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1. Introduction 

In the development of liquid formulations of therapeutic drug proteins, 

controlling the protein’s stability is of utmost importance1. A protein’s stability 

can be considered as its resistance to deviate from its original, native state. One 

of the major pathways of protein degradation is aggregation, which for a given 

protein and container can only be controlled by its solution environment2. 

Protein formulations are therefore optimized in terms of their pH, ionic 

strength and co-solutes. The latter are typically chosen from a limited list of 

historically used substances generally regarded as safe and are referred to as 

excipients3. It is therefore of interest to assess the protein-stabilizing potential 

of substances beyond the list of currently used excipients. This requires the 

development of systematic approaches that can identify new substances with 

the potential to stabilize proteins. The discovery of such new substances is for 

example of interest to formulate proteins in solution otherwise only stable in 

the dried state. New excipients could also help to achieve protein formulations 

that are stable at room temperature. 
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As outlined in this thesis, the challenge of discovering protein-stabilizing 

excipients can be faced by numerous strategies. Regardless of the approach 

chosen, understanding of protein aggregation and protein-excipient 

interactions is fundamental. Underlying both phenomena are non-covalent, 

pairwise atomic interactions which are described in the introduction. Low 

molecular weight substances are added to protein formulations, among other, 

with the purpose of inhibiting the formation of protein aggregation. Their 

mechanism of action is discussed briefly. Additionally, a structural elucidation 

of protein aggregation and protein-excipient interaction is helpful to 

understand and drive decision-making in excipient discovery. Therefore, 

examples of relevant applications are presented. The introduction is wrapped 

up by describing strategies to identify small molecules with certain desired 

physicochemical attributes, as it is common in drug discovery. 

1.1. Non-covalent molecular interactions 

Non-covalent interactions of molecules are ubiquitous in nature and of central 

importance in the development of drugs. They drive signaling in a cell and 

underly the mechanism of most drugs4. They are also responsible for self-

interaction and aggregation of molecules. Non-covalent interactions are also 

involved when excipients stabilize a protein in its formulation5. A theoretical 

description of non-covalent interactions is exploited to simulate atomistic 

processes, for example by molecular dynamics simulations. 

Electrostatic interactions are the strongest of interactions involved in non-

covalent binding6. For two single point charges it is described by Coulomb’s law, 

which considers the magnitude and position of the interacting charges and the 



Introduction 
 

 
 
13 Discovery of protein-stabilizing Excipient Candidates 

presence of any dielectric material surrounding them, by taking into account 

the dielectric constant. A common example are salt bridges that form if 

oppositely charged amino acid residues are in close contact to each other. 

Van der Waals interactions describe an attractive interaction between neutral 

atoms. They are actually the combined effect of multiple phenomena7,8. These 

are electric dipole-dipole interactions (Keesom interactions)9, induction (Debye 

interactions) or dispersion interactions (London interactions)10. Opposed to the 

attractive interactions of neutral atoms is a short range repulsive effect, as, 

when approximated, the atoms’ electrons would not comply to the Pauli 

principle, as they have the same spin in the same location11. The Lennard-Jones-

potential is commonly employed to describe the repulsive and the attractive 

interactions between neutral atoms. The parameter r describes the distance 

between two nuclei, ! is the depth of the potential well and " the zero-potential 

distance. Attractive interactions scale with the power of 6, repulsive interactions 

with the power of 12 (Equation 1.1)12. 

#!"(%) = 4!	 *+"%,
#$
− +"%,

%
. Equation 1.1 

Charge-dipole interactions form between ions and molecules with a dipole as 

for example water or CO and NH groups from the protein backbone. A dipole 

can however also be induced by either another dipole or a charge, also referred 

to as polarization13. Dipole-dipole interactions can lead to the stacking of amides 

due to their large dipole moment, leading to an antiparallel orientation14,15. 

In the context of biochemistry and drug development, hydrogen bonds are 

typically encountered between hydrogen carrying oxygen or nitrogen atoms 
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and lone pair carrying oxygen or nitrogen atoms16. The O-H or N-H groups both 

have a strong electric dipole moment, with the hydrogen carrying a positive 

partial charge, making it prone to interact with the free lone pair of oxygen or 

nitrogen atoms. Beta-sheets and alpha-helices in proteins are examples of 

structural motifs that form due backbone hydrogen bonds. 

Classical hydrophobic interactions are driven by a loss of entropy caused by an 

increased order of water molecules in the first layer of a hydrophobic molecule’s 

hydration shell. By minimizing the solvent exposed surface area through 

interaction with another hydrophobic binding partner, the number of ordered 

water molecules is minimized17. Non-classical hydrophobic interactions driven 

by enthalpy changes have also been observed18. 

π-stacking refers to a preferential orientation of aromatic systems, which are 

often observed to align in an off-centered, parallel or a centered, t-shaped 

fashion (Figure 1.1)19. The attractive forces governing π-stacking have been 

shown to be electrostatic and dispersion20. 

 

Figure 1.1: Relative configuration of benzene molecules upon favorable π-stacking 

interaction. Left: off-centered, parallel orientation. Right: centered, t shaped. 

Cation-π interactions have been first observed between potassium and 

benzene21. Theoretical calculations showed that the cation would preferentially 
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be situated on top of the aromatic ring’s center. Since their discovery, multiple 

examples involving aromatic and non-aromatic π-systems and various cations, 

have been described, also in biologic systems4,22. Cation-π interactions have long 

found their way into molecular dynamics force-fields, for example by adding an 

additional “10-12-term” to the Lennard-Jones potential23. 

Covalently bound atoms of the groups IV to VII show an anisotropic charge 

distribution, resulting in an area of positive electrostatic potential located 

opposite to the covalent bond, a so-called σ-hole. This leads to interactions with 

nucleophiles or Lewis bases24. Sigma-holes can for example lead to a preferred 

conformation or locking due to the interaction of Sulfur with a Nitrogen’s lone 

pair25. 

Molecular interaction of course is more than the sum of the pairwise 

interactions described above. Conformational changes and solvation or 

desolvation occur often simultaneously, adding further complexity to the 

process. 

1.2. Protein aggregation 

Protein aggregation is a particular complex example of a molecular interaction 

relevant to many sectors in biotechnology, but especially to the pharmaceutical 

industry. While studied for long, it has been, on the one hand, a topic of recent 

attention due to its possible involvement in Alzheimer’s disease26. On the other 

hand, with an ever-increasing amount of protein therapeutics being 

investigated and marketed, protein aggregation has been identified as a 

fundamental quality attribute27. Here, we will focus on the latter. 
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The first and most obvious reason for pharmaceutical companies to control and 

limit the aggregation of protein drugs is that it is imposed by regulatory 

agencies. The Food and Drug administration does so, for example in USP 787 

and 788, by giving limits to the number of particles, which can form from 

aggregated proteins, while the European medicines agency specifies them in 

EuPh 2.9.19.28. Stress induced protein aggregation has been shown to cause 

inactivation, which can lead to a reduced drug efficacy29. Protein particles have 

been furthermore related to immune responses, leading to anti-drug antibody 

induced loss of efficacy and allergic reactions in the patient30,31. What property 

it is that distinguishes immunogenic from non-immunogenic aggregates 

remains a topic of ongoing investigation32. By comparing aggregates formed 

from different mAbs with an artificial lymph node, it was for example recently 

shown that the immune response depends on the aggregates’ parent protein33. 

Reversible, native aggregation, i.e. native self-association, can be either driven 

by attractive electrostatic interactions resulting from an inhomogeneous charge 

distribution on the protein’s surface or hydrophobic interactions that occur 

when the protein’s net charge is low. The protein’s net charge is controlled by 

its pH dependent protonation and charge shielding caused by ions present in 

the protein containing solution34. 

Non-reversible, non-native protein aggregation is driven by the previously 

described hydrophobic effect. Partially unfolded proteins expose hydrophobic 

regions that are buried in the protein core of the native conformation. The 

interaction of the hydrophobic regions of two partially unfolded proteins is 

therefore thermodynamically favored. The microscopic steps of the process of 
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formation of an aggregation prone, partially unfolded species and the 

nucleation can be elucidated by studying the kinetics of aggregation35. 

Mechanism of aggregation 

Understanding the underlying mechanism in the formation of aggregates is of 

highest interest in the field of protein stability and formulation development, as 

it helps to design formulations according to the desired stability profile. 

There are multiple characteristics of an aggregation mechanism, that are 

helpful to classify and understand a process. Aggregates may form in a 

reversible way, meaning that they will dissociate for example upon dilution or 

heating36. They may be constituted by monomeric units maintaining largely 

their native state, in which case the terms clustering, self-assembly or self-

association is often preferred over the more general aggregation term. Insulin 

is one of the most common examples for native protein aggregation37. In the 

context of protein stability, non-native monomeric units have been recognized 

as being the dominant species in formed aggregates38. The presence of non-

native protein molecules implies a conformational change in the monomeric 

unit which can occur either after or prior to self-association39. Non-native 

aggregates are considered to be irreversible unless exposed to elevated 

temperatures or chemical denaturants40,41. 

Aggregation kinetic studies help to identify the multiple elementary steps 

occurring in protein aggregation42,43. Partial unfolding, as mentioned before, is 

often observed in protein stability studies44. Here, conformations significantly 

different from the native state form and expose hydrophobic structural features 

which facilitate aggregation. During primary nucleation, two monomers form 
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an aggregate, either in bulk or at an interface. Aggregate growth occurs by the 

addition of monomers to aggregates, a process referred to as elongation in the 

case of fibrils45. In secondary nucleation, two monomers form an aggregate at 

the interface of another protein aggregate. It can be divided in three phases. 

First, two monomers adsorb to the aggregate surface. In a second step they react 

to form the new aggregate. Finally, the new aggregate desorbs from the other 

aggregate’s surface46. As previously stated, non-native aggregates are 

irreversible, but aggregate decomposition can still occur to a certain extent, for 

example by fragmentation of filaments that leads to the exposure of additional 

nuclei47. Monomer dissociation, which is the opposite to elongation, is largely 

neglected in the description of aggregation processes as it is considered to be 

very slow, thus the irreversibility of aggregation. Its role becomes relevant only 

at very high aggregate to monomer ratios45,46,48. 

The described complexity in aggregation processes typically results in a non-

Arrhenius behavior, making prediction of low temperature protein stability 

from accelerated, high temperature stability studies very challenging49. 

Isothermal chemical denaturation assays appear to be more appropriate 

predictors50. 

Aggregation mechanisms are susceptible to even minor changes in the protein 

structure, as was demonstrated for amyloid-beta 40 and 42 proteins, which 

differ by merely 2 amino acid residues48. The protein environment can also have 

an effect on the mechanism of aggregation. Small molecules have been 

demonstrated to inhibit different elementary steps of the aggregation of 

amyloid-beta 4251. 
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Aggregation mechanisms do not only vary by protein structure and formulation 

conditions but of course also by the type of stress a protein is exposed to. 

Freezing and thawing will lead to a different pathway of aggregate formation 

compared to heating. Multiple simultaneously occurring stress factors are 

present during freezing and thawing, which are absent upon heating. These 

include interfacial stress from the formation of ice, cold denaturation, and up-

concentration. A change in the reaction rates for the elementary steps seems 

therefore mandatory when going from heat stress to freeze-thaw stress. It has 

been shown for an antibody, that different stresses will involve different protein 

residues in the formation of oligomerization interfaces52. The interplay between 

structure, formulation, mechanism and stress appears to be highly complex. 

Stabilization of proteins through low molecular weight co-solutes 

Protein stabilization by a small molecule co-solute is aimed at increasing the 

free energy of unfolding, thus shifting the equilibrium from the non-native, 

aggregation prone, to the native, non-aggregation prone state of the protein. 

This can be achieved by either stoichiometric binding to the native state or 

preferred hydration.  

Stabilization through stoichiometric binding requires that the small molecules 

affinity to the native state is higher than to the non-native one. This implies 

specificity of binding to a region that is prone to partially unfold, since binding 

to a region that largely retains its structure would not lead to the desired 

preferred affinity to the native state, but to similar affinities in both unfolded 

and folded states. The effect is often employed in thermal shift assays for drug 

discovery53. 



Introduction 
 

 
 
Discovery of protein-stabilizing Excipient Candidates 20 

Instead of binding, preferential exclusion, also referred to as preferential 

hydration, can cause the same desired shift of equilibrium towards the native 

protein54. Preferential exclusion refers to the phenomenon of a decreased co-

solute concentration at the protein surface relative to the bulk solution. This 

unfavorable state is proportional to the solvent accessible surface area (SASA) 

of the protein. Since unfolding will increase the protein’s SASA, the amount of 

excluded co-solute will also increase. The non-native state is therefore less 

favored than the native state, resulting in a stabilization5.  

While for stoichiometric stabilization, the required co-solute concentration 

depends on its binding affinity, for preferential exclusion, the effective co-

solute concentration is empirically found to be approximately 100 mM to 10 

mM55,56. Both mechanisms of stabilization have been described for frozen and 

liquid protein formulations57. Stoichiometric binding and preferential exclusion 

are not mutually exclusive but can occur simultaneously for the same solute. 

Depending on the co-solutes concentration, one or the other phenomena is 

however more dominating regarding protein stability57.  

Structural biology, computational chemistry and bioinformatics in protein 

stability and formulation 

The process of liquid formulation development for therapeutic proteins 

traditionally consists of an empirical screen of the different proteins or 

formulation parameters by high throughput stability indicating methods such 

as for example DSF or nanoDSF58. Alternatively, accelerated stability studies 

with multiple formulations can be performed. Based on thresholds for a stability 

indicating parameter such as for example the inflection point Tm or the 

monomer retention, the most stable formulations then proceed to long term 
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studies. Statistical analysis of the formulation and sequence design space by 

design of experiment or neural networks are now employed to accelerate the 

development process59,60. 

Opposed to these straightforward strategies are approaches that rely on 

extracting information from the protein structure. The best-known method to 

study protein structures is X-ray crystallography. The formation of protein 

crystals implies the self-association of the protein in a highly ordered manner 

and is typically achieved maintaining the protein’s native structure. The 

structures are therefore not representative of those of aggregates that form as 

the result of protein degradation. Crystal structures are, however, ideal to study 

the structures of excipient molecules bound to proteins complexes (Table 1.1). 

Cryo electron microscopy single particle analysis (Cryo-EM) has evolved more 

recently as a structure elucidation method and has been also employed to 

characterize protein complexes, achieving resolutions similar to those obtained 

by X-ray crystallography. The extreme conditions to which proteins are 

exposed, such as vacuum and low temperatures and the required sample 

preparation techniques, such as staining make it unsuitable for a direct study of 

formulation effects in situ61–63. It has however been employed to determine the 

structure of protein aggregates, which makes it an interesting method to study 

also aggregates of therapeutic proteins64,65. Cryo-EM was also used to resolve the 

structure of complexes between proteins and common excipient molecules 

(Table 1.1)66. 

Solution nuclear magnetic resonance (NMR) spectroscopy is another well-

established method for structure elucidation. It offers a broad range of 
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applications designed to answer all sorts of questions related to protein 

structure. One of the main applications of NMR consists in the study of protein-

ligand interactions, for example to identify binding sites67. NMR was also used 

to resolve the structure of protein-arginine complexes (Table 1.1).  

Table 1.1: Occurrences of common excipient molecules as ligands in the PDB, 

determined by NMR, X-ray crystallography or Cryo electron microscopy 

(14.07.2019). 

Excipient molecule X-Ray NMR Cryo-EM 

Sucrose 251 0 0 

Trehalose 61 0 0 

L-arginine 193 6 1 

Sorbitol 19 0 0 

Glycine 252 0 2 

 

While classic NMR experiments are limited to proteins with a molecular weight 

of up to approximately 35kDa68, there are numerous approaches to also study 

larger proteins indirectly. 19F Dark-state exchange saturation experiments allow 

for example the characterization of antibody clusters in highly concentrated 

formulations. While the method can elucidate cluster populations, 

concentrations and sizes, it cannot identify the oligomerization interfaces69. For 

proteins below the critical size limit, oligomerization interfaces can be 
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identified indirectly for example by paramagnetic relaxation enhancement70. 

Another method that provides information on the oligomerization interface 

measures hydrogen-deuterium exchange rates71.  

Instead of measuring Hydrogen-deuterium exchange by NMR, it is also possible 

to do so by mass spectrometry (HDX-MS)72. Advantages are the higher sensitivity 

of HDX-MS and a higher limit regarding the size of the protein. 

Based on the paradigm that specific regions or residues of a protein are involved 

in either native self-association or aggregation, models have been developed to 

predict protein-protein association and aggregation prone regions.  

Protein-protein docking algorithms were developed to correctly predict protein-

protein complexes from the structures of the individual proteins73–75. Methods 

are typically based on shape and chemical complementarity and are intended 

for strong, biochemical protein-protein interactions rather than weak self-

association and aggregation. They also imply a native structure of the binding 

partners. Modern protein-protein docking methods account only for a limited 

degree of protein backbone flexibility and protonation effects76. Partial 

unfolding is not accounted for in protein-protein docking. 

Molecular mechanics simulations present an alternative route to understanding 

processes of protein aggregation. Atomistic simulations of protein aggregation 

have been reported for small peptides77. Due to their large computational cost, 

atomistic simulations are not expected to play a role in the simulation of 

aggregation processes of larger proteins in the foreseeable future.  
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Instead, the computational burden of simulations can be reduced at the cost of 

accuracy and structural resolution by employing coarse grained models. 

Aggregation processes of amyloidogenic peptides mediated by surfaces were for 

example simulated by representing the peptides as patchy spherocylinders78.  

Instead of simulating protein-protein interactions to identify oligomerization 

interfaces, heuristic approaches have been developed that relate intrinsic (e.g. 

hydrophobicity) and extrinsic (e.g. their neighboring residues) residual 

properties to their aggregation propensity. The computational burden of these 

methods is minimal and many have been made available through 

webservers79,80. 

1.3. Parallels to small molecule drug discovery 

While the process of discovering new excipients is barely rationalized or 

described, this is not the case for the discovery of small molecular drugs. 

Despite them serving a different purpose, multiple concepts can readily be 

transferred to the discovery of new small molecule excipients. In the following, 

the hit to lead process in drug discovery will be outlined shortly before parallels 

to excipient discovery are discussed. 

The most common approach to small molecule drug discovery consists in 

identifying a substance that binds to a target identified as relevant, in order to 

either activate or inhibit it. Typically, the process starts with the identification 

of hits, meaning substances that show the desired activity in a specific assay. 

Strategies to discover hits are for example high throughput screening (HTS) of 

large compound libraries, where large compound libraries are tested 

experimentally for example for binding, a shift in protein stability or 
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biochemical activity. HTS assays are often fluorescence based as it can be 

detected at a high sensitivity and therefore allows for sample miniaturization81. 

Examples include microscale thermophoresis (MST), differential scanning 

fluorimetry (DSF), time-resolved fluorescence energy transfer (TR-FRET) or 

scintillation proximity assays (SPA)82–84. An alternative to experimentally 

screening compound libraries comes in the form of virtual screens (VS). In a VS, 

compounds in large databases are filtered by queries that span from 

physicochemical attributes over matching a defined pharmacophore to 

automated docking and scoring85,86. The detailed strategy selected in a virtual 

screen depends on the available knowledge regarding target and ligand 

structures and the desired hit profile.  

After hits were identified, an expanded set of analogs to the hits is generated to 

obtain a series of related substances that differ by only a few structural features, 

a so-called lead series87. Lead series are evaluated by their properties regarding 

target affinity but also absorption, distribution, metabolism and excretion 

(ADME) in humans.  

One of the central paradigms in lead series generation is the development of a 

structure activity relationship (SAR). While there are numerous approaches to 

SAR, they all share the concept of correlating a small molecule descriptor to the 

molecule’s activity. Hansch and Dunn found for example a linear relationship 

between drug lipophilicity and biological activity88. As mentioned previously, in 

the so called SAR by kinetics method, authors identified physicochemical 

descriptors that correlate with a substance’s propensity to inhibit aggregation of 

proteins related to Alzheimer’s disease51.  
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Structure-based drug discovery (SBDD) presents an alternative approach to lead 

series generation and affinity optimization that is based on knowledge of the 

target-hit complex structure89. Favorable and unfavorable interactions between 

the hit molecule and the target can be identified and the hit molecule’s structure 

can be adapted to optimize the interaction profile accordingly. 

While hit identification is centered solely on the interaction with the target 

protein, affinity optimization is not the only property considered in the 

generation and evaluation of lead series. Depending on the route of 

administration, small molecule drugs have to be optimized regarding 

absorption into the bloodstream. This implies crossing cell membranes, which 

can occur by diffusion or carrier transport. Numerous models exist to predict a 

substance’s absorption90. Since absorption depends on physicochemical 

properties such as solubility and permeability, lead structures can be evaluated 

and optimized accordingly. After absorption, small molecules are distributed to 

extracellular fluid and tissues, with transfer mechanisms similar to those 

occurring during absorption. Volume of distribution and fraction unbound, two 

properties describing drug distribution, can be predicted from molecular 

descriptors91–94. Assessing a compounds metabolization profile is important 

before advancing it into clinical trials. Knowledge regarding its susceptibility to 

metabolization and resulting metabolites is crucial. A structure-metabolism 

relationship has been reported for the metabolic enzyme aldehyde oxidase95. 

Next to metabolization, excretion is a second major pathway of drug 

elimination. Also drug clearance can be predicted using physicochemical 

descriptors and structural features96. 
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Drug toxicity typically describes adverse effects that occur at concentrations 

above the therapeutic dose. In drug discovery, it is desirable to increase the gap 

between therapeutic and toxic dose97. As conventional, non-clinical toxicity 

studies are slow and require animal experiments, several approaches to predict 

toxicity from the small molecule structure have been developed98–101. When 

evaluating small molecule toxicity, it is important to consider the parent 

molecule and its metabolites102. Given the multitude of parameters to be 

considered during lead development, QSAR models have been developed to 

optimize structures in terms of multiple of the aforementioned objectives, 

which are often in conflict with one another103. 

The most promising series of compounds is optimized and investigated in assays 

of higher complexity, such as animal studies, before a clinical candidate is 

selected104. It is worthwhile mentioning that organic synthesis is the key 

enabling technology for drug discovery. Only the continued evolution of 

synthesis methods allows the generation of the compounds required to build 

QSARs and modify hits in SBDD. Organic synthesis in drug discovery is beyond 

the scope of this thesis, but excellent reviews are available105. The field is 

currently moving towards increased automation of compound synthesis, testing 

and optimization106. 

When considering the discovery of new small molecule excipients, applying the 

same screen to hit to lead approach seems plausible. High throughput stability 

indicating methods such as nanoDSF are available. When the excipients desired 

mechanism is by stoichiometric binding, a structure-based approach as in SBDD 

is possible (Chapters 1-3). QSARs are applicable for both, stoichiometric binding 

and preferential exclusion stabilizers (Chapter 4). Just as drugs, also excipients 
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are absorbed, distributed, metabolized and excreted and they will be toxic above 

a certain concentration. It is thus apparent that excipients have to be optimized 

in terms of these parameters, but with a different target profile than that of a 

drug. An excipient’s desired ADME profile is quite different to that of a drug. 

Ideally, an excipient spends as little time as possible in a patient’s body. Rapid 

metabolization could therefore be beneficial for an excipient as long as the 

metabolites are harmless. As most protein therapeutics are administered 

intravenously, excipient absorption does not have to be considered here, but 

transport across membranes remains relevant to the excipient’s distribution. 

When designing a novel excipient, its stabilizing effect is consequently a 

necessity but not a sufficiency.
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2. Aim and outline of the thesis 

The aim of this thesis is to describe strategies that can be used to successfully 

identify small molecules that reduce the formation of aggregates of therapeutic 

proteins and could potentially be used for their formulation. Consequently, this 

will also demonstrate the potential in the chemical space to stabilize proteins 

compared to standard excipients.  

Besides simply expanding the parameter space available to formulation design, 

improved excipients are also demanded by the pharmaceutical industry due to 

shortcomings of those currently employed. Polysorbate has for example been 

linked to particle formation and protein oxidation. 

The current strategy in the development of therapeutic proteins consists of 

sequence optimization followed by formulation optimization. Sequence 

optimization typically consists of replacing aggregation prone residues of the 

protein. However, when considering antibody-target complexes, we observe 

that a large majority of aggregation prone residues are also present in the mAb’s 

target binding paratope, indicating their presence is mandatory to achieve a 

sufficiently high target affinity (Figure 2.1). This implies that there is a natural 
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limit to the stability achievable by sequence and buffer optimization. New 

excipients can push stability boundaries beyond these without affecting the 

drug’s target affinity. 

 

Figure 2.1: Aggregation prone residues present in drug-target interface for 30 mAb 

structures. 

Recently, patent protection of many of the first-generation therapeutic 

antibodies has expired. New excipients present an opportunity to expand the 

patent lifetime of a drug, if the new formulation is superior to the former. This 

could for example be the case if the new excipient achieves a reduction in 

immunogenicity of the drug product, due to a lower particle load compared to 

the standard formulation.  

The thesis starts with a target-based approach to excipient discovery that 

consists of three parts. First, we describe our strategy that led to the 

identification of a novel stabilizing dipeptide. It parts from a virtual screen that 

is used to identify hit molecules to be tested experimentally. Subsequent binding 

and forced degradation studies characterize the small molecule’s effect on 

protein stability. A similar virtual-screen approach was also applied to the 

monoclonal antibody Trastuzumab. The work resulted in the discovery of the 
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stabilizing effects of the substance N,N,N',N'-tetrakis-(2-hydroxyethyl) adipinic 

acid amide. A patent application describing the use of this substance as 

excipient was submitted. The corresponding data can be found in the appendix 

of this thesis. 

Next, we describe a novel method to identify aggregation prone regions by using 

solution paramagnetic enhancement NMR. The results are then compared to in-

silico prediction tools. The target-based approach is wrapped up by a study of 

the mechanism of interaction between the protein and the dipeptide by 

molecular dynamics simulations analyzed by the Markov chain formalism. 

To overcome the limitations encountered in the structure-based approach, the 

final chapter describes the development of a ligand-based model by combining 

chemoinformatic methods and machine learning with a recently developed 

stability indicating method. 
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3. Structure-based Discovery of a new 

Protein-Aggregation Breaking Excipient 

A version of this chapter has been published in the European Journal of Pharmaceutics 

and Biopharmaceutics: 

Tosstorff, A., Svilenov, H., Peters, G.H.J., Harris, P. & Winter, G. Structure-

based Discovery of a new Protein-Aggregation Breaking Excipient, Eur. J. 

Pharm. Biopharm. 144, 207-216 (2019). 

This work was conducted in collaboration with the Department of Chemistry of the 

Technical University of Denmark. The manuscript was written by Andreas Tosstorff. 

Hristo Svilenov provided scientific advice and reviewed the manuscript. Pernille 

Harris reviewed the manuscript. Surface pressure measurements were performed by 

Luis Sánchez. Other experiments, simulations and data analysis were performed by 

Andreas Tosstorff under the supervision of Günther H.J. Peters and Gerhard Winter. 
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3.1. Abstract 

Reducing the aggregation of proteins is of utmost interest to the pharmaceutical 

industry. Aggregated proteins are often less active than their non-aggregated 

form and upon administration, they can cause severe immune reactions in the 

patient. Despite these risks, there is an increasing demand for high 

concentration formulations and products that do not require refrigerated 

storage conditions, both of which favor the formation of aggregates. For a given 

protein, solution pH, ionic strength and concentration of a very limited number 

of excipients are the only parameters that can be varied to obtain a stable 

formulation. In this work, we present a structure-based approach to discover 

new molecules that successfully reduce the aggregation of proteins and apply 

the approach to the model protein Interferon-alpha-2a. 

Keywords 

Interferon-alpha-2a, Virtual Screen, Excipient, Protein Aggregation, Protein 

Formulation  

3.2. Introduction 

Protein aggregation 

When assessing the development and production of therapeutic proteins, their 

aggregation is a major concern to regulatory agencies across the world. Not only 

can aggregation cause a decrease in biological activity, but the resulting 

aggregates also raise serious safety concerns as they can induce immunogenic 

side reactions upon parenteral injection107. Pharmaceutical companies 
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therefore strive to inhibit the formation of protein aggregates early on during 

drug development1.  

The process of protein aggregation is very complex, with thermodynamics and 

kinetics depending on formulation conditions, stress, protein sequence and 

structure108. Proteins aggregate through the interaction of exposed hydrophobic 

regions, which is driven by the classical hydrophobic effect. There is a variety 

of models suggesting different microscopic steps involved in the formation of 

aggregates. Typically these involve the formation of an aggregation prone 

species and nucleation38. Depending on the mechanism of aggregation, the 

resulting aggregates can consist of native or (partially) unfolded protein 

molecules. As shown by mutation experiments, hydrophobic patches on the 

proteins surface, so called aggregation hot-spots, are crucial to the formation of 

protein-protein interfaces, a key step in the formation of aggregates109. Various 

computational tools to identify aggregation hot-spots from a protein’s primary 

sequence are available79,110,111. Aggrescan3D (A3D) additionally takes into 

account the tertiary structural information of the protein, mitigating the risk of 

false positive results from hydrophobic residues buried within the protein 

fold80.  

Excipients 

Excipients reduce protein aggregation by various mechanisms of action. 

Computational studies suggest that arginine binds non-covalently to certain 

sites on a protein112. In combination with glutamate, the stabilizing effect of 

arginine could be further enhanced. The improved of stabilizing effect was 

attributed to the formation of arginine-glutamate clusters113. The small molecule 

drug dexamethasone phosphate (DMP) was discovered to reduce the formation 
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of bevacizumab aggregates when administered in a co-formulation. Docking 

studies of DMP to a homology model of bevacizumab found a lysine residue as 

binding site. The lysine residue was shown to form crystal contacts and DMP 

binding was concluded to sterically hinder the formation of protein-protein 

interfaces and thus inhibit aggregation114–116. In another study used hydrogen-

deuterium exchange spectroscopy to identify a patch of residues in the CDR 

region to be involved in the formation of bevacizumab aggregates at elevated 

temperatures52. 

Virtual Screen 

Here, we present an approach that aims at identifying new compounds that bind 

to a predicted aggregation hotspot of Inteferon-alpha-2A (IFN), thus inhibiting 

the formation of protein-protein interfaces and subsequently aggregation.  

Due to the large, flat interfaces that form during protein-protein interactions, 

these have long been considered difficult targets for small molecules. More 

recently, many successful examples have been presented117. In order to identify 

small molecules that bind to a defined protein site, a common approach is 

running a virtual screen, where databases of millions of compounds are tested 

for affinity towards the specified binding site by docking algorithms118. The 

database selection is the first step critical to the success of a docking campaign. 

Database size and compound diversity and availability need to be considered. 

The ZINC15 database is one of the largest publicly accessible databases, 

including more than 700 million compounds, that can be filtered according to 

their commercial availability, reactivity or hydrophobicity119. Glide, Gold and 

Autodock Vina are some programs to perform high throughput pose prediction 

and scoring120–122. While current docking algorithms account for ligand 
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flexibility, the receptor is considered to be rigid, an assumption that can 

drastically reduce enrichment of active compounds in the highest scoring 

hits123. Docking algorithms do not account for the presence of water explicitly 

and may be inaccurate in predicting protonation states of the binding site, 

which can lead to poor predictions of poses and energy scores. Due to docking’s 

many simplifications and limitations, its results should be considered as a 

starting point to suggest interesting compounds, rather than a method to 

elucidate detailed features of protein-ligand interaction, such as binding 

kinetics and free energies. 

Free energy of binding 

Atomistic molecular dynamics simulations present a more accurate way to 

calculate free energies of binding than docking. There are various approaches 

to calculate free energies of binding between two molecules through atomistic 

simulations. Unbiased simulations can give detailed information on the binding 

mechanism, kinetics and secondary binding sites124. However, they demand 

large amounts of computational resources. Biased simulations reduce the 

computational cost by introducing potentials that facilitate the sampling of 

unfavorable regions in the system’s phase space. In the simplest case, a biasing 

potential can be a harmonic oscillator, restraining the distance between two 

atoms. Two commonly applied methods making use of biasing potentials are 

meta-dynamics and umbrella sampling125,126. Introducing biasing potentials to a 

system has been observed to cause dissipation of energy in umbrella sampling 

simulations127. This effect has been overcome more recently by accounting for 

the energy required to attach and release these potentials128. The resulting 

attach-pull-release umbrella sampling (APR-US) method has a solid theoretical 
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foundation and has been able to accurately predict free energies of binding in 

guest-host systems129,130. 

Instead of determining binding energies experimentally, they can also be 

measured from titration experiments using methods such as isothermal 

calorimetry, surface plasmon resonance, nuclear magnetic resonance or 

microscale thermophoresis. In all these methods, a signal is measured for a 

series of ligand concentrations while maintaining the concentration of the 

binding partner constant. The dissociation constant is then determined by 

fitting an appropriate model to the concentration dependent function. In 

microscale thermophoresis, the effect of ligand concentration on protein 

thermophoresis is measured. Thermophoresis refers to the directed motion of 

a particle in a temperature gradient and depends on the particle’s mass. Upon 

binding of a ligand to a protein, the thermophoresis will therefore change due 

to the difference in molecular mass between free and bound protein. In 

microscale thermophoresis, the protein motion is measured through 

fluorescence and a temperature gradient is established by an infrared laser131. 

Additional aspects of virtual screens 

Identifying a small molecule that binds to its target is crucial to achieve the 

desired effect in the protein. But binding is not the only aspect to be taken into 

consideration when selecting compounds through a virtual screen. Other 

physico-chemical properties such as reactivity, toxicity and solubility are 

equally important to obtain successful candidate compounds. A low reactivity 

will ensure that the compound remains stable and will not alter other 

substances present in the formulation. Only if the substance is of low toxicity it 

can be considered for the use in patients. A minimum solubility is required to 
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ensure that the small molecule can be employed without the use of organic co-

solvents. Solubility can be easily accounted for in a virtual screen since multiple 

models for its prediction have been developed. 

A compounds solubility is typically indicated by its /01#&2 value, where 2 is the 

compounds concentration in the aqueous phase in equilibrium with the most 

stable form of the crystalline compound132. Solubility is most commonly 

predicted by quantitative structure-properties relationship (QSPR) methods, 

such as group contributions133,134, neural networks135 or multiple linear 

regression analysis136. A public challenge to predict the solubility of a set of 32 

compounds from a training set of 100 molecules revealed the current state of 

prediction quality: the best performing predictions on a dataset including 

outliers had a coefficient of determination (R2) of 0.6 and close to 20% of the 

/01#&2 values were calculated correctly137–139. However, solubility predicting 

methods typically do not consider solution pH but are only trained against 

physiological conditions. In formulation science, where pH and ionic strength 

can differ strongly from this condition, pKAs should therefore also be considered 

when assessing solubility. A carboxylic acid will for example show different 

solubilities depending on its protonation state.  

A property closely linked to the water solubility is the octanol-water partition 

coefficient as a measure of hydrophobicity for small molecules140. The ZINC15 

database can conveniently be filtered by predicted /01#&3 values86,141.  

Experimental assessment of protein stability 

For a compound that passes all filters of the virtual screen, we want to test its 

effect on protein aggregation experimentally. 
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Aggregation processes are typically very slow. To predict the stability of a 

formulation in a reasonable time frame, one can test a formulation for surrogate 

endpoints such as the interaction parameter kd or the apparent molecular 

weight as a measure of colloidal stability through dynamic and static light 

scattering respectively142,143. The inflection point (IP) of an unfolding experiment 

serves a measure of conformational stability and is also referred to as the 

protein’s melting temperature. The onset of aggregation temperature Tonset 

describes the temperature at which aggregates start to form when exposing a 

protein to a temperature ramp. Alternatively, stress-studies can be performed, 

where the formulation is exposed to an aggregation trigger such as 

freezing/thawing, heat, shaking, shear or light. Chemical changes, which are 

incurred to the protein by light and thermal stress, are not the scope of this 

work144,145. We apply heat, freeze-thaw and shaking stress to evaluate the effect 

of the candidate excipients. To benchmark our compounds, we compare them 

against L-arginine and D(+)-trehalose, two substances commonly employed as 

excipients in protein formulation. 

3.3. Methods 

Virtual Screen 

A homology model of IFN was generated based on the PDB entry 4Z5R using 

Modeller146. A potential aggregation hotspot was identified by submitting the 

homology model to the Aggrescan3D server80.  

The protein structure of IFN was prepared for docking using Maestro’s 

(Schrödinger, Inc., New York, New York, USA) protein preparation wizard with 

pH set to 7.0. Maestro was used to generate a docking grid using the residues 
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that are located in the identified aggregation hotspot as grid center. The ZINC15 

database tranches were selected to include only compounds with a /01#&3 ≤ -1, 

“in-stock” availability and standard reactivity. The compounds were then 

prepared for docking using LigPrep as implemented in Maestro. Qikprop was 

used to predict the compounds physicochemical properties and only 

compounds with a /01#&2 value ≥ -1 were retained. All compounds were then 

docked with Glide HT. The best scoring 10 % were then redocked and scored 

with GlideSP. The best scoring 10 % were redocked and rescored using GlideXP 

and up to 3 poses per compound were generated. These poses were rescored 

using the Prime MM-GBSA model. We then looked manually for substances 

available for purchase below 200€/g. 

Sample Preparation 

An aqueous bulk solution of Interferon-alpha-2a (Roche, Penzberg) was 

dialyzed (Spectra-Por) into 50 mM sodium phosphate (di-Sodium hydrogen 

phosphate dihydrate: VWR Chemicals, Leuven, Sodium dihydrogen phosphate 

dihydrate: Grüssing GmbH, Filsum) buffer at pH 7.0. The solution was filtered 

using a 0.22 µm cellulose acetate filter (VWR Chemicals, Leuven), which were 

previously reported to be low protein binding147. A protein concentration of 1.4 

mg/ml was obtained as determined by measuring the UV absorption at 280 nm 

using a NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA). 

Excipient stock solutions were prepared by dissolving the excipient in 50 mM 

sodium phosphate buffer (di-Sodium hydrogen phosphate dihydrate: VWR 

Chemicals, Leuven, Sodium dihydrogen phosphate dihydrate: Grüssing GmbH, 

Filsum) at pH 7.0 and adjusting the pH to 7.0 as required either with 

hydrochloric acid or concentrated sodium hydroxide. Buffer was then added to 
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obtain a final excipient concentration of 500 mM. The excipient stock solution 

was then filtered using a 0.22 µm filter (VWR Chemicals, Leuven). 

Binding study 

Binding affinities of the excipient candidates were determined by microscale 

thermophoresis (Monolith, NanoTemper, Munich, Germany). Interferon-

alpha-2a was labelled fluorescently (Monolith Protein Labeling Kit RED-NHS) 

and excipient candidates were titrated using 50 mM phosphate buffer at pH 7.0 

(di-Sodium hydrogen phosphate dihydrate: VWR Chemicals, Leuven, Sodium 

dihydrogen phosphate dihydrate: Grüssing GmbH, Filsum) with a polysorbate 

20 (Sigma Aldrich) concentration of 0.05 %83. A dilution series of 16 samples of 

20 µl each was prepared in triplicates from stock solution containing 500 mM 

small molecule by mixing it with the assay buffer through pipetting in reaction 

tubes. 20 µl of labelled protein was added to each sample, yielding a final protein 

concentration of 20 nM. Excitation-power was set to 20% and MST-power was 

set to “high”. Binding affinities, standard deviations and confidence intervals 

were calculated using MO.Affinity Analysis v2.2.7 (NanoTemper, Munich, 

Germany). 

Molecular dynamics simulations 

The best scoring pose of the MM-GBSA rescoring served as input structure to 

calculate free energies of binding by the APR-US approach128–130. The PDB 

structure generated by the virtual screen, containing the ligand docked to the 

protein, was reoriented using the z-align script from the APR suite. Restraints 

were gradually attached in 13 windows and the distance between the compound 

and its binding site was gradually increased in 46 windows. For the first window 
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of the attachment phase where the APR restraints are set to 0, an additional 

distant restraint was implemented to define the binding site and avoid the ligand 

leaving. The systems for each window were constructed using tleap, adding 

20500 water molecules to each system, using the APR procedure. The program 

pmemd.CUDA as implemented in Amber16 was used along with the ff14SB, 

GAFF2 and TIP3P force-fields148,149. The ligand was parametrized using GAFF2 

for bonded and non-bonded parameters. Atomic partial charges were calculated 

with Gaussian 16 (Gaussian Inc., Wallingford, CT, U.S.A.) and fitted with the 

RESP procedure in antechamber. Hydrogen mass repartitioning and the SHAKE 

algorithm were used to allow timesteps of 4 fs150,151. Pressure was regulated using 

a Monte Carlo barostat and a Langevin thermostat was used to keep the 

temperature at 298.15 K. Modifications to the APR script were implemented to 

allow parallel runs of the respective windows on the GPU cluster and facilitate 

system preparation. The simulation time in each window was 112.5 ns resulting 

in approximately 6.6 µs total simulation time. Calculation of the free energy of 

binding was performed by using the thermodynamic integration scheme as 

implemented in the APR script.  

Toxicity Prediction 

The toxicity for the candidate compound A was predicted using 

OpenVirtualToxLab152. 

Forced degradation studies 

Each replicate sample was filled in a separate 2R vial (Fiolax, klar HGA 1/ISO 

720). The vials were capped and crimped pneumatically. Excipients and buffer 
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were spiked into the IFN solution to obtain a final formulation of 1 mg/ml of 

protein, 50 mM excipient, 50 mM sodium phosphate at pH 7.0. 

Samples were prepared freshly before any forced degradation experiment, 

without any substantial incubation time. To evaluate the stabilizing impact of 

the excipient candidates, samples were frozen and thawed three times in a 

Christ 2D-6 freeze dryer. A temperature ramp of 1 K/min and a hold time of 2 h 

were used. The protein was also exposed to shaking stress during 60 h using a 

horizontal shaker (IKA HS 260 basic, 300 rpm). Sub-visible particles were 

detected by flow imaging (FlowCam, Fluid Imaging Technologies, Inc., 

Scarborough, ME, USA). Soluble aggregates were detected by size-exclusion 

chromatography on a Dionex Summit HPLC system at 214 nm using a Superose 

12 10/300 GL as stationary phase (GE Healthcare Life Sciences, Chalfont St Giles, 

UK) and 50 mM sodium phosphate (di-Sodium hydrogen phosphate dihydrate: 

VWR Chemicals, Leuven, Sodium dihydrogen phosphate dihydrate: Grüssing 

GmbH, Filsum), 200 mM NaCl, pH 7.0 as mobile phase. High molecular weight 

species were quantified by measuring the area under the corresponding signal 

of the chromatogram. 

Heat induced degradation was measured with by nanoDSF and backscattering 

(Prometheus NT.48, NanoTemper, Munich, Germany) at a heating rate of 

1 °C/min from 25 to 95 °C in standard capillaries (NanoTemper, Munich, 

Germany). Tonset and IP were extracted from backscattering and ratio of 

fluorescence at 350 nm and 330 nm curves respectively using the software 

PR.ThermControl (NanoTemper, Munich, Germany). 
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Apparent Mw 

Apparent Mw was measured by static light scattering (DynaPro III, Wyatt 

Technology Europe, Dernbach, Germany) in a 1536 well plate (Aurora 

Microplates, Whitefish, MT, USA) with 8 µl of sample volume and 3 µl of silicon 

oil (Alfa Aesar, ThermoFisher GmbH, Kandel, Germany). The well plate was 

calibrated with a dilution series of dextran (Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany). Due to the sensitivity of light scattering to larger 

particles, stock solutions were additionally filtered using 0.02 µm filters 

(Whatman, GE Healthcare UK, Buckinghamshire, UK) 

Surface Pressure 

Surface pressures of the protein free buffers containing the different excipients 

were measured as duplicates in a multiwell plate with a metal ally dyne probe 

(Microtrough XS, Kibron Inc., Finland). 

3.4. Results 

Virtual Screen 

The purpose of the virtual screen was to identify small organic molecules from 

the ZINC database that would potentially bind to the IFN. We identified a 

potential aggregation hotspot at residues L26 and F27 of IFN using Aggrescan3D 

(Figure 3.1) 80. The hotspot’s score remained unchanged among all 25 available 

structures, showing little effect of protein dynamics on the calculated 

propensity. The highest-ranking residue patch was defined as binding site for a 

subsequent virtual screen. Candidate compounds would ideally bind in 

proximity to the hotspot, blocking it from driving the formation of a protein-

protein interface. 
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a b 

 

 

Figure 3.1: a: Residual propensity for aggregation determined by Aggrescan3D. 

Highest scoring hotspot highlighted with a red circle. b: Visualization of residual 

aggregation propensity (Blue: low propensity, Red: high propensity). 

Applying a solubility filter orthogonal to the ZINC database’s internal /01#&3 

filter showed that only 33,101 of the 52,980 had a sufficiently high solubility. 

These compounds were then docked with Maestro’s virtual screen workflow 

using GlideSP and GlideXP. The best scoring compounds were then rescored 

using the MM-GBSA solvent model. After docking the compounds at increasing 

levels of precision and conformational sampling, 167 compounds were 

predicted to bind in the hotspot’s proximity. These were inspected visually and 

five were purchased based on their price and availability (Figure 3.2). 



Structure-based Discovery of a new Protein-Aggregation Breaking Excipient 
 

 
 
Discovery of protein-stabilizing Excipient Candidates 46 
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Figure 3.2: Virtual Screen. Left: Scheme of the virtual screen, designed to identify 

substances that possess high solubility, low reactivity and high affinity towards the 

defined binding site. Right: visualization of a ligand (blue) bound to IFN (green) in 

proximity to the aggregation hotspot predicted by Aggrescan3D (red).  

Binding study 

All five compounds were tested for binding by microscale thermophoresis. Due 

to the rigorous filters applied in the virtual screen, all compounds dissolved 

readily in the experimental buffer. Out of the tested compounds, only 

compound A and L-arginine were detected to bind to the target (Table 3.1). 

Solubility, availability and reactivity: 
ZINC 15 Tranches

2nd solubility and reactivity filter: 
Qikprop

Glide Docking

MM-GBSA Rescore

Price & 
Availability: 

SciFinder

Figure 1: Virtual Screen – The Zinc15 
database serves as source for 
commercially available compounds. The 
internal ZINC15 filters are applied to 
exclude reactive, unavailable or insoluble 
compounds.  

An additional filter for solubility and 
reactivity is applied using the Qikprop 
tool. The compounds that passed the 
filters are docked with Glide to the target 
site of Interferon-alpha-2a. MM-GBSA is 
used to rate the generated poses by their 
free energy of binding. We used the 

712,063,450 

substances 

52,980 substances 

33,101 substances 

167 substances 

5 substances 



 

 

Table 3.1: List of purchased compounds 

Compound Name Structure log10S 
∆G MM-

GBSA 
(kcal/mol) 

Dissociation 
constant Kd 

(MST) 
Source Purity 

A 
Glycyl-D-

asparagine 

 

1.8 -18.9 
108 µM ± 24 

µM abcr 98 % 

B L-isoserine 
 

0.5 -18.9 No binding 
detected 

abcr 98 % 

C 

(S)-4-Amino-3- 

hydroxy-
butyric 

acid 

 
0.4 -19.0 No binding 

detected 
Sigma-Aldrich 97 % 



 

 

D 
D-(+)-glucono- 

1,5-lactone 

 

-0.9 -32.8 No binding 
detected 

Sigma-Aldrich >99 % 

E 

L-(+)-glutonic 

acid 
gammalactone  

-0.7 -27.7 
No binding 

detected abcr 98 % 

- 
L-arginine 
(K47275343 

621) 

 

N/A N/A 657 µM ± 211 
µM 

Merck KGaA >98.5 % 

- D(+)-trehalose 
dihydrate 

 

N/A N/A No binding 
detected 

VWR >98 % 
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In a control experiment, the fluorescent dye from the protein labelling kit 

(Monolith Protein Labeling Kit RED-NHS) was used as target and showed no 

dose response. For A, a dissociation constant of 108 µM ± 24 µM was determined, 

which corresponds to a free energy of binding of -5.44 ± 0.13 kcal/mol.  

a  

b  

 

Figure 3.3: Experimental and calculated binding affinities. a: Dose response 

curve of A targeting IFN (dots) and the control dye (crosses) as determined by MST: 

Kd=108 µM ± 24 µM. 50 mM Pi, pH 7.0, 0.05% Tween 20, N=3, IR intensity=high. 

Error bars represent the standard deviation of the measurement of three independent 

samples. b: Dose response curve of L-arginine targeting IFN (dots) and the control 

dye (crosses) as determined by MST: Kd=657 µM ± 211 µM. 50 mM Pi, pH 7.0, 

0.05% Tween 20, N=3, IR intensity=high. Error bars represent the standard 

deviations of the measurement of three independent samples.  
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The free energy of binding calculated by the APR-US method was found to be 

below the measured energy (Figure 3.4). 

 

Figure 3.4: Black curve: Free energy of binding as calculated by the APR-US method. 

Error bars represent the standard error of the mean. Grey bar: Free energy of binding 

as determined by MST. The bar’s thickness indicates the 68% confidence range. 

Protein self-interaction 

To determine colloidal stability, the apparent molecular weight (Mw) of IFN was 

measured in the absence and presence of compound A using static light 

scattering (SLS). As expected from the choice of pH and ionic strength, IFN 

forms aggregates in solution. While the aggregation is concentration dependent 

for low IFN concentrations, a plateau is reached at approximately 6 mg/ml. Even 

though the presence of compound A leads to slight reductions in Mw (Figure S-

1) it does not quantitively break up aggregates. 
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Forced degradation studies 

To evaluate the effect of the selected candidate compounds on protein stability, 

aggregation of IFN was induced by forced degradation experiments. Sub-visible 

particles and high molecular weight species were quantified by microflow 

imaging and SEC after three freeze-thaw cycles with the 5 formulations 

containing the excipient candidates. Additionally, a negative control was run 

containing only protein and buffer, but no other stabilizing agent. The only 

compound to significantly reduce both the formation of high molecular weight 

species and sub-visible particles was found to be compound A. While 

compounds B and C would slightly reduce soluble aggregate formation, they 

showed no benefit on sub-visible particle count compared to the excipient free 

control (Figure 3.6 a and b). 

To further evaluate the effect of compound A on the stability of IFN, 

formulations containing different concentrations of compound A were exposed 

to horizontal shaking stress. The ligand’s concentration range was chosen to be 

cover the mM and µM range according to the previously determined 

dissociation constant of 108 µM. The formation of sub-visible particles shows a 

strong dose response. At high ligand concentrations, where all protein 

molecules are bound to A, sub-visible particle formation is at a minimum and 

monomer area is at a maximum. With decreasing ligand concentration, the 

share of unbound protein increases and an increase in sub-visible particles and 

a decrease in monomer area is observed (Figure 3.6 a). When comparing the 

particle size distributions of the formulation with the highest and lowest content 

in compound A, no shift towards higher or lower particle sizes is apparent 

(Figure S 3.3).  



Structure-based Discovery of a new Protein-Aggregation Breaking Excipient 
 

 
 
Discovery of protein-stabilizing Excipient Candidates 52 

a 

 

b  

Figure 3.5: Forced degradation studies. a: Count of particles ≥ 1 µm after three 

cycles of freezing and thawing of IFN formulations. b: Soluble high molecular weight 

species after three cycles of freezing and thawing of IFN formulations. A-E 

corresponds to the compounds from Table 3.1. 

As a benchmark test, compound A was compared to the standard excipients L-

arginine and D(+)-trehalose at a concentration of 6.25 µM. All three compounds 

readily reduce the formation of sub-visible particles. However, compound A 

shows a lower particle count than the standard excipients D(+)-trehalose and L-

arginine (Figure 3.6Figure 3.6 b).  
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a 

 

b 

 

Figure 3.6: Forced degradation studies. a: Dependence of sub-visible particle count 

on A concentration after horizontal shaking. The line is a guide for the eye generated 

by linear regression from the mean values. b: Sub-visible particle count for A and 

standard excipients at 6.25 mM after horizontal shaking.  

In order to rule out that the positive effect of compound A on the protein’s 

stability is due to a non-specific effect, the surface activity (Table 3.2) of the 

compound was measured. While compound A leads to slightly higher surface 

pressures than the non-surfactant references, its surface activity is far below 

that of a typical surfactant polysorbate 20.
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Table 3.2: Surface pressure data for different excipients. Excipient concentration was 

50 mM, except for Tween 20, for which it was 0.005% v/v. All measurements were 

done twice. The errors given correspond to the standard deviations. 

Excipient Surface pressure [mN/m] 

Buffer 1.7±0.2 

NaCl 1.7±0 

L-arginine 3.25±0.15 

D(+)-trehalose 2.1±1.6 

Glycerol 4.75±0.95 

Polysorbate 20 [0.005%] 34.7±1 

Compound A 9.0±0.5 

Furthermore, the effect of compound A’s L-isomeric form, glycyl-L-asparagine, 

on particle formation was tested (Figure 3.7). Compound A drastically reduces 

sub-visible particle formation compared to all other tested molecules. 

Surprisingly even slightly lowering particle counts compared to the unstressed 

sample. Glycyl-L-asparagine does not have a beneficial effect on particle 

formation compared to the excipient free formulation. 
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Figure 3.7: Forced degradation studies. Sub-visible particle count after submitting 

a formulation of IFN to 60 h of horizontal agitation stress. Error bars represent the 

standard deviations of the measurements of three independent samples. 

In order to study the target specificity of compound A, its stabilizing effect 

during freezing and thawing was tested in combination with a monoclonal 

antibody (mAb) (Figure S-2). Here, all tested compounds reduced particle 

formation with compound A performing slightly worse than the benchmark 

excipients L-arginine and D(+)-trehalose.  

While compound A showed a stabilizing effect on IFN when formulations were 

exposed to agitation or freezing/thawing, it had no effect on the protein’s 

melting temperature and temperature of onset of aggregation as measured by 

nanoDSF, neither did any other of the examined compounds (Table S-1, Figure 

S 3.1, Figure S 3.2). 
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Toxicity Prediction 

To estimate the toxicity of compound a, the VirtualToxLab tool was used. It 

predicts a very low toxicity of compound A. It was predicted not to bind to any 

of the toxicity related target proteins and its overall toxicity score was found to 

be 0.079, ranking for example below vitamin C which has a score of 0.253. 

3.5. Discussion 

The virtual screen was successful with a hit rate of 20% in identifying one out of 

five tested molecules that bind to IFN with µM affinities. Identifying substances 

with higher binding affinities could be achieved by allowing for more 

hydrophobic compounds in the screen or increasing the compound’s size. 

Nevertheless, an increased hydrophobicity could have a negative effect on 

solubility, toxicity and clearance of the compound. Even though we were 

successful in identifying a compound that reduces particle formation, docking 

alone cannot be considered as proof of a structure-activity relationship. While 

MM-GBSA ranked affinities of compounds C to E higher than that of compound 

A, they were not detected to bind in MST measurements. This may be explained 

by the previously mentioned many simplifications made by the docking 

algorithms. 

In order to obtain additional binding molecules, the same library was docked 

against an ensemble of IFN conformations, leading to the identification of one 

additional hit, which showed no increase in stability in any forced degradation 

study (data not shown). This finding indicates that not all protein-ligand 

complexes would result in a stabilization, but only specific interactions. When 

adding the tested compounds to formulations containing mAb-1 instead of IFN, 
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compound A, L-arginine and D(+)-trehalose would all reduce particle formation 

after freeze-thaw stress to the same extend. Given the structural diversity of the 

three compounds, stabilization of mAb-1 can be interpreted as a non-specific 

effect. The non-specific stabilization observed with a mAb and the non-

stabilizing effect of compound A’s enantiomer with IFN both strongly support 

our initial hypothesis of a specific protein-ligand interaction leading to a 

stabilization against native protein aggregation of IFN. It is important to point 

out that the stabilizing effect of compound A may very well be pH dependent, 

especially due to its multiple titratable sites which could result in a pH 

dependent protein-ligand interaction profile153. 

The free energy of binding to the defined site calculated by APR-US is 

approximately 3 kcal/mol below the experimentally measured one (Figure 3.4, 

Figure S 3.4). This may indicate the presence of additional binding sites with 

higher affinities towards the ligand. The presence of multiple binding sites 

could be confirmed by unrestrained simulations (to be published by the 

authors). Limitations arise from using fixed protonation states for both the 

ligand and the protein, even though interactions between conformations, 

protein-ligand interactions and protonation states are well described. Taking 

these factors into account e.g. by constant pH MD simulations would further 

increase the computational cost of these simulations which is already large. 

A search in the BindingDB database for compounds with binding energies 

between -3 and -2 kcal/mol results in multiple Guest-Host systems, with guests 

similar in structure and size to compound A (see for example BindingDB entries 

BDBM36112, BDBM36038, BDBM36057). Compounds in the -6 to -5 kcal/mol 

range tend to be more hydrophobic and/or larger (see for example BindingDB 
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entries BDBM50335563, BDBM23449) 154. This indicates that the actual binding 

mechanism may be more complex than initially suggested. 

Even though we were successful in identifying a stabilizing compound, it is 

important to point out that we readily relied on assumptions regarding the 

identification of aggregation prone regions and the binding site that have yet to 

be proven. A3D does not take the electrostatics surrounding hydrophobic 

patches into account and was only tested on a limited amount of proteins. We 

find that compound A has a stabilizing effect when exposing the formulation to 

freeze-thaw or shaking stress but not when exposing it to heat stress. To our 

knowledge, no method to predict aggregation prone regions does consider the 

type of forced degradation used to induce aggregates. Heat induced aggregation 

has been shown to induce non-native aggregation involving partial unfolding of 

the protein. While compound A was shown to bind to IFN, it would not lead to a 

conformational stabilization as indicated by measurements of IP and Tonset. After 

identifying the stabilizing effect of compound A upon freeze-thaw stress, we 

wanted to rule out that it was caused by a changing the process of ice formation 

but due to its interaction with the protein. We therefore used horizontal shaking 

stress as an orthogonal forced degradation method. Measurements of the 

compounds surface activity do not indicate a high affinity towards interfaces. 

Together with the observed decrease in apparent Mw from the SLS 

measurements in the presence of compound A, it supports our hypothesis of an 

inhibition of sub-visible particle formation by impeding the formation of 

specific native protein-protein contacts. 

Previous studies have already shown the existence of a stress-structure 

interaction52. This poses a set-back to our approach. Since drug products have 
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to be stabilized against all possible stresses they could encounter during their 

lifetime, an excipients effect should ideally not be limited to only one type of 

stress. It can therefore only be considered a hypothesis that the selection of the 

binding site is related to the observed effects. The actual binding mechanism of 

compound A has to be determined experimentally. Due the self-association of 

IFN at pH 7.0, this cannot be achieved by NMR but possibly by crystallographic 

methods. Given these insights, it seems sensible to favor ligand-based 

approaches opposed to our receptor-based approach. An additional concern for 

the development of excipients, is the limited predictive power of forced 

degradation studies. Establishing relevant stability indicating assays remains a 

topic of ongoing research155. 

Given the proximity of the hotspot to the IFN’s receptor binding site, binding 

kinetics and clearance of the excipient are highly relevant for an in-vivo 

application. A dissociation rate of the ligand that would limit the formation rate 

of the drug-target complex, i.e. a high residence time of the protein-excipient 

complex, will alter the drug’s efficacy. From molecular dynamics simulations, 

we calculated the residence time 1/koff to be below a microsecond (to be 

published by us). The protein-ligand complex will therefore dissociate rapidly 

after administration. The large size difference between small molecule 

excipient and protein will result in a much shorter lifetime of the excipient in 

the patient compared to the protein. Under these considerations, it seems 

plausible that the excipient will not affect the drug’s efficacy. 

For drug products, toxicity of the excipient candidates remains a critical point. 

A specifically designed database containing only compounds with a proven 

record of low toxicity could help to overcome this problem. Considering the low 
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hit rate in the virtual screen, further limiting the screened chemical space might 

cause the elimination of any potential binders. Additional in-silico methods to 

predict toxicity can be considered, always taking resulting metabolites into 

consideration. Nevertheless, the discovered compound could immediately be 

used in diagnostic devices without the need for additional toxicity studies. While 

IFN is currently not a typical reagent in diagnostics, our approach can easily be 

transferred to any other relevant protein. 

3.6. Conclusion 

Here, we describe a structure-based approach that was successful in discovering 

a small organic molecule that stabilizes Interferon-alpha-2a and confirmed the 

hypothesis that the formation of a protein-ligand complex can lead to an 

inhibition of aggregation and particle formation. Our systematic approach 

helped us to narrow down a database of millions of compounds to merely 167. 

The compound glycyl-D-asparagine binds to IFN with an affinity of 108µM and 

reduces the formation of sub-visible particles and soluble aggregates after 

freeze-thaw and agitation stress in a concentration dependent manner. It shows 

higher stabilizing activity than its enantiomer glycyl-L-asparagine and the 

standard excipients L-arginine and D(+)-trehalose. We gave a new use to tools 

that are developed with small molecule drug discovery in mind and show how 

they can be applied to therapeutic protein formulation development.
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3.7. Supplementary Data 

 

 

S-Figure 1: Apparent Mw. Measured for different IFN concentrations in presence 

and absence of A as determined by SLS. Error bars represent the standard deviations 

of the measurements of three independent samples. 
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S-Figure 2: Sub-visible particle count before and after submitting a formulation of 

mAb-1 to three freeze-thaw cycles. 
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Table S-1: Inflection point (IP) and aggregation onset temperatures Tonset of IFN 

formulations. 1 mg/ml IFN, 50 mM excipient, 50 mM Pi, pH 7.0. 

Excipient IP [°C] Tonset [°C] 

A 68.0±0.0 64.2±0.1 

Glycyl-L-asparagine 68.1±0.2 64.1±0.1 

L-arginine 67.7±0.0 63.8±0.0 

D(+)-trehalose 67.7±0.0 64.5±0.1 

None 67.8±0.1 64.4±0.2 

 

 

Figure S 3.1: Fluorescence curve and first derivative. Blue: Compound A, red: L-

arginine, brown: D(+)-trehalose, yellow: glycyl-L-asparagine. 
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Figure S 3.2: Backscattering data. Green: Excipient free. Blue: Compound A, red: L-

arginine, brown: D(+)-trehalose, yellow: glycyl-L-asparagine. 
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Figure S 3.3: Histogram of particle diameters after horizontal shaking in presence of 

0.8 µM (left) and 6.25 mM (right) of compound A. 
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Figure S 3.4: Potential of mean force for the APR-US simulation of IFN and 

compound A after a simulation time of 250 ns per window. Depicted are the work 

required to attach the restraints, to pull the ligand from its binding site and to release 

the restraints. The distance for the binding site is set to 0. Error bars represent the 

standard error of the mean. 
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4. Predicted regions of protein self-

interaction correlate with solution 

paramagnetic enhancement-NMR 

measurements 

Andreas Tosstorff, Matja Zalar, Matthew J. Cliff, Gerhard Winter*, Alexander P. 

Golovanov 

This work was conducted in collaboration with the Manchester Institute of Biology of 

the University of Manchester. The manuscript was written by Andreas Tosstorff. The 

experiments were performed by Andreas Tosstorff, Matja Zalar and Alexander 

Golovanov. The data analysis was performed by Andreas Tosstorff under the 

supervision of Gerhard Winter and Alexander Golovanov. 
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4.1. Abstract 

Aggregation and self-interaction of therapeutic proteins are of great relevance 

for the pharmaceutical industry as they have been linked to adverse side 

reactions and deactivation of the active compound. While the process of 

oligomerization and particle formation can be monitored for example by 

turbidity, intrinsic fluorescence or light scattering, these methods do not 

resolve the underlying molecular interactions with a high level of detail. It is 

thus for example not possible to identify the residues that contribute to the self-

interaction. This information is however crucial when it comes to assessing the 

developability of candidate molecules. Several computational tools have been 

developed to predict the contribution of individual residues to the aggregation 

propensity or solubility of a protein. These are typically trained or benchmarked 

for a certain type of protein at a specific buffer and by a forced degradation 

method or surrogate readout. 

Here, by using solution paramagnetic relaxation enhancement (sPRE) NMR 

experiments, we identify self-interaction sites for Interferon-alpha-2a and 

compare the results to available computational tools. The sPRE method 

provides insights into native protein self-association and does not rely on forced 

degradation methods. We find that all three tested in-silico tools identify most 

regions of self-interaction correctly. However, none was able to identify all of 

them. While our data are limited to one protein and condition, we propose that 

the method could be used to enhance and supplement currently available 

computational tools. 
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4.2. Introduction 

In the development of therapeutic proteins, eliminating aggregation prone 

candidate molecules early on is of great concern, since they increase the risk of 

delays and failure of the entire drug development process. Understanding 

protein self-interactions on a structural level will facilitate the process of 

identifying stable candidates and formulations. 

Aggregation pathways during the lifetime of a therapeutic protein are diverse. 

They can be reversible or irreversible and involve partially or completely 

unfolded or native protein species. Irreversible aggregation is often induced by 

protein exposure to stress, such as heat, light, reactive molecules, 

freezing/thawing or shaking. It has been shown that the amino acid residues 

involved in the oligomerization interface depend on the type of stress the 

protein is exposed to, which implies a stress dependency of the aggregation 

mechanism52. 

The terms hotspots and aggregation prone region111 are often used equivalently. 

However it is important to point out that the term “hotspot” has been coined in 

the context of native association of proteins109. Here, a hotspot is defined as the 

main residual contributor to the free energy of binding of a protein-protein 

complex. The term aggregation prone region is often applied in the context of 

non-native aggregation, sometimes involving the formation of beta-sheets. The 

term hotspot has been furthermore used in the context of druggability of a 

protein surface, where sites favorable for small molecule binding were termed 

that way156. 
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In order to identify structural features of proteins that affect their physical 

stability, computational methods have been developed that score the protein’s 

aggregation propensity or solubility based on either the protein’s sequence or 

structure157. Exhaustive reviews on the currently available tools have been 

published recently158. Here we compare three different tools, CamSol159, 

Aggrescan3D80 and AggScore160, with experimental data from sPRE 

measurements for Interferon-alpha-2a. All three tools generate structure 

corrected scores with different scales.  

Table 4.1: Comparison of scoring tools for structurally corrected, residual 

aggregation propensity 

Parametrization/benchmarking 
method: 

Tools pH 
Ionic 

strength 

Inclusion body formation AggScore Yes No 

Solubility CamSol Yes No 

Qualitative solubility from 
literature 

Aggrescan(3D) No No 

 

CamSol calculates a solubility score from a linear combination of the amino 

acid’s hydrophobicity and electrostatic charges smoothed over a window of 

seven amino acids to account for their interplay. The term is structurally 

corrected to account for proximity in space and solvent exposure. Positive 

scores are interpreted as favoring solubility and negative scores as aggregation 

prone. Aggrescan3D scores residues by each amino acid’s intrinsic aggregation 
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propensity and solvent accessible surface area, and those of spatially close 

residues weighted by their pairwise distance. In the ‘Dynamic Mode’, the score 

is calculated for various generated conformations, and the score for the most 

aggregation prone conformer is reported. The scale is inverse to that of CamSol, 

with aggregation prone regions receiving positive scores and soluble ones 

receiving negative scores. Just as CamSol it can be accessed through webserver. 

AggScore as implemented in Schrödinger’s Maestro software scores residues by 

the intensity and relative orientation of hydrophobic and electrostatic surface 

patches. The program was trained on published data on inclusion body 

formation of 31 adnectin proteins. The scale starts at zero for low aggregation 

propensity and increases with aggregation propensity. 

The amount of experimental methods to characterize interfaces of self-

interaction on a level of residual or atomic resolution are scarce and 

challenging, especially when data should be recorded in-situ. Crystallographic 

methods can only be employed to determine self-interaction interfaces under 

conditions at which proteins form specific oligomers, which can be affected by 

crystal packing. While this method is of course well established and powerful, 

it does not serve the purpose of identifying regions of self-interaction in-situ at 

arbitrary conditions and in solution. Hydrogen-deuterium exchange mass 

spectrometry (HDX-MS) is an emerging and still time-consuming method. Here, 

the protein is exposed to deuterated water and depending on the level of 

residual solvent exposure, deuterium and hydrogen atoms will exchange. The 

resulting changes in molecular weight are measured by digesting the protein 

and measuring the molecular weight of the produced fragments. One can then 

assign the degree of deuteration and correlate it to the formation of protein-
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protein interfaces. It has been successfully employed to identify for example 

regions of self-association of monoclonal antibodies (mAbs)52,161.  

As an alternative, here we propose the usage of sPRE-NMR to measure residual 

solvent exposure and thereby identify residues that are involved in self-

interaction of globular proteins in solution. We show how they correlate with 

computational methods and discuss reasons why in-silico tools may produce 

false-negative results. 

Paramagnetic relaxation enhancement (PRE) occurs due to dipolar interactions 

for example between an unpaired electron of a molecular probe and 

surrounding hydrogen atoms. In an NMR experiment, these interactions result 

in increased longitudinal and transverse relaxation rates of the protons, causing 

signal broadening and reduced intensities162. The effect has therefore been 

widely used to study protein structure and dynamics by attaching spin labels 

either covalently to a protein or adding them to the solution (sPRE)163–165. 

One molecular probe widely employed is 4-hydroxy-2,2,6,6-

tetramethylpiperidin-1-oxyl (TEMPOL). It was used to map the protein surface 

of lysozyme and identify solvent exposed amide groups in NOESY and TOCSY 

experiments166. It was furthermore used to identify druggable site in bovine 

pancreatic RNase A156. Petros et al. found TEMPOL to be superior over 

gadolinium(III) diethylenetriaminepentaacetate which binds specifically to 

carboxylate groups167. Bovine pancreatic trypsin inhibitor (BPTI) has been 

characterized by measuring TEMPOL induced signal attenuation, finding a 

region of low attenuation, which was attributed to tightly bound water 

molecules preventing the residues’ contact with paramagnetic probe168.  
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sPRE can furthermore be used to identify the interface of protein complexes, as 

residues that are buried in the protein-protein interface are no longer accessible 

by the dissolved paramagnetic probe. Their relaxation times are therefore 

significantly longer than those of solvent accessible residues. This phenomenon 

has been exploited to identify the interface of human matrix metalloproteinase 

3 (MMP-3) and the inhibitory domain of human tissue inhibitor of 

metalloprotease (TIMP-1)169. 

Weak self-association has been observed by PRE for example for histidine 

containing protein (HPr) and cytochrome c peroxidase (CcP)70,170. To our 

knowledge there is no report of the use of sPRE to study protein self-association. 

By comparing relaxation rates of IFN amino acid residues in the presence and 

absence of the paramagnetic probe TEMPOL, we measure their solvent 

accessibility. A comparison of the experimental solvent accessibility of each 

residue to its theoretical solvent accessible surface leads to the identification of 

residues engaging in protein self-association. 

4.3. Methods 

Protein Expression 

1 µl of plasmid coding for Interferon-alpha-2a with a TEV cleavage site and 

6xHis-tag (Genscript) was transformed into E. coli Origami cells by heat shock. 

Transformed cells were incubated at 37 °C for one hour. The medium was then 

spread on LB plates with ampicillin and kanamycin antibiotics and incubated 

overnight. Cells were grown in 15N labeled M9 medium and expression was 

induced by Isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested 

by centrifugation. Cell lysis occurred by ultrasound in 6 M guanidine 
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hydrochloride (GndHCl). IFN was added to a Ni-NTA slurry and incubated under 

gentle shaking for 1 h using 20 mM Tris, 6 M GndHCl, 50 mM NaCl and 5 mM β-

mercaptoethanol as mobile phase. The bound sample was washed with 5 ml 

mobile phase. Weakly bound molecules were eluted by adding 10 mM imidazole 

to the mobile phase. IFN was eluted by adding 500 mM imidazole to the mobile 

phase. Refolding was performed in 20 mM TRIS, 150 mM NaCl, 25 mM arginine, 

25 mM glutamate, 5 mM EDTA, 1 mM glutathione red, 0.25 glutathione 

disulfide, pH 8.5 at 4 °C. The sample was then dialyzed in acetate buffer at pH 4.0 

and concentrated by ultrafiltration (Vivaspin, 5 kDa cut-off, Sartorius, 

Stonehouse, UK). 

NMR 

All NMR experiments were acquired at 25°C on 800 MHz Bruker Avance III 

spectrometer equipped with 5 mm triple resonance TCI cryoprobe with 

temperature control unit. Spectra were acquired using Bruker Topspin 3.5 

(Bruker) while processing and analysis was performed in Bruker Topspin 4.0 

(Bruker) and Dynamics Center 2.5.5 (Bruker). NMR samples were prepared by 

adding 5 % v/v 2H2O to 4 mg/ml 15N labelled Interferon-alpha-2a in 10 mM 

Acetate, pH 4. The backbone assignment of Interferon-alpha-2a was based on 

BMRB entry 4081 171. 

Paramagnetic relaxation enhancement by soluble probes (sPRE) experiments  

15N longitudinal (R1) relaxation rates were measured using a pseudo-3D 

hsqct1etf3gpsi3d experiment from the standard Bruker library. Longitudinal 

(T1) relaxation times were calculated by fitting the signal intensities to a single 

exponential function available in Dynamics Center 2.5.5. Errors of fit were 
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estimated using a 95% confidence level. R1 relaxation rates were calculated as 

the inverse of the longitudinal relaxation time T1. NMR sPRE data were obtained 

by determining 15N R1 relaxation rates in the absence and presence of 36 mM 

TEMPOL. 

Computational tools 

PDB entry 1ITF was submitted to the webservers of CamSol and A3D. AggScore 

was used within Schrödinger’s Maestro program. All methods were used with 

their default parameters. A3D was used in the dynamic mode in order to account 

for protein flexibility. MSAs for Nbb were calculated using PyMOL. To make them 

comparable across the different methods, aggregation propensity scores were 

normalized according to Equation 4.1, where !"#$% is the normalized score, 

!(') the score, !%)" the lowest, yet aggregation prone, score and !%*' the most 

aggregation prone score.  

!"#$% = !(') − !%)"
!%*' − !%)" Equation 4.1 

 

4.4. Results 

Spectra obtained were coherent with previously reported data172. No peak shifts 

were observed after the addition of TEMPOL, however multiple peaks 

broadened or vanished due to the paramagnetic nature of the compound, which 

also affected peak resolution (Figure 4.1). Signals from the His-tag were not 

assigned. 
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Figure 4.1: Overlay of the 10th 23 plane of the pseudo-3D hsqct1etf3gpsi3d 

experiment. Blue without TEMPOL, red with TEMPOL. 

T1 Relaxation rates were calculated for all resolved signals (supplementary data: 

Figure 4.7) and compared to molecular surface areas (MSA) of the backbone 

amide groups. Residues with a change in relaxation rate ∆R1 below 0.05 upon 

addition of TEMPOL, an error below 0.5 and a backbone amide MSA above the 

median were considered to contribute to oligomerization interfaces (Figure 4.2, 

supplementary data). All other signals were not considered for comparison with 
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in-silico tools. Here, we use sPRE to evaluate false negative and true positive 

results from the prediction tools. The residues identified by our sPRE approach 

are mostly hydrophobic (Table 4.2). Most notably is a patch constituted by 

residues E141, A145, M148 (patch 1). A second patch was located at the highly 

exposed loop region G102, V105, T108 (patch 2). A third patch is constituted by 

residues F36, F38 and L128 (patch 3). M59, Q61 and N65 make up a fourth patch 

(patch 4). Isolated interacting residues are located at positions A75 and Q158. 

 

Figure 4.2: MSA for backbone amides plotted against the change in Relaxation rate 

∆R1. Grey markers indicate an error of ∆R1>0.5, red markers indicate aggregation 

prone residues. Error bars are not shown for clarity. 

Table 4.2: Overview on residues involved in self-interaction. 
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Residue 
Number 

Amino 
acid 

Patch 
∆R1 
[1/s] 

Nbb MSA 
[Å2] 

Side chain 

36 F 3 0.05 4.54 hydrophobic 

38 F 3 -0.01 4.05 hydrophobic 

59 M 4 -0.15 4.08 hydrophobic 

61 Q 4 -0.11 4.10 polar, 
uncharged 

65 N 4 0.00 3.97 polar, 
uncharged 

75 A - 0.00 4.01 hydrophobic 

102 G 2 -0.03 4.63 no side chain 

105 V 2 0.03 4.23 hydrophobic 

108 T 2 0.05 4.40 polar, 
uncharged 

128 L 3 -0.06 4.28 hydrophobic 

141 E 1 0.03 4.83 negative 

145 A 1 0.03 4.20 hydrophobic 

148 M 1 0.00 4.24 hydrophobic 

158 Q - 0.05 4.51 polar 
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CamSol, A3D and AggScore all ranked F27 as highly aggregation prone. 

Characterization of this specific residue by sPRE is not possible, as the signal is 

not unambiguously resolved. The region ranging from residue 98 to 120 was 

flagged by all three prediction tools and also by sPRE data. The specific residues 

do vary however depending on the method. Only AggScore flagged L128 as 

aggregation prone. Patch 1, formed by residues E141, A145, and M148 is not fully 

captured by any of the tools. A3D signals residue E141, CamSol does so for 

residue A145 but both with a low score (Figure 4.3). It is also the only tool to 

identify two out of three residues from patch 4, Q61 and N65, again with a rather 

low score. Strikingly, none of the computational tools would highlight F36 and 

F38 as aggregation prone, despite their obvious intrinsic hydrophobicity, and 

neither were A75 or Q158. 

 

Figure 4.3: Normalized scores of residual aggregation propensity compared to 

residues identified as aggregation prone by sPRE. It is important to note that residues 
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with sPRE scores equal to zero should not be interpreted as non-aggregation prone, 

but as unresolved.  

Projecting the scores on the 3D structure of IFN shows that while the residues 

identified by the computational tools do not match perfectly with the residues 

identified by sPRE, broad regions are approximated well. For example, F27, 

which was highlighted by all tools and not resolved by NMR is in close 

neighborhood to patch 1. Furthermore, all tools identified a region surrounding 

V105 and T108. While CamSol and A3D identified the region around F64 as 

aggregation prone, AggScore did not. AggScore did signal residue L128 which 

was not identified by neither A3D nor CamSol (Figure 4.4, Figure 4.5). It is also 

the only tool identifying residues (C98, V99) in proximity to the experimentally 

determined Q158. 
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A3D 

  

AggScore 
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CamSol 

 
 

sPRE 

  

Figure 4.4: Comparison of aggregation prone regions determined by A3D, CamSol, 

AggScore and sPRE. Comparing experimental and predicted regions shows that most 

regions are identified well by the in-silico tools. Aggregation prone regions are 

colored in red. Left: View 1. Right: View 2. 

4.5. Discussion 

We were able to identify regions of self-interaction for IFN in-situ. The protein 

shows multiple regions prone to participate in self-association which goes hand 
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in hand with a broad coverage of the surface by hydrophobic residues, 

explaining its overall low solubility (Figure 4.5). Attempting to increase the 

protein’s solubility by targeting all of these regions through mutations does 

therefore not appear feasible without drastically altering the structural integrity 

and activity profile. 

Electrostatic surface potential 

  

Figure 4.5: Protein surface charge distribution. Red: negative charge, blue: positive 

charge, green: hydrophobic. Left: View 1. Right: View 2. 

Qualitatively, all three tested in-silico methods, perform well in closing in on 

most aggregation prone regions. None of the evaluated methods is however able 

to capture all of the regions flagged by sPRE, most notably the hydrophobic 

patch 3.  

The false negative result by all computational methods regarding F36 and F38 

could be explained by a bias introduced by using a single protein structure. Both 

phenyl-rings in the input structure are pointing inwards to the protein core, 

which could lead to an underestimation of aggregation propensity due to a low 

calculated MSA (Figure 4.6). Opposed to the prediction tools, which consider the 

solvent exposure of the entire amino acid residue, for the evaluation of the sPRE 
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measurements, only Nbb MSA was used as reference. The backbone amides of 

F36 and F38 are clearly solvent exposed in the input structure which is why we 

could identify them as aggregation prone. The procedure is plausible, as the 

NMR signals correspond to the Nbb. Solvent exposure may not be ideal as scoring 

parameter, given that self-interaction may cause conformational changes that 

are unfavorable for the free protein173. Even though A3D was used in “Dynamic 

mode”, it apparently did not sample conformations in which F36 and F38 were 

sufficiently solvent exposed. 

 

Figure 4.6: F36 and F38 marked in red. Phenyl-rings of F36 and F38 of input 

structure are pointing inwards. 

Interestingly, patch 1 is also involved in binding the receptor IFNAR2 (3S9D), 

which indicates that the presented tools could also be used in a broader context 

to predict regions of heterogeneous protein-protein interactions174. 

Our sPRE approach is able to identify residues that lie in the interface of a 

protein-protein complex, however, it cannot rank the individual residue’s 

contribution to the free energy of binding. sPRE should therefore be considered 

as an orthogonal method to evaluate regions prone to self-association and 

especially to identify false negatives. Combining both in-silico and experimental 

methods in order to identify regions to target either by mutation or LMW 
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molecules appears as a promising approach to inhibit self-association in order 

to increase protein stability or reduce viscosity. We previously reported how we 

discovered a dipeptide that increases the stability of IFN by targeting patch 1.  

It is important to point out the limitations of the sPRE method, which lie for 

example in the ambiguous assignment of some peaks, as was for example the 

case for F27. NMR experiments are furthermore limited by the size of the 

protein to be studied. Certain buffer conditions could also lead to a degree of 

protein aggregation too high to be studied with the presented method. 

While there is a good agreement between the in-silico and experimental data, it 

seems unlikely that the computational tools will perform as good in a scenario 

of non-native aggregation that involves partial unfolding. We therefore propose 

to develop novel methods that discriminate between the stress or mechanism 

that leads to protein aggregation and account for solvent pH. sPRE-NMR could 

be a helpful method to evaluate these prediction tools. 

4.6. Conclusion 

For the first time, we demonstrate the usage of sPRE-NMR to characterize 

regions of self-association for a protein. Multiple regions were identified. 

Among others, the binding site of the proteins target, IFNAR2 shows to 

participate in self-interaction. We used our in-situ data to evaluate three 

different computational tools designed to predict residual contribution to 

aggregation or solubility. Overall there is a good agreement between the three 

methods and experimental data, however none of the methods is able to identify 

all of the regions that were flagged by sPRE data. 
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4.7. Supplementary Data 

 
Figure S 4.1: 23 Plane, number 10, without TEMPOL 

 

 
Figure S 4.2: 23 Plane, number 10, with TEMPOL 
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Figure 4.7: ∆R1 and Nbb MSA for all resolved residues. 
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Error propagation was calculated by a Taylor expansion according to: 

!!! 	= $%&"%'"
!#!$ = (− 1

'"$
!#!( 

Where !#!  is the error of the relaxation time '" as derived from the fit and !!!  is 

the error of the relaxation rate &".
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5.1. Abstract 

We recently reported the discovery of a novel protein-stabilizing dipeptide, 

glycyl-D-asparagine, through a structure-based approach. As the starting 

hypothesis leading to the discovery, we postulated a stabilizing effect achieved 

by binding of the dipeptide to an aggregation prone region on the protein’s 

surface. Here we present a detailed study of the interaction mechanism between 

the dipeptide and Interferon-alpha-2A (IFN) through the construction of a 

Markov state model from molecular dynamics trajectories. We identify multiple 

binding sites and compare these to aggregation prone regions. Additionally, we 

calculate the lifetime of the protein-excipient complex. If the excipient 

remained bound to the IFN after administration, it could alter the protein’s 

therapeutic efficacy. We establish that the lifetime of the complex between IFN 

and glycyl-D-asparagine is extremely short. Under these circumstances, 

stabilization by stoichiometric binding is consequently no impediment for a safe 

use of an excipient. 

Keywords 

Interferon-alpha-2a, Excipient, Protein Aggregation, Protein Formulation, 

Markov State Model 

5.2. Introduction 

Small molecules are commonly found in therapeutic protein drug formulations 

as co-solutes with the intend to stabilize the drug product among other against 

chemical degradation or aggregation of the therapeutic protein. Opposed to 
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native self-association, protein aggregation proceeds by multiple steps that 

among other involve a partial or complete unfolding of the protein38.  

Two commonly accepted mechanisms of stabilization of a protein against 

aggregation by a small molecular co-solute are preferential exclusion and 

stoichiometric binding5,56,175–177. Preferential exclusion describes an entropically 

driven rise of chemical potential of both, protein and co-solute molecules 

relative to their separate solutions. The increase in chemical potential manifests 

by a reduced concentration of co-solute in proximity to the protein surface 

relative to the bulk solution. Protein unfolding will lead to an increased 

exposure of protein surface, increasing the unfavorable exclusion of co-solute. 

The protein’s native state is therefore preferred to the non-native. The 

stabilizing effect of a diverse group of co-solutes such as sugars, polyols, amino 

acids, methylamines and inorganic salts on proteins has been well established 

and traced back to preferential exclusion as mechanism of action55,175. 

Preferential exclusion is observed for weakly interacting co-solutes that require 

to be present at high concentration (above 100 mM) in order to benefit protein 

stability55,56. 

Stoichiometrically interacting co-solutes are known to stabilize proteins by 

binding preferentially to the native protein structure relative to the unfolded 

one. Stabilization through stoichiometric binding can for example be measured 

by differential scanning fluorimetry or calorimetry and results in a shift of the 

infliction point of the characteristic unfolding curve (Tm) to higher 

temperatures53. 
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The large majority of pharmaceutical excipients act through the mechanism of 

preferential exclusion, which has the intrinsic benefit that their application is 

not limited to a single protein but across many if not all. Developing excipients 

that act as stoichiometric stabilizers has largely been neglected, despite the 

potential to provide a complementary mean to stabilize a protein178. 

We previously described the discovery of an outstanding stabilizing effect of the 

dipeptide glycyl-D-asparagine at low concentrations against aggregation of 

Interferon-alpha-2A upon exposure to freezing-thawing and shaking stress179. 

We found that the dipeptide would bind to the protein at a µM affinity and 

reduces particle formation at low concentration (6.25 mM), hinting at a 

stabilization through a stoichiometric interaction. The compound was 

discovered through a virtual screen that targeted the hydrophobic and solvent 

exposed residue Phe27. This residue is involved in the interaction between 

interferon-alpha-2 and interferon-alpha-receptor 2 (Figure 5.1, PDB entry 

3S9D)174. A potential risk of stoichiometrically acting excipients is that the 

protein drug-excipient complex does not disassociate after drug administration, 

thus potentially altering the drug’s efficacy. The lifetime of the protein-excipient 

complex is therefore a crucial parameter to consider when developing 

stoichiometrically binding excipients. A short lifetime means that the protein-

excipient complex disassociates rapidly. As the excipient is much smaller than 

the protein, it will distribute, metabolize and clear much faster than the protein 

after administration. In the case of the dipeptide presented here, its metabolism 

is facilitated further due to the presence of a peptide bond prone to enzymatic 

hydrolysis180. Its low molecular weight compared to that of IFN will lead to a fast 

clearance through the kidneys181. A long lifetime of the protein-excipient 

complex would instead result in a permanent occupation of the protein surface 
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by one or more excipient molecules, potentially altering the proteins interaction 

with its target molecule, and consequently its efficacy.  

 

Figure 5.1: Complex between Interferon-alpha-2 (violet) and Interferon-alpha-

receptor-2 (green) (PDB entry 3S9D). The aggregation prone region targeted by the 

excipient (red) to inhibit interferon-alpha-2a aggregation coincides with the binding 

site to the receptor. 

The occupation of a protein by a ligand is the result of the simultaneously 

occurring binding and unbinding processes182. When considering the 

equilibrium reaction between Protein + and ligand , to form a complex +, 

(Equation 5.1), the rates of binding, -%&, and unbinding, -%'' can be defined as 

the product of a rate constant . and the concentration of the reactants (Equation 

5.2, Equation 5.3). 

+ + ,	 ⇌ +, Equation 5.1 
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-%& = .%& 	 ∙ [+] ∙ [,] Equation 5.2 

-%'' = .%'' 	 ∙ [+,] Equation 5.3 

Here, .%& and .%''	are the rate constants for the corresponding binding and 

unbinding reactions and [+], [,], [+,] are the concentration of the protein, 

ligand and protein ligand complex respectively. 

In order to estimate the lifetime of a protein-ligand complex, the residence time 

4 can be calculated from the inverse of the off-binding rate constant .%'' 

(Equation 5.4)183. 

4 = 1
.%''

 
Equation 5.4 

Computational simulations are a popular mean to study protein-ligand 

interactions, as they allow to gain insights on the interaction with atomic detail. 

Interactions between the excipients mannitol, sucrose, trehalose and sorbitol 

and a ligase and a Fab fragment have previously been studied by docking 

calculations112. In this work a correlation between calculated binding affinity of 

excipients to the protein and Tm was observed. The Tm experiments were, 

however, conducted at excipient concentrations ranging from 145 to 220 mM, 

which may hint at a stabilization by preferential exclusion. A method that 

combines protein-protein and protein-excipient docking combined with 

molecular dynamics (MD) simulations to discover new excipients is described 

as well in a patent application184. It aims at identifying excipients that bind to 

regions involved in protein self-association in order to reduce protein 
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aggregation. It does not state how protein aggregation is measured 

experimentally and does not relate simulation data to data from experiments on 

protein aggregation. It does furthermore not yield any novel excipients but is 

limited to commonly employed stabilizing substances such as amino acids. 

MD simulations are a mean to study protein ligand interactions at atomic detail, 

where each atom is treated as a classical particle and interactions between these 

particles are defined in force fields185. Shukla and Trout used MD simulations to 

determine the preferential interaction coefficient of a protein in aqueous 

arginine solutions of 250 to 2500 mM186. The study of stoichiometric binding by 

molecular dynamics is most commonly reported in the context of small 

molecule drug discovery. Analysis of molecular trajectories, which are often 

collected in parallel setups is challenging and can introduce errors due to biases 

in the starting structure and introduced restraints intended to enhance 

sampling of rare transitions.  

Markov state theory has been used in trajectory analysis to eliminate these 

biases and accurately describe the mechanism of protein-ligand interactions187. 

In the Markov approach, a time dependent system is assumed to move from one 

discrete state to another. The transitions between these states are assumed to be 

memoryless, meaning that if the system is in a specific state, its future state does 

not depend on the system’s history. The calculation of the probability of 

transitioning from one such state to another is the central result of a Markov 

state model. In the case of an MD trajectory of a protein-ligand system, the 

bound protein-ligand complex could correspond to one discrete state, whereas 

the unbound system could correspond to another discrete state. The transition 
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probability between these two states could then be related to the binding affinity 

of the complex. 

The publicly available EMMA and HTMD programs drastically facilitate the 

construction of Markov state models from MD trajectories188. In order to 

construct a Markov state model, MD trajectories have to be discretized, which 

means to assign each trajectory frame to a defined state. Discretization for 

Markov state model generation has been shown to work best when the 

dimensionality of the trajectory data is reduced. In an MD simulation, each 

simulated atom is described by three cartesian coordinates indicating its 

position, and three cartesian velocities, indicating its current movement in 

three-dimensional space. One frame of an MD trajectory therefore consists of 

6N dimensions, where N is the number of simulated atoms. By identifying a set 

of features of lower dimensionality, such as dihedral angles or the distance 

between the ligand and each protein residue, the complexity of an MD trajectory 

can be reduced, but the information of interest, e.g. protein conformation or 

protein ligand binding, is preserved. This so called featurization of an MD 

trajectory is typically the first step in reducing dimensions in order to construct 

a Markov state model. 

Mathematical approaches to reduce the dimensionality of a matrix are principle 

component analysis (PCA), which preserves the highest degree of variance or 

time lagged independent component analysis (TICA) which preserves the 

highest degree of kinetic variance. The first principal component will therefore 

describe the motion of highest amplitude, while the first time lagged 

independent component will describe the slowest transition189. The term slow is 

used here to describe transitions that happen only after a long time, such as for 
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example, the unbinding of a tightly bound ligand. In the analysis of protein-

ligand binding processes, the slowest transitions are those of interest and 

therefore TICA is typically the preferred choice of dimensionality reduction.  

In order to assign each trajectory frame to a discrete state, after reduction of 

dimensionality, the data set is typically discretized by a clustering algorithm. 

Here, the trajectory frames found to be similar to each other, are grouped 

together into one single state. Finally, by counting the number of transitions 

between the discrete states, the transition probabilities between the clustered 

states can be calculated and experimental observables can be derived. Detailed 

descriptions on the workflow to construct a Markov model has been published 

by the developers of EMMA190.  

To our knowledge, Markov state theory has not yet been employed to describe 

protein-excipient interactions. Here we use a Markov state model to investigate 

the mechanism of interaction between the stabilizing dipeptide glycyl-D-

asparagine and Interferon-alpha-2A, to elucidate interaction sites and to 

estimate the residence time of the formed protein-excipient complex. 

5.3. Methods 

System setup and simulation 

Each randomized starting systems was constructed using HTMD191. One of 24 

structures from PDB entry 1ITF was randomly selected using NumPy’s 

random.choice function171. The protonation states of the protein were adjusted 

to pH 7.0. The protein was centered and randomly rotated. Subsequently the 

ligand was centered, randomly rotated and placed at a random distance between 
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6 to 11 Å away from the furthest protein atom along the x-axis (Figure S 5.1). The 

ligand was again rotated randomly around the origin. The system was then 

solvated with an additional 5 Å buffer. Finally, two disulfide bridges were built. 

The ligand was parametrized using GAFF2 for bonded and non-bonded 

parameters. Atomic partial charges were calculated with Gaussian 16 (Gaussian 

Inc., Wallingford, CT, U.S.A.) and fitted with the RESP procedure in 

antechamber. Each system was minimized and equilibrated prior to the 

production run. Minimization was performed using pmemd on CPUs, whereas 

molecular dynamics simulations were performed on GPUs using pmemd.CUDA 

implemented in Amber 18148,192–194. A cutoff of 9 Å was defined for nonbonded 

interactions. The first 5000 cycles of minimization used the steepest descent 

algorithm, followed by 5000 cycles using the conjugate gradient algorithm. MD 

simulations were run using Langevin dynamics with a collision frequency of 1 

ps-1 195. The SHAKE algorithm was used to allow for timesteps of 2 fs196. 

Equilibration followed the scheme described by Henriksen et al. and consisted 

of three steps130. For 1 ps, no pressure scaling was used and the temperature was 

set to 10 K. The system was then heated to 300 K within 100 ps. The last stage 

consisted of 50 equilibration cycles of 100 ps, each using a Monte Carlo barostat 

set to atmospheric pressure. Production was performed using the NVT 

ensemble, running 60 ns per trajectory. 600 trajectories were generated in total. 

Data analysis 

A Markov State Model was constructed using HTMD which builds on PyEMMA. 

We followed a stepwise approach based on the multiple tutorials accompanying 

HTMD and PyEMMA. Trajectories were first stripped of all water, sodium and 
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chloride. The selected featurization scheme to study the protein-ligand 

interaction was the pairwise, residual, minimum distance between each protein 

residue and the dipeptide, considering only heavy atoms. The data was then 

projected on the first 10 time-lagged independent components with a lag time 

of 1 ns. The projected data was then clustered into 60 micro-states using the k-

means algorithm. A Markov state model was constructed with a lag time of 10 ns 

and the micro-states were clustered to 5 macro-states using PCCA++. The model 

was validated using the Chapman-Kolmogorov (CK) criterion. If the model 

fulfills the CK criterion, the occupation of future states is independent of past 

states, i.e. the model is markovian. (Figure S 5.2). Statistical errors of 

thermodynamic and kinetic quantities were obtained from 1000 bootstrapping 

cycles retaining 80% of the data. Structures were rendered using PyMOL. 

Identification of aggregation prone regions 

Three different methods were used to identify aggregation prone regions on the 

surface of Interferon-alpha-2A: Aggrescan3D80, AggScore160 and CamSol159. For 

Aggrescan3D and CamSol the scores were calculated by submitting the first 

frame of PDB entry 1ITF to the corresponding webserver. The aggregation 

propensity according to the AggScore method was calculated using 

Schrödinger’s Maestro software using the same structure file as for the 2 other 

methods. Aggregation prone residues identified through any of the methods are 

residues 16, 27, 61,65, 86, 89, 98, 99, 100, 101, 102, 103, 106, 109, 110, 111, 116, 

117, 128, 129, 137.  
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5.4. Results 

From the constructed Markov model, 5 macro-states were identified. State 5 

comprises mostly unbound and non-specifically associated structures. States 0 

to 4 show specific regions of interaction between the dipeptide and INF with 

different degrees of fuzziness. Macro-state 0 involves interactions with residues 

41, 42, 43, 46, 48, 51, 114, 115, 164. Macro-state 1 can be characterized by 

interactions with residues 3, 40, 41, 45-49, 155-165. For Macro-state 2, residues 

5-10, 13, 90, 91, 93, 94, 96, 147 were identified. In macro-state 3, the dipeptide is 

in contact with residues 33-38, 40, 41, 42, 46, 114, 118, 121, 122, 125, 146, 149, 165. 

Macro-state 4, which is the least fuzzy one, only involves residues 22, 23, 73, 75-

78 (Figure 5.2). While the study of protein conformation was not the scope of 

this study, we observed high flexibility in the N-terminal and the C-terminal loop 

region as was already described previously 171. Interactions with the C-terminus 

are consequently present in multiple of the macro-states. When comparing the 

binding sites to aggregation prone regions identified on the protein surface, we 

find that macro-state 0 and 2 show an interaction close to the aggregation prone 

residues 98 to 100 (predicted by Aggrescan3D, AggScore, CamSol). Macro-state 

3 shows an interaction in close proximity to the aggregation prone residues 27 

(predicted by Aggrescan3D, AggScore, CamSol), 128 and 129 (predicted by 

AggScore). Macro-state 4 shows binding in proximity to aggregation prone 

residue 137 (predicted by AggScore).   
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Macro-state 
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Macro-state 
5 

  

Figure 5.2: Representative structures from two perspectives at 180° rotation of 

macro-states defined by the constructed Markov model. Aggregation prone residues 

colored in red: 16, 27, 61,65, 86, 89, 98, 99, 100, 101, 102, 103, 106, 109, 110, 111, 

116, 117, 128, 129, 137. The colors of the protein structures are meant to facilitate 

the correlation of the structures with Figure 5.4. 

When comparing the docked structure that led to the discovery of the dipeptide 

as protein-stabilizing substance, one observes a similarity to macro-state 3. In 

both, the docked pose as well as in macro-state 3, interactions with residues 33, 

34 and 146 are observed. The interaction between ARG 33 and the dipeptide in 

both cases consists of a salt bridge between the residue’s side chain and the 

dipeptide’s carboxyl group (not depicted for macro-state 3). In the docked pose, 

the interaction with residue 34 is between the backbone carbonyl group and the 

dipeptides N-terminal amine. In the MD simulation, the amide nitrogen of 
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residue 34 interacts with the dipeptide’s amide carbonyl group. The docked pose 

suggests a hydrogen bond between the side chain carboxyl of GLU146 and the 

dipeptide’s amine, which is also observed in the third macro-state. The docked 

pose shows the ASN side chain of the dipeptide forming a hydrogen bond with 

the backbone carbonyl of ALA145, which is not the case in the structures 

sampled from macro-state 3 (Figure 5.3). 

Docked pose Structure sampled from macro-state 
3 

  

 

Figure 5.3: Comparison of docked pose with the most similar structure of those 

sampled from macro-state 3. Interacting residues are represented as sticks. 

  

GLU 165 

 

GLU 146 

HIS 34 
HIS 34 

GLU 146 

ARG 33 
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The Markov model exposes the binding path of the dipeptide, which most 

frequently transitions from macro-state 5 to 4, occasionally passing through 

state 3, which acts as an intermediate. The very infrequently occupied states 0, 

1 and 2 are all connected to state 3 and are occasionally visited before the 

dipeptide moves along to states 3 and 4. The predicted residence time is 

calculated to be 0.03 µs and the equilibrium dissociation constant shows a weak 

binding of 29 mM compared to the µM affinity observed experimentally (Table 

5.1, Figure 5.4)179. 

Table 5.1: Observables derived from the Markov model and experimentally observed 

dissociation constant for the interaction between IFN and Gly-D-Asp. 

kon 313 ± 201 µM-1 s-1 

koff 30 ± 16 µ s-1 

τ 0.03 ± 0.02 µ s 

KD 29 ± 12 mM 

KD experimental 0.11 mM ± 0.02 mM 
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Figure 5.4: Markov processes can be visualized as a network of macro-states. Each circle represents a 

macro-state, which in our case corresponds to the ligand occupying a specific binding site (macro-

states 0-4) or being unbound (macro-state 5). The areas of the circles are proportional to the 

stationary probability of the macro-state. Transitions between macro-states are visualized by arrows. 

Their thickness represents the probability of the transition to occur. The transition probability is also 

written on top of the arrows. The committor probability describes how likely it is that the system 

changes to the target state 4 (sink), or to the original state 5 (source). If the committor probability is 

close to 1, the system will move towards the sink. If it is close to 0, the system will move towards the 

source. One can therefore conclude that when the ligand is bound to the protein in one of the four 

macro-states, it will most likely unbind (i.e. transition to macro-state 5) before occupying another 

bound macro-state. The macro-state are colored consistently with Figure 5.2. 
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5.5. Discussion 

Here, we use Markov theory for the first time to describe the interaction 

between a stabilizing small molecule and a therapeutic protein. The use of 

molecular dynamics simulations to study the interaction had two purposes. On 

the one hand, we wanted to identify the excipient’s favored interaction sites and 

compare it to the protein’s aggregation prone regions. On the other hand, we 

wanted to estimate the residence time of the protein-ligand complex to rule out 

any effect of the excipient on the drug protein’s efficacy after administration. 

We identified five meta-stable interaction sites showing hydrogen bonding and 

salt-bridges between the protein and the dipeptide, supporting the finding of 

stoichiometric binding between thee protein and the ligand. The protein-ligand 

complex formed in macro-state 3 is similar to the one that was proposed by our 

previously reported virtual screen179. In our Markov model, the macro-state 3 is, 

however, only a weakly populated intermediate state. Despite substantial 

sampling, we were not able to reproduce the experimentally observed 

dissociation constant. We can consequently conclude, that the simulations do 

not elucidate the interaction process in its entirety. 

We find that in all 5 bound macro-states, the binding site is in proximity to at 

least one aggregation prone region. Considering the overall hydrophobicity of 

Interferon-alpha-2A and the implied presence of multiple of such aggregation 

prone regions, it seems difficult to consider this observation to be significant, 

since almost any binding site is likely to be close to an aggregation prone region. 

Therefore, the simulations on the one hand support our hypothesis of 

stabilization by stoichiometric binding, on the other hand it neither proves nor 
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disproves that the proximity to an aggregation prone region is the cause for the 

stabilization. Obtaining a crystal structure of the protein-ligand complex would 

be highly desirable to further evaluate the model. 

The residence time estimated by our model is extremely low, indicating that 

there is no threat to an altered efficacy caused by a specific protein-excipient 

interaction since the complex will rapidly disassemble after administration. 

Since diffusion and distribution of small molecules is of orders of magnitudes 

faster than that of proteins, equilibrium conditions after administration are no 

longer given. Considering the underestimation of the dissociation constant, a 

higher residence time than the one calculated could nevertheless be plausible. 

5.6. Conclusion 

We studied the interaction between the stoichiometric stabilizer glycyl-D-

asparagine and Interferon-alpha-2A through the construction of a Markov state 

model from MD simulations. The binding mechanism is complex and involves 

interaction sites in proximity to aggregation prone regions. The calculated 

residence time is of 0.03 µs and does therefore emphasize the improbability of 

a distorted efficacy of the drug protein caused by a stoichiometric stabilizer. 
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5.7. Supplementary Data 

 

Figure S 5.1: Overlay of the position of the dipeptide in the starting structure for all 

1000 simulations. 
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Figure S 5.2: Chapman-Kolmogorov (CK) test to confirm markovianity of the 

constructed model. The CK test reveals that the markovianity of the model is given for 

50 time steps. 
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6. Exploring Chemical Space for new 

Substances to stabilize a therapeutic 

Monoclonal Antibody 

A version of this chapter has been published in the Journal of Pharmaceutical Sciences: 

Tosstorff, A., Menzen, T. & Winter G. Exploring Chemical Space for new 

Substances to stabilize a therapeutic Monoclonal Antibody, J. Pharm. Sci. 109, 

301-307 (2020). 

The manuscript was written by Andreas Tosstorff. Tim Menzen provided scientific 

advice and reviewed the manuscript. nanoDSF studies using a robotic autosampler 

were performed by Silvia Würtenberger at NanoTemper Technologies. We are grateful 

to NanoTemper Technologies for providing measurement time and access to the data 

analysis software PR.Stability. All other experiments and data analysis were 

performed by Andreas Tosstorff under the supervision of Gerhard Winter. 
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6.1. Abstract 

The physical stability of therapeutic proteins is a major concern in the 

development of liquid protein formulations. The number of degrees of freedom 

to control a given protein’s stability is limited to pH, ionic strength and type and 

concentration of excipient. There are only very few, mostly similar excipients 

currently in use, restricted to the list of substances generally recognized as safe 

for human use by the FDA. Opposed to this limited number of available 

excipients, there is the vastness of chemical space which is hypothesized to 

consist of 1060 compounds. Its potential to stabilize proteins has never been 

explored systematically in the context of the formulation of therapeutic 

proteins. Here we present a screening strategy to discover new excipients to 

further improve an already stable formulation of a therapeutic antibody. The 

data are used to build a predictive model that evaluates the stabilizing potential 

of small molecules. We argue that prior to worrying about the hurdles of toxicity 

and approval of novel excipient candidates, it is mandatory to assess the actual 

potential hidden in the chemical space. 

 

Keywords 

mAb, excipient, protein stability, nanoDSF, DSF, chemoinformatics 

6.2. Introduction 

Formulation of therapeutic proteins is a field of ongoing research as the 

proteins can degrade in multiple ways. The process of identifying a suitable 

formulation occurs typically by screening solution conditions that vary by pH 

and ionic strength58. Additionally, stabilizing substances, so called excipients 



Exploring Chemical Space for new Substances to stabilize a therapeutic 
Monoclonal Antibody 

 

 
 
119 Discovery of protein-stabilizing Excipient Candidates 

are added. These can be categorized as for example surfactants, buffers, amino 

acids, polymers, proteins, metal ions, tonicity modifiers, sugars and polyols, 

salts, preservatives, antioxidants, chelators, antimicrobials. A recent review 

mentions 57 different substances197. Examples include polysorbates, 

polyethylene glycols, several sugars, several proteogenic amino acids or 

cyclodextrin107,198,199. The chemical space of molecules consisting of up to 30 

carbon, oxygen, nitrogen or sulfur atom has been estimated to contain 1060 

different molecules200. Taking into consideration that many of the 

aforementioned excipients are structurally very similar, the portion of the 

chemical space covered by currently employed excipients is next to nothing.  

Hurdles in introducing new excipients to formulations of therapeutic proteins 

are the condition to have no pharmacological effect, the risk of their potential 

toxicity and the costly and time-consuming approval process, which for an 

excipient is as tedious as for a drug. Additionally, excipients have to be 

chemically stable and should have a sufficient aqueous solubility. Therefore, 

industry typically limits the arsenal of potential excipients during formulation 

development to the selection of excipients that the FDA generally recognizes as 

safe (GRAS list)3,201. However, there has been no systematic evaluation of 

possible benefits that may be introduced by new excipients. A better 

understanding of the potential of substances hidden in the chemical space to 

stabilize proteins could eventually provide a motivation to overcome the 

aforementioned hurdles.  

Monoclonal antibodies (mAbs) represent the most important and best-selling 

class of therapeutic proteins in recent years202. A lot of research effort has been 

dedicated to optimize their sequences, in order to reduce the likelihood that 
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their development will negatively affect the outcome of any clinical trial203. One 

important strategy in sequence optimization consists in mutating aggregation 

prone regions204. When analyzing 28 therapeutic mAbs using Aggrescan3D80, we 

found that aggregation prone moieties are present in the paratope for 20 of them 

(unpublished data). It seems plausible that sequence optimization is, among 

other factors, limited by the required affinity of the mAb to its target, often 

driven by hydrophobic patches in the mAb’s complementarity-determining 

region. New excipients could therefore present a way to push the boundaries of 

current state formulations even with optimized protein sequences. This is 

desirable to achieve for example formulations that are stable at room 

temperature, making refrigeration and freeze-drying obsolete or to replace 

excipients such as polysorbates, which have a lot of critical attributes205,206. 

Besides their application in biopharmaceutical products, new excipients could 

easily be employed to stabilize proteins used for diagnostics or in bioprocesses, 

where their potential toxicity is less of a concern. 

To identify excipient candidates, their effect on protein stability has to be 

evaluated experimentally. In long-term stability studies, formulations are 

stored for months or even years. The formation of aggregates and chemical 

changes in the formulation are monitored for example by chromatographic 

methods. Due to the limited throughput and time-constraints, this approach is 

not plausible for the purpose of screening a library of small molecules on their 

effect on protein stability. Instead, forced degradation studies have been 

developed as indicators of long-term protein stability. Differential scanning 

fluorimetry (DSF) measures changes in extrinsic fluorescence upon unfolding 

of a protein when exposed to heat. Similarly, in nanoDSF the measured changes 
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are of the intrinsic fluorescence of the protein’s tryptophan and tyrosine 

residues. The inflection point (apparent protein melting temperature, Tm) of the 

characteristic unfolding curve serves as a surrogate to measure a protein’s 

conformational stability. As extrinsic dye, SYPRO orange is one of the most 

common choices. The same method is also known as thermal shift assay in the 

drug discovery community, where it is used to identify new small molecular 

active compounds207. Light scattering, backscattering or optical density is often 

used simultaneously to monitor the formation of aggregates. The derived 

temperature of onset of aggregation (Tagg) is another common stability indicator. 

While DSF and nanoDSF are excellent choices regarding throughput and sample 

consumption, their correlation with long-time stability data is limited155. More 

recently, the ReFOLD assay has been proposed as stability indicating method, 

showing excellent correlation with long-term stability data50,208. In a first step, 

the protein is chemically denaturated by dialyzing against the formulation 

buffer containing Urea. Subsequently, the Urea is removed by dialyzing against 

the formulation buffer, leading to a refolding of the protein. During the process 

of Urea removal, the protein will be partially unfolded and not fully solubilized, 

making it prone to aggregate. The degree of aggregation measured for example 

by size exclusion chromatography can then be considered a surrogate for 

protein stability. As the ReFOLD assay relies on dialysis, it requires larger buffer 

volumes and has a lower throughput than for example DSF or nanoDSF 

measurements. 

In this work we make use of chemoinformatic methods to classify and describe 

small molecule structures for multiple purposes. Very broadly speaking, there 

are two approaches to classify a small molecule in a machine-readable way. This 

is either through physicochemical descriptors, such as for example 
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hydrophobicity, or descriptors of structural features, such as the occurrence of 

a functional group. Both of these classification approaches have been 

implemented in a lot of different ways for numerous purposes. An excellent 

overview on the topic is given for example by Leach et al.209. One way to define 

hydrophobicity as physicochemical descriptor is the octanol/water partition 

coefficient of a substance (P). Numerous ways to predict P for a given small 

molecule exist210. Structural features of small molecules are commonly 

represented by binary vectors with multiple implementations. In one approach, 

each element of the vector corresponds to a predefined structural feature or 

key, as for example in the Molecular Access System keys (MACCS) method211,212. 

If for example the first MACCS key is present in the small molecule, its vector’s 

first element will be set to 1. If the key is absent, the vector element is set to 0. 

In the case of so-called hashed fingerprints such as Morgan or Daylight 

fingerprints, the vector’s elements do not directly correspond to a specific 

structural element. Instead they are calculated by an algorithm that considers 

connectivity or atom environment within a molecule. 

The machine-readable description of a molecule can be exploited to build 

models that relate the descriptors to experimental observables, often referred 

to as quantitative structure activity relationship (QSAR). In QSAR, each 

physicochemical descriptor or vector element is considered a variable that can 

be fed to a machine learning algorithm in order to predict an unknown variable 

such as for example the biological activity of a small molecule213. Another 

example is the use of SYPRO Orange based DSF measurements of a mAb to build 

a QSAR model that predicts the effect of 79 osmolytes on the mAbs stability. The 

substances were similar to currently employed excipients, such as amino acids, 

methylamines and polyols214.  
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Here we present an approach to identify small molecules that stabilize a mAb, 

starting from the selection of a suitable library by a chemoinformatic approach 

that focuses on compound diversity and hydrophobicity. We then screen the 

selected library by DSF and nanoDSF combined with backscattering to identify 

hit substances based on Tm and Tagg. After a hit expansion with analog substances 

we use the ReFOLD assay to identify excipient candidates and finally build a 

predictive QSAR model by using multiple regression. 

6.3. Results 

Library selection 

Since there are only very few excipients commonly used in protein 

formulations, it is not possible to apply any general rules to the library design 

such as for example Lipinski’s rule of five known from drug discovery140. We 

therefore opted to screen a library covering as much of the chemical space as 

possible. It was therefore required to be highly diverse. We quantified a library’s 

diversity by considering its median pairwise Tanimoto coefficients calculated 

based on Morgan and RDkit daylight-like fingerprints. Limited lipophilicity was 

the only additional criterion imposed to assure sufficient solubilities. To keep 

time and cost of the first screening step reasonable, the library’s size should be 

in the range of 1000-2000 compounds. Furthermore, we checked for the 

presence of pan-assay interfering substances (PAINS) and reducing sugars, 

which, however, were found to be very sparse in all cases, and thus not critical 

to decision making. The cost of the libraries was another key aspect since prices 

ranged from approx. 2000 € to 170000 € (Figure 6.1). 
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In total, we compared 19 different commercially available libraries from 

different vendors. Their median SlogP values ranged from approximately 1.5 to 

3.5. Median similarities depended strongly on the type of descriptor used. The 

“Chemspace PPI Modulators library” (D) was found to be the least diverse and 

most hydrophobic library and fragment libraries from Enamine and Compound 

Cloud to be the most diverse and hydrophilic. Being the most cost-effective, we 

selected the “Enamine Golden Fragment Library” (Q). However, other 

selections would have also been plausible. The library consists of mostly 

aromatic scaffolds (Figure S 6.3), does not contain any reducing sugars and less 

than 1% of PAINS.  
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Figure 6.1: Comparison of commercially available libraries. Plotted is the median of the RDkit 

Tanimoto similarity vs. the median of the Morgan fingerprints Tanimoto similarity. The 

marker color indicates the SlogP value and the marker size corresponds to the size of the 

library. A: Chemspace Pre-Plated LeadLike set; B: Chemspace_Lead-Like Compounds 5000 

diversity set; C: Chemspace Pre-Plated Fragment-like set; D: Chemspace PPI Modulators; E: 

Chemspace General Fragments; F: Chemspace Acid Fragments; G: Chemspace 3D-Shaped 

Fragments; H: Chemspace Singleton Fragments; I: Chemspace Selected Fragments; J: 

Chemspace Saturated Fragments; K: Chemspace Amine Fragments; L: Phenotypic Toolbox; 

M: BCCDIV14B; N: Tocriscreen; O: Enamine Cys focused covalent fragments; P: Enamine DSI 

poised fragment library; Q: Enamine Golden Fragment Library; R: Enamine Fluorinated 

Fragment Library; S: CompoundCloud Selcia. Size of library M: 12030 substances, library G: 

337 substances. 
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Library screen 

The change in thermal stability of protein induced by a small molecule, typically 

referred to as thermal shift, is commonly employed in drug discovery to identify 

active compounds. It is also an indicator of the stability of a protein in a given 

formulation. A shift towards higher temperature corresponds to a 

binding/interaction of the small molecule with the protein’s native state215,216. 

Based on the same assumption that a stabilizing excipient also binds to the 

native state of the protein (or destabilizes the unfolded state), a positive shift is 

considered by us an indicator of a stabilizing protein formulation. By measuring 

the thermal shift of a therapeutic antibody (LMU-01) induced by all 1800 

substances from the Enamine GFL we combined the rational from drug 

discovery and protein formulation screening (Figure 6.2). The stability of a given 

protein can be optimized easily and at low cost by adjusting pH and ionic 

strength. The use of excipients is therefore only meaningful, once these basic 

formulation properties have been optimized. We therefore selected an already 

optimized starting formulation for our excipient screen. Since our screening 

methods rely on temperature gradients, we limited the buffer choice to 

phosphate, as its pH has a low susceptibility to temperature155. The assay was 

performed at low protein concentrations to ensure an excess of small molecule, 

whose limited availability in the library during the screen was considered a 

bottleneck. The screen was performed in the following way: first all 1800 

substances were tested by DSF and backscattering measurements. Hits from any 

of the measurements were then further evaluated by the ReFold method. 
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Figure 6.2: Thermal shifts relative to control samples from DSF measurements for all 

1800 substances. Markers of the same color correspond to samples being on the same 

well plate. 

For the DSF screen, Substances exceeding the threshold of 3 °C for ∆Tm2 were 

considered for additional orthogonal screening. As 41 substances would exceed 

our capacities to measure in the ReFold assay, they were evaluated in an 

additional backscattering measurement by their effect on the onset of 

aggregation temperature Tagg compared to an excipient free control. Three 

substances exhibited a Tagg higher than that of all three control measurements 

(Figure 6.3). These were then considered for the refolding study.  
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Formulation Tagg [°C] 

No Excipient 78.7 78.1 78.5 

1181867-71-9 79.2 79.1 - 

1803599-38-3 79.2 79.0 - 

127988-21-0 78.9 78.9 - 

 

Figure 6.3: Scattering intensity from backreflection measurements and derived onset 

of aggregation temperature (Tagg) for top 3 candidate substances (n=2) and reference 

sample without excipient (n=3). 
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The backscattering screen yielded 10 substances with a Tagg higher than that of 

the control. Of these, only one substance, 380610-68-4, was affordable in price 

and selected for the ReFold study. 

Three substances from the DSF screen and one substance from the 

backscattering screen and six analog substances were purchased for further 

evaluation in the ReFold assay (Table 6.1). 
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Table 6.1: Overview of candidate structures and their effect on the mAb in the ReFold 

assay. 

CAS number Structure CAS number Structure 

127806-46-6  127988-22-1 
 

119192-10-8 
 

1803599-38-3 
 

127988-21-0 
 

953734-04-8 
 

1181867-71-9 
 

67387-52-4 

 

380610-68-4 
 

10170-12-06 
 

 

ReFold 

The ReFold assay has previously been shown to accurately predict the long-term 

stability of various therapeutic mAb formulations. It is strictly orthogonal to the 

fluorescence-, light scattering- and temperature stress-based methods 
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employed in the first selection steps. It is therefore highly suitable to evaluate 

the candidate excipients and eliminate false positive results. Out of the 10 

candidates (4 hits and 6 analogs) selected, we identified five that would increase 

the relative monomer area compared to the excipient free formulations and 

formulations containing the standard excipients sucrose, L-arginine or D(+)-

trehalose. The substance 1803599-38-3 turned out to be a false positive (Figure 

6.4). 

 

Figure 6.4: Relative monomer area after ReFold assay for formulations containing 

the candidate excipients, benchmark excipients and for an excipient free reference 

formulation (n=2). 
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Four out of the five stabilizing compounds show a clear interaction with the 

protein upon unfolding as can be seen in nanoDSF measurements (Figure 6.5). 

Control experiments show that the change in curve shapes are not caused by a 

temperature dependence of the small molecules’ fluorescence signals (Figure S 

6.1). A change in curve shape was also observed for compound 127988-21-0 in 

the initial DSF screen, but not for compound 380610-68-4 (Figure S 6.2), for the 

other substances no DSF data are available since they are analogs purchased 

after the initial library screen. 

 

Figure 6.5: First derivative of nanoDSF data for all ReFold stabilizers. All 

compounds except 1181867-71-9 significantly alter the shape of the curve in the 

transition region (n=3). 
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QSAR 

The data from the ReFold assay was used to evaluate the effect of structural 

features of a small molecule on the relative monomer area by constructing a 

model through multiple regression. The model is built from 8 MACCS keys and 

achieves an R2 of 0.49 and RMSE of 2.13 (Figure 6.6). We found that structures 

containing MACCS keys 89 and 157 would lead to a decreased relative monomer 

area, while substances containing MACCS keys 91, 100, 117, 131, 132, 150 would 

increase the relative monomer area of the ReFold assay (Table 6.2). 

 

Figure 6.6: Multiple regression model to predict the effect of a small molecule on the 

relative monomer area determined by the ReFold assay. R2=0.49, RMSE=2.13. 

MACCS keys used for the model: 89, 91, 100, 117, 131, 132, 150, 157. 
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Table 6.2: Visualization and regression coefficient of MACCS keys used to build a 

regression model for the ReFold assay. * represent a wildcard. Unless specified, all 

bond representations are wildcards 

MACCS key Structural feature Regression coefficient 

89 
 

-3.53 

91 
 

2.52 

100 
 

3.53 

117  2.28 

131 OH > 1 3.17 

132 
 

1.59 

150 
 

any atom – non ring bond - any atom - 
ring bond – any atom – non ring bond – 

any atom 

4.43 

157  
single bond 

-3.72 

O
* * *

O

HO
* * *

C
H2

*

*
C
H2

N

O

*
N

O *
H2C *

* * **

C O



Exploring Chemical Space for new Substances to stabilize a therapeutic 
Monoclonal Antibody 

 

 
 
135 Discovery of protein-stabilizing Excipient Candidates 

6.4. Discussion 

The two criteria driving the library selection, diversity and hydrophilicity, 

allowed us to select a compound library covering a broad part of chemical space 

with substances with a reasonable solubility in aqueous formulations (Figure 

6.1). The libraries considered in our analysis were all from commercial vendors 

and designed for the purpose of drug discovery. The selected “Golden Fragment 

Library” has been already used in a thermal shift screen to identify inhibitors of 

bromodomain-containing protein 4217. The advantages of selecting a 

commercial library are that the cost per amount of substance is lower and that 

the libraries are curated and tested. Ideally this avoids pitfalls like PAINS, 

reactive or unstable substances. Substances from commercial libraries are 

furthermore provided pre-dissolved in well plates, allowing for an easy transfer 

with standard multi-pipettes. Typically, the substances found in commercial 

libraries can also be obtained individually at a reasonable cost, together with 

analogs, which makes following up on any hit molecules straightforward. 

As typically observed for mAbs, the temperature dependent fluorescence signal 

of LMU-01 shows two transitions (Tm1 and Tm2). From measurements of 

backscattering of light as an indicator of aggregate formation, the second 

transition, corresponding to the unfolding of the Fab fragment, has been 

identified to induce particle formation. The point density from the DSF 

measurements is only 1/K, which results in a considerable level of noise. We 

therefore selected candidates for further exploration based on thermal shifts of 

Tm2 above 3 °C (Figure 6.2). 
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The selected compounds were then evaluated by simultaneous nanoDSF and 

backscattering measurements, with backscattering being a truly 

complementary detection method to DSF to evaluate actual particle formation. 

The low working volumes did not allow for pH adjustment at this stage, 

inevitably leading to false positive and negative measurements, since shifts to 

lower pH typically increase the electrostatic repulsion among mAb molecules 

with pI values between 7-9218. Selecting a higher buffer concentration may be an 

approach to mitigate the risk of pH shifts, however, at the cost of increased ionic 

strength, altering the proteins reference stability profile. The presence of DMSO 

as standard solvent known from drug discovery screens was an additional 

source of error which we considered inevitable. For the last step of the 

screening we adjusted pH and worked in DMSO free conditions, leading to 

reduced solubilities of the candidate compounds and an altered protein stability 

profile. Additional false positive results could therefore be identified by using 

the ReFold assay (Figure 6.4, Table 6.1). 

In order to screen the library for its effect on protein stability, we considered 

three different analytical methods. DSF (in the presence of SYPRO Orange), 

nanoDSF/backscattering and SLS (data not shown). By using two fluorescence-

based methods, two different excitation and three emission wavelengths are 

covered. If a compound’s fluorescence happens to interfere in one of the assays, 

this ensured that it would not interfere in the other one. DSF measurements 

could be performed at a high throughput due to its well plate-based format. The 

use of SYPRO Orange as extrinsic fluorescent dye allowed for a very sensitive 

monitoring of mAb unfolding based on the exposure of hydrophobic regions, 

buried inside the core of the protein’s native conformation. Consequently, the 

presence of extrinsic dye may also interfere in the interaction between the 
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tested, partially hydrophobic substances and the protein. Furthermore, the low 

resolution of the measurement introduced a significant amount of noise. The 

lack of dedicated software to analyze the data, required the generation of our 

own script. In contrast, data from nanoDSF and simultaneous backscattering 

measurements had a vastly higher resolution than our DSF measurements and 

the provided software allowed for a straightforward way to handle the large 

amount of data. Since the capillary based system makes sampling loading a 

time-consuming drawback, a capillary-chip-based version of the instrument 

equipped with an automated sample loading device was used in this study. 

SLS/DLS measurements provide a sensitive way to detect the formation of 

protein aggregates in a well-plate format. Here, in order to prevent evaporation 

of the sample either silicon oil or adhesive films have to be used. Due to the 

hydrophobic nature of some of our substances, only the use of films was 

plausible for our case. While the method requires very low sample volumes, DLS 

measurement require long measurement times and are therefore a limitation to 

throughput. We therefore tested the use of scattering intensity (SLS) as a fast 

and sensitive readout to detect aggregate formation in isothermal conditions. 

Whereas this experiment would have presented a complementary approach to 

the DSF and nanoDSF experiments, it did not turn out to be sufficiently robust. 

Possible reasons could be the formation of air bubbles during the measurement 

and detachment of the adhesive film during the course of the measurement. 

Further optimization of the assay in terms of adhesive film selection and 

adhesion process was not feasible in the timeframe of this work. One could also 

consider this method as an intermediate screening step, where the number of 

candidates is already narrowed down and replicate measurements can be 

performed in a reasonable time frame. 
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After candidate selection through DSF, nanoDSF and backscattering 

measurements, we purchased the hit substances together with analog 

compounds. The use of analogs provides a way to identify the substructures 

responsible for the stabilizing effect and provides a mean to build a robust 

hypothesis.  

The recent development of the ReFold assay presents a straightforward, 

orthogonal way to evaluate the hits. While its throughput is considerably lower 

and its buffer consumption higher than that of the other discussed methods, it 

requires only a minimum amount of handling, is highly parallelizable and relies 

on methods established in any protein analytics lab.  

We observe that the candidates that positively affect the relative monomer area 

also change the nanoDSF curve shape (Figure 6.5). The altered shape of the 

nanoDSF curves could indicate an interaction between the stabilizers and the 

(partially) unfolded species or a change in the unfolding mechanism, a bias that 

is not observed with the ReFold assay. A change in the nanoDSF curve shape 

could be considered an alternative principle for the selection of excipient 

candidates from nanoDSF screens. 

In the ReFold assay, we find that several of the candidate compounds 

outperform the standard excipients arginine, trehalose and sucrose for the 

given concentration of 5 mM, which indicates a stabilization through 

stoichiometric binding (Figure 6.4). For a full benchmarking of the candidate 

compounds, a comparison with these substances at higher concentrations, 

resulting in preferential exclusion as dominating stabilization mechanism, is of 

interest. One could furthermore investigate the effect of combining the 
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excipient candidates at low concentration with preferential exclusion stabilizers 

at high concentration. This would combine two complementary stabilization 

mechanisms57. 

Predicting the effect of a small molecule on protein stability would be highly 

desirable to facilitate the discovery of new excipients. Through multiple 

regression, a model was constructed from the ReFold data using MACCS keys as 

input features to predict the effect of a substance on the assay (Figure 6.6, Table 

6.2). Even though it was cross validated by the leave-one-out method, its 

predictive power, is of course limited to the design space. Nevertheless, it can 

be considered a starting point for more sophisticated models for novel 

stabilizing substances, as already known from drug discovery. More, high 

quality input data will enable the construction of more general models. While 

we also considered the DSF and nanoDSF screening data for model generation, 

we found that the signal to noise ratio was not sufficient to construct meaningful 

models. Algorithms other than multiple regression were tested but led to 

overfitting, meaning that they would also fit to the noise in the data. 

In this work, we purposely left out toxicity as a factor in excipient selection, but 

instead we considered it the main purpose to explore the vast potential of 

chemical space for protein stabilization against non-native aggregation. As 

known from drug discovery, toxicity adds another degree of complexity to the 

endeavor of identifying new substances. We suggest that this factor should be 

accounted for in the candidate optimization stage by eliminating any entities 

responsible for toxicity from the structure219. Additional factors to be considered 

in the optimization stage are solubility, metabolism and the stability of the 

candidate substance itself. Compatibility with buffers other than phosphate is 
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an additional aspect to be taken into consideration. To fully assess the effect of 

an excipient on protein stability, long term stability and additional forced 

degradation studies paired with analytics covering all aspects of protein stability 

are necessary. It is apparent that excipient discovery is a multi-objective 

problem that engulfs all of the aforementioned requirements. In this study we 

focused on generating a single objective QSAR model to demonstrate the 

concept of combining modern screening methods with chemoinformatics. A 

multi-objective approach requires additional data generation which is only 

achievable in a highly automated laboratory. Conceptionally, however, the 

presented approach would require only slight adaptations. 

6.5. Conclusion 

In order to assess the potential of substances hidden in the chemical space 

beyond the GRAS list to stabilize a protein, we rationally selected a compound 

library by its lipophilicity and diversity. We screened the library to select 

stabilizing candidate substances for a mAb using two different, complementary, 

standard stability indicating methods. Both DSF and nanoDSF resulted in 

different hits. Subsequently, the hit substances and analogs thereof were 

evaluated by the ReFOLD assay, based on chemical denaturation and thus using 

a different physicochemical principle than the thermal screenings. This led to 

the identification of multiple substances outperforming standard excipients and 

the excipient free formulation. The candidate excipients can be developed and 

investigated further, for example in accelerated and long-term stability studies 

and additional forced degradation experiments. The stability of the excipient 

candidates themselves has to be tested as well as their toxicity. They could also 

be further optimized by structural modifications. The data was also used to 
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generate a MACCS keys-based model that can predict a substance’s effect on the 

ReFold assay. The model can be used to rapidly evaluate a novel substances 

effect and help to identify additional compounds for further studies. Combining 

high-throughput screening of the chemical space with QSAR modeling enables 

therefore the generation of formulations with novel excipients that outperform 

those containing established GRAS list excipients. 

6.6. Methods 

Library selection 

In order to select an appropriate compound library for screening, several 

commercially available libraries were analyzed. A KNIME workflow was set up 

using RDkit nodes to desalt the structure files, calculate SlogP values as a 

measure of solubility and a similarity matrix by querying individual entries from 

a library against their entire library (Figure S-1). The median values for each 

property was calculated using NumPy (version 1.16.2) and plotted using 

Matplotlib (version 3.0.3). 

Sample preparation 

The Enamine Golden Fragment Library was shipped in 29x 96 well plates 

containing stock 20 µl of 50 mM small molecule dissolved dimethyl sulfoxide 

(DMSO, Sigma-Aldrich). 250 µM stock solutions of small molecules were 

prepared in 96 well plates (Greiner Bio-One GmbH) with 50 mM sodium 

phosphate buffer at pH 6.0 (di-Sodium hydrogen phosphate dihydrate: VWR 

Chemicals, Sodium dihydrogen phosphate dihydrate: Grüssing GmbH).  
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Differential scanning fluorimetry 

LMU-01 solutions containing SYPRO orange were prepared by adding 2 µl of 

SYPRO Orange stock solution to 5 ml 1 mg/ml LMU-01 stock solution. The 

solution was prepared daily. The apparent protein melting temperature (Tm1 and 

Tm2) was measured with the a qTower 2.2 (Analytik Jena) in 96 well plates. Final 

working concentrations were 0.5 mg/ml LMU-01, 1:5000 SYPRO orange, 125 µM 

ligand, 0.25% DMSO in 50 mM sodium phosphate buffer at pH 6.0. The data was 

analyzed by calculating the unfolding curves’ first derivative by using a Savitzky-

Golay filter as implemented in the SciPy library220. The first derivative curve was 

fitted to a skewed gaussian by using the LMFIT module for Python221. 

Backreflection library screen 

Tagg, were measured with the Prometheus NT.Plex, equipped with 

backreflection optics, in standard capillary chips (NanoTemper). Final working 

concentrations were 0.5 mg/ml LMU-01, 125 µM ligand, 0.25% DMSO in 50 mM 

sodium phosphate buffer at pH 6.0. Automated sample loading into capillary 

chips was performed with an NT.Robotic Autosampler (NanoTemper). 

nanoDSF hit confirmation 

Tagg, Tm1 and Tm2 were measured with the Prometheus NT.48, equipped with 

backreflection optics, in standard capillaries (Nano Temper). Final working 

concentrations were 0.5 mg/ml LMU-01, 2 mM ligand, 4% DMSO in 50 mM 

sodium phosphate buffer at pH 6.0. 
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ReFold assay 

The ReFold assay was adapted from Svilenov et al.50. The refolding buffer was 

prepared by adding a stock solution of 50 mM sodium phosphate buffer at pH 

6.0 to excipient candidate substances to yield 5 mM solutions thereof. In cases 

where the solubility limit was exceeded, the saturated solution was used. The 

same procedure was used for the unfolding buffer which contained additional 

10 M of urea. pH values were adjusted to the excipient free reference buffer. The 

resulting buffers were centrifuged at 15000 rpm. Protein solutions were 

prepared by spiking 3 µl of LMU-01 stock solution to 237 µl of refolding buffer, 

yielding a protein concentration of 1 mg/ml. Duplicates of 100 µl of protein 

sample were transferred into micro-dialysis tubes with a 3.5 kDa cutoff. Dialysis 

was performed at room temperature and unfolding buffer was exchanged after 

3 h and 7 h. Refolding commenced after 24 h with buffer exchanges after 3 h and 

7 h. 

QSAR 

MACCS keys fingerprints of the substances tested in the ReFold assay were built 

using the Conda distribution of RDkit (version 02-2019). Low variance keys were 

eliminated. Of the remaining features, those with regression coefficients close 

to zero were removed to rule out overfitting and obtain a robust model using 

only 8 MACCS keys. Multiple regression using leave-one-out cross validation 

was performed using Scikit learn (version 0.20.3).  
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6.7. Supplementary Data 

 

Figure S 6.1: First derivative of Temperature dependent fluorescence signal from 

nanoDSF measurements for protein free control samples. The 350 nm/330 nm 

fluorescence signal of the tested small molecules shows a neglectable temperature 

dependence. 
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Figure S 6.2: DSF data for compounds 127988-21-0 (top left), 380610-68-4 (top 

right), excipient free control (bottom) 
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Figure S 6.3: Most common scaffolds in the Enamine “Golden Fragment Library” 
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7. Summary of the thesis 

In this work, we give an overview of concepts, methods and applications that 

facilitate the discovery of new protein-stabilizing small molecules. The first, 

introductory chapter, describes non-covalent interactions, that are the basis for 

protein aggregation and protein ligand interactions. Mechanisms that lead to 

the aggregation of proteins are introduced and the effect of small molecules on 

physical protein stability is discussed. Since the problem of excipient discovery 

is similar to that of small molecule drug discovery, central concepts of the latter 

are illustrated and where applicable, parallels to the excipient discovery process 

are highlighted. 

The second chapter describes the discovery of a new excipient candidate. The 

aggregation prone regions on the model protein IFN are identified using 

Aggrescan3D. By virtually screening the ZINC database’s millions of compounds 

in terms of hydrophobicity, solubility and affinity towards the aggregation 

prone region, a set of candidate compounds was selected for experimental 

screening. Of the candidate compounds, the dipeptide glycyl-D-asparagine was 

identified to bind to IFN with a micromolar affinity. In agitation and freeze-thaw 
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degradation studies, the compounds stabilizing effect on IFN is demonstrated. 

Furthermore, evidence is provided, that the compounds stabilizing effect is due 

to stoichiometric binding, as it outperforms its enantiomeric counterpart. The 

compound also shows better stabilization than the reference excipients 

trehalose and L-arginine. 

In the third chapter, a novel approach to validate aggregation prone regions is 

presented. By using solution paramagnetic enhancement NMR, residues that 

are buried in the oligomerization interface of the model protein Interferon-

alpha-2a are identified. The hence identified regions overlap or are in close 

proximity to regions identified by three computational methods to predict 

aggregation prone regions. 

In chapter four, the interaction between IFN and glycyl-D-asparagine is studied 

in detail by constructing a Markov state model from molecular dynamics 

trajectories. The model allows to calculate physical observables such as the free 

energy of binding or the rate constant of unbinding for the protein-excipient 

complex. One property of particular interest is the residence time, which is a 

measure of the lifetime of the formed complex. If the protein-excipient complex 

exhibits a long lifetime after drug administration, the drug protein’s efficacy 

might be altered. The calculated residence time indicates that the complex is 

short-lived and the excipient poses no threat to the drug’s efficacy. The model 

consists of six different macro-states, of which five correspond to the bound 

protein-ligand complex with different binding sites occupied. One macro-state 

overlaps with the structure obtained through the virtual screen that initially 

resulted in the discovery of the substance as described in chapter 2. The results 

therefore further support the hypothesis of stabilization through stoichiometric 
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binding, but show the presence of multiple binding sites. It is not possible to 

attribute the stabilizing effect to any binding site in particular nor to the 

proximity of a binding site to an aggregation prone region. 

The chapters two to four are centered on a structure-based hypothesis which 

was successful in obtaining a stabilizer against surface-stress. However, it 

requires access to methods and expertise of structural biology that is atypical to 

conventional protein formulation laboratories. The presented strategy 

furthermore did not yield a substance that would enhance the proteins stability 

in accelerated stability studies at elevated temperatures. Consequently, the fifth 

chapter presents an alternative approach to excipient discovery, this time using 

a monoclonal antibody as target, that parts from a high-throughput screen. Hits 

are identified by nanoDSF and backscattering measurements and validated by 

the novel ReFOLD assay. The experimental screen yields a number of 

substances that outperform standard excipients at concentrations of 5 mM or 

below, indicating stabilization through stoichiometric binding. By correlating 

the experimental data with the structural MACCS keys descriptors through 

multiple regression analysis, a QSAR model is generated that can predict the 

effect of a small molecule on the relative monomer area of the ReFOLD assay 

only from the molecule’s structure.  
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8. Discussion and Outlook 

Due to the layered nature of this work, a discussion on the overall strategy, not 

only on the separate chapters seems appropriate. Despite the successful 

identification of multiple stabilizing compounds, certain decisions should be 

reconsidered in the light of the obtained results. An outlook on appropriate 

further studies is given. 

For the purpose of identifying a novel excipient that stabilizes through 

stoichiometric binding, selection of the model protein is the first crucial step. 

Considerations that led to the choice of model proteins in this project included 

the availability of protein structure and availability of the protein substance. 

Information on mechanism of aggregation and “ligandability” of the protein 

were not considered. Therapeutic enzymes for example could be an interesting 

target for stoichiometric stabilizers as one can expect them to have a defined 

binding cavity and ligands may already be known.  

Along with the choice of the model protein comes the identification of the 

purpose of the excipient. Defining the desired formulation profile beforehand 

can be helpful to design an appropriate screening strategy. One could for 
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example define the development of a surfactant free formulation as target 

formulation. The resulting formulation screen could then use surfactant 

containing formulations as benchmark and shaking or freezing stresses would 

be the first line stress studies in hit identification. Alternatively, if the new 

excipient should enable for example a formulation stable at room temperature, 

long-term stability indicating methods such as the ReFOLD assay could serve as 

first line assay. When opting for a structure-based approach for the 

identification of a stoichiometric stabilizer, defining the purpose of the 

excipient is important, due to the dependence of oligomerization interface 

formation on the type of applied stress. Thermal stabilization may require a 

binding site different to that required for interfacial stabilization. 

Another impactful decision that occurred early on during the IFN project 

consisted in buffer pH and ionic strength selection. The main rational was to 

select an unstable or “bad” formulation, that would make any excipient induced 

improvement in stability visible easily. This decision is flawed for numerous 

reasons. For once, developing a novel excipient is of highest value when it 

outperforms the best available formulation. A good excipient in a bad 

formulation buffer is still likely to produce a bad formulation. Moreover, in the 

case of IFN, the selected buffer induces self-association due to low electrostatic 

repulsion. This made NMR studies at the corresponding pH impossible, which 

in turn hindered proving the binding hypothesis.  

Molecular dynamics simulations were one of the central methods employed to 

study protein-excipient interactions. While initially thought of as a validation 

tool as part of a virtual screen by the APR-US approach, we found that simulation 

times to reach convergence and simulation setup times are unreasonable 
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compared to for example a nanoDSF experiment. While obtaining information 

with atomistic resolution is an attractive outcome, the results have to be 

considered with care. Ligand force fields are often trained on limited data (ca. 

70 molecules for GAFF2) and quantum-mechanic calculations in vacuo will 

neither represent the solution environment of the free ligand nor the protein 

environment of the bound ligand. One of the most common application of MD 

to study protein-ligand interactions are free energy perturbation, which is 

successful because it relies on a known protein-ligand complex structure 

(including protonation states) and compares the effect of only small alterations 

to the ligand structure. Applications of MD that coincide with experimental 

values are often retrospective and anecdotical, but rarely prospective and 

broadly applicable, as their setup requires a lot of forehand knowledge on the 

system of interest.  

Future work regarding the glycyl-D-asparagine-IFN complex should consist in 

the elucidation of the structure by X-ray crystallography as ultimate proof of the 

binding site. Measuring the off-binding rate by surface plasmon resonance 

would present a way to confirm the calculated residence time.  

The substances identified to stabilize the mAb should be evaluated for example 

in long-term stability studies. An elucidation of their mechanism of action 

would be of great interest in order to design additional stabilizing molecules. 

Furthermore, extending the present data set would allow to further improve the 

QSAR model. At increasing structural diversity and complexity, alternative 

molecular descriptors and machine learning algorithms have to be considered 

for model generation. To ensure the safety of the discovered excipient 
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candidates, they need to be assessed in terms of their chemical stability and 

ADME-tox properties.  

Finally, combining the stoichiometric stabilizers described in this work with 

conventional preferential exclusion stabilizers could present an interesting area 

of further studies, that combines two complementary mechanisms of 

stabilization.  
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Appendix 

The data presented in the following describes the stabilizing effect of N,N,N',N'-

tetrakis-(2-hydroxyethyl) adipinic acid amide on the monoclonal antibody 

Trastuzumab and Interferon-alpha-2a. The substance was discovered by applying the 

same virtual screen approach described in chapter 3 to Trastuzumab. The stress studies 

with Trastuzumab were performed by Luis Sánchez. The stress study with IFN was 

performed by Andreas Tosstorff. A patent application that describes the use of this 

substance as excipient was filed (19186002.2 - 1116). Designated inventors are 

Andreas Tosstorff, Günther Peters and Gerhard Winter. 

 

Figure A 1: Structure of N,N,N',N'-tetrakis-(2-hydroxyethyl) adipinic acid amide 

(compound A) 
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Figure A 2: Number of particles after 3 freezing/thawing cycles. 50 mM 

phosphate buffer, pH 7.0; 5 mg/ml antibody IgG trastuzumab. 
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Figure A 3: Number of particles after stirring stress. 50 mM phosphate buffer, pH 

7.0; 5 mg/ml antibody IgG trastuzumab. 
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Figure A 4: Number of particles after 3 freezing/thawing cycles. 50 mM phosphate 

buffer, pH 7.0; 1 mg/ml interferon-alpha-2a. 
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