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Abstract

One of the main tools to study the geometry of complex algebraic varieties is
the group of automorphisms. The first part of this thesis concerns the study of
symplectic automorphisms of finite order on K3 surfaces, and birational symplectic
maps of finite order on projective hyperkähler manifolds which are deformation
equivalent to the Hilbert scheme of K3 surfaces. In the second part of this thesis,
the automorphism groups of rational homogeneous spaces are used to study Ulrich
bundles in smooth projective varieties.
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Introduction

“Seguire la gioia ed evitare la tristezza”
G.W. Leibnitz

In this thesis, we study the geometry of some algebraic varieties admitting
a non-trivial automorphism group. For simplicity, we assume that algebraic
varieties are irreducible algebraic sets in affine or projective space over the
complex numbers, and an automorphism is a bijective holomorphic map where
the inverse is also holomorphic. To go further, we can study the action of
(birational maps) automorphisms in cohomology, or we can find obstructions on
the main object of study that can be reflected in the description of the group of
automorphisms. In some cases, the natural action in the singular cohomology of
some finite groups of (birational maps) automorphisms determines the geometry
of the variety being studied. While in other cases, the presence of a large group
of automorphisms characterizes varieties admitting objects (e.g., vector bundles)
with specific conditions. It is not our purpose to study the group of automorphisms
of some algebraic varieties, instead, we use the action of automorphisms in different
contexts, to restrict the geometry of the variety or in some cases the existence of
certain objects. In other words, we use the group of automorphisms as one of the
main ingredients to solve the question to be addressed.

O ne of the algebraic varieties that we study in depth are the hyperkähler
manifolds. A hyperkähler manifold is a smooth simply connected compact

Kähler manifold X such that H0(X,Ω2
X) is generated by an everywhere non-

degenerate holomorphic 2–form ωX . Two–dimensional examples of hyperkähler
manifolds are called K3 surfaces. In fact, a K3 surface is defined as a compact
complex surface with trivial canonical bundle and H1(X,OX) = 0. The unicity of
the holomorphic 2–form ωX (up to scalar multiplication) determines the complex
structure of X and its period. The period of a hyperkähler manifold is given
by the second cohomology group endowed with its Hodge structure and the
Beauville–Bogomolov quadratic form. To distinguish two hyperkähler varieties,
it is enough to distinguish their complex structures or what is equivalent to
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distinguish their periods. The group of automorphisms of a hyperkähler manifold
plays an important role in the study of some of their geometrical properties. For
example, a particular type of automorphisms called symplectic are biholomorphic
maps that preserve the period of the hyperkähler manifold. This means that the
action of symplectic automorphisms on H2,0(X) = H0(X,Ω2

X) is trivial. These
particular automorphisms on K3 surfaces have been fully classified, starting from
the foundational work of Nikulin [Nik79], Mukai [Muk88] and later by Hashimoto
[Has12].

Higher dimensional hyperkähler manifolds share a lot of features with K3
surfaces and in fact the latter were often used as main motivation. As we saw
previously, the period of a hyperkähler manifold determines its Hodge structure,
which is essentially what Torelli’s theorem claims for K3 surfaces and later proved
in higher dimensional hyperkähler manifolds but in a weaker form (i.e., in terms
of monodromy operators). Then, the geometry of a hyperkähler manifold X

is encoded in the cohomology group H2(X,Z). We emphasize that Torelli’s
theorem on K3 surfaces is much stronger than Torelli’s theorem for higher
dimensional hyperkähler manifolds in the following way: if the Hodge structures
are isometric, then the hyperkähler manifolds are birational, however, in the
case of K3 surfaces this implies that they are isomorphic (see Theorem 1.4.9
for a precise statement). The cohomology group H2(X,Z) of K3 surfaces is
isometric to an even unimodular lattice of signature (3,19). For higher dimensional
hyperkähler manifolds, the cohomology group H2(X,Z) is isometric to a lattice
of signature (3, b2(X)− 3) and not unimodular in general. This lattice theoretical
approach is a powerful technique that allows studying many geometrical properties
of hyperkähler manifolds in family.

Examples in higher dimensions of hyperkähler manifolds are extremely hard to
construct. All the known hyperkähler manifolds are deformation of:

• a Hilbert scheme of a projective K3 surface;

• the generalized Kummer associated to an Abelian surface;

• the O’Grady’s 10–dimensional example;

• the O’Grady’s 6–dimensional example.

Some hyperkähler manifolds of the first type of deformation come as examples
of moduli spaces of (twisted) stable sheaves on projective K3 surfaces. The
numerical conditions on the sheaves, encoded in the first and the second Chern
class, define good moduli spaces even with models in some projective space. Such
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moduli spaces reflect the geometry of the underlying K3 surface: they can be used
to reveal properties of the K3 surface, or they may be studied as interesting spaces
in their own right.

In the first part of this thesis, we adopt the lattice approach introduced by
Nikulin in [Nik76] to the study of symplectic automorphisms of finite order on
K3 surfaces, and to the study of symplectic birational maps of finite order on
hyperkähler manifolds of K3[n]–type. The technique that we address for both
cases is based on the main facts of the lattice theory. However, the questions we
develop converge to two different kind of problems.

K3 surfaces: In [Nik76], Nikulin introduced the finite order symplectic
automorphisms of K3 surfaces and studied their properties considering both their
action on the surface (in particular determining their fixed locus) and the action
that they induce on the second cohomology group of the K3 surfaces. It was proved
that both the topology of the fixed locus and the action induced in cohomology are
unique and depend only on the order of the automorphism, see [Nik76, Theorem
4.7]. One of the main reasons of interest in these particular automorphisms is that
their existence induces a natural relation between two different (families of) K3
surfaces: the family of K3 surfaces admitting a symplectic automorphism of order
n and the one of the desingularization of the quotient of the K3 surfaces by a
symplectic automorphism of order n. The latter surfaces are still K3 surfaces, but
in general not isomorphic to the original ones. From [Nik76], [GS07], and [GS08]
it is possible to describe the family S (resp. T ) of the projective K3 surfaces X
admitting a symplectic automorphism σn of order n for prime numbers n (resp.
of the projective K3 surfaces Y obtained as desingularization of the quotient of a
K3 surface by a symplectic automorphism of order n), in terms of families of the
lattice polarized K3 surfaces. Both these families have countable many irreducible
components. It remains an open problem to determine the relationship between
the components of these two families. More explicitly, if one considers a K3 surface
X admitting a symplectic automorphism σn of order n, then X is contained in
a specific component of S. This information determines the component of T
which contains Y (resolution of X/⟨σn⟩). By the theory of the moduli space of
lattice polarized K3 surfaces in [Dol96], this problem is equivalent to determine
the relation between the Néron–Severi group of X and the one of Y .

For symplectic involutions, this problem was resolved thanks to the results
contained in [Mor84], [vGS07] and [GS08]. In [Mor84], Morrison studied the
isometry induced by a symplectic involution on the lattice ΛK3 ∶= U⊕3 ⊕ E⊕2

8 .
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The action in the cohomology group of any K3 surface can be described as an
action on ΛK3. In fact, Morrison proved that symplectic involutions act as the
identity on the direct sum U⊕3 and switch the two copies of E8 in the summand
E⊕2

8 . Thanks to this result, Morrison identified a nice and strong relation, called
Shioda–Inose structure, between certain K3 surfaces and an associated Abelian
surface. By using Morrison’s result, van Geemen and Sarti described the family
S and the maps π∗ and π∗, where π is the rational map π ∶ X ⇢ Y induced by
the quotient map X → X/⟨σ2⟩. As a consequence, in [GS07] the description of
the family T and the explicit relation between components of S and of T are
obtained. This result is applied in [CG20] to construct infinite towers of isogenous
K3 surfaces.

The main results in this thesis concerning symplectic automorphisms on K3
surfaces, are generalization of these known results on symplectic automorphisms
of order 2 to the order 3 case, see [GPM21]. As mentioned above, the results of
the order 2 case mainly depend on the description of the isometry induced by a
symplectic involution on the second cohomology group. Hence our first goal is to
establish a similar result for the order 3 case. It turns out that the action induced
by a symplectic automorphism of order 3 on ΛK3 is not compatible with the direct
summands U⊕3⊕E⊕2

8 . So we give a different description of the lattice ΛK3 and we
provide the action on such a lattice, see Theorem 2.2.5:

Main Theorem 1 ([GPM21]). The lattice ΛK3 is an overlattice of index 32

of the lattice A2(−1) ⊕ U ⊕ E⊕3
6 . The action induced by an order 3 symplectic

automorphism on A2(−1)⊕U⊕E⊕3
6 is the identity on the summands A2(−1)⊕U and

a cyclic permutation of the three summands in E⊕3
6 . The action on the overlattice

ΛK3 is induced by the one on A2(−1)⊕U ⊕E⊕3
6 by Q-linear extension.

This result is achieved in a geometric way: thanks to [Nik76, Theorem 4.7] the
isometry induced on ΛK3 by a specific symplectic automorphism σ of order 3 on a
specific K3 surface X is essentially unique (i.e. it does not depend on X and σ).
This allows us to describe the isometry induced by any automorphism of order 3
on the lattice ΛK3.

In Chapter 2, we describe a particular K3 surface S with a specific
automorphism σ of order 3: the surface S is a classic K3 surface of Picard number
20 studied in [SI77] and [Vin83], and σ is a symplectic automorphism of order 3

that acts on the generators classes of the Néron–Severi group of S by permuting
three copies of E6. In Chapter 3, we describe the maps π∗ and π∗ induced by
the quotient map, while in Chapter 4, we describe the families S and T , listing
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all their components, see Theorems 4.1.4 and 4.2.4 respectively. In Chapter 5,
merging the results on the families S and T with the ones about the maps π∗ and
π∗, we deduce the relations between the components of S and the ones of T and in
particular we relate the Néron–Severi group of a projective K3 surfaceX admitting
a symplectic automorphism σ of order 3 with the one of the desingularization Y
of X/⟨σ⟩. This result is proved under the assumptions of generality for X and Y ,
it is stated in Theorem 5.1.2 and it can be summarized in the following theorem:

Main Theorem 2 ([GPM21]). Let X be a projective K3 surface admitting an
order 3 symplectic automorphism σ, then ρ(X) ≥ 13 and if ρ(X) = 13 the Néron–
Severi group of X determines uniquely the one of the minimal resolution of X/⟨σ⟩

and viceversa.

The application of these results to specific families of K3 surfaces allows us
to exhibit equations of families of projective K3 surfaces admitting symplectic
automorphisms of order 3 and of their quotients in Section 5.3. For example we
show that there is exactly one component of S which corresponds to a family of
quartic hypersurfaces in P3 admitting a symplectic automorphism of order 3 (and
in this case the quotient is a singular surface in P7). But there are two different
components of S which correspond to two families of complete intersections of
type (2,3) in P4 admitting a symplectic automorphism of order 3. The quotient
of the surfaces contained in one of these components is a singular double cover of
P2 and it corresponds to a component in T . The quotient of the surfaces in the
other case has a singular model in P10 and it corresponds to another component
in T .

In Chapter 6, we briefly present two applications of the Main Theorems 1
and 2. By Main Theorem 2, we are able to construct infinite towers of isogenous
K3 surfaces by considering iterated quotients by symplectic automorphisms of
order 3. The analogous construction which uses symplectic involutions was
presented in [CG20]. By Main Theorem 1, the definition and previous results
on Classical Shioda–Inose structures in [Mor84] can be generalized to symplectic
automorphisms of order 3 of K3 and Abelian surfaces.

Hyperkähler manifolds of K3[n]–type: In higher dimensional hyperkähler
manifolds, the maps preserving the period can be also obtained by birational
maps. The induced maps in cohomology of symplectic birational maps have a
similar behavior of induced maps in cohomology of symplectic automorphisms.
When a hyperkähler manifold is deformation equivalent to a Hilbert scheme of n
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points on a K3 surface, symplectic automorphisms are actually characterized as
subgroups of Conway’s group, see [Mon16]. Moreover, the action of these groups
in cohomology can be explicitly described by studying these actions on the Leech
lattice. In [HM16], Höhn and Mason computed the orbit of fixed–point sublattices
of the Leech lattice with respect to the action of the Conway group. This allows
to classify all finite automorphism groups of hyperkähler manifolds preserving the
period. Let X be a projective hyperkähler manifold of K3[n]–type. Markman in
[Mar10] proved that the Monodromy group of X is the subgroup of isometries of
H2(X,Z) preserving the orientation and acting via multiplication by Id or − Id on
the discriminant group AX =H2(X,Z)∨/H2(X,Z).

In this thesis, we study symplectic birational maps of finite order admitting a
non-trivial action on the discriminant group AX . Some examples of hyperkähler
manifolds with this kind of maps were provided by Markman in [Mar13] as moduli
spaces of sheaves of general K3 surfaces (i.e., a K3 surface with Picard number
one) with a particular Mukai vector. Moreover, these examples show evidence that
any symplectic birational map with non-trivial action on AX can be obtained as
the composition of an involution with non-trivial action on AX and a map with a
trivial action on AX . The involutions in these particular examples are described
by reflection maps of classes in cohomology associated to divisors which are not
prime exceptional. Our main result in this thesis on the study of these maps can
be summarized as follows:

Main Theorem 3. Let X be a projective hyperkähler manifold of K3[n]–type
admitting a symplectic birational map of finite order with a non-trivial action on
AX . Then, X is birational to a moduli space of (twisted) sheaves on a K3 surface.

The result imposes strict conditions in the moduli space of hyperkähler
admitting symplectic groups (i.e., groups of isometries preserving the period).
In chapter 7, we provide several properties of this kind of birational maps. Most
of these results were obtained from a theoretical lattice viewpoint. Unfortunately,
it does not give a big contribution to the problem of factorization of symplectic
birational maps presented above. We expect that at least from a lattice theoretical
viewpoint, the existence of the involution is strictly related with the existence of
hyperbolic 2-elementary lattices (see Proposition 7.1.4).

A nother type of varieties that we study are smooth projective varieties
admitting non-trivial vector bundles with a large number of vanishing

cohomology groups. One approach to the study of these vector bundles comes with
a flavor in commutative algebra. In fact, the vector bundles that we are interested
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(i.e., Ulrich bundles) were introduced in an algebraic setting, see [Ulr84]. Let
X ⊂ PN be a smooth projective variety. We say that a vector bundle E of rank r
is an Ulrich bundle on X if E admits a linear resolution of the form:

0→ OPN (−N + n)⊕aN−n → ⋯→ OPN (−1)⊕a1 → O⊕a0
PN → E → 0.

In particular, Ulrich bundles on X are arithmetically Cohen-Macaulay (aCM
for short), i.e., H i(X,E(jH)) = 0 for all j ∈ Z and 1 ≤ i ≤ n which are objects
intensely studied in algebraic geometry. Hence, Ulrich bundles can be roughly
defined as aCM vector bundles on a projective variety that have the largest
permitted number of global sections. The first geometric manifestations of Ulrich
bundles go back to seminal works such as [Bea00, ES03], where the authors relate
in a very precise way the existence of such bundles on X to some measurement
of the complexity of the underlying polarized variety (X,OX(1)). In [Bea00],
Beauville made a systematically study of the relation between Ulrich bundles
and determinantal representation of hypersurfaces (i.e., write a homogeneous
polynomial f as the determinant of a matrix with linear entries) which was a
problem first stated by Hesse in [Hes55].

The existence of an Ulrich bundle on a projective variety has strong
consequences for the underlying variety. For instance, we have the following (non-
exhaustive) list of smooth projective complex varieties that are known to support
Ulrich bundles:

• Algebraic curves. See [ES03, Section 4].

• Complete intersections in the projective space. See [BHU87, HUB91].

• Veronese varieties. See [ES03, Section 5].

• Grassmannians and, more generally, many rational homogeneous spaces of
Picard number one carry an equivariant Ulrich bundle. See [CMR15, Fon16,
LP21].

• Many geometrically ruled surfaces, and del Pezzo surfaces. See [ES03, Cas17,
ACMR18, Cas19, ACC+20, Section 6] .

• Abelian surfaces, bi-elliptic surfaces, K3 surfaces and Enriques surfaces. See
[Bea16, AFO17, Cas17, Bea18, BN18, Fae19].

• Elliptic and some quasi-elliptic surfaces. See [MRPL19, Lop21].
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• Some surfaces of general type. See [Cas17, Bea18, Cas18, Cas19, Lop19,
Lop21].

• Some Fano threefolds of Picard number one. See [Bea18].

There are several techniques that have been developed in order to produce
Ulrich bundles. Among them, we can mention the use of tools from commutative
algebra (cf. [HUB91]), representation theory and Borel–Bott–Weil theorem (cf.
[ES03]), the study of some Noether–Lefschetz loci (cf. [AFO17]), the Hartshorne–
Serre construction (cf. [Bea18, Section 6]), and the use of the Cayley–Bacharach
property for suitable zero-dimensional subschemes on surfaces (cf. [Bea18, Section
5]). Additionally, these techniques have been modified in order to produce
certain torsion-free sheaves which, in some cases, can be deformed inside their
corresponding moduli space of semistable sheaves to obtain the desired Ulrich
bundles (cf. [Fae19]).

In practice, many of these constructions are not explicit, and they depend
on some choices (e.g., suitable codimension two subschemes to be used in the
Cayley–Bacharach or Hartshorne–Serre construction). Because of this, even for
varieties where the existence of Ulrich bundles is known to be true, it is a natural
and challenging problem to classify Ulrich bundles with fixed numerical invariants
and to determine the Ulrich complexity of a given smooth projective variety X

(i.e., the minimum integer r ∈ N≥1 such that there exists a rank r Ulrich bundle on
X). See [BES17, FK20] for some results towards the Ulrich complexity of smooth
hypersurfaces.

In this thesis, we adopt the new approach to the study of Ulrich bundles that
was recently initiated by Lopez and his collaborators in [Lop20, LMn21, LS21].
More precisely, they study the positivity properties of Ulrich bundles and give
classification results for projective varieties carrying Ulrich bundles for which these
positivity conditions fail. Along the same lines, it is natural to try to understand
(by means of positivity techniques) smooth projective manifolds that enjoy the
property of having Ulrich bundles that are canonically attached to them.

The main results in this thesis on Ulrich bundles state that if X ⊆ PN is a
smooth projective variety of dimension n ≥ 1, then the cotangent bundle Ω1

X is
never an Ulrich bundle and for the tangent bundle we have the following:

Main Theorem 4 ([MPTB21]). Let X be a smooth projective variety of
dimension n ≥ 1. If the tangent bundle TX is an Ulrich bundle, then X is
isomorphic to the twisted cubic in P3 or to the Veronese surface in P5.
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Our main inspiration comes from the systematic study of the positivity of the
tangent bundle, initiated by the solutions of Mori [Mor79] and Siu–Yau [SY80] to
the Hartshorne and Frankel conjectures and pushed further by many authors in
order to give structure results for manifolds whose tangent bundle satisfies weaker
positivity assumptions. It turns out that smooth projective varieties with Ulrich
tangent bundle fit very well into this picture, and we show that they are rational
homogeneous spaces with rather a large automorphism group.

A first ingredient for our analysis, that we believe is interesting in its own
right, is that there are many numerical restrictions on the Chern classes of Ulrich
bundles. This has already been observed in the case of surfaces (cf. [ES03, Section
6]), and used notably by Casnati (cf. [Cas17, Cas19]) in order to give a numerical
characterization of Ulrich bundles on surfaces. We extend this characterization to
the case of threefolds in Proposition 8.3.1, and we observe in Lemma 8.2.3 a useful
restriction concerning the first Chern class of Ulrich bundles in any dimension.

In Chapter 8 we revisit some known results concerning the Chern classes of
Ulrich bundles, and we prove Proposition 8.3.1 and Lemma 8.2.3 reported above.
In Chapter 9, we prove Main Theorem 4 and Theorem 9.3.2. To do so, we carry
out an analysis depending on the dimension in Section 9.1, Section 9.2 and Section
9.3 to reduce the problem to analyze higher dimensional varieties of Picard rank
at least two. This last case can be settled by means of Lie algebra computations.
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1 | Basic Notions

1.1 Lattice Theory

Definitions and examples

A free Z-module L of finite rank is a lattice if it is endowed with a non degenerate
symmetric Z-bilinear form

( ⋅ )L ∶ L ×LÐ→ Z.

Two lattices L and K are isometric if there is an isomorphism ϕ of L onto K
which preserves the bilinear forms, i.e., (x ⋅ y)L = (ϕ(x) ⋅ ϕ(y))K . The map ϕ is
called an isometry and the group of isometries of L is denoted by O(L).

A lattice L is even if (x ⋅ x)L ∈ 2Z for all x ∈ L. The signature of L is a pair
(l(+), l(−)) where l(±) denotes the multiplicity of the eigenvalue ±1 for the R-bilinear
form of L ⊗Z R. Denote by L∨ the dual module Hom(L,Z) of L, and by AL the
discriminant group L∨/L of L. The discriminant group is a finite Abelian group
that comes with a symmetric Q-bilinear form ( ⋅ )AL ∶ AL ×AL Ð→ Q/Z induced
by ( ⋅ )L:

(x +L ⋅ y +L)AL = (x ⋅ y)L mod Z for all x, y ∈ L.

The quadratic form of L is a map qL ∶ AL Ð→ Q/2Z defined as

qL(x +L) = (x ⋅ x)L mod 2Z for all x ∈ L.

We remark that qL(x + y) − qL(x) − qL(y) ≡ 2(x ⋅ y)L mod 2Z. A subgroup
H ⊂ AL such that qL

∣H
= 0 is called qL-isotropic.

The group of isometries of AL is denoted by O(AL). A lattice L is
unimodular if AL is trivial. An injective map L↪M is a primitive embedding
if M/L is a torsion free Z-module. An even lattice M is an overlattice of L if
there is an embedding L↪M such that M/L is a finite Abelian group.

Example 1.1.1 (Hyperbolic plane). We denote by U ≅ Z ⋅ e ⊕ Z ⋅ f the lattice of

1



CHAPTER 1. 1.1. Lattice Theory

rank 2 with the Gram matrix
⎛

⎝

0 1

1 0

⎞

⎠
.

This is an even unimodular lattice of signature (1,1).

Example 1.1.2 (ADE Lattices). We denoted by An, Dn, E6, E7, and E8 the
lattices associated to the Dynkin diagrams where each vertex corresponds to a
generator v with (v ⋅ v) = −2, and (v ⋅ w) = 1 if v and w are connected by
an edge, otherwise (v ⋅ w) = 0. We use the convention that ADE lattices are
negative definite and the root ordering follows Bourbaki’s notation. For example,
consider the lattice A5 generated by a1, ..., a5, where (ai ⋅ ai+1) = 1, i = 1, ...,4

and (ai ⋅ aj) = 0, j ≠ i + 1. Then, a basis for the dual module A∨
5 ⊂ A5 ⊗ Q

is given by {a1+2a2+3a3+4a4+5a5
6 , a2, a3, a4, a5}, and so A∨

5/A5 = ⟨g⟩ ≅ Z/6Z where
g = a1+2a2+3a3+4a4+5a5

6 . Note that qA5(g) =
1
36(a1 + 2a2 + 3a3 + 4a4 + 5a5 ⋅ a1 + 2a2 +

3a3 + 4a4 + 5a5) = −5/6, and so the discriminant form A5 ≅ Z6(
1
6).

We record the discriminant form for all lattices of ADE type in Table 9.2.

Example 1.1.3 (The lattice K12). We denote by K12 the Z-module with the
following bilinear Gram Matrix form:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−8 −3 3 0 −3 0 0 −3 3 0 −3 0

−3 −4 2 0 0 0 1 −2 1 0 0 0

3 2 −4 2 0 2 0 1 −2 1 0 1

0 0 2 −4 2 0 0 0 1 −2 1 0

−3 0 0 2 −4 0 0 0 0 1 −2 0

0 0 2 0 0 −4 0 0 1 0 0 −2

0 1 0 0 0 0 −4 2 0 0 0 0

−3 −2 1 0 0 0 2 −4 2 0 0 0

3 1 −2 1 0 1 0 2 −4 2 0 2

0 0 1 −2 1 0 0 0 2 −4 2 0

−3 0 0 1 −2 0 0 0 0 2 −4 0

0 0 1 0 0 −2 0 0 2 0 0 −4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The lattice K12 is an even negative definite lattice of rank 12 and discriminant
group isomorphic to (Z/3Z)6. Set ki, i = 1, ...,12, be a basis of K12. A basis of the
discriminant group AK12 can be written as

g1 =
k7 + 2k8 + k10 + 2k11

3
, g2 =

k6 + k12

3
, g3 =

k5 + k11

3

2
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g4 =
k4 + k10

3
, g5 =

k3 + k9

3
, g6 =

k2 + k8

3
.

In this basis, the quadratic form of AK12 can be written as

qK12 ∶ AK12 Ð→ Q/2Z

x1g1 + ... + x6g6 ↦
4

3
x2

1 +
2

3
(x2

2 + x
2
3 + x

2
4 + x

2
5 + x

2
6)

+
4

3
(x2x5 + x3x4 + x4x5 + x5x6). (1.1)

Remark 1.1.4. The lattice K12 is also denoted the Coxeter–Todd lattice. Our
notation is slightly different from that of [[CS93],Ch.4, Section 9], cf. [NS14],
since they define K12 as a positive definite lattice. In this case, we say that K12 is
the opposite of the Coxeter–Todd lattice.

Example 1.1.5 (The lattice MZ/3Z). We denote by MZ/3Z the Z-module of rank
12 with the following Gram Matrix form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−4 −1 0 −1 0 −1 0 −1 0 −1 0 −1

−1 −2 0 0 0 0 0 0 0 0 0 0

0 0 −2 1 0 0 0 0 0 0 0 0

−1 0 1 −2 0 0 0 0 0 0 0 0

0 0 0 0 −2 1 0 0 0 0 0 0

−1 0 0 0 1 −2 0 0 0 0 0 0

0 0 0 0 0 0 −2 1 0 0 0 0

−1 0 0 0 0 0 1 −2 0 0 0 0

0 0 0 0 0 0 0 0 −2 1 0 0

−1 0 0 0 0 0 0 0 1 −2 0 0

0 0 0 0 0 0 0 0 0 0 −2 1

−1 0 0 0 0 0 0 0 0 0 1 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The quadratic form of AMZ/3Z ≅ (Z/3Z)4 can be written as

qAMZ/3Z
(v) = −

2

3
(x2

3 + x
2
4) −

1

3
(2x1x2 + 2x2x3 − 2x2x4 − x3x4).

Some properties are given without proofs, see [[Nik79]; [BHPVdV04], I.2] for
further details. Suppose that L↪M is an embedding:

• If rankL = rankM , then (M ∶ L)2 = ∣AL∣ ⋅ ∣AM ∣−1.

• rankL + rankL⊥ = rankM .

3
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• If L ⊂ M is primitive, every basis of L can be complemented to a basis of
M .

• If M is unimodular and L ⊂M is primitive, then ∣AL∣ = ∣AL⊥ ∣

Let L be a lattice and G ⊂ O(L). Denote by LG the invariant sublattice of L
and by SG(L) = (LG)⊥ ⊂ L the co-invariant sublattice of L.

Lemma 1.1.6. Let L be a lattice and G ⊂ O(L). Then the following hold

1. LG contains ∑
g∈G

gv for all v ∈ L.

2. SG(L) contains v − gv for all v ∈ L and all g ∈ G.

3. L/(LG ⊕ SG(L)) is of ∣G∣–torsion.

Proof. The proof of (1) is straightforward. To deduce (2), consider w ∈ LG and
g ∈ G, then (w ⋅ v) = (gw ⋅ gv) = (w ⋅ gv) for all v ∈ L. This gives (w ⋅ v − gv) = 0 for
all v ∈ L and all g ∈ G.

Let l ∈ L. The result follows from ∣G∣ ⋅ l = ∑
g∈G

g(l) + ∑
g∈G

(l − g(l)) where the first

term lies in LG and the second in SG(L) by (1) and (2). ∎

The following lemma is useful to understand the isometries of indefinite lattices.

Lemma 1.1.7. [Nik79, Proposition 1.14.2], cf. [Dol83, Proposition 1.4.7] Let
L be an indefinite lattice of rankL ≥ l(AL) + 2. Then the canonical morphism
O(L)Ð→ O(AL) defined as ϕ↦ ϕ̄ where

ϕ̄(x +L) = (ϕ−1)∨(x) +L

is surjective.

In the next definition, we follow the notation of [Bri83]. Let L be an even
lattice of signature (l(+), l(−)) and AL its discriminant group with quadratic form
qL ∶ AL Ð→ Q/2Z.

Definition 1.1.8. The signature modulo 8 of qL is

sign(qL) ∶= l(+) − l(−) mod 8.

Set p be a prime.
Suppose that p is odd. We denote by wεp,α, ε = −1,+1, two finite quadratic forms

on Z/pαZ: the quadratic form w+1
p,α has generator value qL(1) = a/pα mod 2Z

4
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where a is the smallest positive even number which is a quadratic residue modulo
p; and for w−1

p,α we have qL(1) = a/pα mod 2Z with a the smallest positive even
number such that is not a quadratic residue modulo p.

If p = 2, we also define finite quadratic forms wε2,α on Z/2αZ, α ≥ 1 but ε =
±1,±5. The quadratic form wε2,α has generator value qL(1) = ε/2α. We denote by
uα, vα two additional finite quadratic forms on Z/2αZ⊕Z/2αZ:

uα =
⎛

⎝

0 1/2α

1/2α 0

⎞

⎠
, vα =

⎛

⎝

1/2α−1 1/2α

1/2α 1/2α−1

⎞

⎠

Example 1.1.9. The signatures modulo 8 of the four quadratic forms w1
2,1, w−1

2,1,
u1 and v1 are 1, −1, 0, and 4 respectively. These follow by taking L = (2), (−2),
U(2), and D4 respectively.

Theorem 1.1.10. [Nik79, Theorem 1.8.1] The semigroup of non-degenerate p–
adic finite quadratic forms is generated by

• w±1
p,α (α ≥ 1) if p is odd;

• w±1
2,α, w±5

2,α, uα, and vα (α ≥ 1) if p = 2.

In particular, qL is isomorphic to an orthogonal direct sum of the forms wεp,α, uα,
vα.

The following Theorem introduces the notation of p–adic lattices which will be
very useful in the characterization of the existence of a lattice.

Theorem 1.1.11. Let p be a prime and qp be a quadratic form on a finite
Abelian p–group Ap. Then there exists a p–adic lattice K(qp) of rank l(Ap)

and discriminant form qK(qp) ≃ qp. The p–adic lattice K(qp) is unique (up to
isometries) unless p = 2 and there exists a finite quadratic form q′2 such that
q2 ≃ w±1

2,1 ⊕ q
′
2.

Extending lattices

We will be interested in even lattices that can be obtained as overlattices. This
technique involves the computation of discriminant forms and the vanishing of
subgroups of the discriminant group associated to a fixed lattice.

Suppose that L is an even lattice and let M be an even overlattice of L. There
exists a natural chain of embeddings

L↪M ↪M∨ ↪ L∨,

5
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such that H ∶=M/L ⊂M∨/L ⊂ L∨/L = AL, and (M∨/L)/H = AM .

Lemma 1.1.12. Let qL be the quadratic form of L. The set of even overlattices
of L is in 1− 1 correspondence with the set of subgroups of AL where qL vanishes.

Proof. Let H be an isotropic subgroup of AL.
Set

LH ∶= {x ∈ L∨ ∣ x +L ∈H}.

Then (LH , ( ⋅ )L ⊗Q) is an even lattice since qL(x + L) ∈ 2Z. It follows from the
definition that

L ⊂ LH ⊂ L∨H ⊂ L∨,

and so ∣AL∣ = ∣ALH ∣[LH ∶ L]2, ALH =H⊥/H and qLH = qL∣H⊥/H.
Conversely, if M is an overlattice of L, then H ∶= M/L is a subgroup of AL.

Moreover, qL(m + L) = q(m ⋅m)L ∈ 2Z since M is an even overlattice of L. This
implies qL(m +L) = 0 for all m ∈M . ∎

Note that the signature and the rank of the overlattices are preserved but the
order of the new discriminant group decreases if the isotropic subgroup is not
trivial.

Lemma 1.1.13. Let L be an unimodular lattice and T ⊂ L be a primitive
sublattice. Then, as groups

AT ≅ AT ⊥ ≅
L

T ⊕ T ⊥
.

Proof. Since T ⊂ L is a primitive embedding, then L is an overlattice of T⊕T ⊥ with
same rank, and in particular ∣AL∣[L ∶ T ⊕ T ⊥]2 = ∣AT ∣∣AT ⊥ ∣. In fact, the quotient
L/(T ⊕ T ⊥) is isomorphic to a subgroup M ⊂ AT ⊕ AT ⊥ which is isotropic (with
respect to qAT⊕T⊥ ). Now, assuming that L is unimodular, we get ∣M ∣ = ∣AT ∣ = ∣AT ⊥ ∣.
Let us consider pT ∶ AT ⊕AT ⊥ Ð→ AT and pT ⊥ ∶ AT ⊕AT ⊥ Ð→ AT ⊥ be the projections
maps, then pT (M) ⊂ AT has the same order of M which is the order of AT
and so pT ∶ M

∼
Ð→ AT is an isomorphism. Analogously, pT ⊥ ∶ M

∼
Ð→ AT ⊥ is an

isomorphism. ∎

Example 1.1.14. Let e, f be a basis of L = U(2) such that (e ⋅ e) = (f ⋅ f) = 0 and
(e ⋅ f) = 2. Then, e/2 and f/2 are a basis of AU(2) with the Q-bilinear form:

⎛

⎝

0 1
2

1
2 0

⎞

⎠

6
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Set H1 = ⟨e/2⟩ and H2 = ⟨f/2⟩. Then, H1 and H2 are isotropic groups. The
lattice obtained from U(2) by adding the vector e/2 (resp. f/2) is isomorphic to
U :

π−1(H1) = {
e

2
+ bf ∣ bf ∈ U(2)}

= {
e

2
+ bf ∣ b ∈ Z}

= ⟨
e

2
, f⟩

where π ∶ U(2)∨ Ð→ U(2)∨/U(2) is the quotient map, and (e/2 ⋅ f) = 1 and (e/2 ⋅

e/2) = (f ⋅ f) = 0 (resp. (f/2 ⋅ e) = 1 and (f/2 ⋅ f/2) = (e ⋅ e) = 0).

Existence, uniqueness, and embeddings of lattices

We recall some standard facts on the existence and uniqueness of even lattices. We
also restrict our attention in primitive embeddings of lattices. Roughly speaking,
the signature and the parity of a lattice can determine the lattice up to isometries.
At least in the unimodular case, the lattice can be written in terms of E8 and U .
In the case of non-unimodular lattices, the genus associated to a discriminant
quadratic form plays a fundamental role in the classification of these lattices.

Theorem 1.1.15 ([Mil58]). Let L be an even unimodular lattice of signature
(l(+), l(−)).

• L with these invariants exists if and only l(+) − l(−) ≡ 0 mod 8.

• If l(+), l(−) > 0, then L is the unique lattice with these invariants (up to
isometries).

Corollary 1.1.16 ([Mil58]). If L is an even unimodular lattice of signature
(l(+), l(−)), then

L ≅ U⊕m ⊕E8(±1)⊕n where m = l±, n = ∓
l(+) − l(−)

8
.

Lemma 1.1.17. [Nik79, Theorem 1.10.1] An even lattice L of signature (l(+), l(−))

exists if and only if the following conditions hold:

1. l(+) − l(−) ≡ sign q mod 8;

2. l(+), l(−) ≥ 0, l(AL) ≤ rankL;

7
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3. for all odd prime p such that rankL = l(Ap),

(−1)l(−) ∣AL∣ ≡ discr K(qp) mod (Z∗
p)

2;

4. if rank(L) = l(A2) and q2 ≠ w±1
2,1 ⊕ q

′
2 for any finite quadratic form q′2,

∣AL∣ ≡ ±discr K(q2) mod (Z∗
2)

2.

The following lemmas guarantees the uniqueness of a lattice with some fix
invariants.

Lemma 1.1.18 (Kneser [Kne56], Nikulin [Nik79], Corollary 1.13.3). Let L be an
even lattice. If 0 < l(+), l(−) and l(AL) + 2 ≤ rank(L), then L is the unique lattice
(up to isometries) with signature (l(+), l(−)) and discriminant quadratic form qL.

Lemma 1.1.19. [CS93, Chapter 15, Theorem 21] If the genus of an indefinite
lattice L with rank(L) = n and discr L, contains more than one isometry class,
then 4

n
2 discr L is divisible by k(n

2
) for a non-square natural number k ≡ 0,1 mod 4.

The following lemmas are some results on the existence and uniqueness of
primitive embeddings.

Lemma 1.1.20 ([Nik79], Theorem 1.14.4). Let M be an even lattice of signature
(t(+), t(−)) and L be an even unimodular lattice of signature (s(+), s(−)). There
exists a unique primitive embedding of M into L if the following conditions hold

• t(+) < s(+), t(−) < s(−);

• l(AM) ≤ rankL − rankM − 2.

Lemma 1.1.21 ([Nik79], Theorem 1.12.4). Let (t(+), t(−)) and (l(+), l(−)) be two
pairs of non-negative integers. For all even lattices S of signature (t(+), t(−)), there
exists an even unimodular lattice L of signature (l(+), l(−)) and S ↪ L a primitive
embedding, if and only if

l(+) − l(−) ≡ 0 mod 8, t(+) ≤ l(+), t(−) ≤ l(−) and t(+) + t(−) ≤
1

2
(l(+) + l(−)).

2-elementary lattices

We start by recalling a few basic facts of 2-elementary and hyperbolic lattices.

8
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Definition 1.1.22. A lattice L is called hyperbolic if the signature of L is (1,∗).
A lattice L is called 2–elementary if AL ≅ (Z/2)l for some l ≥ 0. We define an
invariant δ of a 2-elementary lattice L: if the image of the discriminant quadratic
form qL is contained in Z/2, then δ(L) = 0, otherwise δ(L) = 1.

Note that if L is a 2–elementary, by Theorem 1.1.10 the quadratic form qL can
be represented as a direct sum of quadratic forms w±1

2,α, w±5
2,α, uα, and vα (α ≥ 1).

All hyperbolic even 2-elementary lattices are determined by the invariants rank,
length of the discriminant group and the delta invariant:

Lemma 1.1.23. [Nik81, Theorem 4.3.2] There exists a hyperbolic, even, 2-
elementary lattice L with invariants r = rankL, a = l(AL) and δ = δ(L) if and
only if the following conditions are satisfied

• a ≤ r;

• a + r ≡ 0 mod 2;

• if δ = 0, then r ≡ 2 mod 4;

• if a ≤ 1, then r ≡ 2 ± a mod 8;

• if a = 0, then δ = 0;

• if a = 2, r ≡ 6 mod 8, then δ = 0;

• if a = r and δ = 0, then r ≡ 2 mod 8.

Example 1.1.24 (2-elementary hyperbolic lattices of rank 2). Let L be a 2-
elementary lattice of signature (1,1). The existence of L implies that ∣(AL)∣ ≤ 2.
In particular, if ∣(AL)∣ = 0 then L is unimodular and so L ≅ U . When ∣(AL)∣ = 2,
then L is isometric to U(2) or ⟨2⟩⊕ ⟨−2⟩.

Proposition 1.1.25. [Dol83, Proposition 1.5.1] Let L be an even unimodular
lattice, i ∶ L Ð→ L be an isometry of order 2 in O(L). The lattices Li = {x ∈ L ∣

i(x) = x} and Si(L) = {x ∈ L ∣ i(x) = −x} are 2-elementary lattices.

Proof. It follows of Lemma 1.1.13 and Lemma 1.1.6 since ∣G∣ = ⟨ι⟩ has order
two. ∎

9
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1.2 K3 surfaces

In this section, we collect some well known facts of K3 surfaces and automorphisms
of K3 surfaces, particularly the symplectic case.

A K3 surface is a simply connected compact complex manifold of dimension
two such that it admits a non-degenerate holomorphic 2-form. Among classical
examples of K3 surfaces are the Kummer surfaces, double coverings of P2 branched
along a smooth curve of P2 of degree six, and smooth complete intersection of type:
4 in P3, or (2,3) in P4, or (2,2,2) in P5 (this yields examples of K3 surfaces of
degree four, six, and eight respectively).

The fact that X is a compact surface implies by Poincare’s duality that
H2(X,Z) is unimodular. A computation involving the Wu formula shows that
H2(X,Z) is an even lattice, see [Wu50]. By Hirzebruch’s index theorem, we obtain
that the signature of H2(X,Z) is (3,19) since K3 surfaces are Kähler manifolds,
see [Siu83].

Theorem 1.2.1 ([Mil58]). If X is a K3 surface, then the Z–module H2(X,Z)

with the cup product is an even unimodular lattice of signature (3,19) isometric
to U⊕3 ⊕E⊕2

8 .

Set ΛK3 be the abstract lattice U⊕3 ⊕E⊕2
8 .

Theorem 1.2.2 (Torelli type theorem for K3 surfaces). Let X, Y be K3 surfaces
and let ωX , ωY be non-degenerate holomorphic 2-forms on X and Y respectively.
Suppose that there exists an isometry of lattices

ϕ ∶H2(X,Z)Ð→H2(Y,Z)

satisfying

• the extension ϕC = ϕ ⊗Z C acts on H2(X,C) such that ϕ(ωX) = c ⋅ ωY for
some c ∈ C∗;

• ϕ sends a Kähler class of X to a Kähler class of Y .

Then there exists a unique isomorphism f such that f∗ = ϕ.

Roughly speaking, the Torelli-type theorem implies that the isomorphism
class of a K3 surface is determined by its period, see Theorem 1.2.4. A strong
consequence of this theorem is the approach to study the geometry of K3 surfaces
from a lattice theoretical viewpoint. In order to formalize the connection between

10
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these two approaches we introduce a fundamental ingredient: the period map for
K3 surfaces.

Let ∆(X) be the set

∆(X) = {δ ∈H1,1(X) ∩H2(X,Z) ∣ δ2 = −2}.

In particular, non-singular rational curves belong to ∆(X). For each δ ∈ ∆(X),
we define the reflection map sδ on H2(X,Z) given by x ↦ x + (x ⋅ δ) which is an
isometry of H2(X,Z). In fact, it is a reflection with respect to the hyperplane
δ⊥ ⊂ H2(X,R). Denote by W (X) the subgroup of O(H2(X,Z)) generated by all
reflections sδ with δ ∈ ∆. Let P (X) be the connected component of the set

{x ∈H1,1(X) ∣ x2 > 0}

that contains a Kähler class. Then W (X) acts on P (X) and each connected
component of P (X) ∖ ⋃

δ∈∆
δ⊥ is a fundamental domain of W (X). The connected

component containing a Kähler class is called the Kähler cone of X.

Remark 1.2.3. The second condition of Theorem 1.2.2 is equivalent to the
following

• ϕ(∆(X)) = ∆(Y );

• ϕ preserves the Kähler cones;

• ϕ preserves the effective divisors.

Let D be the space

D = {ω ∈ P(ΛK3 ⊗C) ∣ (ω ⋅ ω) = 0 and (ω ⋅ ω̄) > 0}

called the period domain.
A marked K3 surface is a pair (X,φ) where X is a K3 surface and φ is an

isometry φ ∶ H2(X,Z) Ð→ ΛK3. By theorem 1.2.2, for each marked K3 surface
(X,φ) we have that φ ⊗ C(ωX) is in D. The point (φ ⊗ C)(ωX) ∈ D is called
the period of a marked K3 surface (X,φ). Denote by M the set of marked K3
surfaces.

Theorem 1.2.4 (Surjectivity of period map, [Tod80]). The map

p ∶M Ð→ D

(X,φ) ↦ (φ⊗C)(ωX)

11
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is surjective.

The map p is called the period map for K3 surfaces.

Symplectic automorphisms

LetX be a K3 surface. We denote by Aut(X) the group of all biholomorphic maps.
Essentially, there are two kinds of automorphisms: symplectic and non-symplectic
automorphisms. Let f be an automorphism of finite order. Since Aut(X) has
the structure of a complex Lie group, we say that f is symplectic if the induced
action on H2,0(X) ≅ C ⋅ ωX for some non-degenerate 2-holomorphic form ω is the
identity, i.e., f∗ωX = ωX . We say that f is non-symplectic if f∗ωX = ζnωX where
1 ≠ ζn is a nth root of unity in C. We say that G ⊂ Aut(X) is symplectic if all
elements of G are symplectic automorphisms of finite order. It is possible to get
finite groups of symplectic automorphisms of K3 surfaces to embed in the Mathieu
group M23 by using the classification of Niemeier lattices but we will not develop
this point here, see [Muk88], [Nie73], cf. [Kon98].

One of the main reasons of interest in these particular automorphisms is that
their presence relates two different (families of) K3 surfaces: (the family of) K3
surfaces admitting a symplectic automorphism of order n and the one (family) of
the desingularization of the quotient of a K3 surface by a symplectic automorphism
of order n, which is still a K3 surface, but in general not isomorphic to the original
one. We will prove this fact in Proposition 1.2.9.

Let f ∶ X Ð→ X be a symplectic automorphism. Denote by TX the minimal
sub-Hodge structure of H2(X,Z) containing H2,0(X). Since H0(X,Ω2

X) ≃

H2,0(X) ⊂ TX ⊗C, we get

Proposition 1.2.5. [Nik76, Theorem 3.1] The automorphism f is symplectic if
and only if f∗ = Id on TX .

Proof. Suppose that f is symplectic, then ker((f∗ − Id)∣TX) ⊂ TX is a sub-Hodge
structure containing H2,0(X). Since TX/ker((f∗ − Id)∣TX) is torsion free, then
ker((f∗ − Id)∣TX) = TX and so f∗ = Id∗ on TX . ∎

Lemma 1.2.6 ([Muk88], Proposition 1.5). If G ⊂ Aut(X) be a symplectic group
with a fixed point, then G is isomorphic to a subgroup of SL(2,C)

In particular, if G is a cyclic group generated by a symplectic automorphism
of order n, there exists a local holomorphic coordinate system z1, z2 around x such

12
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that f(z1, z2) = (ζxz1, ζ−1
x z2) where ζx is a primitive nth root of unity, cf. [Huy16,

Lemma 1.4].
Here are some elementary facts about symplectic automorphisms of finite order.

Proposition 1.2.7. [[Muk88], Proposition 1.2] Let f be a symplectic
automorphism of finite order n ≠ 1. Then,

• 1 ≤ ∣Fix(f) ∣ ≤ 8;

• n ≤ 8;

• ρ(X) = rank NS(X) ≥ 8.

In particular, the number of fixed points of f depends only on the order n as
in Table 1.1 , see [Nik76, Section 5] for more details.

n 2 3 4 5 6 7 8

∣Fix(f)∣ 8 6 4 4 2 3 2

ρ(X) ≥ 8 12 14 16 16 18 18

Table 1.1

The following results are elementary observations about symplectic
automorphisms in the seminal paper of Nikulin, [Nik76]. He studied the problem
of existence and uniqueness of the action of a symplectic automorphism in the
second cohomology group from a lattice theoretical viewpoint.

Let G ⊂ O(H2(X,Z)). Denote by

H2(X,Z)G and SG(X) ∶= (H2(X,Z)G)⊥ ⊂H2(X,Z),

the invariant and the co-invariant lattices of H2(X,Z) respectively.

Theorem 1.2.8 ([Nik76], Lemma 4.2). If G ⊂ Aut(X) is a symplectic group, then
the following assertions are true:

• SG(X) is non-degenerate and negative definite;

• SG(X) does not contain elements with square (−2);

• TX ⊂H2(X,Z)G and SG(X) ⊂ NS(X);

• the group G acts trivially on the discriminant group ASG(X).

Nikulin’s approach to the classification of groups of symplectic automorphisms
comes from the following observation: essentially, the set of finite groups acting
faithfully and symplectically on K3 surfaces is closed under quotients.

13
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Quotients of K3 surfaces by symplectic groups

By Proposition 1.2.7, the number of fixed points of a symplectic automorphism is
finite and it depends of the order of the automorphism. Since G ⊂ SL(2,C), then
the quotient X/G is a normal surface with isolated singularities of ADE-type, see
[BHPVdV04, Chapter III.7]. Let Y be the minimal desingularization ofX/G which
is obtained by introducing an exceptional ADE set of curves for the corresponding
type of the singularity, and π be the induced rational map π = β−1 ○ q:

X

Y X/G

qπ

G

β

(1.2)

where q is the quotient map, β is the birational map in the minimal
desingularization.

Proposition 1.2.9. Under the above assumptions,

• Y is a K3 surface;

• π is a generically finite map of degree ∣G∣.

Proof. Let ωX be a non-degenerate two holomorphic form on X. Since σ∗ωX =

ωX , it defines a non-degenerate two holomorphic form ω̃ on the smooth part of
X/G. The surface Y ∖ ∪i{Ei}, where Ei’s are the exceptional curves of the blow
ups, is isomorphic to X/G ∖ Sing(X/G). Then ω̃∣Y ∖∪i{Ei} is a nowhere vanishing
holomorphic 2-form on Y ∖ ∪i{Ei}. This one can be extended on all Y , and so Y
admits a non-degenerate holomorphic 2-form, see [[BHPVdV04] Proposition 3.5].
Since Y has exceptional (−2)-curves arising from the resolution of X/G, then Y
cannot be a torus, and so Y is a K3 surface.

The fact that π is generically finite is because q is a covering map ∣G∣ ∶ 1 and
β is the composition of birational maps given in the resolution of Sing(X/G). ∎

Example 1.2.10 (Cyclic groups). Let σ be a symplectic automorphisms of prime
order n and let p be a fixed point of σ. By Lemma 1.2.6, there exists local
coordinates (z1, z2) around p such that (z1, z2)

σ
↦ (ζnz1, ζ−1

n z2). Let p(z1, z2) ∈

C[z1, z2] be a polynomial of degree d such that p○σ = p. Without losing generality,
suppose that p(z1, z2) = zi1z

d−i
2 . Since p is σ-invariant, then i = d+nk

2 , and so

p(z1, z2) = z
d+nk

2
1 z

d−nk
2

2 . It is straightforward that p(z1, z2) = z1z2, or p(z1, z2) = zn1 ,

14
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or p(z1, z2) = zn2 are σ-invariant and generate C[z1, z2]σ. Set w1 = zn1 , w2 = zn2 ,
and w3 = z1z2. Then, wn3 = w1w2. Using the change of variables w3 ↦ z,w2 ↦

−x + iy,w1 ↦ x + iy, we get

C2/σ = V (x2 + y2 + z(n−1)+1)

which is the local expression of a singularity of An−1-type.

In [Nik79], Nikulin introduced the symplectic automorphisms of K3 surfaces
studying the action on the surface and the action on the second cohomology group
of a K3 surface. Roughly speaking, he proved that the topology of the fixed locus
and the action induced in cohomology are unique and depend only on the order
of the automorphism.

We say that a group G has a unique action on the 2-dimensional integral
cohomology of K3 surfaces if given any two embeddings i ∶ G ↪ Aut(X) and
i′ ∶ G ↪ Aut(X ′) under which G is an algebraic automorphism group for the
K3 surfaces X and X ′, there exists an isomorphism ϕ ∶ H2(X,Z) Ð→ H2(X ′,Z)

(preserving intersection index) such that ι′(g∗) = ϕ ○ ι(g)∗ ○ ϕ−1 for any g ∈ G.

Theorem 1.2.11 ([Nik79], Theorem 4.7). Any Abelian group G with a symplectic
action has a unique action (up to isometries) on the 2-dimensional integral
cohomology of K3 surfaces.

Theorem 1.2.12 ([Nik79], Theorem 4.15). Let X be a K3 surface and G be a
subgroup of Aut(X). Then, G is a symplectic group if and only if there exists a
primitive embedding

SG(H
2(X,Z)) ⊂ NS(X).

We recall an useful formula which relates the bilinear form of two lattices for
the case of finite maps.

Lemma 1.2.13 ([EH16],Theorem 1.23; cf. [Ful98], Example 8.1.7 ). Let π ∶X Ð→
Y be a map of smooth quasi-projective varieties.

• There is a unique map of groups π∗ ∶ Hc(Y,Z) Ð→ Hc(X,Z) such that
whenever A ⊂ Y is a subvariety with π−1(A) generically reduced and
codX(π−1(A)) = codY (A) = c, we have

π∗([A]) = [π−1(A)].

15
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• (Push-pull formula or Projection formula) The map π∗ ∶H∗(X,Z)Ð→

H∗(Y,Z) is a map of graded modules over the graded ring H∗(Y,Z). More
explicitly, if α ∈Hk(Y,Z) and β ∈Hl(X,Z), then

π∗(π
∗α ⋅ β) = α ⋅ π∗β ∈Hl−k(Y ).

Remark 1.2.14. The last statement of this lemma is the result of applying
appropriate multiplicities to the set-theoretic equality π(π−1(A) ∩B) = A ∩ π(B).
In particular, if π = φ−1 ○ q as in 1.2, by Poincare’s duality we obtain,

π∗(π
∗α ⋅ β) = ∣G∣(α ⋅ π∗β) ∈ Z. (1.3)

for all α ∈H2(Y,Z) and β ∈H2(X,Z).

16



1.3. Elliptic surfaces CHAPTER 1.

1.3 Elliptic surfaces

Let X be a surface and π ∶ X Ð→ C be a holomorphic map to a smooth curve C.
We say that X is an elliptic surface if any fiber, except over finitely many points
of C, is an elliptic curve. The map π is called an elliptic fibration of X. An
elliptic surface is called relatively minimal if no fiber contains an exceptional
curve. We are interested in the particular case when X is a K3 surface (or a
complex torus). Elliptic K3 surfaces come with a rich geometrical data which
is reflected in their Nerón-Severi group. Popular sources as for elliptic surfaces
include [Mir89], and [SS10] for a modern view point.

As in elliptic curves, an useful tool in the study of elliptic surfaces is the
Weierstrass form. One can show that there exists a 1-1 correspondence between
Weierstrass forms over C and smooth minimal elliptic surfaces over C with a
section s0, see [[Mir89], Corollary II.1.3, and II.5.5]. Then, elliptic surfaces are
elliptic curves over the function field k(C) of C. Its Weierstrass form is usually
given by an equation

y2 = x3 +A(t)x +B(t),

where A(t), B(t) ∈ k(C).

A triple (L,A,B) will be calledWeierstrass data over C, if L is a line bundle
on C and A,B are global sections of L4 and L6 respectively such that the section
∆ = 4A3 + 27B2 of L12(called the discriminant of the data) is not identically 0. A
fiber of π over a point c ∈ C is singular if and only if the discriminant section ∆ is
zero at c.

There are at most finitely many singular fibers for relatively minimal elliptic
surfaces. This classification is due by Kodaira in [Kod63] using functional and
topological invariants. Since we assume the existence of a section, the case of
multiple fibers are excluded.

Let a, b, δ be the order of vanishing of A, B and ∆ respectively at a point
c ∈ C. One can show that if a, b, and δ are as in Table 9.3, then the Kodaira type
of the fiber π−1(c) is as indicated, see [[Mir89], Proposition IV.3.1]. For each fiber,
we also recall the multiplicities of each component of the fiber, which corresponds
in the Table 9.3 to the number on each vertex, see [cf. [Mir89], Proposition I.4.2],
and its Euler characteristic.

Let X be an elliptic surface. Let g ∶= g(C) be the genus of C and q ∶= h1,0(X)

be the irregularity of X.

17
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Lemma 1.3.1 ([Mir89], III.4.1).

q =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g, if X is not a product of curves

g + 1, if X is a product of curves

By the adjunction formula, we can deduce

ωX ≅ π∗(ωC ⊗L). (1.4)

In particular, K2
X = 0, and using Noether’s formula we can deduce

e(X) = 12 deg(L). (1.5)

Proposition 1.3.2. Let X be an elliptic K3 surface. Then,

• C ≅ P1;

• A(t) and B(t) are polynomials of degree 8 and 12 respectively.

Proof. It follows from the lemma 1.3.1 that g = q = 0, then C ≅ P1 since C is a
smooth curve. Since e(X) = 24 for X a K3 surface, by the Equation 1.5 we get
that L = OP1(2). Hence, if (L,A,B) is a Weierstrass data over P1, then deg(A) = 8

and deg(B) = 12. ∎

The Mordell Weil group and the Shioda–Tate formula

The Mordell Weil group is the group of the sections of π. It is denoted by
MW(X) and the fixed section s0 corresponds to the neutral element of MW(X).
In particular, the Mordell Weil group of an elliptic surface is a finitely generated
Abelian group, see [Mir89, Corollary VII.2.2].

Let Xc be the fiber at c ∈ C. Define by X#
c the subset of all components of Xc

obtained by deleting the singular points of the fiber, and X#
c,0 ⊂ X

#
c obtained by

deleting also the component meeting the zero section. The operation on MW(X)

induces an operation on X#
c such that X#

c is an Abelian group. For each type of
fiber, we describe the group X#

c /X#
c,0, see Table 9.3. Since an automorphism of

a reducible fiber Xc has to be compatible with the group structure of the fiber,
X#
c /X#

c,0 enforces strict conditions on the automorphism group of an elliptic surface
that contains Xc.

Let ρ(X) be the Picard number of X. A practical formula which relates the
Picard number of X and the rank MW(X) is the following which is known as the
Shioda-Tate’s formula.

18
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Lemma 1.3.3. [Mir89, Corollary VII.2.4] The Picard number ρ of an elliptic
surface X is

ρ = 2 + r +∑
c∈∆

rc,

where rc = # of components of Xc − 1 and r is the rank of MW(X).

Note that each section s ∈ MW(X) intersects one component of each singular
fiber in a point of multiplicity one, i.e., (s ⋅ F ) = 1. Moreover, if s, and s′ are two
different sections in MW(X), then the components which each section intersect
the singular fiber are different.

Another useful formula is given in the following lemma. Set r(m)
c ∶= # of

components of Xc with multiplicity m. In particular, if m = 1, then r
(1)
c counts

the simple components on Xc.

Lemma 1.3.4 ([Shi72], Lemma 1.3). If MW(X) has rank 0 and order n, then

∣ATX ∣ =
1

n2 ∏
c∈∆

r
(1)
c .

Constructing a basis of the Nerón–Severi lattice

Let F be the class of a singular fiber. Since the fibers are all algebraically
equivalent, we get that (F ⋅ F ) = 0. The zero section s0 intersects any fiber in
one point, then (F ⋅ s0) = 1.

Proposition 1.3.5 ([Shi90], Section 7). Let X be an elliptic surface and a its
arithmetic genus. The following hold

• (s0 ⋅ s0) = −a

• There exists an embedding of

Ū ∶= (Z2,
⎛

⎝

0 1

1 −a

⎞

⎠
) ⊂ NS(X).

Corollary 1.3.6. Let X be a K3 surface. If X admits an elliptic fibration, then
U ⊂ NS(X).

Let TrX be the lattice generated by F , the class of the zero section s0, and
the classes of irreducible components of reducible fibers which do not intersect s0.
This lattice is called the trivial lattice of X.

One can show that the Nerón Severi lattice of X over Q is generated by TrX
and the sections of MW(X).
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Theorem 1.3.7 ([Shi90], Theorem 1.3). Let X be an elliptic surface. The Mordell
Weil group is isomorphic to NS(X)/TrX .

If X admits a section t of n-torsion, then t is linearly equivalent to a
combination of the classes generating TrX with coefficients in 1

nZ. This implies
that NS(X) is an overlattice of index at least n of the lattice TrX .

Proposition 1.3.8. Let X be an elliptic K3 surface, and t be a torsion section
of order n. The translation by the section t is a symplectic automorphism of X of
order n.

Proof. By Formula 1.4 we know that the nowhere vanishing holomorphic two
form ω of an elliptic K3 surface is locally written as ω = π(t)(dx/y) ∧ dt where
π(t) is a nowhere vanishing holomorphic function. Let dz = dx/y. Then dz is a
holomorphic form on each fiber Ec. Since the base of the elliptic fibration is fixed
by the automorphism of translation, then it acts as the identity on t, and fixes dz.
Then, ω is fixed by the automorphism. ∎
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1.4 Hyperkähler manifolds

Definition 1.4.1. A hyperkähler manifold is a simply connected compact
Kähler manifold X that admits a unique (up to scalars) non-degenerate
holomorphic 2-form ωX ∈H2,0(X).

Hyperkähler manifolds are also known as irreducible holomorphic symplectic
manifolds (IHS). Such a form ωX is called symplectic. Note that ωX defines
a skew-symmetric isomorphism on the holomorphic tangent bundle TX and the
holomorphic cotangent bundle ωX . Hence the complex dimension of X is always
even. A 2-dimensional hyperkähler manifold is nothing else but a K3 surface.
Examples in higher dimension are hard to construct. Fujiki and Beauville were
the first to provide examples of Hyperkähler manifolds in dimension greater than
2: they show that the Hilbert scheme S[n] parametrizing subschemes of length n on
a projective K3 surface S is a Hyperkähler manifold of dimension 2n, see [Bea83].
For instance, we have the following list of known examples, where manifolds of
the same deformation type are not distinguished:

• The Hilbert scheme S[n] of a K3 surface S. Its dimension is 2n and for n > 1

its second Betti number is b2(S[n]) = 23.

• The generalized Kummer variety Kn(A) of a 2–complex torus A. Its
dimension is 2n and for n > 2 its second Betti number is b2(Kn(A)) = 7,
see [Bea83].

• The O’Grady’s 10–dimensional example OG’10. Its second Betti number is
24, see [O’G99].

• The O’Grady’s 6–dimensional example OG’6. Its second Betti number is 8,
see [O’G03].

There are other examples of hyperkähler in the literature but they have all
turned out to be deformation equivalent to one of the above list. As we will see
later, moduli spaces of stable sheaves (and also twisted sheaves) on K3 surfaces
can be example of hyperkähler manifolds. We will restrict our attention to some
of these examples which have the same deformation type of Hilbert scheme of K3
surfaces.

The main motivation from the definition of Hyperkähler manifolds comes of the
well known decomposition of compact Kähler manifold with c1(X) = 0 in terms
of compact complex torus, Calabi-Yau varieties and Hyperkähler manifolds. This
fact is known as Beauville-Bogomolov decomposition:

21



CHAPTER 1. 1.4. Hyperkähler manifolds

Theorem 1.4.2. [Bea83], [Bog74] Any compact Kähler simply connected
manifolds with trivial canonical bundle can be written as a product of irreducible
holomorphic symplectic manifolds and Calabi–Yau manifolds.

Example 1.4.3 (K3[2] manifolds). Let S be a projective K3 surface. The Hilbert
scheme S[2] of 0-dimensional subschemes of length 2 on S is a smooth projective
irreducible manifold of dimension 4. One can show that the symplectic form of S
lifts to a symplectic form on S[2], see [Bea83, Proposition 5]. Moreover, the fact
that S is simply connected implies that S[2] is also simply connected, see [Bea83,
Lemma 1].

The variety S[2] admits a morphism

ε ∶ S[2] Ð→ S(2),

where S(2) denotes the symmetric product of S. This morphism associates to a
point in S[2] (i.e., a closed subscheme of dimension 0 and length 2 on S) in the
pair of points of the support of x. Hence, the map ε corresponds to the blow–up
of S(2) along the diagonal ∆ = {(x,x) ∣ x ∈ S}. The pullback ε∗ in H2(X,Z) is
an injective morphism of Hodge structures of weight two, see [Bea83, Lemma 2].
The group H2(S(2),C) is Hodge isometric to the invariant part (under the action
of the involution) of H2(S2,C). This shows

H2(S[2],C) =H2(S,C)⊕C ⋅E,

where E denotes the exceptional divisor of ε. At the level of lattices, there exists
an integral class δ such that 2δ = E, and so

H2(S[2],Z) =H2(S,Z)⊕Z ⋅ δ.

In particular, H2(S[2],Z) is torsion free and H2(S,Z) is orthogonal to δ under the
symmetric bilinear pairing of H2(S[2],Z). The restriction of this bilinear pairing
to H2(S,Z) coincides with the intersection product on S, and δ2 = −2, then by
Theorem 1.2.1 we obtain H2(S[2],Z) is isometric to U⊕3 ⊕E⊕2

8 ⊕ ⟨−2⟩.

Theorem 1.4.4. [Bea83], [Fuj88] Let X be a hyperkähler manifold of dimension
2n. Then there exists an integral non-degenerate quadratic form qX on H2(X,Z)

of signature (3, b2(X) − 3) and a positive constant cX such that

∫
X
αn = cXqX(α)2n, (1.6)

22



1.4. Hyperkähler manifolds CHAPTER 1.

for every α ∈H2(X,Z).

The quadratic form qX is called the Beauville–Bogomolov–Fujiki form and the
constant cX is called Fujiki’s constant. The lattice (H2(X,Z), qX) is known as the
Beauville–Bogomolov–Fujiki lattice.

We recall in Table 1.2 the Fujiki constant and Beauville–Bogomolov–Fujiki
form of the known hyperkähler manifolds.

X cX H2(X,Z)

S[n] 1 U⊕3 ⊕E⊕2
8 ⊕ ⟨−2(n − 1)⟩

Kn(A) n+1 U⊕3 ⊕ ⟨−2(n + 1)⟩

OG’10 1 U⊕3 ⊕E⊕2
8 ⊕A2

OG’6 4 U⊕3 ⊕ (−2)⊕2

Table 1.2

Definition 1.4.5. Let b2 ≥ 3 be an integer, and Λ be an even lattice of signature
(3, b2 − 3). A marked pair (X,η) consists of an hyperkähler manifold X and an
isometry η ∶ H2(X,Z) Ð→ Λ. Two marked pairs (X,η1), (Y, η2) are isomorphic
if there exists an isomorphism f ∶X Ð→ Y such that η1 ○ f∗ = η2.

The period of the marked pair (X,η) is a point p in P(Λ ⊗ C) that satisfies
(p ⋅ p) = 0 and (p ⋅ p̄) > 0 (i.e., the line η(H2,0(X))).

One can show that there exists a coarse moduli space MΛ parametrizing
isomorphism classes of marked pairs, see [Huy99]. In fact,MΛ is a smooth complex
manifold of dimension b2 − 2 but it is not a Hausdorff space.

LetM0
Λ be a connected component ofMΛ and

ΩΛ = {p ∈ P(Λ⊗C) ∣ (p ⋅ p) = 0 and (p ⋅ p̄) > 0}

be the period domain. Note that ΩΛ is an open subset of the quadric in P(Λ⊗C)

of isotropic lines with the classical topology, see [Bea83].
The period map is given by

P0 ∶M
0
Λ Ð→ ΩΛ

(X,η) ↦ η(H2,0(X))

Theorem 1.4.6. [Bea83], cf. [Huy99, Theorem 8.1] The period map P0 is a local
isomorphism.

23



CHAPTER 1. 1.4. Hyperkähler manifolds

This means that each point p ∈ ΩΛ determines a weight 2 Hodge structure on
Λ ⊗ C such that the marking map η is an isomorphism of Hodge structure. A
strongest version of Theorem 1.4.6 is the following

Theorem 1.4.7. [Ver13, Theorem 2.2], [Huy12]If P0(X,η1) = P0(Y, η2), then X
and Y are birational.

The Theorem 1.4.6 is known as the Local Torelli Theorem of hyperkähler
manifolds while the Theorem 1.4.7 is known as its global version.

Monodromy group

Let X1 and X2 be hyperkähler manifolds which are deformation equivalent. An
isomorphism f ∶ H∗(X1,Z) Ð→ H∗(X2,Z) is a parallel transport operator if
there exist a smooth and proper family π ∶ χÐ→ T of hyperkähler manifolds, over
an analytic base T , points ti ∈ T , isomorphisms ψi ∶ Xi Ð→ χti = π

−1(ti), i=1,2,
and a continuous path γ ∶ [0,1]Ð→ T such that γ(0) = t1, γ(1) = t2, such that the
parallel transport in the local system Rπ∗Z along γ induces the homomorphism
ψ2∗ ○ f ○ ψ1∗ ∶H

∗(χt1 ,Z)Ð→H∗(χt2 ,Z).

Definition 1.4.8. Let X be a hyperkähler manifold. An isometry g on H2(X,Z)

is called a monodromy operator if there exists a family X Ð→ T of hyperkähler
manifolds having X as a fiber over a point t0 ∈ T , and such that g belongs to
the image of π1(T, t0) under the monodromy representation. The monodromy
group Mon2(X) of X is the subgroup of O(H2(X,Z)) generated by all monodromy
operators.

Note that the operation in Mon2(X) is given by composition of two operators
g1 and g2: if pi ∶ X Ð→ Ti i = 1,2 is a family of hyperkähler manifolds with
[γi] ∈ π1(Ti), then we can form a family p ∶ X Ð→ T and a loop [γ] ∈ π1(T ) by
gluing T1 and T2 along the point ti corresponding to X, X1 and X2 along Xti , and
concatenating the loops γ1 and γ2.

Let KX ⊂H1,1(X)∩H2(X,R) be the Kähler cone ofX (i.e., the set of all Kähler
classes associated to any Kähler structure on X) and let CX be the positive cone
of X (i.e., the connected component of the cone {α ∈ H1,1(X,R) ∣ (α ⋅ α) > 0}

containing the Kähler cone KX).
The following theorem combines the Global Torelli Theorem with results on

the Kähler cone of hyperkähler manifolds, see [Huy03] and [Bou01] for a proof.

Theorem 1.4.9 (A Hodge Theoretic Torelli Theorem). Let X and Y be
hyperkähler manifolds which are deformation equivalents.
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1. X and Y are birational, if and only if there exists a parallel transport operator
g ∶H2(X,Z)Ð→H2(Y,Z) which is a Hodge isometry.

2. Let g ∶ H2(X,Z) Ð→ H2(Y,Z) be a parallel transport operator which is a
Hodge isometry. There exists an isomorphism g̃ ∶ X Ð→ Y such that g = g̃∗,
if and only if g maps some Kähler class on X to a Kähler class on Y .

Given a birational map f ∶X Ð→ Y of hyperkähler manifolds, the map

f∗ ∶H
2(X,Z)Ð→H2(Y,Z)

is a homomorphism induced by the closure X × Y of the graph of f . Moreover, it
is an isometry by [O’G97, Proposition 1.6.2], cf. [GHJ03, Proposition 21.6].

Hyperkähler manifolds of K3[n]–type

The Example 1.4.3 can be generalized for n > 2.
Let ε be the Hilbert–Chow map,

ε ∶ S[n] Ð→ S(n)

Z ↦ ∑
p∈S

l(OZ,p)p, (1.7)

where the sum is a formal sum and S(n) denotes the symmetric n-th product
of S (i.e., the quotient of Sn by the natural action of the symmetric group of
n elements σn). One can show that the Hilbert-Chow map is a the blow-up of
S(n) along the large diagonal Dn = ⋃

i≠j
{(x1, ..., xn) ∈ Sn ∣ xi = xj} and it is a

resolution of singularities, see [Hai01, Proposition 3.8.4]. We denote by ∆n is the
exceptional set of ε. In [Bea83] also proves that S[n] is a Hyperkähler manifold of
dimension 2n, and the second integral cohomology of X is a lattice with respect
to the Beauville-Bogomolov pairing isometric to

H2(X,Z) ≅H2(S,Z)⊕ ⟨−2(n − 1)⟩,

where δ is a class such that ∆n = 2δ and (δ ⋅ δ) = −2(n − 1). Moreover, H2(X,Z)

is abstractly isometric to

ΛK3[n] ∶= U ⊕U ⊕U ⊕E8 ⊕E8 ⊕ ⟨−2(n − 1)⟩.

Since U and E8 are unimodular lattices, the discriminant group AX ∶=

H2(X,Z)∨/H2(X,Z) is a cyclic group of order 2(n − 1).
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Definition 1.4.10. A hyperkähler manifold X is called hyperkähler manifold
of K3[n]–type if X is deformation equivalent to a Hilbert scheme of n points S[n]

of some projective K3 surface S.

Remark 1.4.11. Note that if X is a hyperkähler manifold of K3[n]–type, then
H2(X,Z) ≅ ΛK3[n]. In general, the property to be deformation equivalent to some
Hilbert scheme of n points on a K3 surface does not imply an isomorphism. We
will see some examples in the next section.

Theorem 1.4.12. [Mar10, Theorem 1.2, Lemma 4.2]Let X be a hyperkähler
manifold of K3[n]–type. The monodromy group Mon2(X) is equal to the subgroup
of O+(H2(X,Z)) which acts via multiplication by 1 or −1 on the discriminant
group AX .

Let e ∈H2(X,Z) be a primitive class of negative degree.
The reflection Re associated to e is:

Re ∶H
2(X,Q) Ð→ H2(X,Q)

x ↦ x − 2
(x ⋅ e)

(e ⋅ e)
e (1.8)

Lemma 1.4.13. [GHS07, Corollary 3.4] Let X be a hyperkähler manifold of
K3[n]–type. The reflection Re in (1.8) belongs to Mon2(X) if and only if e has
one of the following properties:

1. (e ⋅ e) = −2, or

2. (e ⋅ e) = −2(n − 1), and n − 1 divides the class (e,−) ∈H2(X,Z)∨.

Denote by Λ̃ the abstract lattice U⊕4 ⊕E⊕2
8 .

Let O(ΛK3[n] , Λ̃) be the set of primitive isometric embeddings. The group of
isometries O(Λ̃) acts on the group O(ΛK3[n] , Λ̃) by compositions. Note that, if n−1

is a prime power, then O(ΛK3[n] , Λ̃) consists of a single O(Λ̃)–orbit, otherwise

Lemma 1.4.14. [Mar10, Lemma 4.3]Let n > 2. There are 2η−1 distinct O(Λ̃)–
orbits in O(ΛK3[n] , Λ̃) where η corresponds to the number of distinct primes in the
factorization of n − 1.

Example 1.4.15. Suppose that X is a hyperkähler of K3[7]–type. By Lemma
1.4.14, there exist two different O(Λ̃)–orbits i, j ∶ ΛK3[n] = Λ ⊕ ⟨−2(n − 1)⟩ ↪ Λ̃ ≅

Λ⊕U , where Λ is isomorphic to U⊕3⊕E⊕2
8 . In particular, choosing H2(X,Z)↪ Λ
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for some isometry, it suffices to find all primitive embeddings Zδ ↪ U where δ2 =

−12: set
⎛

⎝

e

f

⎞

⎠
∈ U such that f ⋅ e = −6 and gcd(e, f) = 1.

Hence

⎛

⎝

e

f

⎞

⎠
∈ {u1 =

⎛

⎝

1

−6

⎞

⎠
, u2 =

⎛

⎝

3

−2

⎞

⎠
, u3 =

⎛

⎝

2

−3

⎞

⎠
, u4 =

⎛

⎝

6

−1

⎞

⎠
}

are all possible primitive embeddings. It follows from the action of O(Λ̃) that
u1 = r∗(u4) and u2 = r∗(u3) where r∗ is the reflection isometry (up to a sign).

Theorem 1.4.16. [Mar10, Theorem 1.10] Let X be a hyperkähler manifold of
K3[n]–type, n ≥ 2. Then X comes with a natural choice of an O(Λ̃)–orbit of
primitive isometric embeddings of H2(X,Z) in Λ̃. This orbit is monodromy
invariant which means ι ∶ H2(X,Z) ↪ Λ̃ belongs to this orbit if and only if ι ○ g
does, for all g ∈Mon2(X).

Set ιX ∶H2(X,Z)↪ Λ̃ the primitive isometric embedding provided in Theorem
1.4.16. Since the orthogonal complement of ιX(H2(X,Z)) in Λ̃ is a lattice of rank
1, we can choose a generator v of ιX(H2(X,Z))⊥. It follows from the unimodularity
of Λ̃ and δ2 = −2(n − 1) that (v ⋅ v) = 2(n − 1).

Definition 1.4.17. Let e ∈H2(X,Z) with (e ⋅ e) = −2(n − 1). The divisibility of
e is an integer number div(e,−) ∈ {n − 1,2(n − 1)} such that (e,−)/div(e,−) is an
integral primitive class in H2(X,Z)∨. The invariants ρ and σ associated to e are
the largest positive integers such that (e+v)/ρ and (e−v)/σ are integral primitive
classes in Λ̃, where v is a generator of ιX(H2(X,Z))⊥.

Let L̃ be the smallest primitive sublattice of Λ̃ that contains ⟨v⟩ ⊕ ⟨e⟩. This
lattice is known as the saturation of ⟨v⟩⊕ ⟨e⟩ in Λ̃.

In the following lemma, Markman characterizes the pairs (L̃, e) in terms of the
invariants div(e,−), ρ and σ.

Proposition 1.4.18. [Mar13, Proposition 6.3] The isometry class of the lattice
L̃ is determined as follows:

L̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U if div(e, ⋅) = 2n − 2,

(2)⊕ (−2) if div(e, ⋅) = n − 1 and n is even,

if div(e, ⋅) = n − 1, n ≡ 1 mod 8 and ρσ = n − 1,

U(2) if div(e, ⋅) = n − 1, n is odd, n /≡ 1 mod 8,

if div(e, ⋅) = n − 1, n ≡ 1 mod 8 and ρσ = 2(n − 1).
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Example 1.4.19 (Continuation of Example 1.4.15). Let e be a primitive class
of H2(X,Z) with (e ⋅ e) = −2(3 × 2). Since n is odd, {ρ, σ} is one of the pair
{6,4},{2,12} or {2,6}. Let see each possible case:

• Suppose that ρ = 6 and σ = 4, then L̃ is the lattice that contains (−2)⊕(2) and
the classes e+v

6 and e+v
4 . Since the discriminant of L̃ is one and its signature

is (1,1), then L̃ ≅ U .

• Suppose that ρ = 2 and σ = 12, then L̃ is the lattice that contains (−2)⊕ (2)

and the classes e+v
2 and e+v

12 . Since the discriminant of L̃ is one and its
signature is (1,1), then L̃ ≅ U .

• Suppose that ρ = 2 and σ = 6, then L̃ is the lattice that contains (−2) ⊕ (2)

and the classes e+v
2 and e+v

6 . Since the discriminant of L̃ is equal to the
discriminant form of U(2), then L̃ ≅ U(2).

Definition 1.4.20. Let D be a divisor of X and TD the primitive rank 2 lattice
containing v and D in Λ̃. The divisor D is a wall divisor such that there exists
rD ∈ TD if

r2
D = −2 and 0 ≤ (v ⋅ rD) ≤ v2/2.

Note that the condition to be a wall divisor is equivalent to

0 ≤ r2
Dv

2 ≤ (v ⋅ rD)2 < (v2/2)2.

The set of wall divisors restricts the geometry of X. In particular,

Theorem 1.4.21. [Mon15, Theorem 1.3 and Proposition 1.5] Let W be the set
of wall divisors on a hyperkähler X of K3[n]–type. Then the Kähler cone of X is
one of the connected components of the following set

{x ∈H2(X,R) ∣ (x ⋅ x) > 0 and (x ⋅w) ≠ 0 ∀w ∈W}.

Moduli space of (twisted) sheaves on K3 surfaces

Firstly, we recall some properties of the sheaves in consideration. Secondly, we
consider moduli spaces of sheaves on K3 surfaces. We will recall that moduli
spaces of (semi) stable sheaves on projective K3 surfaces provide examples of
projective hyperkähler manifolds. Then, we consider the case of moduli space of
twisted sheaves on K3 surfaces which also provides examples (in some cases) of
hyperkähler manifolds. Both type of moduli spaces are of K3[n]–type deformation.
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Definitions on coherent sheaves

Let X be a compact complex variety of dimension n and F be a coherent sheaf of
X of dimension d. The torsion filtration of F is the unique filtration

T (F) ∶ 0 ⊂ T0(F) ⊂ ... ⊂ Td(F) = F

where Ti(F) is the maximal subsheaf of dimension ≤ i.
We say that F is torsion free if the dimension of F coincides with the

dimension of X and Tn−1(F) = 0.
The category of coherent sheaves of X can be seen as a generalization of vector

bundles on X. In fact, one can show that the category of locally free coherent
sheaves of finite rank is in correspondence with the category of vector bundles
on X. When X is a curve, a vector bundle on X has two numerical invariants:
the rank and the degree. It follows from the torsion filtration that the property of
being torsion free is equivalent to being locally free. However, in higher dimensions
this equivalence is not true, and in general torsion free coherent sheaves are not
automatically locally free.

Here and subsequently, (S,H) denotes a surface with an ample divisor H on
S.

Definition 1.4.22. Let F be a torsion free coherent sheaf on S. The slope of F
is

µ(F) =
c1(F) ⋅H

rankF
,

where c1 is the first Chern class of F .
A torsion free coherent sheaf F is µ-stable (resp. µ-semistable) if µ(E) <

µ(F) (resp. µ(E) ≤ µ(F)) for all coherent subsheaves E ⊂ F with 0 < rankE <

rankF .

Recall that the Euler characteristic of a torsion free coherent sheaf F is

χ(F ) =∑(−1)i dimH i(X,F).

Definition 1.4.23. The normalized Hilbert polynomial of a torsion free
coherent sheaf F is

pH,F(n) =
χ(F ⊗Hn)

rankF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) <

pH,F(n) (resp. pH,E(n) ≤ pH,F(n)) for all proper subsheaves E ⊂ F and n≫ 0.
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Lemma 1.4.24. [Saw16, Lemma 2] Let F be a torsion free coherent sheaf on S.

1. If F is stable, then F is simple (i.e., Hom(F ,F) ≅ C).

2. We have the following implications:

F is µ-stable Ô⇒ F is stable Ô⇒ F is semistable Ô⇒ F is µ-semistable.

For our purpose, we define the Brauer group Br(X) of a K3 surface X as the
torsion part of H2(S,O∗

X).

Definition 1.4.25. A twisted K3 surface (X,α) consists of a K3 surface X with
a class α ∈H2(X,O∗

X).

Let α ∈H2(X,O∗
X). We represent to α by a Čech 2–cocycle

{αijk ∈ Γ(Ui ∩Uj ∩Uk,O
∗
X)}

with respect to an open analytic covering X = ⋃Ui. An {αijk}–twisted sheaf E
consists of pairs ({Ei},{ϕij}) such that Ei is a coherent sheaf on Ui and ϕij ∶

Ej ∣Ui∩Uj Ð→ Ei∣Ui∩Uj are isomorphisms satisfying the following

ϕii = Id, ϕji = ϕ
−1
ij , ϕij ○ ϕjk ○ ϕki = αijk Id .

The non-twisted case

The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) =H0(S,Z)⊕H2(S,Z)⊕H4(S,Z), (1.9)

with the pairing
((r, l, s) ⋅ (r′, l′, s′)) = −rs′ + (l ⋅ l′) − sr′.

Note that the Mukai lattice of S is abstractly isometric to Λ̃. In particular, it
is an unimodular lattice and its signature is (4,20).

One can give it a Hodge structure of weight 2 induced by the Hodge structure
of H2(S,Z):

H̃(S)0,2 ∶=H0,2(S) ≅H2,0(S) =∶ H̃(S)2,0

H̃(S)1,1 ∶=H0(S)⊕H1,1(S)⊕H4(S).

Definition 1.4.26. A vector ν = (r, l, s) ∈ H̃(S) is called a Mukai vector (not
necessarily primitive) if:
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• r > 0 or

• r = 0, 0 ≠ l ∈ NS(S) is effective and s ≠ 0, or

• r = 0 = l and s < 0.

Let F be a stable sheaf on (S,H). The Mukai vector associated to F is given
by

(rankF , c1(F),
c1(F)2

2
− c2(F) + rankF),

where c1 and c2 are the first and second Chern class respectively.

Set v ∈ H̃(S,Z) be a Mukai vector. Gieseker in [Gie77] constructs the moduli
space MH(v) of H–stable sheaves on S with Mukai vector equals to v, as a quasi-
projective scheme. This moduli space parameterizes H-stable sheaves F on S with
Mukai vector v(F) = v . IfMH(v) is not already compact, then one can compactify
by adding H–semistable sheaves and obtain a new moduli space M̄H(v) such that
it is projective andMH(v) ⊂ M̄H(v) is open, see [HL10, Chapter 4]. We emphasize
that the ample divisor H of S does not lie in a wall of the ample cone of S (i.e., H
is v–general) and the compactification by adding H–semistable sheaves is actually
obtained under S–equivalence classes (i.e., two semistable sheaves are said to be
S–equivalent if they have the same graded factors in their Jordan–Hölder filtration
with the same normalized Hilbert polynomials).

Example 1.4.27. Set v = (1,0,1 − n) be a Mukai vector. Let F be a torsion free
sheaf with v(F) = v. Hence F has rank one, c1(F) = 0 and c2(F) = n. Since there
are no coherent subsheaves E ⊂ F such that 0 < rankE < rankF = 1, then F is
automatically µ-stable.

Suppose that H is a fixed polarization of S. If E ⊂ F is a proper subsheaf, then
rankE = rankF = 1, and F/E is free torsion. This implies that F is also stable,
and thus

pH,F(n) − pH,E(n) = χ(F ⊗Hn) − χ(E ⊗Hn) = χ(F/E ⊗Hn) > 0

for n≫ 0. By [Har88, Corollary 1.4], F∨∨ is a reflexive sheaf on S and therefore
locally free; thus F∨∨ ≅ OS. Since the cokernel of the inclusion F ↪ F ∨∨ is the
structure sheaf OZ of a 0-dimensional subscheme Z ⊂ X of length n, we can
identify F ≅ lZ the ideal sheaf of Z. Then,

0 F ≅ lZ F∨∨ ≅ OS OZ 0
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and the moduli space MH(1,0,1−n) is identified with the Hilbert scheme S[n]. In
particular, for n = 2 we get the Example 1.4.3.

The following result is due to several people: Mukai [Muk87], Göttsche–
Huybrechts [GH96], O’Grady [O’G97], Yoshioka [Yos01]. It can be found in its
final form in [Yos01, Proposition 5.1, Theorem 8.1]. It gives some restrictions on
the choice of the Mukai vector in order to get a Moduli space of sheaves on a K3
surface that is a hyperkähler manifold of K3[n]-type.

Theorem 1.4.28. Let S be a projective K3 surface, v be a primitive Mukai vector
with (v ⋅ v)2 ≥ −2, and H be a v–general ample class. The moduli space MH(v) of
H-stable sheaves on S with class v is a smooth projective hyperkähler manifold of
K3[n]–type with 2n = (v ⋅ v) + 2.

One can show that the Hodge structure of H2(MH(v),Z) with the Beauville–
Bogomolov pairing is determined by the Hodge structure of v⊥ ⊂ H̃(S,Z) since
there exist a Hodge isometry θ ∶ v⊥ Ð→H2(MH(v),Z) given by

x
θ
↦ c1(π2!(π

!
1(x

∨)⊗ [F])), (1.10)

where F is a universal sheaf over S ×MH(v), [F] denotes the class of F in
K(S ×MH(v)) and πi is the projection from S ×MH(v) onto the ith factor. The
isometry θ is known as Mukai’s Hodge isometry, see [Yos01].

The inverse θ−1 induces a primitive isometric embedding ι of H2(MH(v),Z) in
Λ̃ by

ι ∶H2(X,Z)
θ−1

Ð→ v⊥ ⊂ H̃(S,Z) ≅ Λ̃. (1.11)

which is monodromy invariant. In fact, ι is the one described in Theorem 1.4.16
when MH(v) is a hyperkähler manifold of K3[n]–type.

The twisted case

Let α in H2(S,O∗
S)tors be a Brauer class. The lattice H̃(S,α,Z) is a Z-module

isomorphic to the Mukai lattice H̃(S,Z) defined in (1.9) but with the following
Hodge structure:

H̃2,0(S,α) = C ⋅ (σ +B ∧ σ) and H̃1,1(S,α) = exp(B) ⋅ H̃1,1(S),

where 0 ≠ σ ∈H2,0(S) and B ∈H2(S,Q) maps to α under the exponential map

H2(S,Q) H2(S,OS) H2(S,O∗
S).

exp (1.12)
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Note that if α = 1 the neutral element, we obtain H̃(S,1,Z) = H̃(S,Z).
It is possible to construct moduli spaces of twisted sheaves of K3 surfaces as in

Theorem 1.4.28. To do this, one can define a twisted Mukai vector vB associated
to an ordinary Mukai vector v = (r,H, s) ∈ H̃(S,Z) by

vB = (r,H + rB, s +B ∧H + rB2/2),

which is an element of H̃(S,α,Z), if and only if n divides r. Then, a moduli space
of twisted sheaves MH(vB) with Mukai vector vB exists and has dimension v2

B +2,
see [Yos06] for more details.

Moreover, for v2
B ≥ 2 there is a Hodge isometry

H2(MH(vB),Z) ≃ v⊥B ⊂ Λ̃.

One can show that different choices of a B–lift determine equivalent twisted Mukai
vectors vB in the category of α-twisted coherent sheaves.

Set
Q = {x ∈ P(Λ̃⊗C) ∣ (x ⋅ x) = 0 and (x ⋅ x̄) > 0}

be the period domain of generalized K3 surfaces.

Definition 1.4.29. A period x ∈ Q is of twisted K3 type if there exists a twisted K3
surface (S,α) such that the Hodge structure on Λ̃ defined by x is Hodge isometric
to H̃(S,α,Z).

The set of periods of twisted K3 type is denoted by QK3′ while the set of periods
of K3 type (where the Brauer class is the class of the identity) is denoted by QK3.

Note that QK3 ⊂ QK3′ ⊂ Q.
The proof of the following lemma consists in the construction of Moduli space

of twisted sheaves on a K3 surface from a lattice theoretical viewpoint, see [Huy17,
Lemma 2.6].

Lemma 1.4.30. Let x ∈ Q. Then, x is a period of twisted K3 type if and only
if there exists a (not necessarily primitive) embedding U(n) Λ̃ for some
n ≠ 0 into the (1,1) part of the Hodge structure defined by x.

In particular, when n = 1 the period x is of K3 type.

Proof. Let (S,α) be a twisted K3 surface and pick a lift B ∈H2(S,Q) of α. Since
H̃1,1(S,α,Z) = exp(B) ⋅ H̃1,1(S,Q) ∩ H̃(S,Z), the lattice generated by (0,0,1)

and (n,nB,nB2/2), where n is the minimal integer such that in (n,nB,nB2/2) ∈

H̃(S,Z), is a sublattice of H̃(S,Z) isomorphic to U(n).
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Conversely, assume U(n) ⊂ Λ̃ is in Λ̃1,1
x the algebraic part with respect to x.

Let n be the minimal integer where en = e is primitive in Λ̃. Then, e ∈ U(n) can
be completed to a sublattice of Λ̃ which is isomorphic to U generated by e and a
class f . This induces an orthogonal decomposition of Λ̃ ≃ Λ⊕U . The second basis
vector fn of U(n) can be written as fn = γ + nf + ke where γ ∈ Λ. The generator
of the (2,0)–part of the Hodge structure determined by x is orthogonal to e and
so it can be written as σ + λe for some σ ∈ Λ ⊗C and λ ∈ C. Since the generator
(2,0)–part is orthogonal to fn, we obtain (γ ⋅ σ) = −nλ. Set B = −(1/n)γ, then
σ + λe = σ +B ∧ σ where B ∧ σ stands for (B ⋅ σ)e.

The surjectivity of the period map implies that σ ∈ Λ⊗C can be obtained as the
period of some K3 surface S, and so there exists a Hodge isometry H2(S,Z) ≅ Λ

identifying H2,0(S) with C ⋅ σ ⊂ Λ ⊗ C. Set α be the Brauer class induced by
B = −(1/n)γ under the exponential map in (1.12). It induces a Hodge isometry
between H̃(S,α,Z) and the Hodge structure Λ̃x. ∎
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1.5 Ulrich bundles

Let X ⊆ PN be a smooth projective variety over C, and let H be a very ample
divisor on X such that OX(H) ≅ OPN (1)∣X =∶ OX(1). We denote by d ∶= deg(X) =

Hn ≥ 1 the degree of X, where n = dim(X).
Given m ∈ Z and a coherent sheaf E on X, we write E(mH) ∶= E ⊗OX(mH).

We say that E is initialized if H0(X,E) ≠ 0 and H0(X,E(−H)) = 0.
Let us recall the following result from [ES03, Section 2] (see also [Bea18,

Theorem 2.3]).

Theorem 1.5.1 (Eisenbud–Schreyer–Weyman). Let E be a rank r ≥ 1 vector
bundle on X. The following are equivalent conditions:

1. E admits a linear resolution of the form

0→ OPN (−N + n)⊕aN−n → ⋯→ OPN (−1)⊕a1 → O⊕a0
PN → E → 0.

In particular, a0 = r deg(X) and ai = (N−n
i

)a0 for all i.

2. Hi(X,E(−jH)) = 0 for all i ≥ 0 and all j ∈ {1, . . . , n}.

3. Hi(X,E(−iH)) = Hj(X,E(−(j + 1)H)) = 0 for every i > 0 and j < n.

4. For all finite linear projections π ∶X → Pn, the sheaf π∗E is the trivial sheaf
O⊕t

Pn for some t.

Definition 1.5.2. The vector bundle E is called an Ulrich bundle if it satisfies
any of the equivalent conditions in Theorem 1.5.1.

As a consequence of the previous result, it can be show that Ulrich bundles
enjoy several good properties (see e.g. [Bea18, Section 3]). Let us recall some of
them.

• If E is a rank r Ulrich bundle on X, then E is aCM, i.e., Hi(X,E(jH)) = 0

for all j ∈ Z and 1 ≤ i ≤ n − 1. Moreover, h0(X,E) = r deg(X).

• An Ulrich bundle is 0–regular in the sense of Castelnuovo–Mumford, and
hence it is globally generated (see e.g. [Laz04, Section 1.8.A]). In particular,
an Ulrich bundle is nef.

• If E is an Ulrich bundle on X with respect to OX(H), and Y ∈ ∣H ∣ is a
smooth hyperplane section, then E∣Y is an Ulrich bundle on Y with respect
to OX(H)∣Y .
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• If E is a rank r Ulrich bundle on X, then E is semistable with respect to
H, i.e., for every non-zero subsheaf F ⊆ E we have that µH(F) ≤ µH(E),
where

µH(F) ∶=
c1(F) ⋅Hn−1

rk(F)
∈ Q.

This follows from Theorem 1.5.1(4) (see also [CHGS12, Theorem 2.9]).

Definition 1.5.3. A rank 2 vector bundle E on X is called a special Ulrich
bundle (or Ulrich special) if it is an Ulrich bundle with respect to H and we have
that

det(E) = ωX ⊗OX((n + 1)H).

Definition 1.5.4. Let X be a smooth projective variety of dimension n and
OX(H) a very ample line bundle. For a vector bundle E on X, we define its
Ulrich dual with respect to H by

Eul ∶= E∨ ⊗OX(KX + (n + 1)H).

In particular, it follows from Serre duality and Theorem 1.5.1(3), that E is an
Ulrich bundle with respect to H if and only if Eul is an Ulrich bundle with respect
to H.

Remark 1.5.5. By Serre duality, the fact that H0(X,Eul(−H)) = 0 (cf. the
initialized condition) is equivalent to Hn(X,E(−nH)) = 0. Moreover, since for
every rank 2 vector bundle E on a smooth projective variety X we have that E ≅

E∨ ⊗ det(E), it follows that a rank 2 Ulrich bundle E is special (see Definition
1.5.3) if and only if E ≅ Eul.

We recall classical tools in order to construct special Ulrich bundles.
One of this tools is by applying the known property as the Cayley–Bacharach

property. Roughly speaking, a set of points A in a n–dimensional affine or
projective space satisfies the Cayley–Bacharach property of degree d if any
hypersurface of degree d containing all points of A but one automatically contains
the last point.

Definition 1.5.6. Let Z ⊂ X be a local complete intersection of codimension
two, and L and M be line bundles on X. We say that Z satisfies the Cayley–
Bacharach property if for all Z ′ ⊂ Z a subscheme with l(Z ′) = l(Z) − 1 and s ∈
H0(X,L∨ ⊗M ⊗KX) with s∣Z′ = 0, then s∣Z = 0.

An application of this Property can be found in [HL10, Theorem 5.1.1].
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The second one tools is known as the Hartshorne–Serre construction that can
be stated as follows

Theorem 1.5.7. [Arr07, Theorem 1.1] Let X be a smooth algebraic variety and
let Y be a local complete intersection subscheme of codimension two in X. Let
NY /X be the normal bundle of Y in X and let L be a line bundle on X such that
H2(X,L∨) = 0. Assume that ⋀2NY /X ⊗L

∨
∣Y admits r − 1 generating global sections

s1, ..., sr−1. Then there exists a rank r vector bundle E over X such that

• ⋀rE = L:

• E has r−1 global sections α1, ..., αr−1 whose dependency locus is Y and such
that s1α1∣Y + ... + sr−1αr−1∣Y = 0.

Moreover, if H1(X,L∨) = 0, E is unique (up to isomorphisms).

This technique allows to construct vector bundles from local complete
intersection subschemes of codimension two. This will be done, as in the
correspondence of hypersurfaces and line bundles, by patching together local
determinantal equations in order to produce sections of a vector bundle. For
a deeper discussion of this technique we refer to [Arr07].
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1.6 Uniruled and rationally connected varieties

We refer the reader to [Deb01, Ch. 4] for an introduction to uniruled and rationally
connected varieties, as well as their main properties.

Definition 1.6.1. A variety X is uniruled if there exists on X a rational curve
whose deformations cover a dense open subset of X.

A non-trivial fact is that for Fano varieties there always exists a rational curve
through every point. In particular, Fano varieties are uniruled.

Definition 1.6.2. A variety X of dimension n is rationally connected if it
is proper and if there exists a variety M of dimension n − 1 and a rational map
e ∶ P1 ×M ⇢X such that the rational map

P1 × P1 ×M ⇢ X ×X

(t, t′, z) ↦ (e(t, z), e(t′, z))

is dominant.

When the variety is proper, rational connectedness is a birational property.
This means that if X is rationally connected variety and X ⇢ Y is a dominant
rational map (i.e., the image is dense), then Y is rationally connected. In
particular, a proper unirational variety is rationally connected.

Numerical characterization

Let us first recall the main results concerning the semi-stability of sheaves with
respect to a movable curve class, a notion introduced in [CP11] and further
developed in [GKP16].

Set N1(X)R be the real vector space of numerical curve classes on X.

Definition 1.6.3. A curve class α ∈ N1(X)R is called movable if D ⋅ α ≥ 0 for
every effective Cartier divisor D on X. The set of movable classes form a closed
convex cone Mov1(X) ⊆ N1(X)R, called the movable cone of X.

Remark 1.6.4. Since X is smooth and projective, it follows from [BDPP13] that
Mov1(X) is the closure of the convex cone in N1(X)R generated by classes of
curves whose deformations cover a dense subset of X. Moreover, a numerical
divisor class [D] ∈ N1(X)R is pseudo-effective if and only if D ⋅ α ≥ 0 for all
α ∈ Mov1(X).
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Let F be a non-zero torsion free coherent sheaf on X. Recall that

c1(F) = (
r

⋀F)∨∨,

where r = rk(F) ≥ 1 is the (generic) rank of F . The slope of F with respect to a
movable curve class α ∈ Mov1(X) is defined by

µα(F) ∶=
c1(F) ⋅ α

rk(F)
∈ R.

As before, we say that F is semistable with respect to α if

µα(G) ≤ µα(F)

for every non-zero subsheaf G ⊆ F .
As it was already observed in [CP11] (cf. [GKP16]), many of the properties

of classical slope semi-stability (with respect to an ample divisor) extend to this
setting. For instance, the following quantities

µmax
α (F) ∶= sup{µα(G), G ⊆ F non-zero coherent subsheaf} ,

µmin
α (F) ∶= inf {µα(Q), F ↠ Q non-zero torsion-free quotient} ,

are finite, they satisfy µmax
α (F) = −µmin

α (F∨), and they can be computed by the
Harder–Narasimhan filtration of F with respect to α. Namely, there exists a
unique filtration

HNα
● (F) ∶ 0 = F0 ⊊ F1 ⊊ ⋯ ⊊ F` = F ,

where each quotient Qi ∶= Fi/Fi−1 is torsion-free, semistable with respect to α,
and where we have µmax

α (F) = µα(Q1) > µα(Q2) > ⋯ > µα(Q`) = µmin
α (F). In

particular, F is semistable with respect to α if and only if µmax
α (F) = µmin

α (F).
Using the above notation, we can state the following remarkable results by

Boucksom, Demailly, Păun and Peternell in [BDPP13, Theorem 2.6] and by
Campana and Păun in [CP19, Theorem 4.7] (see also [Cla17, Section 1.5]).

Theorem 1.6.5. Let X be a smooth projective manifold and TX be the tangent
bundle of X. Then

1. X is uniruled if and only if there exists α ∈ Mov1(X) with µmax
α (TX) > 0;

2. X is rationally connected if and only if there exists α ∈ Mov1(X) with
µmin
α (TX) > 0.
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1.7 Rational homogeneous spaces

A rational homogeneous space is a projective manifoldX given by the quotient
G/P of a semi-simple complex Lie group G by a parabolic subgroup P ⊆ G. In
particular, if G/P has Picard number one, then it follows that G is a simple
complex Lie group and P is a maximal parabolic subgroup of G (see e.g. [Tev05,
Section 7.4.1]).

These manifolds can be classified in terms of the associated simple complex
Lie algebra g together with the marking of a single node in the corresponding
Dynkin diagram. The dimension of the manifold G/Pr, where Pr denotes parabolic
subgroup associated to the r-th node of the Dynkin diagram of g, can be found in
[Sno89, Section 9.3].

We summarize the relevant information for us in Table 9.1 and we refer the
reader to [MnOSC+15, Table 2] for the geometric description of each manifold
G/Pr.

Recall that if X is a smooth projective variety, then Lie(Aut○(X)) ≅

H0(X,TX), where Aut○(X) is the connected component of the identity in Aut(X).
The automorphism group of rational homogeneous manifolds G/P which are

quotient of simple complex Lie groups G have been extensively studied. More
precisely, following Demazure [Dem77], we say that the pair (G,P ) is non-
exceptional if Aut○(G/P ) ≅ G. The exceptional cases (i.e., for which there is
a different pair (G′, P ′) such that G′/P ′ ≅ G/P ) are well-known (see e.g. [Tit63,
Footnote 6] and [Dem77, Section 2]): they correspond geometrically to the odd-
dimensional projective space P2`−1, the Spinor variety S`, and the smooth quadric
hypersurface Q5 ⊆ P6.

Lemma 1.7.1. Let X ≅ G/P be a rational homogeneous space of Picard number
one and dimension n. Then, X is isomorphic to Pn, Qn or Gr(2,5) if and only if

dim H0(X,TX) ≥
n(n + 2)

2
.

Proof. Following the notation of Table 9.1, a straightforward case-by-case analysis
shows that if G is a classical Lie group of type

• A`, then the parabolic subgroup Pr is associated to the node r = 1 or
r = ` (i.e., X ≅ P`), unless (r, `) ∈ {(2,3), (2,4), (3,4)}. The latter cases
correspond to Gr(2,4) ≅ Q4 ⊆ P5 and Gr(2,5) ≅ Gr(3,5).

• B`, then the parabolic subgroup Pr is associated to the node r = 1 (i.e.,
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X ≅ Q2`), unless (r, `) = (2,2). The latter case corresponds to S2 ≅ P3 (cf.
[IP99, Examples 2.1.9 (a)]).

• C`, then the parabolic subgroup Pr is associated to the node r = 1 (i.e.,
X ≅ P2`−1).

• D`, then the parabolic subgroup Pr is associated to the node r = 1 (i.e.,
X ≅ Q2`−1), unless (r, `) = (4,4). The latter case corresponds to S3 ≅ Q6 ⊆ P7

(cf. [IP99, Examples 2.1.9 (b)]).

Similarly, we note that G cannot be of type E`, F4 or G2. ∎

Definition 1.7.2. Let V be a minimal dominating family of rational curves on
X, and x ∈X be a general point. The rational tangent map is

τx ∶ Vx ⇢ P(Tx) (1.13)

l ↦ P(Tl∣∨x) (1.14)

associating to a curve through x its tangent direction at x.
The Variety of Minimal Rational Tangents at a general point x is τx(Vx).

Remark 1.7.3. If X is an n-dimensional Fano manifold of Picard number one
(not necessarily rational homogeneous), then it is expected that dim H0(X,TX) ≤

n2 + 2n with equality if and only if X ≅ Pn (see [HM05, Conjecture 2]). A positive
result in this direction was recently obtained in [FOX18, Theorem 1.2] (cf. [HM05,
Theorem 1.3.2]), where the authors prove that if the Variety of Minimal Rational
Tangents (VMRT) at a general point of X is smooth irreducible and linearly non-
degenerate, then dim H0(X,TX) > n(n+1)/2 if and only if X is isomorphic to Pn,
Qn or Gr(2,5).

This condition on the VMRT holds true for the remarkable class of rational
homogeneous spaces which are irreducible Hermitian symmetric spaces of
compact type (see e.g. [FH12, Main Theorem]). These manifolds were classified
by Cartan and they correspond to Grassmannians Gr(r, n), smooth quadric
hypersurfaces Qn ⊆ Pn, Lagrangian Grassmannians Lag(2n), Spinor varieties Sn,
the Cayley plane OP2, and the rational homogeneous space E7/P1 of dimension
27. However, there are rational homogeneous spaces of Picard number one whose
VMRT is linearly degenerate (see e.g. [Rus12, Table 2] and [Hwa01, Section
1.4.6]). We refer to [KSC06] and [Hwa01] for comprehensive surveys of the theory
of Varieties of Minimal Rational Tangents, developed by Hwang, Mok and Kebekus
in [HM99, Keb02, HM04].
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Let us recall a few basic facts about such quotients G/P :
Set by g the Lie algebra of G and by

g = h⊕⊕
α∈Φ

gα

a Cartan decomposition of g, where h is a Cartan subalgebra and Φ ⊂ h∨ ≅ h is the
set of roots of g. Moreover ∆ = {α1, . . . , αn} will be a basis of simple roots of Φ

with Bourbaki’s notation, and we will denote by ω1, . . . , ωn ∈ h the corresponding
set of fundamental weights.

Any parabolic subgroup P = P (Σ) is uniquely defined by a subset Σ ⊂ ∆ ≅

{1,⋯, n} of the set of vertices of the Dynkin diagram associated to G. The Lie
algebra p of (a conjugate of) P (Σ) is given by

p = h⊕ ⊕
α∈Φ−

gα ⊕ ⊕
α∈Φ+(Σ)

gα,

where Φ+(Σ) ∶= {α ∈ Φ+ ∣ α = ∑αi∉Σ ciαi}.
Homogeneous vector bundles on G/P are in one to one correspondence with

representations of P . For any simple root αi in Σ, there exists a homogeneous line
bundle Li which corresponds to the one dimensional representation of P whose
highest weight with respect to h is ωi. With the choices we have made, Li is a
positive line bundle. The Picard group of G/P is equal to

Pic(G/P ) =⊕
i∈Σ

ZLi.

A line bundle over G/P is thus a linear combination of the bundles Li. Let
L = ∑i∈Σ aiLi be such a line bundle. It is positive (i.e. globally generated) if and
only if ai ≥ 0 for all i ∈ Σ; it is ample if and only if it is very ample if and only if
ai > 0 for all i ∈ Σ. Since −KG/P is ample, we know that

det(TG/P ) = −KG/P =∑
i∈Σ
jiLi

for some integers ji > 0 for all i ∈ Σ.

Lemma 1.7.4. Let X = G/P (Σ) be a homogeneous rational projective variety
and anti-canonical bundle −KX = ∑i∈Σ jiLi. Then ji < dim(X) for all i ∈ Σ, except
when X = Pn, X = Qn or X = P1 × Pn−1.

The proof we will give of this lemma will be essentially combinatorial, but
before let us make a few remarks.
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Remark 1.7.5. When the Picard number of X is equal to one the result is clear,
since the only Fano varieties whose index iX is greater or equal than dim(X) are
projective spaces or quadrics by [KO73]. So we are reduced to the case when the
Picard number is greater than one.

Remark 1.7.6. When G is classical, the lemma can be derived from the explicit
description of X = G/P as a flag manifold. Let us suppose that G is of type An−1

and the Picard number of X = G/P is greater than one. Then X is a flag manifold
X = Fl(i1, . . . , ik, n), where Σ = {i1, . . . , ik}. The line bundle Lh is the determinant
Lh = det(U∨h ) of the dual of the tautological bundle of rank ih. It is easy to deduce
the explicit formula for the canonical bundle:

−KX = Li21 ⊗Li3−i12 ⊗⋯⊗Ln−ik−1k .

Since dim(X) ≥ n, it is straightforward to check that jh = ik+1 − ik−1 is strictly
smaller than dim(X) for h ∈ {1, . . . , k}.

For the other classical groups, one could proceed similarly using the fact that the
corresponding homogeneous varieties X = G/P are zero loci of a general section of
∧2U∨k (type Cm) or S2U∨k (type Bm and Dm) inside Fl(i1, . . . , ik, n), which allows
to use adjunction in order to understand −KX . However, this strategy does not
generalize straightforwardly to the exceptional groups.

Proof. Let us assume that X = G/P (Σ) is a homogeneous rational projective
variety with Picard number greater than one (see Remark 1.7.5). The tangent
bundle of X is homogeneous, and it corresponds to a P -representation T. Since
the action of G on X is homogeneous, we get that

T ≅ p⊥ ≅ ⊕
α∈Φ+,α∉Φ+(Σ)

gα,

where the last expression is the decomposition of T in irreducible h-modules. As
a result the h-weight of det(T) is equal to cΣ ∶= ∑α∈Φ+,α∉Φ+(Σ)α. Since this should
be a weight of a one dimensional representation of P (corresponding to the line
bundle det(TX) = −KX), one can write it as

cΣ =∑
i∈Σ
jiωi,

where the ji’s are the same as those appearing in the expression of −KX . Notice
that ji = (cΣ,Hαi), where (⋅, ⋅) is the Killing form on h and Hαi = 2 αi

(αi,αi) is the
co-root of αi. Recall finally that (αi,Hαj) = 2 if i = j, while it is negative if i ≠ j
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(and strictly negative if αi, αj are not orthogonal).
Let us focus our attention on one of the exponents ji for i ∈ Σ. Since the Picard

number of X is greater than one, dim(X) = dim(G/P (Σ)) > dim(G/P ({i})). For
any positive root α ∈ Φ+, if α ∉ Φ+({i}) then α ∉ Φ+(Σ). Moreover if α ∈ Φ+({i})

then (α,Hαi) ≤ 0. Now we will distinguish two cases.
The first case is when there exists h ∈ Σ, h ≠ i which is contained in the

same connected component of the Dynkin diagram of G that contains the node
i. Then one can check easily that there exists α ∈ Φ+({i}) but α ∉ Φ+(Σ) such
that (α,Hαi) < 0. Putting everything together with the fact that (c{i},Hαi) =

iG/P ({i}) ≤ dim(G/P ({i})) + 1, we obtain that

ji = (cΣ,Hαi) < (c{i},Hαi) ≤ dim(G/P ({i})) + 1 ≤ dim(G/P (Σ)),

thus proving the inequality we wanted.
The second case is when i is the only element in Σ which is contained in its

own connected component inside the Dynkin diagram of G. In such a situation
and contrary to what happened in the first case, we deduce that (cΣ,Hαi) =

(c{i},Hαi), which in general gives ji ≤ dim(G/P (Σ)). Moreover we deduce that
G/P (Σ) = G/P ({i}) ×G/P (Σ ∖ {i}). Therefore, if dim(G/P (Σ ∖ {i})) > 1 or if
iG/P ({i}) < dim(G/P ({i})) + 1 we obtain ji < dim(G/P (Σ)); the two conditions
are not satisfied only when G/P (Σ ∖ {i}) = P1 and G/P ({i}) = Pl, i.e., when
X = P1 × Pl. ∎
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2 | An elliptic K3 surface with a
symplectic automorphism of order
three

The aim of this chapter is to describe a specific elliptic K3 surface S with a
symplectic automorphism σ of order 3. We will describe the geometry of S, and
we determine the action of σ∗ ∶ NS(S) Ð→ NS(S). From this description, we
extend the action of σ∗ on H2(S,Z) passing to ΛK3. This K3 surface is well
known and it is one of the so called two most algebraic K3 surface, see [SI77] and
[Vin83].

2.1 The elliptic K3 surface S

Let ζ3 be a third root of unity and Eζ3 = C/(Z + ζ3Z) be the elliptic curve with
complex multiplication of order 3. Its Weierstrass equation is given by Eζ3 ∶ y2 =

x3 − 1, see [[Har77], Example 4.20.2].

Proposition 2.1.1. Let α ∶ Eζ3 Ð→ Eζ3 be the map z ↦ ζ3z. The map α has 3

fixed points.

Proof. The map α can be seen as follows z = eφi ↦ α(z) = e(φ+
2π
3
)i, where clearly

has 3 fixed points v1, v2, v3, see Fig.2.1.
∎

Proposition 2.1.2. Let S be the surface obtained as the minimal resolution of
the quotient (Eζ3 × Eζ3)/⟨α × α

2⟩. Then, S is an elliptic K3 surface that comes
with a natural elliptic fibration induced by Eζ3.

Proof. For simplicity, we denote Eζ3 × Eζ3 by A. Since the map α has 3 fixed
points v1, v2, v3, then (vi, vj) (i, j = 1,2,3) are the fixed points of α × α2. This
implies that the quotient A/⟨α ×α2⟩ has 9 singular points at pij = [(vi, vj)]. Each
singularity pij is a rational double point which locally corresponds to a singularity
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Figure 2.1

of A2-type. The minimal resolution S of A/⟨α × α2⟩ is given by introducing two
non-singular rational curves Cij,C ′

ij for each pij such that (Cij)2 = (C ′
ij)

2 = −2 and
(Cij ⋅C ′

ij) = 1, see [[BHPVdV04], Theorem 7.1].
First, we show that there exists a nowhere-vanishing holomorphic 2-form on S.

Since A is a 2-dimensional complex torus, it has a nowhere-vanishing holomorphic
2-form invariant under the action of ⟨α × α2⟩. Let us denote it by ω. Then, ω
induces a holomorphic 2-form on the open set deleting the singular point that
can be extended to a holomorphic 2-form on the minimal resolution since the
singularities are double points, see [[BHPVdV04], Proposition 3.5, Theorem 7.2].
The fact that S is a K3 surface and not a complex torus follows immediately from
the non-empty collection of rational curves in S.

The surface S is naturally endowed with an elliptic fibration induced by one
of the projection (which is trivially an elliptic fibration) on Eζ3 ×Eζ3 , see Figure
2.2.

A Eζ3

S A/⟨α × α2⟩ P1

p

qA
3∶1

qEζ3

ε

p̄

Figure 2.2

where p and p̄ are one of the projection maps in A and A/⟨α×α2⟩ respectively,
qEζ3 and qA are the quotient maps in Eζ3 and A respectively. ∎
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The Weierstrass equation of S

Let us find the Weierstrass equation of S with π ∶= p̄ ○ ε: let v2
i = u

3
i − 1 be the

equation of the i-th copy of Eζ3 in Eζ3 ×Eζ3 and we assume the automorphism α

to be (vi, ui)↦ (vi, ζ3ui). Hence, the functions y = v1u6
2, x = u1u4

2 are invariant for
the action of ⟨α × α2⟩ and satisfies the equation

y2 = x3 − (v2
2 + 1)4, (2.1)

which is the Weierstrass equation of (Eζ3 ×Eζ3)/⟨α × α2⟩.

Its homogeneous form is

y2 = x3 − (v2
2 +w

2
2)

4w4
2. (2.2)

By applying the change of coordinates t ∶= v2 +
√

3w2 and s ∶= v2 −
√

3w2 (and
multiplying the last term by 6

√
3) one obtains the Weierstrass equation of S

S ∶ y2 = x3 − (t3 − s3)4. (2.3)

Taking s = 1, we obtain

A(t) = 0 ∈H0(P1,O(2)⊗4), B(t) = (t3 − 1)4 ∈H0(P1,O(2)⊗6),

∆(t) = 27(t3 − 1)8 ∈H0(P1,O(2)⊗12).

The discriminant ∆(t) = 0 if and only if t = 1, ζ3,−ζ3. This implies, that there
are three singular fibers over each value of t. Let a(t), b(t), δ(t) be the order
vanishing of A,B and ∆ at t respectively. Then, a(t) =∞, b(t) = 4, and δ(t) = 8

for all t ∈ {1, ζ3,−ζ3}. By Table 9.3, we can conclude that π has three reducible
fibers of type IV ∗ (C(j), j = 1,2,3), where each reducible fiber with components
C

(j)
i , i = 0, ...,6, intersect as in (2.4).

C
(j)
0 C

(j)
1 C

(j)
2 C

(j)
5 C

(j)
6

C
(j)
3

C
(j)
4

(2.4)
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We also obtain that the Equation 2.3 admits the sections

s± ∶ t↦ (x(t), y(t)) = (0,±(t3 − 1)2).

In particular, T1 ∶= Z(s+) and T2 ∶= Z(s−) are 3-torsion sections.

Set O = Z(s0) the zero section of the fibration π. Hence {O, T1, T2} with the
group structure of MW(S) is a copy of Z/3Z.

The three fibers satisfy the following intersections:

(C
(j)
0 ⋅C

(j)
1 ) = (C

(j)
1 ⋅C

(j)
2 ) = (C

(j)
2 ⋅C

(j)
3 ) = (C

(j)
3 ⋅C

(j)
4 ) = (C

(j)
2 ⋅C

(j)
5 ) = (C

(j)
5 ⋅C

(j)
6 ) = 1,

(C
(j)
0 ⋅O) = (C

(j)
4 ⋅ T1) = (C

(j)
6 ⋅ T2) = 1,

(C
(j)
i )2 = O2 = T 2

1 = T 2
2 = −2,

and all the other intersections are 0, see Figure 2.3.

Figure 2.3
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Let F be the class of the fiber. By Table 9.3, we can write F as

F = C
(j)
0 + 2C

(j)
1 + 3C

(j)
2 + 2C

(j)
3 +C

(j)
4 + 2C

(j)
5 +C

(j)
6 , j = 1,2,3.

Let us write T1 and T2 in terms of the classes F , O, and C
(j)
i for i = 1, ...,6,

j = 1,2,3.

Proposition 2.1.3.

T1 = 2F +O −
1

3

3

∑
j=1

(3C
(j)
1 + 6C

(j)
2 + 5C

(j)
3 + 4C

(j)
4 + 4C

(j)
5 + 2C

(j)
6 ),

T2 = 2F +O −
1

3

3

∑
j=1

(3C
(j)
1 + 6C

(j)
2 + 4C

(j)
3 + 2C

(j)
4 + 5C

(j)
5 + 4C

(j)
6 ).

Proof. Let T1 = αF + βO +∑
6
i=1∑

3
j=1 γijC

(j)
i .

From (T1 ⋅F ) = 1, we get β = 1. Since (T1 ⋅O) = 0, then α−2β = 0 and so α = 2.
Now, for all j = 1,2,3 we have

(T1 ⋅C
(j)
k ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if k = 4

0, if k ≠ 4.

Then, the following linear system

−2γ1j + γ2j = 0 (k = 1)

γ1j − 2γ2j + γ3j + γ5j = 0 (k = 2)

γ2j − 2γ3j + γ4j = 0 (k = 3)

γ3j − 2γ4j = 1 (k = 4)

γ2j − 2γ5j + γ6j = 0 (k = 5)

γ5j − 2γ6j = 0 (k = 6)

has unique solution at γ1j = −1, γ2j = −2, γ3j = −
5
3 , γ4j = γ5j = −

4
3 , γ6j = −

2
3 for all

j = 1,2,3.
In a similar way, we obtain

T2 = 2F +O −
1

3

3

∑
j=1

(3C
(j)
1 + 6C

(j)
2 + 4C

(j)
3 + 2C

(j)
4 + 5C

(j)
5 + 4C

(j)
6 ).

∎
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2.2 The symplectic automorphism σ of order 3

Let us now define the symplectic automorphism of order three induced by a non-
zero section of MW(X). By Proposition 1.3.8, the translation by T1 is a well
defined automorphism of S of order 3 and it is symplectic.

We know that σ preserves each fiber and it acts on each fiber as a translation
by T1. Hence, its action σ∗ on the classes O, T1, T2, C

(j)
i for i = 1, ...,6, j = 1,2,3

is uniquely determined by the intersection form in 2.3. In other words, since σ∗ is
an isometry

(D1 ⋅D2) = (σ∗(D1) ⋅ σ
∗(D2)),

we have that the action σ∗ is as in (2.5).

O C
(j)
0 C

(j)
1 C

(j)
2 C

(j)
5 C

(j)
6 T2

C
(j)
3

C
(j)
4

T1

(2.5)

The following three orthogonal copies of E6 are permuted by σ∗:
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2.2. The symplectic automorphism σ of order 3 CHAPTER 2.

C
(1)
1 C

(1)
0 O C

(2)
0 C

(2)
1

C
(3)
0

C
(1)
3 C

(1)
4 T1 C

(2)
4 C

(2)
3

C
(3)
4

C
(1)
5 C

(1)
6 T2 C

(2)
6 C

(2)
5

C
(3)
6

(2.6)

The Nerón–Severi group of S and the isometry σ∗ on NS(S)

The components of the three copies of E6 in 2.6 are 18 classes in NS(S). Since
the discriminant of E6 ⊕ E6 ⊕ E6 is not zero, then these classes are independent
(cf. Example 1.1.2).

By Lemma 1.3.3, we have ρ(S) = 20 since rc = 6 for singular fiber of type IV ∗

(See Table 9.3) and rank MW(S) = 0. In order to get a basis of NS(S), we add
two independent classes.

Set D ∶= 3O +C
(1)
1 +C

(2)
1 +C

(3)
1 + 2(C

(1)
0 +C

(2)
0 +C

(3)
0 ).

Note that:

(D ⋅C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3(3O2 + 2(C
(1)
0 ⋅O) + 2(C

(2)
0 ⋅O) + 2(C

(3)
0 ⋅O)) = 0 if C = 3O,

(C
(1)
1 )2 + 2(C

(1)
0 ⋅C

(1)
1 ) = 0 if C = C

(1)
1 ,

(C
(2)
1 )2 + 2(C

(2)
0 ⋅C

(2)
1 ) = 0 if C = C

(2)
1 ,

(C
(3)
1 )2 + 2(C

(3)
0 ⋅C

(3)
1 ) = 0 if C = C

(3)
1 ,

2(3(O ⋅C
(1)
0 ) + (C

(1)
1 ⋅C

(1)
0 ) + 2(C

(1)
0 )2) = 0 if C = 2C

(1)
0 ,

2(3(O ⋅C
(2)
0 ) + (C

(2)
1 ⋅C

(2)
0 ) + 2(C

(2)
0 )2) = 0 if C = 2C

(2)
0 ,

2(3(O ⋅C
(3)
0 ) + (C

(3)
1 ⋅C

(3)
0 ) + 2(C

(3)
0 )2) = 0 if C = 2C

(3)
0 ,
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and
(D ⋅C

(3)
2 ) = (C

(3)
1 ⋅C

(3)
2 ) = 1.

The lattice generated by the classes C(3)
2 andD has intersection form

⎛

⎝

−2 1

1 0

⎞

⎠

which is isometric to U .

Proposition 2.2.1. The lattice generated by C
(3)
2 and D is orthogonal to

E6⊕E6⊕E6.

Proof. It is straightforward that the lattice generated by D and C(3)
2 is orthogonal

to the second and third copy of E6, see (2.7). One can directly check that it is
also orthogonal to the first copy of E6.

Let C be a component of the first copy of E6. By (2.7),

(D ⋅C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C
(1)
1 )2 + 2(C

(1)
0 ⋅C

(1)
1 ) = 0 if C = C

(1)
1 ,

3(O ⋅C
(1)
0 ) + (C

(1)
1 ⋅C

(1)
0 ) + 2(C

(1)
0 )2 = 0 if C = C

(1)
0 ,

3O2 + 2(C
(1)
0 ⋅O) + 2(C

(2)
0 ⋅O) + 2(C

(3)
0 ⋅O) = 0 if C = O,

3(O ⋅C
(3)
0 ) + (C

(3)
1 ⋅C

(3)
0 ) + 2(C

(3)
0 )2 = 0 if C = C

(3)
0 ,

3(O ⋅C
(2)
0 ) + (C

(2)
1 ⋅C

(2)
0 ) + 2(C

(2)
0 )2 = 0 if C = C

(2)
0 ,

(C
(2)
1 )2 + 2(C

(2)
0 ⋅C

(2)
1 ) = 0 if C = C

(2)
1 .

∎
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T2

T1

O

C
(3)
2

C
(1)
6 C

(2)
6 C

(3)
6

C
(1)
5 C

(2)
5

C
(1)
4 C

(2)
4 C

(3)
4

C
(1)
3 C

(2)
3

C
(1)
0 C

(2)
0 C

(3)
0

C
(1)
1 C

(2)
1 C

(3)
1

(2.7)

Proposition 2.2.2. The classes appearing in (2.6), C(3)
2 and D with the bilinear

form in 2.7 form a Q-basis of NS(S).

Proof. Let N ∶= E6 ⊕E6 ⊕E6 ⊕U , then N has discriminant 33 ≠ 0. As Z-modules
N ⊂ NS(S) and rankN = 20, then NS(S)⊗Q = N ⊗Q. ∎

Since {O, T1, T2} with the group structure of MW(S) is a copy of Z/3Z,
applying Lemma 1.3.4, we get ∣ATS ∣ = 3. Since H2(S,Z) is unimodular, we
get ∣ANS(S)∣ = ∣ATS ∣ = 3. Note that as lattices, N and NS(S) are not isometric
because their discriminant groups are not isomorphic. However, NS(S) is an even
overlattice of N of finite index.

Proposition 2.2.3. The transcendental lattice of S is isomorphic to A2(−1),
i.e.,

TS =
⎛

⎝

2 −1

−1 2

⎞

⎠
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Proof. Since σ is symplectic, ω and ω̄ are in TS ⊗R. Moreover, sign(TS) = (2,0)

because the sign(NS(S)) = (1,19). We saw that ∣ATS ∣ = 3, then TS is a positive
definite lattice of rank two and discriminant group isomorphic to Z/3Z, i.e., TS ≅
A2(−1). ∎

In order to get a Z-basis of NS(S) from the classes in Proposition 2.2.2, we
consider an extra class in NS(S).

Set

G ∶=
C

(1)
1 + 2C

(1)
0 +C

(2)
0 + 2C

(2)
1 +C

(1)
3 + 2C

(1)
4 +C

(2)
4 + 2C

(2)
3 +C

(1)
5 + 2C

(1)
6 +C

(2)
6 + 2C

(2)
5

3
.

(2.8)
Note that G ∈ AE6 ⊕AE6 ⊕AE6 is an isotropic class.
Recalling that C(j)

0 = F − 2C
(j)
1 − 3C

(j)
2 − 2C

(j)
3 −C

(j)
4 − 2C

(j)
5 −C

(j)
6 , one obtains

G = F −C
(1)
1 − 2C

(1)
2 −C

(1)
3 −C

(1)
5 −C

(2)
2 .

Thus G is a linear combination with integer coefficients of the classes contained
in NS(S).

Set (E⊕3
6 )′ ∶= E6 ⊕ E6 ⊕ E6 + ⟨G⟩. This is an overlattice of index 3 of E⊕3

6

contained in NS(S).

Proposition 2.2.4. The Nerón Severi lattice NS(S) is isometric to the lattice
U ⊕ (E⊕3

6 )′.

Proof. We have proved that U ⊕ (E⊕3
6 )′ ⊂ NS(S) since we exhibit the classes

of NS(S) which generate U ⊕ (E⊕3
6 )′. The inclusion U ⊕ (E⊕3

6 )′ ⊂ NS(S) has
finite index, the lattices have the same ranks, the same signatures and the same
discriminants, so

NS(S) ≃ U ⊕ (E⊕3
6 )′.

∎

The isometry σ∗ on H2(S,Z)

In the previous section, we saw that the action of σ∗ on U ⊕ (E6)⊕3 is easily
described: it acts as the identity on U and it permutes the three copies of E6.

Since

σ∗(G) = σ(F −C
(1)
1 − 2C

(1)
2 −C

(1)
3 −C

(1)
5 −C

(2)
2 )

= F −C
(1)
3 − 2C

(1)
2 −C

(1)
5 −C

(1)
1 −C

(2)
2 = G,
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it means that G is preserved by σ∗.
The fact that σ is symplectic implies that it acts as the identity on the generator

of H2,0(S), and so it acts as the identity on TS ≃ A2(−1).
Note that H2(S,Z) is an overlattice of TS ⊕NS(S) of index 3 since H2(S,Z)

is unimodular and ATS ≅ ANS(S) ≅ Z/3Z. Hence, we obtain that H2(S,Z) is an
overlattice of index 32 of A2(−1)⊕U⊕E6⊕E6⊕E6 because NS(S) is an overlattice
of index 3 of U ⊕ (E6)⊕3.

The action of σ∗ on A2(−1) ⊕ U ⊕E6 ⊕E6 ⊕E6 can be written in an explicit
way:

σ∗ ∶ A2(−1)⊕ U⊕ E6⊕ E6⊕ E6 Ð→ A2(−1)⊕ U⊕ E6⊕ E6⊕ E6

(a, u, e, f, g) ↦ (a, u, g, e, f)

(2.9)
Since H2(S,Z) is an overlattice of finite index of A2(−1)⊕U ⊕E⊕3

6 , the action
of σ∗ on H2(S,Z) is induced by the Q-linear extension of (2.9). In order to obtain
H2(S,Z) from A2(−1)⊕U ⊕E⊕3

6 one has to add two classes, which are contained
in the discriminant group of A2(−1)⊕U ⊕E⊕3

6 : let us fix the following generators
for the discriminant group of E6 and A2(−1) respectively:

v(i) =
e
(i)
1 + 2e

(i)
2 + e

(i)
4 + 2e

(i)
5

3
, and w =

a1 + 2a2

3
(2.10)

where ai are the generators of A2(−1) and e
(i)
j , j = 1, . . . ,6, i = 1,2,3 are the

generators of E6 whose intersections are as in the diagram:

e
(i)
1 e

(i)
2 e

(i)
3 e

(i)
4 e

(i)
5

e
(i)
6

(2.11)

We consider the overlattice E⊕3
6 obtained adding to the abstract lattice E⊕3

6 the
class

x ∶= v(1) + v(2) + v(3).

It coincides with the lattice (E⊕3
6 )′ constructed before (an explicit isometry is

obtained mapping the generators of E⊕3
6 to the curves which appear in (2.6) and

the vector x to the class G defined in (2.8)).
Hence we constructed the lattice A2(−1)⊕U⊕(E⊕3

6 )′ as an overlattice of index
3 of A2(−1)⊕U ⊕E⊕3

6 by adding the class x.

55



CHAPTER 2. 2.2. The symplectic automorphism σ of order 3

Since (v(i))
2
= −4/3 and w2 = 2/3 (cf. Table 9.2), the class y = w + v(1) − v(2)

is such that y2 = −2 (which is of course equivalent to 0 mod 2Z). In particular
y ∈ AA2(−1)⊕U⊕(E⊕3

6 )′ is isotropic. Hence, by adding y to A2(−1) ⊕ U ⊕ (E⊕3
6 )′ one

obtains an even overlattice of A2(−1)⊕U ⊕ (E⊕3
6 )′ which is even, unimodular and

whose signature is (3,19). This implies then this lattice is ΛK3. Since A2(−1) ≃ TS

and U ⊕ (E⊕3
6 )′ ≃ NS(S), y is the gluing vector, which enlarges TS ⊕ NS(S) to

H2(S,Z).
To resume the results of this section we proved the following (with the previous

notations):

Theorem 2.2.5. There is an even overlattice of index 3 of E⊕3
6 which is obtained

by adding to E⊕3
6 the class x = v(1) + v(2) + v(3) where v(i) are as in (2.10).

The Néron–Severi group of the K3 surface S is isometric to U ⊕ (E⊕3
6 )

′ and
the action of σ∗ on U ⊕E⊕3

6 is a cyclic permutation of order 3 on E⊕3
6 and is the

identity on U .
The lattice H2(S,Z) is an overlattice of index 32 of A2(−1)⊕U ⊕E⊕3

6 obtained
by adding x and y ∶= w + v(1) − v(2) where w and v(i) are as in (2.10).

The action of σ∗ on A2(−1) ⊕ U ⊕ E⊕3
6 is the identity on A2(−1) ⊕ U and a

cyclic permutation of order 3 on E⊕3
6 ; the one on H2(S,Z) is obtained extending

this one to x and y.

56



3 | The cohomological action of
symplectic automorphisms of order 3

In the previous Section we described the action of a particular symplectic
automorphism of order 3 on a particular K3 surface and the isometry it induces.
Applying Theorem 1.2.11, the action of a finite order symplectic automorphism
on the second cohomology group of a K3 surface is unique, one obtains general
results by the ones described above in a specific example. The aim of this section
is to state and prove these more general results: first, in Section 3.1 we describe
the isometry induced by a symplectic automorphism of order 3 on the lattice ΛK3;
then, in Sections 3.2 and 3.3 we describe the maps π∗ and π∗, where π is induced
by the quotient map. The description of these maps is the main technical result of
our thesis and it is the analogous of the results proved in [vGS07] for the order 2
case. Some properties of the action of σ∗ on ΛK3 were already known. In particular
the lattice (H2(S,Z)σ

∗

)
⊥
is isometric to the lattice K12, by [GS07, Theorem 4.1].

3.1 The action of a symplectic automorphism of

order 3 on ΛK3

We denote by ΛK3 the unique even unimodular lattice of signature (3,19). It is
known to be isometric to U3 ⊕E2

8 . Since for each K3 surface X, H2(X,Z) is an
even unimodular lattice of signature (3,19), we have that H2(X,Z) is isometric
to ΛK3. By Theorem 2.2.5, we have an alternative description of ΛK3: it is the
overlattice of index 32 of A2(−1)⊕U ⊕E⊕3

6 obtained by adding the classes x and
y.

Let σ be a symplectic automorphism of order 3 on a K3 surface X, then σ∗

acts on H2(X,Z) and this action is unique, by 1.2.11. So σ∗ is an order 3 isometry
of ΛK3. In Theorem 2.2.5, we described this isometry by considering a very special
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K3 surface and by the uniqueness of this action we conclude that

σ∗ ∶ A2(−1)⊕ U⊕ E6⊕ E6⊕ E6 → A2(−1)⊕ U⊕ E6⊕ E6⊕ E6

(a, u, e, f, g) ↦ (a, u, g, e, f).

(3.1)

The isometry σ∗ can be extended to an action of (A2(−1)⊕U ⊕E6⊕E6⊕E6)⊗Q
and so to an action of the overlattice of index 32 of A2(−1) ⊕ U ⊕ E6 ⊕ E6 ⊕ E6

isometric to ΛK3. In particular σ∗(x) = x and σ∗(y) = w + v(2) − v(3), with the
notation of Theorem 2.2.5.

The invariant lattice Λσ∗

K3 and its orthogonal complement

The action of σ∗ splits ΛK3 in two sublattices: the invariant sublattice Λσ∗

K3 and its
orthogonal complement (denoted by ΩZ/3Z in [GS07]). By the description of σ∗,
one obtains that the σ-invariant sublattice of A2(−1)⊕U⊕E6⊕E6⊕E6 is spanned by
the classes (ah,0,0,0,0), (0, uk,0,0,0), (0,0, ei, ei, ei) where h, k = 1,2, i = 1, . . . ,6

and ah, uk and ei are generators of the lattices A2(−1), U and E6 respectively. So

(A2(−1)⊕U ⊕E6 ⊕E6 ⊕E6)
σ∗

≃ A2(−1)⊕U ⊕E6(3),

where the generators of E6(3) are e(1)i + e
(2)
i + e

(3)
i , i = 1, . . . ,6 (the sum of the

generators of the three copies of E6). Moreover also the class x = (∑
3
j=1(e

(j)
1 +

2e
(j)
2 + e

(j)
4 + 2e

(j)
5 ))/3 is contained in (ΛK3)σ

∗ . Hence this lattice is an overlattice
of index 3 of A2(−1)⊕U ⊕E6(3), often denoted by A2(−1)⊕U ⊕E∗

6 (3) where E∗
6

is the dual Q-lattice of E6.

Let us now consider the orthogonal complement of (ΛK3)σ
∗ .

Proposition 3.1.1. The lattice (Λσ∗

K3)
⊥
is isometric to the lattice K12 and it is

spanned by ki ∶= e
(1)
i − e

(2)
i , ki+6 ∶= e

(1)
i − e

(3)
i , i = 1, . . . ,6 and by the class

z ∶= (k1 + k4 + k7 + k10 + 2(k2 + k5 + k8 + k11))/3. (3.2)

Proof. We already described ΛK3 as an overlattice of A2(−1)⊕ U ⊕E6 ⊕E6 ⊕E6

and we described the sublattice (ΛK3)
σ∗ as the lattice generated by (ai,0,0,0,0),

(0, ui,0,0,0), (0,0, ej, ej, ej), i = 1,2, j = 1, ...,6, and x. So, (Λσ∗

K3)
⊥
is spanned,

at least over Q, by the classes ki, i = 1, . . . ,12. The intersection matrix of these
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classes is the block matrix

⎡
⎢
⎢
⎢
⎢
⎣

E6(2) E6

E6 E6(2)

⎤
⎥
⎥
⎥
⎥
⎦

(3.3)

We denote by K̃12 the lattice whose bilinear form is given by the previous
matrix. Since the determinant of this matrix is 38 and the discriminant of K12

is 36, we deduce that K12 is an overlattice of index 3 of the lattice K̃12. This
overlattice is obtained by adding to {ki}i=1,...,12 the class z.

Note that the class z in terms of generators of NS(S) (where S is the specific
K3 surface considered in Section 2.1 )corresponds to the class

2F −2C
(1)
1 −4C

(1)
2 −3C

(1)
3 −2C

(1)
4 −3C

(1)
5 −2C

(1)
6 −2C

(2)
2 −2C

(2)
3 −C

(2)
4 −2C

(2)
5 −C

(2)
6 ,

which is contained in (NS(S)σ
∗

)
⊥
(since it is orthogonal to the generators of

NS(S)σ
∗). As a consequence, the lattice K12 ≃ (H2(S,Z)σ

∗

)
⊥
is the overlattice

of index 3 of K̃12 obtained by adding z to K̃12, cf. Example 1.1.3. ∎

3.2 The map π∗

Given a K3 surface X with a symplectic automorphism σ, the quotient X/⟨σ⟩ is
a singular surface, whose desingularization is a K3 surface Y , see Section 1.2.9.
Hence there is a generically 3:1 rational map π ∶ X ⇢ Y , induced by the quotient
map q ∶X Ð→X/⟨σ⟩.

Hence π∗ maps H2(X,Z) to a sublattice of H2(Y,Z). Since both these surfaces
are K3 surfaces, π∗ maps ΛK3 ≃H2(X,Z) to a sublattice of ΛK3 ≃H2(Y,Z).

Proposition 3.2.1. The map π∗ acts on A2(−1)⊕U ⊕E6 ⊕E6 ⊕E6 as follows:

π∗ ∶ A2(−1)⊕ U⊕ E6⊕ E6⊕ E6 → A2(−3)⊕ U(3)⊕ E6

(a, u, e, f, g) ↦ (a, u, e + f + g)
.

Its extension to ΛK3 is such that

π∗(H
2(X,Z)) ≃ A∗

2(−3)⊕U(3)⊕E6 ≃ A2(−1)⊕U(3)⊕E6,

which is an overlattice of index 3 of A2(−3)⊕U(3)⊕E6. It is a lattice of rank 10,
signature (3,7) and discriminant group (Z/3Z)4.

Proof. If α ∈H2(X,Z)σ
∗ is a σ∗-invariant class, applying the push-pull formula in
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Lemma 1.2.13, one obtains

(π∗(α) ⋅ π∗(α)) = 3α2

indeed π∗π∗(α) = α + σ∗(α) + (σ∗)2(α) = 3α.

Given α1, α2 ∈H2(X,Z)σ
∗ , one obtains

(π∗α1 ⋅ π∗α2) =
1

3
(π∗π∗α1 ⋅ π

∗π∗α2) =
1

3
(3α1 ⋅ 3α2) = 3(α1 ⋅ α2).

Hence if α ∈ A2(−1) ⊕ U ⊂ H2(X,Z)σ
∗ , then π∗ multiplies the form by 3, so

π∗(A2(−1)⊕U) = A2(−3)⊕U(3).

Consider the image of the classes of the form (0,0, e,0,0) ∈ A2(−1)⊕U ⊕E6 ⊕

E6 ⊕E6: let us denote, as before, by e
(j)
i , i = 1, . . . ,6 the basis of the j-th copy of

E6. Then

(π∗e
(1)
i ⋅π∗e

(1)
j ) =

1

3
(π∗π∗e

(1)
i ⋅π∗π∗e

(1)
j ) =

1

3
((e

(1)
i +e

(2)
i +e

(3)
i )⋅(e

(1)
j +e

(2)
j +e

(3)
j )) = (e

(1)
i ⋅e

(1)
j ),

where we used:

π∗π∗(e
(1)
i ) = e

(1)
i + σ∗(e

(1)
i ) + (σ∗)2(e

(1)
i ) = e

(1)
i + e

(2)
i + e

(3)
i ,

(e
(h)
i ⋅ e

(h)
j ) = (e

(1)
i ⋅ e

(1)
j ), and (e

(h)
i ⋅ e

(k)
j ) = 0, if h ≠ k.

Hence π∗(E6 ⊕E6 ⊕E6) ≃ E6.

So we obtain π∗(A2(−1)⊕U ⊕E6⊕E6⊕E6) ≃ A2(−3)⊕U(3)⊕E6. In order to
find π∗(H2(X,Z)), it remains to understand the images of the classes x and y.

The class x = (∑j(e
(j)
1 + 2e

(j)
2 + e

(j)
4 + 2e

(j)
5 )) /3 is mapped to

π∗(x) = π∗(e
(1)
1 + 2e

(1)
2 + e

(1)
4 + 2e

(1)
5 )

since π∗(e
(1)
i + e

(2)
i + e

(3)
i ) = 3π∗(e

(1)
i ).

The class y = (a1 + 2a2 + e
(1)
1 + 2e

(1)
2 + e

(1)
4 + 2e

(1)
5 − e

(2)
1 − 2e

(2)
2 − e

(2)
4 − 2e

(2)
5 ) /3

is mapped to
π∗(y) = π∗((a1 + 2a2)/3) = (π∗a1 + 2π∗a2)/3

since π∗e
(1)
i − π∗e

(2)
i = π∗e

(1)
i − π∗e

(1)
i = 0. The vectors π∗ai are the generators of

A2(−3) and hence we are constructing an overlattice of index 3 of A2(−3), often
denoted by A∗

2(−3). This lattice is isometric to A2(−1), with basis

a′1 ∶= (π∗a1 + 2π∗a2)/3, a′2 ∶= π∗(a2) − ((π∗a1 + 2π∗a2)/3) = (−π∗a1 + π∗a2)/3.
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We observe that a′1 = π∗(y) and a′2 = π∗(a2) − π∗(y). ∎

The cohomology of the quotient K3 surface Y

Let X be a K3 surface admitting a symplectic automorphism σ of order 3, then
the surface X/⟨σ⟩ has 6 singularities of type A2 (see Example 1.2.10). We denote
by Y the desingularization of X/⟨σ⟩, which introduces 12 irreducible curves, 6
disjoint pairs of rational curves meeting in a point. We call the resolution map
β ∶ Y Ð→X/⟨σ⟩ and we denote by M (j)

i , i = 1,2, j = 1, . . . ,6 the curves introduced
by β, with the following conventions:

M
(j)
1 M

(j)
2 = 1, (M

(j)
i )

2
= −2 and M (j)

i M
(k)
h = 0 if j ≠ k.

By Theorem 1.2.12, the minimal primitive sublattice of H2(Y,Z) which contains
the curves M (j)

i contains also the class M̂ ∶= ∑
6
j=1(M

(j)
1 + 2M

(j)
2 )/3. Thus it is an

overlattice of index 3 of A⊕6
2 and so it is a negative definite lattice of rank 12 and

discriminant group (Z/3Z)4. This lattice is denoted by MZ/3Z.
The lattice π∗(H2(X,Z)) is naturally embedded in H2(Y,Z). The curves

introduced by β are orthogonal to β∗(D) for each divisor D ∈ π∗(NS(X)) and of
course they are also orthogonal to each class in π∗(TX). So we have the following
orthogonal decomposition (which holds over the rational field, but not over Z):

H2(Y,Q) = (MZ/3Z ⊕ π∗(H
2(X,Z)))⊗Q. (3.4)

So MZ/3Z and π∗(H2(X,Z)) are two sublattices embedded in ΛK3.

Gluing π∗(H2(X,Z)) and MZ/3Z to obtain H2(Y,Z)

By (3.4), the orthogonal complement of MZ/3Z in H2(Y,Z) is either π∗(H2(X,Z))

or an overlattice of finite index of π∗(H2(X,Z)).
By definition MZ/3Z, is primitively embedded in H2(Y,Z). Since H2(Y,Z)

is unimodular, the discriminant of the orthogonal complement of MZ/3Z in
H2(Y,Z) is −d(MZ/3Z). So, if d(π∗((H2(X,Z)))) = −d(MZ/3Z), we conclude that
π∗((H2(X,Z))) is the orthogonal complement of MZ/3Z. One immediately checks
that

∣d(MZ/3Z)∣ = 34 = ∣d(π∗(H
2(X,Z)))∣,

so π∗((H2(X,Z))) is the orthogonal complement of MZ/3Z.
We recall that the orthogonal complement of a given sublattice inside a
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bigger lattice Λ, is necessarily primitively embedded in Λ. In particular,
π∗(H2(Y,Z)) ≃ M⊥

Z/3Z is primitively embedded in H2(Y,Z). Therefore, to
construct the unimodular lattice H2(Y,Z) one has to glue these two primitive
sublattices π∗(H2(Y,Z)) and MZ/3Z.

To this purpose, we need the following description of the discriminant group
of MZ/3Z.

Lemma 3.2.2. With the notation of Section 3.2, the discriminant group of MZ/3Z

is generated by

b1 ∶= z1 + z2 + z3, b2 ∶= z1 + z2 + z4,

b3 ∶= z2 − z3 + z4 − z5, b4 ∶= −z1 + z3 − z4 + z5,

where
zj ∶= (M

(j)
1 + 2M

(j)
2 ) /3.

Proof. It suffices to check that bkM
(j)
i ∈ Z and that bi are independent in (Z/3Z)4 ≃

AMZ/3Z . The latter statement can be checked by observing that the discriminant
form computed on {b1, b2, b3, b4} is non degenerate, and indeed it is the opposite
of the discriminant form of U(3)⊕A2(−1)⊕E6. ∎

Proposition 3.2.3. Denoted by a′i, u
′
i, e

′
j, i = 1,2, j = 1, . . . ,6 the standard

generators of A2(−1), U(3) and E6 respectively.
The overlattice H2(Y,Z) of π∗(H2(X,Z))⊕MZ/3Z ≃ A2(−1)⊕U(3)⊕E6⊕MZ/3Z

is obtained by adding the classes

n1 ∶=
a′1+2a′2

3 + b3, n2 ∶=
e′1+2e′2+e′4+2e′5

3 + b4,

n3 ∶=
u′1
3 + b1, n4 ∶=

u′2
3 + b2

to A2(−1)⊕U(3)⊕E6 ⊕MZ/3Z.

Proof. It suffices to check that the lattice obtained by adding to the generators of
A2(−1)⊕U(3)⊕E6 ⊕MZ/3Z the classes n1, n2, n3 and n4 is even and unimodular.
It follows that it is an even unimodular lattice of signature (3,19) and then it is
isometric to the lattice ΛK3 ≃H2(Y,Z). ∎

Here we are interested in describing the classes ni in terms of the curves
contained MZ/3Z. In order to construct the overlattice of A2(−1) ⊕ U(3) ⊕ E6 ⊕

MZ/3Z, it is equivalent if one adds to it the class ni or the class ni +∑iαi,jM
(j)
i ,

αi,j ∈ Z, indeed these two classes are equivalent in the discriminant group.
We can rewrite the classes ni in the following form
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n1 ∼
2π∗(a2) − π∗(y) +M

(2)
1 + 2M

(2)
2 + 2M

(3)
1 +M

(3)
2 +M

(4)
1 + 2M

(4)
2 + 2M

(5)
1 +M

(5)
2

3
,

n2 ∼
π∗(e1 + 2e2 + e4 + 2e5) + 2M

(1)
1 +M

(1)
2 +M

(3)
1 + 2M

(3)
2 + 2M

(4)
1 +M

(4)
2 +M

(5)
1 + 2M

(5)
2

3
,

n3 ∼
π∗(u1) +M

(1)
1 + 2M

(1)
2 +M

(2)
1 + 2M

(2)
2 +M

(3)
1 + 2M

(3)
2

3
,

n4 ∼
π∗(u2) +M

(1)
1 + 2M

(1)
2 +M

(2)
1 + 2M

(2)
2 +M

(4)
1 + 2M

(4)
2

3
,

where we used that a′1 = π∗(y) and a′2 = π∗(a2)−π∗(y), by the proof of Proposition
3.3.1.

3.3 The map π∗

We now consider the map π∗, dual of the map π∗ considered above.

Proposition 3.3.1. The map π∗ acts as follows

π∗ ∶ A2(−3)⊕ U(3)⊕ E6 → A2(−1)⊕ U⊕ E6⊕ E6⊕ E6

(α, µ, e) ↦ (3α, 3µ, e, e, e).

With the notation of Proposition 3.2.3, H2(Y,Z) ≃ ΛK3 is obtained by adding to
A2(−3) ⊕ U(3) ⊕E6 ⊕MZ/3Z the classes a′1 and nh, h = 1,2,3,4, so the extension
of π∗ to H2(Y,Z) is given by

π∗(a′1) = a1 + 2a2, π∗(n1) = 2a2 − y, π∗(n2) = x, π∗(n3) = u1, π∗(n4) = u2

where ai and ui are generators of A2(−1) and U respectively.

Proof. By Proposition 3.2.1, π∗(γ) = γ if γ ∈ A2(−1) ⊕ U ⊂ H2(X,Z)σ
∗ and the

map π∗∣H2(X,Z)σ∗ multiplies the form by 3. For every γ ∈ A2(−1)⊕U ⊂H2(X,Z)σ
∗

and α ∈ π∗(H2(X,Z)σ
∗

) ≃ A2(−3) ⊕ U(3) ⊕E6, it holds (π∗α ⋅ γ) = (α ⋅ π∗γ). So
we obtain

(π∗α ⋅ γ) = (α ⋅ π∗γ) = 3(α ⋅ γ)

and hence π∗(α) = 3α for every α ∈ A2(−3)⊕U(3).

Let e ∈ E6 ⊂ H2(Y,Z) and (f,0,0) ∈ E⊕3
6 ⊂ H2(X,Z). By push-pull formula in
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Lemma 1.2.13 and Proposition 3.2.1,

(π∗e ⋅ (f,0,0)) = (e ⋅ π∗(f,0,0)) = (e ⋅ f).

Similarly (π∗e ⋅ (0, f,0)) = (e ⋅ f) and (π∗e ⋅ (0,0, f)) = (e ⋅ f). Hence

π∗(e) = (e, e, e) ∈ E6 ⊕E6 ⊕E6 ⊂H
2(X,Z).

Now we want to extend this map to the lattice A2(−1)⊕U(3)⊕E6, obtained
by adding to A2(−3) ⊕ U(3) ⊕ E6 the class a′1 = π∗((a1 + 2a2)/3) = π∗(y). Since
π∗(α) = 3α for every α ∈ A2(−3), we obtain π∗(a′1) = π∗(π∗(a1 +2a2)/3) = a1 +2a2.

In order to extend this map to H2(Y,Z) ≃ ΛK3, it remains to compute π∗(nh)
for h = 1,2,3,4. We observe that π∗(M (j)

i ) = 0 indeed if one reconstruct X from Y ,
ones consider the (minimal resolution of the) triple cover Y branched on the curves
M

(j)
i . This surface is not minimal and then one contracts some of the (−1)–curves.

Among these contracted curves, one finds the curves which are covers of the curves
M

(j)
i . In particular, there are no curves on X which are the inverse image of curves

M
(j)
i ⊂ Y .
So,

π∗(n1) = π∗(2π∗(a2) − π∗(y))/3 = (2π∗π∗(a2) − π
∗π∗(y))/3 = 2a2 − y

π∗(n2) =
3

∑
j=1

(e
(j)
1 + 2e

(j)
2 + e

(j)
4 + 2e

(j)
5 ) /3 = x,

π∗(n3) = u1,

π∗(n4) = u2. (3.5)

∎
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4 | Families of projective K3 surfaces
admitting a symplectic automorphism
of order 3 and of their quotients

We describe the families of the projective K3 surfaces admitting a symplectic
automorphism of order 3 and the families of their quotients, in terms of families
of lattices polarized K3 surfaces. So, we want to reduce the geometric property
“to admit a symplectic automorphism of order 3" (resp. “to be a quotient of a K3
surface by a symplectic automorphism of order 3") into a lattice theoretic property.
It is already known that this is possible by considering overlattices of the lattices
K12 and MZ/3Z with certain properties (see [Nik76], cf. [GS07], [Gar17]). Here
we classify these overlattices providing a complete description of the two families
considered, see Theorems 4.1.4 and 4.2.4 and Corollaries 4.1.6 and 4.2.5.

4.1 Projective K3 surfaces with a symplectic

automorphism of order 3

Lemma 4.1.1. Let qAK12
be the quadratic form on the discriminant group AK12 ≃

(Z/3Z)
6, then qAK12

(v) for v ∈ AK12 is one of the following three values 0, 2
3 ,

4
3 .

The actions of O(AK12) has four orbits: the orbit which contains 0, and the
orbits:

• o0 = {v ∈ AK12 ∣ qAK12
(v) = 0 and v ≠ 0};

• o1 = {v ∈ AK12 ∣ qAK12
(v) = 2

3};

• o2 = {v ∈ AK12 ∣ qAK12
(v) = 4

3}.

Proof. The result follows by [CS83, Section 3]. Nevertheless, we give an idea
of the proof. The isometries of K12 induce isometries of its discriminant group.
If two vectors a ≠ 0 and b ≠ 0 in AK12 are in the same orbit for the action of
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O(AK12), then qAK12
(a) = qAK12

(b). In order to reverse the implication, i.e., to
prove that the orbit of a non-zero vector is completely determined by the value of
the discriminant form on it, it suffices to find an isometry in O(AK12) which maps
a in b if qAK12

(a) = qAK12
(b). By Example 1.1.3, the vectors

g1 =
k7 + 2k8 + k10 + 2k11

3
, g2 =

k6 + k12

3
,

g3 =
k5 + k11

3
, g4 =

k4 + k10

3
, g5 =

k3 + k9

3
, g6 =

k2 + k8

3

form a basis of AK12 such that the quadratic form qAK12
is

qAK12
(v) =

4

3
x2

1 +
2

3
(x2

2 + x
2
3 + x

2
4 + x

2
5 + x

2
6) +

4

3
(x2x5 + x3x4 + x4x5 + x5x6),

where v = x1g1 + ... + x6g6 is an arbitrary element of AK12 .

Let ϕ be the order 2 isometry of K12 defined as k1 ↔ k5, k2 ↔ k4, k7 ↔ k11,
k8 ↔ k10, ki ↔ ki for all i = 3,6,9,12. Then ϕ ∈ O(K12) induces ϕA ∈ O(AK12) as
follows

ϕA(v) = −x1g1 + x2g2 + x3g3 + (−x3 + x6)g4 + x5g5 + (x3 + x4)g6.

By considering ⟨ϕA,− Id⟩ ∈ O(AK12), one shows that the vectors g3,−g3, g3 −

g4 + g6,−g3 + g4 − g6 are in the same orbit for O(AK12). A complete table of all 729

isometries, needed to show the result, can be computed as in Appendix 9.3. ∎

Proposition 4.1.2. Let d be a positive integer.

If d /≡ 0 mod 3, then there exist no even overlattices of finite index of ⟨2d⟩⊕K12

such that ⟨2d⟩ and K12 are primitively embedded in it.

If d ≡ 0 mod 3, then there exists a unique overlattice of finite index of ⟨2d⟩⊕K12

such that ⟨2d⟩ and K12 are primitively embedded in it. The index is 3 and the
generators of the overlattices are the ones of ⟨2d⟩ ⊕ K12 and L+g

3 where L is a
generator of ⟨2d⟩ and g ∈K12 can be chosen as follows:

if d ≡ 0 mod 9, then g = k1 + k3 + k5 + k7 + k9 + k11;

if d ≡ 3 mod 9, then g = k1 + k3 + k7 + k9;

if d ≡ 6 mod 9, then g = k1 + k7.

Proof. Let Λ be a proper overlattice of finite index of ⟨2d⟩⊕K12 in which K12 and
⟨2d⟩ are primitively embedded. Let f be one generator of Λ/(⟨2d⟩ ⊕K12), then
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f ∈ A(⟨2d⟩⊕K12) and hence

f = (αL + βg)/t, with αL/t ∈ A⟨2d⟩, βg/t ∈ AK12 .

Since AK12 ≃ (Z/3Z)6, t has to be equal to 3 and hence α,β ∈ {0,1,2}.
Since ⟨2d⟩ = ZL (resp. K12) is primitively embedded in Λ, β ≠ 0 (resp. α ≠ 0).

Moreover, since Λ/(⟨2d⟩ ⊕K12) ⊂ (Z/3Z)c, one can freely substitute g (resp. f)
by 2g (resp. 2f) because 2 is invertible in (Z/3Z), so one can assume that β = 1

(resp. α = 1) and g/3 ∈ AK12 .
So f = (L + g)/3. The bilinear form on Λ takes integer values and the lattice

is even, which implies

fL = 2d/3 ∈ Z⇔ d ≡ 0 mod 3, f 2 = (2d + g2)/9 ∈ 2Z⇔ 2d ≡ −g2 mod 18.

In particular the existence of f implies that d ≡ 0 mod 3. Moreover
if d ≡ 3 mod 9, then g/3 ∈ AK12 satisfies qAK12

(g3) = −
2
3 ,

if d ≡ 6 mod 9, then g/3 ∈ AK12 satisfies qAK12
(g3) = −

4
3 ,

if d ≡ 0 mod 9, then g/3 ∈ AK12 satisfies qAK12
(g3) = 0.

By Lemma 4.1.1 one can choose arbitrarily an element g ∈ K12 such that
g/3 ∈ K∨

12/K12 is non trivial and qA12(g) is the required one, since the choice of
the value of q(g) determines a unique orbit. In the statement, we made a specific
choice for g. Any other is equivalent up to isometries of K12.

It remains to prove that Λ/(⟨2d⟩ ⊕K12) is a cyclic group and thus the index
of ⟨2d⟩⊕K12 ↪ Λ is 3. Suppose there exist two independent generators f1 and f2

of Λ/(⟨2d⟩⊕K12). Both of them can be chosen to be of the form fi = (L + gi)/3.
So f1 − f2 = (g1 − g2)/3 ∈ Λ and (g1 − g2)/3 ∈ AK12 are non trivial. Then K12 is not
primitively embedded in Λ, which is absurd. ∎

Definition 4.1.3. If d ≡ 0 mod 3 we denote by (⟨2d⟩⊕K12)
′ the overlattice

constructed in the previous proposition.

Theorem 4.1.4. ([GS07, Proposition 5.1]) Let X be a K3 surface. Then X admits
a symplectic automorphism of order 3 if and only if K12 is primitively embedded in
NS(X). If X is a projective K3 surface which admits a symplectic automorphism
of order 3, then ρ(X) ≥ 13. Assume ρ(X) = 13 and let L be a generator of K⊥NS(X)

12 ,
so L2 = 2d, d ∈ N>0. Then

• if d /≡ 0 mod 3, then NS(X) = ⟨2d⟩⊕K12;

• if d ≡ 0 mod 3, then NS(X) is either ⟨2d⟩⊕K12 or (⟨2d⟩⊕K12)′.
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Proof. The statement was already proved in [GS07, Proposition 5.1], the unique
difference is that in [GS07, Proposition 5.1], one proved that if d ≡ 0 mod 3

the Nerón–Severi group of X could be an overlattice of index 3 of ⟨2d⟩⊕K12. By
Proposition 4.1.2, we know that this overlattice exists, it is unique up to isometries
and it coincides with the lattice of the Definition 4.1.3.

Let ζ be a primitive third root of the unity and σ be a symplectic automorphism
of order 3. The vector space H2(X,C) can be decomposed in eigenspaces of the
eigenvalues 1, ζ and ζ2:

H2(X,C) =H2(X,C)σ
∗

⊕H2(X,C)ζ ⊕H
2(X,C)ζ2 (4.1)

where the non-rational eigenvalues ζ and ζ2 have the same multiplicity.
Set a ∶= multiplicity of the eigenvalue 1, and b ∶= multiplicity of the eigenvalue

ζ. In the following we find a and b.

Proposition 4.1.5. Let X be a K3 surface an σ a symplectic automorphism of
order three. Then, a = 10, b = 6, and the dimension of the moduli space of algebraic
K3 surfaces admitting a symplectic automorphism of order 3 is at most 7.

Proof. By Proposition 1.2.7 (cf. Table 1.1) , σ has exactly 6 fixed points. Using
the Lefschetz fixed point formula applied in K3 surfaces:

6 = 1 + 0 + trace(σ∗∣H2(X,C)) + 0 + 1,

and so
a + b(ζ + ζ2) = 4.

Since ζ2 = −(1 + ζ) and dimH2(X,C) = 22, we obtain a, b have to satisfy:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a − b = 4

a + 2b = 22.

We have dimH2(X,C) = 10 = a and dimH2(X,C)ζ2 = dimH2(X,C)ζ = 6 = b.
Since TX ⊗C ⊂H2(X,C)σ

∗ ,

((H2(X,C))σ
∗

)⊥ =H2(X,C)ζ ⊕H
2(X,C)ζ2 ⊂ NS(X)⊗C.

We consider only algebraic K3 surfaces and so we have an ample class h on X,
so h + σ∗h + (σ∗)2h is a σ-invariant class, hence in H2(X,C)σ

∗ .
By Theorem 4.1.4, ρ(X) ≥ 13 and so rankTX ≤ 9. The dimension of the moduli

space is at most h1,1(X) − 13 = 7. ∎

68



4.2. Quotients of projective K3 surfaces by a symplectic automorphism of order 3 CHAPTER 4.

Corollary 4.1.6. (See [GS07, Proposition 5.2]) Let X be a (⟨2d⟩⊕K12)-polarized
K3 surface or (⟨2d⟩⊕K12)

′-polarized K3 surface). Then X is a projective K3
surface and admits a symplectic automorphism of order 3.

Let

S = {projective K3 surfaces admitting an order 3 symplectic automorphism}/ ≃

where ≃ is the isomorphisms of polarized K3 surfaces. Then S is

⋃
d∈N>0

({(⟨2d⟩⊕K12) -polarized K3s }/≃) ⋃
d ∈ N>0,

d ≡ 0 mod 3

({(⟨2d⟩⊕K12)
′ -polarized K3s}/≃) .

In particular S is the union of countably many components all of dimension 7.

4.2 Quotients of projective K3 surfaces by a

symplectic automorphism of order 3

Lemma 4.2.1. Let qAMZ/3Z
be the quadratic form of the discriminant group

AMZ/3Z ≃ (Z/3Z)
4, then for v ∈ AMZ/3Z, qAMZ/3Z

(v) is one of the following three
values 0, 2

3 ,
4
3 .

The actions induced by O(AMZ/3Z) on AMZ/3Z has four orbits: the orbit which
contains 0, and the orbits:

• p0 = {v ∈ AMZ/3Z ∣ qAMZ/3Z
(v) = 0 and v ≠ 0};

• p1 = {v ∈ AMZ/3Z ∣ qAMZ/3Z
(v) = 2

3};

• p2 = {v ∈ AMZ/3Z ∣ qMZ/3Z(v) =
4
3}.

Proof. We sketch the proof which is analogous to the one of Lemma 4.1.1. By
Example 1.1.5, the quadratic form qAMZ/3Z

can be written as

qAMZ/3Z
(v) = −

2

3
(x2

3 + x
2
4) −

1

3
(2x1x2 + 2x2x3 − 2x2x4 − x3x4)

where v = x1b1 + x2b2 + x3b3 + x4b4 and bi, i = 1, ...,4 are a basis of AMZ/3Z . As
example, we observe that the isometry of MZ/3Z which permutes M (3)

i with M (4)
i ,

i = 1,2, and acts as the identity onM (j)
i , for i = 1,2, j = 1,2,5,6, induces on AMZ/3Z

an isometry which maps b1 to b2. A complete table of all 81 isometries needed to
show the result can be computed as in Appendix 9.3. ∎
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Proposition 4.2.2. [Gar17, Proposition 5.5] Let e be a positive integer.

If e /≡ 0 mod 3, then there exists no even overlattices of finite index of ⟨2e⟩ ⊕

MZ/3Z such that ⟨2e⟩ and MZ/3Z are primitively embedded in it.

If e ≡ 0 mod 3, then there exists a unique overlattice of finite index of ⟨2e⟩ ⊕

MZ/3Z such that ⟨2e⟩ and MZ/3Z are primitively embedded in it. The index is 3 and
the generators of the overlattices are the ones of ⟨2e⟩⊕MZ/3Z and H+g

3 where H is
a generator of ⟨2e⟩ and g ∈MZ/3Z can be chosen as follows:

if e ≡ 0 mod 9, then g = ∑3
i=1 (M

(i)
1 + 2M

(i)
2 );

if e ≡ 3 mod 9, then g = ∑2
i=1 (2M

(i)
1 +M

(i)
2 ) +∑

4
j=3 (M

(j)
1 + 2M

(j)
2 );

if e ≡ 6 mod 9, then g =M (1)
1 + 2M

(1)
2 + 2M

(2)
1 +M

(2)
2 .

Proof. The proof is analogous to the one of Proposition 4.2.2 and it is based on
Lemma 4.2.1. ∎

Definition 4.2.3. If e ≡ 0 mod 3 we denote by (⟨2e⟩⊕MZ/3Z)
′
the overlattice

constructed in the previous proposition.

Theorem 4.2.4. [Gar17, Proposition 5.5] Let Y be a K3 surface. It is the minimal
resolution of the quotient of a K3 surface by a symplectic automorphism of order
3 if and only if MZ/3Z is primitively embedded in NS(Y ). If Y is projective, then
ρ(Y ) ≥ 13. Assume ρ(Y ) = 13 and let H be a generator of M⊥NS(Y )

Z/3Z , so H2 = 2e,
e ∈ N>0. Then

• if e /≡ 0 mod 3, then NS(Y ) = ⟨2e⟩⊕MZ/3Z;

• if e ≡ 0 mod 3, then NS(Y ) is either ⟨2e⟩⊕MZ/3Z or (⟨2e⟩⊕MZ/3Z)′.

Proof. The proof is analogous to the one of Theorem 4.1.4 and it is based on
Proposition 4.2.2. ∎

Corollary 4.2.5. Let Y be a (⟨2d⟩⊕MZ/3Z)-polarized K3 surface (or a
(⟨2d⟩⊕MZ/3Z)

′
-polarized K3 surface). Then Y is a projective K3 surface and it is

the desingularization of the quotient of a K3 surface by a symplectic automorphism
of order 3.

Let

T = {quotient of K3s by an order 3 symplectic automorphism}/ ≃
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where ≃ is the isomorphisms of K3 surfaces. Then T is

⋃
e∈N>0

{(⟨2e⟩⊕MZ/3Z) -polarized K3s }/≃ ⋃
e ∈ N>0,

e ≡ 0 mod 3

{(⟨2e⟩⊕MZ/3Z)
′
-polarized K3s}/≃.

In particular T is the union of countably many components all of dimension 7.

We now introduce some divisors which will be interesting in the following.

Remark 4.2.6. Let e ≡ 0 mod 9 and Y be a K3 surface such that NS(Y ) ≃

(⟨2e⟩⊕MZ/3Z)
′
. Then the following divisors are contained in NS(Y ):

D1 ∶=
H−(M(1)

1 +2M
(1)
2 +M(2)

1 +2M
(2)
2 +M(3)

1 +2M
(3)
2 )

3 ,

D2 ∶=
H−(2M(4)

1 +M(4)
2 +2M

(5)
1 +M(5)

2 +2M
(6)
1 +M(6)

2 )
3 ,

D3 ∶=
H−(∑3

i=1(2M
(i)
1 +M(i)

2 )+∑6
j=4(M

(j)
1 +2M

(j)
2 ))

3 .

(4.2)

Indeed the divisor D1 is contained in NS(Y ) by Proposition 4.2.2, the divisor D2

(resp. D3) is obtained from D1 by adding first the class 2M̂ (resp. M̂) and then
a linear combination with integer coefficients of the curves M (j)

i , i.e. by adding to
D1 classes in MZ/3Z ⊂ NS(Y ).

Similarly, if e ≡ 3 mod 9 and Y is a K3 surface such that NS(Y ) ≃

(⟨2e⟩⊕MZ/3Z)
′
, the following divisors are contained in NS(Y ):

D1 ∶= (H − (2M
(1)
1 +M

(1)
2 + 2M

(2)
1 +M

(2)
2 +M

(3)
1 + 2M

(3)
2 +M

(4)
1 + 2M

(4)
2 )) /3,

D2 ∶= (H − (M
(1)
1 + 2M

(1)
2 +M

(2)
1 + 2M

(2)
2 +M

(5)
1 + 2M

(5)
2 +M

(6)
1 + 2M

(6)
2 )) /3,

D3 ∶= (H − (2M
(3)
1 +M

(3)
2 + 2M

(4)
1 +M

(4)
2 +M

(5)
1 + 2M

(5)
2 +M

(6)
1 + 2M

(6)
2 )) /3.

(4.3)

If e ≡ 6 mod 9 and Y is a K3 surface such that NS(Y ) ≃ (⟨2e⟩⊕MZ/3Z)
′
, the

following divisors are contained in NS(Y ):

D1 ∶= (H − (M
(1)
1 + 2M

(1)
2 + 2M

(2)
1 +M

(2)
2 )) /3,

D2 ∶= (H − (M
(2)
1 + 2M

(2)
2 +

6

∑
i=3

(2M
(i)
1 +M

(i)
2 ))) /3,

D3 ∶= (H − (2M
(1)
1 +M

(1)
2 +

6

∑
i=3

(M
(i)
1 + 2M

(i)
2 ))) /3.

(4.4)
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If e /≡ 0 and Y is a K3 surface such that NS(Y ) ≃ ⟨2e⟩ ⊕MZ/3Z, the following
divisors are contained in NS(Y ):

D1 ∶=H, D2 ∶=H − (
6

∑
i=i

(2M
(i)
1 +M

(i)
2 )) /3, D3 ∶=H − (

6

∑
i=i

(M
(i)
1 + 2M

(i)
2 )) /3.

(4.5)
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5 | Relation between the families of
projective K3 surfaces admitting a
symplectic automorphism and their
quotients

The main results of this section are Theorem 5.1.2, where we determine the relation
between NS(X) and NS(Y ) and Theorem 5.2.1. In the latter we determine the
big and nef divisors on Y which are associated by the map π∗ to specific ample
divisors on X. This gives the relation between the dimension of the projective
space in which we are embedding X and the ones were X/⟨σ⟩ has natural models.

5.1 Relation between NS(X) and NS(Y )

We first fix an embedding of NS(X) in H2(X,Z) ≃ ΛK3 and then we apply the
map π∗ described in Proposition 3.2.1 in order to find NS(Y ). To embed NS(X)

in ΛK3, we consider a specific embedding of K12 in ΛK3 constructed by embedding
K̃12 in U ⊕ A2(−1) ⊕ E6 ⊕ E6 ⊕ E6 and then extending this embedding to the
overlattices K12 and ΛK3.

We fix a basis {ki}i=1,...,12 of the lattice K̃12 on which the bilinear form is the
one given by the matrix (3.3). Then

K̃12
λ
→ U⊕ A2(−1)⊕ E6⊕ E6⊕ E6

ki ↦ (0, 0, e
(1)
i , −e

(2)
i , 0), if i = 1, . . . ,6

ki ↦ (0, 0, e
(1)
i , 0, −e

(3)
i ), if i = 7, . . . ,12

is an embedding of lattices. It extends to an embedding of K12 into ΛK3, indeed
the overlattice K12 is obtained by adding to λ(K̃12) the class λ(z), written in
(3.2). This is a class contained also in the overlattice ΛK3 of U ⊕A2(−1) ⊕E⊕3

6 ,
so the enlargements of lattices are compatible.

This gives an embedding, still denoted by λ, ofK12 in ΛK3, which is theQ-linear
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extension of the embedding λ defined above. By Lemma 1.1.20, the embedding of
K12 into ΛK3 is unique up to isometries.

Both the lattices ⟨2d⟩ ⊕ K12 and (⟨2d⟩ ⊕ K12)′ admit a unique primitive
embedding in ΛK3 up to isometries (by Lemma 1.1.20) and in the following
proposition we exhibit one possible choice.

Proposition 5.1.1. The embedding

⟨2d⟩
j
→ U⊕ A2(−1)⊕ E6⊕ E6⊕ E6

L ↦ (
⎛

⎝

1

d

⎞

⎠
, 0, 0, 0, 0)

is such that (j, λ) ∶ ⟨2d⟩ ⊕K12 → ΛK3 is a primitive embedding of ⟨2d⟩ ⊕K12 in
ΛK3.

If d ≡ 0 mod 3, we consider the embedding

⟨2d⟩
j̃
→ U⊕ A2(−1)⊕ E6⊕ E6⊕ E6

L ↦ (
⎛

⎝

3

3k

⎞

⎠
, 0, g(1), g(2), g(3)),

where

g(i) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

e
(i)
1 + e

(i)
3 + e

(i)
5 if d ≡ 0 mod 9

e
(i)
1 + e

(i)
3 if d ≡ 3 mod 9

e
(i)
1 if d ≡ 6 mod 9

and k is s. t. d =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

9k − 9 if d ≡ 0 mod 9,

9k − 3 if d ≡ 3 mod 9,

9k − 3 if d ≡ 6 mod 9.

Then (̃j, λ) ∶ ⟨2d⟩ ⊕ K12 → ΛK3 is an embedding whose primitive closure is
(⟨2d⟩⊕K12)

′.

Proof. It is straightforward that (j, λ) and (̃j, λ) are embeddings of ⟨2d⟩ ⊕K12

in ΛK3. One can directly check that the first one is primitive, for example by
observing that it coincides with the orthogonal complement of its orthogonal
complement. The embeddings j̃ ∶ ⟨2d⟩ → ΛK3 and λ ∶ K12 → ΛK3 are primitive.
Nevertheless, j̃(L)+(g(1)−g(2))+(g(1)−g(3)) ∈ (̃j, λ)(⟨2d⟩⊕K12) and it is divisible
by 3 in ΛK3. So the primitive closure of (̃j, λ)(⟨2d⟩ ⊕ K12) is an overlattice of
index 3 of (̃j, λ)(⟨2d⟩⊕K12) which contains primitively K12 and ⟨2d⟩, and thus it
is (⟨2d⟩⊕K12)

′. ∎

Theorem 5.1.2. Let X be a projective K3 surface admitting a symplectic
automorphism σ of order 3 and let Y be the resolution of X/⟨σ⟩. Let ρ(X) = 13.
Then:
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NS(X) ≃ ⟨2d⟩⊕K12 if and only if NS(Y ) ≃ (⟨6d⟩⊕MZ/3Z)
′
;

NS(X) ≃ (⟨6e⟩⊕K12)
′ if and only if NS(Y ) ≃ ⟨2e⟩⊕MZ/3Z.

Proof. We apply π∗ to NS(X) = (j, λ)(⟨2d⟩,K12) ⊂ ΛK3 (resp. (̃j, λ)(⟨2d⟩,K12)).
By Proposition 3.2.1,

π∗(λ(K12)) = 0 ∈H2(Y,Z) ≃ ΛK3.

It remains to consider the image of L under the embeddings we are considering.
In particular we have:

π∗(j(L)) =
⎛

⎝

1

d

⎞

⎠
⊂ U(3) ⊂H2(Y,Z).

Denote by H = π∗(j(L)), we have H2 = 6d. When we extend U(3)⊕A2(−3)⊕E6

to H2(Y,Z), the class u′1+du′2 glues with elements in MZ/3Z and gives the element
n3 + dn4 ∈H2(Y,Z), see Proposition 3.2.3. Moreover 3(n3 + dn4) ∈ NS(Y ) because
it is a linear combination of classes in NS(Y ), that is of H = π∗(j(L)) and of
classes in MZ/3Z. Since n3 + dn4 ∈ H2(Y,Z), 3 (n3 + dn4) ∈ NS(Y ) and NS(Y )

is primitively embedded in H2(Y,Z), it follows that n3 + dn4 ∈ NS(Y ). Hence
NS(Y ) is spanned, over Z, by H, the generators of MZ/3Z and an extra class, i.e.,
n3 + dn4. So NS(Y ) is an overlattice of index 3 of ⟨6d⟩⊕MZ/3Z and in particular
it is necessarily the unique overlattice of index 3 described in Proposition 4.2.2.

We consider now the embedding j̃:

π∗(̃j(L)) =
⎛

⎝

⎛

⎝

3

3k

⎞

⎠
,0,3g

⎞

⎠
⊂ U(3)⊕A2(−1)⊕E6 ⊂H

2(Y,Z),

where g is the vector g(i) of Proposition 5.1.1. It is clear that π∗(̃j(L)) is not
primitive, since it is 3 divisible. So

π∗(̃j(L))/3 =
⎛

⎝

⎛

⎝

1

k

⎞

⎠
,0, g

⎞

⎠
∈ NS(Y ) ⊂H2(Y,Z).

and we define H to be π∗(L)/3. So H2 = 6k−(g)2. Even enlarging U(3)⊕A2(−3)⊕

E6 to H2(Y ) by gluing the classes of MZ/3Z we do not find new classes in NS(Y ),
so NS(Y ) is generated, over Z, by H and by the classes generating MZ/3Z. The
intersection form is ⟨2d/3⟩⊕MZ/3Z, which concludes the proof. ∎

Corollary 5.1.3. The K3 surface X is a generic member of the family of the
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(⟨2d⟩⊕K12)-polarized K3 surfaces if and only if Y is a generic member of the
family of the (⟨2d⟩⊕MZ/3Z)

′
-polarized K3 surfaces.

The K3 surface X is a generic member of the family of the (⟨6e⟩⊕K12)
′-

polarized K3 surfaces if and only if Y is a generic member of the family of the
(⟨2e⟩⊕MZ/3Z)-polarized K3 surfaces.

To apply the map π∗ to NS(Y ), we first fix an embedding of MZ/3Z in ΛK3: we
constructed ΛK3 ≃H2(Y,Z) as overlattice of index 34 of A2(−1)⊕U(3)⊕E6⊕MZ/3Z

in Proposition 3.2.3. The natural embedding ofMZ/3Z in A2(−1)⊕U ⊕E6⊕MZ/3Z,

µ ∶ MZ/3Z → A2(−1)⊕ U(3)⊕ E6⊕ MZ/3Z ↪ ΛK3

mi ↦ (0, 0, 0, mi)

extends to a primitive embedding µ ∶MZ/3Z → ΛK3.
Both the lattices ⟨2e⟩ ⊕MZ/3Z and (⟨2e⟩ ⊕MZ/3Z)′ admit a unique primitive

embedding in ΛK3 up to isometries and in the following proposition we exhibit
one possible choice.

Proposition 5.1.4. The embedding

⟨2e⟩
h
→ U(3)⊕ A2(−1)⊕ E6⊕ MZ/3Z

H ↦ (
⎛

⎝

1

k

⎞

⎠
, 0, f , 0)

where

f =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

e1 + e3 + e5 if 2e = 6k − 6,

e1 + e3 if 2e = 6k − 4,

e1 if 2e = 6k − 2

is such that (h,µ) ∶ ⟨2e⟩⊕MZ/3Z → ΛK3 is a primitive embedding of ⟨2e⟩⊕MZ/3Z

in ΛK3.
If e ≡ 0 mod 3, then there exists k such that e = 3k and the embedding

⟨2e⟩
h̃
→ U(3)⊕ A2(−1)⊕ E6⊕ MZ/3Z

H ↦ (
⎛

⎝

1

k

⎞

⎠
, 0, 0, 0),

is such that (h̃, λ) ∶ ⟨2e⟩ ⊕MZ/3Z → ΛK3 is an embedding whose primitive closure
is (⟨2e⟩⊕MZ/3Z)

′
.

Proof. The proof is analogous to the one of Proposition 5.1.1. ∎
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Corollary 5.1.5. Let Y be a K3 surface such that NS(Y ) ≃ ⟨2e⟩⊕MZ/3Z and the
embedding of NS(Y ) in ΛK3 is (h,µ). Then

π∗((h,µ)(Di)) = j̃(L)

where Di, i = 1,2,3 are the divisors defined in (4.5).
Let Y be a K3 surface such that NS(Y ) ≃ (⟨2e⟩ ⊕MZ/3Z)′ and the embedding

of ⟨2e⟩⊕MZ/3Z in ΛK3 is (h̃, µ). Then

π∗((h̃, µ)(Di)) = j(L)

where Di, i = 1,2,3 are the divisors defined in (4.2), (4.3), (4.4).

Proof. We first consider π∗ of h(H) and of h̃(H):

π∗(h(H)) = π∗
⎛

⎝

⎛

⎝

1

k

⎞

⎠
,0, f ,0

⎞

⎠
=
⎛

⎝

⎛

⎝

3

3k

⎞

⎠
,0, g(1), g(2), g(3)

⎞

⎠
∈ U⊕A2(−1)⊕E6⊕E6⊕E6

and

π∗(h̃(H)) = π∗
⎛

⎝

⎛

⎝

1

k

⎞

⎠
,0,0,0

⎞

⎠
=
⎛

⎝

⎛

⎝

3

3k

⎞

⎠
,0,0,0,0,

⎞

⎠
∈ U ⊕A2(−1)⊕E6 ⊕E6 ⊕E6.

In particular we observe that

π∗(h(H)) = j̃(L) and π∗(h̃(H)) = 3j(L).

The divisors Di defined in Remark 4.2.6 are embedded in NS(Y ) ⊂ ΛK3 by the
embedding (h,µ) or (h̃, µ) (according to the properties of NS(Y )). We observe
that π∗(Mi) = 0 ∈ H2(X,Z), which allows to conclude. As example we consider
the divisor D1 described in Remark 4.2.6, (4.2):

π∗((h̃, µ)(D1)) = π
∗ ⎛

⎝

h̃(H) − µ(M
(1)
1 + 2M

(1)
2 +M

(2)
1 + 2M

(2)
2 +M

(3)
1 + 2M

(3)
2 )

3

⎞

⎠
= j(L).

∎

5.2 Relation of projective models for both families

We give the relation between the dimension of the projective space in which we
are embedding X and the ones were X/⟨σ⟩ has natural models. Examples of the
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geometric application of this result are provided in the next section.

Theorem 5.2.1. Let X be a projective K3 surface admitting a symplectic
automorphism of order 3 such that ρ(X) = 13, let L be the ample generator of
K
⊥NS(X)

12 , let Y be the minimal resolution of X/⟨σ⟩, and Di, i = 1,2,3, the divisors
defined in Remark (4.2.6).

Then,

H0(X,L) = π∗H0(Y,D1)⊕ π
∗H0(Y,D2)⊕ π

∗H0(Y,D3)

and the previous decomposition corresponds to the decomposition of H0(X,L) in
eigenspaces with respect to the action of σ∗ on H0(X,L).

Proof. We recall that the action of σ∗ on the divisor L is the identity (since
K12 ≃ (NS(X)σ

∗

)⊥). Hence σ∗ acts on the vector space V ∶= H0(X,L) and its
action splits V in the direct sum of three eigenspaces, i.e., V ∶= V+1 ⊕ Vζ3 ⊕ Vζ23 .

By Corollary 5.1.5, the pullbacks of the sections in H0(Y,Di) are sections
in H0(X,L). Moreover, Di are divisors on Y , so their sections are well defined
on the quotient surface X/⟨σ⟩. Hence, given a basis {s1, . . . sr} of H0(Y,Di),
π∗(s1), . . . , π∗(sr) lie in the same eigenspace for the action of σ∗ on H0(X,L),
otherwise they would not be contained in the same H0(Y,B) for a divisor B ∈

NS(Y ). The images of the exceptional curves M (k)
i under the maps ϕ∣Di∣ ∶ Y →

P(H0(Y,Di)∨) change if one considers the divisors Di or Dj with i ≠ j (since the
intersection number of the divisors M (k)

h with Di and Dj are not the same). So
the sections of Di and Dj lie on different eigenspaces Vε ⊂ V where ε = +1, ζ3, ζ2

3 .
It remains to prove that π∗H0(Y,D1) coincides with one eigenspace Vε and it is
not only contained in it. To this purpose, it suffices to prove that

dim(H0(X,L)) = dim(H0(Y,D1)) + dim(H0(Y,D2)) + dim(H0(Y,D3)).

We already proved that π∗H0(Y,D1) is contained in an eigenspace, so we have

dim(H0(X,L)) ≥ dim(H0(Y,D1)) + dim(H0(Y,D2)) + dim(H0(Y,D3))

and it remains to prove that

dim(H0(X,L)) ≤ dim(H0(Y,D1)) + dim(H0(Y,D2)) + dim(H0(Y,D3)).

If NS(X) ≃ ⟨2d⟩⊕K12 and L is the ample generator of ⟨2d⟩, then
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dim(H0(X,L)) = d + 2 and NS(Y ) ≃ (⟨6d⟩⊕MZ/3Z)
′
.

By Riemann-Roch theorem, we obtain:

• if 3d ≡ 0 mod 9 then χ(D1) =
d
3 + 1, χ(D2) =

d
3 + 1, χ(D3) =

d
3 ;

• if 3d ≡ 3 mod 9 then χ(D1) =
d
3 +

2
3 , χ(D2) =

d
3 +

2
3 , χ(D3) =

d
3 +

2
3 ;

• if 3d ≡ 6 mod 9 then χ(D1) =
d
3 +

4
3 , χ(D2) =

d
3 +

1
3 , χ(D3) =

d
3 +

1
3 .

In all the listed cases χ(D1) + χ(D2) + χ(D3) = d + 2 = dim(H0(X,L)).
The divisors Di have positive intersection with the pseudoample divisor H and

their self intersection is bigger or equal than −2. Then h0(Di) > 0 and h2(Di) =

h0(−Di) = 0. Hence h0(Di) ≥ χ(Di). So

h0(Y,D1) + h
0(Y,D2) + h

0(Y,D3) ≥ χ(D1) + χ(D2) + χ(D3) = h
0(X,L) = d + 2,

which concludes the proof if NS(Y ) = ⟨2d⟩⊕K12.
If NS(X) ≃ (⟨2d⟩⊕K12)

′ and L is the ample generator of ⟨2d⟩, then we argue
as above, observing that dim(H0(X,L)) = d+2, NS(Y ) ≃ ⟨2d

3 ⟩⊕MZ/3Z and χ(D1) =
d
3 + 2, χ(D2) =

d
3 , χ(D3) =

d
3 . ∎

5.3 Examples

We saw in Theorem 4.1.4 that a K3 surface X such that NS(X) is either ⟨2d⟩⊕K12

or (⟨2d⟩⊕K12)
′ is projective and admits an order 3 symplectic automorphism σ.

In Theorem 5.2.1, we observed that σ∗ acts on the space H0(X,L)∨, where L
is the ample generator of ⟨2d⟩ in the Néron–Severi group. Hence, X admits a
projective model in P(H0(X,L)∨) such that the automorphism σ is the restriction
to ϕ∣L∣(X) of a projective transformation of P(H0(X,L)∨). As an application of
Theorem 5.2.1, we can determine this projective transformation on P(H0(X,L)∨),
in particular the dimension of its eigenspaces.

The surface Y , minimal resolution of X/⟨σ⟩, has a polarization H induced by
L and it is described in Theorem 5.1.2. It is orthogonal to all the classes M (j)

i , so
ϕ∣H ∣(Y ) is the singular model of Y where all the curves M (j)

i are contracted, thus
it is the projective model of X/⟨σ⟩.

As an application of Theorem 5.1.2, we have a relation between the dimension
of the projective space P(H0(X,L)∨) where the surface X is embedded, and the
dimension of the projective space P(H0(Y,H)∨) where the quotient surface X/⟨σ⟩
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is embedded. The aim of this section is to apply the previous results to obtain
explicit projective equations of X and X/⟨σ⟩ for certain values of d.

Moreover, by Theorem 5.2.1 we find other projective models of the surface Y ,
related with the existence of the divisors Di.

The case d = 1

In this case there is a unique possibility for NS(X), which is NS(X) = ⟨2⟩⊕K12;
ϕ∣L∣ ∶ X → P2 = P(H0(X,L)∨) and σ is induced by an automorphism of P2. By
Theorem 5.1.2, NS(Y ) ≃ (⟨6⟩⊕MZ/3Z)′ and the definition of the divisors Di on Y
is the one given in Remark 4.2.6, (4.3). So dim(H0(Y,Di)) = 1, for i = 1,2,3, and
by Theorem 5.2.1, the eigenspaces Vε have dimension 1.

Therefore there exists a choice of coordinates of P2 = P(H0(X,L)∨) such that
the action of σ on P2 is

(x0 ∶ x1 ∶ x2)
σ
↦ (x0 ∶ ζ3x1 ∶ ζ

2
3x2).

Let us consider the equation f6 of the plane sextic curves invariant for σ:

a1x
6
0+a2x

4
0x1x2+a3x

3
0x

3
1+a4x

3
0x

3
2+a5x

2
0x

2
1x

2
2+a6x0x

4
1x2+a7x0x1x

4
2+a8x

6
1+a9x

3
1x

3
2+a10x

6
2.

The double cover of P2 branched on these sextic curves has equation

w2 = f6(x0 ∶ x1 ∶ x2) ⊂ P(3,1,1,1).

This gives a family of K3 surfacesX admitting a symplectic automorphism of order
3, which is a lift of σ. The family depends on 10 parameters, but it is defined up to
projective transformations of P2 which commute with σ. These are the diagonal
transformations, so the dimension of the family, up to projective transformations
is (10−1)−(3−1) = 7, which is the expected dimension of a family of projective K3
surface with automorphisms. The points of P2 fixed by σ are (1 ∶ 0 ∶ 0), (0 ∶ 1 ∶ 0),
(0 ∶ 0 ∶ 1). None of them lies on the branch sextic curve, hence they correspond
to 6 points on the K3 surfaces and there exists a lift of σ which fixes all these
points. So the automorphism σ acts on the K3 surface fixing 6 isolated points,
and hence it is symplectic, therefore we found an explicit equation of the family
of K3 surfaces whose Néron–Severi group is ⟨2⟩⊕K12.

By Theorem 5.1.2, the divisorH on Y has self intersection 6 and then ϕ∣H ∣(Y ) ⊂
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P4. The following functions are invariant for σ

z0 ∶= w, z1 ∶= x
3
0, z2 ∶= x

3
1, z3 ∶= x

3
2, z4 ∶= x0x1x2

and satisfy the equations

⎧⎪⎪
⎨
⎪⎪⎩

z1z2z3 = z3
4

z2
0 = a1z2

1 + a2z1z4 + a3z1z2 + a4z1z3 + a5z2
4 + a6z2z4 + a7z3z4 + a8z2

2 + a9z2z3 + a10z2
3 .

(5.1)
Hence (5.1) are the equations of X/⟨σ⟩ in P4, i.e., the equations of ϕ∣H ∣(Y ).

The case d = 2

In this case there is a unique possibility for NS(X), which is NS(X) = ⟨4⟩⊕K12,
ϕ∣L∣ ∶ X → P3 = P(H0(X,L)∨) and σ is induced by an automorphism of P3. By
Theorem 5.1.2, NS(Y ) ≃ (⟨12⟩⊕MZ/3Z)′ and the definition of the divisorsDi on Y is
the one given in Remark 4.2.6, (4.4). So dim(H0(Y,D1)) = 2, dim(H0(Y,Di)) = 1

for i = 2,3 (cf. proof of Theorem 5.2.1) hence one eigenspace has dimension 2 and
the other two have dimension 1.

So there exists a choice of coordinates of P3 = P(H0(X,L)∨) such that the
action of σ on P3 is

(x0 ∶ x1 ∶ x2 ∶ x3)
σ
↦ (x0 ∶ x1 ∶ ζ3x2 ∶ ζ

2
3x3).

The quartic equations invariant for σ are

f4(x0 ∶ x1) + f2(x0 ∶ x1)x2x3 + f1(x0 ∶ x1)x
3
2 + g1(x0 ∶ x1)x

3
3 + αx

2
2x

2
3 = 0 (5.2)

where fi and gi are homogeneous polynomials of degree i.
This defines a family of K3 surfaces admitting an automorphism induced by

σ. The family depends on 13 parameters but it is defined up to the actions of the
projective transformation of P3 which commutes with σ. So the family depends
on (13 − 1) − (6 − 1) = 7 parameters. There are 4 fixed points in the eigenspace
V+1, which are defined by f4(x0 ∶ x1) = 0, x2 = x3 = 0; 1 fixed point in Vζ3 , i.e.,
(0 ∶ 0 ∶ 1 ∶ 0), and 1 in Vζ23 , i.e., (0 ∶ 0 ∶ 0 ∶ 1). In particular, the automorphism σ

fixes 6 isolated points on the K3 surfaces in the family and hence it is a symplectic
automorphism of each member of this family.

By Theorem 5.1.2, the divisor H has self intersection 12 and then ϕ∣H ∣(Y ) ⊂ P7.
We now show that the ideal defining ϕ∣H ∣(Y ) ⊂ P7 is generated by 10 quadrics and
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we determine a set of generators.

The Néron–Severi group NS(Y ) is isometric to (⟨12⟩⊕MZ/3Z)′ and hence each
class in NS(Y ) can be written as αH + βm where m ∈ MZ/3Z and α, β ∈ 1

3Z.
Let C be an irreducible curve on Y , hence H ⋅ C ≥ 0 and so the class of C ∈

NS(Y ) is αH + βm with α ≥ 0. The intersection H ⋅ C is either 0, if α = 0 or
12α ≥ 4. In particular there are no curves C such that H ⋅ C = 2. By [SD74,
Theorem 5.2], the linear system H is not hyperelliptic and by [SD74, Theorem
7.2], the ideal of ϕ∣H ∣(Y ) ⊂ P7 is generated by quadrics. Since h0(Y,H) = 10,
dimS2(H0(Y,H)) = (9

2
) = 36 and, by (2H)2 = 28, it follows h0(Y,2H) = 26. Hence

the ideal of ϕ∣H ∣(Y ) ⊂ P7 is generated by 10 quadrics and we are going to determine
them.

We preliminary observe that the number nh of monomials of degree h in the
variables x2 and x3, which are invariant for the action of σ, are as in the following
table

h 0 1 2 3 4 5 6

nh 1 0 1 2 1 2 3

This allows to compute the number of number mk of monomials of degree k in the
variables xi, i = 0,1,2,3,4, which are invariant for the action of σ are as in the
following table

k 0 1 2 3 4 5 6

mk 1 2 4 8 13 22 30
.

There are 8 invariant monomials of degree 3 in the variables xi:

ai = x
3
i , i = 0,1,2,3, a4 = x

2
0x1, a5 = x0x

2
1, a6 = x0x2x3, a7 = x1x2x4.

We choose them as coordinates of the projective space P7
ai
such that ϕ∣H ∣(Y ) ⊂ P7

ai
.

The following quadric equations are satisfied by the variables ai:

a2
4 = a0a5, a4a5 = a0a1, a4a6 = a0a7, a

2
5 = a1a4, a5a6 = a4a7, a5a7 = a1a6 (5.3)

so they are contained in the ideal of quadrics defining ϕ∣H ∣(Y ) ⊂ P7
ai
.

We now determine the other 4 quadrics generating the ideals of ϕ∣H ∣(Y ).

The 4 monomials in xi which are of degree 2 and are invariant for σ, are x2
0, x2

1,
x0x1, x2x3. Since the quartic (5.2) is invariant for the action of σ, multiplying it for
each of the invariant monomials of degree 2 written above one finds an invariant
sextic in the variables xi,
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i.e.,

x2
i (f4(x0 ∶ x1) + f2(x0 ∶ x1)x2x3 + f1(x0 ∶ x1)x3

2 + g1(x0 ∶ x1)x3
3 + αx

2
2x

2
3)

xhxk (f4(x0 ∶ x1) + f2(x0 ∶ x1)x2x3 + f1(x0 ∶ x1)x3
2 + g1(x0 ∶ x1)x3

3 + αx
2
2x

2
3)

(5.4)

with i = 1,2 and (h, k) = (0,1), (2,3). The monomials appearing in these sextic are
invariant monomials of degree 6. Each of them can be expressed as a monomial of
degree 2 in the ai’s, since the space of the quadric in the variables ai has dimension
30 (there 36 quadrics and 6 relations, as seen above) which is the same dimension
of the space of the invariant polynomials of degree 6 in the xi’s.

So each of the four sextics in (5.4) can be expressed as a quadric equation in
the variables ai and this provides other four quadrics in P7 which vanish on the
surface ϕ∣H ∣(Y ).

These four quadrics together with the ones listed in (5.3) are 10 generators of
the ideal of ϕ∣H ∣(Y ).

The map induced by D1 is an elliptic fibration on the quotient surface,
i.e.,

ϕ∣D1∣ ∶ Y → P1

is an elliptic fibration given by the projection of the quartic surface from the space
x0 = x1 = 0 to the linear subspace P1

(x0∶x1) ⊂ P3
(x0∶x1∶x2∶x3).

The case d = 3

In this case there are two possibilities for NS(X), which are NS(X) = ⟨6⟩ ⊕K12

and NS(X) = (⟨6⟩ ⊕K12)′, in both cases ϕ∣L∣ ∶ X → P4 = P(H0(X,L)∨) and σ is
induced by an automorphism of P4.

The case NS(X) = ⟨6⟩⊕K12

By Theorem 5.1.2, NS(Y ) ≃ (⟨18⟩ ⊕MZ/3Z)′ and the definition of the divisors Di

on Y is the one given in Remark 4.2.6, (4.2). So dim(H0(Y,Di)) = 2, i = 1,2,
dim(H0(Y,D3)) = 1 (cf. proof of Theorem 5.2.1) hence two eigenspaces have
dimension 2 and the other one has dimension 1.

So there exists a choice of coordinates of P4 = P(H0(X,L)∨) such that the
action of σ on P4 is

(x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4)
σ
↦ (x0 ∶ x1 ∶ ζ3x2 ∶ ζ3x3 ∶ ζ

2
3x4).
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The K3 surfaces embedded in P4 are complete intersections of a quadric and a
cubic, hence one has to find equations for cubic and quadric hypersurfaces such
that both the hypersurfaces are invariant for the action of σ and the restriction
of σ to their intersection fixes exactly 6 points. A choice which satisfies all the
required conditions is:

⎧⎪⎪
⎨
⎪⎪⎩

a1(x0 ∶ x1)b1(x2 ∶ x3) + αx2
4 = 0,

c3(x0 ∶ x1) + d1(x0 ∶ x1)e1(x2 ∶ x3)x4 + f3(x2 ∶ x3) + βx3
4 = 0,

where all the polynomials are homogeneous and their degrees are their subscripts.
There are 3 fixed points in x0 = x1 = x4 = 0 (the ones which satisfy f3(x2 ∶ x3) = 0)
and other 3 fixed points in x2 = x3 = x4 = 0 (the ones which satisfy c3(x0 ∶ x1) = 0).

By Theorem 5.1.2, the divisor H has self intersection 18, and then ϕ∣H ∣(Y ) ⊂

P10. The maps ϕ∣D1∣ ∶ Y → P1 and ϕ∣D2∣ ∶ Y → P1 define two elliptic fibrations,
each of them has 3 independent sections corresponding to certain curves M (j)

i and
contracts all the other curves M (j)

i , which are necessarily irreducible components
of reducible fibers. The elliptic fibrations correspond to the projections of the
surfaces to the subspaces P1

(x0∶x1) and P1
(x3∶x4) respectively.

The case NS(X) = (⟨6⟩⊕K12)
′

By Theorem 5.1.2, NS(Y ) ≃ ⟨2⟩ ⊕MZ/3Z and the definition of the divisors Di

on Y is the one given in Remark 4.2.6, equation (4.5). So dim(H0(Y,D1)) = 3,
dim(H0(Y,Di)) = 1, i = 2,3 (cf. proof of Theorem 5.2.1) hence one eigenspace has
dimension 3 and the others have dimension 1.

So there exists a choice of coordinates of P4 = P(H0(X,L)∨) such that the
action of σ is

(x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4)
σ
↦ (x0 ∶ x1 ∶ x2 ∶ ζ3x3 ∶ ζ

2
3x4).

The K3 surface X is the complete intersection of a quadric and a cubic whose
equations are invariant for σ:

⎧⎪⎪
⎨
⎪⎪⎩

q2(x0 ∶ x1 ∶ x2) + αx3x4 = 0,

c3(x0 ∶ x1 ∶ x2) + l1(x0 ∶ x1 ∶ x2)x3x4 + βx3
3 + γx

3
4 = 0,

where all the polynomials are homogeneous and their degrees are the subscript
numbers. The 6 fixed points are all contained in the eigenspace V+1, which are the
intersections of c3 = 0 and q2 = 0 in the plane x3 = x4 = 0.
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By Theorem 5.1.2, the divisorH has self intersection 2 and then ϕ∣H ∣ ∶ Y → P2 is
a double cover. This map is induced by the projection of X on the invariant plane
P2

(x0∶x1∶x2). The projection to P2
(x0∶x1∶x2) is the projection from the line x0 = x1 =

x2 = 0 ⊂ P4. Let us denote by p ∶ P4 → P2 this projection and by pX its restriction
to X. Given a point (x0 ∶ x1 ∶ x2) ∈ P2, its inverse image p−1

X ((x0 ∶ x1 ∶ x2)) consists
of six points. Indeed in the affine chart x4 = 1, the inverse image of the point for
the map p is the plane whose parametric equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = sx0,

x1 = sx1,

x2 = sx2,

x3 = t.

The intersection of this plane with X is

⎧⎪⎪
⎨
⎪⎪⎩

t = −s2q2(x0 ∶ x1 ∶ x2)/α,

s6β (q2(x0 ∶ x1 ∶ x2)/α)
3
+ s3 (c3(x0 ∶ x1 ∶ x2) − l1(x0 ∶ x1 ∶ x2)q2(x0 ∶ x1 ∶ x2)/α) + γ = 0.

If

(c3(x0 ∶ x1 ∶ x2) −
l1(x0 ∶ x1 ∶ x2)q2(x0 ∶ x1 ∶ x2)

α
)

2

+ 4γβ
q2(x0 ∶ x1 ∶ x2)3

α3
≠ 0,

then one obtains two 2 solutions for s3 in the last equation. So one obtains 6
solutions for s and each choice for s determines a choice for t and thus a point
in X. Hence p−1

x (x0 ∶ x1 ∶ x2) consists of 6 points. These six points form two
orbits for the action of σ (indeed σ acts by multiplying s by a root of unity, so it
identifies values of s which have the same third power). Hence these six points on
X correspond to 2 points on the quotient surface X/⟨σ⟩.

On the other hand if

(c3(x0 ∶ x1 ∶ x2) −
l1(x0 ∶ x1 ∶ x2)q2(x0 ∶ x1 ∶ x2)

α
)

2

+ 4β
q2(x0 ∶ x1 ∶ x2)3

α3
= 0,

then one obtains one solution (with multiplicity 2) for s3. Hence in this case
p−1
X (x0 ∶ x1 ∶ x2) consists of 3 points which are in the same orbit for σ and thus to

a point in X/⟨σ⟩.

So this projection describes X/⟨σ⟩ as a double cover of P2
(x0∶x1∶x2) branched on

the sextic
α3c2

3 + αl
2
1q

2
2 − 2α2c3l1q2 + 4βq3

2 = 0
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where we wrote c3 (resp. l1 and q2) instead of c3(x0 ∶ x1 ∶ x2) (resp. l1(x0 ∶ x1 ∶

x2) and q2(x0 ∶ x1 ∶ x2)). We observe that the branch locus is a sextic with 6
singularities of type A2, that are the points where c3(x0 ∶ x1 ∶ x2) = q2(x0 ∶ x1 ∶

x2) = 0. These are the images of the 6 points in X fixed by σ.

86



6 | Applications

In Section 3, we described the action induced in cohomology by a symplectic
automorphism of order 3, while in Section 5, we described the relation between
the Néron–Severi group of projective K3 surfaces admitting an order 3 symplectic
automorphism and the Néron–Severi group of its quotient. Hence, we are able
to generalize some of the results obtained for the involutions to the order 3
automorphisms. In particular, we consider two different aspects: the construction
of isogenies of K3 surfaces which are not quotient maps and the Shioda–Inose
structures, which are relations between the K3 surfaces that are quotients of
Abelian surfaces and other K3 surfaces.

6.1 Isogenies of K3 surfaces

In [CG20, Theorem 3.9], it is proved the following result

Proposition 6.1.1. There exists the following lattice isometry

(⟨6d⟩⊕K12)
′ ≃
Ð→ ⟨6d⟩⊕MZ/3Z.

By the previous proposition if Xd is a K3 surface such that NS(Xd) ≃

(⟨6d⟩⊕K12)
′
≃ ⟨6d⟩⊕MZ/3Z, then:

● Xd admits a symplectic automorphism σd of order 3 (by Theorem 4.1.4),
● there exists a K3 surface S which admits a symplectic automorphism σS of order
3 such that Xd is the minimal resolution of S/σS (by Theorem 4.2.4).

Corollary 6.1.2. There exists an infinite tower of isogenies

Xd
α1
⇠X3d

α2
⇠X32d

α3
⇠X33d . . .X3h−1d

αh
⇠ X3hd . . . .

Each map αi is the composition of a quotient map of order 3 automorphism and
a birational map which resolves the singularities of the quotient.
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The compositions
αi ○ αi−1 ○ . . . ○ αi−k

are not induced by quotients.

Proof. To construct the tower, we start with a K3 surface Xd such that NS(Xd) ≃

⟨6d⟩ ⊕MZ/3Z. Since MZ/3Z is primitively embedded in NS(Xd), there exists a K3
surface S such that S admits a symplectic automorphism σ and the minimal
resolution of S/σ is Xd. By Theorem 5.1.2, the Néron–Severi group of S is
NS(S) ≃ (⟨18d⟩⊕K12)

′
≃ ⟨18d⟩⊕MZ/3Z, hence S is the surface that we denote by

X3d. Since the latticeMZ/3Z is primitively embedded in NS(X3d), there exists a K3
surface which admits a symplectic automorphism of order 3 such that the minimal
resolution of the quotient of the surface by the automorphism is X3d. This surface
is X32d, since its Néron–Severi group is isometric to (⟨54d⟩⊕K12)

′
≃ ⟨54⟩⊕MZ/3Z.

This process can be iterated infinitely many times. As explained in [CG20,
Proposition 3.11], it is not possible that the mapsXh ⇢Xk are induced by quotient
maps if k/h > 3. ∎

6.2 Generalized Shioda-Inose structures

We recall that given an Abelian surface A, there exists an involution ιA (which
maps each point to its opposite w.r.t the group law of A) such that the minimal
resolution of A/⟨ιA⟩ is a K3 surface, called Kummer surface of A and denoted by
Km(A).

Definition 6.2.1. A Shioda–Inose structure is the triple (A,X, ι) where:
A is an Abelian surface, X is a K3 surface, ιX a symplectic involution such
that the minimal resolution of X/⟨ιX⟩ is the Kummer surface Km(A) and the
transcendental lattice of X and A are isometric.

One can show that a Shioda–Inose structure is associated to the following
diagram

A X

Km(A)

where the arrows are rational generically 2 ∶ 1 maps and there are the following
relations between the transcendental lattices of the surfaces:

TA ≃ TX , TKm(A) ≃ TA(2) ≃ TX(2).
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These structures are defined and studied in [Mor84].
We first generalize the definition of Shioda-Inose structure. The present

definition is an extension of the previous definition given by [OS99] and [CO00]

Definition 6.2.2. A generalized Shioda–Inose structure of order 3 is given by
(A,σA,X, σX) where:

• A is a 2-dimensional torus admitting a symplectic automorphism σA of order
3 such that the minimal resolution of A/⟨σA⟩ is a K3 surface Km3(A);

• X is a K3 surface admitting a symplectic automorphism σX of order 3 such
that the minimal resolution of X/⟨σX⟩ is the K3 surface Km3(A);

• TA ≃ TX .

In particular a generalized Shioda–Inose structure of order 3 is associated to
the following diagram

A X

Km3(A)

where the dash-arrows correspond to 3 ∶ 1 rational maps, and TA ≃ TX .

Remark 6.2.3. Note that all the Abelian surfaces admit an involution ιA such
that A/⟨ιA⟩ is birational to a K3 surface, but not all the Abelian surfaces admit an
automorphism σA of order 3 such that A/⟨σA⟩ is birational to a K3 surface. The
classification of the Abelian surfaces admitting such an automorphism of order 3

is due to Fujiki, [Fuj88] and their lattice theoretic characterization is recalled in
Proposition 6.2.5.

The geometric and the lattice theoretic characterizations of the K3 surfaces
which are obtained as minimal resolution of the quotient of an Abelian surface by
an automorphism of order 3 can be found in [Bar98] and [Ber88] respectively.
In particular there is a lattice, denoted by K3, which characterizes the K3
surfaces which are birational to the quotient of an Abelian surface by a symplectic
automorphism of order 3 and which is the order 3 analogous of the Kummer lattice.

Let A is a 2-dimensional torus with a symplectic automorphism σA of order
3 such that the minimal resolution of A/⟨σA⟩ is a K3 surface, then A/⟨σA⟩ has 9
singularities of type A2.
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Definition 6.2.4. The lattice K3 is the minimal primitive sublattice of
NS(Km3(A)) containing the curves arising from the resolution of the singularities
of A/⟨σA⟩.

In the following Proposition, we summarize some results on tori and Abelian
surfaces A which admit a symplectic automorphism σA of order 3.

Set Km3(A) by the minimal resolution of A/⟨σA⟩ and by πA∗ and π∗A the map
induced in cohomology by the rational 3 ∶ 1 map πA ∶ A⇢Km3(A).

We recall that for every torus A, H2(A,Z) ≃ U ⊕U ⊕U , see Corollary 1.1.16.

Proposition 6.2.5. a) A 2-dimensional torus A admits a symplectic
automorphism σA of order 3 if and only if its transcendental lattice TA is
primitively embedded in U ⊕A2(−1).

b) A K3 surface Y is birational to the quotient of a torus by a symplectic
automorphism of order 3 if and only if K3 is primitively embedded in NS(Y ).

c) The lattice K3 is a negative definite lattice of rank 18 with the discriminant
form which is the opposite of the one of U(3)⊕A2(−1).

d) If A is a 2-dimensional torus endowed with a symplectic automorphism σA

as above,

πA∗(H
2(A,Z)) = πA∗(U ⊕U ⊕U) = U(3)⊕A2(−1).

e) Let A, σA and Km3(A) be as above, then TKm3(A) = πA∗(TA).

Proof. a) is proved in [Fuj88, Theorem 6.4]; b) is proved in [Ber88]. To prove c),
we recall that in [Ber88] it is also proved that K3 is negative definite of rank 18
and that AK3 ≃ (Z/3Z)3. So K3 is a 3-elementary lattice, i.e., its discriminant
group is generated by a finite number of copies of Z/3Z. By b) we have that
K3 is primitively embedded in ΛK3 and this implies that the orthogonal of K3

in ΛK3 is an indefinite 3-elementary lattice of rank 4. Since these lattices are
completely determined by the rank, the signature and the length, we deduce that
the orthogonal to K3 in ΛK3 is U(3)⊕A2(−1) which implies that the discriminant
form of K3 and U(3)⊕A2(−1) are opposite each other.

We now prove d). By a) and [Fuj88] one deduces the action of σ∗A on the second
cohomology group of A. Since σA is symplectic σ∗A acts as the identity on TA. In
particular if A is a generic torus admitting a symplectic automorphism of order 3,
(H2(A,Z))σ

∗

A ≃ TA ≃ U ⊕A2(−1). So ((H2(A,Z))σ
∗

A)⊥ ≃ NS(A) ≃ A2. Therefore
one can describe H2(A,Z) ≃ U ⊕U ⊕U as overlattice of index 3 of U ⊕A2(−1)⊕A2
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obtained by adding the class yA = (α1+2α2+β1+2β2)/3 where αi are the generators
of A2(−1) and βi the ones of A2. The isometry σ∗A of U⊕A2(−1)⊕A2 is the identity
on U ⊕ A2(−1) and acts as follows on A2: σ∗A(β1) = β2, σ∗A(β2) = −β1 − β2. The
action of σ∗A on U⊕3 is obtained by Q-linear extension. As in Proposition 3.2.1,
this implies that π∗ acts on U ⊕A2(−1)⊕A2 as follows

πA∗ ∶ U⊕ A2(−1)⊕ A2 → U(3)⊕ A2(−3)

(u, α, β) → (u α).

Its Q-linear extension to U⊕3 is computed by considering the image of yA. Since
π∗(yA) = π∗(α1 + 2α2)/3, one obtains, as in Proposition 3.2.1, that

πA∗(U ⊕A2(−1)) = U(3)⊕A2(−1) ⊂H2(Km3(A),Z) ≃ ΛK3

where the embedding πA∗(U ⊕A2(−1))↪H2(Km3(A),Z) is primitive.
To prove e) we observe that by construction πA∗(U⊕3) and K3 are orthogonal

in ΛK3, K3 is primitive, they have the opposite discriminant form. Hence both
of them are primitive and if TA ≃ U ⊕ A2(−1), then TKm3(A) = U(3) ⊕ A2(−1) =

πA∗(TA). If TA is primitively embedded in U ⊕A2(−1) we obtain that πA∗(TA) is
primitively embedded in ΛK3 and hence TKm3(A) = πA∗(TA). ∎

We now consider a special case of symplectic automorphism of order 3 on
a K3 surface. We know that the action induced in cohomology by a symplectic
automorphism of order 3 permutes three copies of E6, but for a general K3 surface,
these copies of E6 are not necessarily contained in the Néron–Severi group. We
are now interested in K3 surfaces whose Néron–Severi groups contain three copies
of E6 and hence admit a symplectic automorphism of order 3 which permutes
these copies inside the Néron–Severi group. Of course the surface S considered in
Section 2.1 is an example of this kind of surfaces. To state our result, we need to
define a certain overlattice of MZ/3Z ⊕E6:

Definition 6.2.6. The lattice (MZ/3Z⊕E6)′ is the overlattice of index 3 ofMZ/3Z⊕

E6 obtained by adding the class n2 (defined in Proposition 3.2.3) as

n2 =
e1 + 2e2 + e4 + 2e5

3
−
M

(1)
1 + 2M

(1)
2 −M

(3)
1 − 2M

(3)
2 +M

(4)
1 + 2M

(4)
2 −M

(5)
1 − 2M

(5)
2

3
,

where ei are the standard generators of E6, and M
(j)
1 and M (j)

2 are the generators
of the j–copy of A2.
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Proposition 6.2.7. a) The lattice (MZ/3Z⊕E6)′ is a negative definite lattice of
rank 18 whose discriminant form is the opposite to the one of U(3)⊕A2(−1).

b) Let X be a K3 surface with a symplectic automorphism σ of order 3 and Y
be the minimal resolution of X/⟨σ⟩. The automorphism σ permutes three
copies of E6 contained in NS(X) if and only if NS(Y ) contains primitively
(MZ/3Z ⊕E6)′.

c) If X and Y are as in b), then TX is primitively embedded in U ⊕A2(−1) and
TY = π∗(TX) ⊂ U(3)⊕A2(−1).

Proof. a) follows by a direct computation, since one has an explicit basis of
(MZ/3Z⊕E6)′. Alternatively, one can observe that the orthogonal to (MZ/3Z⊕E6)′

in ΛK3 is U(3)⊕A2(−1).
To prove b), we first assume that there is an embedding of E⊕3

6 in NS(X) and
that σ3 is a symplectic automorphism which permutes cyclically these three copies
of E6. By Theorem 2.2.5, the lattice (E6 ⊕ E6 ⊕ E6)′ is primitively embedded
in ΛK3, and since NS(X) is primitive in H2(X,Z) ≃ ΛK3, there is a primitive
embedding of (E6 ⊕ E6 ⊕ E6)′ in NS(X). The action of σ∗ on NS(X) is the
restriction of the action of σ∗ on H2(X,Z) described in Equation (3.1) and the
action of π∗ is the one described in Proposition 3.3.1. Since π∗(NS(X)) ⊂ NS(Y ),
π∗((E6 ⊕E6 ⊕E6)′) = E6 ⊂ NS(Y ), where the embedding is primitive. Moreover
MZ/3Z ⊂ NS(Y ), because Y is, by construction, the desingularization of X/⟨σ⟩.
By Proposition 3.2.3, the class n2 is contained in H2(Y,Z) and since NS(Y ) is
primitive in H2(Y,Z), it has to be contained also in NS(Y ). It follows that the
lattice (MZ/3Z⊕E6)′ is primitively embedded in NS(Y ). Vice versa, if (MZ/3Z⊕E6)′

is primitively embedded in NS(Y ), we construct the triple cover of Y branched on
the curves contained in MZ/3Z and then we contract some (−1)-curves to obtain
X. This induces the map π∗ ∶ H2(Y,Z) → H2(X,Z), described in Proposition
3.2.1 which restricts to a map π∗ ∶ NS(Y )→ NS(X). Since E6 ⊂ NS(Y ), we obtain
π∗(E6) = E6 ⊕ E6 ⊕ E6 ⊂ NS(X). Moreover, the description of the maps π∗ and
π∗ are obtained by the assumption that σ∗ permutes the three copies of E6 in
E6 ⊕E6 ⊕E6 ⊂ ΛK3. It follows that the order 3 symplectic automorphism acting
on X in such a way that Y is birational to X/σ, permutes the three copies of E6

in π∗(E6) ⊂ NS(X).
To prove c) we observe that the orthogonal to (E6 ⊕E6 ⊕E6)′ in ΛK3 is U ⊕

A2(−1) (either by Theorem 2.2.5, or by the unicity of the indefinite 3-elementary
lattices with a given signature and length). Hence (E6 ⊕E6 ⊕E6)′ is primitively
embedded in NS(X) if and only if TX is primitively embedded in U⊕A2(−1). The
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application of the map π∗ to TX ⊂ U ⊕ A2(−1), implies the relation between TX

and TY . ∎

Now we can generalize the results by Morrison in [Mor84, Theorem 6.3] to the
generalized Shioda–Inose structure of order 3.

Theorem 6.2.8. Let X be a projective K3 surface. The following conditions are
equivalent:

a) TX is primitively embedded in U ⊕A2(−1);

b) X admits an order 3 symplectic automorphism permuting three copies of E6

contained in NS(X);

c) there exists an Abelian surface A such that TA ≃ TX and A admits a
symplectic automorphism of order 3, denoted by σA, such that A/⟨σA⟩ is
birational to a K3 surface;

d) there exist an Abelian surface A, an order 3 symplectic automorphism σA on
A and an order 3 symplectic automorphism σX on X such that (A,σA,X, σX)

is a generalized Shioda–Inose structure of order 3.

Proof. We first prove that a) implies b). The lattice TX admits a unique
embedding in ΛK3, up to isometries. We constructed ΛK3 as an index 3 overlattice
of U ⊕ A2(−1) ⊕ (E6 ⊕ E6 ⊕ E6)′ where U ⊕ A2(−1) is primitively embedded.
So we fixed a primitive embedding of U ⊕ A2(−1) in ΛK3 whose orthogonal is
(E6 ⊕E6 ⊕E6)′. Hence

TX ↪ U ⊕A2(−1)⇔ NS(X) = (TX)⊥ ↩ (U ⊕A2(−1))⊥ = (E6 ⊕E6 ⊕E6)
′.

If NS(X) contains primitively (E6 ⊕ E6 ⊕ E6)′ it contains K12, which is
primitively contained in (E6 ⊕E6 ⊕E6)′, and hence admits an order 3 symplectic
automorphism σ. The action of σ∗ such that K12 ≃ (NS(X)σ

∗

)⊥ is primitively
embedded in (E6 ⊕ E6 ⊕ E6)′ is the one described in 3.1 and hence σ∗ permutes
three copies of E6 contained in NS(X).

By Proposition 6.2.7, b) implies a).
The equivalence between a) and c) follows by Proposition 6.2.5, point a).

Indeed, since U⊕A2(−1) is primitively embedded in U⊕U⊕U , if TX is primitively
embedded in U⊕A2(−1), then it is primitively embedded in U⊕U⊕U . This implies
that there exists an Abelian surface A such that TA ≃ TX . This Abelian surface
admits a symplectic automorphism σA by Proposition 6.2.5. Viceversa, if A is an
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Abelian surface admitting an automorphism σA as in c), then TA is primitively
embedded U ⊕A2(−1), by Proposition 6.2.5. Then, if TX is isometric to TA, TX is
primitively embedded in U ⊕A2(−1). This shows the equivalence between a) and
c).

If b) holds, X is a K3 surface endowed with a symplectic automorphism σX

acting as described. Denote by Y the minimal resolution of X/⟨σX⟩, NS(Y )

contains primitively (MZ/3Z⊕E6)′ by Proposition 6.2.7. Since the lattices (MZ/3Z⊕

E6)′ andK3 have the same rank, signature, discriminant group and form, (MZ/3Z⊕

E6)′ is primitively embedded in NS(Y ) if and only if K3 is primitively embedded
in NS(Y ), by [Mor84, Lemma 2.3]. So there exists an Abelian surface A and a
symplectic automorphism of order 3 on it, σA, such that Y = Km3(A). In order
to conclude that (A,σA,X, σX) is an order 3 generalized Shioda–Inose structure,
one has to show that TA ≃ TX .

We observe that there are two maps acting on U ⊕ A2(−1): the map
(πA∗)∣U⊕A2(−1), where πA∗ is the map described in Proposition 6.2.5, and the
map (π∗)∣U⊕A2(−1), where π∗ ∶ A2(−1) ⊕ U ⊕ E⊕3

6 Ð→ A2(−3) ⊕ U(3) ⊕ E6 is the
map described in Proposition 3.2.1. The action of these two maps coincides on
U ⊕A2(−1):

(πA∗)∣U⊕A2(−1) = (π∗)∣U⊕A2(−1) and

πA∗(U ⊕A2(−1)) = U(3)⊕A2(−1) = π∗(U ⊕A2(−1)).

The lattice TX is primitively embedded in U ⊕ A2(−1) and the transcendental
lattice of Y is TY = π∗(TX). On the other hand, since Y is Km3(A) for a certain
A, TY = πA∗(TA). Hence

π∗(TX) = πA∗(TA).

Since π∗ and πA∗ coincide on U ⊕A2(−1) it follows that TX = TA. So we proved
that b) implies d).

Assuming d), TA ≃ TX and A admits an order 3 symplectic automorphism σA

such that A/⟨σA⟩ is birational to a K3 surface, by definition of generalized Shioda–
Inose structure. So TA is primitively embedded in U⊕A2(−1) by Proposition 6.2.5
and hence TX is primitively embedded in U ⊕A2(−1) which shows that d) implies
a). This concludes the proof. ∎

Remark 6.2.9. If (A,σA,X, σX) is a generalized Shioda–Inose structure of order
3 and the surface A is projective, then there exists an involution ιX on X such
that (A,X, ιX) is a “classical" Shioda–Inose structure (of order 2). Indeed if
(A,σA,X, σX) is a generalized Shioda–Inose structure of order 3, then TX ≃ TA and
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X and A are projective. Hence by [Mor84, Theorem 6.3] X admits the required
involution.
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7 | Symplectic birational maps on
hyperkähler manifolds of K3[n]–type

Let X be a projective hyperkähler manifold of K3[n]–type. Denote by Bir(X) the
group of birational maps of X. There are natural maps

Bir(X)Ð→ O(H2(X,Z)) and O(H2(X,Z))Ð→ O(AX)

where the first map sends a birational map g of X to its action g∗ on cohomology,
and the second one sends an isometry ϕ of H2(X,Z) to an isometry ϕ̄ of AX .
Note that the second map is surjective by Lemma 1.1.7.

The following lemma characterizes when an isometry of H2(X,Z) comes from
a symplectic automorphism group.

Theorem 7.0.1. [Mon16, Theorem 26] Let G be a finite subgroup of
O(H2(X,Z)). Then G is induced by a symplectic subgroup of Aut(X) if and
only if the following hold:

• SG(X) is non degenerate and negative definite;

• SG(X) contains no numerical wall divisors;

• G acts trivially on AX .

7.1 Cohomological action of symplectic birational

maps

We say that G is a symplectic group if it is a finite subgroup of Bir(X) such that for
all g ∈ G, g∗∣H2,0

(X)

= Id∗. Define the map α as the composition of the inclusion G ⊂

Bir(X) with the natural maps Bir(X) Ð→ O(H2(X,Z)) and O(H2(X,Z)) Ð→

O(AX). As we saw in Theorem 1.4.12, the action of Mon2(X) on AX can be
either Id or − Id.
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We will restrict our attention to symplectic groups G where there exist at least
one g ∈ G such that g∗ is a monodromy operator and g∗ acts on AX as − Id. Since
O(AX) ≃ (Z/2)r for some r, we get α(G) = Z/2Z. Hence, there exists a short
exact sequence

1 H G Z/2Z 1α

where H ≅ ker(α) acts on AX by Id∗. So in particular, ord(g) is even. Let us say
that ord(g) = 2km for some k > 0 and 2 ∤ m. It follows easily that gm has order
2k and so the existence of g implies that always existence a map of order 2k with
non–trivial action on AX since m is odd.

Proposition 7.1.1. If g∗∣AX = − Id, then g∗δ = −δ + 2(n − 1)w for some w ∈

H2(X,Z).

Proof. let g∗ ∶H2(X,Z)∨ Ð→H2(X,Z)∨ be the Q-linear extension of g∗, and q be
the quotient map. By the following commutative diagram,

H2(X,Z)∨ AX

H2(X,Z)∨ AX

g∗

q

−Id

q

the class δ/2(n−1) is mapped to −δ/2(n−1)+H2(X,Z) and also to g∗δ/2(n−
1) +H2(X,Z). This implies 1

2(n−1)(g
∗(δ) + δ) = w for some w ∈ H2(X,Z), and so

g∗δ = −δ + 2(n − 1)w. ∎

Let ι be the primitive isometric embedding in (1.11). We want to extend g∗ to
the Mukai lattice Λ̃:

Proposition 7.1.2. There exists a unique extension of g∗ on Λ̃ such that g∗∣AX =

− Id.

Proof. Note that a natural extension of g∗ in Λ̃ such that g∗∣AX = − Id implies that
g∗v = −v. In fact, if (v ⋅ v) = (g∗v ⋅ g∗v) = (λv ⋅λv) = λ2(v ⋅ v) for some λ ∈ Z. Then,
(λ2 − 1)(v ⋅ v) = 0 implies that λ = ±1. Suppose that λ = 1, then g∗∣A

⟨v⟩
= Id and so

g∗AX = Id which is a contradiction with the choice of g. ∎

Denote by H2(X,Z)g
∗ and Λ̃g∗ the invariant sublattices of H2(X,Z) and Λ̃

respectively, and Sg∗(X) = (H2(X,Z)g
∗

)⊥ ⊂ H2(X,Z) and Sg∗(Λ̃) = (Λ̃g∗)⊥ ⊂ Λ̃

the co-invariant sublattices of H2(X,Z) and Λ̃ respectively. By Proposition 7.1.2,
we get H2(X,Z)g

∗

= Λ̃g∗. It is an elementary but useful observation that g2 is

98



7.1. Cohomological action of symplectic birational maps CHAPTER 7.

a birational map on X of order n/2 and acting on AX as Id. It follows from
Proposition 1.1.25 that if ord g = 2, then Sg∗(Λ̃) is automatically a 2–elementary
lattice.

Proposition 7.1.3. Suppose that ord(g) = 2. Then, Sg∗(Λ̃) = U ⊕K if and only
if the following hold

• l(ASg∗(Λ̃)) ≤ rankSg∗(Λ̃) − 2;

• if δ(Sg∗(Λ̃)) = 0 and l(ASg∗(Λ̃)) = rankSg∗(Λ̃) − 2, then rankSg∗(Λ̃) ≡ 2

mod 8,

where K is a negative definite, even, 2-elementary lattice of l(K) = l(Sg∗(Λ̃)) and
δ(K) = δ(Sg∗(Λ̃)).

Proof. Applying Lemma 1.1.23, we obtain the desired splitting since both lattices
are 2–elementary. ∎

For an arbitrary order of g, it is not immediate a splitting of Sg∗(Λ̃) as U ⊕K

for some K. However, it can be possible to obtain a similar decomposition in
terms of U(2) or (2)⊕ (−2) instead of U . Let us note some properties of Sg∗(X)

and Sg∗(Λ̃) under the above conditions of g.

Proposition 7.1.4. The lattice Sg∗(X) is negative definite and the lattice Sg∗(Λ̃)

has signature (1, r) where r = rankSg∗(X).

Proof. Let ω be a non degenerate holomorphic 2-form of X. Since g is symplectic,
g∗(ω) = ω and g∗(ω̄) = ω̄. Let α ∈ H1,1(X) be a Kähler class of X. The class
α + g∗(α)+ (g2)∗(α)+ ...+ (gord(g)−1)∗(α) is in H2(X,Z)g

∗ and it is different from
ω and ω̄. Hence, sign(H2(X,Z)g

∗

) = (3, rankH2(X,Z)g
∗

− 3), and so

sign(Sg∗(X)) = (0,23 − rankH2(X,Z)g
∗

).

Since H2(X,Z) ⊂ Λ̃ primitively, and v ∈ Sg∗(Λ̃) then Sg∗(X) ⊕ ⟨v⟩ ⊂ Sg∗(Λ̃).
The proof is completed by showing rankSg∗(Λ̃) = 24− rankH2(X,Z)g

∗

= 1+ r. ∎

Remark 7.1.5. We saw that ord(g) = 2km where m is odd. Suppose that m = 1.
By Lemma 1.1.13, ASg∗(Λ̃) is isomorphic to Λ̃/(Λ̃g∗⊕Sg∗(Λ̃)) and by Lemma 1.1.6,

ASg∗(Λ̃) ≅ (Z/2Z)α1 ⊕ (Z/22Z)α2 ⊕ ...⊕ (Z/2kZ)αk , (7.1)

where l ∶= l(ASg∗(Λ̃)) = α1 + ... + αk ≤ 1 + r and at least αk ≠ 0.
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Note that the existence of Sg∗(Λ̃) implies that l ≤ 1+ r and if l + 2 ≤ r + 1, then
automatically Sg∗(Λ̃) is a unique lattice with these invariants and it decomposes
in a copy of U and its complement Q in Sg∗(Λ̃). By Proposition 7.1.4, the lattice
Sg∗(Λ̃) is hyperbolic. However, it is not always 2-elementary. Nevertheless, in our
particular case we can find a copy of a 2-elementary lattice of signature (1,1) in
Sg∗(Λ̃).

Proposition 7.1.6. Let g be a symplectic birational map of finite order. Then,
the lattice Sg∗(Λ̃) is unique in its genus.

Proof. We only need to show that Sg∗(Λ̃) is uniqueness for any symplectic
birational map g of order 2k. Since x

r(1+r)
2 ∤ 4

1+r
2 ∣ASg∗(Λ̃)∣ = 21+r+α1+...+kαk for all

non–square x ≡ 0,1 mod 4, then the assertion follows of Lemma 1.1.19. ∎

Proposition 7.1.7. The lattice Sg∗(Λ̃)splits as L̃⊕Q where L̃ is a 2-elementary
lattice of signature (1,1) and Q ≅ L̃⊥ ⊂ Λ̃ is a lattice of signature (0, r − 1).

Proof. The existence of this splitting depends of the invariants of Sg∗(Λ̃). The
lattice Q exists if the conditions of Lemma 1.1.17 are satisfied. Condition (1)
follows by sign qQ = 1−r ≡ sign qSg∗(Λ̃) mod 8. By Remark 7.1.5, conditions (3) and
(4) follows from ord(g) = 2k. Suppose that l ≤ r − 1, then lQ ∶= l(AQ) ≤ l ≤ rankQ.
This implies that L̃ = U , and so Sg∗(Λ̃) = U ⊕ Q. Now, for l ≤ r + 1, we get
l − 2 ≤ r − 1 = rankQ, and so Sg∗(Λ̃) = U(2)⊕Q or Sg∗(Λ̃) = (2)⊕ (−2)⊕Q.

The unicity of the splitting of Sg∗(Λ̃) = L̃⊕Q follows by Proposition 7.1.6.
The proof is completed by showing that S(gm)∗(Λ̃) ⊂ Sg∗(Λ̃) where m is odd

and ord(g) = 2km. ∎

Note that if L̃ = (2) ⊕ (−2), L̃ is an overlattice of U(4) by adding the class
(e4 − f4)/2 where e4 and f4 are the generators of U(4).

Since L̃ can be obtained as an overlattice of U(n) for some n ≠ 0, and Sg∗(Λ̃)

is in the algebraic part of Λ̃, we obtain that U(n) ↪ Λ̃ into the (1,1) part of the
Hodge structure. By Lemma 1.4.30, if x corresponds to the period of a hyperkähler
manifold X of K3[n]–type admitting a symplectic birational map with non-trivial
action on AX , then

1. L̃ = U ↪ Λ̃ iff there exists a K3 surface S such that the Hodge structure on
Λ̃x ≃ H̃(S,Z);

2. L̃ = U(2) ↪ Λ̃ iff there exists a K3 surface S and a Brauer class α induced
by B = −(1/2)γ such that the Hodge structure on Λ̃x ≃ H̃(S,α,Z);
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3. U(4) ⊂ L̃ = (2)⊕ (−2)↪ Λ̃ iff there exists a K3 surface S and a Brauer class
α induced by B = −(1/4)γ such that the Hodge structure on Λ̃x ≃ H̃(S,α,Z).

The class γ in (2) and (3), is explicitly described in Lemma 1.4.30 and its
depend of n that can be 2 or 4.

Since the period of X corresponds to the period of a moduli space of coherent
sheaves on a (twisted) K3 surface, by the Hodge Theoretic Torelli theorem in 1.4.9
we obtain

Theorem 7.1.8. Let X be a projective hyperkähler manifold of K3[n]–type
admitting a symplectic birational map g with g∗∣AX

= − Id. Then X is birational
to the Moduli space of (twisted) sheaves on a K3 surface.

We want to conclude this section to mention that a hyperkähler manifold
admitting a symplectic birational map with the conditions of the previous theorem
is an evidence (at least from a lattice theoretical viewpoint) for the following:

Conjecture 7.1.9. Let X be a projective hyperkähler manifold of K3[n]–type
admitting a symplectic birational map g with g∗∣AX = − Id. There exists a reflection
map Re on X and h a map with h∗∣AX = Id such that g = Re ○ h and e ∈H2(X,Z)

is the class of an irreducible divisor.

Moreover, by Theorem 7.0.1, we know that the Divisor E associated to the
class e can not be a prime exceptional divisor (i.e., A PED is a reduced, irreducible
divisor of negative Beauville–Bogomolov degree). One of the next examples is a
geometrical evidence of this fact.

The example MH(r,0,−s)

Let S be a projective K3 surface of Picard number one. Let H be an ample
line bundle and r, s two integers satisfying s ≥ r ≥ 1 and gcd(r, s) = 1. Set by
MH(r,0,−s) the Moduli space of sheaves of S with Mukai vector (r,0,−s). By
Theorem 1.4.28, X is a hyperkähler manifold of K3[n]–type with n = 1 + rs. Let
e = θ(r,0, s) where θ is defined in (1.10). The weight two integral Hodge structure
H2(MH(r,0,−s),Z) is Hodge isometric to H2(S,Z)⊕Z ⋅e where e is a monodromy
reflective class of Hodge–type (1,1), degree −2(n − 1) and div(e,−) = 2(n − 1). In
some cases e corresponds to a primitive class coming from an exceptional prime
divisor, and in other cases the divisor is not a prime exceptional divisor:

• r = 1: In this case, X =MH(1,0,−s) = S[1+s] and e = [E]/2 where E ⊂ S[1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε ∶ S[1+s] Ð→ S(1+s) defined in (1.7).
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• r = 2: In this case, e = [E] where E ⊂MH(2,0,−s) is the locus of H–stable
sheaves which are not locally free. By [Li93] (cf. [Mar13, Lemma 10.16]), E
is a prime divisor which is the exceptional locus of Jun Li’s morphism from
MH(2,0,−s) onto the Uhlenbeck–Yau compactification of the moduli space
of H–slope stable vector bundles.

• r ≥ 3: In this case, e = [E] where E ⊂MH(r,0,−s) is the locus of H–stable
sheaves which are not locally free or notH–slope stable. Denote by U =X∖E

the locally free H–slope stable sheaves and ι ∶ U Ð→ U the map that sends
F in its dual sheaf F∨. By [Mar13, Lemma 9.5], E is a closed subset of
codimension ≥ 2 in MH(r,0,−s) and so ι ∶ MH(r,0,−s) Ð→ MH(r,0,−s)

is a birational involution. By [Mar13, Proposition 11.1], the induced map
ι∗ in cohomology corresponds to the reflection map Re. Note that e is
not Q–effective, and so E is not a prime exceptional divisor (cf. [Mar13,
Observation 1.12]).

The last case shows geometrical evidence of the existence of Re as in Conjecture
7.1.9: the map Re is given by (x, y, z)↦ (−x, y,−z) and its action on AMH(r,0,−s) =

⟨g = e/2(n−1)⟩ is − Id. Any symplectic birational map g onMH(r,0,−s) admitting
a non-trivial action on the discriminant group AMH(r,0,−s) is the composition of Re

and a map h acting trivially on AMH(r,0,−s).
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8 | Chern classes of Ulrich bundles

We can restate the following characterization of Ulrich bundles on surfaces
obtained by Casnati in [Cas17, Proposition 2.1, Corollary 2.2].

8.1 Ulrich bundles on surfaces

Proposition 8.1.1 (Casnati). Let S be a smooth projective surface and OS(H)

be a very ample line bundle. For any vector bundle E of rank r on S, the following
assertions are equivalent:

(a) E is an Ulrich bundle.

(b) E is an aCM bundle and

c1(E)⋅H =
r

2
(KS+3H)⋅H and c2(E) =

1

2
(c2

1(E)−c1(E)⋅KS)−r(H
2−χ(S,OS)).

(8.1)

(c) h0(S,E(−H)) = h0(S,Eul(−H)) = 0 and the identities (8.1) hold.

In particular, a rank two vector bundle E on S is a special Ulrich bundle if and
only if E is initialized and the identities

c1(E) =KS + 3H and c2(E) =
1

2
(5H2 + 3H ⋅KS) + 2χ(S,OS) (8.2)

hold.

Along the same lines, we observe that we can follow verbatim the proof of
Casnati’s formulas in order to obtain the following vanishing of certain twisted
Euler characteristic of Ulrich bundles. Together with the Hirzebruch–Riemann–
Roch Theorem, they give many restrictions on the Chern classes of Ulrich bundles.
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8.2 Ulrich bundles on higher dimensional varieties

Let us begin with the following observation concerning certain aCM bundles, which
in the case of Ulrich bundles is a direct consequence of Theorem 1.5.1 (2).

Lemma 8.2.1. Let X be a smooth projective variety of dimension n and OX(H)

be a very ample line bundle. Let E be an aCM bundle on X with respect to H
such that h0(X,E(−H)) = hn(X,E(−nH)) = 0, then

χ(X,E(−H)) = χ(X,E(−2H)) = ⋯ = χ(X,E(−nH)) = 0.

Proof. Since E is an aCM vector bundle, we have that

h1(X,E(−jH)) = ⋯ = hn−1(X,E(−jH)) = 0 for j = 1, . . . , n.

On the other hand, it follows from the short exact sequence

0Ð→ OX(−H)Ð→ OX Ð→ OH Ð→ 0

that h0(X,E(−nH)) ≤ h0(X,E(−(n − 1)H)) ≤ ⋯ ≤ h0(X,E(−H)) = 0. Moreover,
the vanishing hn(X,E(−nH)) = 0 implies that χ(X,E(−nH)) = 0.

Similarly, Serre duality and the above short exact sequence give us that

hn(X,E(−jH)) = h0(X,E∨(KX+jH)) ≤ h0(X,E∨(KX+(j+1)H)) = hn(X,E(−(j+1)H))

for every j ∈ Z, and hence hn(X,E(−H)) ≤ hn(X,E(−2H)) ≤ ⋯ ≤

hn(X,E(−nH)) = 0. We conclude that χ(X,E(−H)) = χ(X,E(−2H)) = ⋯ =

χ(X,E(−(n − 1)H)) = 0 as well. ∎

It is worth noting that aCM bundles satisfy

Lemma 8.2.2. Let X be a smooth projective variety of even (resp. odd)
dimension n and OX(H) a very ample line bundle, E be an aCM bundle
(resp. initialized aCM bundle) on X with respect to H. If χ(X,E(−H)) =

χ(X,E(−nH)) = 0, then E is an Ulrich bundle with respect to H.

Proof. By definition of aCM bundle, for every i = 1, . . . , n − 1, we have that

Hi(X,E(jH)) = 0
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for all j ∈ Z. By Theorem 1.5.1, we are left to prove that

H0(X,E(−H)) = Hn(X,E(−nH)) = 0.

If both quantities

χ(X,E(−H)) = h0(X,E(−H)) + (−1)nhn(X,E(−H))

χ(X,E(−nH)) = h0(X,E(−nH)) + (−1)nhn(X,E(−nH))

are zero, then the above vanishing conditions follow immediately when n is even.
On the other hand, when n is odd, we obtain instead that

h0(X,E(−H)) = hn(X,E(−H)) and h0(X,E(−nH)) = hn(X,E(−nH)).

As we already discussed during the proof of Lemma 8.2.1, we have the inequalities

h0(X,E(−nH)) ≤ h0(X,E(−H)) and hn(X,E(−H)) ≤ hn(X,E(−nH)).

In particular, if E is initialized then h0(X,E(−H)) = 0, and then
hn(X,E(−nH)) = 0 as well. ∎

In order to extend Casnati’s characterization of Ulrich bundles on surfaces to
threefolds, let us recall that if E is a rank r vector bundle on a smooth projective
threefoldX, then the Hirzebruch–Riemann–Roch theorem takes the following form

χ(X,E) = ∫
X

ch(E) td(X)

= rχ(X,OX) +
1

12
c1(E) ⋅ (K2

X + c2(X)) +
1

4
(2c2(E) − c2

1(E)) ⋅KX

+
1

6
(c3

1(E) − 3c1c2(E) + 3c3(E)),

where χ(X,OX) = − 1
24KX ⋅ c2(X). Additionally, if L ≅ OX(D) is a line bundle on

X, then

ci(E ⊗OX(D)) =
i

∑
j=0

(
r − i + j

j
)ci−j(E)Dj in H∗(X,R)

for every i ≥ 0 (see e.g. [Ful98, Example 3.2.2]). In particular, for j ∈ Z and
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D = −jH, we get the following relations

c1(E(−jH)) = c1(E) − jrH, c2(E(−jH)) = c2(E) − j(r − 1)c1(E)H + j2 r(r − 1)

2
H2,

c3(E(−jH)) = c3(E) − j(r − 2)c2(E)H + j2 (r − 1)(r − 2)

2
c1(E)H2 − j3 r(r − 1)(r − 2)

6
H3.

The first identity in (8.1) and (8.2) (i.e., the one related with the first Chern
class of an Ulrich bundle) can be made more precise in some higher dimensional
cases. More precisely, Lopez showed in [Lop20, Lemma 3.2] that if X is a smooth
projective variety of dimension n ≥ 2 such that Pic(X) ≅ Z, then every rank r

Ulrich bundle on X (with respect to a very ample divisor H) satisfies

c1(E) =
r

2
(KX + (n + 1)H).

We remark that we can drop the assumption on the Picard rank if we restrict
ourselves to compute c1(E) ⋅Hn−1, instead of c1(E).

Lemma 8.2.3. Let X be a smooth projective variety of dimension n and OX(H)

a very ample line bundle. Let E be an Ulrich bundle on X with respect to H, then

c1(E) ⋅Hn−1 =
r

2
(KX + (n + 1)H) ⋅Hn−1.

Proof. Let H1, . . . ,Hn−2 be general members in the linear system ∣H ∣ and let
Yn−j ∶= H1 ∩ H2 ∩ ⋯ ∩ Hj for j = 1, . . . , n − 2. By Bertini theorem, each Yj is
smooth irreducible of dimension j. First, we recall that (topological) Chern classes
commute with arbitrary pullback and hence c1(E∣Yj) = c1(E)∣Yj in H2(Yj,R). In
particular, applying [Deb01, Proposition 1.8(b)] inductively, we have that

c1(E∣S) ⋅H ∣S = c1(E) ⋅Hn−1,

where S ∶= Y2. On the other hand, we know that each E∣Yj is an Ulrich bundle with
respect to H ∣Yj (see Section1.5) and hence Casnati’s formulas (8.1) in Proposition
8.1.1 give

c1(E∣S) ⋅H ∣S =
r

2
(KS + 3H ∣S) ⋅H ∣S.

Finally, since NS/X ≅ OX(H)∣
⊕(n−2)
S , we deduce from the adjunction formula, and

[Deb01, Proposition 1.8(b)] that

(KS + 3H ∣S) ⋅H ∣S = (KX + (n + 1)H) ⋅Hn−1.
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∎

8.3 Application on threefolds

From the previous formulas, we can deduce the following characterization of Ulrich
bundles on smooth projective threefolds.

Proposition 8.3.1. Let X be a smooth projective threefold and OX(H) a very
ample line bundle. For any rank r vector bundle E on X, the following are
equivalent:

(a) E is an Ulrich bundle.

(b) E is an initialized aCM bundle and the identities

c1(E) ⋅H2 =
r

2
H2(KX + 4H),

c2(E) ⋅H =
r

12
(K2

X + c2(X) − 22H2) ⋅H +
1

2
(c1(E) −KX) ⋅ c1(E)H,

−
1

6
c1(E)(K2

X + c2(X)) + 2r(H3 − χ(X,OX)), (8.3)

hold.

(c) h0(X,E(−H)) = h1(X,E(−H)) = h1(X,Eul(−H)) = h1(X,E(−2H)) = 0

and the identities (8.3) hold.

In particular, a rank two vector bundle E on X is a special Ulrich bundle if and
only if h0(X,E(−H)) = h1(X,E(−H)) = h1(X,E(−2H)) = 0 and the identities

det(E) = OX(KX + 4H) and c2(E) ⋅H =
1

6
(K2

X + c2(X)) ⋅H + 2H2 ⋅KX +
13

3
H3

hold.

Proof. If we assume that E is Ulrich, then it follows from Theorem 1.5.1 and
Lemma 8.2.1 that E is an aCM bundle and that

χ(X,E(−H)) = χ(X,E(−2H)) = χ(X,E(−3H)) = 0.
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On the other hand, it follows from the Hirzebruch–Riemann–Roch theorem and
the discussion above that χ(X,E(−jH)) = χ(X,E) +∆j, where

∆j ∶=
1

12
jH ⋅ (12c2(E) + 6c1(E)KX − 6c2

1(E) − rK2
X − rc2(X))

+
1

4
j2H2 ⋅ (2c1(E) − rKX) −

1

6
j3H3r

for every j ∈ Z. In particular, the identities (8.3) are obtained simply by solving
the linear system which is determined by the relations ∆2 − ∆1 = ∆3 − ∆2 =

χ(X,E) + ∆1 = 0. We conclude in this way that (a) implies (b), and that (a)
implies (c).

Suppose now that E is an initialized aCM bundle and that the identities (8.3)

hold. In particular, the identities (8.3) imply that χ(X,E(−jH)) = 0 for j = 1,2,3.
The fact that E is Ulrich follows from Lemma 8.2.2. In other words, (b) implies
(a).

It is clear that (b) implies (c), since h1(X,Eul(−H)) = h2(X,E(−3H)) by Serre
duality, and hence the vanishing of higher cohomology follows directly from the
aCM assumption.

Finally, let us check that (c) implies (a). To do so, by Theorem 1.5.1 and our
assumptions, we are left to check the vanishing conditions

H2(X,E(−2H)) = H3(X,E(−3H)) = 0.

Moreover, as in the proof of Lemma 8.2.1, we have that h0(X,E(−H)) = 0

implies h0(X,E(−jH)) = 0 for all j ∈ N≥1. As before, the identities (8.3) give
us χ(X,E(−jH)) = 0 for j = 1,2,3, and in particular we have

0 = χ(X,E(−3H)) = −h1(X,E(−3H)) − h3(X,E(−3H)).

It follows that h3(X,E(−3H)) = 0 and h3(X,E(−2H)) = 0 as in the proof of
Lemma 8.2.1. The identity χ(X,E(−2H)) = 0 implies thus h2(X,E(−2H)) =

h1(X,E(−2H)) = 0, where the last vanishing holds by assumption. ∎

Fano threefolds

Let us illustrate an application of Proposition 8.3.1 by considering the special
Ulrich bundles on Fano threefolds of even index, constructed by Beauville in
[Bea18, Section 6].

Let X be a smooth Fano threefold such that −KX = 2H with H a very
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ample divisor, and let us consider the associated embedding X ⊆ Pd+1, where
d = deg(X) = H3. If we assume that the Fano index of X is exactly 2, then it
follows that d = 3,4,5,6, or 7, and all possible threefolds are classified (see [IP99,
Theorem 3.3.1]).

If one tries to construct a special Ulrich bundle E by means of the Cayley-
Bacharach property (see Definition 1.5.6) or the Hartshorne-Serre construction
(see Theorem 1.5.7) , then we need to find a local complete intersection curve
Γ ⊆X whose ideal sheaf IΓ fits in an exact sequence of sheaves

0Ð→ LÐ→ E Ð→M⊗ IΓ Ð→ 0,

where L, M ∈ Pic(X) are line bundles. If we consider Γ to be the zero locus of a
general section s ∈ H0(X,E), then we would have

0Ð→ OX
⋅s
ÐÐ→ E Ð→ OX(2H)⊗ IΓ Ð→ 0,

since det(E) = OX(KX + 4H) = OX(2H). The Ulrich condition implies that Γ is
an elliptic curve (see [Bea18, Remark 6.3.(3)]), and the identities (8.3) give us in
this case

deg(Γ) = c2(E)⋅H =
1

6
(K2

X+c2(X))⋅H+2H2⋅KX+
13

3
H3 =

1

6
(4d+12)−4d+

13

3
d = d+2.

The existence of such elliptic curve of degree d + 2 is proved in [Bea18, Lemma
6.2] using deformation theory, while the vanishing conditions h0(X,E(−H)) =

h1(X,E(−H)) = h1(X,E(−2H)) = 0 are verified in [Bea18, Proposition 6.1].

Corollary 8.3.2. Let X be a smooth projective threefold with c1(X) = 0 (i.e., KX

is numerically trivial). Assume that E is a special Ulrich bundle with respect to a
very ample line bundle OX(H), then

12c2(E) ⋅H − 13c1(E) ⋅H2 = 2c2(X) ⋅H.

In particular, if X is an abelian threefold then 12c2(E) ⋅H = 13c1(E) ⋅H2 and the
general section s ∈ H0(X,E) defines a smooth connected curve Γ = V (s) ⊆ X of
genus g(Γ) = 2 deg(Γ) + 1.

Proof. The identity 12c2(E) ⋅H − 13c1(E) ⋅H2 = 2c2(X) ⋅H follows directly from
Proposition 8.3.1, since KX ⋅H2 = 0 and c1(E) = 4H in this case. If we assume
moreover that X is an Abelian threefold, then we have that c2(X) = 0, and hence
12c2(E) ⋅H = 13c1(E) ⋅H2 in that case. Finally, if we consider s ∈ H0(X,E) a
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general section and we define Γ ∶= V (s), then it follows from Bertini theorem that
Γ is a smooth projective curve. We observe that in this case, we have a short
exact sequences of sheaves

0Ð→ OX
⋅s
ÐÐ→ E Ð→ OX(4H)⊗ IΓ Ð→ 0,

as det(E) = OX(4H) in Pic(X). From the long exact sequence in cohomology
associated to the twisted short exact sequence

0Ð→ OX(−4H)Ð→ E(−4H)Ð→ IΓ Ð→ 0,

we deduce that h1(X,IΓ) = 0 and h2(X,IΓ) =
26d
3 + h3(X,IΓ). Indeed, the Ulrich

condition implies that hi(X,E(−4H)) = 0 for i ≤ 2, Kodaira vanishing implies that
hi(X,OX(−4H)) = 0 for i ≤ 2, and by Serre duality and Hirzebruch–Riemann–
Roch (resp. since E ≅ Eul is Ulrich special), we compute

h3(X,OX(−4H)) =
32d

3
(resp. h3(X,E(−4H)) = 2d).

Similarly, with the short exact sequence

0Ð→ IΓ Ð→ OX Ð→ ι∗OΓ Ð→ 0

associated to the closed embedding ι ∶ Γ ↪ X, we get h0(Γ,OΓ) = h3(X,IΓ) = 1

and h1(Γ,OΓ) = h2(X,IΓ). From this, we deduce that Γ is connected of genus

g(Γ) =
26d

3
+ 1 = 2c2(E) ⋅H + 1 = 2 deg(Γ) + 1.

∎
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9 | Projective manifolds whose tangent
bundle is Ulrich

In this section, we address the main problem of [MPTB21]. Namely, we would like
to classify all the pairs (X,OX(1)) such that the tangent bundle TX (resp. the
cotangent bundle Ω1

X) is an Ulrich bundle with respect to H, where X ⊆ PN is a
smooth projective variety of dimension n and where H is a very ample divisor on
X such that OX(H) ≅ OX(1). As usual, we will denote by d ∶= deg(X) = Hn ≥ 1

the degree of X, and we carry out an analysis depending on the dimension n.

9.1 Curves

Let us consider a smooth projective curve C ⊆ PN of degree d = deg(H), and let E
be a vector bundle on C. It follows from Theorem 1.5.1 that E is an Ulrich bundle
if and only if h0(C,E(−H)) = h1(C,E(−H)) = 0. Since TC ≅ ω∨C and Ω1

C ≅ ωC

in this case, where ωC is the canonical bundle of C, we can easily deduce the
following.

Proposition 9.1.1. Let (C,OC(1)) as above. Then Ω1
C is never an Ulrich bundle,

and TC is an Ulrich bundle if and only if C is the twisted cubic in P3,

i.e.,
(C,OC(1)) ≅ (P1,OP1(3)).

Proof. In the case of Ω1
C ≅ ωC , the Ulrich condition reduces to check the two

vanishing conditions

h0(C,ωC(−H)) = h1(C,ωC(−H)) = 0.

They are equivalent, by Serre duality, to h1(C,OC(H)) = h0(C,OC(H)) = 0. The
latter vanishing is impossible since OC(H) ≅ OC(1) is very ample, and hence Ω1

C

cannot be Ulrich with respect to any H.
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In the case of TC ≅ ω∨C , we are left to check the two vanishing conditions

h0(C,ω∨C(−H)) = h1(C,ω∨C(−H)) = 0.

Let g ∶= g(C) be the genus of C. If C ≅ P1, then C has g = 0 and by Serre duality
the vanishing conditions reduce to

h0(P1,OP1(2 − d)) = 0 and h1(P1,OP1(2 − d)) = h0(P1,OP1(d − 4)) = 0.

The first vanishing implies that d ≥ 3, while the second one implies that d ≤ 3.
We obtain therefore that in this case (C,OC(1)) ≅ (P1,OP1(3)). On the other
hand, if g ≥ 1 then the first vanishing h0(C,ω∨C(−H)) = 0 follows directly, since
deg(ω∨C(−H)) = 2 − 2g − d < 0. However, the second vanishing is equivalent to
h0(C,ω⊗2

C (H)) = 0 by Serre duality. Since h1(C,ω⊗2
C (H)) = h0(C,ω∨C(−H)) = 0,

the Riemann-Roch theorem yields

h0(C,ω⊗2
C (H)) = 4g − 4 + d − g + 1 = 3g − 3 + d ≥ 1

and hence TC is not an Ulrich bundle. ∎

9.2 Surfaces

Let us consider a smooth projective surface S ⊆ PN of degree d = H2 ≥ 1, and let
E be a vector bundle on S. Again, by Theorem 1.5.1, we have that E is an Ulrich
bundle if and only if

h1(S,E(−H)) = h2(S,E(−2H)) = h0(S,E(−H)) = h1(S,E(−2H)) = 0.

Before treating the general case, let us take a look at the following motivating
example.

Example 9.2.1. Let us recall that a vector bundle E on S is Ulrich special if
it is an Ulrich bundle, rk(E) = 2 and c1(E) = KS + 3H. Then, TS is an Ulrich
special bundle if and only if S is the Veronese surface in P5, i.e., (S,OS(1)) ≅

(P2,OP2(2)).
Indeed, if we assume that TS is an Ulrich special bundle then the condition

−KS = c1(TS) = 3H +KS in NS(S) implies that −2KS = 3H is very ample. In
particular, S is a del Pezzo surface and thus NS(S) ≅ Z10−m is torsion-free, where
m = K2

S ∈ {1, . . . ,9} is the anti-canonical degree of S. Hence, the equality −2KS =
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3H implies that H = 2A for some ample divisor A, and in particular −KS = 3A

for some ample divisor A. In other words, the Fano index iS = 3 of S is maximal,
i.e., S ≅ P2 by the Kobayashi–Ochiai theorem [KO73]. Since ω∨P2 ≅ OP2(3) we have
that OS(H) ≅ OP2(2) and hence (S,OS(1)) ≅ (P2,OP2(2)) is the Veronese surface.

We are left to check that TP2 is Ulrich with respect to OP2(H) ≅ OP2(2). This
is already stated in [ES03, Proposition 5.9] (see also [CG17, Theorem 5.2] and
[AHMPL19, Example 3.1], where the authors show moreover that TP2 is actually
the unique Ulrich bundle on the Veronese surface in P5), but we include a short
proof here for the sake of completeness.

First of all, for any smooth projective surface S we have that TS ≅ Ω1
S⊗ω

∨
S and

hence TP2 ≅ Ω1
P2 ⊗OP2(3). If follows therefore that h1(P2, TP2(−H)) = h1(P2,Ω1

P2 ⊗

OP2(1)) = 0 by Bott vanishing. Secondly, we note that

h2(P2, TP2(−2H)) = h2(P2, TP2⊗OP2(−4)) = h2(P2,Ω1
P2⊗OP2(−1)) = h0(P2, TP2⊗OP2(−2)),

by the same reason as before and by Serre duality. The long exact sequence in
cohomology induced by the twisted Euler exact sequence

0→ OP2(−2)→ OP2(−1)⊕3 → TP2 ⊗OP2(−2)→ 0

gives us the vanishing h0(P2, TP2(−H)) = h0(P2, TP2 ⊗OP2(−2)) = 0. Finally, the
last condition

h1(P2, TP2(−2H)) = h1(P2, TP2 ⊗OP2(−4)) = h1(P2,Ω1
P2 ⊗OP2(1)) = 0

follows from Serre duality and Bott vanishing.

In order to treat the general case, let us recall the following result by Reider
in [Rei88, Theorem 1, Remark 1.2].

Theorem 9.2.2 (Reider). Let L ≅ OS(D) be a nef line bundle on a smooth
projective surface S. If D2 ≥ 9, then the adjoint line bundle ωS ⊗L is very ample
unless there exists a non-zero effective divisor E verifying one of the following
conditions:

(a) D ⋅E = 0 and E2 ∈ {−1,−2}.

(b) D ⋅E = 1 and E2 ∈ {0,−1}.

(c) D ⋅E = 2 and E2 = 0.

(d) D ⋅E = 3, D ≡ 3E in NS(S), and E2 = 1.
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We will also need the following observation.

Lemma 9.2.3. Let (S,OS(1)) as above. If TS is an Ulrich bundle with respect to
H, then κ(S) = −∞, KS ⋅H = −6 and deg(S) = 4.

Proof. The identities (8.1) in Proposition 8.1.1 imply that c1(TS) ⋅H = −KS ⋅H =

3H2+H ⋅KS and hence 2KS ⋅H = −3H2 < 0. In particular, since H is very ample it
follows that KS is not pseudo-effective and therefore κ(S) = −∞ (see e.g. [Bad01,
Lemma 14.6]). Finally, if follows from Bertini theorem that a general curve C ∈ ∣H ∣

is smooth irreducible and hence

g(C) = 1 +
1

2
(H2 +KS ⋅H) = 1 −

1

4
H2 ∈ Z≥0,

from which we deduce that deg(S) =H2 = 4, and thus KS ⋅H = −6. ∎

We are now ready to state the main result of this section.

Theorem 9.2.4. Let (S,OS(1)) as above. Then Ω1
S is never an Ulrich bundle,

and TS is an Ulrich bundle if and only if S is the Veronese surface in P5,
i.e.,

(S,OS(1)) ≅ (P2,OP2(2)).

Proof. First, if we assume that the cotangent bundle Ω1
S of S is an Ulrich bundle,

then the identities (8.1) in Proposition 8.1.1 imply that c1(Ω1
S) ⋅ H = KS ⋅ H =

3H2 + KS ⋅ H and hence H2 = 0, which is impossible since H is very ample.
Therefore, the cotangent bundle Ω1

S is never an Ulrich bundle.
Second, if we assume that TS is an Ulrich bundle on S, the identities (8.1) in

Proposition 8.1.1 together with Lemma 9.2.3 imply that

χtop(S) =K
2
S − 8 + 2χ(S,OS).

Combining this with Noether’s formula

12χ(S,OS) =K
2
S + χtop(S),

we get that χ(S,OS) = 1
5(K

2
S − 4).

Let us notice that the divisor KS + 3H is very ample. Indeed, the divisor
D ∶= 3H is very ample with D2 = 36 and hence the fact that KS +D is very ample
as well follows from Theorem 9.2.2: since D ⋅ E ≥ 3 for every non-zero effective
divisor, we only need to consider the case (d) in Reider’s theorem, but in that case
we would have D2 = 9.
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Since KS + 3H is very ample, Bertini theorem implies that a general curve
C ∈ ∣KS + 3H ∣ is smooth irreducible and hence

g(C) = 1 +
1

2
(K2

S + 6KS ⋅H + 9H2 +K2
S + 3KS ⋅H) =K2

S − 8,

since H2 = 4 and KS ⋅H = −6, by Lemma 9.2.3. It follows that K2
S ≥ 8.

Since κ(S) = −∞ by Lemma 9.2.3, we know that S is a ruled surface and
hence birationally isomorphic to Γ × P1, for some smooth projective curve Γ. In
particular, pg(S) = 0 and q(S) = g(Γ), from which we deduce that

χ(S,OS) = 1 − g(Γ) =
1

5
(K2

S − 4)⇔ g(Γ) =
1

5
(9 −K2

S) ≥ 0.

We conclude therefore that K2
S ≤ 9. By divisibility reasons, we have that K2

S = 9

and in particular S is rational by Castelnuovo’s criterion, since q(S) = g(Γ) = 0.
Finally, it follows from the classification of minimal rational surfaces that the

unique rational surface S with K2
S = 9 is S ≅ P2. The fact that OS(H) ≅ OP2(2)

follows from deg(S) =H2 = 4. ∎

Remark 9.2.5. It is worth mentioning that one could use a similar method as in
the higher dimensional cases to prove directly that S is rational, and in particular
q(S) = g(Γ) = 0 (cf. Theorem 9.3.2). However, we preferred to give an alternative
proof only based on classical results for algebraic surfaces.

9.3 Threefolds and higher dimension varieties

Let us first remark that we cannot expect a similar answer as in the lower
dimensional cases. More precisely, we have the following observation (cf. [ES03,
Section 5]).

Lemma 9.3.1. Let n ≥ 3 be a positive integer. Then the tangent bundle of Pn is
never Ulrich.

Proof. It follows directly from the Euler exact sequence for TPn that

h0(Pn, TPn) = n(n + 2).

On the other hand, if TPn is Ulrich with respect to the very ample line bundle
OPn(d) then we would have h0(Pn, TPn) = ndeg(Pn) = ndn and hence dn = n+2. In
particular, d ≥ 2 in that case. This is impossible, since dn ≥ 2n > n+2 for n ≥ 3. ∎
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The numerical characterization of rationally connected varieties discussed in
Section 1.6 together with the restrictions on the first Chern class of Ulrich bundles
treated in Section 8 give us the following result in higher dimensions.

Theorem 9.3.2. Let X be a smooth projective variety of dimension n ≥ 3 and
OX(H) a very ample line bundle. Then,

(a) The cotangent bundle Ω1
X is never an Ulrich bundle with respect to H.

(b) Assume that the tangent bundle TX is an Ulrich bundle with respect to H,
then X ≅ G/P is a rational homogeneous space, where G is a semi-simple
complex Lie group and P ⊆ G is a parabolic subgroup. In this case, deg(X)

is a positive multiple of (n + 2)/gcd(n2 + n,n + 2).

Proof. We know by Lemma 8.2.3 that if E is a rank r Ulrich bundle with respect
to H then

c1(E) ⋅Hn−1 =
r

2
(KX + (n + 1)H) ⋅Hn−1.

In particular, if we assume in (a) that Ω1
X is an Ulrich bundle, then we get that

c1(Ω
1
X) ⋅Hn−1 =

n

2
(KX + (n + 1)H) ⋅Hn−1 ⇔

n − 2

n(n + 1)
KX ⋅Hn−1 = −Hn.

Since n ≥ 3, we deduce that KX ⋅Hn−1 < 0. On the other hand, Ω1
X is semistable

with respect to the movable class α ∶=Hn−1 (see Section 1.6) and thus

µmax
α (Ω1

X) = µα(Ω
1
X) =

KX ⋅Hn−1

n
< 0,

or equivalently µmin
α (TX) > 0, and therefore X must be rationally connected

by Theorem 1.6.5. This is impossible, since in that case we would have that
H0(X,Ω1

X) = 0 (see e.g. [Deb01, Corollary 4.18]), which contradicts the fact that
Ω1
X is an Ulrich bundle.

Assume now that TX is an Ulrich bundle. First of all, the fact that X is
a homogeneous manifold (i.e., that admits a transitive action of an algebraic
group) follows from the fact that TX is globally generated (see Section 1.5) and
[MnOSC+15, Proposition 2.1]. Moreover, we know by a classical result of Borel
and Remmert (see [BR62]) that in this case X ≅ A ×G/P , where A is an abelian
variety, G is a semi-simple complex Lie group and P ⊆ G is a parabolic subgroup.

In order to rule out the factor A, we proceed as in (a). More precisely, Lemma

116



9.3. Threefolds and higher dimension varieties CHAPTER 9.

8.2.3 implies in this case that

n + 2

n(n + 1)
(−KX ⋅Hn−1) =Hn,

and hence µmin
α (TX) = µα(TX) > 0. It follows from Theorem 1.6.5, that X is

rationally connected and thus X ≅ G/P . The previous computation shows that
deg(X) = Hn is a positive multiple of (n + 2)/gcd(n2 + n,n + 2) (by divisibility
reasons). This shows (b). ∎

Remark 9.3.3. The case of threefolds with Ulrich tangent bundle can be treated
using classification results. Indeed, if dim(X) = 3 and TX is an Ulrich bundle
with respect to H, then we would have by Theorem 9.3.2 (b) that deg(X) ≥ 5. In
particular, we would have that

dim Aut○(X) = h0(X,TX) = dim(X)deg(X) ≥ 15,

where Aut○(X) denotes the connected component of the identity in the
automorphism group of X. On the other hand, it is known that rational
homogeneous varieties are Fano, i.e., the anti-canonical bundle −KX is ample
(see e.g. [MnOSC+15, Proposition 2.3]). Using the classification of smooth Fano
threefolds by Iskovskikh [Isk77, Isk78, Isk79] and Mori–Mukai [MM83, MM03],
together with the recent results on infinite automorphism groups on Fano threefolds,
we can perform a case-by-case analysis that give us the desired result. More
precisely, it follows from [KPS18, Theorem 1.1.2] and [PCS19, Theorem 1.2] (see
also [BFT21, Appendix A]) that dim Aut○(X) ≤ 15, with equality if and only if
X ≅ P3 or X ≅ P(OP2 ⊕OP2(2)). The first case is ruled out by Lemma 9.3.1, while
the second variety is not a rational homogeneous threefold by [CP91, Theorem 6.1].

We observe that the fact that the tangent bundle is Ulrich imposes that the
manifold has a rather big automorphism group. More precisely, we have the
following consequence of the above result and the discussion in Section 1.7.

Corollary 9.3.4. Let X be a smooth projective variety of dimension n ≥ 4 and
Picard number one. Then, TX is never an Ulrich bundle.

Proof. Let OX(H) be a very ample line bundle on X, and assume by contradiction
that TX is an Ulrich bundle with respect to H. It follows from Theorem 9.3.2 (b)
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that deg(X) is a positive multiple of `, where

` ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n + 2 if n is odd,
n + 2

2
if n is even.

In particular, we have that h0(X,TX) = ndeg(X) ≥ n` ≥ n(n+2)
2 .

On the other hand, it follows from Lemma 1.7.1 that X is isomorphic to Pn, the
smooth projective quadric hypersurface Qn ⊆ Pn+1 or the Grassmannian Gr(2,5).
Moreover, if n is odd then h0(X,TX) ≥ n2 + 2n and hence X ≅ Pn in that case.

Since we know that the tangent bundle of Pn is not Ulrich by Lemma 9.3.1,
we will henceforth assume that X ≅ Q2m ⊆ P2m+1 is an even dimensional smooth
quadric hypersurface or that X ≅ Gr(2,5).

If X ≅ Q2m we have that h0(X,TX) = dim so2m+2(C) = (2m + 1)(m + 1).
On the other hand, the Ulrich condition and the previous discussion impose

that
h0(X,TX) = dim(X)deg(X) = 2mk` = 2m(m + 1)k

for some k ∈ N≥1, which is impossible by parity reasons.
Similarly, if X ≅ Gr(2,5) we have, on one hand, that h0(X,TX) = dim sl5(C) =

24. On the other hand, we would have that h0(X,TX) = dim(X)deg(X) =

6 deg(X) and hence deg(X) = 4. Since Pic(Gr(2,5)) ≅ Z is generated by the
class of L ∶= ϕ∗OP9(1), where ϕ ∶ Gr(2,5) ↪ P9 is the Plücker embedding and
where deg(L) = 5, we have that deg(X) has to be a multiple of 5, which leads to
a contradiction. ∎

The following question naturally arises.

Question 9.3.5. Is there a rational homogeneous space X ≅ G/P of dimension
n ≥ 4 and Picard number at least two such that TX is an Ulrich bundle?

Answering Question 9.3.5 above, we first prove the following lemmas.

Lemma 9.3.6. The tangent bundle of P1 × Pl, l ≥ 1, is never Ulrich.

Proof. Let us suppose that TP1×Pl is Ulrich with respect to H ∶= OP1(a) ⊠OPl(b),
with a, b ≥ 1; notice that −KP1×Pl = OP1(2) ⊠OPl(l + 1). By applying Lemma 8.2.3
to TP1×Pl , we obtain

0 =
(l + 1)(l + 2)

l + 3
H l+1 +KX ⋅H l =

= abl(
(l + 1)2(l + 2)

l + 3
−
a(l + 1) + 2b

ab
) ≥

(l + 1)2(l + 2) − (l + 3)2

l + 3
,
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where the last inequality is a consequence of the fact that a, b ≥ 1. From Theorem
9.2.4 we can assume that l ≥ 2; then it is easy to check that (l+1)2(l+2)−(l+3)2 > 0,
which gives a contradiction with the equation in Lemma 8.2.3, thus showing that
the tangent bundle is not Ulrich. ∎

Lemma 9.3.7. There exists no polarized variety (X,H) with Picard number
greater than one whose tangent bundle is Ulrich.

Proof. By Proposition 9.1.1, Theorem 9.2.4, Theorem 9.3.2 and Corollary 9.3.4,
we can suppose that X = G/P is a rational homogeneous projective variety with
Picard number equal to k > 1. From Lemma 1.7.4 and Lemma 9.3.6 we know that

det(TX) = −KX =∑
i

jiLi,

with ji < n ∶= dim(X) for i = 1, . . . , k. Let us suppose that H = ∑i aiLi with ai > 0

for i = 1, . . . , k. By applying Lemma 8.2.3 to the tangent bundle, we obtain

n(n + 1)

n + 2
Hn +KX ⋅Hn−1 = 0.

For any k-partition λ = (λ1,⋯, λk) of n, the coefficient of Lλ11 ⋯Lλkk is equal to

(
n

λ
)aλ11 ⋯aλkk (

n(n + 1)

n + 2
−∑

i

λiji
nai

) ≥
n(n + 1)

n + 2
−∑

i

λiji
n

≥

n(n + 1)

n + 2
−∑

i

λi(n − 1)

n
=
n(n + 1)

n + 2
− (n − 1) =

2

n + 2
> 0.

Since for any λ, Lλ11 ⋯Lλkk > 0, we deduce that n(n+1)
n+2 Hn + KX ⋅ Hn−1 > 0, thus

the equation in Lemma 8.2.3 is never satisfied; therefore there exists no rational
homogeneous projective variety G/P with Picard number greater than one such
that its tangent bundle is Ulrich. ∎

By Proposition 9.1.1, Theorem 9.2.4, Corollary 9.3.4, and Lemma 9.3.7, we
can prove the main result:

Theorem 9.3.8. Let X be a smooth projective variety of dimension n ≥ 1. If
TX is an Ulrich bundle, then X is isomorphic to the twisted cubic in P3 or to the
Veronese surface in P5.
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Appendices

Dynkin diagrams

Lie algebra g Dynkin diagram dimC g n = dimC(G/Pr)

A` (` ≥ 1) 1 2 ` − 1 ` `2 + 2` r(` + 1 − r)

B` (` ≥ 2) 1 2 ` − 2 ` − 1 ` 2`2 + `
r

2
(4` + 1 − 3r)

C` (` ≥ 3) 1 2 ` − 2 ` − 1 ` 2`2 + `
r

2
(4` + 1 − 3r)

D` (` ≥ 4)
1 2 ` − 3

` − 2

` − 1

`

2`2 − `
r

2
(4` − 1 − 3r)

E6
1

2

3 4 5 6
78 r 1 2 3 4 5 6

n 16 21 25 29 25 16

E7
1

2

3 4 5 6 7
133 r 1 2 3 4 5 6 7

n 33 42 47 53 50 42 27

E8
1

2

3 4 5 6 7 8
248 r 1 2 3 4 5 6 7 8

n 78 92 98 106 104 97 83 57

F4 1 2 3 4 52 r 1 2 3 4
n 15 20 20 15

G2 1 2 14 r 1 2
n 5 5

Table 9.1: Rational homogeneous spaces of Picard number one.
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Isometries of K12

The automorphism group of K12 was computed by Mitchell in 1914 in [Mit14]
while the lattice itself was first explicitly described by Coxeter and Todd in 1954
[CT53].

Having this in mind, and the description of K12 in Proposition 3.1.1, we
compute the isometries of K12 preserving the orbits in Lemma 4.1.1: fix a ≠ 0

be an element of oi ⊂ AK12 , i = 0,1,2 and b ∈ oi, we looking for an isometry
ϕ ∈ O(K12) such that ϕ̄ ∈ O(AK12) (the map induced in the quotient AK12) satisfies
ϕ̄(b) = a. The search can be successful (or not) and it depends if the natural map
O(K12) Ð→ O(AK12) is surjective (or is not). A useful criterion that determines
when this map is surjective is given by Nikulin in [Nik76, Theorem 1.14.2] but it
applies just in the case of indefinite lattices (which is not our case). Nevertheless,
the automorphism group of K12 has order 210 ⋅ 37 ⋅ 5 ⋅ 7 = 78382080 and finding an
explicit isometry was possible by using the integral lattices package of Sage [Sag].

Here we report the code to use in order to compute the 729 isometries.

Step 1: Define the lattice K12:

1 basis_K=[[−4 , 2 , 0 , 0 , 0 , 0 , −2 , 1 , 0 , 0 , 0 , 0 ],
2 [2 , −4 , 2 , 0 , 0 , 0 , 1 , −2 , 1 , 0 , 0 , 0 ],
3 [0 , 2 , −4 , 2 , 0 , 2 , 0 , 1 , −2 , 1 , 0 , 1 ],
4 [0 , 0 , 2 , −4 , 2 , 0 , 0 , 0 , 1 , −2 , 1 , 0 ],
5 [0 , 0 , 0 , 2 , −4 , 0 , 0 , 0 , 0 , 1 , −2 , 0 ],
6 [0 , 0 , 2 , 0 , 0 , −4 , 0 , 0 , 1 , 0 , 0 , −2 ],
7 [−2 , 1 , 0 , 0 , 0 , 0 , −4 , 2 , 0 , 0 , 0 , 0 ],
8 [1 , −2 , 1 , 0 , 0 , 0 , 2 , −4 , 2 , 0 , 0 , 0 ],
9 [0 , 1 , −2 , 1 , 0 , 1 , 0 , 2 , −4 , 2 , 0 , 2 ],

10 [0 , 0 , 1 , −2 , 1 , 0 , 0 , 0 , 2 , −4 , 2 , 0 ],
11 [0 , 0 , 0 , 1 , −2 , 0 , 0 , 0 , 0 , 2 , −4 , 0 ],
12 [0 , 0 , 1 , 0 , 0 , −2 , 0 , 0 , 2 , 0 , 0 , −4]]
13

14 K12_Tilde=IntegralLattice(Matrix(ZZ,basis_K))
15 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12=K12_Tilde.gens()
16 N=(1/3)∗(k1+k7) + (2/3)∗(k2+k8)+(1/3)∗(k4 + k10) +(2/3)∗(k5 + k11)
17

18 K12=IntegralLattice(Matrix(ZZ,(K12_Tilde.overlattice([N])).gram_matrix()))

Step 2: Compute the discriminant form of AK12 :
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19 Disc_K12=K12.discriminant_group()
20 a1,a2,a3,a4,a5,a6=Disc_K12.gens()

Step 3: Compute the automorphism group of K12:

21 Aut_K12=K12.automorphisms()

Step 4: List the elements of an orbit vi of value v ∈ {0, 2
3 ,

4
3}:

22 v=4/3
23 Y=[]
24 for x in Disc_K12:
25 if x.quadratic_product()==v:
26 Y=Y+[x]

Step 5: Check the existence of an isometry for two elements in vi and show
the isometry ϕ = A. We distinguish two cases.

If v ≠ 0:

27 while len(Y)>0:
28 x0=Y[0];YY=[]
29 for y in Y:
30 if y != x0:
31 cont=0
32 for A in Aut_K12:
33 if y∗A==x0:
34 A
35 break
36 else :
37 if cont==Aut_K12.cardinality():
38 YY=YY+[y]
39 else :
40 cont=cont+1
41 Y=YY

If v = 0:

42 while len(Y)>0:
43 x0=Y[1];YY=[]
44 for y in Y:
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45 if y != x0 and y != Y[0]:
46 cont=0
47 for A in Aut_K12:
48 if y∗A==x0:
49 A
50 break
51 else :
52 if cont==Aut_K12.cardinality():
53 YY=YY+[y]
54 else :
55 cont=cont+1
56 Y=YY

Isometries of MZ/3Z

1 #Construction of MZ3:
2 basis_M3Z=[[−4, −1, 0, −1, 0, −1, 0, −1, 0, −1, 0, −1],
3 [−1, −2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
4 [ 0, 0, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0],
5 [−1, 0, 1, −2, 0, 0, 0, 0, 0, 0, 0, 0],
6 [ 0, 0, 0, 0, −2, 1, 0, 0, 0, 0, 0, 0],
7 [−1, 0, 0, 0, 1, −2, 0, 0, 0, 0, 0, 0],
8 [ 0, 0, 0, 0, 0, 0, −2, 1, 0, 0, 0, 0],
9 [−1, 0, 0, 0, 0, 0, 1, −2, 0, 0, 0, 0],

10 [ 0, 0, 0, 0, 0, 0, 0, 0, −2, 1, 0, 0],
11 [−1, 0, 0, 0, 0, 0, 0, 0, 1, −2, 0, 0],
12 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −2, 1],
13 [−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, −2]]
14

15 M3Z=IntegralLattice(Matrix(ZZ,basis_M3Z))
16 #Group of isometries of M3Z:
17 Aut_M3Z=M3Z.automorphisms()
18 #Discriminant group of M3Z:
19 Disc_M3Z=M3Z.discriminant_group()
20 v=4/3
21 Y=[]
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22 for x in Disc_M3Z:
23 if x.quadratic_product()==v:
24 Y=Y+[x]
25

26 #If v is different to 0:
27

28 while len(Y)>0:
29 x0=Y[0];YY=[]
30 x0
31 for y in Y:
32 if y != x0:
33 cont=0
34 for A in Aut_M3Z:
35 if y∗A==x0:
36 A
37 break
38 else :
39 if cont==Aut_M3Z.cardinality():
40 YY=YY+[y]
41 else :
42 cont=cont+1
43 Y=YY
44

45 #If v is zero:
46 while len(Y)>0:
47 x0=Y[1];YY=[]
48 for y in Y:
49 if y != x0 and y != Y[0]:
50 cont=0
51 for A in Aut_M3Z:
52 if y∗A==x0:
53 A
54 break
55 else :
56 if cont==Aut_M3Z.cardinality():
57 YY=YY+[y]
58 else :
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59 cont=cont+1
60 Y=YY
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