor for each interaction, Nm/N/L · Lov,
which is proportional to the overlap Lov between the microtubules. The first term, Nm/N/L,
corresponds to the average number of motors per interaction partner per microtubule length
and the second one weights the overlap between two microtubules.

The velocity v
(±)
i of a specific microtubule i in the network is then determined by the force

balance equation

γv
(±)
i =

∑

j

nij F
(±±)
ij +

∑

k

nik F
(±∓)
ik , (4.2)

where γ denotes the fluid drag coefficient and nij the (effective) number of motors crosslinking
microtubules i and j. The sums run over all parallel and antiparallel interaction partners of
microtubule i, respectively.



70 4. Collective filament dynamics in nematic filament networks

The local network polarity at position x, P (x), is defined by P (x) = ϕ(+)(x)−ϕ(−)(x) where
ϕ(±)(x) denotes the fraction of all filaments that pass through position x and are oriented in
(±) direction, respectively.

4.3 Results

We first examined the system numerically to check whether it captures the most important
findings of the experimental in vitro system [88]. For this purpose, we solved Eq. 4.2 nu-
merically and measured the local filament velocities and the corresponding local polarities in
the network (see Fig. 2 in [3] or in the publication preprint in section 4.5). For biologically
reasonable parameter values (for details see section 3.2 in [3] or in the publication preprint
in section 4.5) and randomly generated networks, we found good agreement with the exper-
imental findings (compare Fig. 2 in our publication and Fig. 2 in Ref. [88]). In particular,
the average filament speed (filled black circles in Fig. 2 in our publication) is independent of
the local polarity. While this suggests that our model can indeed capture the most impor-
tant aspects of the filament dynamics in the in vitro microtubule-motor network, it clearly
contradicts the intuition given in section 4.1. It, thus, remained elusive why the velocity of
the microtubules is polarity-independent.

To gain a better understanding, we developed a non-local continuum theory which explicitly
takes the finite length of microtubules L into account (see also section 3.2 in [3] or in the
publication preprint in section 4.5). To this end, we applied a continuum limit to the local
balance equation, Eq. 4.2:

γ v(±)(x) =
1

L

∫ x+L

x−L
dy

{
f
(++
−−)

parallel(x, y) + f
(+−−+)

antiparallel(x, y)

}
, (4.3)

with local forces

f
(++
−−)

parallel(x, y) = N̂m(x, y) ·N ϕ(±)(y) · F (++
−−)(x, y) , (4.4a)

f
(+−−+)

antiparallel(x, y) = N̂m(x, y) ·N ϕ(∓)(y) · F (+−−+)(x, y) . (4.4b)

Here, F (++
−−)(x, y) and F (+−−+)(x, y) correspond to the continuum versions of Eq. 4.1, e.g.

F (++
−−)(x, y) = Fm [v(±)(y) − v(±)(x)]/(2 Vm). They denote the forces that a microtubule

at position y exerts on a microtubule at position x (depending on the relative orienta-
tions). N̂m(x, y) represents the average number of motors that crosslink a pair of fila-
ments located at positions x and y. As mentioned in section 4.2, this number is given by
N̂m(x, y) = Nm/N · Lov/L: Since there are on average Nm motors per filament and N in-
teraction partners, on average Nm/N/L motors crosslink a pair of filaments per length of
the microtubule. Furthermore, the number of crosslinking motors scales with the size of the
overlapping region, Lov = L−|x−y|. Finally, N ϕ(±)(y) corresponds to the average number of
parallel/antiparallel interaction partners at position y under the assumption that the network
is dense enough and that there are at least N interaction partners available everywhere: It
corresponds to the total number N of interaction partners weighted by the fraction of paral-
lel/antiparallel interaction partners, ϕ(±)(y), respectively. In terms of the filament densities
this fraction is given by ϕ(±) = ρ(±)/(ρ(+) + ρ(−)).
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The coupled integral equations for the force balance in the form of Eq. 4.3 do not reveal much
insight, yet. To proceed, we restricted our analysis to systems whose size S is large compared
to the filament length L and compared to other intrinsic length scales of the system (see
below). For this case, it was possible to derive an explicit (non-local) force-balance equation
from the coupled integral equations – against all first expectations. For this purpose, we
first decoupled the integral equations and then represented the resulting equation in Fourier
space. Finally, we made us of complex calculus to perform the Fourier back transform (see the
Supplementary Material of Ref. [3] or of the publication preprint in section 4.5 for details). In
the end, this procedure yields an astonishingly simple (approximate) velocity-polarity relation:

v(±)(x) = ±Vm (1− α)
(
1∓Π(x)

)
, (4.5a)

Π(x) =
1

2 lc

∫ ∞

−∞
dy e−|x−y|/lc P (y) . (4.5b)

where 1/α := 1 + 12 (lc/L)2 and α� 1 for biologically reasonable parameters. Furthermore,

lc = L

√
FmNm

24 γ Vm
. (4.6)

This velocity-polarity relation reveals that the velocity of (±) microtubules at position x,
v(±)(x), does not directly depend on the local polarity P (x) but instead on the so-called
“ambient polarity”, Π(x). This ambient polarity corresponds to an average of the local
polarity with a weight (interaction kernel) that decays exponentially with the distance from
the local position x. Depending on the characteristic length of the exponential (the interaction
range), lc, the average is thus effectively taken with respect to a larger or smaller spatial range.
Fig. 3 in [3] or in the publication preprint in section 4.5 illustrates this idea. If the interaction
range lc is large compared to the typical lengthscale of fluctuations in the polarity (A), the
ambient polarity is effectively constant because all fluctuations are averaged out by the large
spatial average. In contrast, for very small lc, the interaction kernel effectively corresponds to
a delta-peak (B) and the ambient polarity profile exhibits the same fluctuations as the local
polarity profile.

As can be seen from Eq. 4.6, the characteristic length depends on the ratio of motor forces
FmNm to the drag in the fluid γ Vm. For large drag in the fluid or small motor forces, lc is
small and, thus, the local velocity is mostly determined by the local polarity. In contrast, for
very small drag in the fluid or very large motor forces, lc is very large and the local velocity
gets more or less independent of the position since it then only depends on the average polarity
of the entire system.

This diverging behavior can be interpreted in terms of a common force propagation mech-
anism: Locally generated forces are propagated through the network over a characteristic
length (lc). For high drag in the fluid (high dissipation) or weak links between the filaments,
the propagation is not very efficient and the local microtubules are mostly influenced by their
direct neighbors. Correspondingly, the local velocity strongly depends on the local polarity,
as expected from the intuitive argument presented in section 4.1. On the contrary, if the fluid
drag (the dissipation) is very small or the network is heavily crosslinked, a force that is lo-
cally applied is translated by the crosslinking motors through the entire network and equally
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affects all microtubules in the network. Intriguingly, for biologically reasonable parameter
values (see section 3.2 in [3] or in the publication preprint in section 4.5), the characteristic
length is considerably larger than the filament length L. In this case we are thus exactly in
the limit of small fluid drag where the local filament velocities get independent of the local
polarity, in agreement with the experimental finding of Ref. [88]. In conclusion, this perspec-
tive offers a solution to the seemingly contradictory behavior of heavily crosslinked networks
(which exhibit a polarity-independent velocity) and the first intuition we gained from a purely
local point of view (according to which the filament velocity should strongly depend on the
local polarity).

Furthermore, we used the velocity-polarity relation, Eqs. 4.5a and 4.5b, to make experimen-
tally testable predictions. To this end, we considered an (idealized) experimental setup where
a nematically ordered network with periodic boundary conditions is generated by randomly
placing and orienting microtubules in the system. Despite the random orientation, the polar-
ity at different positions is not independent since the microtubules have a finite length: One
microtubule not only influences the polarity at its midpoint position but everywhere along
its length. The polarities at distances less than one microtubule length L apart are thus pos-
itively correlated. As a result, the polarity profile is not completely random but correlated
on lengths smaller than the microtubule length L (for a typical profile please refer to the
Supplementary Material of our publication [3] or of the publication preprint in section 4.5).
We quantified this correlation structure in terms of a set of conveniently chosen independent
random variables. This representation enabled us to derive an analytic expression which
relates the distribution of the local velocities to the distribution of the local polarities:

Var[v/Vm]

Var[P ]
= (1− α)2

[
1− 3lc

2L

(
1− e−L/lc

)
+

1

2
e−L/lc

]
, (4.7)

where Var[P ] = Var[P (x)] = 〈P (x)2〉 − 〈P (x)〉2 is the variance of the local polarity and
Var[v/Vm] = Var[v(x)/Vm] is the variance of the (normalized) velocity v/Vm measured in
units of the motor velocity. This analytic expression thus relates the width of the velocity
distribution to the width of the polarity distribution. Intriguingly, the ratio of the two widths
only depends on the characteristic length lc but not on other factors such as the density of
microtubules. The functional dependence of the ratio of the standard deviations is shown in
Fig. 5B of our publication [3] and in the publication preprint in section 4.5. It is the smaller,
the larger the characteristic length lc. Intuitively, if the characteristic length is large, the
local velocities are determined by an average over a large spatial region and are, thus, less
dependent on local fluctuations. As a result, the distribution of local velocities is narrower.
In contrast, if the characteristic length is small, the distribution of the local velocities reflects
the variance in the local polarities.

It would be very enlightening to test this prediction in in vitro experiments of purified com-
ponents, similar to the one performed in Ref. [88]. While it might be difficult to modify the
characteristic length lc, Eq. 4.6, by adjusting the motor parameters, it could be feasible to
change the drag in the fluid. Thereby, lc could be changed without affecting other prop-
erties of the system and one could test whether the distribution of local velocities changes
accordingly. We believe that the type of data required for such experiments is, in principle, al-
ready available. However, it might prove challenging to record enough statistics to accurately
determine the standard deviations (or distributions).
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Taken together, our conceptual model reveals a mechanism for force propagation which sug-
gests that locally generated forces are propagated over a characteristic length through the
network. The value of this characteristic length (which corresponds to the efficiency of prop-
agation) depends on the ratio between crosslinking forces in the network and the drag in
the surrounding fluid. In fact, an extension of this analysis to different types of crosslinking
motors such as passive or oppositely moving ones (see Supplementary Material of our publi-
cation [3] or of the publication preprint in section 4.5), provides a more precise interpretation
of the characteristic length lc: While the directionality and magnitude of the filament veloc-
ities result from a competition between the different active motor contributions, all motors
contribute cooperatively to the effective friction between microtubules and thus to the force
propagation. Consequently, the characteristic length is determined by the ratio of the overall
internal friction between microtubules (which increases with the number of motors irrespec-
tive of whether they are active or not) as compared to the drag in the fluid. In terms of
this characteristic length, the mechanistic perspective on collective filament motion presented
here constitutes a solution to the seemingly contradictory behavior of heavily crosslinked net-
works [88–91] as compared to dilute systems [96–98], which behave according to our initial
intuition.

4.4 Key points

From my point of view, there are three take-home messages:

• Our analysis suggests a mechanism for force propagation through filament networks:
Owing to the crosslinking of microtubules by motor proteins, locally generated, active
forces are propagated over a characteristic length through the network.

• The characteristic length (or interaction range) is given by the ratio of the internal
friction between microtubules due to crosslinking and the dissipation (drag) in the fluid.

• For heavily crosslinked filament gels, the motor forces between the filaments are very
high and all microtubules in the network effectively interact with each other. As a
result, the local velocity is largely independent of the locally generated forces and rather
depends on global network properties.

In the spirit of the quote by Aristoteles at the beginning of the chapter, the force propagation
mechanism can be seen as a truly collective and non-local effect which highlights again that
the “whole is more than the sum of its parts”.
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4.5 Publication: A mechanistic view of collective filament motion
in active nematic networks, Biophysical Journal 118, 2 (2020)
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ABSTRACT

Protein filament networks are structures crucial for force generation and cell shape. A central open
question is how collective filament dynamics emerges from interactions between individual network
constituents. To address this question we study a minimal but generic model for a nematic network
where filament sliding is driven by the action of motor proteins. Our theoretical analysis shows how the
interplay between viscous drag on filaments and motor-induced forces governs force propagation through
such interconnected filament networks. We find that the ratio between these antagonistic forces
establishes the range of filament interaction, which determines how the local filament velocity depends
on the polarity of the surrounding network. This force propagation mechanism implies that the
polarity-independent sliding observed in Xenopus egg extracts, and in vitro experiments with purified
components, is a consequence of a large force propagation length. We suggest how our predictions can be
tested by tangible in vitro experiments whose feasibility is assessed with the help of simulations and an
accompanying theoretical analysis.

SIGNIFICANCE

Cells perform a variety of vital tasks ranging from cell division to motion and force generation. These
abilities are intrinsically dynamic and rely on active network structures consisting of cytoskeletal
filaments and crosslinking motor proteins. How does collective dynamics at the macroscopic level emerge
from interactions of individual filaments and motor proteins? We address this open question through a
conceptual model for motor-induced motion in networks of interconnected filaments. A prominent
representative of this class of structures is the mitotic spindle where motor-driven filament flux is
essential to maintain shape and functionality. Through theoretical and numerical analysis, we identify a
mechanism which qualitatively accounts for experimental observations of both the spindle and of systems
with purified components.
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1 Introduction

Living cells have the remarkable ability to actively change their shape, and to generate forces and
motion. A key component enabling cells to exhibit these stunning mechanical properties is the
cytoskeleton. This structure is built out of various proteins and forms diverse functional networks
consisting of polymer filaments such as actin and microtubules, motor proteins, and associated
proteins [1,2]. The motor proteins expend chemical energy to generate forces that act on the cytosceletal
filaments [3–5]. In particular, motors that have two binding domains, e.g. kinesin-5, can walk along two
filaments at once, causing filaments of opposite polarity to slide past one another [6].

To understand the non-equilibrium physics underlying the dynamics of motor–filament systems, it
has proven fruitful to study reconstituted systems of purified components in vitro [7–10]. Despite their
reduced complexity, these systems still self-organize into intricate patterns and structures reminiscent of
those found in living cells. But how is their collective behavior at the macroscopic level linked to the
interactions between individual filaments and motors? What are the underlying mechanisms? To provide
an answer, we focus here on a generic class of systems in which filaments exhibit nematic order and
motors drive relative sliding of filaments. A prominent representative of this class is the poleward flux of
microtubules in Xenopus mitotic spindles [11–13]. This process has been attributed to antiparallel,
motor-driven interactions between filaments, especially if the motor protein dynein is
inhibited [11,14,15]. A quite puzzling observation made in these systems was the correlation — or
rather, the lack of correlation — between filament speed and network polarity, i.e. the ratio of parallel to
antiparallel filaments. Although filament motion is induced by sliding antiparallel filaments past each
other, polarity was observed to have barely any influence on the filament speed [14,16,17]. This
surprising behavior was recently replicated in a system of purified components composed of the
kinesin-14 XCTK2 and microtubules, and interpreted in terms of a hydrodynamic theory for heavily
crosslinked filament networks [18]. These observations are at variance with previous predictions for
dilute filament networks, where filament motion depends linearly on the local polarity [19–21]. How can
these conflicting results be reconciled? What are the biophysical mechanisms determining the relation
between filament speed and network polarity?

To gain insight into these important questions we study a minimal but generic model consisting of
nematically ordered cytoskeletal filaments (like microtubules) and molecular motors (like kinesin-5) that
are capable of crosslinking and sliding antiparallel filaments apart. Our mathematical analysis of this
theoretical model shows that the interplay between motor-induced forces and viscous drag acting on the
filaments determines the relation between filament velocity and the polarity of filaments. Depending on
the relative strengths of these forces, we find that the velocity–polarity relation varies continuously
between a local and a global law. Our theory reveals the mechanism that underlies this relation between
filament velocity and network polarity: For high motor-induced forces and small fluid drag, local forces
on the filaments propagate through the strongly interconnected network without dissipation and thereby
influence the overall network dynamics. In contrast, for small motor–induced forces or high fluid drag,
local forces are quickly damped and only influence the local dynamics. This mechanism provides a
deeper understanding of the link between collective filament dynamics and molecular interactions.
Moreover, it reconciles previously conflicting results for the velocity-polarity relation in the limit of
dilute [19, 20,20] and heavily crosslinked systems [14,18,22]. Strikingly, our theoretical analysis shows
that the insensitivity of filament velocities to changes in the network polarity, which was reported for the
spindle [14, 16] and in vitro systems [18], occurs in a biologically relevant parameter range. In addition
our theory predicts how the ratio between the spectrum of measured polarities and filament speeds
depends on the ratio of drag to motor-induced forces in the system. We suggest an in-vitro experiment
to validate those predictions. The feasibility of this experiment is assessed with the help of computer
simulations and an accompanying theory.
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2 Methods

Biophysical agent-based model of motor-induced filament movement

We are interested in understanding how the interplay between viscous drag and molecular forces between
cytoskeletal filaments, mediated by molecular motors, drives the internal dynamics of filament networks.
Specifically, we focus on reconstituted in vitro systems consisting of microtubules and motors capable of
crosslinking neighboring filaments and sliding them apart, c.f. Fig. 1 A, B. Such motor proteins can walk
on both filaments simultaneously, so that the forces generated between filaments depend on their relative
orientation (Fig. 1 A). In vitro such microtubule-motor mixtures were observed to self-organize into a
nematic network, where neighboring filaments may be disposed approximately parallel or antiparallel
[18].
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Figure 1. Biophysical model for motor-driven filament motion. (A) Microscopic, motor-mediated
interactions between microtubules. Neighboring microtubules are connected by motors (red) which walk
towards the microtubule’s (green) plus end with velocity Vm. A motor exerts zero force if filament
motion is such that the motor is not stretched. (A -left) A motor connecting two parallel microtubules
counteracts relative motion between the filaments. (A -right) In contrast, two antiparallel microtubules
connected by a motor are slid apart. The force falls to zero once their relative velocity equals twice the
motor velocity (�2 Vm). (B) Sketch of a microtubule-motor mixture in a nematically aligned state. The
springs denote motors crosslinking neighboring filaments. The highlighted region includes all interactions
of the center microtubule. (C) The one-dimensional model system. Possible interaction partners of the
microtubule in the center (dark blue) are in the highlighted region. To account for the reduced number
of interaction partners in the experimental filament network, we draw on average N out of all possible
partners to interact (interaction partners are highlighted in color, parallel interaction partners in light
blue and antiparallel interaction partners in light red).

Motivated by the nematic order of these filament networks, we set up a biophysical agent-based model,
which is effectively one-dimensional. We consider a system of size S where the filaments (microtubules)
are assumed to be rigid polar rods of fixed length L, oriented with their plus end either to the left (+) or
right (�); see Fig. 1 C. Hence, the dynamics of each polar filament i is determined (solely) by its velocity

v
(±)
i . Relative motion between filaments is caused by molecular motors that walk on these crosslinked

filaments and thereby exert forces. In-vitro assays involving pairs of isolated microtubules cross-linked by
kinesin-5 motors reveal that: (a) Kinesin-5 has the ability to walk simultaneously on both microtubules
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with approximately the zero-load velocity Vm, (b) antiparallel microtubules are pushed apart with a
relative velocity of ⇠ 2Vm, and (c) parallel microtubules remain static [6]. Integrating this information
with experiments showing a linear force-velocity relation for kinesin motors [23–26], we assume that the
forces between two crosslinked parallel (++

��) and antiparallel (+�
�+) filaments per motor are given by

F
(++
��)

ij = Fm

 
v
(±)
j � v

(±)
i

2 Vm

!
, F

(+�)
ij = �F

(�+)
ji = Fm

 
1 +

v
(�)
j � v

(+)
i

2 Vm

!
. (1)

Here Fij denotes the force that filament j exerts on filament i, with Fm signifying the motor stall force;
due to force balance Fij = �Fji. These forces vanish if the relative motion of the filaments does not
induce strain in the crosslinking motors. While for parallel filaments this is the case if the filaments
move at the same speed, a motor walking on antiparallel filaments is not strained if these slide apart

with relative velocity 2Vm, i.e. v
(+)
i � v

(�)
j = 2Vm. On the other hand, the maximal force between two

filaments corresponds to the stall force, Fm, which is defined as the force between two antiparallel

filaments fixed at their relative position (v
(�)
i = v

(+)
j ). In that case the motor heads move apart until the

motor stalls and exerts its maximal force on the filaments. An analogous situation occurs if a motor is

attached to two parallel filaments which move with a relative speed v
(±)
j � v

(±)
i = 2 Vm. So the

corresponding force is also Fm.

The velocity v
(±)
i of a specific microtubule i in the network is determined by the force balance

equation

�v
(±)
i =

X

j

nij F
(±±)
ij +

X

k

nik F
(±⌥)
ik , (2)

where � denotes the fluid drag coefficient and nij the number of motors crosslinking microtubule i and j.
The sums run over all parallel and antiparallel interaction partners of microtubule i, respectively. In
general, the number of interaction partners as well as the strength of their interaction can depend on a
variety of factors. For example, the interactions are influenced by the density of motors in the cytosolic
volume as well as along the filament, or the local structure of the filament network. Inclusion of all these
factors would lead to a microscopic description with many unknown parameters. Focusing on the
mechanistic basis of filament motion here, we make the following assumptions (c.f. Fig. 1 C): First, we
consider a homogeneous motor density in the cytosolic volume and along the microtubules. Thus, we
describe motors effectively by a constant density, with on average Nm motors per filament. Second, we
assume that all filaments have on average N interaction partners that are drawn randomly. This on
average accounts for the limited number of neighbors in the three-dimensional network structure. Finally,
note that we neglect hydrodynamic interactions between the filaments. A priori, it is not clear whether
such interactions would not change the dynamics. However, in a recent study on a motor-filament system,
it turned out that the experimental results are well described by a theory neglecting hydrodynamic
interactions [27]. Presumably, this is due to “hydrodynamic screening” in dense systems [28].

3 Results

3.1 A local mean-field approximation predicts strong velocity-polarity
sensitivity

To gain initial insight into the dynamics of microtubules, we simplify the system even further using a
local, continuum mean-field approximation that neglects any lateral displacement between crosslinked
filaments. In the continuum description, each microtubule i is identified by its midpoint position xi. As
a crude simplification, we assume that all crosslinked, equally oriented filaments passing through position
x move at (roughly) the same velocity v(±)(x). This entails that the forces between all parallel filaments,

F (++
��)(x), vanish. Denoting the fraction of filaments at position x oriented in (±) direction by '(±)(x),
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Eq. 2 then simplifies to �v(+)(x) = Nm'(�)(x)F (+�)(x) and �v�(x) = Nm'(+)(x)F (�+)(x) with Nm

denoting the number of motors per filament as above. Inserting the force velocity equation, Eq. 1, and
solving for the velocity yields v(+)(x) / 1 � P (x) and v(�)(x) / 1 + P (x), where we defined
P (x) = '(+)(x) � '(�)(x) as the local network polarity at position x. Hence, the central result of this
local mean-field analysis, which will ultimately turn out to be oversimplified, is a linear dependence of
the local velocities on the local polarity. This result corresponds to the intuition that forces between
filaments — and their relative motions — strongly depends on their relative orientation. In particular,
while antiparallel interactions between two filaments introduce motion of both filaments, parallel
filaments remain static. As a consequence, filaments with a higher number of antiparallel interactions are
expected to exhibit an enhanced speed. However, as we will see next, this intuition is in conflict with
numerical simulations (in the biologically relevant parameter regime) as well as with experimental
findings for heavily crosslinked filament gels [18].

3.2 The agent-based model can describe the weak velocity-polarity
sensitivity

To test whether our model is capable of describing the observations in heavily crosslinked filament
networks, we solved the full set of coupled linear equations (Eq. 2) for a one-dimensional network
numerically. In order to compare our results to experimental data, we assessed the model parameters as
follows: First, we determined the mean number of interaction partners per filament. The typical
maximal distance between two microtubules connected by a sliding motor is estimated to be of the order
of the tail length of kinesin-5, ⇠ 0.1µm, [5] plus two times the microtubule radius, ⇠ 0.024 µm, [29].
Together with the typical microtubule length, estimated to be ⇠ 6� 7 µm, these values yield an
interaction volume of approximately 1/3 µm3. Fürthauer and collaborators argue that the number
density of filaments in their experimental setup is approximately 17/µm3 [18]. So, all in all, we estimate
that there are N ⇡ 5.5 interaction partners per filament. In an analogous manner, we assessed the
number of microtubules in our one-dimensional representation of the experimental chamber of length
400 µm to be ⇠ 400. Those filaments are placed randomly as described below (In silico study: Random
polarity field) and experience a drag coefficient of � = 0.5 pN s/µm [30–32]. As motor parameters we use
Vm = 20nm/s [6], Fm ⇠ 1 pN [5] and Nm = 25 as the average number of motors per filament [18].

Using these parameters we performed numerical simulations, and found good agreement with
experimental results (compare Fig. 2 and Fig. 2 in Ref. [18]). In particular, the average filament speed
(filled black circles in Fig. 2) is found to be independent of the local polarity. This clearly contradicts the
local mean-field theory as discussed above (see section “A local mean-field approximation predicts strong
velocity-polarity sensitivity”). To assess why this simplified local view is misleading, we next give a
comprehensive mathematical analysis of the full agent-based model.

3.3 Non-local continuum theory

It is evident that in the simplified local mean-field analysis discussed above we neglected the finite
extension of filaments. Actually, two filaments which pass through the same location do not necessarily
have the same midpoint position. While they share some overlap, they will interact with different
neighbors at different positions. If all filaments have the same length L, a filament with midpoint at
position x can interact with filaments whose midpoints lie in the interval [x � L, x + L] (cf. Fig 1 C). In
this way, the velocities of filaments located at different spatial positions are coupled, leading to non-local
correlation effects that could explain the weak dependence of filament speed on local polarity.

Motivated by this heuristic argument, we set out to formulate a continuum theory that quantifies the
non-local coupling between the filament velocities (v±(x)) and densities (⇢(±)(x)). To this end, we
rewrote the local balance equation, Eq. 2, assuming a continuum limit.

� v(±)(x) =
1

L

Z x+L

x�L

dy

⇢
f

(++
��)

parallel(x, y) + f
(+�
�+)

antiparallel(x, y)

�
, (3)
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Figure 2. Local microtubule speed vs. local polarity obtained by numerically solving the full set of
coupled linear equations (Eq. 2) for a one-dimensional microtubule network. The microtubule network is
generated as described in section In silico study: Random polarity field. Gray dots represent individual
measurements, black dots show the average speed binned for local polarities (bin size �P = 0.1). In
contrast to the oversimplified discussion (dashed - dotted lines), the velocity does not depend linearly on
the local polarity. Instead, the average speed is mostly independent of the local polarity. Note that the
vertical stripes are artefacts arising from the discrete nature of the agent-based simulation: Due to the
finite number of filaments in an interval [x, x + �x] the polarity can only take on discrete values.

where the local forces are given by

f
(++
��)

parallel(x, y) = N̂m(x, y) · N '(±)(y) · F (++
��)(x, y) , (4a)

f
(+�
�+)

antiparallel(x, y) = N̂m(x, y) · N '(⌥)(y) · F (+�
�+)(x, y) . (4b)

Here, the force a motor exerts on the filaments it crosslinks is simply given by the continuum version of

Eq. 1, e.g. F (++
��)(x, y) = Fm [v(±)(y) � v(±)(x)]/(2 Vm). The second factor in Eq. 4 accounts for the

expected number of interaction partners at position y, given by the number fraction of filaments with the
respective polarity '(±)(y) multiplied by the average number N of interaction partners: N '(±)(y). For
this functional form to apply, we implicitly assumed that the filament network is not sparse, i.e., that
there is always a sufficient number of interaction partners, namely more than N , available. The number
fraction can be written in terms of the filament densities as '(±) = ⇢(±)/(⇢(+) + ⇢(�)). The first factor
in Eq. 4, N̂m(x, y), specifies the average number of motor proteins mediating the interaction between a
pair of filaments located at positions x and y. This number is determined by the size of the overlapping
region, Lov = L � |x � y|, and the number of motors per filament, Nm. Since all the available motors on
a filament have to be shared among all of its N interaction partners, only Nm/N are available for the
interaction with any specific filament. Hence, assuming a uniform motor distribution along each
microtubule, the effective number of motors crosslinking a filament pair is on average given by
N̂m(x, y) = Nm/N · Lov/L.

Based on this non-local continuum representation of our agent-based model, we seek a quantitative
understanding of how the opposing forces in the filament network give rise to collective (uniform) motion.
Ultimately, our goal is to provide an explicit expression relating the polarity and velocity fields.
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3.4 Analytic solution for motor-induced filament movement

In this section, we present an analytic solution to our non-local continuum description (Eq. 3). We
restrict our analysis to the limit where the system size is large compared to the filament length L and to
all other intrinsic length scales of the system we might encounter in the course of the mathematical
analysis. Making use of complex calculus, in this limit it is possible to find an explicit expression for the
velocity field v(±)(x) in terms of the polarity field P (x). This expression, thus, constitutes a
velocity-polarity relation which quantifies how the polarity field affects the velocities.

In an experimentally reasonable parameter regime one finds an approximate expression which reads
(for a detailed analysis see SI):

v(±)(x) = ±Vm (1 � ↵)
�
1 ⌥⇧(x)

�
, (5a)

⇧(x) =
1

2 lc

Z 1

�1
dy e�|x�y|/lc P (y) . (5b)

where 1/↵ := 1 + 12 (lc/L)2; for biologically plausible parameter values one has ↵ ⌧ 1. Importantly,
Eq. 5a shows that the motion of filaments is neither solely dependent on the local polarity nor fully
independent of the polarity field. Instead, the local filament velocities, v(±)(x), now depend in a
non-local way on the polarity, P (y), as specified by the convolution integral (weighted average), ⇧(x),
with an exponential kernel (weight) ⇠ e�|x�y|/lc . To emphasize this non-local dependence of the
velocities on the polarity, we refer to ⇧(x) as the ambient polarity in the following. The characteristic
interaction range lc, over which the polarity field is averaged, is given by

lc = L

s
Fm Nm

24 � Vm
. (6)

It is set by the ratio of the total force exerted by motors between microtubules, Fm Nm, to the drag
imposed on the microtubule by the surrounding fluid, � Vm. Furthermore, it can be interpreted as the
length scale over which motion generated by antiparallel filament sliding is propagated by parallel and
antiparallel filament interactions through the network. As a result, the interaction range lc reflects the
antagonism between motion-propagating forces (parallel and antiparallel interactions) and the
attenuation of force propagation in the filament network mediated by viscous drag. 1 This antagonism is
captured by the spatial average of the polarity field which effectively corresponds to a low-pass filter.
Due to averaging over local polarities, high-frequency fluctuations in the spatial polarity profile are
filtered out and, hence, do not contribute to the velocity. Explicitly, by Fourier transforming Eq. 5b we
find a Lorentzian Fourier weight

⇧k = Pk
1

1 + (klc)2
, (7)

where k denotes the wave number. Hence, the characteristic frequency of the low-pass filter is
proportional to the reciprocal of the characteristic length, 1/lc, implying that the larger lc the stronger
the filter and the less relevant local fluctuations in the polarity. To put it another way, the speed of a
filament at position x depends only on the local “view” of the polarity field within a range defined by lc
(Fig. 3).

To gain an impression of how the interplay between the different forces in the network leads to the
non-local effects, it is helpful to consider the limiting cases of large and small lc, respectively. For large
lc, motor forces dominate viscous drag (FmNm � �Vm). Then, either due to weak dissipation or strong
motor-mediated filament coupling, parallel and antiparallel crosslinked filaments translate the motion,
generated by interactions between antiparallel filaments, over long distances (⇠ lc). As a result, motion

1An insightful intuitive explanation for the characteristic length lc can be found in section “Extension of the analysis to
systems with several different types of crosslinking motors” in the SI. It relies on an analysis of systems with several types of
motors which proposes a clear separation of the forces acting on microtubules: Active forces which determine the magnitude
of the filament speed and passive friction forces between microtubules that determine the force propagation in the network.
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Figure 3. Typical polarity field, P (x), and two choices of interaction kernel, exp(�|x � y|/lc), charac-
terizing global and local polarity dependence, respectively. Filaments positioned in a range of lc around
x contribute to the motion of microtubules at x. Depending on the ratio of average motor force exerted
on a microtubule to attenuation (drag of microtubules in the fluid), the characteristic propagation length
lc takes different values. (A) For large lc and polarity fields that vary randomly on length scales smaller
than lc, this averaging yields a roughly constant ambient polarity profile, ⇧(x), and hence a roughly
constant velocity profile. On a microscopic level, this corresponds to a heavily crosslinked filament
network (inset). (B) In the limit of small lc only the local environment, i.e., the direct interaction
partners, has an influence on the microtubule motion. The ambient polarity field (velocity field) varies as
the polarity field varies.

generated at one position in the network propagates through the entire network. In the asymptotic limit
lc ! 1, the velocity-polarity relation (Eq. 5a) reduces to v(±) = ±Vm

2, confirming recently published
findings for a heavily crosslinked network [18]. In contrast, for small lc (FmNm ⌧ �Vm) force generated
at a certain position in the network has only a local effect. Forces generated by antiparallel interactions
cannot propagate through the network either due to strong dissipation or a lack of filament interactions.
In this limit, the velocity-polarity relation reduces to the result obtained with the local mean-field theory
discussed in A local mean-field approximation predicts strong velocity-polarity sensitivity. This relation
agrees with the velocity-polarity relation found for dilute filament networks where only local bundles of
filaments are considered [20,21] 3.

3.5 Interpretation of the velocity-polarity relation

With regard to previous results, our considerations offer a solution to the seemingly contradictory
behavior of dilute and heavily crosslinked networks. More specifically, our results identify a common
mechanism for collective filament dynamics: Due to the finite extension of the microtubules, one
microtubule can be crosslinked with several others whose center positions are spread over a region up to
twice the microtubule length (Fig. 1C). As a result, although microtubules at different positions might in

2for zero overall polarity
3Care has to be taken when comparing our result to the dilute limit: We restricted our discussion to the case of sufficient

number of interaction partners, whereas usually for dilute systems disconnected patches of filaments are considered. For a
more comprehensive discussion on how our results are related to results for dilute systems we refer the reader to the SI.
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fact not be directly linked by a motor, an interaction between them can be mediated by successive
crosslinks through a chain of microtubules. In this way, the velocity of microtubules at one position
influences the velocity at a different position and information on the local polarities propagates through
the system. How far this information propagates (lc) depends on how “effectively” movement at one
position is translated into movement at a different position. The greater the efficiency, the smaller the
ratio between the passive drag on microtubules in the fluid (and thus the attenuation) and the average
maximal force exerted on one microtubule by all motors linking it to other microtubules.

Taken together, our results shed light on the question of what determines the local speed of
microtubules in a nematic network: Generally, it is neither the local polarity, P (x), that determines the
velocity of microtubules at a certain position nor the overall polarity in the system, Pglob. Instead the
ambient polarity, ⇧(x), is informative. The ambient polarity corresponds to an average of the polarity
with a weight that decays exponentially with the distance from the position of interest (see Eq. 5b). The
characteristic decay length, lc, is proportional to the filament length L, and increases with the ratio of
the motor-force on a microtubule, FmNm, to the fluid drag, �Vm. In general, for a finite decay length
and a spatially varying polarity profile, the ambient polarity also varies in space. As can be inferred from
Eq. 5b, for larger values of lc, a larger region of space contributes to the ambient polarity (see also
Fig. 3). Accordingly, the ambient polarity then corresponds to an average of the local polarity over more
positions. As a result, for a fixed spatial polarity profile, the range of values of the ambient polarity
decreases with increasing characteristic propagation length lc. Due to the linear relationship between the
velocities and the ambient polarity, Eq. 5a, the same holds true for the range of velocities.

In the following, we illustrate these predictions with the help of two examples. First, we consider a
spatially linear polarity profile. Besides being an instructive case, this polarity profile is of biological
relevance. It resembles the measured, approximately linear polarity profiles in the mitotic spindle
(see Discussion and Conclusion). As a complement, the setup of the second example is designed to mimic
typical in vitro experiments. In order to make testable predictions we analyze the suggested (idealized)
experiment in detail and focus on quantities which we believe to be accessible in experiments.

3.6 A simple example: The linear polarity profile

Our theory predicts that the range of velocities decreases with increasing characteristic propagation
length, lc. To demonstrate this correlation, we consider a linear polarity profile P (x) = a (x � S/2) in a
finite interval x 2 [0, S] (for details see SI). As motivated above, we describe the local polarity profile in
terms of its Fourier coefficients P̂k. The wave numbers are now discrete, k 2 N, as the system is finite.
The Fourier coefficients of the ambient polarity, ⇧̂k, are given by the Fourier coefficient of the local
polarity, P̂k, times a k-dependent weighting factor: ⇧̂k = P̂k/

⇥
1 + (2⇡klc/S)2

⇤
(see SI). Correspondingly,

the ratio between the range of the local polarity 2Pmax = aS and the range of the ambient polarity
2⇧max can be approximated as (see SI)

⇧max

Pmax
⇡ 1

1 + (⇡lc/S)
2 . (8)

This finding confirms the intuitive expectation that with increasing characteristic length lc the ambient
polarity range 2⇧max (or analogously the velocity range 2⇧maxVm(1 � ↵)), should decrease relative to
the local polarity range, 2Pmax, and the spatial profile gets “squeezed” (Fig. 4). From the approximate
expression, Eq. 8, we infer that for characteristic lengths of the same order as the system size,
lc/S ⇠ O(1), the range of the ambient polarity 2⇧max is only a tenth of the range of the local polarity
2Pmax. Due to the linear relationship between the velocity and ambient polarity, Eq. 5a, this small range
of ambient polarities implies that also the velocity range for equally oriented microtubules is small. As a
result, for lc � S, all equally oriented microtubules move as a collective with approximately uniform
velocity. In particular, there is also movement in regions where locally the polarity is P (x) = ±1,
corresponding to stretches populated only by parallel microtubules.

For in vitro experiments with filament gels or reconstituted systems, it might not be feasible to get
information on the entire spatial polarity and velocity fields. Instead, in typical experiments the local
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Figure 4. “Squeezing” of the ambient polarity in a finite system with reflecting boundary conditions.
(A) Sketch of the linear spatial polarity profile, P (x) = a (x�S/2), x 2 [0, S], together with the ambient
polarity profile, ⇧(x, lc), for two different values of the characteristic length lc/S (normalized by the
system size S). The solid and dashed lines indicate the solutions relevant for (+) and (�) filaments,
respectively. For larger lc, the range of the ambient polarity, 2⇧max, becomes more restricted. (B) Ratio
between the range of the ambient polarity 2⇧max and the range of the local polarity 2Pmax = aS plotted
against lc/S. The curve is well approximated by a Lorentzian decay 1/(1 + (⇡lc/S)

2
) (estimate). For the

exact expression, please refer to the SI. For larger lc/S, the range of the ambient polarity relative to that
of the local polarity falls off rapidly.

polarity and velocity are recorded only at single points in the filament gel [17,18,33]. Data obtained in
this way is similar to that shown in Fig. 2 where one data point corresponds to a polarity-velocity pair
measured at one location in the gel. In the next section, we thus perform an in silico study where we
make single velocity and polarity measurements only and do not measure the entire spatial fields.
Nevertheless, the key idea motivating the setup of the in silico study is the expectation that the
spectrum of measured velocities is squeezed compared to the spectrum of local polarities: Due to the
filtering of short-wavelength modes, extreme values of the local polarity are averaged out and the
velocity profile is smoother than the local polarity profile. In the following, we thus focus on deriving a
relation between the measured distribution of local polarities and velocities.

3.7 In silico study: Random polarity field

The goal of this section is to suggest an experimental setup that should permit the antagonism between
the different forces in the system due to drag and motor-mediated interactions to be explored. To this
end, we performed an in silico study intended to closely emulate the situation in experiments with in
vitro filament gels. Photo-bleaching experiments have proven to be a feasible option to simultaneously
determine sliding velocities and local gel polarity in filament gels [17, 18, 33]. In these experiments, the
fluorescently labelled microtubules in the gel are photo-bleached along a line by laser light. Due to the
motion of the filaments in the gel, the bleached line splits into two lines that move to the right (left) and
correspond to left-oriented (right-oriented) microtubules, respectively. From the motion of the two lines,
the local velocity and the local polarity can be inferred simultaneously: The local velocity of the
left-oriented (right-oriented) microtubules is directly obtained from the velocity of the respective line.
Furthermore, the local polarity is determined from the ratio of the bleach intensities of the two lines.
The data so obtained only contains local information about the velocity and polarity but no spatially
resolved information. In order to make experimentally testable predictions, our goal is, therefore, to
derive a relationship between the distribution of measured local polarities and the distribution of
measured velocities for which spatial resolution is not necessary.
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Setup of the in silico study To illustrate how a given polarity distribution affects the velocity
distribution, we consider a specific example, namely a polarity “environment” resulting from random
filament assemblies; for details please refer to the SI. We assume that the filament network is nematically
ordered and filaments are randomly oriented to the left or to the right, and therefore neglect the
possibility that in the experimental system the spontaneous self-organization into the nematic state
might involve some polarity sorting. More specifically, filaments are randomly placed in a chamber of
size S � L with periodic boundary conditions. Since for random filament assemblies there is no reason
why the average number of left- and right-pointing filaments should differ, we choose the number density
for both left- and right-pointing microtubules to be identical: µ(+) = µ(�) = µ. Importantly, due to the
finite extension of the microtubules, the polarity at different positions is not independent. Instead, one
finds a positive covariance for the polarities at distances less than one microtubule length L apart (see
SI). As a result, the polarity profile is not completely random but correlated on lengths smaller than the
microtubule length L (for a typical profile please refer to the SI).

Signature of the ambient polarity in the velocity distribution Based on our theoretical
understanding, we expect that, depending on the characteristic length lc, the distribution of velocities is
squeezed compared to the polarity distribution. This is because, depending on the ratio of the
antagonistic forces, filament motion arises from averaging the polarity over longer (large lc) or shorter
(small lc) distances. As we expect the degree of averaging to be reflected in the distribution of velocities,
the standard deviation of the microtubule velocities should be an interesting quantity to look at in
experiments.

In order to predict the variance of the velocities (ambient polarities) analytically, we describe the local
polarity field resulting from the random placement and orientation of filaments in the “experimental”
chamber by a set of correlated random variables (see SI). Using their correlation structure, we average
the local polarity according to the expression for the ambient polarity (Eq. 5b) and find (see SI)

Var[v/Vm]

Var[P ]
= (1 � ↵)2


1 � 3lc

2L

⇣
1 � e�L/lc

⌘
+

1

2
e�L/lc

�
. (9)

Here, Var[P ] = Var[P (x)] = hP (x)2i � hP (x)i2 denotes the variance of the local polarity, and
Var[v/Vm] = Var[v(x)/Vm] the variance of the (normalized) velocity v/Vm measured in units of the
motor velocity. The above equation implies that the variance of the normalized velocity can be
considerably smaller than the variance of the spatial polarity profile; see Fig. 5B. The ratio between the
two only depends on the characteristic length lc/L and quickly decays with respect to it. For larger lc/L,
the ambient polarity corresponds to an average over a larger region in space. Therefore, its variance
decreases. Due to the linear relationship between the velocity and the ambient polarity, the variance of
the velocity decreases to an equal extent.

In order to compare our results to in vitro experiments we assessed the values for both the
one-dimensional number density of filaments 2µ and the characteristic length lc. From recent
experimental data [18], we estimated 2µ = 6 and lc/L ⇡ 10; see also Section The agent-based model can
describe the weak velocity-polarity sensitivity. Given these estimates, our theory yields a standard
deviation of the polarity distribution �[P ] =

p
Var[P ] ⇡ 0.46, corresponding to a broad range of

observable polarities similar to what is seen in experiments. Using our theoretical results we predict the
ratio between the standard deviations of the local polarity and the normalized velocity to be
approximately �[P ]/�[v/Vm] =

p
Var[P ]/Var[v/Vm] ⇡ 6.3. Thus, we expect the mismatch between the

widths of the two distributions to be clearly visible in experiments.

Polarity and velocity distribution in the in silico study Figure 5A shows a comparison of the
distribution of the local polarity and velocity, as measured in the in silico study (density plot and
histograms) and as predicted analytically (black lines). The density plot shows the measured probability
distribution for all combinations of local polarity and velocity. The histograms for both quantities were
obtained as projections of the density plot onto the respective axis. While the local polarity takes values
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Figure 5. Results for the in silico study. (A) Density plot displaying the probability distribution
for all combinations of local polarity, P (x), and speed, |v(x)/Vm|, as measured in the in silico study
described in section In silico study: Random polarity field. The histograms at the top and on the
right are projections of the density plot on the respective axis. In both cases, the solid line is the
corresponding analytic prediction that was obtained by approximating the distributions by a normal
distribution with the respective predicted mean and variance. In comparison to the local polarity (top),
the velocity distribution (right) is less broad, i.e., it exhibits a smaller but non-zero standard deviation.
The parameters are chosen to match the stochastic agent-based simulation described in section The
agent-based model can describe the weak velocity-polarity sensitivity, namely µ = 3 and lc/L = 10. (B)
Ratio between the standard deviations of the normalized velocity, �[v/Vm], and of the local polarity,
�[P ], plotted against normalized characteristic length, lc/L. The results of the numerical solution of
the continuum equation, Eq. 5b (symbols) for µ = {3, 10, 17, 24} (red stars, blue circles, yellow squares,
green crosses) collapse onto one master curve. The solid line corresponds to the analytic prediction of the
master curve. For larger characteristic length, the standard deviation of the velocity decreases relative
to the standard deviation of the local polarity. Note that for small µ = 3, there is a slight deviation
from the master curve. In this case, the variance of the local polarity is so high that the corresponding,
approximate normal distribution has not decayed to zero at P = ±1 (see histogram at top of A).

in a broad range between ±1 (histogram at top of Fig. 5A), the distribution of the velocity is squeezed to
values of approximately (1 ± 0.2)Vm (histogram at right of Fig. 5A).

The disparity between the two distributions nicely illustrates the filtering of high-frequency modes
discussed in the section Analytic solution for motor-induced filament movement. This filtering is due to
long-range interactions induced by the averaging of the polarity field over a length lc. Since the filtering
strongly depends on the characteristic length lc, the ratio between the standard deviations of the local
polarity and velocity distributions, �[P ]/�[v/Vm], decreases as lc increases (Fig. 5B). It would be
interesting to test this prediction experimentally by changing, for instance, the concentration of the
molecular motors, or the drag in the fluid.

Figure 5B shows how the standard deviation of the velocity distribution, normalized to the standard
deviation of the local polarity distribution, depends on the characteristic length lc. For small lc ⇠ L, the
effective interaction range of microtubules lc is small and the microtubule dynamics is predominantly
determined by the local polarity at their respective position. Conversely, in the limit of large lc, the
dynamics of all microtubules is determined by the same average global polarity. Consequently, all
microtubules then exhibit the same velocity and the standard deviation of the velocity �[v/Vm] decays to
zero. Notably, the normalized curves for different values of the microtubule density, µ, collapse onto one
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master curve when plotted against lc/L (see SI). Thus, in our thought experiment, where we make a
certain assumption with regard to the spatial polarity profile, knowledge of the microtubule density is
not necessary.

Experimental relevance In an experimental filament gel other factors also influence filament
dynamics. For instance, as molecular motors randomly attach and detach from microtubules, even
microtubules at the same position can interact with a different set of microtubules and thus experience
different environments. As a result, different microtubules at the same position might actually have a
(slightly) different velocity. Correspondingly, for two experimental realizations with an identical polarity
profile, the respective average filament speeds at one position x might indeed differ. This effect is not
captured by our continuum description, which assumes deterministic velocity profiles v(±)(x). Thus, we
expect a broader distribution of velocities for in vitro measurements compared to our theoretical
prediction. To gauge the strength of this effect, we compared our theoretical predictions with the results
from stochastic agent-based simulations of the system (for details see SI). We find that the specific value
of the width of the velocity distribution depends on details of the velocity measurement in the
experiments. Nevertheless, irrespective of these details, the velocity distribution is significantly smaller
than the width of the polarity distribution. Similarly, we expect that fluctuations in the concentration of
motors lead to a slight broadening of the velocity distribution but will not change the behavior
qualitatively.

The in silico study considered here clearly simulates an idealized system insofar as we have assumed
that there is no overall spatial structure. The analysis can be readily extended to a broader class of
systems, in which knowledge of the covariance structure of the polarity field (Cov[P ](x, y)) is sufficient
to predict the covariance structure of the velocity field (Cov[v/Vm](x, y)) (see SI). Since this signature of
our results is strongly dependent on the characteristic length, lc, we expect such measurements to
provide insight into network parameters. Actually, even low-resolution information on the spatial
variation of the polarity field could be helpful to test our predictions. As we have seen above, the Fourier
coefficients are suppressed by 1/(1 + (2⇡lck/S)2), k 2 Z, in a finite system of size S (or, equivalently, by
1/(1 + (lck)2), k 2 R, in the infinite system). So, for large lc, the velocity modes with wave vector
k � 1/lc should not be visible in experiments.

4 Discussion and Conclusion

In this work, we have considered a mesoscopic model for microtubule dynamics in a nematic,
motor-crosslinked network. So far, research has focused on either the dilute or heavily crosslinked limit.
Strikingly, the observed behavior in these two cases is qualitatively different: While in the dilute case the
microtubule velocities strongly depend on the local network polarity [20, 21], in the heavily crosslinked
case the velocity has been found to be independent of the polarity [14, 16,18]). These distinct
phenomenologies are puzzling, as the underlying microscopic motor-mediated microtubule interactions
are presumably the same in both cases. Starting from these filament interactions, we have shown how
the interplay between movement resulting from motor-crosslinking and the countervailing effects of fluid
drag determines the sensitivity of the local filament dynamics to the network polarity. Thereby we
provide a better understanding of the essential physical principles that lead to such diverse dynamics.

To this end, we derived a non-local mean-field theory of our system from the microscopic interactions.
This theory enabled us to obtain an explicit analytic expression relating the local microtubule velocity to
the spatial polarity profile. Our key result is that the local velocity depends on the local ambient
polarity, which is given by the averaged polarity a microtubule senses in its environment. More
specifically, the local velocity is given by the convolution of the polarity and an exponentially decaying
interaction kernel with characteristic propagation length, lc. Hence, it is not the local polarity at the
position of a microtubule that determines its motion but rather the entire polarity profile in an
environment of length lc. This finding implies that a one-to-one mapping between the local velocities of
microtubules and the local polarity as shown in Fig. 2 is not the whole story. Instead, in order to predict
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the velocity at a specific location, knowledge of the spatially varying polarity profile in the entire vicinity
is needed. In general, such detailed spatial information appears to be inaccessible with current
experimental techniques. Fortunately, in order to infer the distribution of velocities from the distribution
of local polarities, such detailed information is not essential. For example, in a gel where microtubules
are randomly placed in an experimental chamber and stochastically oriented, our theory predicts how
the variances of the local polarity and of the velocity are related.

The relationship between the velocity and polarity distributions strongly depends on the
characteristic propagation length lc, which is an important emerging length scale in the system. It can
be interpreted as a non-local interaction range of filaments, and is determined by the ratio between the
average motor-driven force on a microtubule and the microtubule’s drag in the fluid. Thus, this intrinsic
length reflects how effectively motion generated at one position is propagated through the interconnected
network of filaments. It strongly depends on the network properties.

We have identified a common mechanism explaining the microscopic origin of both uniform filament
motion in percolated nematic networks and the strong polarity dependence of microtubule motion in
dilute systems: Due to their finite extension, microtubules directly interact with several parallel and
antiparallel neighbors within a spatial ranges equal to twice their filament length. Motors between
parallel microtubules induce a resistance against relative motion and thus promote uniform motion of
crosslinked microtubules. Thereby, motion generated by antiparallel interactions translates through the
percolated network of microtubules even into regions with only parallel and no antiparallel interactions
where a priori no motion is expected. The degree of efficiency of this propagation of motion is quantified
by the characteristic propagation length lc. Hence, it is influenced by the average number of motors per
interaction and the drag of filaments in the fluid, among other factors. Filaments at distances larger
than lc apart can be considered to be part of disconnected patches. That is, for small lc only
motor-crosslinks between nearest neighbor filaments are relevant for filament motion, as in the dilute
limit. For this case, we recover the linear relationship between local polarity and filament
velocity [19–21]. On the other hand, in the limit of large lc, which corresponds to systems where the
patch size exceeds the system size, we find a dependence of the velocity on the global polarity only. Here,
the velocity for equally oriented microtubules is the same everywhere in space. In particular, our results
explain the weak sensitivity of the filament velocities to the local polarity observed in recent
experiments [18] and in the spindle apparatus [11, 14,16].

In particular we predict a strong dependency of the velocity distribution on the characteristic
propagation length. In order to test this prediction, we suggest a practicable in vitro experiment whose
feasibility we assessed with the help of an in silico study intended to mimic the suggested in vitro
experiment. Intriguingly, it is not necessary to determine the entire spatial polarity and velocity profile
to check the validity of our theory. Instead, it suffices to determine the polarity and velocity distributions
by measuring the local velocity and polarity at random positions in the filament gel. When plotting the
ratio of the standard deviations of the polarity and velocity distribution against the characteristic length
lc, we expect the data to collapse onto a master curve, irrespective of the explicit number of filaments in
the experimental chamber (Fig. 5). Furthermore, the ratio of the standard deviations of the polarity and
velocity distributions for a specific experimental setup could be used to identify the characteristic
propagation length lc and, allow one to draw conclusions regarding network features (Eq. 6).

Microtubule motion in mitotic spindles formed in Xenopus egg extract is a prominent example for
polarity-independent sliding. The polarity profile in these spindles is approximately linear, ranging from
zero polarity in the center to highly polar regions at the spindle poles [17]. Nonetheless, microtubules
drift with roughly constant velocity towards the spindle poles, especially if dynein is inhibited. Our
theory can account for this behavior. In particular, the individual velocities deviate only slightly from
the mean velocity if motor-crosslinking is strong, i.e. if the characteristic length exceeds the system size
(see Sec. A simple example: The linear polarity profile). Interestingly, for biologically plausible
parameters the interaction range is of the same order as the length of the spindles formed in Xenopus
egg extracts, lc / 30 � 80 µm. Correspondingly, as seen in Fig. 4(A), the velocity of the poleward
moving microtubules is expected to be slightly smaller close to the pole than in the center of the spindle.
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This variation is due to the dependence of the velocity on the ambient polarity (the local polarity
environment). Taken together, our results suggest that, depending on the value of the characteristic
length compared to the spindle size, the spatial polarity profile and, in particular, the fact that the poles
are highly polar, could be significant for the velocity profile as well. To examine this behavior
experimentally, it would be instructive to investigate the velocity distribution of microtubules in a
dynein-depleted, unfocused spindle as a function of the distance from the spindle boundary.

More generally, there is not only one type of motor present in vivo. Instead several types of motors
can, in principle, crosslink and exert forces on filaments. Extending our analysis to a broader class of
crosslinking proteins does not change our results qualitatively (see SI). The velocity still depends on the
ambient polarity with a characteristic length that is determined by the ratio between the absolute
“friction” between microtubules and the drag in the fluid.

From a broader perspective, it would be interesting to extend our work on nematic networks to a
more general description of filament gels. To this end, it could be promising to start from recent work on
heavily crosslinked filament gels, where a sophisticated hydrodynamic framework has been established
from microscopic properties [18]. This theoretical framework assumes an infinitely large characteristic
length lc, so that motion generated at one position propagates through the whole network without loss.
Our results suggest that incorporating an exponential interaction kernel into this framework can provide
a more comprehensive description of filament motion in crosslinked gels. Such a description would also
offer the chance to understand the transition from heavily crosslinked to weakly coupled gels.
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Supplementary Material: A mechanistic view of collective filament motion
in active nematic networks

M. Striebel1?, I. R. Graf1?, E. Frey
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S1 Details of numerical simulation

Agent-based simulation: To simulate the filament gel, we implement an agent-based simulation consisting of Ml left- and
Mr right-oriented filaments. As described in detail in section In silico study: Random polarity field, we randomly place the
filaments in a one-dimensional box with periodic boundary conditions. Next, a vector I 2 RMr+Ml consisting of the numbers
of overlapping filaments for each filament i is generated. From this vector, a probability vector p 2 RMl+Mr is derived so
that the average number of interaction partners per filament is given by N = Ii pi. Out of the Ii possible interaction partners
of filament i, we accept an interaction with probability pi and reject it with probability 1 � pi. Once the interactions are
determined, we construct a set of Ml + Mr coupled linear equations on the basis of the force balance equation

� vi =
X

j

F parallel
ij +

X

k

F antiparallel
ik , (S1)

and weigh each interaction by the overlap between the filaments. Here j runs over the parallel interaction partners and k over
the antiparallel interaction partners of filament i. The velocities of each filament i are then obtained using matrix inversion.

Continuum simulation: For the continuum simulation, we generate a polarity profile analogous to that in the agent-based
simulation. Then we use our theoretical results (Eqs. 5a, 5b) but perform the integration numerically to obtain the velocity
field.

S2 A continuum model for motor driven filament motion

Here we derive a solution for our continuum model of filament motion. As a starting point, we use the coupled set of integral
equations, Eqs. 3, in the main text which read

� v(+)(x) =
N

L

Z x+L

x�L

dy
N̂m(x, y)

2
{(1 + P (y))F (++)(x, y) + (1 � P (y))F (+�)(x, y)} (S2)

� v(�)(x) =
N

L

Z x+L

x�L

dy
N̂m(x, y)

2
{(1 � P (y))F (��)(x, y) + (1 + P (y))F (�+)(x, y)} , (S3)

where we used '(±) = 1/2(1 ± P (y)).
In general, it is quite challenging to provide an analytic solution to a set of coupled integral equations. Here, however, one
can make use of the fact that the di↵erence of the velocities, v(+) � v(�), takes a quite simple form. Namely,

2 �(v(+)(x) � v(�)(x)) =
N

L

Z x+L

x�L

dy N̂m(x, y){(1 + P (y)) (F (++)(x, y) � F (�+)(x, y)) (S4)

+(1 � P (y)) (F (+�)(x, y) � F (��)(x, y))} .

The di↵erence of the contributing forces reads

F (++)(x, y) � F (�+)(x, y) = F (+�)(x, y) � F (��)(x, y) = Fm

✓
1 +

v(�)(x) � v(+)(x)

2Vm

◆
, (S5)

and is a function of x only.
Substituting Eq. S5 into Eq. S4 and performing the integration yields

v(+)(x) � v(�)(x) = 2 Vm
1

1 + 2 Vm �
FmNm

⌘ 2 Vm(1 � ↵) = const . (S6)

As a result, v(�) is expressed in terms of v(+), and we can use this relation to decouple Eq. S2 and Eq. S3.
The resulting integral equation reads

✏ v(+)(x) � Vm↵ =

Z x+L

x�L

dy

L2
(L � |x � y|)

n
v(+)(y) � v(+)(x) � Vm↵ P (y)

o
, (S7)
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where we introduced ✏ = 2�Vm

FmNm
.

To proceed further, we rewrite v(y) and P (y) in terms of their full Taylor expansions around x and shift v(+) by ↵/✏ Vm,
i.e., v(+) ! v(+) � ↵/✏ Vm.

Performing the integration yields an ODE coupling the velocity to the polarity field. It reads:

 
✏�

1X

k=1

2L2k

(2 + 2k)!

✓
@

@x

◆(2k)
!

v(+)(x) = �Vm↵

1X

k=0

2L2k

(2 + 2k)!

✓
@

@x

◆(2k)

P (x) (S8)

S3 An analytic solution for filament motion in a nematic network

To find a feasible expression relating the velocity and polarity field, we apply the Fourier transformation to Eq. S8. Our
system - recast in v(+)(k) and P (k) - becomes

v(+)(k) = �2Vm↵

✓
1 � cos(Lk)

✏(Lk)2 � 2 + (Lk)2 + 2 cos(Lk)

◆

| {z }
⌘K̂(k)

P (k) = F{K} · F{P} . (S9)

where F denotes the Fourier transformation operator4. From the convolution theorem, we directly find that v(+)(x) is given
by the convolution of K(x) and P (x). So, in order to tackle our original equations, we are left with finding the Fourier back
transformation of K̂(k), i.e., we need to solve

K(x) =
1

2 ⇡

Z 1

�1
dk

✓
1 � cos(Lk)

✏(Lk)2 � 2 + (Lk)2 + 2 cos(Lk)

◆
exp (ikx) . (S10)

To proceed further, we assume that the integral can be performed using the residue theorem, i.e.,

K(x) =
1

2 ⇡

Z 1

�1
dk

✓
1 � cos(Lk)

✏(Lk)2 � 2 + (Lk)2 + 2 cos(Lk)

◆
exp (ikx)

| {z }
f(k)

= i
X

j

Reskj
{f(k)} , (S11)

with the sum running over all poles in the upper half plane (lower half plane) if x > 0 (x < 0). In the following, we will
restrict the discussion to the case x > 0 since the calculations for x < 0 are analogous. Note that we exclude the case x = 0
explicitly, and assume a smooth solution at x = 0. For simplicity, we will use dimensionless variables in the following and
recast k ! kL and x ! x/L.
To find the potential residues, we search for all solutions of the equation

0
!
= k2(1 + ✏) � 2 + 2 cos(k) = k2(1 + ✏) � 4 sin2(k/2) . (S12)

in the complex plane. In the following, we will use k = a + ib with a, b 2 R. Using this notation, the problem of finding
possible residues of f(k) has shifted to finding solutions to the equations

a
p

1 + ✏ = ±2 cosh(b/2) sin(a/2) (S13)

b
p

1 + ✏ = ±2 sinh(b/2) cos(a/2) . (S14)

We split the discussion into (i) real, (ii) imaginary and (iii) complex solutions of Eq.S12. a⇤, b⇤ will denote solutions of the
above equation system.

(i) real solutions (b⇤ = 0) The only real solution of Eq. S12 is given by a⇤ = 0.

(ii) imaginary solutions (a⇤ = 0) Eq. S13 is always fulfilled for a⇤
0 = 0. Moreover, Eq. S14 always has two solutions for

✏ > 0 which can be estimated as b⇤0 = ±
p

24
p

1 + ✏� 24 for small ✏.

4It is also possible to derive Eq. S9 by directly inserting the Fourier transforms of v(+) and P into Eq. S7.
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Figure S1: (A) Comparison of the estimate of the solutions of the equation system Eq.S13,S14 with the solutions obtained
numerically (the results are compared exemplary for ✏ = 0.1). (B) Comparison of two estimates for the imaginary pole with
the corresponding numerical solutions. The gray dashed line indicates the ✏�value for which lc ⇡ L.

(iii) complex solutions (a⇤ 6= 0, b⇤ 6= 0) The complex solutions are not trivial to find. First, note that the discussion can
be split into positive and negative signs of the right-hand side of Eq. S13 and S14.
For a negative sign on the right-hand side, if a, b > 0, cos(a/2) and sin(a/2) have to be negative for the equation system to
be solvable, i.e., we know a 2 (2n⇡, (2n + 1)⇡) with n = 1, 3, 5... .

Investigating Eq. S14 alone, the minimal b⇤(a) is found for a = 2⇡n and can be estimated as b⇤min(2n⇡) =
p

24
p

1 + ✏� 24,
i.e.,b⇤min is close to 0 for small ✏. Moreover, one finds that b⇤(a) is monotonically increasing in the interval a 2 (2n⇡, (2n+1)⇡)
and b⇤(a ! (2n + 1)⇡) ! 1.
Equation S13 implies that cosh(b/2) has to be su�ciently large if a 2 (2n⇡, (2n+1)⇡) with n = 1, 3, 5... . Especially for large
n this means that a⇤ has to be close to (2n + 1)⇡ with n = 1, 3, 5... , i.e., sin(a⇤/2) ⇡ �1 ) b⇤ ⇡ 2arcosh

�
2 n+1

2 ⇡
p

1 + ✏
�
.

Taken together, this yields

(a⇤, b⇤) ⇡
✓

(2 n + 1)⇡, 2arcosh

✓
2 n + 1

2
⇡
p

1 + ✏

◆◆
with n = 1, 3, 5... (S15)

A similar argumentation for a positive sign on the right-hand side of Eq. S13 and Eq. S14 and a, b > 0 yields the same result
for n = 2, 4, 5.... The cases a > 0, b < 0, a < 0, b > 0 and a < 0, b < 0 are analogous.
Taken together, we find the solutions

(a⇤
n, b⇤n) ⇡

✓
(2 n + 1)⇡, ±2 arcosh

✓
2 n + 1

2
⇡
p

1 + ✏

◆◆
(S16)

(a⇤
n, b⇤n) ⇡

✓
�(2 n + 1)⇡, ± 2 arcosh

✓
2 n + 1

2
⇡
p

1 + ✏

◆◆
with n = 1, 2, 3... (S17)

Figure S3 shows a comparison between the numerically found roots and our approximation for ✏ = 0.1.
Since there is an infinite number of poles with arbitrarily large real part, one can not proceed as usual and use the residue
theorem without any additional considerations. So, to make further progress, we continue as follows: First, we show

Z 1

�1
dk f(k) ⇡

Z R

�R

dk f(k) (S18)

for su�ciently large R.
Second, we compute the integration along the path C = {�R ! R ! C1 ! C2 ! �R} according to the residue theorem:

I

C
f(k)dk = 2⇡ i

X

j

Reskj {f(k)} . (S19)

Third, we show that the path in the complex plane gives a vanishing contribution. Then the real Integral
R R

�R
dk f(k) can

be estimated by
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Z R

�R

dk f(k) = 2⇡ i

MX

n=�M

Reskn
{f(k)} (S20)

where kn = k�M ...kM denotes the poles in the interior of the integration path sorted by increasing real part. The notation
is chosen so that k0 denotes the purely imaginary pole.

The first step is straightforward since

Re

⇢Z 1

R

dk

✓
1 � cos(k)

(1 + ✏)k2 � 2 + 2 cos(k)

◆
exp (ikx)

�
<

Z 1

R

dk
2

k2
=

2

R
, (S21)

i.e.,

Z 1

�1
dk

✓
1 � cos(k)

(1 + ✏)k2 � 2 + 2 cos(k)

◆
exp (ikx)

=

Z R

�R

dk

✓
1 � cos(k)

(1 + ✏)k2 � 2 + 2 cos(k)

◆
exp (ikx) + O(

1

R
) .

Next, we aim on showing that there is a path R ! C1 ! C2 ! �R so that the integration along that path gives zero
contribution in the limit of large R.
Usually, if one deals with functions of the form g(k) exp(ixk) one can make use of Jordan’s lemma which states that the
integration along the semicircular contour in the upper half plan (lower half plan) for x > 0 (x < 0) aims to zero for the radius
R ⌘ |k| ! 1. However, if f(k) is rewritten in the form of g(k) exp(ixk) with g(k) = (1� cos(k))/((1+ ✏)k2 � 2(1� cos(k))),
we face the problem that g(k) does not converge uniformly to zero since g(k) has an infinite number of poles in the upper
(and lower) half plane. So, to proceed further we aim on proving that there exists a path so that the contribution of the
contour in the complex plane goes to zero for large radius.
First, note that

Re{Res{f(k)}|k=a+ib} = �Re{Res{f(k)}|k=�a+ib} (S22)

Im{Res{f(k)}|k=a+ib} = Im{Res{f(k)}|k=�a+ib} , (S23)

i.e., if the integration path is chosen in a way to symmetrically include the poles in the upper left and upper right quarter we
know Im{2⇡i

P
j Reskj

{f(k)}} = 0. Hence, if the contour integral (Eq. S19) is calculated explicitly along such a path, the
result has to be real. In the following, we will make use of this fact. To prove that the integration along the contour in the
complex plane goes to zero (for large R), we choose an explicit path along a rectangle as shown in Fig.S3. More concretely,
the vertices are defined by R = 2n⇡, C1 = 2n⇡ + i2n⇡ and C2 = �2n⇡ + i2n⇡ for n 2 N. Since the overall contour integral
is real, we only care about terms which can give a real contribution, i.e., we investigate the real (imaginary) parts of the
integrand for the integration paths parallel to the real (imaginary) axis:

lim
n!1

Z 2n⇡

0

db Im{f(k)|k=2n⇡+ib}

lim
n!1

Z 0

2n⇡

db Im{f(k)|k=�2n⇡+ib}

lim
n!1

Z �2n ⇡

2n⇡

da Re{f(k)|k=a+2n⇡ i} .

To prove that those terms give zero contribution for n ! 1 (and thereby R ! 1), we aim on finding an integrable majorant
of the above expressions, and then swap the integration and the limit. It is possible to show that

Im{f(k)|±2n⇡+i b} < exp (�b x)

Re{f(k)|a+2n⇡ i} < exp (�2n⇡ x) .

Thus, we found an integrable majorant for both paths. Furthermore, since Im{f(k)|2n⇡+i b} = �Im{f(k)|�2n⇡+i b}, the
discussion can be restricted to one of the paths R ! C1 or C2 ! �R. Moreover, as we found an integrable majorant for the
parts of the contour in the complex plane, we can swap the integral and the limit. Since limn!1 |Im{f(k)|2n⇡+i b}| ! 0, the
paths R ! C1 and C2 ! �R give zero contribution to the contour integral. The same holds true for the integration along
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the path C1 ! C2. Thus, the integration along the contour in the complex plane gives zero contribution for n ! 1 and we
can calculate the desired integral by

Z 1

�1
dk f(k) = 2⇡ i

1X

j

Reskj
{f(k)} = 2⇡ Im

8
<
:

0
@Resk0

{f(k)} + 2

MX

j=1

Reskj
{f(k)}

1
A
9
=
; . (S24)

In the last step, we made use of Eq.S22. In the following, we will denote the contribution of the k0 residue to the integral
as f0(x) and the contribution of the sum over all other poles as f1(x) Using the estimated expression for the poles of f(k)
and making use of the fact that b⇤n is large, we find an estimate for the imaginary part of the residue which reads

Im{Reskn{f(k)}} ⇡ exp(�bnx) cos(anx) (S25)

for n = 1...M . Here, we assumed that bnx is su�cient large, i.e., we expect deviations for x ! 0.
For k0 we find the residue (for small ✏)

f0(x) = Resk0{f(k)} ⇡

⇡
2⇡ sinh2

⇣p
24

p
1 + ✏� 24

⌘

sinh
⇣p

24
p

1 + ✏� 24
⌘
� (1 + ✏)

p
24
p

1 + ✏� 24
exp

✓
�
q

24
p

1 + ✏� 24 x

◆
.

So, to find a closed form of the integral, we are left with finding an expression for the sum

f1(x) = 2⇡

1X

n=1

Reskn{f(k)}

= 2⇡

1X

n=1

exp

✓
�2 arcosh

✓
2n + 1

2
⇡
p

1 + ✏

◆
x

◆
cos((2n + 1)⇡ x)

⇡ 2⇡

✓
1

⇡2(1 + ✏)

◆x 1X

n=1

cos((2n + 1)⇡ x)

(2n + 1)2x
(S26)

= ⇡

✓
1

4⇡2(1 + ✏)

◆x

[exp (�3i⇡ x) �(exp(�2i⇡x, 2x, 3/2)) + exp (3i⇡ x) �(exp(2i⇡x, 2x, 3/2))] .

For the approximation we used arcosh(x) ⇡ ln(2x) for large x. Here, �(z, s,↵) =
P1

n=0
zn

n+↵ denotes the Lerch zeta function.
Fig. S3 (A) shows a comparison between our analytic result and the sum over the first 5000 numerically obtained residues.
For a better comparison, we also perform the sum over the approximated residue (Eq.S26) for the first 5000 terms. Moreover,
we compute the ratio of f1/f0 to get insight into how much f1 contributes to the overall integral.
Taken together, this yields the desired expression for the integral and, thereby, an expression for the interaction kernel in
real space which reads

Z 1

�1
dk f(k) =

2⇡ sinh2
⇣p

24
p

1 + ✏� 24
⌘

sinh
⇣p

24
p

1 + ✏� 24
⌘
� (1 + ✏)

p
24

p
1 + ✏� 24

exp

✓
�
q

24
p

1 + ✏� 24 x

◆

+ ⇡

✓
1

4⇡2(1 + ✏)

◆x 
exp (�3i⇡ x) �

✓
exp(�2i⇡x), 2x,

3

2

◆
+ exp (3i⇡ x) �

✓
exp(2i⇡x), 2x,

3

2

◆�
. (S27)

This expression, however, is not particularly intuitive. Therefore, we seek for a simpler and more meaningful expression.
Fig. S3 (B) indicates that f1 is not particularly relevant for the overall integral, i.e., it is promising to use only the 0th
residue to approximate the integral. Moreover, ✏ is known to be small for biologically meaningful parameters. In hindsight,
one can argue that a value of ✏ > 1/12 is not particularly meaningful since for ✏ < 1/12 our result suggests an interaction
range lc < L, implying that the microtubules interact only over a distance smaller than one microtubule length. Therefore,
it makes sense to consider the limit of small ✏. Using only the 0th residue and considering the lowest order of ✏ yields

f(x) ⇡ ⇡

p
3p
✏

exp (�
p

12✏x) . (S28)

Fig. S3 (B) shows the estimate of the imaginary pole in comparison to the more accurate estimate and the numeric result.
Fig. S3 shows a comparison between the numerical solution of the integral, our analytic expression (Eq. S27) and the 0th
residue approximation for small ✏ (Eq. S28).
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Figure S2: (A) Analytic result for the sum over the residues in the complex plane in comparison to the sum over the first
5000 numerically obtained residues. To provide a more accurate comparison, we also compute Eq.S26 for the first 5000
terms. (B) To compare the contribution of the k0 residue and the sum over the other residues to the overall integral, we
plot the ratio f1(x)/f0(x). The dashed line indicates the ✏ value where lc ⇡ L

Finally, making use of the convolution theorem, Eq. S28 and Eq. S9 yield the desired expression for the filament velocity.
Going back to natural variables, i.e., x ! x L and v(+) ! v(+) + ↵

✏ Vm gives the expression used in the main text:

v(+)(x) = Vm(1 � ↵)

✓
1 � 1

2 lc

Z 1

�1
dy P (y) exp

✓
� |x � y|

lc

◆◆
(S29)

where we introduced lc = L/
p

12✏. The occurrence of the absolute value is due to the fact that an integration over the lower
half plane gives an analogous result as compared to the one for the upper half plane.

S4 Extension of the analysis to systems with several di↵erent types of
crosslinking motors

In the main text, we focus our analysis on the case where there is only one type of motor in the system, namely a crosslinking
motor whose two heads are both active and walk to the plus end of the respective microtubule. However, there are also
other types of crosslinking motors, for instance motors with only one active head and one passive one that does not move
on the microtubule (see Fig. S4 for an illustration). Our analysis can be straightforwardly extended to such other types of
crosslinking motors as long as the dominant part of their force generation still happens in the bulk of microtubules and not
at the end:5 More concretely, let us look at a system with five di↵erent types of motors (see also Fig. S4 for an illustration):

• one passive crosslinker with two passive heads: P

• two active crosslinkers with two active heads both moving to the ± end of the microtubule, respectively: A±

• two types of crosslinkers (“mixed”) with one passive head and one active head that moves to the ± end of the
microtubule, respectively: M±.

Furthermore, we again assume a linear force-velocity relation for all motors.

5The latter case is true for motors such as dynein which exhibit a much higher residence time at the microtubule minus ends as compared to
the bulk (e.g. [14]).
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Figure S3: Comparison between numerical integration, analytic approximation and the 0th residue approximation used in
the main text. Note that the deviation between the approximations for larger ✏ is manly caused by the wrong estimate of
the k0 residue.
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Figure S4: Microscopic, motor-mediated interactions between microtubules for di↵erent types of motors. Passive crosslinkers
have two passive heads that do not move along the microtubule. “Mixed” motors have one active and one passive head.

The passive crosslinker does not exert any active forces between a pair of microtubules but resists relative motion of the two
microtubules, irrespective of their relative orientation:

F
(++
��)

P (x, y) = FP

✓
v(±)(y) � v(±)(x)

vP

◆

F
(+�
�+)

P (x, y) = FP

✓
v(⌥)(y) � v(±)(x)

vP

◆
,

where F
(++
��)

P (x, y) is the force a (±) microtubule at position y exerts on a parallel (±) microtubule at position x. Similarly,

F
(+�
�+)

P (x, y) denotes the force a (±) microtubule at position y exerts on an antiparallel (⌥) microtubule at position x. FP

denotes the motor force arising for a relative velocity vP .
The active crosslinker with both heads moving to the (+) end is the one we already described in the main text. It exerts an
active force on antiparallel microtubules and resists relative motion of the two crosslinked microtubules, irrespective of the
relative orientation:

F
(++
��)

A+
(x, y) = FA+

✓
v(±)(y) � v(±)(x)

2vA+

◆

F
(+�
�+)

A+
(x, y) = FA+

✓
±1 +

v(⌥)(y) � v(±)(x)

2vA+

◆
.
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Similarly, the active crosslinker with heads moving towards the (�) end exerts the following forces:

F
(++
��)

A� (x, y) = FA�

✓
v(±)(y) � v(±)(x)

2vA�

◆

F
(+�
�+)

A� (x, y) = FA�

✓
⌥1 +

v(⌥)(y) � v(±)(x)

2vA�

◆
.

FA± denotes the force the motor exerts between two antiparallel microtubules that do not move relative to each other. vA±
corresponds to the motor speed of each head along the microtubule.
Finally, the mixed crosslinkers shows “mixed” behavior. For parallel microtubules they behave on average like any other
crosslinker (see Fig. S4 for an illustration): Consider a situation where two static (+) microtubules are crosslinked. Then,
the mixed crosslinker can be bound either with the active head on microtubule 1 and with the passive one on microtubule 2
or the other way round. In the first case, the M± motor moves microtubule 1 in the ± direction and microtubule 2 in the
⌥ direction. In the second case, it is just the opposite: microtubule 1 is pushed in the ⌥ direction whereas microtubule 2 is
pushed in the ± direction. Since both configurations occur with equal probability, the active contributions does cancel for
parallel microtubules. For antiparallel microtubules, on the other hand, the direction of movement of the (±) microtubule is
always the same, irrespective of which heads is bound to which microtubule. The M± motor moves the (+) microtubule in
± direction and the (�) microtubule in the ⌥ direction. For antiparallel microtubules, the active contributions thus do not
cancel but are equivalent to the A± motor with two active heads. The passive contribution, steming from relative motion of
the microtubules, is always the same: It acts against the direction of motion, irrespective of which head is bound where and
how the relative orientation is.
Taken together, the mixed crosslinker with one active and one passive head behaves similarly to any other crosslinker in the
case of parallel microtubules and similarly to an active crosslinker in the case of antiparallel microtubules:

F
(++
��)

M+
(x, y) = FM+

✓
v(±)(y) � v(±)(x)

vM+

◆

F
(+�
�+)

M+
(x, y) = FM+

✓
±1 +

v(⌥)(y) � v(±)(x)

vM+

◆
,

for the mixed motor M+ with active head moving to the + end, and

F
(++
��)

M� (x, y) = FM�

✓
v(±)(y) � v(±)(x)

vM�

◆

F
(+�
�+)

M� (x, y) = FM�

✓
⌥1 +

v(⌥)(y) � v(±)(x)

vM�

◆
,

for the mixed motor M� with active head moving to the � end. FM± denotes the force a M± motor exerts on two static,
antiparallel microtubules and vM± is the motor speed of the active head.
Summing all the contributions from all motor types, the total force exerted on a (+) microtubule at position x by parallel
(+) microtubules is given by

F (++)(x) =

Z x+L

x�L

dz

L

Lov(x, z)

L
'(+)(z)

✓
NP FP

vP
+

NA+
FA+

2vA+

+
NA�FA�

2vA�
+

NM+
FM+

vM+

+
NM�FM�

vM�

◆⇣
v(+)(z) � v(+)(x)

⌘
=

⌘
Z x+L

x�L

dz

L

Lov(x, z)

L
'(+)(z)C

⇣
v(+)(z) � v(+)(x)

⌘
,

where Lov(x, z) = max(L � |x � z|, 0) denotes the overlap between two microtubules at positions x and z as defined in the
main text. Furthermore, NP , NA± and NM± denote the number of passive P , active A± and mixed crosslinkers M± per
microtubule, respectively. Furthermore, we defined the sum of the absolute force to velocity ratios

C =
NP FP

vP
+

NA+FA+

2vA+

+
NA�FA�

2vA�
+

NM+FM+

vM+

+
NM�FM�

vM�
.

Similarly, the total force on a (+) microtubule at position x by antiparallel (�) microtubules is given by

F (+�)(x) =

Z x+L

x�L

dz

L

Lov(x, z)

L
'(�)(z)

⇣
C
⇣
v(�)(z) � v(+)(x)

⌘
+ D

⌘
,

where we defined D as the sum of the motor forces

D = NA+
FA+

+ NM+
FM+

� NA�FA� � NM�FM� .
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The forces on the (�) microtubules are determined analogously:

F (��)(x) =

Z x+L

x�L

dz

L

Lov(x, z)

L
'(�)(z)C

⇣
v(�)(z) � v(�)(x)

⌘

F (�+)(x) =

Z x+L

x�L

dz

L

Lov(x, z)

L
'(+)(z)

⇣
C
⇣
v(+)(z) � v(�)(x)

⌘
� D

⌘
.

Now, we proceed analogously to the case with only one motor:

�v(+)(x) =

Z x+L

x�L

dz

L

Lov(x, z)

L

⇣
'(+)(z)C

⇣
v(+)(z) � v(+)(x)

⌘
+ '(�)(z)C

⇣
v(�)(z) � v(+)(x)

⌘
+ '(�)(z)D

⌘
(S30)

�v(�)(x) =

Z x+L

x�L

dz

L

Lov(x, z)

L

⇣
'(�)(z)C

⇣
v(�)(z) � v(�)(x)

⌘
+ '(+)(z)C

⇣
v(+)(z) � v(�)(x)

⌘
� '(+)(z)D

⌘
. (S31)

Subtracting those two equations from one another and performing the integral
R x+L

x�L
dz
L

Lov(x,z)
L = 1, we find

�
⇣
v(+)(x) � v(�)

⌘
=

Z x+L

x�L

dz

L

Lov(x, z)

L

⇣
D + C

⇣
v(�)(x) � v(+)(x)

⌘⌘
= D + C

⇣
v(�)(x) � v(+)(x)

⌘
.

As a result,

v(�)(x) = v(+)(x) � D

� + C
, (S32)

which is the generalization of Eq. S6.
As for the original case, this result can be plugged into Eq. S30, e↵ectively decoupling the two equations. It follows that

✏̃v(+)(x) � D

2C

�

� + C
=

Z x+L

x�L

dz

L

Lov(x, z)

L

⇣
v(+)(z) � v(+)(x)

⌘
� D

2C

�

� + C

Z x+L

x�L

dz

L

Lov(x, z)

L
P (z),

where we defined ✏̃ = �/C and used that we can write the densities in terms of the polarity '(±)(z) = (1 ± P (z))/2.
Comparing this expression with the analogous result, Eq. S7, we realize that

✏ =
�

FmNm

2Vm

! ✏̃ =
�

C

Vm↵ = Vm
�

� + FmNm

2Vm

! D

2C

�

� + C

Performing the same steps as above, we can thus conclude

v(+)(x) =
D

2(� + C)

✓
1 � 1

2lc

Z 1

�1
dy P (y)e�|x�y|/lc

◆
(S33)

v(�)(x) = � D

2(� + C)

✓
1 +

1

2lc

Z 1

�1
dy P (y)e�|x�y|/lc

◆
, (S34)

with the characteristic length

lc =
Lp
12✏̃

= L
C

12�
= L

r
NP FP

vP
+

NA+
FA+

2vA+
+

NA�FA�
2vA�

+
NM+

FM+

vM+
+

NM�FM�
vM�

12�
= L

vuut
X

i=P,A±,M±

NiFi

24�vifi
(S35)

with the motor forces Fi, number of motors per filament Ni and relevant motor velocities vi. The factors fi are 1 for A±
and 1/2 for M±, corresponding to the fraction of active heads, and 0 for P due to the convention chosen. The prefactor is

D

2(� + C)
=

NA+FA+ + NM+FM+ � NA�FA� � NM�FM�

2
⇣
� +

P
i=P,A±,M±

NiFi

2vifi

⌘ . (S36)

Thus, the characteristic length is determined by the ratio between the friction in the fluid and the “friction” between all
crosslinked microtubules. This friction is determined by the sum of the passive contribution of all motors, irrespective of
their direction of motion or whether they are active or not. This passive contribution is independent of the motor properties
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as each motor resists relative motion of filaments compared to the favored relative velocity. In contrast, for the maximal
speed of the microtubules D/2/(� + C) the direction of the motors is relevant, as expected: D does not correspond to an
absolute sum of the di↵erent motor types but motors with opposite direction of motion enter with opposite sign, e↵ectively
competing against each other.
On a broader perspective, we conclude that systems with di↵erent types of motors behave qualitatively similarly as the
original system. Their characteristic length only depends on the total passive forces exerted by all motor types and the sign
and magnitude of the velocities are determined by the competition between the active motor contributions.
This result provides an insightful intuitive explanation for the characteristic length lc. The only non-collective length scale
in the system is L, the length of microtubules. Hence, by a basic scaling argument, lc needs to be a linear function of L,
multiplied by a dimensionless quantity. The only meaningful combination of the system parameters yielding a dimensionless
quantity is the ratio of the di↵erent forces in the system: drag in the fluid and forces between microtubules. But, which are
the relevant forces between microtubules? Is it the averaged active force on the microtubules or rather the total “friction”
between microtubules induced by the motor resistance to relative motion? To obtain an intuitive answer to this question,
consider a system with two types of motors whose heads move in the opposite direction. Then, for equal proportion of
both types, the average active force on all microtubules is zero, irrespective of the absolute number of motors. The force
propagation through the network, however, should depend on the number of links in the network or, equivalently, the absolute
number of motors. The same is true for the friction between microtubules that linearly increases with the absolute number
of motors. Taken together, this suggests that lc should depend on the total friction between microtubules rather than on
the averaged active forces. Thus, lc should be proportional to L and a function of the ratio between the drag in the fluid
�Vm and the total filament friction FmNm. Note that it remains unclear from this intuitive argument why the functional
dependence is given by a square root.

S5 Fourier representation of the ambient polarity

The ambient polarity is given by the convolution of the local polarity with an exponentially decaying interaction kernel, Eq. 5b.
As the Fourier transformation of a convolution of two functions is given by the product of the two Fourier transformations, it
is instructive to consider the Fourier representation of the polarities. We distinguish two cases. First, we consider an infinite
system where the fields are defined on the entire real axis, and, second, a periodic system with period R.

S5.1 Infinite case

For a polarity, P (x), defined on the real axis, x 2 R, we define the Fourier transformation as

P̂ (k) =
1

2⇡

Z 1

�1
dy P (y)eiky, k 2 R,

with the corresponding back transformation P (x) =
R1
�1 dk P̂ (k)e�ikx. Similarly, the Fourier transformation of the ambient

polarity is

⇧̂(k) =
1

2⇡

Z 1

�1
dy ⇧(y)eiky =

1

2⇡

Z 1

�1
dy

1

2lc

Z 1

�1
dz P (z)e�|y�z|/lceiky =

=
1

2⇡

Z 1

�1
dzP (z)

1

2lc

Z 1

�1
dy e�|y�z|/lceiky =

1

2⇡

Z 1

�1
dzP (z)eikz 1

2lc

Z 1

�1
dw e�|w|/lceikw =

= P̂ (k)
1

1 + (klc)2
⌘ P̂ (k)K̂(k), (S37)

where we exchanged the integrals and performed the Fourier transformation of the exponentially decaying interaction kernel,
K̂(k) = 1/(1 + (klc)

2). This result implies that the spatial modes are suppressed according to a Lorentzian. So, faster
fluctuations are damped more, and the ambient polarity does not exhibit spatial variations corresponding to large wave
vectors k � 1/lc (small wavelength). Intuitively, the lack of fast fluctuations in the ambient polarity is due to the averaging
of local polarities in a range of size lc. As we will see in the following, we get a very similar result in the periodic case.

S5.2 Finite interval with periodic continuation

If the system is periodic with period R, the polarity, P (x), x 2 [0, R], is described by a Fourier series, P (x) =
P1

n=�1 P̂ne�in 2⇡
R x,

with Fourier coe�cients

P̂n =
1

R

Z R

0

dy P (y)ein 2⇡
R y, n 2 Z. (S38)
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The Fourier coe�cients for the ambient polarity, ⇧̂n, n 2 Z, are given by

⇧̂n =
1

R

Z R

0

dy ⇧(y)ein 2⇡
R y =

1

R

Z R

0

dy
1

2lc

Z 1

�1
dz P (z)e�|y�z|/lcein 2⇡

R y =

=
1

R

Z 1

�1
dz P (z)

1

2lc

Z R

0

dy e�|y�z|/lcein 2⇡
R y =

1

R

1X

m=�1

Z (m+1)R

mR

dz P (z)
1

2lc

Z R

0

dy e�|y�z|/lcein 2⇡
R y =

=
1

R

1X

m=�1

Z R

0

dw P (w + mR)ein 2⇡
R w 1

2lc

Z �(m�1)R�w

�mR�w

dv e�|v|/lcein 2⇡
R vein2⇡m =

=
1

R

Z R

0

dw P (w)ein 2⇡
R w 1

2lc

Z 1

�1
dv e�|v|/lcein 2⇡

R v =

= P̂n
1

1 + (2⇡lcn/R)2
⌘ P̂nK̂(

2⇡n

R
). (S39)

In these steps, we exchanged the integrals and used that the infinite integral can be expressed in terms of an infinite sum of
integrals over a period R each. Furthermore, we used the substitutions w = z�mR and v = y�mR�w and the periodicity:
P (w + mR) = P (w) and ein2⇡m = 1 for m 2 Z. We could have guessed this result from the result of the infinite case,
Eq. S37, as in the periodic case only wave vectors k which are a multiple of 2⇡/R are possible: k = n2⇡/R for some n 2 Z.
So, again, fast fluctuations are strongly suppressed in the ambient polarity.

S5.3 Relevance

Importantly, these results are not restricted to a specific class of polarity profiles but generally capture the relationship
between the local and ambient polarity in an infinite (large) system. Hence, the ambient polarity (the velocity) is expected
to vary at most on length scales larger than the characteristic length lc. Related to this, extreme values of the local polarity
are averaged out and do not show up in the distribution of velocities. This observation is illustrated by two examples in the
main text, namely the pedagogical case with linear polarity profile and the in silico study with random polarity profile.

S6 Linear polarity profile

As a first example to illustrate the relationship between the ranges of local and ambient polarity, we consider a linear polarity
profile P (x) = a ⇤ (x � S/2) on a finite interval x 2 [0, S] (where |a|  2/S to ensure that the polarity does not exceed ±1).
This situation is in contrast to the main analysis in the manuscript which focuses on an infinite system. Consequently, we
have to specify some boundary conditions.

S6.1 Motivation of boundary conditions

In order to fix the boundary conditions, we start from the premise that even at the boundary, the system is dense and
the number of interaction partners of a microtubule is limited by the number of neighbors and not by the overall number
of microtubules. In other words, the number of interaction partners per microtubules is the same, irrespective of whether
the microtubule is located in the bulk of the system or at the boundary. This implies that microtubules at the left (right)
boundary have twice as many crosslinks towards their right (left) as compared to microtubules in the bulk of the system (and
none to the left (right) due to the boundary). To approximately account for this e↵ect, we mirror the polarity profile at its
boundaries x = 0 and x = S, so we have P (�x) = P (x) and P (S�x) = P (S +x). By repeated application of this mirroring,
the polarity profile is continued to the entire real axis. The resulting continued spatial polarity profile is 2S periodic. Thus,
we approximate our finite system by a periodically continued spatial polarity field with the same (infinite) interaction kernel
exp(�|x � y|/lc) as for the infinite system.

S6.2 Fourier coe�cients

The local polarity is represented by a Fourier series with Fourier coe�cients given in Eq.S38 for R = 2S. More concretely,
due to the symmetry P (x) = P (�x) the Fourier coe�cients are given by

P̂n =
1

2S

Z S

�S

dy P (y)ein ⇡
S y =

1

2S

Z S

0

dy P (y)(ein ⇡
S y + e�in ⇡

S y) =

=
1

2S

Z S

0

dy a(y � S

2
)(ein ⇡

S y + e�in ⇡
S y) =

(
�a 2S

n2⇡2 n odd

0 n even.
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Eq. S39 then implies that the Fourier coe�cients of the ambient polarity are given by

⇧̂n =

(
�a 2S

n2⇡2(1+(⇡lcn/S)2) n odd

0 n even.

S6.3 Ratio between the ambient and local polarity range

From the Fourier coe�cients, we can straightforwardly determine the ratio between the ranges of local and ambient polarity.
Due to the monotonicity of the local polarity and the from-the-center decreasing interaction kernel, the maximum (minimum)
of the ambient polarity is at the same location as the maximum (minimum) of the local polarity. In order to compute the
ratio between the two ranges of values, it is thus su�cient to determine the ambient polarity at x = S where it attains its
maximum (due to the symmetry, the minimal value at x = 0 corresponds to the inverse of the maximal value):

⇧max = ⇧(x = S) =

1X

n=�1
⇧̂ne�in⇡ = a

1X

n=�1

2S

(2n + 1)2⇡2(1 + (⇡lc(2n + 1)/S)2)
=

=

✓
1 � 2lc

S
tanh(

S

2lc
)

◆
aS

2
=

✓
1 � 2lc

S
tanh(

S

2lc
)

◆
Pmax,

where we used that Pmax = P (x = S) = aS/2. A more instructive expression can be obtained by using a large wavelength
approximation, describing the local and ambient polarities by their lowest modes n = ±1, P (x) ⇡ 2P̂1 cos(⇡

S x) and ⇧(x) ⇡
2⇧̂1 cos(⇡

S x). Thereby, the ratio of the ranges of the local and ambient polarity is approximately

⇧max

Pmax
⇡ ⇧̂1

P̂1

=
1

1 + (⇡lc/S)2
.

As can be seen in Figure 4, this expression is a fairly good approximation, in particular for large enough lc/S as expected.
It predicts that the range of the ambient polarity is strongly “squeezed” for large characteristic length.

S7 In silico study: Random polarity field

In this appendix, we give details on how we construct the random polarity field in the in silico study described in section “In
silico study: Random polarity field”. Furthermore, we derive the formula for the ratio between the variances of the local
and ambient polarity, Eq. 9.

S7.1 Construction

Our goal is to mimic a realistic polarity profile that arises from spontaneous self-organization of stabilized microtubules
and crosslinking motors into nematically aligned filament gels in the experiments. To this end, we construct a network of
randomly oriented microtubules with approximately constant density. Explicitly, the network is created in the following way:
First, we divide the system of size S (S � L) into small containers of size �x. Second, for each container the numbers of
microtubules with midpoint in the container and pointing to the left or right, respectively, is drawn independently according
to a binomial distribution with mean µ�x/L for each type of microtubules (left/right). Here, µ can be interpreted as the
average 1D number density of left- or right-oriented microtubules, respectively.

S7.2 Distribution of the local polarity

This procedure results in a spatial profile for the number of microtubule midpoints which is rough. However, due to the finite
extension of microtubules the corresponding polarity and density profiles, P (x) (⇢(x)), are smoothed. The local polarity at a
certain position is determined by all the microtubules that cross this position and not only those whose midpoint is located
there: Denote by h±

x,�x the (randomly drawn) number of left- or right-oriented microtubules with midpoint in [x, x + �x)

and by H±
x the (resulting) number of left- or right-oriented microtubules that cross position x. As all microtubules with

midpoints in [x � L/2, x + L/2] pass through x, these quantities are related as follows:6

H±
x =

L
2�x�1X

k=� L
2�x

h±
x+k�x,�x.

6Note that we ignore sets of measure zero.
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Here h±
x+k�x,�x are independent and identically distributed according to a Binomial distribution with mean µ�x/L. For

small enough intervals �x, we can approximate these Binomial distributions by Poisson distributions:

h±
x+k�x,�x

iid⇠ Poisson(µ�x/L).

As H±
x corresponds to the sum over L/�x of these random variables, it is distributed according to a Poisson distribution as

well, and the mean is given by the sum of the means:

H±
x ⇠ Poisson(µ). (S40)

Importantly, the finite extension of the microtubules introduces correlations in the number of microtubules crossing di↵erent
positions x. That is, the quantities H+

x (H�
x ) for di↵erent x are not independent: Their covariance is given by

Cov(H+
x , H+

y ) = hH+
x H+

y i � hH+
x ihH+

y i = hH+
x H+

y i � µ2 =

=

L
2�x�1X

k=� L
2�x

L
2�x�1X

j=� L
2�x

D
h+

x+k�x,�xh+
y+j�x,�x

E
� µ2 =

L
2�x�1X

k=� L
2�x

L
2�x�1X

j=� L
2�x

 ✓
µ�x

L

◆2

+
µ�x

L
�x+k�x,y+j�x

!
� µ2, (S41)

where in the last step we used that the random variables h+
z,�x for di↵erent z are independent with mean µ�x/L: If z1 6= z2

we have hh+
z1,�xh+

z2,�xi = hh+
z1,�xihh+

z2,�xi = (µ�x/L)2. In contrast, the second moment of a Poisson distribution with mean

� is given by �2 + �, so h
⇣
h+

z,�x

⌘2

i = (µ�x/L)2 + µ�x/L. Performing the sum over the constant
⇣

µ�x
L

⌘2

in Eq. S41, we

find the following expression for the covariance:

Cov(H+
x , H+

y ) =
µ�x

L

L
2�x�1X

k=� L
2�x

L
2�x�1X

j=� L
2�x

�j,k+ x�y
�x

=

(
0 if |x � y| � L

µ(1 � |x�y|
L ) if |x � y| < L.

(S42)

This equation implies that H+
x and H+

y are independent if |x�y| � L (then their covariance is zero), and that for |x�y| < L
their correlation decays linearly with the distance. Taken together,

hH+
x H+

y i = µ2 + µ

✓
1 � |x � y|

L

◆
⇥

✓
1 � |x � y|

L

◆
. (S43)

Due to symmetry, the same is true for H�
x . Furthermore, H+

x and H�
y are independent for all x, y.

Equipped with these properties of the number of microtubules passing through the di↵erent positions H±
x , we now consider

the local polarity. In terms of H±
x it is defined as

P (x) =
H+

x � H�
x

H+
x + H�

x
.

Due to the symmetry between left- and right-oriented microtubules, the average is

hP (x)i =

1X

r,l=0

p(r)p(l)
r � l

r + l
= 0,

where we defined p(r) := Prob(H±
x = r) = (µr/r!)e�µ.

The calculation of the other moments is a bit more involved, and we will repeatedly use the following identity for a � 1 and
i 2 N

µa

ai
=

Z µ

0

dµ1
1

µ1

Z µ1

0

dµ2
1

µ2
. . .

Z µi�1

0

dµi
1

µi
µa

i , (S44)

which is straightforwardly proven by induction and explicit integration of the right-hand side. Using this identity S44, the
variance of the local polarity is given by
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Figure S5: Exemplary polarity profile for a system of size S = 400µm with microtubules of length L = 6µm. The polarity
profile is not completely random with independent values in all bins. Instead the polarities at di↵erent positions are correlated
over a typical distance L (Eq. S42).

Var[P (x)] = hP (x)2i � hP (x)i2 =

1X

r,l=0

p(r)p(l)

✓
r � l

r + l

◆2

=

1X

r,l=0

e�2µ (r � l)2

r!l!

µr+l

(r + l)2
=

= e�2µ

Z µ

0

dµ1
1

µ1

Z µ1

0

dµ2
1

µ2

1X

r,l=0

(r � l)2

r!l!
µr+l

2 =

= e�2µ

Z µ

0

dµ1
1

µ1

Z µ1

0

dµ2
1

µ2
e2µ2

⇣
2hX2iX⇠Poisson(µ2) � 2hXi2X⇠Poisson(µ2)

⌘
=

= e�2µ

Z µ

0

dµ1
1

µ1

Z µ1

0

dµ2
1

µ2
e2µ2 2µ2 = e�2µ(Ei(2µ) � log(2µ) � �),

with the exponential integral Ei(x) and the Euler-Mascheroni constant �. Furthermore hf(X)iX⇠Poisson(µ) denotes the
average of f(X) where X is distributed according to a Poisson distribution with parameter µ. In this calculation we used
that H+

x and H�
x and, thus, the probabilities for r and l, p(r) and p(l), are independent.

In summary, we have

hP i = 0

Var[P ] = e�2µ(Ei(2µ) � log(2µ) � �).

As expected, since the number of both types of microtubules (to the left and right, respectively) is on average the same
everywhere, the mean of the polarity is zero. The variance of the local polarity Var[P ] is monotonically decreasing for µ � 1
and decays to 0 for large average densities µ, implying that the distribution of local polarities is less broad for larger values
of µ. This result is intuitive as for higher µ more microtubules contribute to the local polarity and so the variance is smaller.

S7.3 Autocorrelation of the local polarity

Although the local polarity is already well characterized by its mean and variance (see Fig. 5A), for the distribution of the
ambient polarity, information on the correlation between the local polarities at di↵erent positions is necessary. Thus, as a
next step, we determine the autocorrelation of the local polarity

hP (x)P (y)i = h
✓

H+
x � H�

x

H+
x + H�

x

◆✓
H+

y � H�
y

H+
y + H�

y

◆
i =

1X

rx,lx=0

1X

ry,ly=0

p(rx, ry)p(lx, ly)

✓
rx � lx
rx + lx

◆✓
ry � ly
ry + ly

◆
,
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where p(rx, ry) = Prob(H+
x = rx, H+

y = ry) is the joint probability that H+
x = rx and H+

y = ry. The random variables H+
x

and H+
y are independent only if |x � y| � L, so the joint probability p(rx, ry) can be factorized as p(rx)p(ry) only in this

case. Then, due to the symmetry between H+
x and H�

x (and analogously for y), we have hP (x)P (y)i = 0.
If, however, |x � y| < L, such a factorization is not possible as H±

x and H±
y are correlated. To circumvent this di�culty,

we split the random variables in two parts, namely one that describes the overlap/correlation of both, H±
0 , and one that

captures the independent contributions, H̃±
x and H̃±

y :

H±
x = H±

0 + H̃±
x

H±
y = H±

0 + H̃±
y .

More concretely, we choose

H±
0 =

L
2�x�1� y�x

�xX

k=� L
2�x

h±
y+k�x,�x ⇠ Poisson

✓
µ0 ⌘ µ

✓
1 � |x � y|

L

◆◆

H̃±
x =

y�x
�x � L

2�x�1X

k=� L
2�x

h±
x+k�x,�x ⇠ Poisson

✓
µ1 ⌘ µ

|x � y|
L

◆

H̃±
y =

L
2�x�1X

k= L
2�x� y�x

�x

h±
y+k�x,�x ⇠ Poisson

✓
µ1 ⌘ µ

|x � y|
L

◆

where we assumed x < y without loss of generality. The advantage of this decomposition is that now all H±
0 , H̃±

x and H̃±
y

are independent (due to the independence of h±
z,�x for di↵erent z).

For |x � y| < L, the autocorrelation of the local polarity is thus given by

hP (x)P (y)i = h
 

H+
0 + H̃+

x � H�
0 � H̃�

x

H+
0 + H̃+

x + H�
0 + H̃�

x

! 
H+

0 + H̃+
y � H�

0 � H̃�
y

H+
0 + H̃+

y + H�
0 + H̃�

y

!
i =

=

1X

l0,lx,ly=0

1X

r0,rx,ry=0

e�2µ0�4µ1µl0+r0
0 µ

lx+ly+rx+ry

1

l0!lx!ly!r0!rx!ry!

✓
r0 + rx � l0 � lx
r0 + rx + l0 + lx

◆✓
r0 + ry � l0 � ly
r0 + ry + l0 + ly

◆
.

As we will see, we can make use of identity S44 again. In order to do so, we rewrite this expression in a slightly more
complicated form

hP (x)P (y)i =

= e�2µ0�4µ1

1X

l0,lx,ly=0

1X

r0,rx,ry=0

f�1✏l0+r0�r0+rx+l0+lx
1 �

r0+ry+l0+ly
2

✓
r0+rx�l0�lx
r0+rx+l0+lx

◆✓
r0+ry�l0�ly
r0+ry+l0+ly

◆������
✏=µ0/µ2

1
�1=�2=µ1

,

where we defined f = f(li, ri) = l0!lx!ly!r0!rx!ry! as the product of the factorials. Applying now identity S44, we end up with

hP (x)P (y)i =

= e�2µ0�4µ1

Z �1

0

ds1
1

s1

Z �2

0

ds2
1

s2

X

{li,ri}
f�1✏l0+r0sr0+rx+l0+lx

1 s
r0+ry+l0+ly
2 (r0+rx�l0�lx) (r0+ry�l0�ly)

������
C

,

where the sum is over all li, ri, i 2 {0, x, y} from 0 to 1 and C ⌘ {✏=µ0/µ2
1,�1=�2=µ1}. To continue, we rewrite the

integrand as follows

X

{li,ri}
f�1✏l0+r0sr0+rx+l0+lx

1 s
r0+ry+l0+ly
2 (r0+rx�l0�lx) (r0+ry�l0�ly) =

=
X

{li,ri}

1

l0!lx!ly!r0!rx!ry!
(s1s2✏)

l0+r0srx+lx
1 s

ry+ly
2 (r0+rx�l0�lx) (r0+ry�l0�ly) =

= e2s1+2s2+2s1s2✏h(r0�l0+rx�lx) (r0�l0+ry�ly)is1,s2,s1s2✏,
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where the average his1,s2,s1s2✏ has to be interpreted with respect to the six independent variables lx, rx ⇠ Poisson(s1),
ly, ry ⇠ Poisson(s2) and l0, r0 ⇠ Poisson(s1s2✏). Due to the independence and as hrx�lxi=hrx�lxi=0 the average is given by

h(r0�l0+rx�lx) (r0�l0+ry�ly)is1,s2,s1s2✏ = h(r0�l0)
2is1s2✏ = Vars1s2✏(r0) + Vars1s2✏(l0) = 2s1s2✏.

Taken together, we determine the autocorrelation of the local polarity to be

hP (x)P (y)i = e�2µ0�4µ1

Z �1

0

ds1
1

s1

Z �2

0

ds2
1

s2
e2s1+2s2+2s1s2✏2s1s2✏

����
C

= (S45)
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, (S46)

where we used that µ0 + µ1 = µ. Ei(x) denotes the exponential integral as before. When plotting the autocorrelation
hP (x)P (y)i against the normalized distance |x � y|/L (using that µ0 = µ(1 � |x � y|/L) and µ1 = µ|x � y|/L), one realizes
that the autocorrelation decays approximately linearly with the distance: hP (x)P (y)i ⇠ 1 � |x � y|/L. The origin of the
approximately linear decay is that the number of microtubules directly linking two points decreases linearly with the distance
as well. The proportionality constant for the linear decay, which corresponds to the limit for |x � y| ! 0 (µ0 ! µ, µ1 ! 0),
is calculated to be

e�2µ(Ei(2µ) � log(2µ) � �) = Var[P ],

where we used that Ei(x) ⇡ � + log(x) for small x. This is consistent with the result for the variance of the local polarity:
lim|x�y|!0hP (x)P (y)i = Var[P ].
In summary, we thus find for the autocorrelation of the local polarity

hP (x)P (y)i ⇡ Var[P ]

✓
1 � |x � y|

L

◆
⇥ (L � |x � y|) . (S47)

This equality implies that the local polarities at positions less than one microtubule length apart are not independent.
Instead, the finite length of microtubules introduces correlations as one microtubules contributes to the polarity at di↵erent
locations. The strength of the correlations decays approximately linearly with the distance, analogously to the number of
microtubules directly connecting the two locations. In the following, we will use this result to determine the distribution of
the ambient polarity.

S7.4 Distribution of the ambient polarity

Analogously to the local polarity, we characterize the distribution of the ambient polarity by its average and variance,
implicitly assuming that the ambient polarity is reasonably well described by a normal distribution. In the calculations,
however we do not explicitly use that the distribution is approximated by a normal distribution and our results are valid
irrespective of this assumption.
From the definition of the ambient polarity ⇧(x) =

R1
�1 dyP (y)e�|x�y|/lc/(2lc), its average and variance are given by

h⇧i =
1

2lc

Z 1

�1
dy e�

|y|
lc hP (y)i = 0 (S48)
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4l2c

Z 1

�1
dy

Z 1

�1
dz e�

|y|
lc e�

|z|
lc hP (y)P (z)i = (S49)
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2
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◆
, (S51)

where - due to the translational symmetry - we considered x = 0 without loss of generality. From Eq. 5a in the main text,
v(±)/Vm = ±(1 � ↵)(1 ⌥ ⇧), we immediately conclude that the variance of the normalized velocity v(±)/Vm, Var[v/Vm], is
given by

Var[v/Vm] = Var[P ] (1 � ↵)2
✓

1 � 3lc
2L

⇣
1 � e�L/lc

⌘
+

1

2
e�L/lc

◆
. (S52)
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Figure S6: Density plot and histograms for the local polarity and speed analogous to Fig. 5 but measured in the stochastic
agent-based simulation. Measurements are taken for 6000 independent filament gels. The parameters are identical to the
ones used in the main text. (A) The local speed |v(±)| is calculated as the average speed of all equally-oriented microtubules
passing through the respective position. Compared to the prediction from the nonlocal continuum theory (black lines), the
variance of the velocity is slightly larger. (B) The local averaged speed |v(±)| is calculated as the average speed of all equally-
oriented microtubules that are part of a region of 4µm in the center of the filament gel. Compared to the measurement in
(A), the variance of both the polarity and the velocity is smaller.

Taking the limit lc ! 0, we find Var[⇧] = Var[P ] = Var[v/Vm]/(1�↵), and, conversely, for lc ! 1, we have Var[⇧], Var[v/Vm] !
0. These limits illustrate our intuition that for small characteristic length only the local polarity matters, whereas for large
characteristic length all microtubules feel the same ambient polarity.

S8 Stochastic, agent-based simulation of the in silico study

For the in silico study in the main text, a random polarity profile was generated as described in Appendix “In silico study:
Random polarity field”. The velocities are then determined from Eqs. 5a, 5b according to the continuum description. In
this continuum approximation, all microtubules at one position exhibit exactly the same speed. This assumption will not be
satisfied in experimental filament gels where two microtubules at the same location by chance can be connected to a di↵erent
set of microtubules and thus experience a di↵erent environment. As a result, not only microtubules at di↵erent locations
show a di↵erent speed but also the speed of microtubules at the same location can vary, leading to a broader distribution of
the microtubule velocities. The goal of this Appendix is to gauge the strength of this e↵ect.
To this end, the in silico study is performed again in terms of a stochastic, agent-based simulation for the same parameters as
in the main text (Fig. 5): Compared to the in silico study in the main text, not only the microtubules are randomly distributed
but also the interactions between microtubules are randomly chosen. That is, each microtubule randomly interacts with on
average N of its neighbors, and the individual velocities are determined from the force-balance equations 3. Figure S8A
shows the measured probability distribution for all combinations of local polarity and velocity, analogously to Fig. 5. As
in the main text, the histograms for both quantities were obtained as projections of the density plot to the respective axis.
Since in the agent-based simulations not all microtubules at one position x exhibit the same velocity, here, “local velocity”
refers to the average velocity of all equally-oriented microtubules passing through position x. As expected, the distribution
of the average velocity in the stochastic in silico study is broader than the velocity distribution in the main text which
agreed very well with the prediction from our theory (black lines). The ratio of both standard deviations is approximately
�[v/Vm]/�[P ] = 0.28, indicating that the stochastic nature of the interactions indeed influences the filament velocities. If
the average number of interaction partners is increased the results from the stochastic simulation approach our continuum
theory (c.f. Fig S8). This is because fluctuations in the number of interaction partners are less pronounced for large N .
In experiments with filament gels, average velocities at single points x in space usually can not be unravelled. Instead, one
measures the average polarity and velocity of regions of the order of several µm. This averaging is expected to lead to a
narrower distribution of polarities and velocities as compared to measurements of the polarities and velocities of single points
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Figure S7: Ratio between the standard deviations of the normalized velocity, �[v/Vm], and of the local polarity, �[P ], plotted
against the normalized characteristic length, lc/L, for the stochastic agent-based simulation (symbols), in comparison to the
non-local mean field prediction (black line). lc was varied by varying �. The stochastic selection of interaction partners
counteracts the “squeezing” e↵ect due to averaging of the local polarity. This e↵ect is more pronounced for decreasing µ and
N since stochastic e↵ects are more relevant for a small number of interaction partners. The width of the velocity distribution
still decreases as lc/L increases.

in space. To estimate the influence of this averaging procedure, we perform a second measurement in the stochastic in silico
study. The goal of this second version is to mimic a typical measurement in experiments, so we do not record the average
velocities of single points in space. Instead, we measure the average velocity and polarity of all equally oriented microtubules
that are part of a region of 4µm in the center of the filament gel of length 400µm. Performing this measurement for 6000
independent filament gels yields a distribution of polarities and velocities as shown in the density plots and histograms
in Fig. S8B. As can be seen from a comparison of Figs. S8A and B, the distributions for the polarity and velocity after
averaging over a range of several µm is noticeably smaller. Indeed, the result of the average measurements in the stochastic,
agent-based in silico study is similar to the one shown in the main text. This finding implies that the expected broadening
and narrowing of the velocity distribution due to stochasticity and averaging, respectively, more or less balance. Of course,
this depends on choices such as the size of the region the velocity and polarity are averaged over. In the in silico study we
chose it to be 4µm, similar to the width of the photo-bleached region in in vitro filament gels [18]. Generally, the width of
the velocity distribution is expected to depend on experimental details but we anticipate that independent of these details
the width of the velocity distribution decreases with increasing characteristic length (c.f. Fig S8).

S9 Extension of the in silico study to a broader class of systems

The analysis in section “The agent-based model can describe the weak velocity-polarity sensitivity” in the main text, and
the corresponding construction of the polarity field in the in silico study, Appendix “In silico study: Random polarity field”,
are based on the assumption that the polarity field does not have any spatial structure. That is, the system is translationally
invariant and - on average - all positions are equivalent. However, generally, this premise will not be fulfilled. In this
appendix, we thus want to extend our previous analysis to a broader class of systems.

S9.1 Class of systems

As we have seen before in Appendix “In silico study: Random polarity field”, the variance of the ambient polarity, Var[⇧],
depends on the autocorrelation of the local polarity hP (x)P (y)i. Thus, in order to make any statements about the distribution
of the ambient polarity, we need to make some assumptions on the correlation of the local polarities at di↵erent locations.
The most obvious property of the system that leads to correlations of the local polarities at di↵erent locations is the finite
extension of microtubules. As discussed before, due to the finite microtubule length L > 0, an excess of microtubules at
one position leads to an excess of microtubules at distances maximally L apart. In the following, we will assume that this
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contribution to the correlation dominates, and that there are only weak correlation e↵ects, for instance due to filament
dynamics or feedback. We believe that in this case it is reasonable to assume that the covariance of the local polarity at
di↵erent positions (the autocorrelation) decays linearly with distance up to |x � y| = L:

Cov[P ](x, y) ⌘ hP (x)P (y)i � hP (x)ihP (y)i ⇡ Var[P ]

✓
1 � |x � y|

L

◆
⇥ (L � |x � y|) . (S53)

Here we furthermore assumed that the magnitude of the fluctuations in the polarity is similar everywhere: Var[P ] is approx-
imately spatially invariant.
We will restrict our discussion to this class of system as quantitative statements for the general case are di�cult to obtain.

S9.2 Prediction

Let us consider systems where Eq. S53 holds. Suppose we measure the spatial profile of the average of the local polarities
and of the velocities, hP (x)i and hv(±)(x)i, where the average denotes an ensemble average at fixed position x. Moreover,
we determine the average variance of the local polarity Var[P ] = hVar[P (x)]ix, where Var[P (x)] = hP (x)2i � hP (x)i2 is the
variance of the local polarity at fixed position x and hix denotes an average over all locations x. Then, our theory predicts
that the covariance of the velocity at di↵erent positions is

Cov[v(+)](x, y) ⌘ hv(+)(x)v(+)(y)i � hv(+)(x)ihv(+)(y)i =

= V 2
m(1 � ↵)2 (h(1 �⇧(x))(1 �⇧(y))i � h1 �⇧(x)ih1 �⇧(y)i) =

= V 2
m(1 � ↵)2 (h⇧(x)⇧(y)i � h⇧(x)ih⇧(y)i) =

= V 2
m(1 � ↵)2

1
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Z 1

�1
dz1

Z 1

�1
dz2e

� |x�z1|
lc e�

|y�z2|
lc (hP (z1)P (z2)i � hP (z1)ihP (z2)i) .

Using assumption S53, this expression becomes

Cov[v(+)](x, y) =

= V 2
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L

◆
⇥ (L � |z1 � z2|) ,

which holds for the velocities v(�) as well. For general distance x � y, the analytic expression is not very insightful and the
expression is best understood graphically.
Fig. S8 shows a comparison between the normalized covariance of the local polarities (the autocorrelation coe�cient),
Cov[P ](x, y)/VarP , and of the velocity, Cov[v(±)](x, y)/Var[v(±)], for di↵erent lc. Whereas the correlation of the local
polarity quickly decays to zero (after a distance |x � y| = L), the correlation of the velocities is much more long-ranged and
its correlation length increases with lc.
The covariance of the velocity for x = y, Cov[v(+)](x, x), which corresponds to the variance of the velocity Var[v(±)], is given
as

Var[v(+)] = V 2
m(1 � ↵)2Var[P ]

✓
1 � 3lc

2L

⇣
1 � e�

L
lc

⌘
+

1

2
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◆
,

in terms of the variance of the local polarity, Var[P ]. Similarly, the variance of the ambient polarity, Var[⇧], is given by

Var[⇧] = Var[P ]

✓
1 � 3lc

2L
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1 � e�
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+

1

2
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L
lc

◆
.

So, for the broader class of systems considered here we recover exactly the same result as for the in silico study, Eq. S51.

S10 Comparison of our results for small characteristic length to the dilute
limit

One of the central results of our work is that there is an intrinsic length scale of the system that determines the velocity-
polarity relation. This characteristic length lc captures how far information on the local forces propagates through the
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Figure S8: Comparison of the autocorrelation coe�cient of the local polarity, Cov[P ](x, y)/Var[P ], and of the velocity,
Cov[v(±)](x, y)/Var[v(±)], for di↵erent values of the characteristic length lc. The velocity correlations decay much slower as
compared to the correlations in the local polarity. The correlation length of the velocity scales with lc, that is, for larger lc,
the correlations length is larger as well.

network. Naively, one can argue that for dilute systems lc is small and, correspondingly, that forces only act locally. This
conclusion fits well with the intuitive conception of a dilute limit where filaments are arranged in disconnected patches.
Nonetheless, one has to be careful to directly compare our result to the dilute limit. With regard to this limit, there are two
main assumptions in our continuum theory.

1. Single patch: All microtubules are directly or indirectly (via other microtubules) connected to each other and there
are no disconnected patches of microtubules. This assumption corresponds to hypothesizing that the filament network
works above the percolation threshold and that the average number of interaction partners N is not too small.

2. Su�cient interaction partners: The number of neighbors a microtubule interacts with is limited by the average number
of interaction partners N and not by the number of neighbors. This assumption is based on the idea that there is
always a su�cient number of neighbors (possible interaction partners) present for each microtubule. Instead of linearly
depending on the microtubule densities, the force thus exhibits a dependency on the fraction '(±) (Eq. 3).

Both assumptions do not necessarily apply to the dilute limit. We believe that the second assumption regarding a su�cient
number of interaction partners can be readily relaxed also within a continuum description. For this purpose, one could,
for instance, try to incorporate a phenomenological term N⇢(±)/(N + ⇢+ + ⇢�) for the number of interactions with (±)
microtubules. Such a term would converge to N'(±) for large total density ⇢ ⌘ ⇢+ + ⇢� � N , as used in our descrip-
tion. Conversely, for small ⇢ it captures a linear dependency of the number of (±) interactions on the respective density.
Taken together, investigating how such an e↵ective term changes the behavior should be instructive for a more quantitative
understanding of the dilute limit.
The first assumption is conceptually more di�cult to overcome within a continuum description. But indeed, for parameters
estimated as in section “The agent-based model can describe the weak velocity-polarity sensitivity”, regions with zero density
(and thus disconnected patches) occur regularly in our stochastic, agent-based simulation. These empty spaces arise due
to the stochastic loss of connections between microtubules and a following drifting apart of di↵erent patches. Vice versa,
such empty spaces stochastically vanish again if two patches meet. The interplay of these opposing, stochastic processes
leads to patch boundaries that are not static but change randomly. We suppose that one could e↵ectively incorporate this
behavior into our continuum theory. To this end, one might first consider systems of finite sizes and then try to average
their behavior with regard to exponentially distributed system sizes. Intuitively, we would expect that this procedure leads
to an enhanced e↵ective attenuation and thus to a lower e↵ective value of the characteristic length lc but does not change
our results qualitatively: Due to the stochastic loss of connections between patches (particularly for systems close to the
percolation threshold), there is not only loss of information due to drag but also abruptly at the boundaries of the patches.
If these boundaries are fluctuating, the abrupt loss at the boundaries is on average smoothed and should be qualitatively
comparable to a continuous loss of information by drag.
Overall, we think that - despite these assumptions of our theory - our results help bridging the gap between previous findings
for dilute and heavily crosslinked filament networks.
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5 Summary and discussion

In a nutshell, this first part of my thesis has been a conceptual journey through the cytoskele-
ton in terms of stochastic simulations, numerical solutions of coupled equations and various
analytical methods – definitely strongly influenced by my view as a theorist. It started from
considering directed motion of motor proteins along cytoskeletal filaments (chapter 2), went
on to some ideas about length regulation of filaments through motor transport (chapter 3)
and finally ended up at the filament dynamics in networks crosslinked by motor proteins
(chapter 4). All these biologically inspired settings rely on microscopic interactions between
the elementary building blocks of the cytoskeleton, the motor proteins and filaments – be it
through active transport, regulatory activity or crosslinking. However, we found that it is
through the collective action of many of these components that qualitatively different and in
all cases somewhat counterintuitive behavior arises.
While transport through directed motion is very efficient for single motor proteins, our re-
sults suggest that excluded volume effects between motors can lead to the formation of “traffic
jams” and can substantially reduce transport efficiency, in particular in confined geometries
(chapter 2).
Likewise, any kind of length regulation of filaments relies on feedback mechanisms and in-
teractions between different agents. The self-organized length oscillations that occur in our
model if the equilibration due to diffusion is slow compared to the intrinsic timescale of the
length dynamics are also inherently collective (chapter 3): The temporal patterns are based
on crowding of particles, which leads to a feedback mechanism with time delay.
Finally, only a collective effect can explain how filament motion in filament networks can
occur even in regions with no local motion-generating forces (chapter 4). Our theoretical
investigations suggest a mechanism of force propagation where locally generated forces are
transmitted through the network by the collective action of crosslinking proteins.

From my point of view, there are two promising lines of research that could develop from these
projects. Since in all cases the approach employed was in terms of conceptual modeling, it
would undoubtedly be very interesting to test our model predictions with the help of minimal
experimental systems. The first two projects would certainly require comparably small-scale
setups on the order of individual filaments up to filament bundles. Thus, it might prove
valuable to engage microfluidics technology [17–19] to put the findings of these projects to
the test. For the third project, on the other hand, reconstituted in vitro systems of purified
components [20–23] may be one way to go. Indeed, we suggest a specific in vitro experiment
to check our predictions. The type of data required for such a test of our theory is, to our
knowledge, already available. However, since our predictions rely on an analysis of velocity
and polarity distributions, the challenge might be to record enough statistics to be able to do
this diligently.

From a more theoretical point of view, I believe that one could gain new insights by combining
several of the particular interactions between motors and filaments studied here. For instance,
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it has been observed in the mitotic spindle that motor-microtubule interactions lead to sliding
of microtubules towards the poles [101, 202–205]. Simultaneously, microtubules have dynamic
lengths and the average microtubule length is not independent of the position within the
spindle [91]. Thus, it might be interesting to study how a (spatially and/or temporally)
varying microtubule length affects the force propagation through filament networks.
In the context of spatially defined structures such as the mitotic spindle, it would certainly
also be enlightening to take the spatial boundaries into account more carefully. In particular, I
could imagine that there exists an intricate relationship between the dynamics of the boundary
itself and its effect on the dynamics of the whole structure. To address this hypothesis, it
may be instructive to study what influence the boundaries of a network have on the proposed
force propagation mechanism. Such an insight could then be employed to examine the mutual
interaction between the network structure and the long-time dynamics.



Part II

Stochastic effects in heterogeneous
self-assembly





6 Introduction: Self-assembly of viruses and
of artificial nanostructures

One of the most fascinating properties of living systems is their ability to generate order from
disorder. While the first part of this thesis is concerned with principles of self-organization and
pattern formation in the context of molecular motors and cytoskeletal filaments, this second
part aims to elucidate principles for the self-assembly of macromolecular structures. The
notion of “self-assembly” is, generally speaking, not well-defined and various interpretations
of this term exist. In the projects discussed in chapters 7 and 8, we focus on non-equilibrium
processes which kinetically assemble macroscopic structures from small subunits (see Fig. 6.1
A for an illustration). Importantly, these processes only occur under very limited external
guidance and not according to a preset protocol. In particular, there is no external influence
on the microscopic level.

This autonomy raises several questions. How can living organisms generate highly heteroge-
neous and complex structures such as ribosomes [29, 30] or flagellar motors [31, 32] based on
(short-range) interactions between the constituents? And why does intracellular self-assembly
proceed with such high fidelity and accuracy? Can we use insights gained from living or-
ganisms to design artificial self-assembly systems that perform specific tasks or functions?
To address these questions it has proven useful to combine experimental methods (such as
size-exclusion chromatography; see e.g. [102, 206–208]; and DNA-origami or DNA-brick tech-
niques; for reviews see for instance [112–114]) with theoretical modeling approaches (ranging
from rate equation models; e.g. [102, 109, 124]; to particle-based simulations; e.g. [107, 116,
209–216]).

Broadly speaking, there are two main subfields which are concerned either with the assembly of
virus capsids (section 6.1; for reviews see e.g. [110, 111, 217–219]) or with so-called “structures
with addressable complexity” [108] and generally heterogeneous structures made up from
many distinct components (section 6.2; for reviews see e.g. [27, 28, 115, 127]). While virus
capsids typically contain several copies of one protein and are highly symmetric, artificially
made structures can, in principle, be arbitrarily shaped and composed.
Nonetheless, common principles have developed from the study of both types of structures.
In particular, in order for self-assembly to be efficient and to produce high yield, nucleation of
new structures should be slow compared to growth of already existing structures (section 6.3;
[102–109]). Thereby, competition for resources is minimized and so-called kinetic or depletion
traps (e.g. [26, 102, 109, 116, 121, 123, 124, 127, 215, 220]) are circumvented.

To avoid such kinetic traps also another principle has emerged especially in the field of virus
capsid assembly, namely that typically weak and reversible interactions between constituents
are favorable [25, 116, 213, 221, 222]. In contrast, in the projects discussed in this thesis, we
will focus on self-assembly processes that involve irreversible assembly steps (on the relevant
timescales). Thus, our emphasis is on kinetic rather than equilibrium properties.
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The goal of this chapter is to give a short overview of some aspects of the self-assembly of
virus capsids (section 6.1) and of the role of self-assembly in nanotechnological applications
like DNA origami (section 6.2). Finally, we briefly explain the “slow-nucleation principle”
for efficient self-assembly (section 6.3), which will also be directly relevant for our findings
discussed in chapter 7.

6.1 Virus capsid assembly

The assembly of virus capsids has been the subject of many investigations (for reviews on the
topic see for instance [110, 111, 217–219]). From these investigations, important principles
for efficient self-assembly have been established and different approaches to describe and
understand the underlying processes theoretically have been proposed. Since they will also
be relevant for our projects, here we briefly summarize some of the most important findings
from experiments and some of the theoretical frameworks to understand virus capsid assembly.

Biological background

Viruses are essentially made from a genome that is surrounded by a shell or so-called virus
capsid. The structure, size and composition of this capsid can vary greatly ranging from
small viruses such as the Human Papilloma Virus made from roughly 70 copies of a single
protein [223] up to the Megavirus which consists of more than 1000 proteins [224]. Most virus
capsids are, however, highly symmetric and built from many copies of a few proteins. Indeed,
it was already realized in the middle of the 20th century that it would not be possible to form
a virus capsid made from one polypeptide only [225]. The reason is that the virus genome
needs to contain all the information about the capsid while being small enough to fit into it
in the end. In this context, it was argued some years later that shell designs with the highest
ratio of shell volume to expended genome size should be beneficial economically [226].
Apart from these principles also other assembly characteristics have emerged in experiments
over the years. The following paragraph summarizes some of these characteristics based on
Refs. [102, 121, 122, 124, 206, 208, 213, 222, 227]: First, assembly yield only sets in after the
so-called lag time and has a characteristic sigmoidal shape. The underlying process can be
described as a nucleation and growth process for which nucleation has to be slow compared to
growth in order for assembly to be efficient (see also section 6.3). Under these efficient/optimal
assembly conditions intermediate assembly products are only present transiently. This was
demonstrated for instance by employing size-exclusion chromatography experiments where
only the free subunits and the final capsids occur in detectable concentrations. Finally, it was
found that binding interactions between the subunits are typically weak and, correspondingly,
growth is reversible.

All these findings have not only been observed experimentally but were also confirmed in
different theoretical studies (see below). We describe some of the theoretical techniques that
were used to model virus capsid assembly next. There are at least three different approaches:
in terms of thermodynamics, by kinetic rate equations and with the help of particle-based
simulations [209–214]. Here, we will focus on the first two and mention important insights
gained from them.
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Theoretical approaches

A first important insight was gained by a description of capsid assembly as an equilibrium
process. Through minimization of the free energy under the constraint that mass is conserved,
the so-called law of mass action was derived [228, 229]. It predicts that the concentration
of capsids scales like ∼ φL where φ is the concentration of free subunits and L the size of
the capsid. Furthermore, according to the law of mass action, intermediates are only present
in very low concentrations for “typical” assembly conditions [121], in agreement with the
experimental findings described above. Moreover, a quantitative comparison with experiments
suggests weak binding interactions between the constituents [227].
Apart from thermodynamical considerations, also assembly kinetics has been a focus of study.
One approach to describe the assembly kinetics is via rate equations that capture the dynamics
of the polymer sizes [102, 121, 124]. Conceptually, this approach is very similar to the one
Becker and Döring pursued to quantify crystallization phenomena [230] only that in the case
of virus assembly the final structures have a fixed, finite size. In these rate equations, capsids
grow one subunit at a time with reversible binding and unbinding. Intriguingly, the solution
of these equations exhibit many of the features observed experimentally: the lag time which is
determined by the mean capsid assembly time (see also [104, 122]), the sigmoidal shape of the
temporal evolution of the assembly yield and low concentrations of intermediates under good
assembly conditions. And also another important conclusion about virus capsid assembly
could be drawn from this approach: Nucleation of structures has to be slow compared to
growth since otherwise the free subunits get depleted before assembly sets in and the system
ends up in a kinetic trap. We will come back to this point later (section 6.3). Finally,
a comparison of an extended kinetic model with short-timescale experiments suggested the
existence of a subunit activation step before binding takes place [122]. This may be related
to conformational changes or allosteric effects (see also [110, 231]).

6.2 Nanotechnological techniques

Information about living organisms is, to a large extent, encoded in the DNA. This idea to
use DNA to store information is also at the core of one of the most promising strategies
to assemble heterogeneous and functional nanostructures, namely DNA-based assembly (for
reviews and perspectives on this topic see for instance [28, 112–115, 127, 232, 233]). It is
believed (and has partially already been demonstrated) that such nanostructures will prove
very useful for different purposes ranging from molecular robots (e.g. [234]) and molecular
force clamps (e.g. [235]) to biosensors and devices to manipulate light (reviewed in [114]).
These versatile properties rely on the fact that the structures are made from many distinct
building blocks. Such heterogeneous structures also lie at the heart of our projects in which
we examined the role of structure heterogeneity and stochasticity for the assembly dynamics.
While the different experimental methods to build these nanostructures are not directly rel-
evant to these projects, they illustrate nicely how structure heterogeneity can be achieved in
nanotechnological applications. We will thus shortly review some of these techniques.
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DNA origami

The first technique is DNA origami. It has been introduced by Rothemund in 2006 [236]
and is partially based on ideas put forward by Seeman in 1982 [237]. Seeman suggested to
use the complementarity of DNA base pairs to assemble designed structures with precisely
controllable shapes. In DNA origami technology this idea is implemented by a long single-
stranded DNA (the so-called scaffold strand) that is then folded due to the interaction with a
large number of short staple strands (for reviews see e.g. [112–114]). While double-stranded
DNA has a persistence length of several dozens of nanometers, the persistence length of
single-stranded DNA is only roughly 1 nanometer, leading to a high flexibility of the scaffold
strand [113] and, thus, versatility in use. The basic concept to use a single scaffold strand has
been extended in many ways, for instance, by tethering multiple DNA origami structures via
junctions based on strand exchange. By using several-arm junctions with different lengths
it is possible to control the angles between the different origami subunits [238, 239]. Sim-
ilarly, while the original geometries were restricted to two dimensions, several studies have
realized three-dimensional structures (see e.g. [240–242]), for instance, by connecting planar
origami structures at specified angles. Finally, there have been various successful approaches
to assemble nanoparticles with the help of DNA origami (e.g. [243]).

DNA-brick based assembly

A partially complementary and more recent approach is DNA-brick based assembly [105, 106].
Instead of using a long scaffold strand, it relies on short, synthetic strands of DNA (“bricks”
or “tiles”) that interact via local binding rules. This assembly scheme allows for modularity
and different subunits can be combined in various ways. Originally, it was expected that
assembly via DNA bricks would only be versatile if the stoichiometric concentrations would
be perfectly balanced (see e.g. [232, 233]). The idea was that kinetic traps would occur since
too many nucleation seeds form. It has been suggested both theoretically and by experimental
studies that this effect is (partially) suppressed due to generally slow nucleation compared to
growth [105, 107]. However, yields are still not as high as for DNA origami, in particular for
larger structures [105, 114, 233].

Colloidal materials [28, 115]

Finally, interactions between DNA base pairs are also used for the assembly of colloidal ma-
terials with specified magnetic, electronic or mechanical properties. In order to assemble
colloids into non-symmetric structures, specified interactions between the subunits are re-
quired. One suggestion to achieve this has been a so-called “lock-and-key” mechanism where
shape complementarity leads to specific binding due to entropic depletion forces. For large
structures, however, this approach is not expected to be versatile enough. Instead, it was
proposed to mediate interactions between colloids through DNA hybridization. This allows
for control of the interaction strength by variation of the lengths of the sticky ends that link
two colloids.
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Theoretical description of heterogeneous structures

To conclude the chapter, we will mention some insights gained from theoretical studies that
are related to our findings.
As mentioned above, it is generally expected that non-stoichiometric concentrations of build-
ing blocks lead to uncontrolled nucleation events and, thus, to low assembly yield. Recently,
however, it has been suggested that exactly the use of non-stoichiometric concentrations may
be a way to build large structures made from many different components [109]. The idea
is that – instead of having random variability in the concentrations of subunits – one could
enrich a specific region of the target structure. As a result, nucleation in this particular region
is strongly favored compared to nucleation of other seeds and competition between different
assembly paths can be largely eliminated.
While this strategy relies on a control of the supply of subunits, also the influence of mi-
croscopic properties has been studied. For instance, it has been suggested that it might be
beneficial to choose the strength of the specific interactions between subunits as similar as
possible [216]. Based on this principle, the authors suggest a way to improve the fidelity in
DNA-brick based assembly schemes.
Finally, there is some debate about whether or not hierarchical assembly may be a good
strategy to build heterogeneous or so-called information-rich structures. On the one hand,
hierarchical assembly schemes seem to be strongly susceptible to kinetic traps caused by
unspecific interactions [215]. If the latter are strong, step-by-step assembly via successive
attachment of single subunits can outperform a hierarchical assembly process. On the other
hand, if unspecific interactions can be well-controlled, the opposite behavior was found [116].
It thus remains a question for future research whether hierarchical assembly “may be a way
to make large information-rich structures” [116].

6.3 Slow-nucleation principle

To conclude this introductory chapter, we want to emphasize the “slow-nucleation principle”
again [102–109] because it will be crucial for our results.
As illustrated in Fig. 6.1 the idea is the following: Suppose nucleation of new structures is
fast compared to growth (A). Then it is likely that too many nucleation seeds form that all
compete for the same resources and, thereby, can not be finished due to resource depletion.
As a result, if the resources are finite, the process ends up in a configuration with many
half-finished polymer structures that - even if polymer-polymer binding occurs - might not
be compatible due to overlapping parts. Correspondingly, the assembly yield is low.
In contrast, if nucleation is very slow, a newly nucleated structure will grow into the target
structure before a new nucleation event occurs (B). In this case, the structures are thus
assembled one after the other and there is no competition for resources. The assembly yield
is high because kinetic traps are circumvented.
As we will see in chapter 7, this principle also underlies our findings.
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B) fast nucleation/slow growth

C) slow nucleation/fast growth

A)

Figure 6.1 | A) Illustration of a self-assembly process (Image credit: Philipp Geiger). The
process starts with individual subunits that then – through local interactions – form macro-
scopic structures. We focus on non-equilibrium self-assembly, meaning that we consider
processes where part of the reactions are irreversible (on the timescale of the assembly pro-
cess) and that we focus on kinetic (instead of equilibrium) properties. B,C) Slow nucleation
principle: If nucleation of new structures is fast compared to growth (B), it is likely that
many nucleation seeds form before polymers have grown into the target structure. As a
result, the system gets kinetically trapped in half-finished polymer structures. In contrast,
if growth is favored compared to nucleation (C), a newly nucleated structure is likely to
grow into the target structure before new nucleation events occur. There is no competition
for resources in this case and assembly is very efficient.



7 Stochastic yield catastrophes for
heterogeneous structures

Simplicity is the ultimate sophistication.
(Leonardo da Vinci)

The goal of this chapter is to summarize the most important findings of our project on the
self-assembly of heterogeneous structures. The corresponding manuscript has been published1

in eLife. This chapter is based on and uses parts of this publication [4], which is also reprinted
in section 7.5.

7.1 Motivation

Self-assembled structures range from very homogeneous virus capsids which are composed of
only a single or few different species up to DNA-brick structures with many distinct building
blocks. Despite these differences, common principles for the assembly of both types of struc-
tures have emerged (see also the introductory chapter 6). For instance, it is a well accepted
strategy that nucleation of new structures should be slow compared to growth of structures
in order to obtain high assembly yield (see also section 6.3). However, it is an open question
whether different ways to accomplish slow nucleation are indeed equivalent and whether the
heterogeneity of a target structure plays any role for achieving slow nucleation. The goal of
this project was to address these questions with the help of a conceptual model. In particular,
we focused on a situation where the assembly process involves irreversible steps and where
resources are finite. In such a situation with finite particle numbers stochastic effects may
become important and it is a priori not clear whether the strength of these stochastic effects
may depend on the number of different building blocks that make up the target structure. It
turns out that the self-assembly of heterogeneous structures can indeed be subject to strong
stochastic effects if there are fluctuations in the availability of the different building blocks
for binding. Intriguingly, these stochastic effects can lead to qualitatively different behavior
as compared to a description in terms of mean-field equations that neglect this variability
between the various constituents. For instance, the assembly yield in systems with fluctua-
tions in the availability of the different building blocks can be a non-monotonic function of
the nucleation probability in the corresponding system with well-balanced components.

As mentioned in the abstract of the project, the driving questions for this project are:
Does the heterogeneity of the target structure qualitatively change the assembly process? Un-
der what conditions can irreversible self-assembly processes proceed efficiently and robustly?

1At the time of the original submission of this thesis, the manuscript had been under review for publication.
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7.2 Model

Figure 7.1 | Illustration of the model (slightly adapted from [4]). Ring structures of size
L assemble from S different species ∈ {1, 2, . . . , S}. Each species is present N times and all
monomers are inactive initially (blue). Monomers get activated at per-capita rate α and, once
active (green), can bind to each other. Binding only occurs between periodically consecutive
species (e.g. species 1 can only bind to species S from the right and to species 2 from the
left) and structures only grow by addition of single monomers. Below a critical nucleation
size Lnuc, polymers (yellow) are unstable and decay again into monomers. In contrast, above
the critical nucleation size, the structures (orange) are stable and grow irreversibly. Once
a structure has reached the target structure size L, the ring is finished and does not grow
further (red). To avoid ambiguity, we restrict the size of the target structure L to a multiple
of the number of species S. Then each species occurs equally often in a ring and all final
rings are identical.

To address these questions, we considered the conceptual model as illustrated in Fig. 7.1.
Rings of size L are assembled from S different species in a well-mixed system. The species
bind to each other in a periodically consecutive way and occur equally often in a final ring
(thus, L is an integer multiple of S). That is, species i can only bind to species (i± 1)modS.
Monomers first dimerize and then structures grow one-by-one by monomer attachment. Below
a critical nucleation size Lnuc, structures of size l < Lnuc grow at per-capita rate µl and decay
again into monomers at rate δl. In contrast, above the critical nucleation size, structures
of size l ≥ Lnuc are stable and grow irreversibly at per-capita rate ν ≡ 1 per binding site
until they reach the target structure size L. These different growth regimes are motivated
by typical nucleation-and-growth phenomena. In terms of classical nucleation theory, the
critical nucleation size Lnuc corresponds to the structure size where the free energy barrier is
maximal [206, 230, 244, 245]. To account for the effect of finite resources, we assume that
there is a finite number N of particles per species in the system. Finally, to explore which
effect an additional activation step (as suggested for instance in Refs. [122, 231]; see also
section 6.1) has on the self-assembly dynamics, we assume that all particles are initially in
an inactive state in which they can not bind to other structures. Activation then occurs at
per-capita rate α, independent for all species and particles. Once active, particles bind to
each other as described above.
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The choice of the particular target structure (namely periodic rings in which all species occur
equally often) and the symmetry between the different species is motivated by the fact that
it is the simplest possible structure which allows for variable heterogeneity: All species are
equivalent and at the same time the heterogeneity of the structure can be tuned by modifying
the ratio between the size of the structure L and the number of species S. Furthermore, this
perfect arrangement enables us to trace back the origin of the strong stochastic effects we
observe in this model: they are due to fluctuations in the availability of the different species.
If, for instance, we had allowed for different numbers of particles per species, these stochastic
effects might have been overlaid by other stochastic effects similar as in Ref. [125].

For convenience, for the analysis presented in the next chapter 7.3, we will focus on the case
of equal sub-nucleation growth rates µl ≡ µ ∀l and equal decay rates δl ≡ δ ∀l. A discussion
of the general case can be found in the Supplementary Material of the publication preprint in
chapter 7.5. Furthermore, if not stated otherwise, we will consider the case where Lnuc = 2.
Then, all reactions are irreversible and dimerization occurs at per-capita rate µ whereas all
growth (elongation) steps take place at per-capita rate ν ≡ 1.

The quality of the assembly process is determined in terms of the yield y. It corresponds to
the number of finished rings compared to the maximally possible number, NS/L. Here we
only focus on the assembly yield at the end of the process when no further growth is possible
since all monomers have been activated and are bound in structures larger or equal to the
critical nucleation size Lnuc.

7.3 Results

What behavior do we expect from this model? As explained in detail in section 6.3, an
important guiding principle for self-assembly is that for efficient assembly nucleation of new
structures should be slow compared to growth. Intuitively, in our model, this could be
achieved in two ways. First, one can implement a slow sub-nucleation rate µ� 1 as compared
to the growth rate ν = 1. In this case, nucleation is directly disfavored relative to growth since
it is simply more likely that monomers attach to a larger structure as compared to a smaller
structure. However, there is also a second, more indirect way, namely by decreasing the
activation rate α. For small α the number of active monomers is typically small. As a result,
dimerization (which requires two active monomers) is expected to occur much more rarely
as compared to growth of larger structures (for which only one monomer is necessary). In
both cases of small dimerization rates or small activation rates, there is a high tendency that
initiated structures first finish before new structures are nucleated. Assembly thus proceeds
consecutively and the assembly yield is high because kinetic traps are avoided. Taken together,
we intuitively expect that the assembly yield should be high for slow activation and/or slow
dimerization rates.

This is exactly what we observed in the limit where the number N of particles per species
is large (see Fig. 2(a,b) in the publication preprint in chapter 7.5). In (a), we consider the
so-called “activation scenario” where nucleation is limited by a small activation rate α and the
dimerization rate is equal to the growth rate µ = ν = 1. In (b), nucleation is limited by a small
dimerization rate µ and the activation rate is chosen as α→∞; “dimerization scenario”. In
both cases, yield is very low for large α or µ. It sharply increases below a threshold value αth
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or µth and reaches a perfect value of 1 in the limit of small α or µ. The threshold values scale as
αth ∼ N/L3 and µth ∼ 1/L2 (compare Eq. 1 in the publication preprint in chapter 7.5 and the
analytical derivation in the Supplementary Material, where we introduced the initial monomer
concentration C = N/V ). While the number N of particles per species is thus not decisive
for the dimerization scenario, the transition to perfect yield in the activation scenario scales
with N . Intuitively, this comes from the fact that in the dimerization scenario all reactions
rely on two-particle interactions. In contrast, activation is a single-particle reaction and,
thus, α has to be rescaled by N (or the concentration) in order to obtain equivalent behavior
for different values of N . The inset in Fig. 2(a) in the publication preprint in chapter 7.5
shows exactly this behavior: If the activation rate is rescaled by N , all curves for different
N collapse onto one master curve. Remarkably, these results are entirely independent of the
heterogeneity of the target structure (the number of species S) if the target structure size L
and the number of particles N per species are fixed. Furthermore, they do not depend on
whether the system was simulated stochastically based on Gillespie’s algorithm ([33]; symbols)
or whether it was described in terms of the corresponding chemical rate equations which are
mean-field equations that neglect fluctuations and correlations between species.

Intriguingly, the qualitative behavior in the activation scenario changes drastically for het-
erogeneous structures if the number N of particles in the system is reduced (see Fig. 3(a) in
the publication preprint in chapter 7.5). While a numerical integration of the chemical rate
equations (black line) still predicts a perfect yield of 1 in the limit of small activation rate,
the results from stochastic simulations (symbols) show that in this limit yield saturates at
an imperfect value ymax < 1. This saturation value ymax < 1 strongly decreases with the
number N of particles per species. Surprisingly, already for N = 5000 particles per species,
this effect is clearly visible (in the case of L = S = 60 in Fig. 3(a)). And indeed for small
enough N (in Fig. 3(a), N = 100), the maximal yield in stochastic simulations is 0 although
the deterministic chemical rate equations would predict a perfect yield of 1. We thus termed
this phenomenon “stochastic yield catastrophe”.

Where does this stochastic yield catastrophe come from? As we explain more thoroughly in
the next chapter 8, it is due to the stochastic activation of particles that introduces fluctuations
in the availability of the different species. If there are certain species that are momentarily
less available, this unavailability of certain species can block the growth of structures that
would otherwise grow by attachment of this species. Since this effect is the more pronounced
for larger structures (see chapter 8), growth of structures is effectively disfavored compared
to nucleation and, in accordance with the slow-nucleation principle, yield is lower.

The strength of the stochastic effects depends both on the critical nucleation size Lnuc and
on the number of species S (if the structure size L and the number of maximally possible
ring structures NS/L (and not N itself) is fixed; see Fig. 3(d) in the publication preprint in
chapter 7.5): While the maximal yield is always perfect for completely homogeneous struc-
tures (S = 1) where there can be no fluctuations in the availability of the different species,
yield decreases for larger number of species S. With regard to the self-assembly of artificial
structures or in living organisms, this finding suggests that in order to achieve high assembly
yield, it is preferential to build as homogeneous structures as possible. Moreover, for larger
critical nucleation size Lnuc, the maximal yield is larger. This behavior is intuitive: For larger
Lnuc, more steps of the assembly process are reversible and it is, thus, more feasible to correct
for too many nucleation events.
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In the dimerization scenario, all particles are active from the beginning and there are no
fluctuations in the availability of the different species. Correspondingly, this scenario is not
subject to substantial stochastic effects (see Fig. 3(b) in the publication preprint in chap-
ter 7.5). Yield is always perfect in the limit of small dimerization, irrespective of the number
of particles per species.

Counterintuitive behavior arises if both scenarios are combined. Fig. 5(a,b) in the publication
preprint in chapter 7.5 shows how the yield depends on the activation rate α for different values
of the dimerization rate µ � ν = 1. While the deterministic rate equations (lines) predict
monotonic behavior with respect to the activation rate, the yield in the stochastic simulations
can be a non-monotonic function of the activation rate (see e.g. the yellow and green lines in
(a,b)). If µ is not small enough, yield is low for large α (corresponding to the dimerization
scenario). A lower α first improves yield because the fluctuations are not strong, yet, and
a slower activation rate yields to a slower nucleation speed. Further decrease of α, though,
enhances the fluctuations that, in turn, effectively increase the nucleation probability again
(see above). As a result, yield is deterministically suppressed for large α and is suppressed by
stochastic effects for small α. Depending on the strength of these effects, yield can be either
monotonically increasing, monotonically decreasing or exhibit non-monotonic behavior with
respect to α.
In a deterministic description in terms of chemical rate equations, the stochasticity due to
the random activation process is not taken into account and all species are equivalent. In this
case, a lower value of α always leads to a slower nucleation probability and thus an improved
assembly efficiency.

Remarkably, our finding of the stochastic yield catastrophe is robust to model modifications.
Both for systems where polymer-polymer binding is additionally considered (Fig. 6 in the
publication preprint in chapter 7.5) as well as for systems with a non-periodic geometry
(and thus non-equivalent species) and a non-linear assembly path (Fig. 7 in the publication
preprint in chapter 7.5), we find the same qualitative behavior: In the activation scenario,
yield saturates at an imperfect value that, generally speaking, decreases for smaller numbers
of particles in the system.
This suggests that stochastic effects may be an important limitation for the self-assembly of
heterogeneous structures.

7.4 Key points

From my point of view, there are three take-home messages:

• The assembly of heterogeneous structures can be subject to strong stochastic effects
which suppress the assembly yield considerably (or even completely; “stochastic yield
catastrophe”).

• The assembly yield can be a non-monotonic or even an increasing function of the de-
terministic nucleation speed. The slow-nucleation principle, thus, has to be interpreted
in terms of the corresponding stochastic framework.

• Chemical rate equations are, in general, not sufficient to describe the self-assembly of
heterogeneous structures.
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In the spirit of the quote by Leonardo da Vinci at the beginning of the chapter, I believe
that in our case it was indeed the simplicity of the model and the assumption of a principally
perfectly functioning and designed system that made it possible to uncover the strong influence
of fluctuations in the availability of the different species on the efficiency of the assembly
process.
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ABSTRACT

A guiding principle in self-assembly is that, for high production yield, nucleation of structures must be
significantly slower than their growth. However, details of the mechanism that impedes nucleation are
broadly considered irrelevant. Here, we analyze self-assembly into finite-sized target structures employing
mathematical modeling. We investigate two key scenarios to delay nucleation: (i) by introducing a slow
activation step for the assembling constituents and, (ii) by decreasing the dimerization rate. These
scenarios have widely different characteristics. While the dimerization scenario exhibits robust behavior,
the activation scenario is highly sensitive to demographic fluctuations. These demographic fluctuations
ultimately disfavor growth compared to nucleation and can suppress yield completely. The occurrence of
this stochastic yield catastrophe does not depend on model details but is generic as soon as number
fluctuations between constituents are taken into account. On a broader perspective, our results reveal
that stochasticity is an important limiting factor for self-assembly and that the specific implementation
of the nucleation process plays a significant role in determining the yield.

1 Introduction

Efficient and accurate assembly of macromolecular structures is vital for living organisms. Not only must
resource use be carefully controlled, but malfunctioning aggregates can also pose a substantial threat to
the organism itself [8, 22]. Furthermore, artificial self-assembly processes have important applications in
a variety of research areas like nanotechnology, biology, and medicine [39, 40,43]. In these areas, we find
a broad range of assembly schemes. For example, while a large number of viruses assemble capsids from
identical protein subunits, some others, like the Escherichia virus T4, form highly complex and
heterogeneous virions encompassing many different types of constituents [15, 26,44,45]. Furthermore,
artificially built DNA structures can reach up to Gigadalton sizes and can, in principle, comprise an
unlimited number of different subunits [11, 23,33,36]. Notwithstanding these differences, a generic
self-assembly process always includes three key steps: First, subunits must be made available, e.g. by
gene expression, or rendered competent for binding, e.g. by nucleotide exchange [2, 3, 38] (‘activation’).
Second, the formation of a structure must be initiated by a nucleation event (‘nucleation’). Due to
cooperative or allosteric effects in binding, there might be a significant nucleation barrier [3,16,20,25,35].
Third, following nucleation, structures grow via aggregation of substructures (‘growth’). To avoid kinetic
traps that may occur due to irreversibility or very slow disassembly of substructures [14, 17], structure
nucleation must be significantly slower than growth [16,21,23, 33,37, 45]. Physically speaking, there are
no irreversible reactions. However, in the biological context, self-assembly describes the (relatively fast)
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Figure 1. Schematic description of the model. (a) Rings of size L are assembled from S different
particle species. N monomers of each species are initially in an inactive state (blue) and are activated
at the same per-capita rate ↵. Once active (green), species with periodically consecutive index can
bind to each other. Structures grow by attachment of single monomers. Below a critical nucleation size
(Lnuc), structures of size l (light yellow) grow and decay into monomers at size-dependent rates µl and �l,
respectively. Above the critical size, polymers (dark yellow) are stable and grow at size-independent rate
⌫ until the ring is complete (the absorbing state; red). (b) Illustration of depletion traps. If nucleation is
slow compared to growth, initiated structures are likely to be completed. Otherwise, many stable nuclei
will form that cannot be completed before resources run out.

formation of long-lasting, stable structures. Therefore, at least part of the assembly reactions are often
considered to be irreversible on the time scale of the assembly process.

In this manuscript we investigate, for a given target structure, whether the nature of the specific
mechanism employed in order to slow down nucleation influences the yield of assembled product. To
address this question, we examine a generic model that incorporates the key elements of self-assembly
outlined above.

2 Model definition

We model the assembly of a fixed number of well-defined target structures from limited resources.
Specifically, we consider a set of S different species of constituents denoted by 1, . . . , S which assemble
into rings of size L. The cases S = 1 and 1 < S  L (S = L) are denoted as homogeneous and partially
(fully) heterogeneous, respectively. The homogeneous model builds on previous work on virus
capsid [3, 17], linear protein filament assembly [7, 27, 28] and aggregation and polymerization models [24].
The heterogeneous model in turn links to previous model systems used to study, for example,
DNA-brick-based assembly of heterogeneous structures [6, 19, 30]. We emphasize that, even though
strikingly similar experimental realizations of our model exist [11, 32, 36], it is not intended to describe
any particular system. The ring structure represents a general linear assembly process involving building
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blocks with equivalent binding properties and resulting in a target of finite size. The main assumption in
the ring model is that the different constituents assemble linearly in a sequential order. In many
biological self-assembling systems like bacterial flagellum assembly or biogenesis of the ribosome subunits
the assumption of a linear binding sequence appears to be justified [4, 31]. In order to test the validity of
our results beyond these constraints we also perform stochastic simulations of generalized self-assembling
systems that do not obey a sequential binding order: i) by explicitly allowing for polymer-polymer
bindings and ii) by considering the assembly of finite sized squares that grow independently in two
dimensions (see Figs. 6 and 7).

The assembly process starts with N inactive monomers of each species. We use C = N/V to denote
the initial concentration of each monomer species, where V is the reaction volume. Monomers are
activated independently at the same per capita rate ↵, and, once active, are available for binding.
Binding takes place only between constituents of species with periodically consecutive indices, for
example 1 and 2 or S and 1 (leading to structures such as . . .1231. . . for S = 3); see Fig. 1. To avoid
ambiguity, we restrict ring sizes to integer multiples of the number of species S. Furthermore, we neglect
the possibility of incorrect binding, e.g. species 1 binding to 3 or S�1. Polymers, i.e., incomplete ring
structures, grow via consecutive attachment of monomers. For simplicity, polymer-polymer binding is
disregarded at first, as it is typically assumed to be of minor importance [3, 18, 30,45]. To probe the
robustness of the model, later we consider an extended model including polymer-polymer binding for
which the results are qualitatively the same (see Fig. 6 and the discussion). Furthermore, it has been
observed that nucleation phenomena play a critical role for self-assembly processes [3, 23, 33, 37]. So it is
in general necessary to take into account a critical nucleation size, which marks the transition between
slow particle nucleation and the faster subsequent structure growth [25,28–30]. We denote this critical
nucleation size by Lnuc, which in terms of classical nucleation theory corresponds to the structure size at
which the free energy barrier has its maximum. For l < Lnuc attachment of monomers to existing
structures and decay of structures (reversible binding) into monomers take place at size-dependent
reaction rates µl and �l, respectively (Fig. 1). Here, we focus on identical rates µl = µ and �l = �. A
discussion of the general case is given in the Supplemental Material [1]. Above the nucleation size,
polymers grow by attachment of monomers with reaction rate ⌫ � µ per binding site. As we consider
successfully nucleated structures to be stable on the observational time scales, monomer detachment
from structures above the critical nucelation size is neglected (irreversible binding) [3, 30]. Complete
rings neither grow nor decay (absorbing state).

We investigate two scenarios for the control of nucleation speed, first separately and then in
combination. For the ‘activation scenario’ we set µ = ⌫ (all binding rates are equal) and control the
assembly process by varying the activation rate ↵. For the ‘dimerization scenario’ all particles are
inherently active (↵ ! 1) and we control the assembly process by varying the dimerization rate µ (we
focus on Lnuc = 2). It has been demonstrated previously in [3] and [9,16,29] that either a slow activation
or a slow dimerization step are suitable in principle to retard nucleation and favour growth of the
structures over the initiation of new ones. We quantify the quality of the assembly process in terms of
the assembly yield, defined as the number of successfully assembled ring structures relative to the
maximal possible number NS/L. Yield is measured when all resources have been used up and the
system has reached its final state. We do not discuss the assembly time in this manuscript, however, in
the SI we show typical trajectories for the time evolution of the yield in the activation and dimerization
scenario. If the assembly product is stable (absorbing state), the yield can only increase with time.
Consequently, the final yield constitutes the upper limit for the yield irrespective of additional time
constraints. Therefore, the final yield is an informative and unambiguous observable to describe the
efficiency of the assembly reaction.

We simulated our system both stochastically via Gillespie’s algorithm [12] and deterministically as a
set of ordinary differential equations corresponding to chemical rate equations (see Supplemental
Material [1]).
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3 Results

3.1 Deterministic behavior in the macroscopic limit.

(a)

0

0.2

0.4

0.6

0.8

1

L=60
L=40

L=20

N =104

N =105

10-5 10-3 10-1

dimerization rate μ [ν] 

μt
0

0.2

0.4

0.6

0.8

1

yi
el

d

L=60

L=60
L=20

L=20

αt

N =105

N =106

10-2 100 102 104 106

activation rate α [ν/V] 

10-7 10-5 10-3
α [Cν] 

0

1

yie
ld

L=60
L=20

NL L

yi
el

d

4
3 1

2

4
3

1

2

1

4

32

1

4
32

4

3

1
2

4
3

1
2

4
3

1 2

1

4

32

4

3
1

2
4

3

1

2

ν>>α

α>>ν
ν>>μ

να

μ>>ν

ν>>μ

μ>>ν

ν

(b)

(c) (d)

(e)

0%

in
ac

tiv
e 

m
on

om
er

s

100%

0%

co
m

pl
et

e 
rin

gs

100%

0 20 40 60
polymer size

0

5

10

15

20

25 α = 0.88
early
intermediate
final

0%

in
ac

tiv
e 

m
on

om
er

s

100%

0%

co
m

pl
et

e 
rin

gs

100%

0 20 40 60
polymer size

0

1

2

3

4

5

6 α = 0.1
early
intermediate
final

Figure 2. Deterministic behavior in the macroscopic limit N � 1. (a, b) Yield for different particle
numbers N (symbols) and ring sizes L (colors) for Lnuc = 2. Decreasing either (a) the activation
rate (‘activation scenario’: µ = ⌫ ) or (b) the dimerization rate (‘dimerization scenario’: ↵ ! 1)
achieves perfect yield. The stochastic simulation results (symbols) average over 16 realizations and agree
exactly with the integration of the chemical rate equations (lines). The threshold values (Eq. 1) are
indicated by the vertical dashed lines. Plotting yield against the dimensionless quantity ↵/(⌫C) causes
the curves for different C to collapse into a single master curve (inset in a). For both scenarios there is
no dependency on the number of species S in the deterministic limit. (c, d) Illustration showing how
depletion traps are avoided by either slow activation (c) or slow dimerization (d). If the activation or
the dimerization rate is small (large) compared to the growth rate, assembly paths leading to complete
rings are favored (disfavored). The color scheme is the same as in Fig. 1. (e) Deterministically, the size
distribution of polymers behaves like a wave, and is shown for large and small activation rate for L = 60,
Lnuc = 2, N = 10000 and µ = ⌫ = 1. The distributions are obtained from a numerical integration of the
deterministic mean-field dynamics, Eq. 6, and are plotted for early, intermediate and final simulation
times. The respective percentage of inactive monomers and complete rings is indicated by the symbols in
the scale bar on the left or right.

First, we consider the macroscopic limit, N � 1, and investigate how assembly yield depends on the
activation rate ↵ (activation scenario) and the dimerization rate µ (dimerization scenario) for Lnuc = 2.
Here, the deterministic description coincides with the stochastic simulations (Fig. 2(a) and (b)). For
both high activation and high dimerization rates, yield is very poor. Upon decreasing either the
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activation rate (Fig. 2(a)) or the dimerization rate (Fig. 2(b)), however, we find a threshold value, ↵th or
µth , below which a rapid transition to the perfect yield of 1 is observed both in the deterministic and
stochastic simulation. By exploiting the symmetries of the system with respect to relabeling of species,
one can show that, in the deterministic limit, the behavior is independent of the number of species S (for
fixed L and N , see Supplemental Material [1]). Consequently, all systems behave equivalently to the
homogeneous system and yield becomes independent of S in this limit. Note, however, that equivalent
systems with differing S have different total numbers of particles SN and hence assemble different total
numbers of rings.

Decreasing the activation rate reduces the concentration of active monomers in the system. Hence
growth of the polymers is favored over nucleation, because growth depends linearly on the concentration
of active monomers while nucleation shows a quadratic dependence. Likewise, lower dimerization rates
slow down nucleation relative to growth. Both mechanisms therefore restrict the number of nucleation
events, and ensure that initiated structures can be completed before resources become depleted (see
Fig. 2(c) and (d)).

Mathematically, the deterministic time evolution of the polymer size distribution c(l, t) is described
by an advection-diffusion equation [9, 41] with advection and diffusion coefficients depending on the
instantaneous concentration of active monomers (see Supplemental Material [1]). Solving this equation
results in the wavefront of the size distribution advancing from small to large polymer sizes (Fig. 2(e)).
Yield production sets in as soon as the distance travelled by this wavefront reaches the maximal ring size
L. Exploiting this condition, we find that in the deterministic system for Lnuc = 2, a non-zero yield is
obtained if either the activation rate or the dimerization rate remains below a corresponding threshold
value, i.e. if ↵ < ↵th or µ < µth, where

↵th = P↵
⌫

µ

⌫C

(L �
p

L)3
and µth = Pµ

⌫

(L �
p

L)2
(1)

(see Supplemental Material [1]) with proportionality constants P↵ = [
p
⇡�(2/3)/�(7/6)]3/3 ⇡ 5.77 and

Pµ = ⇡2/2 ⇡ 4.93. These relations generalize previous results [29] to finite activation rates and for
heterogeneous systems. A comparison between the threshold values given by Eq. 1 and the simulated
yield curves is shown in Fig. 2(a,b). The relations highlight important differences between the two
scenarios (where ↵ ! 1 and µ = ⌫, respectively): While ↵th decreases cubically with the ring size L,
µth does so only quadratically. Furthermore, the threshold activation rate ↵th increases with the initial
monomer concentration C. Consequently, for fixed activation rate, the yield can be optimized by
increasing C. In contrast, the threshold dimerization rate is independent of C and the yield curves
coincide for N � 1. Finally, if ↵ is finite and µ < ⌫, the interplay between the two slow-nucleation
scenarios may lead to enhanced yield. This is reflected by the factor ⌫/µ in ↵th, and we will come back
to this point later when we discuss the stochastic effects.

In summary, for large particle numbers (N � 1), perfect yield can be achieved in two different ways,
independently of the heterogeneity of the system - by decreasing either the activation rate (activation
scenario) or the dimerization rate (dimerization scenario) below its respective threshold value.

3.2 Stochastic effects in the case of reduced resources.

Next, we consider the limit where the particle number becomes relevant for the physics of the system. In
the activation scenario, we find a markedly different phenomenology if resources are sparse. Figure 3(a)
shows the dependence of the average yield on the activation rate for different, low particle numbers in
the completely heterogeneous case (S = L) 1. Whereas the deterministic theory predicts perfect yield for
small activation rates, in the stochastic simulation yield saturates at an imperfect value ymax < 1.

1Here, we restrict our discussion to the average yield. The error of the mean is negligible due to the large number of
simulations used to calculate the average yield. Still, due to the randomness in binding and activation, the yield can differ
between simulations. A figure with the average yield and its standard deviation is shown in the Supplemental Material [1].
For very low and very high average yield, the standard deviation has to be small due to the boundedness of the yield. For
intermediate values of the average, the standard deviation is highest but still small compared to the average yield. Thus,
the average yield is meaningful for the essential understanding of the assembly process.
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Figure 3. Stochastic effects in the case of reduced resources. (a, b) Yield of the fully heterogeneous
system (S = L) for reduced number of particles (symbols) for L = 60 and Lnuc = 2 averaged over 1024
ensembles). In the activation scenario, at low activation rates the yield saturates at an imperfect value
ymax, which decreases with the number of particles (a). This finding disagrees with the deterministic
prediction (black line) of perfect yield for ↵ ! 0. In contrast, the dimerization scenario robustly exhibits
the maximal yield of 1 for small N , in agreement with the deterministic prediction (black line) (b). (c)
Diagram showing different regimes of ymax(N, L) in dependence of the particle number N and target size
L (for the fully heterogeneous system S = L) as obtained from stochastic simulations in the limit ↵ ! 0.
The minimal number of particles necessary to obtain a fixed yield increases in a strongly nonlinear way
with the target size. The symbols along the line L = 60 represent the saturation values of the yield curves
in (a). (d) Dependence of ymax on the number of species S for fixed L = 60 and fixed number of ring
structures NS/L. Symbols indicate different values of the critical nucleation size Lnuc. The impact of
stochastic effects strongly depends on the number of species under the constraint of a fixed total number
of particles NS and fixed target size L. The homogeneous system is not subject to stochastic effects at
all. Higher reversibility for larger Lnuc also mitigates stochastic effects.

Reducing the particle number N decreases this saturation value ymax until no finished structures are
produced (ymax ! 0). The magnitude of this effect strongly depends on the size of the target structure
L if the system is heterogeneous. Fig. 3(c) shows a diagram characterizing different regimes for the
saturation value of the yield, ymax(N, L), in dependence of the particle number N and the size of the
target structure L for fully heterogeneous systems (S = L). We find that the threshold particle number
N th

y necessary to obtain a fixed yield y increases nonlinearly with the target size L. For the depicted

range of L, the dependence of the threshold for nonzero yield, N th
>0, on L can approximately be described

by a power-law: N th
>0 ⇠ L⇠, with exponent ⇠ ⇡ 2.8 for L  600. Consequently, for L = 600 already more

than 105 rings must be assembled in order to obtain a yield larger than zero. In the SI we included two
additional plots that show the dependence of ymax on N for fixed L and the dependence on L for fixed
N , respectively. The suppression of the yield is caused by fluctuations (see explanation below) and is not
captured by a deterministic description. Because these stochastic effects can decrease the yield from a
perfect value in a deterministic description to zero (see Fig. 3(a)), we term this effect ‘stochastic yield
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catastrophe’.
For fixed target size L and fixed maximum number of target structures NS

L , ymax increases with
decreasing number of species, see Fig. 3(d). In the fully homogeneous case, S = 1, a perfect yield of 1 is
always achieved for ↵ ! 0. The decrease of the maximal yield with the number of species S thus
suggests that, in order to obtain high yield, it is beneficial to design structures with as few different
species as possible. In large part this effect is due to the constraint SN = const, whereby the more
homogeneous systems (small S) require larger numbers of particles per species N and, correspondingly,
exhibit less stochasticity. If N is fixed instead of SN , the yield still initially decreases with increasing
number of species S but then quickly reaches a stationary plateau and gets independent of S for S � 1,
see Supplemental Material [1]. Moreover, increasing the nucleation size Lnuc, and with it the reversibility
of binding, also increases ymax, see Fig. 3(d). This indicates that, beside heterogeneity of the target
structure, irreversibility of binding on the relevant time scale makes the system susceptible to stochastic
effects.

The stochastic yield catastrophe is mainly attributable to fluctuations in the number of active
monomers. In the deterministic (mean-field) equation the different particle species evolve in balanced
stoichiometric concentrations. However, if activation is much slower than binding, the number of active
monomers present at any given time is small, and the mean-field assumption of equal concentrations is
violated due to fluctuations (for S > 1). Activated monomers then might not fit any of the existing
larger structures and would instead initiate new structures. Figure 4(a) illustrates this effect and shows
how fluctuations in the availability of active particles lead to an enhanced nucleation and,
correspondingly, to a decrease in yield. Due to the effective enhancement of the nucleation rate, the
resulting polymer size distribution has a higher amplitude than that predicted deterministically
(Fig. 4(b)) and the system is prone to depletion traps. A similar broadening of the size distribution has
been reported in the context of stochastic coagulation-fragmentation of identical particles [5].

In the dimerization scenario, in contrast, there is no stochastic activation step. All particles are
available for binding from the outset. Consequently, stochastic effects do not play an essential role in the
dimerization scenario and perfect yield can be reached robustly for all system sizes, regardless of the
number of species S (Fig. 3(b)).

3.3 Non-monotonic yield curves for a combination of slow dimerization
and activation.

So far, the two implementations of the ‘slow nucleation principle’ have been investigated separately.
Surprisingly, we observe counter-intuitive behavior in a mixed scenario in which both dimerization and
activation occur slowly (i.e., µ < ⌫, ↵ < 1). Figure 5 shows that, depending on the ratio µ/⌫, the yield
can become a non-monotonic function of ↵. In the regime where ↵ is large, nucleation is
dimerization-limited; therefore activation is irrelevant and the system behaves as in the dimerization
scenario for ↵ ! 1. Upon decreasing ↵ we then encounter a second regime, where activation and
dimerization jointly limit nucleation. The yield increases due to synergism between slow dimerization
and activation (see µ/⌫ dependence of ↵th, Eq. 1), whilst the average number of active monomers is still
high and fluctuations are negligible. Finally, a stochastic yield catastrophe occurs if ↵ is further reduced
and activation becomes the limiting step. This decline is caused by an increase in nucleation events due
to relative fluctuations in the availability of the different species (“fluctuations between species”). This
contrasts the deterministic description where nucleation is always slower for smaller activation rate.
Depending on the ratio µ/⌫, the ring size L and the particle number N , maximal yield is obtained either
in the dimerization-limited (red curves, Fig. 5), activation-limited (blue curve, Fig. 5(b)) or intermediate
regime (green and orange curves).

3.4 Robustness of the results to model modifications.

In our model, the reason for the stochastic yield catastrophe is that - due to fluctuations between species
- the effective nucleation rate is strongly enhanced. Hence, if binding to a larger structure is temporarily
impossible, activated monomers tend to initiate new structures, causing an excess of structures that
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Figure 4. Cause and effect of stochasticity in the activation scenario. (a) Illustration of the significance
of stochastic effects when resources are sparse. Arrows indicate possible transitions and the probabilities
in the depicted situation for sufficiently small activation rate ↵. For small ↵, the random order of
activation alone determines the availability of monomers and therefore the order of binding. In the
depicted situation, the complete structure is assembled only with probability 1/2. In all other cases,
only fragments of the structure are assembled such that the final yield is decreased. (b) Polymer size
distribution for the activation scenario (symbols) as obtained from stochastic simulations, in comparison
with its deterministic prediction (lines) for S = L = 100, N = 1000 and Lnuc = 2. Due to the enhanced
number of nucleation events, the stochastic wave encompasses far more structures and moves more slowly.
As a result, it does not quite reach the absorbing boundary.

ultimately cannot be completed. Natural questions that arise are whether i) relaxing the constraint that
polymers cannot bind other polymers or ii) abandoning the assumption of a linear assembly path, will
resolve the stochastic yield catastrophe. To answer these questions, we performed stochastic simulations
for extensions of our model system showing that the stochastic yield catastrophe indeed persists.

We start by considering the ring model from the previous section but take polymer-polymer binding
into account in addition to growth via monomer attachment (Fig.6). In detail, we assume that two
structures of arbitrary size (and with combined length  L) bind at rate ⌫ if they fit together, i.e. if the
left (right) end of the first structure is periodically continued by the right (left) end of the second one.
Realistically, the rate of binding between two structures is expected to decrease with the motility and
thus the sizes of the structures. In order to assess the effect of polymer-polymer binding, we focus on the
worst case where the rate for binding is independent of the size of both structures. If a stochastic yield
catastrophe occurs for this choice of parameters, we expect it to be even more pronounced in all the
“intermediate cases”. Fig. 6 shows the dependence of the yield on the activation rate in the
polymer-polymer model. As before, yield increases below a critical activation rate and then saturates at
an imperfect value for small activation rates. Decreasing the number of particles per species, decreases
this saturation value. Compared to the original model, the stochastic yield catastrophe is mitigated but
still significant: For structures of size S = L = 100, yield saturates at around 0.87 for N = 100 particles
per species and at around 0.33 for N = 10 particles per species. We thus conclude that polymer-polymer
binding indeed alleviates the stochastic yield catastrophe but does not resolve it. Since binding only
happens between consecutive species, structures with overlapping parts intrinsically can not bind
together and depletion traps continue to occur. Taken together, also in the extended model, fluctuations
in the availability of the different species lead to an excess of intermediate-sized structures that get
kinetically trapped due to structural mismatches. Note that in the extreme case of N = 1, incomplete
polymers can always combine into 1 final ring structure so that in this case yield is always 1.
Analogously, for high activation rates yield is improved for N = 10 compared to N � 50 (Fig. 6 b).

Kinetic trapping due to structural mismatches can occur in every (partially) irreversible
heterogeneous assembly process with finite-sized target structure and limited resources. From our results,
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Figure 5. Yield for a combination of slow dimerization and activation. (a, b) Dependence of the
yield of the fully heterogeneous system on the activation rate ↵ for N = 100 and different values of
the dimerization rate (colors/symbols) for L = 60 (a) and L = 40 (b) (averaged over 1024 ensembles).
For large activation rates yield behaves deterministically (lines). In contrast, for small activation rates
stochastic effects (blue shading) lead to a decrease in yield. Depending on the parameters, the yield
maximum is attained in either the deterministic, stochastic or intermediate regime. (c) Table summarizing
the qualitative behavior of the yield (poor/intermediate/perfect) for a combination of dimerization and
activation rates for both the deterministic and the stochastic limit. The columns correspond to low and
high values of the dimerization rate, as indicated by the marker in the corresponding deterministic yield
curve at the top of the column. Similarly, the rows correspond to low, intermediate and high activation
rates. Arrows and colors indicate where and for which curve this behavior can be observed in (a) and (b).
Deviations between the deterministic and stochastic limits are most prominent for low activation rates.

we thus expect a stochastic yield catastrophe to be common to such systems. In order to further test this
hypothesis, we simulated another variant of our model where finite sized squares assemble via monomer
attachment from a pool of initially inactive particles, see Fig 7 . In contrast to the original model, the
assembled structures are non-periodic and exhibit a non-linear assembly path where structures can grow
independently in two dimensions. While the ring model assumes a sequential order of binding of the
monomers, the square allows for a variety of distinct assembly paths that all lead to the same final
structure. Note that, because of the absence of periodicity the square model is only well defined for the
completely heterogeneous case. Figure 7 depicts the dependence of the yield on the activation rate for a
square of size S = 100. Also in this case, we find that the yield saturates at an imperfect value for small
activation rates. Hence, we showed that the stochastic yield catastrophe is not resolved neither by
accounting for polymer-polymer combination nor by considering more general assembly processes with
multiple parallel assembly paths. This observation supports the general validity of our findings and
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Figure 6. Extended model including polymer-polymer binding. (a) In the extended model, structures
not only grow by monomer attachment but also by binding with another polymer (colored arrow). As
before, binding only happens between periodically consecutive species with rate ⌫ per binding site. So,
the reaction rate for two polymers is identical to the one for monomer-polymer binding, ⌫. Furthermore,
only polymers with combined length  L can bind. All other processes and rules are the same as in the
original model described in Fig. 1. (b) The yield of the extended model as obtained from stochastic
simulations is shown in dependence of the activation rate ↵ for S = L = 100, µ = ⌫ = 1, Lnuc = 2 and
different values of the number of particles per species, N averaged over 1024 ensembles). The qualitative
behavior is the same as for the original model. In particular, yield saturates (in the stochastic limit)
at an imperfect value for slow activation rates. Note that for small particle numbers polymer-polymer
binding results in an increase of the minimal yield (here for large activation rates). This is due to the
fact that even in the case where a priori too many nucleation events happen, polymers can combine into
final structures.

indicates that stochastic yield catastrophes are a general phenomenon of (partially) irreversible and
heterogeneous self-assembling systems that occur if particle number fluctuations are non-negligible.

4 Discussion

Our results show that different ways to slow down nucleation are indeed not equivalent, and that the
explicit implementation is crucial for assembly efficiency. Susceptibility to stochastic effects is highly
dependent on the specific scenario. Whereas systems for which dimerization limits nucleation are robust
against stochastic effects, stochastic yield catastrophes can occur in heterogeneous systems when
resource supply limits nucleation. The occurrence of stochastic yield catastrophes is not captured by the
deterministic rate equations, for which the qualitative behavior of both scenarios is the same. Therefore,
a stochastic description of the self-assembly process, which includes fluctuations in the availability of the
different species, is required. The interplay between stochastic and deterministic dynamics can lead to a
plethora of interesting behaviors. For example, the combination of slow activation and slow nucleation
may result in a non-monotonic dependence of the yield on the activation rate. While deterministically,
yield is always improved by decreasing the activation rate, stochastic fluctuations between species
strongly suppress the yield for small activation rate by effectively enhancing the nucleation speed. This
observation clearly demonstrates that a deterministically slow nucleation speed is not sufficient in order
to obtain good yield in heterogeneous self-assembly. For example, a slow activation step does not
necessarily result in few nucleation events although deterministically this behavior is expected. Thus, our
results indicate that the slow nucleation principle has to be interpreted in terms of the stochastic
framework and have important implications for yield optimization.

We showed that demographic noise can cause stochastic yield catastrophes in heterogeneous
self-assembly. However, other types of noise, such as spatiotemporal fluctuations induced by diffusion,
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Figure 7. Assembly of squares of size
p

L ⇥
p

L from L different particle species. (a) As in the ring
models, there are N monomers of each species in the system. All particles are initially in an inactive state
(blue) and are activated at the same per-capita rate ↵. Once active (green), species with neighboring
position within the square (left/right, up/down) can bind to each other. Structures grow by attachment
of single monomers until the square is complete (absorbing state). Depending on the number b of contacts
between the monomer and the structure, the corresponding rate is b⌫. For simplicity, all polymers
(yellow) are stable (Lnuc = 2) and we do not consider polymer-polymer binding. (b) The yield of the
square model as obtained from stochastic simulations is shown in dependence of the activation rate ↵ for
S = L = 100, µ = ⌫ = 1 and different values of the number of particles per species, N (averaged over 256
ensembles). The qualitative behavior is the same as for the previous models: Whereas the yield is poor
for large activation rates, it strongly increases below a threshold value and saturates (in the stochastic
limit) at an imperfect value < 1 for small activation rates. The saturation value decreases with decreasing
number of particles in the system.

are also expected to trigger stochastic yield catastrophes. Hence, our results have broad implications for
complex biological and artificial systems, which typically exhibit various sources of noise. We
characterize conditions under which stochastic yield catastrophes occur, and demonstrate how they can
be mitigated. These insights could usefully inform the design of experiments to circumvent yield
catastrophes: In particular, while slow provision of constituents is a feasible strategy for experiments, it
is highly susceptible to stochastic effects. On the other hand, irrespective of its robustness to stochastic
effects, the experimental realization of the dimerization scenario relies on cooperative or allosteric effects
in binding, and may therefore require more sophisticated design of the constituents [34, 42]. Our
theoretical analysis shows that stochasticity can be alleviated either by decreasing heterogeneity
(presumably lowering realizable complexity) or by increasing reversibility (potentially requiring
fine-tuning of bond strengths and reducing the stability of the assembly product). Alternative
approaches to control stochasticity include the promotion of specific assembly paths [10, 30] and the
control of fluctuations [13]. One possibility to test these ideas and the ensuing control strategies could be
via experiments based on DNA origami. Instead of building homogeneous ring structures as in Ref. [36],
one would have to design heterogeneous ring structures made from several different types of constituents
with specified binding properties. By varying the opening angle of the “wedges” (and thus the preferred
number of building blocks in the ring) and/or the number of constituents, both the target structure size
L as well as the heterogeneity of the target structure S could be controlled.

Moreover, the ideas presented in this manuscript are relevant for the understanding of intracellular
self-assembly. In cells, provision of building blocks is typically a gradual process, as synthesis is either
inherently slow or an explicit activation step, such as phosphorylation, is required. In addition, the
constituents of the complex structures assembled in cells are usually present in small numbers and
subject to diffusion. Hence, stochastic yield catastrophes would be expected to have devastating
consequences for self-assembly, unless the relevant cellular processes use elaborate control mechanisms to
circumvent stochastic effects. Further exploration of these control mechanisms should enhance the
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understanding of self-assembly processes in cells and help improve synthesis of complex nanostructures.

5 Methods and Materials

Here we show the derivation of Eq. 1 in the main text, giving the threshold values for the rate constants
below which finite yield is obtained. The details can be found in the SI.

5.1 Master equation and chemical rate equations

Figure 8. Graphical illustration of Eqs. (2) and (6). (a) Visualization of the gain and loss terms in the
dynamics of the active monomers in Eq. (2b). Gain of active monomers is due to activation of inactive
monomers as well as decay of unstable polymers. Loss of active monomers is due to dimerization and
attachment of monomers to larger polymers. (b) Visualization of the transitions between clusters of
different sizes (without distinction of species). The first and second box represent the active and inactive
monomers in the system, the subsequent boxes each represent the ensamble of polymers of a certain size.
The arrows between the boxes show possible reactions and transitions with the reaction rates indicated
accordingly. Each arrow starting from or leading to a box is associated with a corresponding loss or gain
term on the right hand side of Eq. 2 and Eq. 6.

We start with the general Master equation and derive the chemical rate equations
(deterministic/mean-field equations) for the heterogeneous self-assembly process. We renounce to show
the full Master equation here but instead state the system that describes the evolution of the first
moments. To this end, we denote the random variable that describes the number of polymers of size `
and species s in the system at time t by ns

`(t) with 2  ` < L and 1  s  S. The species of a polymer is
defined by the species of the respective monomer at its left end. Furthermore, ns

0 and ns
1 denote the

number of inactive and active monomers of species s, respectively, and nL the number of complete rings.
We signify the reaction rate for binding of a monomer to a polymer of size ` by ⌫`. ↵ denotes the
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activation rate and �` the decay rate of a polymer of size `. By h...i we indicate (ensemble) averages.
The system governing the evolution of the first moments (the averages) of the {ns

`} is then given by:

d

dt
hns

0i = �↵ hns
0i , (2a)

d

dt
hns

1i = ↵ hns
0i �

L�1X

`=1

⌫`
�
hns

1n
s+1
` i + hns

1n
s�`
` i

�
+

Lnuc�1X

`=2

k=sX

k=s+1�`

�`hnk
` i , (2b)

d

dt
hns

2i = ⌫1 hns
1 ns+1

1 i � ⌫2 hns
2 ns+2

1 i � ⌫2 hns
2 ns�1

1 i � �2 hns
2i1{2<Lnuc} , (2c)

d

dt
hns

`i = ⌫`�1 hns
`�1 n`+s�1

1 i + ⌫`�1 hns+1
`�1 ns

1i � ⌫` hns
` ns+`

1 i � ⌫` hns
` ns�1

1 i � � hns
`i1{`<Lnuc} , (2d)

d

dt
hns

Li = ⌫L�1 hns
L�1 nL+s�1

1 i + ⌫L�1 hns+1
L�1 ns

1i . (2e)

The different terms of this equation are illustrated graphically in Figure 8. The first equation describes
loss of inactive particles due to activation at rate ↵. Eq. (2b) gives the temporal change of the number
of active monomers that is governed by the following processes: activation of inactive monomers at rate
↵, binding of active monomers to the left or to the right end of an existing structure of size ` at rate ⌫`,
and decay of below-critical polymers of size ` into monomers at rate �` (disassembly).

Equations (2c) and (2d) describe the dynamics of dimers and larger polymers of size 3  ` < L,
respectively. The terms account for reactions of polymers with active monomers (polymerization) as well
as decay in the case of below-critical polymers (disassembly). The indicator function 1{x<Lnuc} equals 1
if the condition x < Lnuc is satisfied and 0 otherwise. Note that a polymer of size ` � 3 can grow by
attaching a monomer to its left or to its right end whereas the formation of a dimer of a specific species
is only possible via one reaction pathway (dimerization reaction). Finally, polymers of length L – the
complete ring structures – form an absorbing state and, therefore, include only the respective gain terms
(cf. Eq 2e).

We simulated the Master equation underlying Eq. (2) stochastically using Gillespie’s algorithm. For
the following deterministic analysis, we neglect correlations between particle numbers {ns

`}, which is
valid assumption for large particle numbers. Then the two-point correlator can be approximated as the
product of the corresponding mean values (mean-field approximation)

hns
i n

k
j i = hns

i ihnk
j i 8s, k (3)

Furthermore, for the expectation values it must hold

hns
`i = hn1

`i 8s (4)

because all species have equivalent properties (there is no distinct species) and hence the system is
invariant under relabelling of the upper index. By

c` :=
hns

`i
V

, (5)

we denote the concentration of any monomer or polymer species of size `, where V is the reaction
volume. Due to the symmetry formulated in Eq. (4), the heterogeneous assembly process decouples into
a set of S identical and independent homogeneous assembly processes in the deterministic limit. The
corresponding homogeneous system then is described by the following set of equations that is obtained
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by applying (3), (4) and (5) to (2)

d

dt
c0 = �↵ c0 , (6a)

d

dt
c1 = ↵ c0 � 2c1

L�1X

`=1

⌫` c` +

Lnuc�1X

`=2

l �` c` , (6b)

d

dt
c2 = ⌫1 c2

1 � 2 ⌫2 c1 c2 � �2 c2 1{2<Lnuc} , (6c)

d

dt
c` = 2 ⌫`�1 c1 c`�1 � 2⌫` c1 c` � �` c` 1{`<Lnuc} , for 3  ` < L , (6d)

d

dt
cL = 2 ⌫L�1 c1 cL�1 . (6e)

The rate constants ⌫` in Eq. (6) and (2) differ by a factor of V . For convenience, we use however the
same symbol in both cases. The rate constants ⌫` in Eq. (6) can be interpreted in the usual units
[ liter
mol sec ]. Due to the symmetry, the yield, which is given by the quotient of the number of completely

assembled rings and the maximum number of complete rings, becomes independent of the number of
species S

yield(t) =
ScL(t)V

SNL�1
=

cL(t)V L

N
. (7)

Hence, it is enough to study the dynamics of the homogeneous system, Eq. (6), to identify the condition
under which non zero yield is obtained.

5.2 Effective description by an advection-diffusion equation

The dynamical properties of the evolution of the polymer-size distribution become evident if the set of
ODEs (6) is rewritten as a partial differential equation. This approach was previously described in the
context of virus capsid assembly [29,45].

For simplicity, we restrict ourselves to the case Lnuc = 2 and let ⌫1 = µ and ⌫`�2 = ⌫. Then, for the
polymers with ` > 2 we have

@tc` = 2⌫c1

⇥
c`�1 � c`

⇤
. (8)

As a next step, we approximate the index ` 2 {2, 3, . . . , L} indicating the length of the polymer as a
continuous variable x 2 [2, L] and define c(x = `) := c`. By A := c1 we denote the concentration of active
monomers in the following to emphasize their special role. Formally expanding the right-hand side of
Eq. (8) in a Taylor series up to second order

c(`� 1) = c(`) � @xc(`) +
1

2
@2

xc(`) , (9)

one arrives at the advection-diffusion equation with both advection and diffusion coefficients depending
on the concentration of active monomers A(t)

@tc(x) = �2⌫A @xc(x) + ⌫A @2
xc(x) . (10)

Equation (10) can be written in the form of a continuity equation @tc(x) = � @xJ(x) with flux
J = 2⌫A c � ⌫A @xc. The flux at the left boundary x = 2 equals the influx of polymers due to
dimerization of free monomers J(2, t) = µA2. This enforces a Robin boundary condition at x = 2

2⌫A c(2, t) � ⌫A @xc(2, t) = µA2 . (11)

At x = L we set an absorbing boundary c(L, t) = 0 so that completed structures are removed from the
system. The time evolution of the concentration of active monomers is given by

@tA = ↵Ce�↵t � 2µA2 � 2⌫A

LZ

2

c(x, t) dx . (12)
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The terms on the right-hand side account for activation of inactive particles, dimerization, and binding of
active particles to polymers (polymerization).

Qualitatively, Eq. (10) describes a profile that emerges at x = 2 from the boundary condition Eq. (11)
moves to the right with time-dependent velocity 2⌫A(t) due to the advection term, and broadens with a
time-dependent diffusion coefficient ⌫A(t). In the SI we show how the full solution of Eqs. (10) and (11)
can be found assuming knowledge of A(t). Here, we focus only on the derivation of the threshold
activation rate and threshold dimerization rate that mark the onset of non-zero yield.

Yield production starts as soon as the density wave reaches the absorbing boundary at x = L.
Therefore, finite yield is obtained if the sum of the advectively travelled distance dadv and the diffusively
travelled distance ddiff exceeds the system size L � 2

dadv + ddiff � L � 2 . (13)

According to Eq. (10), dadv = 2⌫
1R
0

A(t)dt and ddiff =

s
2⌫

1R
0

A(t)dt, giving as condition for the onset of

finite yield

2⌫

1Z

0

A(t)dt
!
=

1

4

⇣p
1 + 4(L � 2) � 1

⌘2

⇡ L �
p

L , (14)

where the last approximation is valid for large L.
In order to obtain

R1
0

A(t)dt we derive an effective two-component system that governs the evolution

of A(t). To this end, we denote the total number of polymers in Eq. (12) by B(t) :=
R1
2

c(x, t) dx (as
long as yield is zero the upper boundary is irrelevant and we can consider L = 1). Eq. (12) then reads

d

dt
A = ↵Ce�↵t � 2µA2 � 2⌫AB , (15)

and the dynamics of B is determined from the boundary condition, Eq. (11)

d

dt
B =

1Z

2

@tc(x, t) dx =

1Z

2

�@xJ(x, t) dx = � J(1, t)| {z }
=0

+J(2, t) = µA(t)2. (16)

Measuring A and B in units of the initial monomer concentration C and time in units of (⌫C)�1 the
equations are rewritten in dimensionless units as

d

dt
A = !e�!t � 2⌘A2 � 2A B , (17a)

d

dt
B = ⌘A2 , (17b)

where != ↵
⌫C and ⌘= µ

⌫ . Eq. (17) describes a closed two-component system for the concentration of
active monomers A and the total concentration of polymers B. It describes the dynamics exactly as long
as yield is zero. In order to evaluate the condition (14) we need to determine the integral over A(t) as a
function of ! and ⌘

1Z

0

A!,⌘(t)dt := g(!, ⌘) . (18)

To that end, we proceed by looking at both scenarios separately. The numerical analysis, confirming our
analytic results, is given in the SI.

15



5.3 Dimerization scenario

The activation rate in the dimerization scenario is ↵!1, and instead of the term !e�!t in dA/dt, we
set the initial condition A(0) = 1 (and B(0) = 0). Furthermore, ⌘ = µ/⌫ ⌧ 1 and we can neglect the
term proportional to ⌘ in dA/dt. As a result,

dA

dB
= �2B

⌘A
.

Solving this equation for A as a function of B using the initial condition A(B = 0) = 1, the totally
travelled distance of the wave is determined to be

2g(!, ⌘) = 2
⇡

2
p

2

1p
⌘
, (19)

where for the evaluation of the integral we used the substitution ⌘A2dt = dB.

5.4 Activation scenario

In the activation scenario, yield sets in only if the activation rate and thus the effective nucleation rate is
slow. As a result, in addition to ! ⌧ 1, we can again neglect the term proportional to ⌘ in dA/dt. This
time, however, we have to keep the term !e�!t. As a next step, we assume that dA/dt is much smaller
than the remaining terms on the right-hand side, !e�!t and �2AB. This assumption might seem crude
at first sight but is justified a posteriori by the solution of the equation (see SI). Hence, we get the
algebraic equation A(t) = !e�!t/(2B(t)). Using it to solve dB/dt = ⌘A2 for B, and then to determine
A, the totally travelled distance of the wave is deduced as

2g(!, ⌘) = 2
32/3

p
⇡�(2/3)

6�(7/6)
(!⌘)�1/3. (20)

Taken together, we therefore obtain two conditions out of which one must be fulfilled in order to obtain
finite yield

2a(⌘!)�
1
3 � L �

p
L ) ↵ < ↵th := P↵

⌫

µ

⌫C

(L �
p

L)3
(21)

or 2b⌘�
1
2 � L �

p
L ) µ < µth := Pµ

⌫

(L �
p

L)2
, (22)

where a and b are numerical factors, and P↵ = 8a3 ⇡ 5.77 and Pµ = 4b2 ⇡ 4.93. This verifies Eq. (1) in
the main text.
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A. CHEMICAL REACTION EQUATIONS AND THE EQUIVALENCE OF MOD-

ELS WITH DIFFERENT NUMBERS OF SPECIES

In this section we derive the chemical rate equations (deterministic equations) for the

self-assembly process as described in the main text. Furthermore, we show that for general

S in the deterministic limit the model is equivalent to a set of S independent assembly

processes with only one species.

Homogeneous structures

First, we consider the homogeneous model (S = 1). By c`(t) we denote the concentration

of complexes of length ` (` � 2) at time t, c1(t) is the concentration of active monomers

and c0(t) the concentration of inactive monomers at time t. In the following we will usually

skip the time argument for better readability. We denote the reaction rate for binding of

a monomer to a polymer of size ` by ⌫`. The model from the main text is recovered by

setting ⌫` := µ` if ` < Lnuc, and ⌫` := ⌫ otherwise. The ensuing set of ordinary di↵erential

equations then reads:

d

dt
c0 = �↵ c0 , (1a)

d

dt
c1 = ↵ c0 � 2c1

L�1X

`=1

⌫` c` +
Lnuc�1X

`=2

l �` c` , (1b)

d

dt
c2 = ⌫1 c2

1 � 2 ⌫2 c1 c2 � �2 c2 1{2<Lnuc} , (1c)

d

dt
c` = 2 ⌫`�1 c1 c`�1 � 2⌫` c1 c` � �` c` 1{`<Lnuc} , for 3  ` < L , (1d)

d

dt
cL = 2 ⌫L�1 c1 cL�1 . (1e)

The indicator function 1{x<Lnuc} equals 1 if the condition x < Lnuc is satisfied and 0 other-

wise. The first equation describes loss of inactive particles due to activation at rate ↵. The

equation is uncoupled from the remainder of the equations and is solved by c0(t) = Ce�↵t,

with C denoting the initial concentration of inactive monomers. The temporal change of the

active monomers is governed by the following processes (Eq. (1b)): activation of inactive

monomers at rate ↵, binding of active monomers to existing structures at rate ⌫` (polymer-

ization), and decay of below-critical polymers into monomers at rate �` (disassembly). All

binding rates appear with a factor of 2 because a monomer can attach to a polymer on its

left or on its right end.

Note that there is a subtlety with the dimerization term “2 ⌫1 c2
1”: the dimerization term

as well bears a factor of 2 because two identical monomers A and B can form a dimer in

two possible ways, either as AB or BA. Additionally, there is a stoichiometric factor of

2 for this reaction. However, one factor of 2 is cancelled again because, assuming there
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are n monomers, the number of ordered pairs of monomers that describe possible reaction

partners is 1
2
n(n� 1) ⇡ n2/2 (if n is large) rather than n2 (the number of reaction partners

when two di↵erent species react). This leaves us with a single factor of 2 like for all the

other binding reactions.

Equations (1c) and (1d) describe the dynamics of dimers and larger polymers of size

3  ` < L, respectively. The terms account for reactions of polymers with active monomers

(polymerization) as well as decay in the case of below-critical polymers (disassembly). The

dimerization term in the equation for @tc2 lacks the factor of 2 because the stoichiometric

factor is missing as compared with the dimerization term in the line above. Finally, polymers

of length L – the complete ring structures – form an absorbing state and therefore only

include a reactive gain term (Eq. (1e)).

Heterogeneous structures

Next we consider systems with more than one particle species (S > 1). The heterogeneous

system can be described by dynamical equations equivalent to the homogeneous system. We

show this starting from a full description that distinguishes both monomers and polymers

into a set of di↵erent species 1, . . . , S. In order to formulate the dynamic equations and

to see the equivalence to a one-species model, we distinguish both monomers and polymers

into a set of di↵erent species 1, . . . , S. The species of a polymer is defined by the species

of the respective monomer at its left end. As polymers assemble in consecutive order of

species, a polymer is uniquely determined by its length and species (i.e. species of leftmost

monomer). In that sense, cs
` with 0  ` < L and 1  s  S denotes the concentration of

a polymer of length ` and species s (cs
0 and cs

1 again denote inactive and active monomers

of species s, respectively). For example, c5
4 denotes the concentration of polymers [5678] if

S � 8, or of polymers [5612] if S = 6. Upper indices are always assumed to be taken modulo

S whenever they lie outside the range [1, S]. Therefore, the dynamics of the concentrations

cs
` with 3  ` < L is given by

d

dt
cs
` = ⌫`�1 cs

`�1 c`+s�1
1 + ⌫`�1 cs+1

`�1 cs
1 � ⌫` c

s
` cs+`

1 � ⌫` c
s
` cs�1

1 � � cs
` 1{`<Lnuc} . (2)

The terms on the right-hand side account for the influx due to binding of the respective

polymers of length `� 1 with a monomer either on the right or on the left (first and second

term), and for the outflux due to reactions of a polymer of length ` and species s (third and

fourth term), as well as for decay into monomers for ` < Lnuc (last term). For the dynamics

of the dimers, however, there is only one gain term arising from dimerization:

d

dt
cs
2 = ⌫1 cs

1 cs+1
1 � ⌫2 cs

2 cs+2
1 � ⌫2 cs

2 cs�1
1 � �2 cs

2 1{2<Lnuc} . (3)

Equivalently, for the active monomers we find:

d

dt
cs
1 =↵Ce�↵t � cs

1

L�1X

`=1

⌫`
�
cs+1
` + cs�`

`

�
+

Lnuc�1X

`=2

k=sX

k=s+1�`

�`c
k
` . (4)
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Now we exploit the symmetry of the system with respect to the species index, that is, the

upper index in {cs
`}: Since all species in the system are equivalent, the dynamic equations

are invariant under relabelling of the upper indices. Consequently, it must hold that:

cs
`(t) = ck

` (t), for any s, k  S at any time t. (5)

In other words, the upper index is irrelevant and can also be discarded. The variable c` then

denotes the concentration of any one polymer species of length `. Taking advantage of this

symmetry for the equations of the heterogeneous system, (Eq. (2), Eq. (3) and Eq. (4)), and

collecting equal terms leads to a set of equations fully identical to those for the homogeneous

system (Eq. (1)). We show the equivalence to the homogeneous model exemplarily for the

dynamics of the polymers with size ` � 3 in Eq. (2). Applying cs
`(t) = c`(t) to Eq. (2) yields

for the dynamics of the concentration of an arbitrary polymer species of size `:

d

dt
c` = ⌫`�1 c`�1 c1 + ⌫`�1 c`�1 c1 � ⌫` c` c1 � ⌫` c` c1 � � c` 1{`<Lnuc} .

= 2⌫`�1 c`�1 c1 � 2⌫` c` c1 � � c` 1{`<Lnuc},

which is identical to the respective dynamic equation (1d) for the homogeneous model. The

other equations for the heterogeneous system reduce to those for the homogeneous system

in an analogous manner.

Summarizing, we have shown that the (deterministic) heterogeneous assembly process

decouples into a set of S identical and independent homogeneous processes. In particular,

yield, which is given by the quotient of the number of completely assembled rings and the

maximal possible number of complete rings, becomes independent of S:

yield(t) =
ScL(t)

SNL�1
=

cL(t)L

N
. (6)

B. EFFECTIVE DESCRIPTION OF THE EVOLUTION OF THE POLYMER SIZE

DISTRIBUTION AS AN ADVECTION-DIFFUSION EQUATION

The dynamical properties of the evolution of the polymer size distribution become evi-

dent if the set of ODEs (1) is rewritten as a partial di↵erential equation. This approach was

previously described in the context of virus capsid assembly9,45 but we will restate the essen-

tial steps here for the convenience of the reader. To this end we interpret the length index

of the polymer ` 2 {2, 3, . . . , L} as a continuous variable that we rename x 2 [2, L]. With

such a continuous description in view we write c(x = `) := c` to denote the concentration of

polymers of size `.

Since the active monomers play a special role, we denote their concentration in the

following by A. For simplicity we restrict our discussion to the case Lnuc = 2 and let ⌫1 = µ

and ⌫`�2 = ⌫. Generalizations to Lnuc > 2 can be done in a similar way. Then, for the

polymers with ` � 3 we have:

@tc(`) = 2⌫A
⇥
c(`� 1) � c(`)

⇤
. (7)
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Formally, expanding the right-hand side in a Taylor series up to second order

c(`� 1) = c(`) � @xc(`) +
1

2
@2

xc(`) , (8)

we arrive at an advection-di↵usion equation with both advection and di↵usion coe�cients

depending on the concentration of active monomers A(t),

@tc(x) = �2⌫A @xc(x) + ⌫A @2
xc(x) . (9)

Equation (9) can be written in the form of a continuity equation @tc(x) = �@xJ(x) with flux

J = 2⌫A c� ⌫A @xc. The flux at the left boundary, x = 2, equals the influx of polymers due

to dimerization of free monomers, J(2, t) = µA2. This enforces a Robin boundary condition

at x = 2,

2⌫A c(2, t) � ⌫A @xc(2, t) = µA2 . (10)

At x = L, we have an absorbing boundary c(L, t) = 0 so that completed structures are re-

moved from the system. Furthermore, the time evolution of the concentration of active

particles is given by

@tA = ↵Ce�↵t � 2µA2 � 2⌫A

LZ

2

c(x, t) dx . (11)

The terms on the right-hand side account for activation of inactive particles, dimerization,

and binding of active particles to polymers (polymerization).

Qualitatively, Eq. (9) describes a profile that emerges at x = 2 from the boundary condi-

tion, Eq. (10), moves to the right with time dependent velocity 2⌫A(t) due to the advection

term, and broadens with a time-dependent di↵usion coe�cient ⌫A(t). The concentration of

active particles A determines both the influx of dimers at x = 2, as well as the speed and

di↵usion of the wave profile.

Next, we derive an expression that solves Eq. (9), assuming that we know A(t). We start

by solving Eq. (9) at the left boundary c(2, t), and then translate the resulting expression to

obtain a solution for c(x, t). To obtain c(2, t) in dependence of a(t) we can solve d
dt

c(2, t) =

µA2 � ⌫Ac(2, t) (see Eq. (1c)) by ’variation of the constants’ as

c(2, t) =

tZ

0

µA(t̃)2 exp

2
4�

tZ

t̃

⌫A(t0)dt0

3
5 dt̃ . (12)

With help of this expression we find c(x, t): Given c(2, t), the advective part of Eq. (9),

@tc̃(x) = �2⌫A @xc̃(x) . (13)

is solved by

cadvec(x, t) = c(2, ⌧(x, t)) . (14)
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Here, ⌧(x, t) denotes the time that a particle at position x and time t was at x = 2. In other

words, a particle at time t and position x has entered the system at x = 2 at time ⌧(x, t).

This ansatz solves the PDE (Eq. (13)) if and only if ⌧(x, t) satisfies

⌧(x, t) = Ã�1

✓
Ã(t) � x � 2

2⌫

◆
(15)

with Ã being an arbitrary integral of A such that @tÃ(t) = A(t) and Ã�1 denoting its inverse.

More easily, we find this form of ⌧ by requiring that the integral over the velocity from time

⌧ to t equals the travelled distance x � 2:

tZ

⌧

2⌫ A(t0)dt0 = x � 2 . (16)

To include the di↵usive contribution in Eq. (13), we use the di↵usion kernel,

k(x, y, t) =

✓
4⇡

Z t

⌧(y,t)

D(t)

◆�1/2

exp

 
�x2

4
R t

⌧(y,t)
D(t)

!
, (17)

with the time dependent di↵usion constant D(t) = ⌫A(t). The kernel k(x, y, t) accounts for

the mass that has been di↵usively transported from y a distance of x. Because the mass

has entered the system at x = 2 at time ⌧(y, t), it di↵used for the time t � ⌧(y, t). The

complete expression for c(x, t) is then obtained as the convolution of cadvec(x, t) (Eq. (14)),

that is obtained from Eq. (12) and Eq. (15), and the di↵usion kernel k(x, y, t) (Eq. (17)):

c(x, t) =

Z
cadvec(s, t)k(x � s, s, t)ds =

Z
c(2, ⌧(s, t))k(x � s, s, t)ds . (18)

Interpreting the terms in the equations and the general form of the solution, we are

able to understand the qualitative behavior of the system. If both the activation and the

dimerization rate are large, the system produces zero yield: both advection and di↵usion are

driven by the concentration of active monomers A. If activation is fast, the concentration

of active monomers A will become large initially since activation is faster than the reaction

dynamics. Consequently, provided µ ⇠ ⌫, dimerization dominates over binding because

it depends quadratically on A, see Eq. (11). The reservoir of free particles then depletes

quickly and cannot sustain the motion of the wave for long enough to reach the absorbing

boundary, resulting in a very low yield. Only if either the activation rate is low enough or

if µ ⌧ ⌫, the motion of the wave can be sustained until it reaches the absorbing boundary.

C. THRESHOLD VALUES FOR THE ACTIVATION AND DIMERIZATION RATE

Based on the analysis from the previous section, we will now determine the threshold

activation rate and threshold dimerization rate which mark the onset of non-zero yield.

Yield production starts as soon as the density wave reaches the absorbing boundary at
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x = L. Therefore, finite yield is obtained if and only if the sum of the advectively travelled

distance dadv and the di↵usively travelled distance ddi↵ exceeds the system size L � 2:

dadv + ddi↵ � L � 2 . (19)

The condition for the onset of non-zero yield is obtained by assuming equality in this relation.

The advectively travelled distance is obtained from Eq. (16) by setting the borders of the

integral over the velocity to ⌧ = 0 and t = 1:

dadv =

1Z

0

2⌫A(t0)dt0. (20)

The di↵usively travelled distance is approximately given by the standard deviation of the

Gaussian di↵usion kernel, Eq. (17), again with ⌧ = 0 and t = 1,

ddi↵ =

vuuut2⌫

1Z

0

A(t)dt. (21)

Taken together, we obtain a condition for the onset of finite yield:

2⌫

1Z

0

A(t)dt +

vuuut2⌫

1Z

0

A(t)dt = L � 2 . (22)

Substituting y =
q

2⌫
R

A and requiring that y is positive, we can solve the quadratic equa-

tion and find that Eq. (22) is equivalent to

2⌫

1Z

0

A(t)dt = y2 =
1

4

⇣p
1 + 4(L � 2) � 1

⌘2

⇡ L �
p

L , (23)

where the last approximation is valid for large L.

We determine the threshold values for the activation rate ↵ and the dimerization rate

µ by finding solutions of the dynamical equation for the active particles A(t), Eq. (11),

such that the condition, Eq. (23), is fulfilled. Thus, we start by deriving the dependence ofR1
0

A(t)dt on ↵ and µ.

The concentration c(x, t) appears in Eq. (11) only in terms of an integral
R L

2
c(x, t) dx,

counting the total number of polymers in the system. As long as yield is zero there is no

outflux of polymers at the absorbing boundary x = L and the total number of polymers in

the system only increases due to the influx at the left boundary x = 2. As long as yield is

zero we can therefore equivalently consider the limit L ! 1. We denote the total number

of polymers in Eq. (11) by B(t) :=
R

c(x, t) dx for which the dynamics is determined from

the boundary condition, Eq. (10):

d

dt
B =

1Z

2

@tc(x, t) dx =

1Z

2

�@xJ(x, t) dx = � J(1, t)| {z }
=0

+J(2, t) = µA(t)2. (24)
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Hence, as long as yield is zero, the total number of polymers increases with the rate of the

dimerization events. The system then simplifies to a set of two coupled ordinary di↵erential

equations for A and B:

d

dt
A = ↵Ce�↵t � 2µA2 � 2⌫A B , (25a)

d

dt
B = µA2 . (25b)

The dynamics of A and B is equivalent to a two-state activator-inhibitor system, where A

dimerizes into B at rate µ, and B degrades (inhibits) A at rate 2⌫. Note that Eq. (25a)

describes the exact dynamics of the active monomers A and total number of polymers B

in the deterministic system as long as yield is zero. The system has therefore been greatly

reduced from originally S N coupled ODEs to now only 2 coupled ODEs.

For the further analysis it is useful to non-dimensionalize Eq. (25a) by measuring A and

B in units of the initial concentration of inactive monomers C and time in units of (⌫C)�1:

d

dt
A = !e�!t � 2⌘A2 � 2A B , (26a)

d

dt
B = ⌘A2 , (26b)

with the remaining dimensionless parameters != ↵
⌫C

and ⌘= µ
⌫
. We are interested in the

integral over A(t) as a function of ! and ⌘,

1Z

0

A!,⌘(t)dt := g(!, ⌘) , (27)

which relates to the totally travelled distance of the wave. Note that, in case of zero yield,

2g(!, ⌘) is the total advectively travelled distance of the wave (cf. Eq. (20)) and the square

of the di↵usively travelled distance (cf. Eq. (21)).

Analysis of the dimerization scenario

The dimerization scenario is characterized by fast activation ↵ � C⌫ and slow dimer-

ization µ ⌧ ⌫. For the dimensionless parameters these assumptions translate to ⌘ ⌧ 1

and ⌘ ⌧ !. Because for small ⌘ ⌧ 1 nucleation is much slower than growth we neglect

the dimerization term in Eq. (26a) against the growth term. Furthermore, because ⌘ ⌧ !

activation happens on a fast time scale compared with nucleation and we may therefore

integrate out the fast time scale assuming that all particles are activated instantaneously at

the beginning. The system Eq. (26) then reduces to

d

dt
A = �2A B , (28a)

d

dt
B = ⌘A2 , (28b)
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with the initial condition A(0) = 1 and B(0) = 0. We divide the first equation by the second

one (formally applying the chain rule and the inverse function theorem) to obtain a single

equation for the dynamics of A(B):

dA

dB
= �2

⌘

B

A
, (29)

where A(B=0) = 1. This first order ODE can be solved by separation of variables and

subsequent integration, yielding

A(B) =

r
1 � 2

⌘
B2 . (30)

Because the number of active monomers A(t) must vanish for t ! 1, the final value of B is

B1 := B(t=1) =

r
⌘

2
. (31)

Thereby, we calculate the function g(⌘) via variable substitution dt = dB
⌘A2 :

g(⌘) =

1Z

0

A(t)dt =

B1Z

0

A(B)
dB

⌘A(B)2
=

1

⌘

B1Z

0

dBq
1 � 2

⌘
B2

=
⇡

2
p

2
⌘�

1
2 . (32)

So, the dependence of the travelled distance of the wave on ⌘ obeys a power law with

exponent �1
2
, confirming the previous result9. For the coe�cient we find ⇡

2
p

2
⇡ 1.1107.

Additionally, we can determine the time dependent solutions A(t) and B(t). Using the

solution for A(B) from Eq. (30) in Eq. (28b) we obtain B(t) as

B(t) =

r
⌘

2
tanh

⇣p
2⌘t
⌘

. (33)

We use this expression for B(t) in Eq. (28a) to obtain A(t). The resulting ODEs can again

be solved by separation of variables as

A(t) =
1

cosh
�p

2⌘t
� . (34)

Analysis of the activation scenario

In the activation scenario, ↵ ⌧ C⌫, such that ! ⌧ 1 and ! ⌧ ⌘. As we know already

that decreasing ! will slow down nucleation relative to growth we can again neglect the

dimerization term in Eq. (26a). In contrast to the dimerization scenario, however, we have

to keep the activation term. Transforming time via ⌧ := 1 � e�!t such that ⌧ 2 [0, 1] and

writing a(⌧) = a(1 � e�!t) := A(t) and b(⌧) = b(1 � e�!t) := B(t) the system in Eq. (26)

becomes:

d

d⌧
a = 1 � 2

!(1 � ⌧)
ab , (35a)

d

d⌧
b =

⌘

!(1 � ⌧)
a2 , (35b)
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with the initial condition a(0) = b(0) = 0. The function g(!, ⌘) transforms as

g(!, ⌘) =

1Z

0

A(t)dt =
1

!

1Z

0

a(⌧)

1 � ⌧
d⌧. (36)

In the following we derive the asymptotic solution for a(⌧) in the limit of small ! in order

to evaluate the integral in Eq. (36). In the limit ⌧ ! 1 (, t ! 1) both a(⌧) and d
d⌧

a(⌧)

will become small whereas b(⌧) increases monotonically. The reaction term in Eq. (35a) is

furthermore weighted by a factor 1
!

which will become large if ! ⌧ 1. We therefore postulate

that for su�ciently large ⌧ the derivative d
d⌧

a(⌧) is much smaller than the two terms on the

right-hand side of Eq. (35a) and hence negligible. This assumption has to be justified a

posteriori with the obtained solution. Neglecting the derivative term d
d⌧

a in (35a) reduces

the equation to an algebraic equation and we find

a =
!(1 � ⌧)

2b
. (37)

Using this result in Eq. (35b) we can solve for b by separation of variables and subsequent

integration:

b(⌧) = (!⌘)
1
3 ·
✓

3

4
⌧ � 3

8
⌧ 2

◆ 1
3

. (38)

From Eq. (37) we immediately obtain a(⌧):

a(⌧) =
!

2
3

⌘
1
3

· 1 � ⌧

(6⌧ � 3⌧ 2)
1
3

:=
!

2
3

⌘
1
3

h(⌧) , (39)

where by h(⌧) we denote the part of the solution that depends only on ⌧ . Hence, we find

that a and hence also d
d⌧

a scale like ⇠ !
2
3 , and will thus become small if ! ⌧ 1 and ⌧ is

large enough. Therefore the solution is consistent1 and justifies the approximation in which

we neglected the derivative term in the limit of small ! and su�ciently large ⌧ .

1 Consistency of the solution with the approximation is a su�cient criterion for the validity of the

approximation: We can solve the system for A and B in Eq. (35) iteratively by defining
d

d⌧
ai�1 = 1 � 2

!(1 � ⌧)
aibi ,

d

d⌧
bi =

⌘

!(1 � ⌧)
a2

i .

Assuming that for i ! 1, ai and bi converge to the correct solutions a(⌧) and b(⌧) when starting

with a0 = 0, we obtain a1 and b1 as given by Eq. (39) and Eq. (38) and can iteratively refine the

approximation. The next iteration step then reads: d
d⌧ a1 = 1� 2

!(1�⌧)a2b2. As a1 ⇠ !
2
3 we know

that the left-hand side will be small and a1 and b1 solve the system if the left-hand side equals

0. Writing a2 = a1 + ã2 and b2 = b1 + b̃2 this gives:
d

d⌧
a1 = 1 � 2

!(1 � ⌧)
(a1 + ã2)(b1 + b̃2) ⇡

2

!(1 � ⌧)
(a1b̃2 + b1ã2) . (40)

From dimensional analysis it follows that the correction terms ã2 and b̃2 must scale like ã2 ⇠ !
4
3

and b̃2 ⇠ ! and are hence much smaller than the first order approximations a1 and b1. Higher

order corrections will give even smaller contributions showing that if d
d⌧ a1 ⌧ 1, a1 is indeed a

very good approximation.
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In the limit ⌧ ! 0, however, the expression for a(⌧) in Eq. (39) diverges and consistency

is violated. Hence, the obtained solution is valid only for su�ciently large ⌧ .

We fix some small ✏ > 0 such that the approximation can be assumed to be su�ciently

good if d
dt

a < ✏. Furthermore, we define ⌧✏ such that d
d⌧

a < ✏ for all ⌧ > ⌧✏. Using Eq. (39)

we can write this as d
d⌧

h < ✏⌘
1
3 /!

2
3 for all ⌧ > ⌧✏, where the left-hand side, d

d⌧
h, depends

only on ⌧ . Hence, by decreasing ! we can make ⌧✏ arbitrarily small: lim!!0 ⌧✏ = 0. In

order to calculate g(!, ⌘) the integral in Eq. (36) can be separated in a domain where

the approximation a(⌧) is accurate and a domain where the correct solution ã(⌧) deviates

strongly from a(⌧):

g(!, ⌘) =
1

!

Z ⌧✏

0

ã(⌧)

1 � ⌧
d⌧ +

1

!

1Z

⌧✏

a(⌧)

1 � ⌧
d⌧. (41)

We see from Eq. (35a) that d
d⌧

ã = 1 describes an upper bound to ã showing that ã(⌧)  ⌧ .

Therefore we can bound the contribution of the first integral as
R ⌧✏

0
ã(⌧)
1�⌧

d⌧ 
R ⌧✏

0
⌧

1�⌧✏
d⌧ =

1
2

⌧2
✏

1�⌧✏
. Because this upper bound for the integral goes to 0 if ! and hence ⌧✏ become small

the first integral will become negligible against the second one. Asymptotically, we therefore

only need to consider the second integral with the solution for a(⌧) as given by Eq. (39):

g(!, ⌘) = (!⌘)�
1
3

1Z

0

(6t � 3t2)�
1
3 dt = (!⌘)�

1
3

3Z

0

dz

6z
1
3

p
1 � z

3

=

=
3

2
3
p
⇡ �(2

3
)

6 �(7
6
)

(!⌘)�
1
3 ⇡ 0.8969 · (!⌘)�

1
3 , (42)

where we used the substitution t = 1�
p

1 � z/3 and �(x) is the (Euler) Gamma function.

So, in the limit of small !, g scales with ! and ⌘ with identical exponent �1
3
. This contrasts

the dimerization scenario where g as well as A and B depend only on ⌘ and are independent

of ! (cf. Eq. (32), (33) and (34)).

Numerical analysis and the threshold values for the rate constants

In order to confirm the results of the last two paragraphs and to see how g(!, ⌘) behaves

in the intermediate regime where ! and ⌘ are of the same order of magnitude we also

investigate the function g(!, ⌘) numerically. For that purpose we numerically integrate the

ODE-system for A(t) and B(t) in Eq. (26) for di↵erent values of ! and ⌘ with a semi-implicit

method. Subsequently, we integrate the solution A(t) using an adaptive recursive Simpson’s

rule. Plotting g in dependence of ! for fixed ⌘ on a double-logarithmic scale reveals a rather

simple bipartite form of g, see Fig. S1a:

g(!, ⌘) =

8
><
>:

g1(⌘)!
� 1

3 ! ⌧ 1

g2(⌘) ! � 1.
(43)
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Fig. S 1: Fit of g(!, ⌘) on log-log scale. The function g(!, ⌘) =
1R
0

A!,⌘(t)dt describes

(half) the travelled distance of the profile of the polymer size distribution in dependence of

!= ↵
⌫C

and ⌘= µ
⌫
. Marker points show solutions for g(!, ⌘) as obtained numerically from

integration of Eq.(26). Red lines are linear fits on log-log scale. In a) we plot g(!, ⌘) for

fixed ⌘ (here exemplarily for ⌘= 0.01) over 25 orders of magnitude in ! and find a markedly

bipartite behavior: For small ! the dependence on ! is perfectly matched by a power law

with exponent �1
3

and ⌘-dependent coe�cient g1(⌘), whereas for large ! it is a constant

g2(⌘). b) Plotting g2(⌘) = g(!=1, ⌘) in dependence of ⌘ reveals again strictly bipartite

behavior. Here, however, only the brach for small ⌘ is realistically relevant. With the

coe�cient g1(⌘) that can be determined in a similar way this leads to the final form of

g(!, ⌘) as given by Eq. (46).

The transition between these two regimes is rather sharp so that g is best described in a

piecewise fashion

g(!, ⌘) = max (g1(⌘)!
� 1

3 , g2(⌘)) . (44)

Next, we plot the coe�cients g1(⌘) and g2(⌘) against ⌘. Here we find that g1(⌘) = a⌘�
1
3 with

a = const ⇡ 0.90 and g2(⌘) is again bipartite with a sharp kink in between (Fig. S1b):

g2(⌘) = min (b⌘�
1
2 , b0⌘�0.85) , (45)

where b ⇡ 1.11 and b0 ⇡ 1.37. The transition between both regimes is at ⌘ ⇡ 1.82. The

second regime is not relevant for self-assembly since it refers to both large ! and large ⌘,

hence the travelled distance 2g is too small to give finite yield in this regime. Therefore, we

discard the second regime and obtain as final result

g(!, ⌘) = max (a(⌘!)�
1
3 , b⌘�

1
2 ), (46)

with a ⇡ 0.90 and b ⇡ 1.11. This confirms perfectly the exponents as well as the coe�cients

found in the last two paragraphs. It is, however, surprising that there is such a sharp

13



transition between both regimes, which allows to define g(!, ⌘) in a piecewise fashion. This

behavior must be the result of a series of lower oder terms in g(!, ⌘) which are unimportant

in the limits ! ⌧ ⌘ and ⌘ ⌧ ! but cause the sharp transition when ! and ⌘ are of the same

order of magnitude.

Finally, we return to our original task of finding the threshold values of the activation

and dimerization rate for the onset of yield. Using our result for g(!, ⌘) in Eq. (23) we find

as necessary and su�cient condition to obtain finite yield in the deterministic system:

2 max (a(⌘!)�
1
3 , b⌘�

1
2 ) � L �

p
L . (47)

Alternatively, we can state this result as two separate conditions out of which at least one

must be fulfilled to obtain finite yield:

2a(⌘!)�
1
3 � L �

p
L ) ↵ < ↵th := P↵

⌫

µ

⌫C

(L �
p

L)3
(48)

or 2b⌘�
1
2 � L �

p
L ) µ < µth := Pµ

⌫

(L �
p

L)2
(49)

where P↵ = 8a3 ⇡ 5.77 and Pµ = 4b2 ⇡ 4.93. This verifies Eq. (1) in the main text.

14



D. IMPACT OF THE IMPLEMENTATION OF SUB-NUCLEATION REACTIONS

In the main text we focused our discussion on irreversible binding Lnuc = 2. In this section

we investigate the e↵ect of di↵erent implementations of the sub-nucleation reactions.

In general, perfect yield is trivially achieved if the complete ring is the only stable struc-

ture. However, yield can be maximal already for smaller nucleation sizes Lnuc depending on

the explicit decay rate �. In the deterministic limit without the dimerization and activation

mechanisms (µ = ⌫, ↵ ! 1 ) a rapid transition from zero yield to perfect yield occurs in

dependence of the critical nucleation size (see Fig. S2). The threshold value in this case is

approximately half the ring size and is weakly a↵ected by the decay rate �. In order to ob-

tain finite yield for small nucleation sizes, an extremely high decay rate would be necessary.

Hence, maximizing the yield solely by increasing the nucleation size is not very feasible.

In our model, the subcritical reaction rates µi may take di↵erent values. Here, we want

to restrict our discussion to two scenarios. First, all rates have an identical value µi = µ

and second, the rates increase linearly up to the super-nucleation reaction rate: µi = µ +

(⌫ � µ) i�1
Lnuc�1

.

In the deterministic limit, both implementations show the same qualitative behavior as

the dimerization mechanism with Lnuc = 2 in the main text (see Fig. S3). The only relevant

aspect for the final yield is the extend to which nucleation is slowed down in total. In

the constant scenario all reaction steps contribute equally. As a results there is a strong

dependence on the number of such reaction steps, i.e. on the critical nucleation size. If

however, the reaction rates increase linearly with the size of the polymers, the dimerzation

rate dominates. Only in the case µ ⌧ ⌫ finite yield is observed at all. In this limit the

dimerization rate is much smaller than the subsequent growth rates. The explicit form of

the di↵erent µi is not of major importance for the yield. The total slowdown of nucleation

is the central feature. Structure decay does not play any role for intermediate nucleation

sizes.

The last question we want to address is how the combination of activation and dimeriza-

tion mechanism and the corresponding non-monotonic behavior is a↵ected by the nucleation

size. Again, we compare constant sub-nucleation growth with a linearly increasing growth

rate (see Fig. S4). In the deterministic regime both implementations behave qualitatively

similar as the dimerization mechanism discussed in the main text. However, in both cases

the stochastic yield catastrophe is less pronounced. For the constant growth rates a satura-

tion of the maximal yield is observed for su�ciently low µ. If the profile is linear this e↵ect

is weaker as compared to the constant case and a dependency on the explicit value of µ is

still observed. The saturation value is not reached for these reactions rates.

Taking all our results for the sub-nucleation behavior together we draw the following

conclusions: First, structure decay by itself it not very e�cient in order to maximize yield.

Second, the explicit choice of the sub-nucleation rates is of minor importance for the quali-

tative behavior. The system behaves similarly to the case Lnuc = 2. Third, larger nucleation

sizes mitigate the stochastic yield catastrophe in general.
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Fig. S 2: Yield maximization due to increased nucleation size. Without activation

and dimerization mechanism (↵ ! 1, µ = ⌫) the yield can still be optimized by increasing

the critical nucleation size Lnuc. However, a significant improvement is only achieved for

critical sizes larger than half the ring size. Above, a rapid transition to perfect yield takes

place. Below no e↵ect is observed at all. Increasing � shifts the onset of yield to slightly

smaller critical nucleation sizes. Other parameters: L = 60, N = 10000.
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Fig. S 3: Yield for the dimerization mechanism (↵ ! 1) with di↵erent nucle-

ation sizes (colors). a If all sub-nucleation growth rates are identical (µi = µ) increasing

the nucleation size increases the threshold value µth. The slow down of nucleation due to the

individual sub-nucleation steps in total determines the yield. b If the sub-nucleation growth

rates increase linear
⇣
µi = µ + (⌫ � µ) i�1

Lnuc�1

⌘
no dependence on the nucleation size is ob-

served. The dimerization rate µ1 = µ (which is the most limiting step) dominates entirely.

Other parameters: L = 60, N = 10000, �= 1.
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Fig. S 4: Combined mechanisms for di↵erent nucleation sizes (symbols) and

dimerization rates (color). a If the sub-nucleation growth rates are identical (µi = µ)

The stochastic yield catastrophe is weakened but still has a drastic impact. The qualita-

tive behavior remains unchanged. b For a linearly increasing sub-nucleation growth rate⇣
µi = µ + (⌫ � µ) i�1

Lnuc�1

⌘
in the deterministic regime no changes are observed at all. The

e↵ect of the stochastic yield catastrophe is less pronounced. This improvement is mainly

caused by structure decay which mitigates stochastic fluctuations. However, a slight depen-

dency of the saturation value on the rate µ is observed. Other parameters: L = 60, S = L,

N = 100, �= 0.1.
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E. TIME EVOLUTION OF THE YIELD IN THE ACTIVATION AND DIMER-

IZATION SCENARIO

In the main text we focus on the final yield, which represents the maximal yield that

can be obtained in the assembly reaction for t ! 1. Here, we briefly discuss the temporal

evolution of the yield in the two scenarios. Figure S5 shows the yield as a function of time

for the dimerization scenario (blue) and the activation scenario (red) for the corresponding

parameters indicated in the plot. Drawn lines show the evolution of the yield in the stochastic

simulation whereas dashed lines represent its deterministic evolution obtained by integrating

the corresponding mean-field rate equations (only shown for the activation scenario).

In both scenarios, yield production sets in after a short lag time16. The emergence of a

lag time can be understood in terms of the interpretation of the assembly process as the

progression of a travelling wave (see Sec. B). The travelling wave thereby describes the

polymer size distribution and the time that is needed for the wave to reach the absorbing

boundary equals the lag time for yield production observed in Fig. S5. After the lag time,

the yield increases very abruptly in the dimerization scenario and a bit more continually in

the activation scenario. Since monomers are provided gradually in the activation scenario,

the emerging wave is flatter and extends over a larger range (in polymer size space) as

compared to the dimerization scenario. Consequently, yield production is more gradual

in the activation scenario than in the dimerization scenario. For the same reason, the

dimerization scenario is generally “faster” or more time e�cient than the activation scenario.

For a detailed analysis of the time e�ciency of these and other self-assembly scenarios we

refer the reader to [10].

In all depicted situations, the yield increases monotonically with time. This is, of course,

generally true since the completed ring structures define an absorbing state in our system.

The final yield, which is indicated in the right bar, therefore represents the upper limit for

the yield that can be achieved in the assembly reaction. Figure S5 shows that the temporal

yield curves initially are rather steep and quickly reach a value that lies within 10% of the

final yield (“quickly” thereby refers to the respective time scale), before the curves flatten

and increase more slowly. This underlines that the final yield is a meaningful observable

that not only describes the upper limit for the yield but also approximates the typical yield

of the assembly reaction under appropriate time constraints that are not too restrictive (on

the time scale set by the respective lag time).
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Fig. S 5: Time evolution of the yield in the activation and dimerization scenario.

The time dependence of the yield is depicted for a dimerization scenario (blue) with µ =

5 ⇥ 10�4 and N = 100 and for two activation scenarios (red) with ↵ = 0.1 and N = 102

and N = 104, respectively, for target structures of size L = 20. Drawn lines show the

time evolution of the stochastic systems while dashed lines describe the time evolution

in the corresponding deterministic systems (where the final yield may be higher in the

activation scenario). In all cases the yield increases monotonically with time. The final

yield, that is indicated in right bar, represents the upper limit of the yield at any time.

Yield production in the activation scenario is generally more gradual than in the dimerization

scenario. Therefore, the dimerization scenario is, in general, more time e�cient than the

activation scenario.

19



F. STANDARD DEVIATION OF THE YIELD

In the main text, the analysis focuses on the average yield. A priori it is, however, not

apparent that this average quantity is informative, in particular due to the strong e↵ect of

stochasticity in the system. Here, we thus take a step forward to complement this picture

by additionally considering a simple measure for the fluctuations of the yield, its standard

deviation. Fig. S6 is an extension of Fig. 3(a) in the main text, showing the dependence

of the average yield and its sample standard deviation on the activation rate. Since yield

is always positive, the standard deviation of the yield has to be small if the average yield

is close to 0 (N = 500 in Fig. S6). The same holds true for average yield close to 1 as the

yield is bounded by 1 from above (N = 5000 in Fig. S6). For intermediate values of the

average yield, the standard deviation is highest but still small compared to the average yield

(N = 1000 in Fig. S6). The average yield is, thus, meaningful. Naturally the ratio of the

standard deviation compared to the average yield also depends on the number of particles

per species N and on the number of species S. Generally speaking, for higher N and S, this

ratio decreases (see Fig. S7 for the dependency on S).
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Fig. S 6: Average yield and its sample standard deviation. For average yield

close to 0 or close to 1, the standard deviation has to be small due to the boundedness of

the yield to the interval [0, 1]. For intermediate values, the standard deviation is highest.

Its value is, however, still considerably smaller than the average yield. The parameters are

L = 60, S = L, µ = ⌫ = 1 and di↵erent particle numbers N (colors/symbols). To obtain the

average yield, the yield has been averaged over 1000 simulations. The standard deviation

corresponds to the unbiased sample standard deviation.
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G. INFLUENCE OF THE HETEROGENEITY OF THE TARGET STRUCTURE

FOR FIXED NUMBER OF PARTICLES PER SPECIES

Fig. 3(d) in the main text shows how the maximal yield ymax depends on the number

of species S if the ring size L and the number of possible ring structures NS/L is fixed.

This comparison for fixed NS is motivated by the question which role the heterogeneity of

a structure plays for assembly e�ciency if a certain number of structures should be realized.

Fig. 3(d) illustrates that a higher number of species S (more heterogeneous structures) leads

to a lower maximally possible yield, suggesting that it is beneficial to build structures with

as few di↵erent species as possible. However, this situation does not correspond to the

deterministically equivalent case2 of fixed number of particles per species N . Instead, for

higher number of species S, the number of particles per species N / 1/S decreases. How

does the heterogeneity of the structures S alter the maximally possible yield if L and N

(instead of L and NS) are fixed? Fig. S7 shows how the maximal yield ymax and its standard

deviation (obtained as average yield and sample standard deviation for ↵ = 10�8 when the

yield has well saturated and the dynamics (except for the timescale) get independent of the

exact value of the rate-limiting activation rate) depend on the number of species S. For

homogeneous structures S = 1 yield is always perfect since in this case there can be no

fluctuations between species. As a result, the average yield is 1 and the standard deviation

is 0. For increasing S, the average yield decreases until it levels o↵ for S � 1. This behavior

indicates that indeed the decreasing number of particles per species N for larger S is essential

for the decrease of the maximal yield with S in Fig. 3(d). As mentioned above, the standard

deviation is largest for small S > 1 and decreases with S.

2 Note, though, that in the deterministic case the maximally possible yield is always 1, namely for ↵ ! 0.
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Fig. S 7: Influence of the heterogeneity of the target structure on the yield for

fixed number of particles per species N . The maximal yield and its standard deviation

(obtained as average yield and sample standard deviation for ↵ = 10�8) are plotted against

the number of species S making up the structure of size L = 60. The number of particles

per species N = 1000 is fixed. Yield drops from a perfect value of 1 for S = 1 to a smaller

value and levels o↵ for S � 1. The standard deviation is largest for small S (except for

S = 1 where the yield is always perfect) and decreases with increasing number of species.
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H. DEPENDENCE OF THE MAXIMAL YIELD ymax IN THE ACTIVATION SCE-

NARIO ON N AND L

Fig. 3(c) in the main text characterizes the dependence of the maximal yield ymax in

the activation scenario as a “phase diagram” distinguishing di↵erent regimes of ymax in

dependence of the particle number N and target size L. Supplementing this figure in the

main text, Fig. S8 shows the maximum yield that is obtained in the activation scenario in the

limit ↵ ! 0 for fixed L in dependence of N (Fig. S8a) as well as for fixed N in dependence

of L (Fig. S8b). For larger particle number N , the maximal yield exhibits a transition from

0 to 1 over roughly three orders of magnitude. Increasing L shifts the transition to larger N .

The threshold particle number where the transition starts is characterised by N>0
th (L) (see

main text). Approximately, for L  600, we find N>0
th (L) ⇠ L2.8 (cf. main text, Fig. 3(c)).

Similarly, decreasing the target size L for fixed N , the maximal yield exhibits a transition

from 0 to 1 over roughly one order of magnitude in L. The corresponding threshold value

L>0
th as a function of N is obtained as the inverse function of N>0

th (L). Hence, at least for

N  105, approximately it holds L>0
th (N) ⇠ N0.36.

Since ymax is largely independent of the number of species S for fixed N and L (see Sec. G),

the maximal yield in the activation scenario (for Lnuc = 2) can be fully characterized as

a function ymax(N, L) of N and L. Hence, ymax can roughly be expressed in terms of the

threshold particle number N>0
th (L) as

ymax(N, L)

8
>>>><
>>>>:

⇡ 1 if N > 103N>0
th (L)

< 1 if N>0
th (L) < N < 103N>0

th (L)

= 0 if N < N>0
th (L)

(50)

As can be seen from Fig. 3(c) in the main text, the transition line between zero and nonzero

yield slightly flattens with increasing L. Hence, the power law N>0
th (L) ⇠ L2.8 (and similarly

for L>0
th ) only holds approximately and for a restricted range in L and N . The asymptotic

behavior of N>0
th in the limit L ! 1 remains elusive.
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Fig. S 8: Dependence of the maximal yield ymax in the activation scenario on N

and L. For each data point, ymax was determined as the average yield of 100 independent

stochastic simulations of the activation scenario with ↵ = 10�12. a Variation of the particle

number N for di↵erent target sizes L. The maximal yield increases from 0 to 1 over roughly

three order of magnitude in N . The onset of the transition depends on L. b Variation of

the target size L for di↵erent particle numbers N . Increasing the target size L with N being

fixed causes the maximal yield to drop to 0. The transition from 1 to 0 spans roughly one

order of magnitude in L and its position is determined by N .
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8 Understanding and guiding the assembly of
heterogeneous structures

What I cannot create, I do not understand.
(Richard Feynman)

The goal of this chapter is to summarize the most important findings of our project on un-
derstanding and guiding robust self-assembly of heterogeneous structures. The corresponding
manuscript is currently in preparation for submission. This chapter is based on and uses
parts of the manuscript preprint in section 8.5.

8.1 Motivation

This project was directly motivated by the previous project (chapter 7) where – by means
of a conceptual model – we found that the self-assembly of heterogeneous structures can be
subject to strong stochastic effects that suppress the assembly yield considerably. While we
proposed that the origin of these stochastic effects are fluctuations in the relative availability
of the different building blocks, a quantitative understanding for their occurrence was still
lacking.

In particular, the strength of the stochastic effects is counterintuitive: Even for large particle
numbers in the system, stochasticity clearly alters the behavior of the system. Furthermore,
there are at least two possible sources of stochasticity: First, there are fluctuations in the
activation of species and, consequently, in the availability of species for binding (demographic
noise). Second, there is randomness in choosing a binding partner (reaction noise). A priori
it is not clear how much the different sources of stochasticity contribute to the observed
stochastic effects.

The goal of this project was thus to gain a more thorough understanding of the origin of
the strong stochastic effects and, building upon it, to propose different control strategies to
improve assembly efficiency.

As mentioned in the abstract of the project, the driving questions for this project are:
Why is the self-assembly of heterogeneous structures subject to such strong stochastic effects?
What role do the different sources of stochasticity play for the assembly process? What are
possible strategies to control stochastic effects and to kinetically guide the assembly dynamics?
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Figure 8.1 | Illustration of the model (taken from the manuscript preprint in section 8.5).
The model is based on the model of the previous project (chapter 7) and extends it by
additional erroneous binding: A species i can bind to its next-nearest neighboring species
i± 2 at per-capita rate νdef < ν, thereby creating a defect in the structure. For simplicity,
we restrict our analysis to the case where the critical nucleation size is Lnuc = 2 and, thus,
all growth processes are irreversible.

8.2 Model

To address these questions, we considered the model as illustrated in Fig. 8.1. It is based on
the model studied in the previous project (chapter 7) and extends it by additionally taking
into account erroneous binding between next-nearest neighbors i and i± 2 (as it was done in
our other project [7] that is not part of my thesis). More concretely, in addition to correct
growth of polymers by monomers of a neighboring species, at rate νdef < ν a monomer of
the next-nearest species can attach to a polymer of size l ≥ 2, thereby creating a defect in
the structure. Once the structure has reached the target size L (including the defects; see
the final target structures in Fig. 8.1), the ring closes and no further growth of this ring is
possible. Furthermore, we restrict our analysis to the case where the critical nucleation size
is Lnuc = 2. In this case, growth is completely irreversible.

As in the previous project, the quality of the assembly process is measured in terms of the
final yield at the end of the process when no more growth is possible:

yield =
L ∗#target structures

NS
.

It is defined as the number of finished target structures compared to the maximally possible
number of defect-free target structures, N/(L/S) = NS/L. Analogously, the defect-free yield
is defined as the number of defect-free target structures compared to NS/L:

yielddefect-free =
L ∗#defect-free target structures

NS
.

In this summary, we will mostly focus on the case of no erroneous binding: νdef = 0.

8.3 Results

As discussed in detail in the previous chapter 7, this model exhibits rather counterintuitive be-
havior. In a deterministic description of the system that neglects correlations or fluctuations,
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the yield is always perfect in the limit of small dimerization rate µ or small activation rate
α, irrespective of the number of species S and of the number of particles N per species. This
deterministic prediction is in agreement with an intuitive expectation according to which both
small dimerization as well as small activation lead to a slow nucleation and, consequently, to
a high yield (“slow nucleation principle”; see also section 6.3). However, it is in stark contrast
to results from stochastic simulations, which show that for heterogeneous systems yield sat-
urates at an imperfect value in the limit of small α (if the number N of particles per species
is not too large; see Fig. 3(a) in the manuscript preprint in chapter 7.5). Surprisingly, this
saturation due to stochastic effects is already considerable for systems with large numbers N
of particles per species, for which fluctuations are not expected to play any role. So, where
do these strong stochastic effects come from?

The idea of this project was to formulate an effective theory that takes into account the
fluctuations in the availability of the different species for binding (demographic noise) but
neglects reaction noise due to the randomness in choosing a binding partner. The motivation
for this ansatz is illustrated in Fig. 3(a,b) in the manuscript preprint in section 8.5.
In contrast to a deterministic description of the process, which assumes that all species are
equivalent, the different species can indeed be differently available for binding. One reason
is that activation occurs randomly and, consequently, not all species have been activated
equally up to a certain point in time. In the exemplary situation depicted in Fig. 3(a,b)
in the manuscript preprint in section 8.5, for instance, all particles of species 1, 4 and 5 are
already active. In contrast, species 6 has been activated much less as compared to the average.
Correspondingly, there is currently no particle of species 6 available for binding (there is one
particle of species 6 already bound in the polymer 5-6-1-2 but this one has already two
neighboring particles bound to it); we denote such species as “unavailable” species. Since
in the sketch there is also currently no active monomer of species 2 present, the polymer
3-4-5 has no possibility to grow by attachment of a correct binding partner. We denote such
polymers as “blocked polymers” because they are blocked from growing by the unavailability
of their neighboring species. In the case where erroneous binding is possible, the result may
be that species 1 instead of species 6 binds to the polymer and thereby creates a defect in the
structure. Alternatively, the unavailability of species may also lead to additional nucleation
events, such as for instance due to dimerization of the free monomers of species 4 and 5. Taken
together, our intuition was that fluctuations in the availability of the different species may
lead to polymer configurations (“blocked polymers”) that are prevented from growing due to
the unavailability of “unavailable species” and that this may lead to additional nucleation
events (or to defect binding).

To quantify this intuition, we proceeded step by step:
First, by employing a “fluctuation-corrected mean-field” ansatz, we approximated the prob-
ability of species to be “unavailable” and the resulting number of unavailable species. This
number of unavailable species depends, for instance, on the typical fluctuations in the relative
availability of species due to the activation process and, correspondingly, is time-dependent:
At the beginning (the end) there are no fluctuations because all particles of all species are
inactive (active). In contrast, during the assembly process, some species might have been
activated more by chance and, thus, there should be variability in the availability of the
different species.
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Depending on the number of unavailable species, there will be more or less polymers in a
blocked configuration. Thus, as a next step, we gauged the probability of a polymer to be
in the blocked state, as a function of the number of unavailable species. It turns out that
this probability depends on the size of the polymer: the probability of a larger polymer
to be blocked as a result of the unavailability of species is higher. The reason is that – if
polymers only grow by attachment of available species – each polymer will at some point
reach a configuration where it would require unavailable species at both ends to be able
to grow. Larger polymers are, thus, more likely to be in this blocked configuration. This
finding contrasts the deterministic description (please refer to the Supplementary Material
of the manuscript preprint of the previous project in chapter 7.5), in which the size of a
polymer does not influence its growth behavior. Furthermore, it gives an idea why fluctuations
might suppress the yield: If the probability of structures to grow strongly decreases with
the structure size, more smaller structures will form. These then all compete for the same
resources and cannot be completed as resources get depleted; the assembly yield is low.

Finally, we used these probabilities for a polymer to be in a blocked state to write down an
effective theory in terms of two states per structure size: a “growing state” for polymers that
can grow by attachment of available species and a “blocked state” for the other polymers.

Intriguingly, this effective theory, which is based on many simplifications, captures the behav-
ior of the system qualitatively correctly (see Fig. 2 in the manuscript preprint in section 8.5):
For instance, it predicts that the yield saturates at an imperfect value in the limit of small
activation rates (a) or that the yield can be a non-monotonic function of the activation rate if
the dimerization rate µ is smaller than the growth rate ν (b). This suggests that it is indeed
the demographic noise due to the activation of particles and not the reaction noise that is
mostly responsible for the strong stochastic effects (the stochastic yield catastrophe).

This demographic noise is captured by one crucial quantity of the system: the variance of the
number of activated particles of a (randomly chosen) species up to time t. Since all particles
are activated independently at per-capita rate α, the survival probability for a single particle
is given by 1−e−αt and the number of activated particles per species follows a Binomial
distribution with sample size N (the number of particles per species) and probability 1−e−αt.
The variance is thus given by

σ20 = N (1− e−αt) e−αt . (8.1)

As expected, it is zero at the beginning (t = 0) and at the end (t→∞) since then all particles
are either inactive or all are active. When plotted against the average number of activation
events per species, the variance exhibits a symmetric shape with a pronounced peak in the
center (see Fig. 3(d) in the manuscript preprint in section 8.5, which shows the behavior
of
√

3σ0, which can be interpreted as the variance in the relative availability of one species
as compared to its neighbors; thus the additional factor

√
3). So, the demographic noise is

highest when just half of all particles have been activated.

Can we use this insight to propose strategies to improve the assembly efficiency? For instance,
are there reasonable ways how to suppress the demographic noise in the system and do such
systems indeed produce better yield? To answer these questions, we implemented two specific
strategies which were designed to reduce the demographic noise in the system:
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First, we considered a modification of the original model in which not all particles are added
to the system from the start but instead the particles are provided in successive “bursts”.
Each burst consists of N/b particles per species (where b is the total number of bursts).
Only when all particles of one burst have been activated and all binding reactions have taken
place, particles of the next burst are put into the system. In this way, the variance of the
number of species σ20 is constrained by an external supply control: It is zero in between two
successive bursts (see Fig. 5(a) in the manuscript preprint in section 8.5). As a result, the
overall variance is the smaller, the more bursts are used to provide the particles. Based on
our effective theory, we would thus expect that the assembly yield should improve for larger
numbers of bursts. As shown in Fig. 5(b) in the manuscript preprint in section 8.5, this is
indeed the case: The saturation value of the yield is larger for larger numbers of bursts and
there is a clear negative correlation between the deviation of the number of activated particles
between neighboring species over time and the assembly efficiency. Of course, the impact of
bursts strongly depends on how “reliable” the bursts are. In the optimized scenario described
here, each burst contains exactly N/b particles per species. As we show in the Appendix of
the manuscript preprint in section 8.5 more bursts indeed improve assembly efficiency as long
as the distribution of particles per burst is “narrow enough”: If the number of particles per
species is drawn independently from a Binomial distribution, yield increases with the number
of bursts if the Fano factor for each burst is below 1. In fact, we prove that if the number of
particles per species per burst is drawn randomly from a Poisson distribution with mean N/b
(which has a Fano factor of 1), the process is independent of the number of bursts (in the
limit where the activation rate is small, α → 0, and only the order of the activation events
matters).

The control strategy to provide the particles in bursts relies on external supply control. Is
there also a way to decrease the demographic noise by an internal supply control mechanism?
To address this question, we considered a second complementary approach, where the different
species inhibit their own activation. For this purpose, the activation rate in the original model
is modified as follows:

α(i) = α0e
qma

i , (8.2)

where α(i) is the activation rate of species i, ma
i is the number of active monomers of species

i, α0 is the bare activation rate and q ≤ 0 is the inhibition strength. The case q = 0
corresponds to the original model. The idea is that species that have been activated more,
generally speaking, have more active monomers. Such a species would then tend to inhibit
its own activation and, potentially, the activation levels of the different species could align.
Indeed, Fig. 5(c) in the manuscript preprint in section 8.5 shows that the standard deviation
of the fluctuations in the activation levels between neighboring species decreases for increasing
inhibition strength q. This decreased variance again leads to an improved assembly efficiency:
Fig. 5(d) in the manuscript preprint in section 8.5 shows how the assembly yield depends
on the activation rate α for different values of the inhibition strength q. For higher q, the
saturation value increases considerably. As a result, there is again a clear negative correlation
between the strength of the demographic noise (c) and the assembly efficiency (d).

Taken together, these findings suggest that demographic noise (and related to it fluctuations
in the availability of the different species) plays an important role for assembly efficiency,
as suggested by the effective theory. Control strategies that reduce this demographic noise
might thus hold promise for increasing the assembly efficiency of heterogeneous structures.
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Intriguingly, as mentioned already in the introductory section 6.2, also the opposite approach,
namely increasing the variability between species by implementing non-stoichiometric concen-
trations, has recently been suggested as a means to improve the assembly yield [109]. How
do these ideas fit together? The important point is that, in order to increase the yield, the
variability between species needs to be augmented in a coordinated way: In Ref. [109] the use
of non-stoichiometric concentrations is beneficial because a specific region of the target struc-
ture is enriched. This coordinated variability between species favors a very specific assembly
path where nucleation starts in the enhanced region and structures then grow from there. As
a result, the competition between the different assembly paths is reduced to a minimum and
the assembly yield is high.

A similar outcome can also be achieved by implementing non-homogeneous activation rates
as illustrated in Fig. 6(a) in the manuscript preprint in section 8.5:

α(i) =

{
α0w

i for i ≤ S/2
α0w

S−(i−1) for i > S/2,
(8.3)

where w determines the strength of the hierarchy of the activation rates and α0 is the basal
activation rate. Two neighboring species, e.g. species S/2 and S/2 + 1, are activated fastest,
and the activation rates of the other species are exponentially suppressed with the distance
to these fastest species. As long as the activation rates are not so high that many species are
activated before binding takes place, this arrangement leads to a strongly favored assembly
pathway: Nucleation occurs preferentially between the two species which have the highest
activation rate and then structures grow symmetrically towards both ends i = 1 and i = S.
This improves yield considerably (see also Fig. 6(b) in the manuscript preprint in section 8.5).

Finally, in our other project [7], which is not part of my thesis, we considered a so-called just-
in-sequence mechanism which is based on inhibitory feedback between neighboring species
(see Fig. 6(c) in the manuscript preprint in section 8.5 for an illustration). This inhibitory
feedback leads to an assembly cascade where all species are supplied in just the right order
for binding. As a result, competition between different assembly paths is suppressed and this
control strategy exhibits a very high assembly fidelity. In particular, it also controls erroneous
binding.

8.4 Key points

From my point of view, there are three take-home messages:

• Fluctuations in the availability of different species (demographic noise) can be a strong
limiting factor for the assembly of heterogeneous structures.

• Controlling demographic noise might thus be a promising strategy to improve assem-
bly efficiency. Here, we examined two specific examples which are based on supply
regulation by either external control or by self-inhibitory feedback.

• Remarkably, also increasing the variability between species can enhance the assembly
yield – provided that it is well-coordinated and favors a specific assembly path.
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Richard Feynman’s quote at the beginning of the chapter nicely illustrates our approach in
this project: Our goal was to build an effective theory in order to better understand the
occurrence of the strong stochastic effects we observed in the previous project (chapter 7). I
believe we learned a lot from it.



180 8. Understanding and guiding the assembly of heterogeneous structures
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Self-assembly is not only crucial for living organisms but also an important component for the
technological production of functional nanostructures. For these structures to be versatile, they
must be heterogeneous and consist of a number of different modules that are responsible for specific
functions or tasks. Recently, however, a conceptual model has demonstrated that the self-assembly
of heterogeneous structures can be subject to strong stochastic effects that significantly suppress
yield. Given that self-assembly is an essential process in living systems and in nanotechnological
applications, this finding raises two immediate questions: How do heterogeneous structures assemble
efficiently in living organisms? Which guiding strategies could be implemented into the design of
artificial assembly systems in order to achieve high assembly yield? An answer to these questions re-
quires a thorough understanding of the occurrence of the detrimental stochastic effects (“stochastic
yield catastrophe”). To make progress, here we formulate an effective theory for the aforementioned
conceptual model that enables us to unravel the various sources of stochasticity in terms of their
relevance to assembly efficiency. From this effective theory, we identify the fluctuations in the avail-
ability of the different constituents for binding as the major cause of the stochastic yield catastrophe.
We use this insight to propose and implement two control strategies to improve yield by reducing the
variance in the relative availability of constituents. These are based on supply control by providing
particles in bursts or by implementing self-inhibitory feedback. Remarkably, also a strong increase
in the variance between constituents enhances assembly yield, provided it is coordinated and favors
a specific assembly path. We discuss possible limitations and applications of all control strategies
and place our findings in a broader perspective.

I. INTRODUCTION

One of the defining features of living systems is their
ability to autonomously generate complex structures and
macro-molecular machineries. Underlying this ability are
self-assembly and self-organization processes. These rely
on local interactions between constituents but are gener-
ically not driven by external guidance or a global control
system [1, 2]: Unlike someone who assembles bricks in
the correct order to create a predefined structure, the
assembly of cellular structures such as microtubules [3–
5], ribosomes [6, 7], flagellar motors [8, 9] or intracel-
lular viruses [10–12] must work without an externally
provided construction plan. How do local interactions
between constituents suffice to build macroscopic struc-
tures? In particular, it is still an open question why as-
sembly yield can be high although the free energy land-
scape may exhibit many local minima [2, 13–15] in which
the dynamics can get kinetically trapped on the relevant
timescales. As a result of such kinetic trapping, only
fragments of structures might be formed but no complete
structures [2, 16, 17].

Elucidating principles for the kinetics of self-assembly
processes is expected to be useful not only for the un-
derstanding of intracellular self-assembly but also for the
design of artificial self-assembly systems [13]. These ar-
tificial assembly processes are based on techniques such

∗ These authors contributed equally to this work.
† Please send correspondence to frey@lmu.de.

as DNA nanotechnology, including DNA origami [18, 19],
DNA bricks [20], or single-stranded tiles [21], and allow
for a rich variety of possible large-scale structures. As a
result, artificial self-assembly is believed to be a promis-
ing route towards functional nanostructures [2, 22], with
proof-of-principle achievements ranging from nanoboxes
with programmable lids [23] to micrometer-sized col-
loids [24].

The problem of kinetic trapping has long been stud-
ied in these systems and has been described both in ex-
periments reproducing natural assembly processes of, for
example, virus capsids [10, 25, 26], as well as in artifi-
cial self-assembly systems based on DNA nanotechnol-
ogy [27, 28]. It has been pointed out by several studies
that reversibility of binding is a possibility to overcome
kinetic trapping [29–34]. However, for virus capsids and
other functional biological structures it has been shown
that at least part of the reactions are not reversible on the
time scale of the assembly process [35, 36]. From a biolog-
ical point of view, this (partial) irreversibility is reason-
able since, for instance, virus shells must be stable to pro-
tect their cargo in adverse environments, which requires
sufficiently strong and stable bonds. Allosteric control
has therefore been proposed as a viable mechanism to
actively suppress nucleation and thereby avoid kinetic
trapping in weakly reversible self-assembly [36–39]. And
indeed, it has been demonstrated that allosteric effects
play an important role in the self-assembly of viruses,
flagellar motors and actin filaments [37, 38, 40–43].

Furthermore, the principle of “slow nucleation but fast
growth” has become a guiding rule for self-assembly [10,
16, 20, 44, 45]. It is based on the idea that if nucle-
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ation of new structures is slow compared to the growth
of existing structures, the structures are formed one af-
ter the other and there is no competition for resources.
One would expect that such a situation could be induced
by allosteric effects, which are assumed to control the
nucleation speed. However, a recent study shows that
for heterogeneous systems, the way in which allosteric
control is implemented plays a critical role [46]. In par-
ticular, if fluctuations in the availability of the different
kinds of building blocks are relevant, a severe stochas-
tic effect termed ‘stochastic yield catastrophe’ can cause
kinetic trapping in weakly reversible self-assembly. This
type of kinetic trapping is special in that it constitutes a
genuinely stochastic effect that is not captured by mean-
field chemical rate equations.

Since fluctuations in the relative concentrations of par-
ticles can arise in multiple different ways ranging from
diffusion to stochastic production of the building blocks,
stochastic yield catastrophes might represent a major
limitation for self-assembly efficiency. Hence, it is cru-
cial to gain a deeper understanding about the underlying
causes of stochastic yield catastrophes in order to pro-
pose effective strategies to mitigate their detrimental ef-
fect. These insights could enhance our understanding of
cellular self-assembly processes and usefully inform ex-
periments and nanotechnological implementations. To
this end, here we revisit a conceptual model of a lin-
ear, heterogeneous assembly process as introduced in
Ref. [46] and focus on a quantitative understanding of
the role of fluctuations. In line with Einstein’s demand
on what a proper model should be like [47], we find that
this model is conceptually rich enough to show all es-
sential features of self-assembly processes and – at the
same time – as simple as possible to allow for an in-depth
theoretical analysis. We develop an effective stochastic
theory that extends a previously formulated mean-field
description [46]. In contrast to this mean-field descrip-
tion, it captures the observed phenomenology, including
the stochastic yield catastrophe, qualitatively correctly.
Our analysis reveals that the main contribution to the
stochastic yield catastrophe is indeed due to demographic
noise, rather than inherent reaction noise. Based on this
insight, we propose different strategies to suppress the
detrimental effect of fluctuations and discuss their pos-
sible implementations. Concretely, these strategies pre-
vent stochastic effects either by reducing fluctuations in
the availability of the different species or by controlling
the supply in a way to favor specific assembly paths.
We expect that these strategies could be implemented
in systems based on modern nanotechnological devices
in rather straightforward ways. Hence, these strategies
might constitute viable ways to realize irreversible self-
assembly of complex information-rich nanostructures.

II. MODEL DEFINITION AND RESULTS FROM
STOCHASTIC SIMULATIONS

A. Stochastic model

We consider a conceptual irreversible self-assembly
process with a unique target structure (ring) of finite
size L composed of monomers of S different species, as
illustrated in Fig. 1, which summarizes the key processes
during self-assembly. Specifically, we take into account
a stochastic activation step and irreversible binding re-
actions as introduced in Refs. [46, 48]. All monomers
are inactive initially and are activated at a per capita
rate α. Once active, monomers of species i∈{1, . . . , S}
bind other monomers of the (periodically) neighboring
species (i±1)modS to form dimers at rate µ (dimer-
ization), e.g. active monomers 3 and 4 in Fig. 1. Fur-
thermore, monomers can also attach to larger structures
by binding to a periodically consecutive species (correct
binding) at rate ν, e.g. active monomer 5 and polymer
3-4. Alternatively, binding may also occur between poly-
mers and monomers of the next-nearest-neighbor species
at a reduced rate νdef� ν, creating a defect in the struc-
ture (defect formation, e.g. active monomer 4 and poly-
mer 6-1-2, creating a defect at species 3 (or 5). Since
polymer-polymer binding is typically assumed to be less
relevant as compared to binding between monomers and
polymers [10, 17, 49, 50], we assume that structures only
grow by the attachment of monomers. Once the struc-
ture has reached the target size L (including the defects;
see the final target structures in Fig. 1), the ring closes
and no further growth of this ring is possible.

A typical assembly pathway proceeds as follows: As
soon as some monomers have been activated, monomers
dimerize and polymers start to grow by monomer attach-
ment of correct (neighboring) or defect-forming (next-
nearest neigbhboring) species. These polymers then all
continue to grow until they have either reached the target
size or until all monomers are bound in polymers.

The quality of the assembly process (“yield”) is mea-
sured at exactly this time when no further growth is pos-
sible any more as all monomers have been activated and
are depleted (bound in larger structures). The yield Y
is defined as the number of finished target structures,
Ntarget, compared to the maximally possible number of
defect-free target structures, N∗target. In a perfect assem-
bly process each species occurs exactly L/S times in each
finished structure. Hence, the number of possible defect-
free target structures is given by N∗target = N/(L/S).
Hence, the yield is defined as

Y =
LNtarget

SN
. (1)

Analogously, the defect-free yield, Y (0) is defined as the

number of defect-free target structures, N
(0)
target, com-
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FIG. 1. Schematic of the conceptual self-assembly model Rings of target size L are assembled from S different species of
particles (here L = 12 and S = 6). All monomers start in an inactive state (blue) and have to be activated before being able to
bind. This activation happens at a per-capita rate α. Structures grow by attachment of active monomers (green). Defect-free
binding happens only between nearest-neighbor species (in a periodically consecutive ordering), so species i can bind to i ± 1
(modulo S). Dimerization happens at rate µ whereas monomer binding to larger structures (orange) happens at rate ν. Defect
formation occurs at a much lower rate νdef � ν between next-nearest neighbors, leaving out one species and thereby creating
a defect (black). A structure is finished (red) once its size (including the defects) has reached the target size L. There are N
particles of each species, so that in total the system could build NS/L defect-free target structures.

pared to N∗target:

Y (0) =
LN

(0)
target

SN
. (2)

If many structures are completed during the process (ir-
respective of whether they contain defects or not), the
yield is high. In contrast, the defect-free yield is high
only if many defect-free structure are produced. It thus
quantifies the quality and amount of target structures.

B. Mean-field behavior (abundant resources)

In this section we summarize the most important find-
ings of the previous studies [46, 48] to gain a first intuition
about the self-assembly process. We discuss the more in-
tuitive deterministic limit of large system size N → ∞
first and focus on the case of finite resources afterwards.

A well-known principle for efficient self-assembly is the
‘slow-nucleation principle’ [10, 20, 21, 44–46, 51] which
states that the assembly yield is high if nucleation of new
structures is slow compared to the growth of structures.
In this case, it is very likely that a structure that has been
nucleated grows into the target structure before a new
structure is nucleated. As a result, structures are assem-
bled one after the other and the assembly yield is high.
Conversely, if nucleation of new structures is fast, many
structures will be nucleated simultaneously. These poly-
mers then compete for the same resources and resources
run out before the structures are completed (‘depletion
trap’).

In the deterministic limit of many particles per species
N→∞, the self-assembly process in our model, Fig. 1,
behaves according to the slow-nucleation principle [46].

For high activation rate (large α) and fast dimerization
(µ≈ ν), the number of active monomers is high and nu-
cleation of new structures (dimerization) occurs more fre-
quently than growth of larger structures. Correspond-
ingly, the yield is very low. In agreement with the slow-
nucleation principle, the efficiency of the assembly pro-
cess can be improved by either decreasing the dimeriza-
tion rate µ or the activation rate α compared to the
growth rate ν≡ 1: Yield is a monotonic function of both
α and µ and perfect yield is always achieved in the limit
of small α or µ, irrespective of the number of particles
N� 1 or species S [46, 48]. Indeed, for fixed number of
particles N per species and fixed target size L yield is
independent of the number of species S.
As discussed in the next section II C, stochastic effects do,
however, qualitatively alter the self-assembly process.

C. Stochastic effects for finite resources

For reduced resources (smaller N) and heterogeneous
structures S > 1, fluctuations in the dynamics become
relevant and the behavior of the system is qualita-
tively different from the behavior in the deterministic
limit [46, 48]. In this case, stochastic simulations of the
system based on Gillespie’s algorithm [52] demonstrate
that the yield saturates at an imperfect value Ymax in the
limit of small α if N is not large enough (Fig. 2 (a, d)).
Previously, we have shown that below a threshold value of
N , which depends on the size of the target structure, this
saturation value Ymax is in fact zero and the system pro-
duces no yield although yield is perfect in the correspond-
ing deterministic description (‘stochastic yield catastro-
phe’) [46]. Furthermore, we have shown that yield can
be a non-monotonic function of the activation rate both
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FIG. 2. Stochastic yield catastrophe as observed in stochastic simulations (circles) and results of the effective
theory (crosses). (a) The average yield and its standard deviation (in stochastic simulations) are plotted against the activation
rate α for different numbers of particles per species N = 3000 (blue), N = 1000 (red) and N = 500 (yellow). Yields saturates
at an imperfect value for α→ 0. The parameters are L = S = 60, µ = ν = 1 and νdef = 0. (b) For small dimerization rate, here
µ= 10−3 (blue; L = S = 60, N = 103) or µ= 10−2 (red; L = S = 40, N = 102), the average yield can become a non-monotonic
function of the activation rate α. The other parameters are ν = 1 and νdef = 0. (c) For finite defect formation rate, here
νdef = 10−4 (blue) or νdef = 10−3 (red), both the defect-free yield (inset), i.e. the yield of all target structures without defects,
as well as the total yield (main figure), i.e. the yield of all target structures with and without defects, can be a non-monotonic
function of the activation rate α. The other parameters are N = 1000, µ = ν = 1 and L = S = 60 (red) or L = S = 40 (blue).
(d) The average yield and its standard deviation are plotted against the number of species S for fixed total number of particles
NS = 60000 (blue), NS = 30000 (red) and NS = 7500 (yellow). In this case, the average yield decreases with increasing
heterogeneity of the structure (number of species S that make up the ring). The parameters are L = 60, α=N/L3/1000,
µ = ν = 1 and νdef = 0. The activation rate is chosen small enough that the yield has already reached its saturation value Ymax

for α → 0. (e, f) The average yield and its standard deviation are plotted against the number of species S. In contrast to
(d), here the number of particles per species N (and not NS) is fixed. Yield is highest for homogeneous structures S = 1 and
levels off at an imperfect value for S � 1 (e) The parameters are L = 100, α= 10−2, µ = ν = 1, νdef = 0 and N = 104 (blue)
or N = 4 ∗ 103 (red) as indicated. (f) The parameters are L = 60, α= 10−5, µ = ν = 1, νdef = 0 and N = 5 ∗ 103 (blue) or
N = 5 ∗ 102 (red) as indicated.

for µ<ν or νdef > 0 (Fig. 2 (b,c)), a feature that does
not occur in the limit N→∞. In the case νdef > 0, also
the defect-free yield shows non-monotonic behavior with
respect to the activation rate α (inset in Fig. 2 (c)). Fi-
nally, for fixed number N of particles per species and
fixed target structure size L, the yield is not indepen-
dent of the number of species S (Fig. 2 (e,f)). Instead,
the yield is large for S= 1 but then drops for S > 1 and
saturates for S� 1. It remained, however, elusive why
these stochastic effects are so strong and which sources of
stochasticity (demographic noise or reaction noise) con-
tribute mostly to the observed phenomenology. One goal
of this manuscript is to gain a deeper insight into which
physical principles underlie the stochastic yield catastro-
phe.

D. Fundamental difference between the
deterministic and the stochastic limit

What is the fundamental difference between the de-
terministic limit (N→∞) and the case of reduced re-
sources? For N→∞, the randomness of binding and
fluctuations in the relative number of the different con-
stituents (demographic noise) are negligible [46, 48]. This
is, however, not true for reduced resources. Heuristically,
if certain species are temporarily less available than oth-
ers due to random fluctuations in the activation of par-
ticles, the neighboring species will tend to nucleate addi-
tional structures or to form defects (Fig. 3 (a, b)). For
instance, if a species required for correct growth is tem-
porarily not available as an active monomer (e.g. species
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6 in Fig. 3 (a)), a monomer of the next species might
form a defect (species 1 in the figure). Similarly, ac-
tive monomers of this next species might dimerize with
a monomer of their other neighboring species instead.
As a result, there will be too many nucleation events or
too many defective structures, suppressing the (defect-
free) yield. While it is intuitive that fluctuations in the
availability of the different species may lead to additional
nucleation events or defect formation, a quantitative un-
derstanding is still lacking. Due to the central limit the-
orem, demographic fluctuations or shot noise are typi-
cally expected to scale as 1/

√
N compared to the mean

N . So, why do demographic fluctuations in the relative
availability of the different species lead to such strong
stochastic effects even in cases when the number of par-
ticles per species N is large? To which extent do the
different sources of stochasticity (demographic noise, re-
action noise due to randomness in binding) contribute
to the observed effects? To address these questions, we
next formulate an effective theory. This effective descrip-
tion of the self-assembly process focuses on stochasticity
introduced by demographic fluctuations in the relative
number of active monomers of the different species and
neglects reaction noise. It will turn out that effectively
putting in this source of stochasticity can indeed quali-
tatively account for the observed strong deviations from
the deterministic description.

III. EFFECTIVE THEORY: IDEA

The goal of this section is to provide a first motivation
for the formulation of the effective theory. Since the effec-
tive theory will be based on the deterministic description
of the system in Ref. [46], we summarize the most impor-
tant aspects of this deterministic picture first. In addi-
tion, this summary is intended to give insights into which
additional aspects might be important for a description
of the stochastic effects. Building on these insights, we
will then argue for our particular approach to extend the
deterministic description.

A. Reduction to one-species problem in the
deterministic limit

The deterministic description of the process as pre-
sented in Ref. [46] is based on the assumption that the
number N of particles per species is large. Accordingly,
it neglects chemical noise due to randomness in choosing
a binding partner and demographic fluctuations in the
number of active particles of the different species. Con-
sequently, all species are equivalent and all structures of
equal size can be treated on the same footing, irrespective
of which species they are composed of. Using symmetry
arguments, it is thus possible to characterize the assem-
bly dynamics only in terms of the size l of the different
structures (for simplicity, we restrict our discussion to the

case without defect formation νdef = 0). Polymers of all
sizes l ∈ {2, . . . , L− 1} (except for the target size l = L)
grow by attachment of monomers at rate ν per monomer
at either end. In the time evolution of the number cl of
polymers of size l per species, this process corresponds to
a loss term of −2νmacl where ma denotes the number of
active monomers per species. The factor of 2 comes from
the two configurations in which a monomer can bind to
a polymer (namely from the left or right). This loss term
appears as a gain term for the number cl+1 of structures
of size l+1 since attachment of a monomer to a structure
of size l leads to a structure of size l + 1. Furthermore,
two active monomers dimerize at per capita rate µ. For
ma active monomers per species, this yields a gain term
µ(ma)2 for the dimers. In contrast to the gain term due
to polymer growth, there is no factor of 2 here. This is
due to the fact that there is only one possibility to create
a dimer from two monomers. Taken together, the time
evolution of the number of structures cl of size l ≥ 2 per
species is thus given by [46]

∂tc2 = µ(ma)2 − 2νmac2 , (3a)

∂tcl = 2νma(cl−1 − cl) , (3b)

∂tcL = 2νmacL−1 . (3c)

Initially there are N inactive monomers of each species.
All of these are activated at the per-capita rate α. The
survival probability up to time t is thus e−αt and the av-
erage number of inactive monomers at time t is Ne−αt.
Hence, the gain term for active monomers at time t
(which is given by the total activation rate) is αNe−αt.
The loss term has two contributions, one from dimeriza-
tion and one from growth of polymers. Analogously to
the corresponding loss/gain terms for the polymers, these
are given by −2νmacl for l∈{2, . . . , L−1} for polymer
growth and −2µ(ma)2 for dimerization. The additional
factor of 2 in the dimerization loss term is a stoichio-
metric factor (two monomers participate in the dimeriza-
tion). In summary, the time evolution of the monomers
is given by [46]

∂tm
a = Nαe−αt − 2µ(ma)2 − 2νma

L−1∑

l=2

cl . (4)

Note that here and in the following we always consider
the number of structures per species. For better readabil-
ity, we will not explicitly mention this in the following.

As mentioned before, in the deterministic limit, the
assembly yield is independent of the number of species
S (for fixed N and L). This equivalency is apparent
from the time evolution of the structures, Eqs. 3 and 4,
into which the number of species S does not enter. It
is, however, in conflict with stochastic simulations where
heterogeneous systems (S > 2) are subject to strong fluc-
tuation effects but the homogeneous system (S= 1) is
not (Fig. 2 (e,f)). The reason for the equivalency in the
deterministic description lies in the assumption that all
species behave identically. Extending the deterministic
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FIG. 3. Illustration of the effective theory and the terminology. (a, b) Species which are currently unavailable for
binding (in short: “unavailable species”) lead to additional nucleation events and defect formation. If a species (“unavailable
species”; here e.g. species 6) has been activated much less than its neighbors, these neighbors tend to nucleate new structures
(e.g. excess of active monomers of species 4 and 5 in (a) or missing link between polymers 3-4-5 and 1-2 in (b)) or to form
defects (e.g. active monomer 1 binds erroneously to polymer 3-4-5 due to a lack of other binding partners, thereby forming a
defect). In the deterministic description, which assumes symmetry between the species, all species are equally available and
large structures form. (c) The number of activated particles of the different species Ai (different colors) relative to their mean,
δAi=Ai−Ā, is shown in dependence of the average number of activation events per species Ā. The data are shown for one
simulation with parameters L = 60, N = 500, ν=µ= 1, νdef = 0 and α = 0.01. (d) The simulated (symbols) and theoretical

values (line) of the standard deviation of the neighbor fluctuations σ= std(∆Aneighbor
i =Ai+1+Ai−1−Ai−Ā) =

√
3Ā(1− Ā/N),

are plotted against the average number of activation events per species, Ā, and for the same parameter values as in (a). The
standard deviation is calculated with respect to all species i in a single realization of the process. (e) Unavailable species
(crosses) act as obstacles for growth. The distribution of segment sizes between unavailable species depends on the probability
that species are unavailable. (f) Illustration of the assembly paths into structures with different numbers of “growing ends”.
If structures grow by attachment of monomers of an available species, the number of growing ends either stays the same or
decreases by one. (g) Prediction for the steady-state probability pl that a structure that grows to size l ends up in a state
where it can grow by attachment of monomers of available species. This probability depends on the number S× of unavailable
species. The relevant parameters are L = 60 and L×= (L/S)S× = 5 (red circles), L×= 10 (yellow triangles), L×= 20 (green
stars) and L×= 20 (blue squares). (h) In the effective theory, structures can be either in a state where both neighboring species
are unavailable (“blocked”) or in a state where at least one neighbor is available (“growing”); see also (a). Structures in the
blocked state can only grow once an unavailable species is activated, whereas structures in the growing state can also grow by
available species. Over time, the number of unavailable species changes. As a result, structures can change from being blocked
to being able to grow or vice versa.

picture with the goal to capture the stochastic limit, will
thus require to reconsider this assumption. In the next
subsection, we will motivate our particular choice for ex-
tending the deterministic description.

B. Effective description of the stochastic system as
one-species problem

A fully stochastic description of our system would re-
quire a high-dimensional master equation, including all
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possible structure configurations (lengths and composi-
tions). Such a master equation is not very revealing per
se since it reflects the complexity of the dynamics one-to-
one. However, by finding an (effective) representation in
a lower-dimension space, one can hope to get important
insights into which features of the full process are crucial
for the dynamics and which are not. A typical approach
for finding such a lower-dimensional representation are
moment-closure techniques [53]. For this purpose, one
derives a hierarchy of equations that relates the different
moments to each other. For large systems with many
interacting elements, this hierarchy is typically extensive
and it is necessary to define a closure relation that trun-
cates the hierarchy. In the simplest case, only the first
moment (i.e. the average) is taken into account while
all correlations are neglected. Implementing this proce-
dure rigorously [46] leads to the deterministic description,
Eqs. 3 and 4. We tried to refine this closure relation by
considering second-order moments. However, due to the
large number of combinatorial possibilities, there is no
canonical choice for the closure relation and we did not
succeed to define a reasonable one. Is there another pos-
sibility to effectively reduce the high-dimensional system
to a lower-dimensional space? Potentially yes, at least if
one assumes that only demographic fluctuations in the
relative number of active monomers between species but
not reaction noise are crucial. In this case, it might not be
necessary to resolve the exact composition of the struc-
tures. Instead one could try to classify structures into
two different states per given size of a structure: one for
structures which currently cannot grow due to a lack of
neighboring particles (“blocked polymers”) and one for
the structures that can grow by monomer attachment of
neighboring species (“growing polymers”); see Fig. 3 (a)
for an illustration. In that way, the description is still
“close” to the deterministic description in the sense that
only an additional state has to be introduced. If this were
successful, it would reduce the original set of (L+ 1)×S
ordinary, stochastic differential equations [54] to a sys-
tem of 2(L + 1) ordinary differential equations (see also
below for details) compared to L in the deterministic case
(Eqs. 3 and 4).

Of course, to formulate such an effective theory it is
necessary to define more precisely what we mean by
“blocked” and “growing polymers”. To do this and to
develop a good intuition for the system, in the next sec-
tion, we will look more closely at the system’s properties
and, in particular, the variations between species.

C. Origin of stochastic yield catastrophe:
Inter-species variability and “unavailable species”

As mentioned above, intuitively, fluctuations in the
availability of the different species can lead to undesir-
able nucleation events or defect formation if the species
necessary for correct growth are currently unavailable for
binding. So, how distinct is the availability of the differ-

ent species? Or, more concretely, how much do the num-
bers of activated particles Ai of the different species vary
compared to each other and compared to the mean value
Ā=

∑
iAi/S? Fig. 3(a) shows the deviation δAi =Ai−Ā

of the number of activated particles for all species (col-
ors) relative to their mean value, as measured in one
single stochastic simulation with parameters L= 60 and
N = 100. The deviation is plotted against the average
number of activation events per species Ā (which is a
monotonic function of time). As expected, the deviation
is zero at the beginning (Ā= 0) and at the end (Ā=N)
since then no particles of either species or all particles of
all species are activated, respectively. In between these
two limits, it attains values of typically 2-3 % of the to-
tal number of particles per species N . This value can be
understood analytically: There are N particles of each
species and NS particles in total. Furthermore, if the
average number of activation events per species is Ā, in
total SĀ activation events have happened. Thus, since
activation of particles occurs independently for all parti-
cles and species, the number of activated particles of one
species Ai is determined by the following random pro-
cess: Take SĀ random draws without replacement from
a population of size SN that containsN “successes” (par-
ticles of species i). The distribution corresponding to this
random process is called hypergeometric distribution [55]
with parameters SN , N and SĀ:

Ai ∼ HypGeo(SN,N, SĀ). (5)

Its variance is given by

Var0 = Ā

(
1− 1

S

)(
1− Ā

N

)
NS

NS−1
≈ Ā

(
1− Ā

N

)
, (6)

where the approximation is valid for large S. As a re-
sult, the standard deviation is maximal when half of the
particles have been activated on average, Ā=N/2, with a

value of
√
N/2 which is roughly 11 (or 2.2 %) forN = 500.

Since the average number of particles per species Ā ∝
N , this scaling of the variance shows that the fluctuations
in the relative particle number of the different species are
indeed of the order 1/

√
N compared to the total number

of particles N per species. As mentioned above, this scal-
ing is expected for demographic noise. But how can these
order 1/

√
N fluctuations have such a strong effect even

for large N? There are several possible reasons: First,
the dynamics of the process triggers a kind of reinforcing
effect (“snowball effect”) where the effect of fluctuations
gets amplified due to the dynamics it causes itself. If
fluctuations at the beginning of the dynamics result in
too many nucleation events, too many structures form.
In the worst case, none of these structures is then com-
pleted due to competition for resources. So, a small fluc-
tuation in the beginning has a large effect on the outcome
and whether a fluctuation changes the self-assembly pro-
cess considerably is thus history- and time-dependent.
This dependence on time is amplified even more since
the population size is non-constant. As a result, it is
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not necessarily the standard deviation compared to the
total number of particles N that is relevant for the pro-
cess but rather the standard deviation compared to the
mean number of activated particles, Ā. So, the quantity
to look at is not Var0/N

2 = Ā (1−Ā/N)/N2 but rather
the coefficient of variation,

CV 2 =
Var0

Ā2
=
Ā(1− Ā/N)

Ā2
=

1− Ā/N
Ā

. (7)

This coefficient of variation is indeed very large at the be-
ginning (it diverges for Ā→ 0 due to the zero mean), sug-
gesting that in particular at the beginning, there can be
too many undesirable nucleation events. In conclusion,
the effect of fluctuations is strongly time- and history-
dependent.

In this section, we tried to motivate our approach to
extend the deterministic description of the self-assembly
process by its “essential” ingredients. It is based on the
idea that it is mainly the demographic noise that is de-
cisive for the dynamics of the assembly process. So,
inspired by the species symmetry in the deterministic
description, we assume that it is not necessary to keep
track of all possible configurations of structures but that
it is sufficient to characterize structures only in terms
of whether they can grow by monomer attachment or
whether they are blocked due to unavailable species. The
probabilities to be in either state are expected to depend
on the variability between species which is quantified by
the distribution of the number of active particles, Eq. 5.
We will revisit this distribution when we set up the ef-
fective theory in the next section.

IV. EFFECTIVE THEORY: QUANTIFICATION

The goal of this section is to make the effective the-
ory for the model in Fig. 1 explicit. As we formulate
the theory, we also try to give an answer to the following
questions: How does variability between species influ-
ence the dynamics of the assembly process? How does
a species that is currently not available for binding alter
the self-assembly dynamics?

We will proceed as follows: First, we introduce some
terminology (Sec. IV A) that will make the formulation
of the effective theory more convenient; see also Fig. 3
(a). Next, we determine the probability of species i to
be currently unavailable for binding; for a precise def-
inition see Sec. IV A and Fig. 3 (a). This can be due
to low activation of species i itself or due to high acti-
vation of the neighboring species i ± 1 and thus a high
likelihood for species i to be bound to these neighbor-
ing species on both sides already; for instance, species 6
in Fig. 3 (a) has been activated less than average and,
at the same time, its neighbors, species 5 and 1, have
been activated more than average. From the probability
of being unavailable for binding and the corresponding
number of “unavailable species” we then determine the

probability for a structure to be able to further grow, de-
pending on the length of the structure. Finally, we write
down an effective one-species theory for the polymer-size
distribution that considers two states, one “blocked” and
one “growing” state for each polymer size (for a precise
definition see Sec. IV A; in Fig. 3 (a) the polymer 3-4-5
is blocked because there is neither an active monomer of
species 2 nor one of species 6 whereas 3-4 can grow by
attachment of an active monomer of species 5). A reader
not interested in the mathematical details is referred to
Sec. IV F for a summary.

A. Terminology

To begin with we define some terminology that will be
useful in formulating the effective theory; for an illustra-
tion see also Fig. 3(a):

• “Monomers” denote particles that are not bound
to any other particle, yet.

• “Edge particles” are defined as particles attached
to either end of unfinished polymers, e.g. particles
of species 5 and 2 in the polymer 5-6-1-2.

• In contrast, “bulk particles” are defined as those
particles that are part of a larger polymer but are
not edge particles, e.g. particles of species 2, 3 and
4 in the polymer 1-2-3-4-5.

• “Growing polymers” in a given system are defined
as those polymers that have available binding part-
ners in the pool of active monomers which (upon
binding to the polymer) lead to the correct assem-
bly of the structure, without creating a defect, e.g.
polymer 3-4 to which active monomer 5 could bind
to.

• “Blocked polymers”, on the other hand, are those
polymers in the system that lack correct binding
partners in the monomer pool, e.g. polymer 3-4-5
can only grow by attachment of an active monomer
which is out-of-sequence and would create a defect
(monomer of species 1) since there are no active
monomers of species 2 or 6 available.

• Finally, we denote a species as “unavailable” if it is
currently not available for binding to any structure
(monomer or polymer) in the system. For this to be
the case two conditions need to be fulfilled: First,
there is no active monomer of that species present.
Second, there are no edge particles of that species.
If there are neither active monomers nor edge par-
ticles, all activated particles are bulk particles and,
thus, already have binding partners on both sides.
Hence, in this case there are currently no processes
possible that would lead to further binding of a par-
ticle of an unavailable species to another monomer
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or polymer. Note that this definition does not nec-
essarily imply that the unavailable species has not
been activated, at all, but rather that its activa-
tion is small compared to its neighboring species
(see also below) and, as a result, it is not available
for binding (any more).

B. Probability for the unavailability of species

How do fluctuations in the relative number of particles
of the different species translate into species currently not
being available for binding? To address this question, we
will employ a fluctuation-corrected mean-field argument

in the following: Denote by N
(b)
i the number of parti-

cles of species i a neighboring species can bind to. This
number has two contributions, namely the edge particles
and active monomers of this species. Deterministically,
the number of edge particles per species is given by 2u
where

u=
L−1∑

k=2

ck (8)

is the total number of all unfinished polymers (of size
k∈{2, . . . , L− 1}) per species. The reason is that each
unfinished polymer has two ends, implying that there

are in total 2S
∑L−1
k=2 ck edge particles or on average

2
∑L−1
k=2 ck per species. As a result, deterministically (i.e.

in a mean-field description) N
(b)
i is given by

N̄
(b)
i = 2u+ma (9)

where ma is the number of active monomers per species.
Due to the species symmetry in the deterministic mean-
field description [46], this result is independent of the
species index i.

This will not be the whole story in a stochastic de-
scription since fluctuations in the activation of the differ-
ent species are expected to influence the number of ac-
tive monomers and edge particles of the different species.
Heuristically, if species i is activated less (more) than av-
erage, there will be less (more) active monomers and/or

edge particles, so N
(b)
i will be smaller (larger). To

quantify this heuristic picture, we apply a fluctuation-
corrected mean-field argument which conceptually corre-
sponds to a lowest-order perturbation theory in the fluc-

tuations: We assume that N
(b)
i increases (decreases) by

1 for each particle that species i is activated more (less)

than average. That is, N
(b)
i has an additional term

δAi = Ai − Ā, (10)

where Ai is the number of activated particles of species i
and Ā=

∑
iAi/S is the average over all species, as above.

The idea is that each additionally activated particle is ei-
ther present as an active monomer or bound to a polymer

as an edge particle. Conversely, if one had to remove one
particle of one species from a mean-field configuration
with the goal to change “as little as possible”, one would
remove an active monomer or an edge particle. Remov-
ing or adding an edge particle also changes the number

of edge particles of the neighboring species. Thus, N
(b)
i

is also affected by the activation levels of the neighboring
species i±1. For simplicity, we assume that each addi-
tionally (less) activated particle of one of the neighboring
species reduces (augments) the number of edge particles
or the number of active monomers of species i by 1 [56].
Thus, from this direct dependency of the number of edge
particles of species i on the activation levels of the neigh-

boring species i± 1, N
(b)
i gets reduced by

−(δAi+1 + δAi−1). (11)

Taken together, we find the following fluctuation-
corrected mean-field expression for the number of active
monomers and edge particles of species i

N
(b)
i = 2u+ma + δAi − (δAi+1 + δAi−1)

= 2u+ma + Ā+Ai − (Ai+1 +Ai−1) . (12)

In principle, this expression can become negative. This is
an artefact of the above mentioned procedure which per
se only makes sense for small fluctuations with respect to
the mean-field configuration. We elaborate on this point
in the following: In a mean-field configuration, the num-
ber of particles of species i a neighboring species can bind

to is given by N
(b)
i = N̄

(b)
i = 2u+ma. Decreasing the acti-

vation level of species i, Ai, or increasing the levels of i±1,
Ai±1, will effectively remove active monomers and edge

particles of species i, thus decreasing N
(b)
i . Of course, if

at all, this procedure only makes sense until there are no
more active monomers and edge particles of species i left:

N
(b)
i = 0. Further reduction of Ai or increase Ai±1 will

certainly also affect the bulk particles of species i, poten-
tially “breaking up” larger polymers. Then, we formally

have N
(b)
i < 0. Intricately, it is exactly this tail statistics

when formally N
(b)
i < 0 that is presumably most relevant

for the strength of the stochastic effects: As soon as fluc-
tuations are large enough to trigger a qualitatively dif-
ferent growth behavior (“breaking up larger polymers”),
strong stochastic effects are expected. Since it appears
infeasible to us to derive this tail statistics from first prin-
ciples, we try to gauge its effect through the probability

that N
(b)
i ≤ 0. More concretely, we use this “lowest-order

perturbation theory procedure” and its prediction of the

transition from N
(b)
i > 0 to N

(b)
i ≤ 0 as a proxy for when

a species qualitatively changes the growth behavior of the
neighboring species because it is unavailable for binding.

In this picture, the probability of species i to be un-
available (“unavailability probability”) is

p× = Prob(N
(b)
i ≤ 0)

= Prob(Ai+1+Ai−1−Ai−Ā ≥ 2u+ma). (13)
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Does this formula for the probability meet the intuitive
criteria for when a species should be unavailable? Which
characteristics should such a probability of species i to be
currently unavailable for binding have intuitively? First,
it should increase if species i has been activated less than
average because then it is likely that the species is un-
available for binding. Indeed, the smaller Ai, the larger
p× according to Eq. 13. Moreover, if the neighboring
species i±1 are present in excess, they also effectively re-
duce the number of active monomers and edge particles
of species i by binding to them. Thus, the probability for
species i to be unavailable should increase. Also this cor-
relation is reflected in Eq. 13: The larger Ai+1+Ai−1, the
larger p×. Finally, if the average number of unfinished
structures and active monomers, 2u+ma, increases, the
probability to be unavailable should decrease. This is be-
cause then the deviation from the mean and, thus, the
fluctuations must be larger. In fact, for larger 2u + ma

in Eq. 13, the unavailability probability p× decreases. In
sum, the effective probability given in Eq. 13 at least
captures our intuitive expectations.

In order to find an explicit expression for p× from
Eq. 13, we next determine the distribution of the num-
ber of activated particles, Ai, up to time t. For each
particle the survival probability up to time t, i.e. the
probability not to become activated until time t, is given
by e−αt. Thus, since all particles are activated indepen-
dently, the number of activated particles of species i is
binomially distributed with number of trials N and prob-
ability 1− e−αt:

Ai ∼ Bin(N, 1− e−αt). (14)

The variance of this distribution (“single-species vari-
ance”) is given by

σ2
0 = N (1− e−αt) e−αt . (15)

Moreover, the number of activated particles of each
species is independent for all species, that is, the Ai are
independent for all i. As a result, the fluctuations in
the relative activation levels between neighboring species

∆Aneighbor
i :=Ai+1+Ai−1−Ai−Ā exhibit a variance

σ2 ≈ 3σ2
0 . (16)

Note that here we assumed Ā to be deterministic:
Ā=N(1− e−αt) which is a reasonable assumption if
S� 1. Interestingly, this predicted standard deviation

of ∆Aneighbor
i ,

√
3σ0 =

√
3N(1− e−αt)e−αt , (17)

already captures the standard deviation in a single real-
ization of the stochastic process when averaged over all
species i quite well; see Fig. 3(d). This observation indi-
cates that the system is self-averaging, at least for large
numbers of species S� 1. Such a self-averaging prop-
erty of the system is reassuring because this whole idea

for the quantification of the effective theory is based on a
(fluctuation-corrected) mean-field argument that should
ultimately capture the typical behavior of single realiza-
tions of the self-assembly process. If there would not
be any “internal averaging” in a single realization, there
would not be much hope that the fluctuation-corrected
mean-field argument for the unavailability probability,
Eq. 13, is informative.

Combining all of the above and approximating the dis-

tribution of ∆Aneighbor
i as a Gaussian distribution with

mean zero and standard deviation σ, Eq. 16, we find the
following expression for the probability of species i to be
unavailable:

p× = Prob(∆Aneighbor
i ≥ 2u+ma)

=
1

2

[
1− erf

(
2u+ma

√
6σ0

)]
, (18)

where erf is the error function.
This equation makes sense intuitively: If there are on

average more active monomers and edge particles per
species (larger number of unfinished structures 2u+ma),
larger fluctuations are required to find a species without
active monomers and edge particles. As a consequence,
the probability of a species to be unavailable for binding
decreases.

So far, we only considered a single species and asked
what the probability is that this particular species is un-
available. For the dynamics of the self-assembly process
it is, however, relevant to know how many species are un-
available, since this determines which fraction of struc-
tures can grow. It is a nontrivial problem to determine
the overall number of unavailable species from the single-
species probability, due to correlations between species.
For simplicity, we neglect these correlations and assume
that the probability for species to be unavailable is in-
dependent for all species [57]. Then, the number of un-
available species scales with the number of species and is
given by

S× = S p× =
S

2

[
1− erf

(
2u+ma

√
6σ0

)]
. (19)

If the number of species S does not equal the size of the
target structure L (S < L) it is useful to also define the
number of “unavailable sites” in the full ring structure,

L× =
L

S
S× =

L

2

[
1− erf

(
2u+ma

√
6σ0

)]
. (20)

This number does not equal the number of unavailable
species if each species occurs repeatedly in the ring, i.e.
if L/S > 1. Each unavailable species, thus, has to be
associated with L/S unavailable sites along the ring.

C. Size-dependent probability for a growing
polymer to be able to further grow

Suppose there are S× unavailable species and, corre-
spondingly, L× unavailable sites along the ring. What is
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the probability pl that a structure that has reached size
l∈{2, . . . , L − 1} can further grow by attachment of an
available species? To answer this question, let us look at
segments of size l (Fig. 3(e-f)). These segments can be
in three states: i) available species can bind to both ends
(denoted by Sl2; two “growing” ends), ii) an available
species can bind to one end, whereas the other end would
require an unavailable species to grow (Sl1; one “grow-
ing” end, one “blocked” end), and iii) both ends require
an unavailable species to grow and are, correspondingly,
blocked by the unavailability of the neighboring species
(Sl0; two “blocked” ends).

What are the abundances of these states, denoted by
sl2, sl1 and sl0, respectively? And what do the (relative)
abundances tell us about the probability that a structure
that has reached size l can grow further by attachment
of available species?

We will proceed as follows: First, as illustrated in
Fig. 3(f), we define a simplified assembly process that
is supposed to reflect the original assembly process in a
stationary state in which the number of unavailable sites
L× is fixed. For this simplified assembly process, we then
derive effective transition probabilities and determine the
steady-state configuration by considering all possible as-
sembly/growth paths into a structure of size l in state
Slj , j = 0, 1, 2. Finally, this configuration will be used to
determine the probabilities pl that a structure which has
grown to size l ends up in state where it has at least one
growing end.

1. Simplified assembly process

Assuming for simplicity that structures only grow by
attachment of available species, in the simplified assem-
bly process, we consider the following transitions between
structures of different sizes (see also Fig. 3(f)):

Sl2
αl

22−−→ Sl+1
2 , (21a)

Sl2
αl

21−−→ Sl+1
1 , (21b)

Sl1
αl

11−−→ Sl+1
1 , (21c)

Sl1
αl

10−−→ Sl+1
0 . (21d)

Here, αlij denotes the transition rate from a structure of
size l and state i to size l+ 1 and state j= i or j= i− 1.
The basic idea to just consider these transitions in the
simplified assembly process depicted in Fig. 3(f) is as
follows: Available species only bind to so-called “grow-
ing” ends of structures. If an available species binds to a
growing end of a structure Sl2 or Sl1 of size l, this grow-
ing end is replaced by a new end in the structure of size
l+ 1, namely the subsequent species. This new end can
be either growing (if another available species could sub-
sequently bind) or blocked (if the next required species
for growth is an unavailable species). Thus, by binding of

an available species, the number of growing ends either
stays the same or decreases by 1 but can never increase.
As a result, there are only transitions between Sli and

Sl+1
i , Sl+1

i−1 for i= 1, 2.
Note that the simplified assembly process assumes that

unavailable species are not present at all (instead of being
present as bulk particles). Correspondingly, the transi-
tion rates αlij automatically entail that all structures in
the simplified assembly process are made up from avail-
able species only. Certainly, this is not satisfied in the
original assembly process. Unfortunately, however, we
were not successful in incorporating this aspect directly
into the simplified assembly process, for instance, by ad-
ditionally considering the possibility that blocked struc-
tures grow at a reduced rate (corresponding to activation
events of unavailable species). One reason is that it was
not clear to us how one should choose such a reduced rate
in comparison to the other transition rates. Furthermore,
even with a given reduced rate, we did not manage to de-
rive an analytic expression for the probabilities pl that a
structure that has grown into size l can grow further,
which is what we need to formulate the effective theory
(see later). This effective theory will then indeed include
the aspect that the number of available species changes
over time but will be based on the quasi-stationary ap-
proximation of a fixed number of unavailable species L×
in the simplified assembly process. It will turn out that
the fact that structures in the simplified assembly pro-
cess only contain available species leads to a strict length
cutoff in the dynamics above which there is no growth
at all. We will come back to this point at the end of the
section when we compare the predictions of the effective
theory to results from stochastic simulations.

2. Transition rates

In order to determine the transition rates explicitly,
consider a structure of size l with two available species
next to both ends (two growing ends). For such a struc-

ture, there are
(
L−(l+2)
L×

)
possibilities to distribute the L×

unavailable sites to the L− (l+ 2) remaining sites on the

ring. This number of possibilities decreases to
(
L−(l+3)
L×

)

possibilities if the structure grows in a way that after
growth there are still two growing ends. As a result, if
the unavailable species (and sites [58]) are randomly dis-
tributed around the ring, the probability that this hap-

pens is
(
L−(l+3)
L×

)
/
(
L−(l+2)
L×

)
. Correspondingly, the proba-

bility that the structure grows into a structure with one

growing and one blocked end is 1−
(
L−(l+3)
L×

)
/
(
L−(l+2)
L×

)
.

Translating this probability into a transition rate yields

2γ(1 −
(
L−(l+3)
L×

)
/
(
L−(l+2)
L×

)
) where γ corresponds to the

total rate of attachment of an active monomer of an avail-
able species to one end. The factor of 2 is due to the
fact that the rate that a monomer binds to a structure
with two growing ends is twice as large as the rate that it
binds to a structure with one growing end. Employing an
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analogous argument for structures with one growing and
one blocked end, we find the following transition rates
(see Appendix for details)

αl22 = 2γ

(
L−(l+3)
L×

)
(
L−(l+2)
L×

) = 2γ

(
1− L×

L−(l+2)

)
= 2γ − αl21,

(22a)

αl11 = γ

(
L−(l+3)
L×−1

)
(
L−(l+2)
L×−1

) = γ

(
1− L× − 1

L−(l+2)

)
= γ − αl10.

(22b)

To determine the steady-state configuration of the sim-
plified assembly process, we do not only need the transi-
tion rates between the states in the network but we also
have to define a boundary condition which specifies at
which rates (“influx rates”) active monomers enter the
system at the left boundary l = 1. For this purpose, we
will denote by i2, i1 and i0 the influx of active monomers
that can grow at both ends (corresponding to state s1

2),
at only one end (s1

1) and at no end (s1
0), respectively. The

total influx of active monomers I = i2 + i1 + i0 is not cru-
cial for the growth probabilities because it just scales the
occupancy in the network and will drop out at the end.
What is relevant are the relative influx rates for the dif-
ferent states. Similarly to above, the explicit forms we
use come from considering the probabilities for a ran-
dom monomer of an available species to have two, one
or zero available neighbors, respectively: If the monomer
has two available neighbors, there are

(
L−3
L×

)
possibili-

ties to distribute the remaining unavailable sites along
the ring. For one or zero available neighbors, the num-
ber of possibilities are 2

(
L−3
L×−1

)
and

(
L−3
L×−2

)
, respectively.

If the unavailable sites are randomly distributed around
the ring, the influx rates have to scale with exactly these
numbers of possibilities and we get

i2 =

(
L−3

L×

)
I , (23a)

i1 = 2

(
L−3

L×−1

)
I , (23b)

i0 =

(
L−3

L×−2

)
I . (23c)

3. Steady-state configuration and growth probabilities

From the influx rates, Eq. 23, and the transitions rates,
Eq. 21, one can determine the steady-state numbers slj
of structures of size l with j= 1, 2 growing ends (see Ap-
pendix B). How is the probability pl that a structure that
grows into size l has at least one growing end expressed
in terms of these steady-state numbers? It is given as the
ratio of (1) the rate γ1 at which structures of size l − 1
grow into structures of size l that are still able to further
grow by attachment of an available species compared to

(2) the overall rate γ2 at which structures of size l − 1
grow into structures of size l:

pl =
γ1

γ2
. (24)

γ2 has two contributions, namely the rate at which a
monomer of an available species attaches to any structure
of size l− 1 with one growing end, (αl−1

11 +αl−1
10 )sl−1

1 , and
the corresponding one for attachment to a structure with
two growing ends (αl−1

22 +αl−1
21 )sl−1

2 . According to Eq. 22,

αl−1
11 +αl−1

10 = γ and αl−1
22 +αl−1

21 = 2γ, so we find

γ2 = (αl−1
11 + αl−1

10 )sl−1
1 + (αl−1

22 + αl−1
21 )sl−1

2 (25)

= γ(sl−1
1 + 2sl−1

2 ). (26)

γ1 only counts the growth events for which the result-
ing structure is still able to grow by attachment of an
available species (at least at one end). Correspondingly,
it has the same contributions as γ2 except that is does
not include the transition sl−1

1 → sl0 which produces a
structure that cannot grow further. Compared to γ2 the
rate is thus reduced by αl−1

10 sl−1
1 and we have

γ1 = αl−1
11 sl−1

1 + (αl−1
22 + αl−1

21 )sl−1
2 (27)

= αl−1
11 sl−1

1 + 2γsl−1
2 . (28)

It follows that

pl =
αl−1

11 sl−1
1 + 2γsl−1

2

γsl−1
1 + 2γsl−1

2

. (29)

Combining the above and using γ−αl−1
11 =αl−1

10 yields the
following expression for the probability pl that a struc-
ture that has reached size l can grow further by attach-
ment of available species:

pl = 1− αl−1
10

γ

sl−1
1

sl−1
1 + 2sl−1

2

(30)

Finally, and as explained in detail in Appendix B, con-
sidering all possible assembly/growth paths to determine
slj gives an explicit expression of pl

pl =

{
1− lL×(L×−1)

[L−(l+1)] [L+(l−1)L×−l] , l <L−L×
0 else,

(31)

if L× > 1. Otherwise, pl = 1 for all l.
Figure 3(g) shows pl as a function of the structure size

l for a ring size L= 60 and for different, fixed numbers of
unavailable sites L×= 5, L×= 10, L×= 20, and L×= 30.
Intriguingly, pl decreases for larger structure size l, im-
plying that it becomes increasingly difficult for structures
to grow further once they get larger. This suggests that
unavailable species foster growth of small structures com-
pared to large ones, which, generally speaking, leads to
lower yield.

In closing this section, we would like to critically as-
sess the validity of the simplified assembly process. First,
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we assumed that always the same species are unavailable
for binding. As can be seen in Fig 3(c) this assumption
that always the same species are unavailable describes
the right trend: If a species has a very low activation
level compared to the mean at one point in time t0, it is
more likely to still have a very low activation level later,
as compared to a species with high activation level at t0.
However, it is also evident from the figure that this state-
ment is not strictly true. Indeed, there are species that
have an average activation level at first but then over
time change to having a low activation level compared to
the mean and become unavailable for binding. Related to
the first assumption, we furthermore hypothesized that
these unavailable species are entirely unavailable, mean-
ing that they are not incorporated in any structure. As a
result, only structures of size l ≤ L−L×−1 can grow and
the growth probability is identical to zero for all other
structures. This assumption cannot be quite true since
unavailable for binding only refers to not being present
as active monomer or as edge particles but not to be-
ing absent completely. Nonetheless, from comparison of
this theory with stochastic simulations it seems that ul-
timately this is a reasonable approximation for under-
standing the qualitative behavior (see Sec. V).

D. Two-state ansatz

The probability pl determined in the last section rep-
resents the probability that a specific polymer that has
just reached size l is able to grow further by monomer
attachment of available species, i.e. has at least one grow-
ing end when it has reached size l. This probability is,
however, not the same as the fraction of structures of size
l that has at least one growing end. The reason is a bit
subtle and has to do with what we condition on.

In the way we determined pl in the previous section
(Eq. 31), it corresponds to the probability that a specific
structure that has just grown from size l − 1 to size l is
in a state with at least one growing end, i.e. is (in the
terminology of the previous section) in state Sli=1 or Sli=2.
We, thus, condition on the fact that the specific structure
just grows from size to l − 1 to l. We could also have
looked at the fraction fl = (Sli=1 + Sli=2)/(Sli=0 + Sli=1 +
Sli=2) of structures of size l in a state with one or two
growing ends, Sli=1 or Sli=2, as compared to a state with
two blocked ends, Sli=0. This fraction fl would describe
the probability that a randomly picked structure of size
l can, in principle, grow. Hence, fl would correspond to
conditioning the probability on the fact that the structure
has a size l (irrespective of when it reached this size).

These two probabilities pl and fl are, in general, not
the same. The reason is that structures of size l with at
least one growing end continue to grow while the struc-
tures of size l with no growing end accumulate. As a
result, over time the number of structures of size l that
cannot grow increases compared to the one of size l that
can grow. This can be seen very nicely in the simpli-

fied assembly process mentioned in the previous section:
Indeed, fl would be ill-defined there because there is a
continuous influx of monomers and the states Sl0 would
get more and more populated. In contrast, the numbers
of structures in the states Sl1,2 converge to a steady-state
value because there is not only influx into these states but
also outflux from them (due to the growth of structures).

Taken together, the probabilities pl determined in
Eq. 31 do not correspond to the fraction of structures
of size l that can grow.

As a result, if there are now cl structures of size l,
one cannot conclude that a fraction pl of those grows by
monomer attachment and, correspondingly, that there
are pl · cl structures of size l (per species) available for
binding.

One approach to resolve this issue would be to try to
determine the momentary fraction fl of structures of size
l that can grow. Since, however, many factor would influ-
ence how exactly fl should change over time (including
the growth dynamics itself!), we chose an alternative ap-
proach: Instead of treating all structures of a certain size
as one “population” – as one does in a mean-field descrip-
tion [46] – we introduce two populations Gl and Bl (for
growing and blocked) with corresponding concentrations
gl and bl (Fig. 3(h)). The first population Gl includes all
structures that grow by attachment of monomers of avail-
able species (i.e. those with at least one growing end),
whereas Bl denotes those that are blocked (meaning they
only grow if currently unavailable species get activated).

The respective probabilities of these populations corre-
spond to the growth probabilities pl determined in Eq. 31
which quantify how likely it is that a structure that has
just reached size l can grow further by attachment of an
available species. Thus, if a structure of size l− 1 grows
to size l, with probability pl it ends up in Gl and with
probability 1− pl in Bl:

Gl−1 −→
{
Gl with probability pl
Bl with probability 1− pl.

(32)

If now structures in Gl grow, this does not influence the
population Bl and there is no need to determine a mo-
mentary fraction fl of structures that can, in principle,
grow.

Due to activation and binding events, the number of
unavailable species S× and thus pl (Eq. 31) change over
time. If the number of unavailable species increases,
structures previously in the growing state might get
blocked and, vice versa, if the number of unavailable
species decreases, structures that were in the blocked
state might transition to the growing state. As a result,
there has to be an exchange between the populations Gl
and Bl if dS×/dt 6= 0. In order to formulate the effective
theory, it is necessary to quantify this exchange. For this
purpose, we define the flux between the two states Bl
and Gl as the number of structures that transition from
Bl to Gl per time. How does this flux depend on the
derivative of the probability pl, dpl/dt?
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Since this dependency is not entirely intuitive, we con-
sider a much simpler system first. In this simpler system,
it is straightforward to derive the fluxes and the result-
ing formulas for the fluxes can then be generalized for
our purpose. Consider a system with N particles where
each can be in either of two states, with p(t) denoting
the fraction in state g at time t: Then we have

Ng(t) = Np(t) , and Ng(t+∆t) = Np(t+∆t) . (33)

Consequently,

Ng(t+∆t)−Ng(t) = Ng(t)
p(t+∆t)− p(t)

p(t)
, (34)

and hence

dNg(t)

dt
= Ng

d ln p(t)

dt
= (Ng−N)

d

dt
ln (1−p(t)) , (35)

where we used (N −Ng)/(1− p) =N −Ng/p in the last
step. Equation 35 implies that the per-capita rate of ex-
change between the two states is not equal to the change
in probability but rather to the change in the logarithm
of the probability. Intuitively, in order for the probability
p to change by a fixed value, always the same number of
particles has to transition from one state to the other, ir-
respective of the number of particles in the original state.
As a result, if the number of particles was high (low) in
the original state, a small (large) fraction of them needs
to be exchanged.

In our system, there are not only two states but
particles can transition between different states (grow-
ing/blocked and different polymer sizes). Nonetheless,
the exchange dynamics relative to the number of parti-
cles in each state should be the same as in the simple
system. Thus, the fluxes between the “growing” Gl and
“non-growing/blocked” Bl populations (i.e. the number
of structures that transition from Bl to Gl per time) are
given by

JB→Gl = −JG→Bl =

{
gl

d
dt log pl if dpl

dt < 0

−bl d
dt log(1− pl) if dpl

dt > 0.

(36)

These equations imply that if the probability pl de-
creases (dpl/dt< 0) a part of the structures of size l cur-
rently in the growing state will transition to the non-
growing (blocked) state: JG→Bl > 0. Conversely, if pl
increases (dpl/dt< 0) structures of size l can grow again
and will transition from the blocked to the growing state:
JB→Gl > 0.

Before we discuss the last aspect of the effective the-
ory, namely the monomer dynamics, we give a short sum-
mary of the mathematical analysis so far. Starting from
the fluctuations in the relative availability of the different
species due to the random activation process, we aimed
to quantify how these fluctuations modify the growth dy-
namics of self-assembling structures. Intuitively, the idea
is the following: If certain species are less activated than

their neighboring species, these species can become un-
available for binding. This unavailability of some species
then blocks the growth of those structures that need the
unavailable species for the next step of the assembly pro-
cess. Assuming a random distribution of these unavail-
able species along the ring structure, we quantified this
blockade effect through the probabilities pl that a struc-
ture that has just reached size l can continue to grow
(i.e. is not blocked by unavailable species), Eq. 31. These
growth probabilities are large if the number of unavail-
able species is small, as one would intuitively expect; see
also Fig. 3 (g). Importantly, one has to distinguish be-
tween the probability (pl) that a single structure that
has just reached size l can continue to grow and the
probability fl that a randomly picked structure of this
size l is able to grow. The reason is that structures
that can continue to grow have a different growth dy-
namics than those that cannot: While structures in the
growing state can grow as usual, structures in the non-
growing (blocked) state can only grow if a currently un-
available species is activated. As a result of this diverg-
ing growth dynamics, there is generally an accumulation
of non-growing structures (compared to growing ones).
This accumulation entails that the probability fl that a
randomly picked structure of size l cannot grow is much
higher than the probability pl that a single structure that
has just reached size l can grow further. To account for
this difference, we introduced two distinct states for each
structure size, corresponding to the growing and non-
growing (blocked) polymers.

What remains to be discussed before we can write
down the full dynamics of the self-assembly process is the
effective behavior of the monomers. This will be done in
the next subsection.

E. Monomer dynamics

So far, we have identified two different states for the
polymers, namely blocked (non-growing) and growing
ones, depending on whether the species they need for
further growth are currently unavailable or not. This
separation already implies that there need to be at least
two different states of active monomers, namely those
monomers belonging to currently unavailable species and
those that belong to species that are currently avail-
able for binding. Furthermore, in analogy with the
polymer states, also a third state is reasonable, namely
a “blocked” (non-growing) monomer which would need
monomers of unavailable species on both sides to be able
to form a dimer. What are the respective probabilities
for these states of monomers if there are S× unavailable
species in the system? We denote them by capital let-
ters P to avoid confusion with the probabilities pl that
a structure that reached size l ended up in the growing
state.

The probability of monomers to belong to an unavail-
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able species can be approximated by

P× =
S×
S

=
L×
L
, (37)

since there is the same total number N of particles
of each species and a randomly chosen monomer thus
corresponds with probability S×/S to an unavailable
species [59]. The probability of a monomer to be blocked
is given by

Pb = 1− p1 (38)

with p1 determined by Eq. 31, analogously to the prob-
ability 1− pl that a polymer of size l is in the blocked
(non-growing) state. Finally, the probability of all other
monomers (“normal monomers”) is given by the remain-
ing probability

Pn = 1− Pb − P× . (39)

Since P× and Pb increase with the number of unavailable
species, the probability of a monomer to be in the “nor-
mal” state decreases with increasing L× or increasing
fluctuations in the relative availability of species. Indeed,
one can interpret the normal monomers as the equivalent
to the monomers in the deterministic description: If the
fluctuations between the species are small and there are
no unavailable species, L× = 0, we have P×=Pb = 0 and
all monomers are in the normal state: Pn = 1. In fact, we
then have pl = 1 for all l implying that also all polymers
are in the “growing” state which is the equivalent to the
(unique) polymer state in the deterministic description.

When we explored a dynamics with these three states
of monomers (combined with the polymer dynamics as
stated below), it turned out that these are sufficient to
capture the qualitative behavior of the stochastic model.
However, in particular for self-assembly processes with a
small dimerization rate, µ� ν, where the monomer dy-
namics plays an important role, the quantitative agree-
ment with the result from stochastic simulations can be
improved considerably by the introduction of an addi-
tional monomer state. This “unblocked” state comprises
all monomers that have been in the blocked state but
then got unblocked due to a decrease in the number of
unavailable species over time, dL×/dt< 0; see also Fig. 4
for an illustration of the monomer dynamics. Such a de-
crease in L× eventually happens in each system, since
after activation of all particles, there is no variability
between species and, thus, no species with less activa-
tion compared to the other species. The reason why
this additional state changes the dynamics is that it can
prevent the different monomers that have been blocked
before from instantaneously dimerizing with each other
once they are unblocked. Such a behavior would not
make much sense since the different species in the blocked
state either correspond to exactly the same species or
are separated by at least one unavailable species. In
both cases, they are not supposed to bind to each other.
With the introduction of the unblocked state, it is possi-
ble to eliminate this binding pattern by not allowing the

monomers in the unblocked state to dimerize with each
other. If they would just transition back to the normal
state instead, such a rule could not be implemented since
monomers need to be able to dimerize. In summary, we
take into account a forth monomer state that, however, is
not directly accessible if monomers are activated but gets
populated by the originally blocked monomers. Based on
these effective states of monomers and the description of
polymers in two different state (non-growing/blocked and
growing), we will next formulate the full effective theory.

F. Effective theory

In the last sections, we have discussed several aspects
of the effect of stochasticity and the resulting variability
between species. First, we have introduced the concept
of a currently unavailable species. It is a species that
does not have any (already activated) particles with free
binding sites on the left or right. Roughly speaking, if a
species is considerably less activated than other species
it is likely that it becomes an unvailable species. The un-
availability of such a species then effectively blocks the
growth of structures. Employing a fluctuation-corrected
mean-field argument, relating fluctuations in the ran-
dom activation of the different species to the availabil-
ity of particles for binding, we have then deduced the
probability of a structure to further grow by attachment
of monomers of an available species. Importantly, this
probability pl, of being in the “growing state”, Eq. 31,
depends on the size l of the structure so that larger struc-
tures are less likely to grow by attachment of available
species. Instead they need to “wait” for a monomer of a
currently unavailable species to be activated before they
can grow (“blocked state”).

To sum up, the picture is as follows: There are two
types of species, available and unavailable ones, and each
structure can be in either of two states, a growing and
a blocked state (see also Fig. 3 (a)). Unavailable species
have been activated less compared to their neighboring
species and due to their unavailability block the growth
of structures. Once they get activated, they bind to all
structures because most structures can grow by attach-
ment of a monomer of an unavailable species – at least at
one end [60]. In contrast, monomers of available species
can principally only bind to structures in the growing
state (Fig. 4), i.e. to structures that are not completely
blocked by the unavailability of the neighboring species
but instead can grow at least at one end by attachment
of an available species. If structures of size l− 1 grow by
monomer attachment, with a certain probability 1− pl
they end up in the non-growing (blocked) state in which
both ends need a monomer of an unavailable species to
grow further. This probability 1− pl, Eq. 31, increases
with increasing number of unavailable species and with
increasing size of the structure l. With the inverse proba-
bility pl, structures end up in the growing state. As a re-
sult, during the growth process more and more structures
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FIG. 4. Illustration of the monomer dynamics. There are four monomer states: an unavailable, blocked, unblocked
and normal one. Monomers in the unavailable, blocked and normal state are activated at rates Nαe−αtP×, Nαe−αtPb and
Nαe−αtPn, respectively. If the number of unavailable species decreases, monomers in the unavailable state transition to the
normal state and monomers in the blocked state transition to the unblocked state. Conversely, if the number of unavailable
species increases, monomers in the normal state either transition to the unavailable or to the blocked state. Monomers in the
unblocked state transition back to the blocked state. Polymers in the growing state can bind to monomers in the normal,
unavailable and unblocked state. In contrast, polymers in the non-growing state can only bind to monomers in the unavailable
state.

will transition from the growing to the blocked state in
which activation of a monomer of an unavailable species
is necessary for further growth.

Taken together, we can now build up the effective
growth dynamics of the self-assembly process with no
defect formation, νdef = 0; for an analysis of the more
general case, we refer the reader to Appendix C. For
better readability, we will explain the different contribu-
tions to the dynamics in separate paragraphs: activation
of monomers (proportional to α), dimerization between
monomers (proportional to µ), growth dynamics of poly-
mers by monomer attachment (terms proportional to ν),
and the exchange dynamics between the different states
of each structure size (denoted by ρ and %). The full
dynamics is shown in Sec. IV F 5. We use the follow-
ing notation: gl (bl) denotes the concentration of poly-
mers of size l ≥ 2 in the growing (blocked) state. The
concentrations mn, m×, mb and mub denote the concen-
tration of monomers in the normal, unavailable, blocked
and unblocked state, respectively; see also Sec. IV E. All
concentrations always refer to one species.

1. Activation of monomers (see also Fig. 4)

Each of the N particles for each species is activated at
a per-capita rate α. Hence, at time t, on average Ne−αt

particles per species are still inactive, and the overall
rate of monomer activation per species is thus αNe−αt.
As we have discussed in detail in Sec. IV E, there are
four different monomers states, one for monomers be-
longing to unavailable species m×, one for monomers
that are blocked by an unavailable species on each end
mb, one for monomers that had been blocked but were
“freed” (unblocked) due to a decrease in the number
of unavailable species, mub, and the remaining one for
normal monomers mn. At activation, monomers either
end up in the normal, unavailable or blocked state with

respective probabilities Pn, P× and Pb = 1 − Pn − P×.
The corresponding gain terms in the monomer dynamics
are, thus, αNe−αtPn, αNe−αtP× and αNe−αtPb, respec-
tively. There is no gain term for unblocked monomers due
to activation because this type of monomer only includes
the monomers that have been in the blocked state before
and then got unblocked as fluctuations between species
(or, equivalently, L×) decreased.

2. Dimerization between monomers

In general, dimerization happens at rate µ. However,
not all monomers can dimerize with all other monomers.
More concretely, monomers in the blocked state can only
dimerize with monomers in the unavailable state (be-
cause by definition they are blocked on both sides by an
unavailable species). There are 2m×mb different combi-
nations of monomers for such dimerization events where
the factor of 2 takes into account that monomer 1 can
bind from the left or from the right to monomer 2. Thus,
the overall rate for this process is 2µmbm× and it oc-
curs as loss terms in the dynamics of both mb and m×.
In the gain term for the dimers g2 and b2, these terms
are multiplied by the probabilities p2 and 1− p2, respec-
tively, to account for the fact that a newly formed dimer
is with probability p2 in the growing state and with in-
verse probability 1−p2 in the non-growing (blocked) one.
Monomers in the unavailable state not only dimerize with
monomers in the blocked state but also with monomers
in the normal and unblocked state because monomers of
the unavailable species are supposed to be “required” by
all other structures. Analogous to the previous case, the
corresponding rates are 2µmnm× and 2µmubm×, respec-
tively, again with additional factors p2 and 1− p2 for the
gain terms. Finally, monomers in the unavailable state
dimerize among themselves. Due to the indistinguisha-
bility between monomers of one state, there are only m2

×
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combinations for two monomers in the unavailable state
to dimerize. Since two monomers are lost in the process,
the overall loss rate for the monomers is still 2µm2

×. The
gain term for the dimers is, however, just µm2

×, again
weighted with the probabilities p2 and 1−p2. Monomers
in the normal state not only dimerize with the monomers
in the unavailable state but also with themselves (as is the
case in the deterministic description where there are only
“normal” monomers) and with the unblocked monomers
(which are basically the same as normal monomers only
that they have been in the blocked state before). Simi-
larly to above, the corresponding loss terms are 2µm2

n and
2µmnmub and the gain terms are µm2

np2 or µm2
n(1− p2)

and 2µmnmubp2 or 2µmnmub(1 − p2), respectively. Fi-
nally, monomers in the unblocked state behave similarly
as the monomers in the normal state only that they do
not dimerize among themselves. Thus, there are just
the loss terms from dimerization of monomers in the un-
blocked state with monomers in either the normal or the
unavailable state, as described above.

3. Growth dynamics (see also Fig. 4)

As mentioned above, monomers of the unavailable type
(i.e. monomers of an unavailable species) bind to all poly-
mers. These binding processes are represented by the
terms

2νm×glpl+1 + 2νm×gl(1− pl+1) = 2νm×gl (40a)

2νm×blpl+1 + 2νm×bl(1− pl+1) = 2νm×bl . (40b)

For instance, each monomer of the unavailable type can
bind at rate ν to each structure of size l in the growing
state. Overall, there are 2m×gl possible combinations
because the monomer can attach from both sides to the
structure. So, the overall binding for a monomer of the
unavailable type to a structure of size l in the growing
state is 2νm×gl. With probability pl+1 the newly formed
structure of size l+1 is in the growing state and with the
inverse probability 1 − pl+1 in the blocked state. As a
result, the rate of formation of a structure of size l+ 1 in
the growing or blocked state due to binding of a monomer
in the unavailable state to a growing structure of size l is
given by 2νm×glpl+1 or 2νm×gl(1 − pl+1), respectively.
Similarly, the overall binding rate for a monomer in the
unavailable state to a structure of size l in the blocked
state is 2νm×bl. Again, the thereby formed structures
of size l + 1 are in the growing (non-growing) state with
probability pl+1 (inverse probability 1 − pl+1) and the
respective rates are 2νm×blpl+1 and 2νm×bl(1− pl+1).

4. Exchange dynamics

The strength of stochastic fluctuations and with it the
number of unavailable species changes over time. For
instance, as shown above in Fig. 3(d), the standard devi-
ation of the availability of different species as compared

to their neighbors is maximal when just half the particles
have been activated and is zero at the beginning and at
the end of the process. As a result, the probability for a
structure of size l to be in the growing state, pl, changes
over time. If pl changes there needs to be an exchange
of structures of size l between the corresponding growing
(Gl) and blocked state (Bl). A structure in the blocked
state that was blocked by the unavailability of its two
neighboring species might, for instance, transition to the
growing state once one of the originally unavailable neigh-
boring species gets available. As motivated in Sec. IV D,
the corresponding fluxes between the states are propor-
tional to the derivative of the logarithm of the respective
probability pl or 1−pl (depending on the direction of the
exchange). Thus, we have

ρl = JB→Gl =

{
gl
pl

dpl
dt if dpl

dt < 0
bl

1−pl
dpl
dt if dpl

dt > 0,
(41)

where we defined ρl as the flux from the blocked to the
growing state, JB→Gl (compare also Eq. 36). So, if the
probability to be in the growing state pl increases (de-
creases), there is positive flow from the blocked (growing)
to the growing (blocked) state.

The fluxes between the monomer states are a bit more
involved because there are not only two different states
but, in principle, four of them. We denote them by a
slightly different letter, %, to avoid confusion with the
other fluxes. If the number of unavailable species de-
creases, dL×/dt < 0, the generalization is straightfor-
ward: Monomers of the unavailable type transition to
the normal state and monomers that had been blocked
by unavailable species will become unblocked (see also
Fig. 4). Thus, there are only transitions from one state
to one other state. As motivated in Sec. IV D, the per-
capita transition rates are proportional to the derivative
of the logarithm of the probability of the respective state.
In the case dL×/dt < 0, we thus have

%n = −%× = −m×
P×

dP×
dt

(42a)

%ub = −%b = −mb

Pb

dPb

dt
. (42b)

Here dP×/dt < 0 and dPb/dt < 0, so that the flux into
the normal, %n, and unblocked state, %ub, is positive, as
expected.

In contrast, if the number of unavailable species in-
creases, both the number of active monomers in the un-
available state as well as the number of active monomers
in the blocked state increases. This implies that
monomers in the normal state can either transition to
the unavailable or to the blocked state (see also Fig. 4).
Furthermore, monomers in the unblocked state transition
back to the blocked state. As we show in Appendix B 2,
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these transitions for dL×/dt > 0 are realized by

%n =
mn

Pn

dPn

dt
= −mn

Pn

dp×
dt
− mn

Pn

dPb

dt
(43a)

%× =
mn

Pn

dP×
dt

(43b)

%ub = − mub

1− Pb

dPb

dt
(43c)

%b =
mn

Pn

dPb

dt
+

mub

1− Pb

dPb

dt
. (43d)

Now, dP×/dt > 0, dPb/dt> 0 and dPn/dt< 0, so that
there is indeed flux from the normal to the unavailable
and blocked state and from the unblocked to the blocked
state. The influx from the normal into the unavailable
state %× is proportional to the number of monomers in
the normal state mn and to the change in the likelihood
of species to be unavailable, dP×/dt. This term appears
as a gain term for the monomers of unavailable species,
%×, and as a loss term for monomers in the normal state,
%n. Monomers in the normal state also transition to the
blocked state. This flux is again proportional to mn and
to the change in the likelihood of species to be blocked,
dPb/dt. This term appears in %n as loss term and as gain
term in %b. Finally, monomers in the unblocked state
transition back to the blocked state. The corresponding
flux is proportional to the number of monomers in the
unblocked state mub, and to the change in the likelihood
of species to be unblocked, dPub/dt = d(1 − Pb)/dt =
−dPb/dt.

Irrespective of the sign of dL×/dt, we have

%n + %× + %b + %ub = 0 (44)

due to conservation of particles.

5. Full dynamics

Combining all of these contributions to the dynamics,
the full dynamics reads as follows:
Monomer dynamics (see also Secs. IV F 1, IV F 2, IV F 3
and IV F 4):

∂tmn = αNe−αtPn − 2µDn − 2νmnγ + %n (45a)

∂tm× = αNe−αtP× − 2µD× − 2νm× (γ + β) + %×
(45b)

∂tmb = αNe−αtPb − 2µDb + %b (45c)

∂tmub = −2µDub − 2νmubγ + %ub (45d)

where

2Dn = 2
(
m2

n +mnm× +mnmub

)
(46a)

2D× = 2
(
m2
× +m×mn +m×mub +m×mb

)
(46b)

2Db = 2mbm× (46c)

2Dub = 2 (mubmn +mubm×) , (46d)

denote the number of ways in which a monomer in the
normal, unavailable, blocked or unblocked state can
dimerize with another monomer, respectively. Here,
mn, m×, mb and mub denote the numbers of monomers
in the normal, unavailable, blocked and unblocked
state (per species), respectively; see also Sec. IV E.

Furthermore, γ =
∑L−1
l=2 gl and β =

∑L−1
l=2 bl denote the

total number of unfinished polymers in the growing and
blocked state, respectively. Here, gl and bl denote the
numbers of polymers of size l ≥ 2 (per species) in the
growing and blocked state, respectively.
Polymer dynamics (see also Secs. IV F 2, IV F 3
and IV F 4):

∂tg2 = µ (Dn +D× +Db +Dub) p2 − 2νg2MG + ρ2

(47a)

∂tb2 = µ (Dn +D× +Db +Dub) (1− p2)− 2νb2m× − ρ2

(47b)

for the dimers and

∂tgl = 2ν (gl−1MG + bl−1m×) pl − 2νglMG + ρl (48a)

∂tbl = 2ν (gl−1MG + bl−1m×) (1− pl)− 2νblm× − ρl
(48b)

for all polymers with l ∈ {3, . . . , L − 1} where MG =
(mn +m×+mub) denotes the number of monomers that
can bind to structures in the growing state. Finally, for
the final target structures there is only one state (since
they do not grow further) which we denote by GL with
concentration gL:

∂tgL = 2ν (gL−1MG + bL−1m×) . (49)

The probabilities pl≥2 are defined in Eq. 31 and the
probabilities for the monomers in Eqs. 37, 38 and 39. The
full dynamics (Eqs. 45, 47, 48, 49) is solved numerically
using MATLAB.

V. COMPARISON TO STOCHASTIC
SIMULATIONS AND DETERMINISTIC THEORY

Does this effective theory capture the strong stochastic
effects as observed in stochastic simulations of the sys-
tem? Figure 2 shows the result of a numerical integration
of the effective theory (Eqs. 45, 47, 48, 49), in compar-
ison with the stochastic simulations. While the effec-
tive theory does not coincide fully quantitatively with the
stochastic simulations, it correctly predicts the qualita-
tive behavior of the system, in contrast to the determin-
istic theory [46] (not shown). First, the effective theory
correctly predicts that the yield saturates at an imperfect
value Ymax< 1 in the limit of small activation rate (Fig. 2
(a)). This imperfect value decreases for smaller numbers
N of particles per species and for larger target structure
sizes L. Furthermore, we recover the non-monotonic be-
havior of the (defect-free) yield with the activation rate,
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if the dimerization rate is small (µ � ν; Fig. 2 (b)) or
if defect formation is allowed (νdef > 0; Fig. 2(c)). Note
that in the case of defect formation, we do recover the
non-monotonic behavior of the defect-free yield (yield of
all defect-free target structures) but not of the total yield
(yield of all target structures). This is presumably be-
cause in our theory defect formation is always possible
and since we do not account for additional fluctuations
in the availability of the different species due to defect for-
mation [48]; for details on the effective theory with defect
formation, νdef > 0, please refer to Appendix C. Finally,
for fixed target size L and fixed total number of parti-
cles NS (or, equivalently, fixed number of rings NS/L
if assembly proceeds perfectly), the yield decreases for
larger heterogeneity of the target structure (correspond-
ing to the number of species S in the system) (Fig. 2 (d)).
In contrast, yield becomes independent of the number of
species S for S � 1 if the number of particles per species
N is kept constant (Fig. 2 (e) and (f)). This implies
that, as long as the structures are not fully homogeneous
and variability between different species exists (S � 1),
for constant N and L the number of species is not de-
cisive for the process. In the effective theory, this can
be seen from the fact that only the number of unavail-
able sites along the ring, L×, enters but not the number
of unavailable species, S× itself (at least if we assume
that the periodicity of the arrangement does not change
the length of segments of available species considerably,
see Sec. IV C). As a result, the redundancy L/S of the
structure does not influence the assembly process in the
effective theory, as long as N and L are constant. In this
case of fixed N and L, the average yield can even be a
non-monotonic function of the number of species (blue
(upper) curves in Figs. 2(e) and (f)). We speculate that
this is a consequence of the variance of the yield being
dependent on the number of species in the system and of
the yield being bounded between 0 and 1: Our effective
theory suggests that the single-species fluctuations are
one of the decisive factors for the strength of stochastic
effects. These fluctuations are quantified by the aver-
age variance between neighboring species. This variance,
however, is also subject to stochasticity itself: The fewer
species there are in the system, the more we expect the
average variance between neighboring species (where the
average is taken with respect to the different species)
to fluctuate between single realizations of the assembly
process. As a result, it is intuitive that also the yield
fluctuates more if there are less species. Since, further-
more, yield is bounded by 0 and 1, this could imply that
for systems with yield “close to” 1, fluctuations might
actually decrease the average yield, whereas for yields
close to 0, the opposite happens. This suggests that in
cases where the yield for S � 1 is “close to” 0, systems
with few species actually exhibit a higher average yield
(as they are subject to more fluctuations) (red (lower)
curves in Figs. 2(e) and (f)), whereas for the case where
the average yield is “close to” 1, the opposite is true,
and yield can indeed be a non-monotonic function of the

number of species S (blue (upper) curves in Figs. 2(e) and
(f)) It would be very interesting to check more rigorously
whether this speculation is indeed true.

So far, we have focused on the final yield of the as-
sembly process. In order to check whether the effective
theory captures the dynamics of the polymer size dis-
tribution qualitatively correctly (and not only the final
yield), we compare the temporal evolution of the polymer
size distribution as predicted by the effective theory and
as measured in stochastic simulations in Appendix A.
While there exist obvious differences (such as, for in-
stance, the dynamics of the monomers and the result-
ing dynamics for the smaller structures), the front of the
wave in the stochastic simulations seems to be predicted
quite reliably by the effective theory. This front is mainly
determined by the probabilities pl, Eq. 31, that determine
which portion of structures of size l ends up in the grow-
ing state. These probabilities predict that there is a sharp
transition between structures of size l >L−L×− 1 that
do not grow at all and smaller structures l≤L−L×− 1
that have a high likelihood to grow (see also Sec. IV C
and Fig. 3). As a result of the sharp transition and the
fact that large structures do not grow much, the waves
produced by the effective theory build up much larger
and, correspondingly, move much more slowly through
the system (as more structures grow simultaneously), as
compared to the waves predicted by the deterministic
theory [46]. This higher amplitude and slower speed of
the wave predicted by the effective theory is in agreement
with the waves from the stochastic simulations, suggest-
ing that the probabilities pl capture the dynamics rea-
sonably well although they were determined from a much
simplified assembly process (see Sec. IV C). Finally, al-
though there are quantitative deviations in the monomer
dynamics, in both the stochastic simulations and in the
effective theory the number of monomers is high until
very late in the process.

Taken together, these results suggest that the effec-
tive theory captures the most important aspects of the
self-assembly process. In order to suggest ways how to
improve yield in the system, it thus seems promising to
analyze the integral new aspects of the effective theory
as compared to a deterministic description of the system
as given in Sec. III A.

VI. REDUCE FLUCTUATIONS IN THE
AVAILABILITY OF THE DIFFERENT SPECIES

IN ORDER TO IMPROVE YIELD

How can we use the insights gained from the formula-
tion of the effective theory to suggest viable ways to im-
prove the yield in the self-assembly process? Since, deter-
ministically, the yield is always perfect for small enough
activation rate, we take a closer look at the difference be-
tween the deterministic and effective theory. This differ-
ence is in the additional blocked state Bl in the effective
theory. This state describes structures that would need a
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particle of an unavailable species to grow and thus, gen-
erally speaking, tend not to grow due to variability be-
tween species. These fluctuations are quantified by the
single-species standard deviation σ0, Eq. 15. Our effec-
tive theory thus suggests that reducing the single-species
standard deviation should improve the yield in the sys-
tem. In the following, we will consider two specific ways
to achieve this goal.

A. Provision in bursts

As shown in Fig. 3(d), where
√

3σ0 (black) is plot-
ted against the average number of activation events per
species, the single-species standard deviation has a pro-
nounced maximum when on average half the particles
have been activated. Our effective theory, thus, suggests
that in order to improve the assembly yield one could
constrain the system in a way that the single-species stan-
dard deviation takes on a value of zero from time to time.
This can be achieved by providing particles in bursts: In-
stead of providing all N particles of each species right
from the beginning, the particles are put into the sys-
tem in b bursts, where each burst contains a number of
N/b particles per species. This means that at first only
N/b particles of each species are put into the system.
Only when these particles have been activated and the
binding processes have been completed, the next burst
of particles is provided - and so on until all N particles
per species have been provided. Figure 5(a) shows the
resulting single-species standard deviation measured in
stochastic simulations when a total number of N = 500
particles is provided in 1, 2, 10 or 20 subsequent bursts
(the x-axis represents time in units of activation events).
The standard deviation decreases for larger numbers of
bursts since it is reduced to zero at the end of each burst:
After the i-th burst exactly iN/b particles of each species
have been activated and there is no variability between
species at this point in time. Consequently, the maxi-
mum of the single-species standard deviation decreases
from 1

2

√
N in the original system to 1

2

√
N/b; see Ap-

pendix D for more details. According to the effective
theory, the yield is expected to increase as a result of
the reduced single-species standard deviation. Fig. 5(b)
shows the final yield curves in dependence of the activa-
tion rate α for the different numbers of bursts. Indeed,
it is found that the yield strongly increases with increas-
ing number of bursts. As one can infer upon inspection
of Fig. 5(a), this increase in the yield correlates with a
smaller standard deviation of the neighbor fluctuations.

In order to improve the yield by providing the par-
ticles in bursts it is necessary that the bursts are suf-
ficiently deterministic, i.e. the number of particles per
species per burst has to be subject to little fluctuations.
Otherwise, the single-species standard deviation cannot
be reduced effectively. Indeed, we show in Appendix E
that if the number of particles per species per burst is
drawn randomly from a Poisson distribution with mean

N/b, the process is independent of the number of bursts.
There, we also discuss some aspects of bursts for which
the number of particles per species per burst is drawn
independently from a Gaussian or Binomial distribution,
respectively. We find that, for provision of particles in
bursts to be effective, the width of the distribution of
the particles per species per bursts need not be too large
(Fano factor F < 1).

B. Self-inhibitory feedback

As indicated by the effective theory, the large single-
species variance is detrimental because it favors growth
and nucleation of small structures as compared to large
structures. The reason is that, when species are unavail-
able, active monomers of the neighboring species can ac-
cumulate as there are no fitting polymers to bind. Sub-
sequently, this accumulation of active particles strongly
increases the tendency to form new nuclei. A very direct
way to avoid this problem would be to introduce a self-
inhibition mechanism that suppresses the accumulation
of these active monomers. Explicitly, we will consider a
variant of the system (“self-inhibition scenario”) where
the activation rate of species i is given by

α(i) = α0 exp
(
qma

i

)
, (50)

where ma
i is the number of active monomers of species i,

α0 is the bare activation rate and q ≤ 0 is the inhibition
strength. If one species has been activated more (less)
than average, it will typically have more (less) active
monomers than average. In the self-inhibition scenario
with q < 0, this implies that the activation of additional
monomers is suppressed (enhanced) for over-represented
(under-represented) species and so the different levels of
activation are expected to converge. Fig. 5(c) shows how
for increasing inhibition strength q the standard devia-
tion of the neighbor fluctuations decreases. The effect
of the inhibition strength q on reducing the neighbor
fluctuations is pronounced already in the early stages of
the assembly process where not as many structures and
monomers are present. This is particularly useful be-
cause fluctuations in the beginning are expected to sup-
press yield most considerably. We thus anticipate from
the effective theory that yield should improve. Indeed,
Fig. 5(d) shows that higher inhibition strengths improve
yield significantly. Again, we see that there is a clear cor-
relation between higher yield and smaller neighbor fluc-
tuations; compare Figs. 5(c) and (d).

Taken together, decreasing the variance between the
species by either directly influencing the single-species
variance or by self-adjusting the activation levels of differ-
ent species due to feedback, can strongly improve yield,
as suggested by the effective theory.
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FIG. 5. Decreasing the variance in the relative number of available particles per species improves yield. (a)

Burst scenario: The standard deviation of the neighbor fluctuations std(∆Aneighbor
i ) for the original system and for systems with

b = 2, 10 and 20 bursts, respectively, are plotted against the average number of activation events per species. The theoretical
predictions are shown with dotted-dashed lines and the results from stochastic simulations (averaged over 200 samples) with
solid lines (and slightly lighter color to ease the comparison). The parameter values are L = 60, N = 500, ν=µ= 1, νdef = 0
and α = 10−4. Note that for the stochastic simulations with several bursts, we measured the standard deviation in one
burst and concatenated it b times with itself. Since the assembly dynamics does not influence the activation of particles,
the standard deviations should statistically be the same in all bursts. (b) Burst scenario: The average assembly yield and
its standard deviation obtained from stochastic simulations (1000 samples; solid lines with markers) is shown in dependence
of the activation rate for different number of bursts. The theoretical predictions from the effective theory with bursts (see
Appendix D) are shown for comparison (dotted-dashed lines). The parameters are L = 60, N = 500, ν = µ = 1, νdef = 0
and number of bursts as indicated in the plot. (c) Self-inhibition scenario: The standard deviation of the neighbor fluctuations

std(∆Aneighbor
i ) as obtained from stochastic simulations (averaged over 200 samples) is shown for different inhibition strengths

q (different colors, solid lines). The theoretical prediction for zero inhibition strength is shown as dotted-dashed line in red.
The parameters are L = 60, N = 500, ν = µ = 1, νdef = 0, α0 = 10−3 and inhibition strength as indicated in the plot. (d)
Self-inhibition scenario: the average assembly yield and its sample standard deviation obtained from stochastic simulations
(1000 samples) is plotted as a function of the bare activation rate α0 for different inhibition strength q (different colors). The
other parameters are L = 60, N = 500, ν = µ = 1, νdef = 0.

VII. CONTROLLED VARIABILITY BETWEEN
SPECIES

Remarkably, not only decreasing the variance between
species but also increasing it in a controlled fashion can

improve yield [17, 48]. In this section, we will shortly
discuss two suggestions of recent studies [17, 48] as well
as a third possibility to increase the yield by increasing
the variance between the relative concentrations of the
different species. Key to all of these strategies is that
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by inducing differences in the concentrations of active
monomers specific assembly paths are favored.

A. Non-stoichiometric concentrations: specific
assembly path

Recently, it has been shown that one can considerably
enhance assembly efficiency by using non-stoichiometric
concentrations for the different building blocks [17].
Specifically, it was suggested to provide building blocks
of a small region of the target structure in excess com-
pared to the remaining species. In light of our results,
this is surprising at first glance: Rather than decreas-
ing the variability between different species, this setup
actually increases the inter-species variation. How can
the observed increase in efficiency be reconciled with the
finding that fluctuations in the relative concentrations
of species favor kinetic trapping? The key insight that
solves this riddle is that one has to use non-stochiometric
concentrations in a highly coordinated fashion. Instead
of indiscriminately over-expressing species randomly, one
has to specifically select a set of species in a single con-
nected region of the structure [17]. This procedure then
favors a specific assembly path by favoring the formation
of nucleation seeds in that chosen region. As a result, all
structures grow from these more or less identical seeds
without competition for resources; the assembly yield is
high.

B. Non-homogeneous activation rates

A very similar effect can be achieved by using non-
homogeneous activation rates for the different species.
For randomly distributed rates along the ring, this
would increase fluctuations in the relative availability of
species and thus lead to a lower yield; see Appendix F,
Figs. 14, 15. If, however, a specific assembly path is
favored by specifying a particular order of species activa-
tion, yield can be increased. Figure 6(a) illustrates such
a choice of activation rates

α(i) =

{
α0 w

i for i ≤ S/2
α0 w

S−(i−1) for i > S/2,
(51)

where α0 scales all rates homogeneously and w deter-
mines the relative magnitude of the activation rates. The
two species with indices S/2 and S/2+1 have the largest
activation rates, their neighbors the second largest and
so on. In this way, this specific choice of activation rates
favors assembly paths that proceed in the same order
by starting with nucleation of species S/2 and S/2 + 1
and subsequently grow to larger and smaller indices to
the right and to the left. Correspondingly, due to re-
duced competition for resources, the yield increases [61]
if w > 1; see Fig. 6(b). Increasing the exponential weight
w enhances the tendency of particles to be activated in

the chosen order and hence improves the yield. However,
once w becomes so large that activation of some species
is faster than binding, active monomers of those species
would accumulate and form new nuclei. Consequently,
the yield decreases again once w exceeds this threshold.
The maximal (total) activation rate in the system is the
activation rate of species L/2 and L/2+1 and is given by
αmax ∼ Nα0w

L/2. In contrast, the time scale for binding
is νN . Hence, the threshold can be estimated by equat-
ing αmax = νN , resulting in an expected yield drop if

w > wmax := α
−2/L
0 . As the maximal activation rate

and therefore wmax depend on α0, the range of values of
w for which yield improves increases with decreasing α0.
Therefore, the maximum yield rises if α0 is reduced, see
Fig. 6(b).

C. Just-in-sequence mechanism

The purpose of using non-stoichiometric concentra-
tions or non-homogeneous activation rates is to control
the order in which particles become available for binding
and thereby to favor specific assembly pathways. We re-
cently presented a mechanism for efficient self-assembly
that implements such a ‘supply control strategy’ in a sim-
ilar but more effective way, based on inhibitory feedback
between neighboring species [48]. To that end, we as-
sume that the inactive (and optionally active) monomers
of species i<L inhibit the activation of the subsequent
species i+ 1. In this way, species i+ 1 gets activated
‘just-in-sequence’ after species i has been activated and
has, in large part, been assembled already. Only species
1 is not inhibited. The resulting inhibition cascade that
ensures that the particles are provided and assembled in
the specified sequence is illustrated in Fig. 6. We termed
this supply control strategy ‘just-in-sequence’, or short,
JIS mechanism. Similar to Eq. 50, we assume that the
activation rate of species i+ 1 with i < L is given by

α(i+1) = α0e
qmi

i , (52)

where α0 denotes the basal activation rate, q < 0 the pa-
rameter that controls the strength of inhibition and mi

i

the concentration of inactive monomers of species i. Op-
tionally, one could also account for inhibition by active
monomers by replacing mi

i with mi
i + ma

i as this would
only have a negligible effect on the assembly process [48].
Figure 6 shows the yield in dependence of the activa-
tion rate α for different values of the inhibition strength
q and for S= 60 and N = 500. Interestingly, a small
nonzero q reduces the yield compared to the original case
with q= 0, because weak inhibition amplifies stochastic
effects [48]. However, by further increasing the inhibi-
tion strength, the yield quickly rises up to the perfect
value of 1 in the respective regime of α. Moreover, the
threshold activation rate below which the yield rises in-
creases due to a finite inhibition strength. Note that, in
comparison with the self-inhibitory mechanism, a much
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FIG. 6. Increasing the variance in a coordinated fashion improves yield. (a,b) Non-homogeneous activation rates.
Yield can be improved by choosing the activation rates non-homogeneously. (a) Activation rates plotted against the species
index according to Eq. 51 for α0 + 10−4, ω = 1.2 and L = 60. The activation rate is highest for the two species in the middle,
i = S/2 and i = S/2 + 1, and decreases exponentially to the left and to the right. Therefore, assembly pathways that start with
the dimerization of species S/2 and S/2 + 1 are strongly favored. (b) Yield plotted against the magnitude of the exponential
base ω for different basal activation rates α0 and S = 60, N = 500. The yield increases with increasing ω and attains a
maximum. Then yield drops again because for large ω activation of the species becomes fast compared to the growth dynamics.
(c,d) JIS scenario. Just-in-sequence supply can be realized effectively with inhibitory feedback, thereby greatly enhancing the
yield. (c) Inhibition cascade. The inactive monomers of each species i inhibit the activation of the subsequent species i+ 1 as
described by Eq. 52. Only species 1 is not inhibited and is therefore activated first. This triggers an activation cascade which
provides the particles in sequence with the specified assembly pathway. (d) Yield in dependence of α0 for different inhibition
strengths q and S = 60, N = 500. For small, nonzero values of q the yield decreases due to an amplification of stochastic
effects. For larger values of q, however, the yield quickly rises up to the perfect value of 1. For increasing q, the threshold
activation rate is shifted towards higher values of α0.

lower inhibition strength q is required to achieve high
yield. This is because in the self-inhibitory mechanism
inhibition is effectuated by the active monomers while
in the JIS mechanism it is accomplished by the inac-
tive monomers, which are usually present in much larger
numbers. Hence, the JIS mechanism is a very effective
strategy to increase self-assembly efficiency and to avoid
stochastic yield catastrophes.

VIII. CHARACTERIZATION OF THE
MITIGATION MECHANISMS

As noted in this and earlier studies [46, 48], there ex-
ists a variety of methods how to mitigate the stochas-
tic yield catastrophe in heterogeneous self-assembly sys-
tems. Depending on the system, one may have access to
manipulate or control different elements of the assembly
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process and hence some strategies can be more feasible
than others. For instance, if one has direct control over
the binding properties of the constituents, it might be
most efficient to reduce the ratio between the molecular
rates for nucleation and growth by relying on allosteric
effects. As long as the availability of constituents is not
rate-limiting, stochastic effects then do not severely limit
the yield of the assembly process [46, 48]. However, con-
trolling the assembly process via the molecular binding
rates might be effortful and not very versatile since the
constituents would need to be specially tailored for a
specific target structure and the corresponding assembly
process. Furthermore, allosteric control might require an
elaborate design of the constituents, hard to be realized
in a controlled fashion in nanotechnological applications.
In these applications, it might be more viable to exe-
cute control on a systemic level via supply regulation
[48]. Supply regulation exerts control over the assembly
process by governing the way, specifically the order and
amount, in which particles are provided. Elaborate bind-
ing properties enabling e.g. allosteric effects are thereby
not required. Furthermore, supply regulation provides a
way to realize effective self-assembly even if the binding
reactions are not or only weakly reversible on the time
scale of the assembly process. This is convenient since
not relying on reversibility of binding allows to maximize
the bond strengths in order to assemble stable and long-
living structures. On the downside, however, stochastic
effects can easily jeopardize the assembly efficiency if the
availability of binding particles is constrained. In order
to overcome the limitation arising from the stochastic
yield catastrophe, we have discussed several possibilities
to implement efficient supply control strategies. Here we
want to briefly mention these different possibilities and
discuss their respective advantages and drawbacks. We
classify these mechanisms by two main distinguishing fea-
tures: type of regulation and effect on the inter-species
variance; see Fig. 7.

Regarding the type of regulation, we have encoun-
tered two principally different strategies: the JIS mech-
anism [48] and the self-inhibitory feedback mechanism
both rely on feedback that returns information about
the specific state of the assembly process (specifically
how many active and/or inactive monomers there are).
This information is used to regulate the supply in a self-
organized, autonomous fashion. In contrast, in the burst
scenario, no such feedback was implemented. Instead,
we assumed that the bursts were provided automatically
after long enough time spans so that all particles of the
previous burst had enough time to bind. Similarly, in
the scenarios with non-homogeneous activation rates or
non-stoichiometric concentrations [17], no feedback of in-
formation about the state of the system was needed.

A second distinguishing characteristic of the presented
supply control strategies is their respective effect on
the inter-species variance. Processes like bursts or self-
inhibition decrease the variance between the species’ con-
centrations and thereby reduce stochastic effects with-

out favoring specific assembly paths. Conversely, strate-
gies including just-in-sequence supply [48], engineer-
ing inhomogeneous activation rates or choosing non-
stoichiometric concentrations [17] increase the variance
in a coordinated way. In this fashion, certain assem-
bly paths are favored which leads to reduced competi-
tion for resources and consequently suppresses stochas-
tic effects. The advantage of using a strategy that de-
creases the inter-species variance is that such a strategy
is expected to be applicable independently of the het-
erogeneity and design of the target structure: Irrespec-
tive of whether certain species occur several times in the
target structure, decreasing inter-species fluctuations re-
duces undesirable nucleation events [62]. Conversely, for
those strategies that favor specific assembly paths, sup-
ply regulation has to be adapted accordingly if species
occur several times in the target structure and hence in
the assembly path. Specifically, this would demand a
higher degree of regulation as it must be assured then
that species are delivered not only in the correct order
but also in the correct amount. The specific mechanisms
discussed here are not directly suitable for this purpose:
there is no control over the portion of each species that
is delivered at once (specifically, constituents cannot be
activated in fractions of their total numbers). However,
more sophisticated supply regulatory mechanisms based

FIG. 7. Summary of the different control strategies
to improve yield and guide the assembly process. In
essence, the control strategies discussed in this manuscript in
order to improve yield can be classified into two categories.
First, the variance between species is either decreased (burst
scenario and self-inhibitory feedback) or increased in a co-
ordinated fashion (non-homogeneous activation rates, non-
stoichiometric concentrations [17] and coordinated inhibition
of neighboring species (JIS mechanism) [48]). Second, these
strategies either rely on regulatory feedback (self-inhibitory
feedback and coordinated inhibition of neighboring species
(JIS mechanism) [48]) or not (non-homogeneous activation
rates, non-stoichiometric concentrations [17] and burst sce-
nario). Increasing the variance in a controlled manner by
either non-homogeneous activation rates or in the JIS mech-
anism not only improves yield but also controls defect for-
mation. In contrast, reducing the variance is generally useful
for heterogeneous structures, irrespective of whether species
occur several times in one target structure or not.
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on feedback might be able to support the self-assembly
of structures also with repeated patterns of constituents.
A major advantage of providing constituents in a way
to favor a specific assembly path lies in the reduction
of assembly errors and defects that would result form
incorrect binding events [48]. This is plausible because
if particles are delivered specifically as they are needed
in the assembly process the probability for cross-specific
binding reactions is minimized and correct growth fos-
tered.

In conclusion, depending on whether structures are
fully heterogeneous or show repeated patterns and
whether or not defect control is essential, a coordinated
increase or a general decrease of inter-species variability
may be beneficial.

IX. SUMMARY AND DISCUSSION

The goal of this manuscript was to understand the
role of stochastic effects in heterogeneous self-assembly
processes. To this end, we formulated an effective the-
ory for a conceptual model for the assembly of het-
erogeneous ring structures. Previously it was shown
that stochastic effects can be detrimental for the yield
of the self-assembly process (“stochastic yield catastro-
phe”) [46, 48]. However, it remained elusive why stochas-
tic fluctuations do have such a strong effect and which
role the different sources of stochasticity play for the
assembly process. The main insights gained from our
analysis are the following: First, we have shown that
fluctuations in the relative availability of species are the
main cause for the stochastic yield catastrophe. An effec-
tive theory incorporating only this source of stochasticity
and neglecting other fluctuations such as randomness in
binding captures the phenomenology of the full stochas-
tic model. Second, the effective theory allowed us to
pinpoint the consequences of inter-species variability on
the fidelity of the assembly process: If certain species are
activated less than their binding partners, they can be-
come temporarily unavailable for the assembly process.
Their unavailability then blocks the growth of neighbor-
ing structures. Growth is biased towards small struc-
tures, which accumulate in the system. This accumu-
lation is detrimental because a substantial amount will
not be completed before resources run out. As a result,
the assembly yield is low [10, 20, 21, 44–46, 51]. This
effect that may lead to kinetic trapping is not captured
in a deterministic description but constitutes a genuine
stochastic effects caused by fluctuations in the relative
concentrations of the different species.

Importantly, our theoretical analysis also reveals that
the strength of the fluctuations in the relative availabil-
ity of the different species is, to a large extent, set by the
single-species variance in the supply. This key insight
enabled us to identify different ways to significantly in-
crease assembly efficiency by reducing variability between
species. All of these strategies use supply regulation to

suppress stochastic effects and avoid kinetic trapping.
We distinguished these strategies according to two rel-
evant criteria: whether or not feedback or information
about the system is used to regulate the supply (type of
regulation) and whether the variance between different
species is reduced or specific assembly paths are favored
(effect on inter-species variance). Corresponding to this
classification scheme we discussed five different strategies
to improve the yield. The first two strategies reduce the
inter-species variance with or without the help of feed-
back:

• Burst scenario: inactive monomers are provided in
several bursts, each of which contains a fraction
of the total number of monomers in stoichiomet-
ric ratios. The time intervals between subsequent
bursts are sufficiently long so that all possible bind-
ing reactions of the previous burst have taken place
before the next burst is provided.

• Self-inhibition scenario: activation is inhibited by
active monomers of the same species. The accu-
mulation of active monomers of single species is
thereby inhibited.

We found that improving the yield by providing parti-
cles in bursts requires the bursts to be sufficiently de-
terministic, i.e. the number of particles per species per
burst must be tightly controlled to obey stoichiometric
ratios; see Appendix E. We believe that cells could, in
principle, effectuate such a strategy by controlling the
composition of bursts via a regulation of several genes by
a common promoter. Interesting open questions in the
context of whether this would be a realistic possibility
for cells concern the dependence of the yield on the exact
(deterministic or stochastic) timing between the bursts.
Furthermore, it might be enlightening to consider bursts
of different size and to ask to what extend the order of
bursts of different sizes matters.

Two recent studies demonstrated that also the oppo-
site strategy, namely increasing the variation between
species, can increase yield [17, 48]. However, increasing
the inter-species variability only leads to an improved as-
sembly process if it occurs in a very coordinated way that
favors a specific assembly path (see also Appendix F).
Then, competition of different structures for the same
resources is reduced to a minimum and the assembly pro-
cess leads to completed target structures. The following
strategies have been proposed to favor specific assembly
paths, where only the last one relies on feedback:

• Non-stoichiometric concentrations [17]: certain
species are heavily over-represented to trigger nu-
cleation events specifically between these species
and to favor assembly paths that emanate from
these nuclei.

• Inhomogeneous activation rates: exponentially in-
creasing or decreasing activation rates provide ac-
tive monomers in sequence with a specific assembly
path.
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• Just-in-sequence scenario [48]: activation is in-
hibited by inactive monomers of the neighboring
species. The resulting inhibition cascade between
the species favors a specific assembly path and de-
livers active monomers just-in-sequence with this
chosen path.

From a theoretical perspective, there are several other
interesting aspects about the described stochastic effects
in self-assembling systems. Naively, one might ask how
fluctuations between the concentrations of species, which
are typically of the order of 1/

√
N (compared to the num-

ber of particles per species N), can lead to such dramatic
effects. To answer this question, two aspects should be
considered: First, at early stages of the assembly process,
the relevance of stochastic effects must be evaluated with
respect to the number of particles that have been acti-
vated to that point, rather than the total number of parti-
cles. Hence fluctuations at the beginning of the assembly
process might not be suppressed as ∼ 1/

√
N but rather

as ∼ 1/
√
Neff where Neff is some effective particle number

which can be much smaller than N . Hence at the onset of
the assembly process fluctuations are indeed much more
substantial even if N is large. Second, it is exactly the
first part of the assembly process that is most crucial for
the final state. If too many structures nucleate in the
beginning, too many structures compete for the same
resources and none of them can be finished. This im-
plies that especially fluctuations at the beginning of the
assembly process may have a big impact since their in-
fluence determines the fate of the system. A similar phe-
nomenology is observed, for instance, in self-reinforcing
processes [63].

On a broader perspective, we demonstrate that demo-
graphic noise can be an important limiting factor for the
self-assembly of heterogeneous structures. In our model,
demographic noise is due to an additional activation step
that renders particles competent for binding. This can
be either interpreted in terms of an actual activation step
(such as for instance due to allosteric effects [39, 49, 64])
or in terms of co-translational [65] or co-transcriptional
assembly [66]: While the building blocks are still pro-
duced, the assembly process already takes place simul-
taneously. The effects of simultaneous production and
assembly of building blocks is expected to be relevant
both for self-assembly in living organisms as well as in
nanotechnological applications: In particular, it has been
suggested that combining in vivo transcription with si-
multaneous RNA-based assembly techniques might be a
promising route for the further development of nanotech-
nology [66–69]. In light of our findings, it will be interest-
ing to see whether such approaches applied to the assem-
bly of large and heterogeneous structures need further
regulation mechanisms to circumvent strong stochastic
effects. Our proposed control strategies may then pro-
vide a first step to improve assembly efficiency.
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Temporal evolution of the polymer size distribution in the limit α → 0. The polymer size distribution (of
all species combined) as measured in stochastic simulations (red; averaged over 100 simulations each) is shown in comparison
to the prediction of the effective theory (Scl(t) = S(gl(t) + bl(t)) as obtained by a numerical integration of Eqs. 45, 47, 48, 49;
blue) and in comparison to the prediction of the deterministic theory (Scl(t) as obtained by a numerical integration of Eqs. 3, 4;
see also Ref. [46]; black). For each parameter combination (L = 60, N = 500 in (a,b,c) and L = 100, N = 1000 in (d,e,f)) the
polymer size distribution is shown for small (a,d), intermediate (b,e) and large time (c,f), respectively. The other parameters
are L = S, µ = ν = 1, νdef = 0 and α = 10−4N/L3. The wave predicted by the deterministic theory has an extremely small
amplitude and is therefore not visible.

Appendix A: Temporal evolution of the polymer size distribution

Figs. 8, 9 show the time evolution of the structure size distribution (of all species combined) in the stochastic
simulations and in the effective theory (with cl(t) = gl(t) + bl(t) according to Eqs. 45, 47, 48, 49), in comparison to
the deterministic prediction (cl according to Eqs. 3, 4) as presented in Ref. [46]. We make the following observations:
On the one hand, the monomer dynamics does not seem to be reproduced very well by the effective theory. Corre-
spondingly, the back of the wave decays more rapidly in the effective theory as compared to the stochastic simulations.
In relation to the deterministic wave, however, the waves produced by the effective theory and by the stochastic simu-
lations are quite similar. This is true in particular in the limit α→ 0 (Fig. 8) where the deterministic wave is not really
visible because it exhibits a very small amplitude. In both the stochastic simulations and in the effective theory the
number of monomers is high until very late in the process and the waves move much more slowly as compared to the
deterministic wave because many structures compete for the same resources. Furthermore, while the effective theory
does not capture the front of the wave perfectly, it does describe the right trend. As a result, the approximations made
to determine the probabilities pl in terms of the simplified assembly process appear to be justifiable in retrospect.

Appendix B: Detailed mathematical analysis

In this section, we will present the details of the parts of the mathematical analysis that have been skipped in the
main text.
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FIG. 9. Temporal evolution of the polymer size distribution for α = N/L3. The polymer size distribution (of all
species combined) as measured in stochastic simulations (red; averaged over 100 simulations each) is shown in comparison to
the prediction of the effective theory (Scl(t) = S(gl(t) + bl(t)) as obtained by a numerical integration of Eqs. 45, 47, 48, 49;
blue) and in comparison to the prediction of the deterministic theory (Scl(t) as obtained by a numerical integration of Eqs. 3, 4;
see also Ref. [46]; black). For each parameter combination (L = 60, N = 1000 in (a,b,c) and L = 100, N = 500 in (d,e,f)) the
polymer size distribution is shown for small (a,d), intermediate (b,e) and large time (c,f), respectively. The other parameters
are L = S, µ = ν = 1, νdef = 0.

1. Derivation of the growth probabilities pl

In this subsection, we will explain our choice of transition rates αljk more thoroughly. From the resulting formulas

(which are also given in the main text, Eq. 22), we derive the steady-state occupancy in the effective assembly network
(Eq. 21 and Fig. 3 (f)). This steady-state occupancy will then be used to calculate the growth probabilities pl, Eq. 31.

a. Transition rates αljk

To determine the transition rates between the different states Sli of the simplified assembly process described in
section IV C and illustrated in Fig. 3(f), we proceed as follows: First, we derive the probability Πl

ij that a structure
of size l with i = 1 or i = 2 growing ends has j = 0, 1 or 2 growing ends after attachment of a monomer to one of the
original growing ends. Then, we use this probability to calculate the transition rates.

To determine Πl
ij , it is convenient to consider the ways in which a monomer can attach to a structure of size l

with i = 1 or i = 2 growing ends: We begin with a structure that has two growing ends. Then, a monomer can
attach either to the left or to the right. In order to calculate the probability that the structure still has two growing
ends after the monomer attachment, we consider the probabilities of the following configurations (“embeddings”; see
Fig. 10 A for an illustration):
a) The two neigboring sites of the structure of size l with two growing ends both correspond to species that can grow
further in the direction away from the structure (left configuration in A). That is, regardless of which end of the
structure a monomer attaches to, the new end will also be in a growing state.
b) One neighboring site corresponds to a species that can grow further in the direction away from the structure,
whereas the other one does not (middle configurations in A). In this case, the probability that the new end is in the
growing state is 1/2 and the probability that the new end is in the blocked state is also 1/2.
c) Both neighboring sites correspond to species that cannot grow further in the direction away from the structure
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FIG. 10. Illustration of the probabilities πlij that a structure of size l with i growing ends is embedded in
configurations with additional growing or blocked ends. (a) A structure of size l with two growing ends i = 2 can be
embedded in four different configurations of structures: one structure with an additional growing end at both ends (j = 2;
left), two structures with one additional growing and one additional blocked end (j = 1; middle) and one structure with two
additional blocked ends (j = 0; right). If the original structure of size l is embedded in the structure on the left (j = 2), it will
with probability 1 still have two growing ends after growth by one monomer. If it is embedded in one of the middle structures
(j = 1), after growth by one monomer it will have either one or two growing ends (depending on which monomer attached to
it). The probability is 1/2 for both cases. Finally, if the original structure was embedded in the structure on the right (j = 0),
after growth it will in both cases have one growing and one blocked end. Thus the probability to end up in a configuration
with one growing end and one blocked end is 1. (b) A structure of size l with one growing end i = 1 can be embedded in two
configurations: one structure with an additional growing site next to the original growing end (j = 1; left) and one structure
with a blocked site next to the growing end (j = 0; right). If it is embedded in the structure on the left (j = 1), after growth
(which can only happen at one end) it will still have one growing end. In contrast, if it is embedded in the structure on the
right (j = 0), it will be blocked after growth.

(left configurations in A). Then, the probability that the new end is in the blocked state is 1.
What are the probabilities for either of these configuration? If we assume that the unavailable species are distributed
randomly along the ring, the number of configurations in which the next-nearest neighbor species at each end of the
structure of size l are available (configuration a) is given by

X l
22 =

(
L− (l + 4)

L×

)

since the L× unavailable species can be distributed to the remaining L− (l+ 4) sites along the ring (the configuration
we consider comprises the original structure of size l, the two neighboring species and the two next-nearest neighboring
species). Similarly, the number of configurations in which the next-nearest neighbor species at one end of the structure
of size l is available but the next-nearest neighbor at the other end is unavailable (configuration b) is given by

X l
21 = 2

(
L− (l + 4)

L× − 1

)

because one of the unavailable species is already part of the complex of size l plus the four surrounding next and
next-nearest neighbors. Thus, only L× − 1 unavailable species are distributed among the remaining L− (l + 4) sites
along the ring. The factor 2 comes from the fact that there are two equivalent configurations of this type (the available
next-nearest species can be on the left or on the right). Finally, the number of configurations in which the next-nearest
neighbor species at both ends of the structure of size l are unavailable (configuration c) is given by

X l
20 =

(
L− (l + 4)

L× − 2

)

because two of the unavailable species are already part of the complex of size l plus the four surrounding next and
next-nearest neighbors.

From the number of configurations we can determine the respective probabilities by normalizing the number of
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configurations by the overall number of configurations:

πl22 =
X l

22

X l
22 +X l

21 +X l
20

πl21 =
X l

21

X l
22 +X l

21 +X l
20

πl20 =
X l

20

X l
22 +X l

21 +X l
20

.

As mentioned before, in configuration a (πl22), the probability that after growth by a monomer the structure still has
two growing ends is 1. In configuration b (πl21) it is 1/2 and in configuration c (πl20) it is zero. The overall probability
Πl

22 that a structure of size l with two growing ends has still two growing ends after attachment of a monomer to one
of the original growing ends is given by

Πl
22 = πl22 +

1

2
πl21 = 1− L×

L− l − 2
.

In the last step, we plugged in the explicit formulas in terms of the binomial coefficients.
Analogously, the overall probability Πl

21 that a structure of size l with two growing ends has still one growing end
after attachment of a monomer to one of the original growing ends is given by

Πl
21 = πl20 +

1

2
πl21 =

L×
L− l − 2

.

For structures with only one growing end, the situation is simpler because attachment of a monomer can only
occur at one end (see Fig. 10 B for an illustration). Then the only question is whether the next-nearest neighbor at
the growing end is available or not. Analogously to above, the number of configurations in which the next-nearest
neighboring species at the growing end of the structure of size l is available (left in panel B) is given by

X l
11 =

(
L− (l + 3)

L× − 1

)
.

In this case, the size of the relevant complex is l+ 3, namely the original size l plus the two nearest neighbors plus the
next-nearest neighbor at the growing end. Since one end of the structure is blocked, one of the neighboring species is
unavailable and, thus, there remain L× − 1 unavailable species that can be distributed among L− (l + 3) sites along
the ring. Similarly, the number of configurations in which the next-nearest neighboring species at the growing end of
the structure of size l is unavailable (right in panel B) is given by

X l
10 =

(
L− (l + 3)

L× − 2

)
.

In this case one of the neighboring species and the next-nearest neighboring species at the growing end are unavailable;
there remain L× − 2 unavailable species that can be distributed among L− (l + 3) sites along the ring.

The respective probabilities for these configurations are

πl11 =
X l

11

X l
11 +X l

10

= 1− L× − 1

L− l − 2
= Πl

11

πl10 =
X l

10

X l
11 +X l

10

=
L× − 1

L− l − 2
= Πl

10,

where we plugged in the explicit expressions in terms of the binomial coefficients. Furthermore, due to the way in
which the configurations were defined, the overall probabilities Πl

1j that a structure of size l with one growing end
has j = 0 or 1 growing ends after attachment of a monomer are in this case directly given by the probabilities of the
respective configuration (see also the table at the bottom of Fig. 10 B).

How can we use these probabilities Πl
ij to determine the transition rates? Πl

ij denotes the conditional probability
that a structure of size l with i = 1 or i = 2 growing ends has j = 0, 1, 2 growing ends after a monomer has attached,
if we already know that attachment happens. So, to translate these conditional probabilities, we need to multiply
them by the rate at which monomer attachment occurs.
In the main text, we defined γ as the total rate of attachment of a monomer to one growing end. Thus, the overall rate
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for attachment of a monomer to a structure with two growing ends is 2γ and the one for attachment to a structure
with one growing end is γ. Therefore, the probabilities for structures with two growing ends have to be multiplied by
2γ and the ones for structures with one growing end by γ. The transition rates are thus given by

αl22 = 2γΠl
22 = 2γ

(
1− L×

L− l − 2

)

αl21 = 2γΠl
22 = 2γ

L×
L− l − 2

αl22 = γΠl
22 = γ

(
1− L× − 1

L− l − 2

)

αl22 = γΠl
22 = γ

L× − 1

L− l − 2
,

as stated in the main text, Eq. 22.

b. Steady-state occupancy slj in the effective assembly network for fixed number of unavailable sites L×

In this section, we will determine the steady-state occupancy slj in the simplified assembly network described in
section IV C and illustrated in Fig. 3(f).

To this end, we consider the in- and outfluxes into the states Slj for l ≥ 2 and j = 1, 2 (l denotes the size of the
structure and j the number of growing ends). Since the number of growing ends cannot increase in the simplified

assembly network, the influx into state Sl2 is solely from state Sl−1
2 at rate αl−1

22 . Outflux occurs at rates αl22 into

state Sl+1
2 and αl21 into state Sl+1

1 . Thus, the temporal evolution of the number sl2 of particles in state Sl2 is given by

dsl2
dt

= αl−1
22 sl−1

2 −
(
αl22 + αl21

)
sl2 = αl−1

22 sl−1
2 − 2γsl2.

Regarding state Sl1, there is influx from state Sl−1
2 at rate αl−1

21 and from Sl−1
1 at rate αl−1

11 . Outflux occurs at rates

αl11 into state Sl+1
1 and αl10 into state Sl+1

0 . The temporal evolution of the number sl1 of particles in state Sl1 is thus

dsl1
dt

= αl−1
21 sl−1

2 + αl−1
11 sl−1

1 −
(
αl11 + αl10

)
sl1 = αl−1

21 sl−1
2 + αl−1

11 sl−1
1 − γsl1.

In steady-state, dslj/dt = 0, these equations are rewritten in terms of a recursion relation as

sl2 =
αl−1

22

2γ
sl−1

2

sl1 =
αl−1

21

γ
sl−1

2 +
αl−1

11

γ
sl−1

1 .

The solution to this recursion relation for l ≥ 3 is given by

sl2 =
(L− L× − 3)(L− L× − 4) . . . (L− L× − l)

(L− 3)(L− 4) . . . (L− (l + 1))

(
L− L× − (l + 1)

)
s1

2 = (B1a)

= (L− L× − (l + 1)) s1
2φl, (B1b)

sl1 =
(L− L× − 3)(L− L× − 4) . . . (L− L× − l)

(L− 3)(L− 4) . . . (L− (l + 1))

(
(L− L× − 2)s1

1 + 2(l − 1)L×s
1
2

)
= (B1c)

=
(
(L− L× − 2)s1

1 + 2(l − 1)L×s
1
2

)
φl, (B1d)

where we defined

φl =
(L− L× − 3)(L− L× − 4) . . . (L− L× − l)

(L− 3)(L− 4) . . . (L− (l + 1))
.
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These expressions depend on the steady-state numbers s1
j of monomers with either j = 1 or j = 2 growing ends. To

make progress, we thus need to determine these steady-state numbers. This can be done by considering the steady-
state dynamics of the monomer states. Into state S1

2 there is an influx i2 (as defined in the main text in Eq. 23), and
the monomers transition to states S2

1 and S2
2 at rates α1

21 and α1
22, respectively. As a result,

ds1
2

dt
= i2 −

(
α1

22 + α1
21

)
s1

2 = i2 − 2γs1
2.

Similarly, we have

ds1
1

dt
= i1 −

(
α1

11 + α1
10

)
s1

1 = i1 − γs1
1.

In steady-state, these equations reduce to

s1
2 =

i2
2γ

(B2a)

s1
1 =

i1
γ
. (B2b)

c. Growth probabilities pl

Finally we plug in the expressions, Eqs. B1, B2, for the steady-state number slj of particles in state Slj into the
equation for the probability pl, Eq. 30. Using the explicit form of the influx rates i2 and i1, Eq. 23, yields after some
algebra

pl =

{
1− lL×(L×−1)

[L−(l+1)] [L+(l−1)L×−l] , l <L−L×
0 else,

(B3)

as given in the main text, Eq. 31. As it is derived here, it is only valid for l ≥ 4 (since Eq. B1 is only valid for l ≥ 3).
By explicitly calculating pl for l = 1, 2 and 3 from the recursion relation, one can, however, show that the same
formulas also apply in these cases. More generally, if there is less than one species unavailable, L× < 1, all structures
can grow. Then we have pl = 1 ∀l.

2. Exchange dynamics between the different monomer states

In this subsection, we give details on how we determined the fluxes between the different monomer states if the
number of unavailable sites L× changes.

For this purpose, it is illustrative to consider a system with three states A, B and C and total number of particles
N . We assume that the probability to be in state A at time t is pA(t) and analogously for B and C the probabilities
are pB(t) and pC(t) with pA(t) + pB(t) + pC(t) = 1. Furthermore, we assume that the total number is conserved:
N = const. Then, we have for the numbers of particles NA, NB and NC at time t:

NA(t) = NpA(t) NB(t) = NpB(t) NC(t) = NpC(t).

For the derivatives, we thus find analogously to the main text

dNA
dt

= N
dpA
dt

=
NA
pA

dpA
dt

= NA
d ln(pA)

dt
,

and similarly for B and C. As a result, for a three-state system we get exactly the same per-capita rates of exchange
rpc
A as for the two-state system discussed in the main text in Sec. IV D:

rpc
A =

dln(pA)

dt
.
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It is given by the time derivative of the logarithm of the corresponding probability. The only difference now is that
it is not clear, yet, which portion of A transforms to B and C, respectively, if dpA/dt < 0.

To answer this question, we consider two cases:
For the first case, we assume that dpA/dt < 0 and dpB/dt > 0 and dpC/dt > 0, so there is only outflux from state A
into states B and C. In this case, it is useful to rewrite the time derivatives of NB and NC as follows:

dNB
dt

= N
dpB
dt

=
NA
pA

dpB
dt

dNC
dt

= N
dpC
dt

=
NA
pA

dpC
dt

.

Thus, the fractions of particles that transition from state A to the states B and C are proportional to the corresponding
changes in the probability, dpB/dt and dpC/dt, respectively.
For the second case, we assume that dpA/dt < 0 and dpB/dt < 0 whereas dpC/dt > 0, so there is outflux from states
A and B into state C. The time derivative of NC is then conveniently rewritten as

dNC
dt

= N
dpC
dt

= −N
(

dpA
dt

+
dpB
dt

)
= −NA

pA

dpA
dt
− NB
pB

dpB
dt

,

where the second equality follows from conservation of probability pA + pB + pC = 1. As expected, the flux into state
C then just corresponds to the sum of the two outfluxes from states A and B, respectively.

These “rules” can now be applied to the exchange of monomers between the different states:
Consider first the case where the number of unavailable species decreases, dL×/dt < 0. Some monomers of the
blocked state will then transition to the unblocked state and some monomers that have been unavailable previously
will transition to the normal state. In this case, there are only interactions between two states each and we can
immediately conclude that the fluxes between the states are given by

%× =
m×
P×

dP×
dt

%n = −%× (B4a)

%b =
mb

Pb

dPb

dt
%ub = −%b, (B4b)

as given in the main text, Eq. 42.
In the case where the number of unavailable species increases, dL×/dt > 0, some monomers of the unblocked state

transition back to the blocked state and some monomers of the normal state either transition to the unavailable state
or also to the blocked state. In this case, we thus have according to the above rules:

%× =
mn

Pn

dP×
dt

(B5a)

%n =
mn

Pn

dPn

dt
(B5b)

%b =
mn

Pn

dPb

dt
+

mub

1− Pb

dPb

dt
(B5c)

%ub =
mub

Pub

dPub

dt
= − mub

1− Pb

dPb

dt
, (B5d)

where we used that the unblocked state effectively corresponds to a probability 1 − Pb because all outflux from the
blocked state goes into it (instead of going into the unavailable or the normal state). These equations correspond to
Eq. 43 as given in the main text.

Appendix C: Effective theory with defect formation

In the main text, we presented the effective theory for the case of no defect formation νdef = 0. Here, we explain our
approach to generalize the theory by effectively including erroneous binding. We make several (crude) simplifications:

• Erroneous binding (defect formation) is not subject to stochastic effects. That is, all monomers in states in
which they cannot regularly bind to a polymer can bind at rate νdef to this polymer, thereby creating a defect in
the structure. The essential idea is that it is unlikely that a polymer or monomer in the blocked state is blocked
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by two unavailable species in a row: Say species i and j > i were unavailable, then a structure (i+1). . .(j−1) is
in the blocked state. We assume that it is unlikely that simultaneously also species i−1 and j+1 are unavailable,
so the structure (i+1). . .(j−1) can grow by erroneous binding by either species i−1 or j+1.

• Although structures with defects will effectively include unavailable species (because these species have typically
been left out if erroneous binding occurs), we take the probabilities that these structures end up in a growing or
blocked state to be the same as for the structures with defects: pl. This certainly is a simplification because in
the “derivation” of pl on the basis of the simplified assembly process described in section IV C and illustrated
in Fig. 3(f), we assumed that all structures only grow by attachment of available species.
As a result, the further growth dynamics of a polymer does not depend on whether it contains defects or not.

• We do not take into account that erroneous binding can lead to additional stochastic effects (see also [48]).

In order to write down the ensuing dynamics of all the structures, we define the following quantities:

• gDl for l ≥ 4 denotes the concentration of polymers with at least one defect and size l in the growing state.
The size l always refers to the number of subunits in the structure plus the number of defects. If, for instance,
a polymer of size l grows by erroneous binding (creating a defect in the structure), the size of the resulting
polymer is taken to be l+ 2. This convention is convenient because it ensures that it is always the structures of
size L that do not grow further. Since we do not keep track of the number of defects in a structure, this would
be difficult to achieve otherwise.
Since erroneous binding only occurs from the dimers onwards (there is no erroneous dimerization), polymers
with defects have at least a size l = 4.

• Analogously, bDl for l ≥ 4 denotes the concentration of polymers with at least one defect and size l in the blocked
state.

• As before, gl and bl are defined as the concentration of polymers of size l with no defect in the growing and
blocked state, respectively.

How does the dynamics of monomers change due to the defect formation? First, the monomers that could bind
regularly to the (defect-free) polymers in either the growing and/or blocked state, can now additionally grow to the
corresponding defect-containing polymers in either the growing and/or blocked state because we assume that defect-
free structures and defect-containing structures in the growing and or blocked state do not differ in their growth
dynamics.
Second, the monomers that previously could not bind to a polymer in a certain state, can now erroneously bind to
these polymers at rate νdef , irrespective of whether the polymers in question already contain defects or not. In this
case, an (additional) defect is created in the structure.
With these ingredients the monomer dynamics reads as follows:

∂tmn = αNe−αtPn − 2µDn − 2νmnγ + %n −
[
2νdefmn

(
βdef + βDdef

)
+ 2νmnγ

D
]

(C1a)

∂tm× = αNe−αtP× − 2µD× − 2νm× (γ + β) + %× −
[
2νm×

(
γD + βD

)]
(C1b)

∂tmb = αNe−αtPb − 2µDb + %b −
[
2νdefmb

(
βdef + βDdef + γdef + γDdef

)]
(C1c)

∂tmub = −2µDub − 2νmubγ + %ub −
[
2νdefmub

(
βdef + βDdef

)
+ 2νmubγ

D
]

(C1d)

Here, the expressions [. . .] in the brackets at the end of each line correspond to the new terms with respect to the
equations presented in the main text where νdef = 0 was assumed. Furthermore, we defined

γD =
L−1∑

l=4

gDl βD =
L−1∑

l=4

bDl (C2a)

γdef =
L−2∑

l=2

gl βdef =
L−2∑

l=2

bl (C2b)

γDdef =

L−2∑

l=4

gDl βDdef =

L−2∑

l=4

bDl (C2c)

as i) all the unfinished polymers with defects (superscript D) in either the growing (γD) or blocked state (βD)
ii) all unfinished polymers without defects (no superscript) in either the growing (γdef) or blocked state (βdef) whose
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size is less than or equal to L − 2 so that they still grow by erroneous binding (subscript “def”) without surpassing
the target structure size
iii) all unfinished polymers with defects (superscript D) in either the growing (γDdef) or blocked state (βDdef) whose size
is less than or equal to L − 2 so that they still grow by erroneous binding (subscript “def”) without surpassing the
target structure size.

Before going to the polymers, we shortly illustrate the above “rules” for mn: Previously, the monomers in the
normal state could only bind to unfinished polymers in the growing state γ. So now they additionally bind to the
unfinished polymers in the growing state γD with defects and erroneously to the polymers in the blocked states with
size l ≤ L− 2 (βdef and βDdef).

How does the dynamics of the dimers change? Dimers cannot contain defects, so there are no polymers gD2 or bD2
and the only new terms in g2 and b2 come from erroneous binding of dimers with monomers with which they do not
bind correctly:

∂tg2 = µ (Dn +D× +Db +Dub) p2 − 2νg2MG + ρ2 − [2νdefg2mb] (C3a)

∂tb2 = µ (Dn +D× +Db +Dub) (1− p2)− 2νb2m× − ρ2 − [2νdefb2MD] , (C3b)

where the new terms [. . .] are again in the brackets. Furthermore, we defined

MD = mn +mub +mb (C4)

as all the monomers that bind erroneously to polymers in the blocked state, thereby creating a defect. These are
exactly monomers in the normal, unblocked and blocked state because these cannot bind to polymers in the growing
state.

These additional terms for the monomers appear equivalently for all other polymers without defects that are of size
l ≤ L− 2 and, thus, are small enough to potentially bind erroneously:

∂tgl = 2ν (gl−1MG + bl−1m×) pl − 2νglMG + ρl − [2νdefglmb] (C5a)

∂tbl = 2ν (gl−1MG + bl−1m×) (1− pl)− 2νblm× − ρl − [2νdefblMD] . (C5b)

Finally, the dynamics of the polymers of size L− 1 and L without defects does not change because only a correct
monomer can bind to these structures and they cannot be made by erroneous binding:

∂tgL−1 = 2ν (gL−2MG + bL−2m×) pL−1 − 2νgL−1MG + ρL−1 (C6a)

∂tbL−1 = 2ν (gL−2MG + bL−2m×) (1− pL−1)− 2νbL−1m× − ρL−1. (C6b)

∂tgL = 2ν (gL−1MG + bL−1m×) (C6c)

What is the dynamics of the polymers with defects? To address this question, we distinguish several cases for the
growth into the structures and for the growth out of them. We begin with the growth into the structures:

• Polymers of size l = 4 with defect can only result from erroneous binding of a dimer with a monomer (total size:
2 (from dimer) + 1 (from monomer) + 1 (from defect)).

• Polymers of size l = 5 with defect(s) can result from correct growth of a polymer of size l = 4 with defect or
from erroneous binding of a monomer with a polymer of size l = 3 without defects (there are no polymers of
size l = 3 with defects).

• Polymers of size 6 ≤ l ≤ L with defect(s) can result from correct growth of a polymer of size l − 1 with defect
or from erroneous binding of a monomer with a polymer of size l − 2 with or without defects.

For the growth out of the structures we have

• Polymers of size 4 ≤ l ≤ L−2 can either grow correctly or erroneously by binding of a monomer in the respective
state(s) (see also the dynamics of the monomers).

• Polymers of size l = L− 1 can only grow correctly by binding of a monomer in the respective state(s) because
they are too large to incorporate another defect.

• Polymers of size l = L do not grow any more.
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Taken together, these aspects yield the following dynamics of polymers with defects: For structures of size l = 4:

∂tg
D
4 = 2νdef (g2mb + b2MD) p4 − 2νgD4 MG − 2νdefg

D
4 mb + ρ̃D4 (C7a)

∂tb
D
4 = 2νdef (g2mb + b2MD) (1− p4)− 2νbD4 m× − 2νdefb

D
4 MD − ρ̃D4 , (C7b)

where the flux ρ̃D4 between the blocked and growing state is defined analogously to the fluxes between the blocked
and growing states for the polymers without defects (see below). For structures of size l = 5 we have

∂tg
D
5 =

(
2νdef (g3mb + b3MD) + 2ν

(
gD4 MG + bD4 m×

))
p5 − 2νgD5 MG − 2νdefg

D
5 mb + ρ̃D5 (C8a)

∂tb
D
5 =

(
2νdef (g3mb + b3MD) + 2ν

(
gD4 MG + bD4 m×

))
(1− p5)− 2νbD5 m× − 2νdefb

D
5 MD − ρ̃D5 , (C8b)

and for all structures with 6 ≤ l ≤ L− 2:

∂tg
D
l =

(
2νdef

( (
gl−2 + gDl−2

)
mb +

(
bl−2 + bDl−2

)
MD

)
+ 2ν

(
gDl−1MG + bDl−1m×

))
pl− (C9a)

− 2νgDl MG − 2νdefg
D
l mb + ρ̃Dl

∂tb
D
5 =

(
2νdef

( (
gl−2 + gDl−2

)
mb +

(
bl−2 + bDl−2

)
MD

)
+ 2ν

(
gDl−1MG + bDl−1m×

))
(1− pl)− (C9b)

− 2νbDl m× − 2νdefb
D
l MD − ρ̃Dl .

Finally, we find for the structures of size l = L− 1

∂tg
D
L−1 =

(
2νdef

( (
gL−3 + gDL−3

)
mb +

(
bL−3 + bDL−3

)
MD

)
+ 2ν

(
gDL−2MG + bDL−2m×

))
pL−1 − 2νgDL−1MG + ρ̃DL−1

∂tb
D
L−1 =

(
2νdef

( (
gL−3 + gDL−3

)
mb +

(
bL−3 + bDL−3

)
MD

)
+ 2ν

(
gDL−2MG + bDL−2m×

))
(1− pl)− 2νbDL−1m× − ρ̃DL−1,

and of size l = L:

∂tg
D
L = 2νdef

( (
gL−2 + gDL−2

)
mb +

(
bL−2 + bDL−2

)
MD

)
+ 2ν

(
gDL−1MG + bDL−1m×

)
. (C11)

The only thing left to determine is the exchange dynamics between the polymers with defect in the growing and
blocked state, respectively. Since we assumed that the dynamics of polymers in the growing and blocked state does
not depend on whether the polymers include defects or not, these fluxes for the polymers with defects are entirely
analogous to the fluxes for the polymers without defects. We thus have:

ρ̃Dl = JB
D→GD

l =

{
gDl
pl

dpl
dt if dpl

dt < 0
bDl

1−pl
dpl
dt if dpl

dt > 0.
(C12)

As one can observe in Fig 2 (c), a numerical integration of the full dynamics presented in this section in MATLAB
captures the non-monotonic behavior of the defect-free yield (inset) but not of the overall yield. This is presumably
due to two of the simplifications we made: First, erroneous binding is always possible, irrespective of the state of the
polymers (growing/blocked). As a result, if stochastic effects are strong, erroneous binding is very likely and in the
limit of small activation α → 0, structures acquire more and more defects, leading to a higher yield. (In principle,
the maximal possible yield is L/(L/2 + 1) ≈ 2 because from the dimer state onwards all structures might only bind
erroneously and then only 2+(L−2)/2 = L/2+1 (instead of L) particles would make up one final structure.) Second,
we did not consider that erroneous binding might itself enhance stochastic effects: If species i is unavailable for a long
time, the neighboring species i± 1 might bind erroneously instead of species i. In the end, however, this means that
there will be too many particles of species i available because the defects have already taken the original places of
species i.

Appendix D: Effective theory with bursts

The effective theory as given in the main text, Eqs. 45, 47, 48, 49, can be straightforwardly generalized to the burst
scenario if the bursts are well-separated as described in the main text: The particles of the i-th burst are provided to
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the system only once all binding reactions of the previous i−1-th burst have taken place and no more reactions are
possible.

For b bursts in total, the dynamics of the i-th burst is then determined by the original dynamics as given in the
main text, 45, 47, 48, 49, except for two small modifications.
First, the influx of active particles into the monomer states µ ∈ {n,×,b} due to the activation process is modified by

αNe−αtPµ −→ α
N

b
e−α(t−tfinali−1 )Pµ (D1)

for all t ∈ [tfinal
i−1 , t

final
i ] where tfinal

i denotes the time after which all reactions after the i-th burst have taken place

(and tfinal
0 = 0 by convention). This is just due to the fact that in each burst not N but N/b particles are provided.

Furthermore, at t = tfinal
i−1 the number of inactive particles is increased to N again and a new round of activation

starts.
Second, one has to rescale the time and the number of particles in σ0 with respect to the formula Eq. 15 given in the
main text:

σ2
0 = N (1− e−αt) e−αt −→ N

b

(
1− e−α(t−tfinali−1 )

)
e−α(t−tfinali−1 ). (D2)

Again, this is due to the fact that at t = tfinal
i−1 , there is no variability between the species because exactly N/b particles

per species per preceding burst have been provided. Furthermore, per burst there are only N/b (instead of N) particles
per species, so the Binomial distribution is with respect to N/b (and not N as before). As a result, over time the

maximal standard deviation is given by
√
N/b/2 for b bursts instead of

√
N/2 for only one burst (see also Fig. 5(a)).

The full dynamics is then obtained by a piecewise integration of this dynamics where the initial configuration of
the i-th burst is given by the final configuration of the i−1-th burst (and by convention the initial configuration of
the 1st burst corresponds to the original configuration of the system: all particles are inactive).

Appendix E: Random bursts (limit α→ 0)

In the main text, we restricted our discussion to the case of deterministic bursts with exactly N/b particles per
species per burst (where b denotes the number of bursts). Here, we will touch upon some features of random bursts
where the numbers of particles per species per burst are drawn independently from a random distribution. We will
focus on three types of distributions: Poisson, Gaussian and Binomial statistics. As in the main text, we will restrict
our discussion to the case where the bursts are well-separated in time, meaning that particles of the i-th burst are
only provided once all binding reactions between the particles of the previous bursts have taken place. Furthermore,
we consider the limit α → 0, i.e. the limit where particles are provided one after the other with all possible binding
reactions taking place in between. In this limit, only the ordering of particles matters.

The yield is determined as the number of particles in the target structures relative to the total number Ntot of
particles (of all species) provided to the system:

Y =
LNtarget

Ntot
. (E1)

In the case of a deterministic number of particles, the total number is Ntot = NS and we recover the definition of the
yield as given in the main text.

1. Poisson bursts: no advantage due to several bursts

In this subsection, we illustrate that for bursts for which the particles per species and per burst are drawn inde-
pendently from a Poisson distribution with parameter (mean) N/b per species per burst, the number of bursts does
not have any influence in the limit α→ 0.

In Figure 11 the average yield (and its standard deviation) is shown for systems with b bursts for which the number
of particles per species per burst is drawn independently from a Poisson distribution with mean N0/b. We observe
that in this case the yield is independent of the number b of bursts, in contrast to the case of deterministic bursts
discussed in the main text; Fig. 5(b)).

In more mathematical terms, this can be understood as follows: Suppose there are two species V and W whose
numbers of particles are independently Poisson distributed with mean V̄ and W̄ , respectively. Then the distribution
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FIG. 11. Different numbers of bursts with Poisson distributed numbers of particles. Particles are provided in b
bursts for which the number of particles per species per burst is each drawn independently according to a Poisson distribution
with mean N0/b.The average yield and its standard deviation (averaged over 1000 samples each) is plotted against the number
of bursts for different values of N0: N0 = 3000 (blue triangles), N0 = 1000 (red crosses), N0 = 3000 (yellow diamonds). The
other parameters are L = S = 60, µ = ν = 1, νdef = 0 and α = 10−6.

of the number v of particles of species V conditioned on the total number of particles of species V and W being
v + w = z is given as Binomial distribution with sample size z and probability V̄ /(V̄ + W̄ ):

Prob(V = v|V +W = z) =
Prob(V = v, V +W = z)

Prob(V +W = z)
=

Prob(V = v,W = z − v)

Prob(V +W = z)
=

Prob(V = v)Prob(W = z − v)

Prob(V +W = z)
=

=

V̄ v

v! e
−V̄ W̄ z−v

(z−v)!e
−W̄

(V̄+W̄ )z

z! e−V̄−W̄
=

(
z

v

)(
V̄

V̄ + W̄

)v (
W̄

V̄ + W̄

)z−v
, (E2)

where the third equation is due to the independence of V and W . Furthermore, since the sum of independent Poisson
distributions is again a Poisson distribution with the summed average, V + W is Poisson distributed with mean
V̄ + W̄ . Equation E2 shows that the distribution of the number v of particles of species V conditioned on the total
number of particles of species V and W being v+w = z only depends on the ratio of the averages of the two Poisson
distributions but not on their absolute values.

This argument can be transferred to the self-assembly process with Poisson distributed bursts. The total number
of particles of each species up to burst i is Poisson distributed since the individual numbers of particles per burst are
Poisson distributed as well. For all these Poisson distributions, the ratio between the mean of the number of particles
of one species and the mean of the number of particles of all the S−1 other species is always 1/(S − 1) (or in terms
of V̄ /(V̄ + W̄ ) = 1/S), irrespective of how many bursts are used and in which burst the system currently is. So, the
single-species variance after Ā activation events (or SĀ total activation events) is given by

σ2
Poisson = SĀ

1

S

(
1− 1

S

)
≈ Ā, (E3)

irrespective of the number of bursts. Taken together, this (non-rigorous) argument underpins that in the case of
Poisson bursts, the variances in the relative availabilities of the different species is independent of the number of
bursts. Furthermore, Equation E3 suggests that, in contrast to the deterministic case where the number of particles
per species (per burst) is fixed, the variance increases linearly with the number of activation events and does not
decrease again.

2. Gaussian and Binomial bursts

So far, we have considered two cases: deterministic bursts (with zero variability or zero Fano factor, Fd = 0) and
Poisson bursts (with Fano factor, FPoisson = 1). This raises the question how the yield depends, more generally, on
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FIG. 12. Single random burst with different distributions. The yield and its standard deviation (averaged over 1000
samples each) for systems with one single burst for which the number of particles per species is drawn according to different
distributions is plotted against the Fano factor of the respective distribution. In the Gaussian (Binomial) burst, the number of
each species is drawn independently according to a Gaussian (Binomial) distribution with mean N0 = 1000 (blue; Gaussian:
diamonds; Binomial: crosses) or N0 = 500 (red; Gaussian: diamonds; Binomial: crosses) and Fano factor F = σ2/N0. In the
Poisson burst, the number of each species is drawn according to a Poisson distribution with mean N0. In this case, the Fano
factor is always 1. For better comparison, we nonetheless plot the corresponding average value of the yield (dotted-dashed line)
as a function of the “Fano factor” although the Fano factor does not change. The other parameters are L = S = 60, µ = ν = 1,
νdef = 0 and α = 10−6.

the Fano factor which is defined as the ratio between the variance σ2(X) and the mean 〈X〉 of a random variable X:

F (X) =
σ2(X)

〈X〉 .

Since the Fano factor for a Poisson distribution is always 1, we consider two other distributions to address this
question: a Binomial distribution and a Gaussian distribution. More concretely, we performed simulations for well-
separated bursts for which the number of particles per species per burst is drawn independently from a Binomial
or Gaussian distribution, respectively. In the case of b bursts, the mean is taken to be N0/b per burst per species.
Furthermore, the variance per burst per species is chosen as σ2 = FN0/b, so the Fano factor is F . These expressions
for the mean and the variance directly define the Gaussian distribution. For the Binomial distributions, the mean
and variance translate into a probability p and a sample size NS as follows:

NSp
!
=
N0

b
and Nsp(1− p) !

= F
N0

b
=⇒ p = 1− F and NS =

N0

b(1− F )
. (E4)

Correspondingly, the Binomial distribution can only be defined for a Fano factor F < 1.

a. Single random burst

We consider a system with b = 1 burst first. Figure 12 shows how the yield depends on the Fano factor F for a single
burst for which the number of particles per species is drawn independently from a Gaussian or Binomial distribution
with mean N0 and Fano factor F . For comparison, we also show the average yield of a single Poisson burst with mean
N0. In this case, the Fano factor is always F = 1 and we only plot it as a line for better comparison. As expected, the
yield is smaller for higher Fano factor or larger variance σ2. Furthermore, it does not depend on whether the burst
is drawn from a Gaussian or Binomial distribution since these two distributions align for large enough sample size:
The curves for the two cases lie on top of each other (note, though, that the Binomial distribution is only defined for
Fano factors F < 1; see Eq. E4). At a Fano factor F = 1, these curves cross the average yield for the corresponding
Poisson distribution which also exhibits a Fano factor of 1. Taken together, this suggests that even a single burst
with “controlled variance” (Fano factor F < 1) improves the yield as compared to a system where the particles are
provided according to a Poisson process.
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FIG. 13. Different numbers of bursts with binomially distributed numbers of particles. The yield and its standard
deviation (averaged over 1000 samples each) for systems with b bursts for which the numbers of particles per species per burst
are drawn independently from a Binomial distribution with mean N0/b = 1000/b and Fano factor F = 0.2 (green circles),
F = 0.5 (yellow crosses) and F = 0.8 (red diamonds) is plotted against the number of bursts b. For comparison, we also show
the yield and its standard deviation (averaged over 1000 samples each) for “deterministic” bursts with exactly N0/b particles
per species per burst. The other parameters are L = S = 60, µ = ν = 1, νdef = 0 and α = 10−6. Note that for a Fano factor
F = 0.2 the maximal number of bursts that ensures that the sample size NS of the binomial distribution (see Eq. E4) is an
integer value is bmax = 250.

b. Several bursts

As discussed in the main text, a higher number of bursts improves assembly efficiency if the number of particles
per species per burst is deterministic (and equal for all species; compare Fig. 5(a,b)). How does this change if the
number of particles per burst is drawn according to a distribution with non-zero variance? To address this question,
we considered the case where the number of particles per species is drawn independently according to a Binomial
distribution with mean N0/b per burst (for b bursts) and Fano factor F . We restrict our discussion to the case of the
Binomial distribution: For large numbers of bursts the number of particles per species per burst is small and then
one has to be careful to use a Gaussian distributions due to two reasons:
First, a Gaussian distribution can, in principle, generate negative values. Second, and more importantly, we would
have to convert the continuous Gaussian distribution into a discrete distribution (since the number of particles of each
species should be a natural number). For small averages, this conversion would lead to artefacts.

Fig. 13 shows how the yield depends on the number of bursts if the number of particles per species per burst is
drawn independently from a Binomial distribution with mean N0 = 1000 and Fano factor as indicated in the legend.
In the deterministic case F = 0, the yield increases considerably with the number of bursts (apart from the kink). For
larger values of the Fano factor, this increase is less pronounced but still present. Note, however, that the Binomial
distribution only allows for Fano factors F < 1 (see Eq. E4).

Taken together, this suggests that as long as the bursts are “deterministic enough”, i.e. exhibit a small Fano factor,
yield indeed increases for larger numbers of bursts.

Appendix F: Random non-homogeneous activation rates

As discussed in the main text, non-homogeneous activation rates can considerably increase the yield (compare
Fig. 6(a,b)) if they favor a specific assembly path. In this section, we briefly illustrate that a system with non-
homogeneous activation rates that are randomly distributed over the species generally strongly decreases the assembly
efficiency.

We consider two scenarios.
In the first case, the activation rate of species i is determined by

α(i) = α0(1 + εU[0,1))
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FIG. 14. Random inhomogeneous activation rates with uniformly distributed variability. The average yield and its
standard deviation (for a sample of size 1000 each) is plotted against the variability ε in the activation rate. The activation rate

of species i is given by α(i) = α0(1 + εU[0,1)) where U[0,1) is uniformly distributed between [0, 1) and is chosen independently
for all species and all samples. The parameters are L = 40 (blue circles) or L = 60 (red triangles) and S = L, N = 1000,
α0 = 10−6, µ = ν = 1
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FIG. 15. Random inhomogeneous activation rates with exponentially faster species. The average yield and its
standard deviation (for a sample of size 1000 each; red triangles) are plotted against the exponential base w. The activation rate

of species i is given by α(i) = α0f(perm(i)) where perm creates a random permutation of the species 1, 2, . . . , S, independently
for all samples. f is the scaling function that was also chosen for the case with coordinated inhomogeneous activation rates as
described in the main text: f(i) = wi for i ≤ S/2 and f(i) = wS−i for i > S/2. For comparison, the coordinated case without
permutation, perm ≡ identity, is also shown (blue circles). The parameters are L = S = 40, N = 1000, α0 = 10−6, µ = ν = 1.

where U[0,1) is uniformly distributed between [0, 1) and is chosen independently for all species and all samples. ε
controls the typical variability between two species.

Figure 14 shows how the yield depends on the variability ε. For larger variability between the species, the average
yield decreases. This is expected as higher variability generally leads to larger fluctuations in the availability of the
different species and, thus, to stronger stochastic effects that suppress the yield.

In the second case, we taken the same functional form as in the main text (exponential) only that these activation
rates are not coordinated among the species to yield a favored assembly path but instead are randomly distributed
among the different species. That is, the activation rate of species i is given by
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α(i) = α0f (perm(i))

where f is the scaling function that was also chosen for the case with coordinated inhomogeneous activation rates as
described in the main text: f(i) = wi for i ≤ S/2 and f(i) = wS−i for i > S/2. However, in contrast to the situation
in the main text, perm now creates a random permutation of the species 1, 2, . . . , S, independently for all samples.

Fig. 14 shows how the yield depends on the exponential base w. Since in this case the variability between species
is extremely large (due to the exponential functional form of the scaling function f), the yield strongly decreases
with w and is zero already for w ≈ 1.05. For comparison, we show again the dependency of the yield on w if the
inhomogeneous activated rates are coordinated as described in the main text: perm ≡ identity. Due to the small
range of w shown, the yield only slightly increases.
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9 Summary and discussion

In summary, the goal of this second part of my thesis was to elucidate what role fluctuations
play for the self-assembly of heterogeneous structures made up from different species of par-
ticles. For this purpose, we considered a conceptual model for an irreversible self-assembly
process into several identical, well-defined target structures. We found that stochastic effects
can strongly suppress assembly efficiency if there is demographic noise in the availability of
the species. In the model this demographic noise is due to an activation step: Particles need
to be activated before they are able to bind to other particles. In a deterministic descrip-
tion of the system in terms of mean-field equations, such an additional activation process
is beneficial for the assembly performance and the yield is perfect if activation occurs slow
enough. However, in a stochastic system a slow activation step introduces fluctuations in the
availability of the different species, which can ultimately lead to a strong decrease of assembly
efficiency.

Similar fluctuations might also arise from diffusion of particles in space or from a gradual
production of the building blocks through gene expression. As a result, we believe that
the occurrence of these stochastic effects has important implications for the self-assembly
in living organisms and for artificial self-assembly. In fact, there have been several studies
in which DNA- or RNA-based artificial self-assembly processes have been combined with in
vivo transcription and it has been suggested that co-transcriptional assembly is a promising
strategy for the further development of nanotechnology (see e.g. [246–249]). Conceptually,
such a co-transcriptional assembly is similar to our model with a (slow) activation step:
Assembly already takes place while the building blocks are still produced. Therefore, it
will be interesting to see whether such approaches – when applied to the assembly of large,
heterogeneous RNA- or DNA-brick structures – will be limited by similar stochastic effects
as observed in our model. In this context, it would also be enlightening to test our model
predictions by DNA-origami methods (see also chapter 6). For instance, it might be possible
to extend the experimental system of Ref. [126], where homogeneous ring structures are build
from DNA origami, to heterogeneous rings.

Due to the simplicity of the model we considered, there are of course many aspects of self-
assembly systems whose influence on the occurrence of strong stochastic effects could be
explored. For instance, in a follow-up project [8], we investigated what role the topology
of assembly networks has for assembly efficiency. As also intuitively expected, self-assembly
systems with more freedom in the assembly sequence are generally less susceptible to de-
mographic noise because the order in which particles are made available is less important.
Furthermore, this study suggests that hierarchical assembly schemes may be a way to avoid
stochastic effects. The reason is that in a hierarchical assembly process, the individual assem-
bly hierarchies involve fewer different building blocks and are thus less prone to fluctuations
in the availability of different species. This aspect might add another interesting point to the
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current discussion of whether or not hierarchical assembly is a promising strategy to increase
the assembly efficiency of heterogeneous structures (see also chapter 6).



Conclusion and outlook

Science cannot solve the ultimate mystery of nature. And that is because, in the last
analysis, we ourselves are a part of the mystery that we are trying to solve.

(Max Planck)

A friend of mine recently asked me how I was doing and whether or not I would like the
process of thesis writing since it may be stressful but it might also be a nice opportunity to
reflect on the work that one did during the last years. I think she hit the nail on the head.
For me personally, the process of writing this thesis was definitely stressful: The time to write
felt too short and there are many things that I would still have liked to improve, check or try
out. Nonetheless, it has also been a good opportunity for me to think about how I see myself
as a scientist.
In particular, I realized that I have a strange relation to details. On the one hand, I certainly
have a cognitive bias towards a conceptual reasoning: I am not naturally drawn to remember-
ing names (of historical figures, proteins, equations) or details (such as people’s faces). This
is definitely reflected in my thesis. Irrespective of whether our original motivation came from
microtubules or actin filaments, they were coarse-grained as straight, hard rods with perfect
alignment and without any defects. Similarly, the self-assembly model we considered is – in
a sense – as simple as it gets: rings with maximal internal symmetries (or at most squares)
and numerically numbered species, sometimes with defects.
On the other hand, what drives me to do science is the curiosity to understand – in as much
(technical) detail as possible – why things happen. At least for me, such a detailed under-
standing is only feasible if I reduce the complex world around me to conceptual questions.
Correspondingly, while it is difficult to summarize the different topics covered in this thesis
in one single question, they can be united in terms of one framework: All are based on con-
ceptual approaches that focus on one (or maybe few) particular aspects of the problem, and
in each case, we tried to elucidate principles that may also be relevant for more elaborate
models.

From my point of view this conceptual approach has two advantages: Firstly, it allows us to
really understand what is going on. Secondly, the uncovered principles are certainly interesting
in their own right and might one day prove relevant for systems of which we could never have
thought of.
Then again, it is not always obvious whether the principles are indeed relevant for the intricate
living systems or technological applications we aimed to describe in the first place: They might
still apply, but they might just not be crucial for the complex system.
In my mind, it is exactly the challenge of theoretical biophysics to ask what the right level of
description is for the specific (complex) system and to determine what is important for the
question under consideration.
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In the end, the way to find this out is to collaborate with experimentalists or, at least, to
suggest specific experiments in which the proposed theoretical principles can be tested. If I
were to redo my PhD, the one thing I would change was to pursue such collaborations more
rigorously. And thanks to the technological advancements in synthetic biology and bottom-up
systems, I am sure that the ability to actually do experiments that test our predictions is –
at least to a large extent – already present.
I believe the closest we got to this goal is in the project about filament networks (chapter 4),
where we implemented a specific in silico study which was designed to mimic recent in vitro
experiments and which makes specific predictions for such experimental systems. But looking
back, the other models could, in principle, also be tested experimentally: For the models about
motor transport along filaments (chapters 2 and 3), it might be feasible to use microfluidics
technology [17–19], and for the projects on self-assembly (chapters 7 and 8), DNA-origami or
DNA-brick based methods [28, 112–115, 127, 232, 233] could be applied.
Indeed, I believe experimentalists in both of these fields also show great interest to test
conceptual ideas and to pursue proof-of-principle studies.

In conclusion, I would be very happy to see at least some of the principles of self-assembly
and self-organization that were formulated in this thesis to be tested in experiments. I am
convinced that in order to formulate such principles it is important to start from conceptual
models and to extend them step by step. The models and principles presented here may
provide a good starting point for more elaborate systems.
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[57] I Krämer. Studies of totally asymmetric simple exclusion processes in different diffusive
environments. LMU Munich, Master thesis, 2015 (cit. on p. vi).

https://doi.org/10.1038/nrm2406
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1002/bip.1968.360060102
https://doi.org/10.1016/0001-8708(70)90034-4
https://doi.org/10.1088/0034-4885/74/11/116601
https://doi.org/10.1103/PhysRevLett.67.1882
https://doi.org/10.1007/BF01050430
https://doi.org/10.1007/BF01048050
https://doi.org/10.1103/PhysRevA.45.618
https://doi.org/10.1088/0305-4470/31/33/003
https://doi.org/10.1023/A:1013176229983
https://doi.org/10.1103/PhysRevLett.90.086601
https://doi.org/10.1103/PhysRevLett.90.086601
https://doi.org/10.1016/j.mib.2008.10.005
https://doi.org/10.1007/s00249-011-0741-0
https://doi.org/10.1016/j.semcdb.2011.09.017


Bibliography 235

[58] ML Gupta et al. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein,
explains its role in positioning the yeast mitotic spindle. In: Nature Cell Biology 8
(2006), pp. 913–923. doi: 10.1038/ncb1457 (cit. on pp. vi, 6, 8, 41).

[59] V Varga et al. Yeast kinesin-8 depolymerizes microtubules in a length-dependent man-
ner. In: Nature Cell Biology 8 (2006), pp. 957–962. doi: 10.1038/ncb1462 (cit. on
pp. vi, vii, 6, 8, 41).

[60] V Varga et al. Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Mi-
crotubule Depolymerization. In: Cell 138.6 (2009), pp. 1174–1183. doi: 10.1016/j.
cell.2009.07.032 (cit. on pp. vi, vii, 8, 41).

[61] PM Grissom et al. Kinesin-8 from Fission Yeast: A Heterodimeric, Plus-End–directed
Motor that Can Couple Microtubule Depolymerization to Cargo Movement. In: Molec-
ular Biology of the Cell 20.3 (2009), pp. 963–972. doi: 10.1091/mbc.E08-09-0979
(cit. on pp. vi, 8, 41).

[62] X Su, R Ohi, and D Pellman. Move in for the kill: Motile microtubule regulators. In:
Trends in Cell Biology 22.11 (2012), pp. 567–575. doi: 10.1016/j.tcb.2012.08.
003 (cit. on pp. vi, vii, 8, 41).

[63] T Mitchison and M Kirschner. Dynamic instability of microtubule growth. In: Nature
312 (1984), pp. 237–242. doi: 10.1038/312237a0 (cit. on pp. vi, viii, 4, 5, 7).

[64] J Howard and AA Hyman. Growth, fluctuation and switching at microtubule plus
ends. In: Nature Reviews Molecular Cell Biology 10 (2009), pp. 569–574. doi:
10.1038/nrm2713 (cit. on pp. vi, ix).

[65] JC Walter et al. Surfing on Protein Waves: Proteophoresis as a Mechanism for Bac-
terial Genome Partitioning. In: Physical Review Letters 119.2 (2017), p. 028101.
doi: 10.1103/PhysRevLett.119.028101 (cit. on pp. vi, viii, 46).

[66] S Bergeler and E Frey. Regulation of Pom cluster dynamics in Myxococcus xanthus.
In: PLOS Computational Biology 14.8 (2018), e1006358. doi: 10.1371/journal.
pcbi.1006358 (cit. on pp. vi, viii, 46).

[67] MK Gardner, M Zanic, and J Howard. Microtubule catastrophe and rescue. In: Cur-
rent Opinion in Cell Biology 25.1 (2013), pp. 14–22. doi: 10.1016/j.ceb.2012.
09.006 (cit. on pp. vi, viii, 4, 5, 7).

[68] B Bugyi and MF Carlier. Control of Actin Filament Treadmilling in Cell Motility. In:
Annual Review of Biophysics 39.1 (2010), pp. 449–470. doi: 10.1146/annurev-
biophys-051309-103849 (cit. on pp. vi, vii, 5, 7).

[69] L Mohapatra et al. Design Principles of Length Control of Cytoskeletal Structures. In:
Annual Review of Biophysics 45.1 (2016), pp. 85–116. doi: 10.1146/annurev-
biophys-070915-094206 (cit. on pp. vii, 7, 42).

[70] A Akhmanova and MO Steinmetz. Tracking the ends: a dynamic protein network
controls the fate of microtubule tips. In: Nature Reviews Molecular Cell Biology
9 (2008), pp. 309–322. doi: 10.1038/nrm2369 (cit. on p. vii).

[71] AE Carlsson. Actin Dynamics: From Nanoscale to Microscale. In: Annual Review
of Biophysics 39.1 (2010), pp. 91–110. doi: 10.1146/annurev.biophys.093008.
131207 (cit. on pp. vii, 5, 7).

https://doi.org/10.1038/ncb1457
https://doi.org/10.1038/ncb1462
https://doi.org/10.1016/j.cell.2009.07.032
https://doi.org/10.1016/j.cell.2009.07.032
https://doi.org/10.1091/mbc.E08-09-0979
https://doi.org/10.1016/j.tcb.2012.08.003
https://doi.org/10.1016/j.tcb.2012.08.003
https://doi.org/10.1038/312237a0
https://doi.org/10.1038/nrm2713
https://doi.org/10.1103/PhysRevLett.119.028101
https://doi.org/10.1371/journal.pcbi.1006358
https://doi.org/10.1371/journal.pcbi.1006358
https://doi.org/10.1016/j.ceb.2012.09.006
https://doi.org/10.1016/j.ceb.2012.09.006
https://doi.org/10.1146/annurev-biophys-051309-103849
https://doi.org/10.1146/annurev-biophys-051309-103849
https://doi.org/10.1146/annurev-biophys-070915-094206
https://doi.org/10.1146/annurev-biophys-070915-094206
https://doi.org/10.1038/nrm2369
https://doi.org/10.1146/annurev.biophys.093008.131207
https://doi.org/10.1146/annurev.biophys.093008.131207


236 Bibliography

[72] HV Goodson and EM Jonasson. Microtubules and Microtubule-Associated Proteins.
In: Cold Spring Harbor Perspectives in Biology 10.6 (2018), a022608. doi: 10.
1101/cshperspect.a022608 (cit. on pp. vii, 4, 5, 7).

[73] YHM Chan and WF Marshall. How cells know the size of their organelles. In: Science
337.6099 (2012), pp. 1186–1189. doi: 10.1126/science.1223539 (cit. on pp. vii, 7).

[74] NW Goehring and AA Hyman. Organelle growth control through limiting pools of
cytoplasmic components. In: Current Biology 22.9 (2012), R330–R339. doi: 10.

1016/j.cub.2012.03.046 (cit. on p. vii).

[75] WF Marshall. Cell Geometry: How Cells Count and Measure Size. In: Annual Re-
view of Biophysics 45.1 (2016), pp. 49–64. doi: 10 . 1146 / annurev - biophys -

062215-010905 (cit. on p. vii).

[76] N Sharma et al. Soluble levels of cytosolic tubulin regulate ciliary length control. In:
Molecular Biology of the Cell 22.6 (2011), pp. 806–816. doi: 10.1091/mbc.E10-
03-0269 (cit. on p. vii).

[77] WF Marshall and JL Rosenbaum. Intraflagellar transport balances continuous turnover
of outer doublet microtubules: implications for flagellar length control. In: Journal of
Cell Biology 155.3 (2001), pp. 405–414. doi: 10.1083/jcb.200106141 (cit. on pp. vii,
8).

[78] L Hao et al. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle
and distal segments. In: Nature Cell Biology 13 (2011), pp. 790–798. doi: doi:
10.1038/ncb2268 (cit. on pp. vii, 8).

[79] WF Marshall. Subcellular size. In: Cold Spring Harbor Perspectives in Biology
7.6 (2015), a019059. doi: 10.1101/cshperspect.a019059 (cit. on pp. vii, 7).

[80] M Chesarone-Cataldo et al. The Myosin Passenger Protein Smy1 Controls Actin Cable
Structure and Dynamics by Acting as a Formin Damper. In: Developmental Cell
21.2 (2011), pp. 217–230. doi: 10.1016/j.devcel.2011.07.004 (cit. on pp. vii, 8).

[81] L Reese, A Melbinger, and E Frey. Crowding of molecular motors determines micro-
tubule depolymerization. In: Biophysical Journal 101.9 (2011), pp. 2190–2200. doi:
10.1016/j.bpj.2011.09.009 (cit. on pp. vii, 8, 12).

[82] A Melbinger, L Reese, and E Frey. Microtubule length regulation by molecular motors.
In: Physical Review Letters 108.25 (2012), p. 258104. doi: 10.1103/PhysRevLett.
108.258104 (cit. on pp. vii, 8, 12, 42, 44).

[83] M Bojer. Study of the totally asymmetric simple exclusion process on a length changing
lane in a diffusive environment. LMU Munich, Master thesis, 2016 (cit. on p. viii).

[84] AJ Hunt, F Gittes, and J Howard. The force exerted by a single kinesin molecule
against a viscous load. In: Biophysical Journal 67.2 (1994), pp. 766–781. doi: 10.
1016/S0006-3495(94)80537-5 (cit. on pp. viii, 68).

[85] K Svoboda and SM Block. Force and velocity measured for single kinesin molecules.
In: Cell 77.5 (1994), pp. 773–784. doi: 10.1016/0092-8674(94)90060-4 (cit. on
pp. viii, 68).

[86] K Visscher, MJ Schnitzer, and SM Block. Single kinesin molecules studied with a
molecular force clamp. In: Nature 400 (1999), pp. 184–189. doi: 10.1038/22146 (cit.
on pp. viii, 6, 68).

https://doi.org/10.1101/cshperspect.a022608
https://doi.org/10.1101/cshperspect.a022608
https://doi.org/10.1126/science.1223539
https://doi.org/10.1016/j.cub.2012.03.046
https://doi.org/10.1016/j.cub.2012.03.046
https://doi.org/10.1146/annurev-biophys-062215-010905
https://doi.org/10.1146/annurev-biophys-062215-010905
https://doi.org/10.1091/mbc.E10-03-0269
https://doi.org/10.1091/mbc.E10-03-0269
https://doi.org/10.1083/jcb.200106141
https://doi.org/doi:10.1038/ncb2268
https://doi.org/doi:10.1038/ncb2268
https://doi.org/10.1101/cshperspect.a019059
https://doi.org/10.1016/j.devcel.2011.07.004
https://doi.org/10.1016/j.bpj.2011.09.009
https://doi.org/10.1103/PhysRevLett.108.258104
https://doi.org/10.1103/PhysRevLett.108.258104
https://doi.org/10.1016/S0006-3495(94)80537-5
https://doi.org/10.1016/S0006-3495(94)80537-5
https://doi.org/10.1016/0092-8674(94)90060-4
https://doi.org/10.1038/22146


Bibliography 237

[87] MT Valentine et al. Individual dimers of the mitotic kinesin motor Eg5 step pro-
cessively and support substantial loads in vitro. In: Nature Cell Biology 8 (2006),
pp. 470–476. doi: 10.1038/ncb1394 (cit. on pp. viii, 68).

[88] S Fürthauer et al. Self-straining of actively crosslinked microtubule networks. In: Na-
ture Physics 15 (2019), pp. 1295–1300. doi: 10.1038/s41567-019-0642-1 (cit. on
pp. ix–xi, 67, 70, 72, 73).

[89] KS Burbank, TJ Mitchison, and DS Fisher. Slide-and-Cluster Models for Spindle
Assembly. In: Current Biology 17.16 (2007), pp. 1373–1383. doi: 10.1016/j.cub.
2007.07.058 (cit. on pp. ix, x, 3, 67, 73).

[90] G Yang et al. Regional variation of microtubule flux reveals microtubule organization
in the metaphase meiotic spindle. In: Journal of Cell Biology 182.4 (2008), pp. 631–
639. doi: 10.1083/jcb.200801105 (cit. on pp. ix, x, 67, 73).

[91] J Brugués et al. Nucleation and transport organize microtubules in metaphase spindles.
In: Cell 149.3 (2012), pp. 554–564. doi: 10.1016/j.cell.2012.03.027 (cit. on pp. ix,
x, 67, 73, 114).

[92] DA Fletcher and RD Mullins. Cell mechanics and the cytoskeleton. In: Nature 463
(2010), pp. 485–492. doi: 10.1038/nature08908 (cit. on pp. ix, 3–6).

[93] TD Pollard and RD Goldman. Overview of the cytoskeleton from an evolutionary per-
spective. In: Cold Spring Harbor Perspectives in Biology 10.7 (2018), a030288.
doi: 10.1101/cshperspect.a030288 (cit. on pp. ix, 3–5).

[94] LC Kapitein et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it
crosslinks. In: Nature 435 (2005), pp. 114–118. doi: 10.1038/nature03503 (cit. on
pp. ix, 6, 7, 67).

[95] RA Cross and A McAinsh. Prime movers: The mechanochemistry of mitotic kinesins.
In: Nature Reviews Molecular Cell Biology 15 (2014), pp. 257–271. doi: 10.
1038/nrm3768 (cit. on pp. ix, 3, 7).
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