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Abstract

Big data and machine learning are profoundly shaping social, economic, and
political spheres, becoming part of the collective imagination. In recent years,
barriers have fallen and a wide range of products, services, and resources, that
exploit Artificial Intelligence, have emerged. Hence, it becomes of fundamental
importance to understand the limits and, consequently, the potentialities of
predictions made by a machine that learns directly from data. Understanding
the limits of machine predictions would allow dispelling false beliefs about
the potentialities of machine learning algorithms, avoiding at the same time
possible misuses. To tackle this problem, completely different research lines
are emerging, that focus on different aspects. In this thesis, we study how the
presence of big data and artificial intelligence influences the interaction between
humans and computers. Such a study should produce some high-level reflections
that can contribute to the framing of how the interaction between humans and
computers has changed, since the presence of big data and algorithms that
can make computers somehow intelligent, albeit with some limitations. In the
different chapters of the thesis, various case studies that we faced during the Ph.D.
are described, chosen specifically for their peculiar characteristics. Starting from
the obtained results, we provide several high-level reflections on the implications
of the interaction between humans and machines.
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Chapter 1

Introduction

In this chapter, we present the background and context of this thesis and we
introduce the research questions that drove the study. Finally, we detail the
outline of the thesis.

1.1 Research Background

In 2009, Schmidt and Lipson [132] were able to distil natural laws directly
from experimental data, without any prior knowledge about physics, kinematics,
or geometry. The experimental data consisted simply in the position of an
air-track oscillator and a double pendulum over time. Employing symbolic
regression and varying the parameters considered, the authors were able to
discover Hamiltonians, Lagrangians, and other laws of geometric and momentum
conservation. Similar results have contributed to fuel the current of thought
according to which, big data, coupled with machine learning algorithms, are
engendering a paradigm shift from a knowledge-driven science to a data-driven
one [77]. Knowledge-driven science is the one of the scientific method, based on
hypothesis testing. Scientists hypothesize models and then conduct experiments
that confirm or refute such models. In many fields, such as physics or biology,
these experiments can no longer take place for several reasons (e.g., the energies
are too high, the accelerators too expensive, . . . ). Hence, many are putting into
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question the scientific method in favour of massive amounts of data and applied
mathematics, since they offer a whole new way of understanding the world
[8]. In particular, Anderson begins his reasoning starting from George Box’s
famous maxim "All models are wrong, but some are useful" [17], stating that,
in the Petabyte Age, there is no need to settle for models at all. It is clear to all
scientists that correlation is different from causation, as the countless examples
of spurious correlations demonstrate [80, 138]. According to Anderson instead,
such an abundance of data, in the order of petabytes, allow to say that correlation
is enough, making further explanation unnecessary: "With enough data, the
numbers speak for themselves".

As opposed to these positions, many scientists are claiming the importance of
conceptual insights even when working with big data and Artificial Intelligence
(AI) [25, 36, 66, 64]. Calude and Longo [25], in their work, start from Anderson’s
statements with the aim of documenting the danger of subsuming and replacing
the scientific approach with the search of correlations in big data. Their approach
is based on ergodic theory, Ramsey theory, and algorithmic information theory.
They proved that arbitrary correlations are present in very large databases but they
do not appear due to the nature of the data, but due to their size. They conclude
that too much information tends to behave like very little information and that
the analysis of big data can enrich the scientific method, but can not replace it. In
[36], focusing on biology and medicine, the authors point out the weaknesses of
pure big data approaches which fail to provide conceptual accounts, regardless
of the "depth" and the sophistication of the algorithms used. Instead, Hosni and
Vulpiani [66], taking as a case study the weather forecasts, concluded that a
context-dependent balance between modelling and quantitative analysis stands
out as the best forecasting strategy. Finally, Holzinger, Haibe-Kains, and Jurisica
[64] affirmed that automated machine learning can work only in narrow contexts.
In other, like the medical one, human experts are still required since they are
the only ones able to understand the overall context. According to their vision,
AI-technology has to empower/augment humans, rather than substitute them,
following the human-in-the-loop or the human-in-control paradigms.
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This conflictual situation does not regard only science, but it is reflected in
different areas of society. In fact, big data and machine learning are profoundly
shaping social, economic, and political spheres, becoming part of the collec-
tive imagination [44]. In recent years, barriers have fallen and a wide range
of products, services, and resources, that exploit Artificial Intelligence, have
emerged [103]. Within this context, it becomes of fundamental importance to
understand the limits and, consequently, the potentialities of predictions made
by a machine that learns directly from data [22]. Understanding the limits of
machine prediction would allow dispelling false beliefs about the potentialities
of machine learning algorithms, avoiding at the same time possible misuses.

To tackle this problem, completely different research lines are emerging.
Some researchers are trying to determine the limits of such predictions, study-
ing the mathematical foundations of machine learning [118]. An example of
this research line is reported in [12], where the authors treat the problem of
identifying the learnable using a mathematical framework. They focused on
estimating the maximum problem and they found out that, in some cases, a
solution of such a problem is equivalent to the continuum hypothesis, making
the learnability undecidable (i.e., impossible to prove nor refute). A completely
different research line is the one proposed by Rahwan et al. in [120], where
the authors frame the emerging interdisciplinary field of machine behaviour,
whose purpose is to study the behaviour exhibited by intelligent machines, to be
able to control their actions, reap their benefits and minimize their harms. The
main motivations behind it are the ever-increasing role of algorithms in society,
their complexity and opacity, and the challenge of predicting their effects on
humanity. The authors suggest investigating different dimensions (i.e., function,
mechanism, development, and evolutionary history) at different scales of inquiry
(i.e., individual, collective, and hybrid). Finally, in contrast to the two research
lines described above, there is an unbridled use of machine learning, without
any a priori theoretical reflections. There is not a theory to prove, but there are
data. Starting from these massive amounts of data, there is a tendency to use
increasingly sophisticated algorithms and, then, to tune the hyper-parameters
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of such algorithms till the point that some relations are extracted from the data.
But very often, such relationships exist only in the dataset and not in the real
world. Otherwise, it is frequent that the same dataset, analysed by different
people, gives completely different results, due to multiple factors, creating the
so-called crisis of reproducibility [67]. This tendency upends the scientific world.
In fact, while before a theory was generally true under certain conditions, now it
is possible to define a different theory for each dataset.

1.2 Research Questions

In this broad spectrum between theorists and those who use machine learning
indiscriminately, in my thesis I want to focus on how the presence of big data and
artificial intelligence influences the interaction between humans and computers.
Such a study should produce some high-level reflections that can contribute to
the framing of how the interaction between humans and computers has changed,
since the presence of big data and algorithms that can make computers intelligent,
albeit with some limitations.

RQ-1 Can an imperfect deep learning algorithm still be useful?

Machines must be perfect. The claim of perfection is probably a cultural
projection of the western culture and the results of the Christian apocalyptic
thinking [27]. This current of thought leads to a binary vision which
contrasts technological apocalypse against techno-utopianism. The result
of such a vision is a neurosis. On the one hand, there is the desire for
a perfect machine, able to have 100% accuracy. On the other hand, a
single case of failure is enough to put into question the whole system.
When working in the real world, the perfect machine does not (yet) exist.
Our intuition is that the key question is not whether or not to rely on
an imperfect machine. Rather it is deciding how much autonomy we
are willing to give to them. According to this vision, machines have to
evaluate all those cases in which they are highly confident while humans
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will analyse the remaining cases, the most doubtful ones, in which the
machine tends to make mistakes. In this way, we return to have the same
concept of machines that humanity has always had, consisting of taking
away the useless work.

RQ-2 How much is the impact of human-in-the-loop approaches in data
preparation?

Since machine learning algorithms learn by processing massive piles
of data, they are significantly influenced by the way training data are
organized and modeled [115]. No matter how much sophisticated is the
algorithm that will analyze a dataset, equally critical is the quality of the
data and the way data are organized [158]. Data preparation based on
human-in-the-loop approaches can successfully lead to the extrapolation
of just the training data that represent the complex statistical phenomenon
under observation. Such a phase changed the characteristics of the dataset
from a statistical point of view, improving at the same time the performance
of the deep learning algorithm.

RQ-3 How can high-dimensional Pareto-distributed categorical data be
handled to train a deep learning algorithm?

Data can be divided into numerical and categorical. While numerical
data are measurable in nature and easily manageable, categorical data,
instead, represents a collection of information, that can be divided into
groups. They have to be adequately prepared before feeding a deep
learning algorithm. They can easily lead to an increase in the dimensions
of the space under investigation. This phenomenon may go so fast that
the available data become sparse, with a consequent loss of statistical
significance. For this reason, it is important the role of the humans involved
in the data science processes, since they can provide insights and propose
new methods to address possible problems. This is exactly our case,
where we were able to devise a method to handle high-dimensional Pareto-
distributed categorical data.
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RQ-4 Can statistical approaches combined with machine learning be used
on big data to observe different phenomena?

The big data era has sparked the debate which opposes data-driven to
knowledge-driven science. With our experience, we want to contribute
to this discussion about the paradigm shift from knowledge-driven to
data-driven science. While we are well aware that big data have been
one of enabling factors for the resurgence of artificial intelligence, and in
particular of machine learning, in our opinion, the theory has still a central
role. In particular, we believe that artificial intelligence and statistical
methods can be successfully exploited to observe different phonomena
with the aim of confirming or refuting hypotheses, based on conceptual
insights from the humans involved in the experiments.

RQ-5 How humans should interact with algorithms to codify and transfer
knowledge to them?

Humans beings make choices and take decisions, which they consider
optimal, based on all the contextual information available, that are often
limited. Take now machines, which in the end are only classifiers, trained
to reach a certain probabilistic accuracy on which the possibility of making
errors hangs. Humans demand that machines, once properly trained, are
able to reproduce or simulate the human optimal. But obviously, their
predictions, and consequently their behaviours, present some limitations
and strictly depends on the cognification of the context of interest and on
the knowledge transferred from the human trainer to the machines.

1.3 Outline

Given the background concepts exposed above, a detailed overview of the work
presented in this thesis is provided below:

Chapter 1 the first chapter introduces the context of the thesis and presents the
research questions. Lastly, it summarized the content of the thesis.
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Chapter 2 This chapter presents a case study relative to the design and imple-
mentation of a deep learning algorithm able to predict water meter failures based
on historical data about water consumption provided by a company that supplies
water in Northern Italy. Starting from this case study, we draw several high-level
considerations about how such a machine could be exploited by the company
and the impact of human-in-the-loop data preparation on the dataset itself. Fi-
nally, we present an approach to deal with high-dimensional Pareto-distributed
categorical data. This chapter aims to answer the research question RQ-1, RQ-2,
and RQ-3.

Chapter 3 In this chapter, we aim to contribute to the discussion about data-
driven vs. knowledge-driven science, by presenting a case study about the
evaluation of the potential relationship between air pollution and CoVid-19
infections. We combine statistical approaches and machine learning algorithms
to confirm or refute such a hypothesis of correlation. The goal of the chapter is
to provide an answer to the research question RQ-4.

Chapter 4 This chapter focuses on knowledge codification and transfer, with the
aim of understanding the role of human-machine interaction. The experiments
were conducted in collaboration with a company that deals with determining an
underwater path for the installation of cables. We designed different machine
learning algorithms, modelling different training strategies based on organiza-
tional learning theories and evaluating the various implications. This chapter
aims to answer the research question RQ-5.

Chapter 5 This chapter ends the thesis by drawing conclusions and paves the
way for future contributions.





Chapter 2

Imperfect machines and the role of
humans in data science processes

Can an imperfect deep learning algorithm still be
useful?
How much is the impact of human-in-the-loop
approaches in data preparation?
How can high-dimensional Pareto-distributed
categorical data be handled to train a deep learning
algorithm?

— RQ-1, RQ-2, RQ-3

In this chapter, starting from the design of a deep learning algorithm to
predict water meter failures using historical data provided by a company that
supplies water in Northern Italy, we present several high-level reflections. First,
we discuss how such an imperfect algorithm could be exploited by the company
and integrated into their processes. Then, we reflect on the role of humans in data
science processes, evaluating the impact of human-in-the-loop data preparation
on the dataset itself. Finally, we also present an approach to deal with high-
dimensional Pareto-distributed categorical data.
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2.1 Introduction

If modern Artificial Intelligence (AI) comes often misunderstood, this is mainly
due to the fact that, historically, it is solely tied to the way human brains work
and think. Machine Learning (ML) algorithms, instead, learn by processing
massive piles of data. This process enables machines to adapt to real-world
situations, as well as to propose suggestions on how to classify and interpret
a variety of different real phenomena. Simply speaking, the deployment of
modern ML systems into critical applications is directly influenced by the way
training data are organized and modeled [115, 73]. Hence, while those modern
algorithms rapidly sift through huge datasets, loaded with millions of information,
a thoughtfully designed AI, beyond its ML-based core, should never disregard
the fact that algorithms that learn are, for now, just another form of machine
instructions, still guided and influenced by the potential and the limitations that
training data carry with them. In other words, even when we train algorithms
to learn basic associations that can then be used to approximate, or infer, some
aspects of a given process, crucial remains the process of harnessing those piles
of data into realistic findings. No matter how much sophisticated is the algorithm
that will analyze a dataset, equally critical is the statistical validity, the sense,
the references, the subtle implications, in one simple word: the semantics, being
inherent in those data [158, 46].

This was exactly the case of our controversial experience with a huge real-
world dataset, fed with over fifteen million water meter readings, supplied by a
company that distributes water over a large area in Northern Italy. In this case
study, we were asked to design an ML-based intelligent classifier, able to predict
if a water meter fails/needs disassembly, based on a history of water consumption
measurements, thus minimizing the number of technical interventions performed
by human operators for maintenance and repair. In this chapter, we present
several considerations drawn from this experience.

First, our initial attempts to train a recurrent neural network, without specific
attention to the quality, and to the limitations, of those data used for training, led
to unexpected and negative prediction outcomes. We report on the human-in-
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the-loop approach we employed, in terms of statistical tests and semantics of
validity, to extrapolate from that large initial database just those training data that
could make a sense, as well as that could safely represent the complex statistical
phenomenon under observation, with the final target of training a machine able to
predict a failure of a water meter, not only in a dataset but also in a real practical
case. As a result of these data modeling and re-organization activities, and upon
completion of the training process on a safe subset of the initial dataset, our
classifier upheld its performance level, from approx. 60% to about 80-90%, in
terms of prediction accuracy. Nonetheless, this performance outcome came with
the paradox of a statistical transformation of the initial dataset, thus confirming
one of our research conjecture in this field: the need for millions of training
data can become a non-issue, as compared to a paltrier training set that makes,
instead, a learning algorithm much more realistically applicable.

Then, we present our reflections on how such a model could be integrated
and employed by the company, even if it is not perfect. In fact, machine learning
algorithms do not have to be an all-or-nothing phenomenon [27]. In our vision,
the question is not whether or not to rely on an imperfect machine, rather it is
deciding how much autonomy we are willing to give to them since there is a
wide spectrum of automation from fully normal to fully automatic [121]. In
particular, we propose different strategies to exploit the developed algorithm,
determining the boundaries of its use.

Thirdly, we also present an approach to deal with high-dimensional Pareto-
distributed categorical data. Such an approach is based on the idea of exploiting
the categorical values to better select the sets of devices on which the model
goes trained. We evaluated the proposed approach and compared the results
with more traditional space dimension reduction methodologies and classical
machine learning algorithms.

The remainder of this chapter is structured as follows. In the next section, we
present the research background on which our study relies on. Section 2.3 lists
the research questions while Section 2.4 discusses the dataset and our approach.
In Section 2.5, we presents the data preparation pipeline, following a human-
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in-the-loop approach. Then, Section 2.6 illustrates the accuracy of the results
we have obtained after training a deep learning algorithm that predicts water
meter failures and our experience in replicating our approach on a new set of
data. Finally, Section 2.7 presents some high-level reflections and provides the
answers to the research questions.

2.2 Background and Related Work

This Section is split into three different parts. The first one discusses other
studies done in the specific domain of automatic methods for detecting faulty
water meters. The second one, instead, illustrates the negative effects we can
incur due to a lack of attention in data preparation while instructing machine
learning algorithms. The third and final part, instead, discusses dimensionality
reduction techniques for categorical data.

2.2.1 Detecting water meter failures

While we are plenty of papers in the literature that employ complex statistical
methods, or machine learning algorithms, for individuating anomalies like a
leakage or a failure, in water distribution pipelines [142, 116], there is a not
surprising scarcity of papers that discuss methods for detecting anomalies in
water meters. Pour cause: so far, in fact, smart metering has come into the scene
for utilities different from water, like energy and gas, since these latter resources
are considered more expensive, in general.

This motivates the fact why there are a lot of mechanical water meters
around, whose main characteristic, different from electrical meters, is that of
providing fewer and less frequent readings over time. Hence, even if the number
of mechanical meters installed is still high, representing a cheap and well-tested
solution, they pose a problem to all the initiatives that are based on machine
learning [6]. Indeed, their readings are rare (2/3/4 times per year) and are to
be read by a human operator, thus resulting in many imprecisions. Due to



2.2 Background and Related Work 13

this fact, some of the most relevant papers that illustrate methods that face the
problem of detecting faulty water meters, on the basis of an analysis of the
amount of consumed water, still resort to traditional approaches, disregarding
machine learning. For example, Roberts and Monk developed a simple algorithm
that individuates possible anomalies [127], occurring at a given water meter,
when a decreasing trend in water consumption is observed along with a series
of readings which is updated just quarterly. Monedero et al. [102], instead,
propose an approach to detect tampering activities in mechanical water meters
that employs a very basic statistical analysis for identifying:

• either a low rate in water consumption,

• or a sudden stoppage of that consumption,

• or simply a decreasing consumption trend.

What is relevant, here again, is the fact that the use of data (readings), which
can be, large in quantity yet rare in frequency, does not allow for the use of
modern machine learning-based methods.

For sure, the advent of electrical water meters, along with telemetry that can
provide water consumption readings on a per hour basis, could significantly alter
this picture.

In this unfortunate scenario, our challenge has been precisely that of trying
to use learning algorithms, even if trained with data coming from readings of
traditional mechanical meters, believing that a large amount of data available,
spanning over multiple years and involving more than one million meters, could
balance the negative effects of the low frequency in reading.

2.2.2 Inadequacy of the datasets

In this Subsection, instead, we are concerned with the problem that, while
machine learning techniques analyze datasets that are very large and expensive,
it is often the case when results come up that are inaccurate, or even wrong.
Oversimplifying a complex scenario, there are exaggerated anxiety and worry
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of developing specific learning algorithms that search through a vast amount of
data until they recognize a pattern that finally exists only in (a portion of) that
dataset, and not in the reality [5].

As a consequence of these considerations, if we want to discover results
that stand the test of time, adequate attention is to be devoted to all the data
preparation, cleaning, and transformation activities that must follow their initial
acquisition. Disregarding, or simply underestimating, these factors mean crystal-
lizing data inconsistencies and impurities into a shapeless structure that will be
inadequate for supporting correct evidence-based decisions.

Drawing upon scientific literature, among all the possible cases we could
cite in support of our ideas, we report here just three different examples, where a
lack of attention on data used to instruct intelligent machines resulted in negative
consequences, as well as into effects diametrically opposed to what we would
expect.

The first example is the paradigmatic case discussed by Buolamwini and
Gebru in [23]. After a careful assessment, a gender classification system, based
on a facial analysis dataset, came up not to be balanced with respect to gender
and skin type. It was found out in fact that the most misclassified group was
that of the darker-skinned females, with misclassification rates ranging from
20.8% to 34.7%, while, instead, the error rate for the lighter-skinned males’
group stabilized at around 0.8%. Such a result was the direct consequence of
the dataset that was used for training that system. Ex-post accurate analysis of
the dataset simply revealed that it was biased, as overwhelmingly comprised of
lighter-skinned subjects.

Another similar example is reported by Bolukbasi and coauthors in [15] that
treats word representations. Specifically, the term word embedding intends a
representation of words under the form of vectors, commonly used for natural
language processing. The popularity of this kind of word representation comes
from its ability to capture semantic relationships among words, measurable as
linear distances between vectors [114]. An experiment was conducted that tried
to train an ML-based implementation of a word embedding representation, only
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using articles taken from the Google News service. To simplify this complex
matter, we only say that the main result of this specific implementation of
a word embedding representation was to let emerge a dramatic case of sex
stereotype. For example, the role played by a surgeon was always associated
with a masculine subject, while at the opposite the functions of a nurse were
always perceived as carried out by a feminine subject. The motivation for the
emergence of this gender stereotype was rooted in that specific dataset, as an
expensive assessment activity demonstrated. Further, an additional specific
procedure was developed that de-biased that representation to the point it finally
became gender-neutral.

A final example is drawn from a medical context where a case is reported
discussing on a machine trained to learn a prognostic model used to predict
adequate medical treatments for patients affected by pneumonia [24]. Surpris-
ingly, upon completion of the training phase, the machine had learnt that patients
suffering from both pneumonia and asthma were to be considered at a lower
risk of death if compared with those who were afflicted by just pneumonia. The
motivation why asthma was (erroneously) considered by the machine (almost)
as a protective factor against the negative effects of pneumonia was pretty clear
after an ex-post analysis of the dataset on which the machine was instructed. The
reason goes as follows. Patients diagnosed with pneumonia, and with a history
of asthma, are typically admitted to more intensive care, leading on average
to more rapid healing, with respect to patients diagnosed with just pneumonia.
Unfortunately, the training dataset was constructed disregarding that relevant fact,
with the final paradox of a machine that misinterpreted asthma as a protective
variable in that specific domain.

2.2.3 Dimensionality Reduction Techniques for Categorical
Data

Data can be divided into numerical and categorical. While numerical data are
measurable in nature and easily manageable, categorical data, instead, represents
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a collection of information, that can be divided into groups; e.g., black and white;
and, as such, they can take on numerical values (for example 1 indicating black,
and 2 indicating white), but those numbers do not have a precise mathematical
meaning. This is the reason why working with categorical descriptors can
easily lead to an increase in the dimensions of the space under investigation.
This phenomenon may go so fast that the available data become sparse, with a
consequent loss of statistical significance [151].

To understand this phenomenon, take, for example, one of the most common
techniques applied to encode categories into numerical values: the one-hot
encoding technique [110, 28]. Consider a categorical variable with the following
values: Yes, No, and Prefer not to say. They can be encoded with the following
vectors [1, 0, 0], [0, 1, 0], [0, 0, 1]. This produces a new, three-dimensional
space, with a total amount of twenty-seven points. However, the only interesting
points remain three and are orthogonal, equidistant, and sparse. Simply said,
we have yielded a three-dimensional vector space, with a new dimension for
each original value (yes, no, prefer not to say). Unfortunately, things can even
get worse. If we had three categories, each with three values, we would get a
nine-dimension space, as this would come with the product of the number of
categories times the number of possible values [4, 71].

Hence, a general problem can be posed: how to manage categorical variables,
while keeping the dimensionality of the resulting space under control. To this
aim, many statistical techniques have been proposed in the literature to face this
problem. Typically, the recurrent idea behind all those methods is as follows:

1. Consider a high dimensional categorical space.

2. Apply a procedure for reducing the number of variables, without loss of
information.

3. Identify new variables with greater meaning

4. Keep as the ultimate target that of maintaining visible a lot of points,
in this reduced space, to be used as representative examples on which a
supervised learning model can be trained.
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What is also very common is the fact that the procedure for reducing the
dimensionality rests upon the idea of representing the categorical space with
a few orthogonal (uncorrelated) variables that capture most of its [136]. In
the remainder of this Section, we are going to provide a few details on the
principal techniques of this family. Before beginning with this review, we
briefly anticipate here that our method will be different. We will avoid to use
categorical descriptors as input to the model to be trained. Instead, they will be
used as a driver for data selection, thus eliminating, from the start, the need for a
dimensionality reduction of the categorical space.

Among the traditional methods mentioned above, probably, the Correspon-
dence Analysis (with all its variants) is the most known one. Akin to the Principal
Component Analysis, the Correspondence Analysis (or CA) provides a solution
for projecting a set of data onto lower-dimensional plots. Essentially, CA aims
at visualizing the rows and the columns of a contingency table as points in a
low-dimensional space, so that a global view of the data is made available, yet
easily interpretable [99, 97]. Identically derived from the Principal Component
Analysis, we have the CATegorical Principal Components Analysis (or CAT-
PCA). Here, again, the final goal is to reduce the data dimensions by projecting
them onto a low-dimensional plane, with the plus that the relationships among
observed variables are not assumed to be linear [131].

Of interest in this field, it is also the so-called Multi-Dimensional Scaling
(MDS) technique. Technically speaking, MDS is used to translate information
about the pairwise distances among a set of n objects into a configuration of n
points, mapped into an abstract Cartesian space. In essence, this technique is
proven to be useful to display the information contained in a distance matrix,
while providing a form of non-linear dimensionality reduction [162, 130]. Some-
times, also some kind of structural equation modeling is employed to individuate
groups, or subtypes, in the case of multivariate categorical data. These are called
latent classes, as detailed in the following references [49, 81, 166, 156].

Another interesting technique, in the context of multivariate statistics, is
that of Binning. Here the target is somewhat different, since, at the basis, we
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have a form of data quantization. Essentially, all the data values falling into
a given interval (the bin, indeed) are all replaced by a single representative
value. A typical example, which is provided to explain this technique, is that
of representing the ages of a group of people with intervals of consecutive
years, rather than with each single age value [109]. Needless to say, going
for binning is a delicate choice, since some pieces of information can come
sacrificed. Nonetheless, it may result in a valid option when dealing with
categorical variables, because a large amount of less frequent values, which
could increase the dimensions of the resulting space, can be instead all grouped
under a unique generic value (e.g., Other). This way, we yield just one dimension
for an entire group of categorical values.

2.3 Research Questions

Considering the different aspects analyzed in the previous Sections, this chapter
aims to answer the following research questions:

RQ-1 Can an imperfect deep learning algorithm still be useful?

RQ-2 How much is the impact of human-in-the-loop approaches in data
preparation?

RQ-3 How can high-dimensional Pareto-distributed categorical data be
handled to train a deep learning algorithm?

2.4 Methods

In this Section, we detail the characteristics of the dataset provided to us, we
describe the data preparation activities, and the machine learning algorithm.
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2.4.1 Dataset Description

We were, initially, provided with a huge dataset comprised of almost fifteen
million water meter readings, plus other contextual information. This large
dataset spanned a period in time, from the beginning of 2014 to the end of 2018.
All these measurements involve more than one million water meters, including
those affected by faults, and hence subjected to disassembly and subsequent
replacement activities.

Our dataset has fourteen attributes for each water meter reading, as described
in Table 2.1. Instead, water meters are characterized by seventeen attributes,
reported in Table 2.2. It is obvious that negative examples should be faulty
meters (with their corresponding readings) and positive examples non-faulty
meters (with their corresponding readings). Such information is reported in
the attribute Operation (Faulty/Non Faulty) of the water meter dataset, which
essentially indicates if the water meter has been either disassembled or not.

No Attribute name No Attribute name
1 Water Meter ID 8 Reader ID
2 Reading ID 9 Type of Contract
3 Reading Value 10 Reading Validity
4 Reading Value Date 11 Certification on the ERP
5 Previous Reading Value 12 Final Billing
6 Previous Reading Date 13 Reason for Reading
7 Reading Frequency 14 Accessibility

Table 2.1 Reading Dataset Attributes

2.4.2 Data Preparation

Data preparation activities usually consist of normalizing data employing the
standard scaling or the min-max one and transforming categorical data into
numerical ones, exploiting for example the One Hot Encoding method. Instead,
in this case study, the data preparation phase is very elaborate as the dataset
provided was directly extracted from the company ERP. Hence, it not only
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No Attribute name No Attribute name
1 Water Meter ID 10 Installation Date
2 Serial Number of the Producer 11 Plant
3 Producer Description 12 Type of Contract
4 Material ID 13 Geographical Zone
5 Material Description 14 Accessibility
6 Max/min Reading Value 15 Use Category
7 Meter Type ID 16 Address
8 Meter Type Description 17 Operation (Faulty/Non Faulty)
9 Year of Construction

Table 2.2 Water Meter Dataset Attributes

describes the phenomenon under investigation (i.e., the consumption of water)
but it presents numerous inconsistencies and impurities, whose causes trace down
to the fact that it contains also data generated by different business processes
that happen in the company. For these reasons, we choose to adopt a Human-in-
the-loop approach to the data preparation [42]. In fact, human involvement is
instrumental in many stages of data cleaning and preparation such as providing
rules or validating computed repairs [126]. Our approach to data preparation
based on a human-in-the-loop is described at length in Section 2.5.

2.4.3 Machine Learning algorithm

We employ a deep neural network, specifically designed for our case study. Since
there are series of values (i.e., readings of the water meters), we decide to exploit
recurrent neural layers. The whole architecture is depicted in Figure 2.1.

Our deep neural network is comprised of two parallel subnetworks. Consider
the first one. Its aim is to learn a series of consecutive readings. Hence, it
presents a Gated Recurrent Unit (GRU) for each reading in the series. The output
of each GRU is passed to a Dense layer of 32 fully-connected neurons. The
overfitting phenomenon is avoided by using an in-between Dropout layer, with a
keep probability of 0.9, that separates GRUs from the Dense layer.
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Fig. 2.1 Structure of the deep learning model

Take now the second subnet. It takes as input the one-hot encoded categorical
features we have selected and lets them pass through two Dense layers of fully
interconnected neurons. The first layer has 128 neurons, while the second one
has just 32 neurons. Again, an in-between Dropout layer, with a keep probability
of 0.9, separates the two layers of neurons to avoid the overfitting phenomenon.

At this stage, the two parallel outputs of the two subnets are concatenated to
form a 64-dimensional vector that passes through a further Dense layer comprised
of 64 neurons. The output of this step is a two-dimensional vector (faulty/non



22 Imperfect machines and the role of humans in data science processes

faulty) which is finally delivered to a Softmax activation function that yields the
final probability of being faulty or not.

It is worth to notice also that each Dense layer uses a Rectified Linear Unit
(ReLU) as the activation function, while we employed a Binary Cross-Entropy
function to manage losses, based on the consideration that we had to construct
a binary classifier. To conclude the description of our network, we add that, in
each experiment, it was trained using the Gradient Descendent Algorithm for
twenty epochs, to yield the final optimization.

We implement the deep neural network with the Keras framework [76] and
using Tensorflow as the backend [1].

In the experiments, after splitting the data into training and test set, we used
the 10-fold cross-validation technique on the training data. In case of class
imbalance problems, we take advantage of SMOTE-NC technique [30, 87], to
generate synthetic data to oversample a minority target class (in our case the
faulty water meters).

To conclude, we come to the evaluation metric we have adopted to measure
the accuracy of our classifier. We have chosen the classic Area Under the Curve
of the Receiver Operating Characteristic (AUC-ROC) [148].

2.5 Human-in-the-loop Data Preparation

As already anticipated in the previous Subsection, we follow a human-in-the-loop
approach to prepare the dataset for the training activities. In order to define the
semantics of data validity and extract only meaningful data, we took advantage
of domain experts, i.e., employees of the company involved in the processes at
different levels.

The first step towards a semantics of data validity is taken considering the
reading attribute #10 (namely Reading Validity). It corresponds to the case when
a human operator reads a value on a water meter and validates it as correct. In
the absence of such a positive validation, that reading is to be considered as
non-valid, and should not be taken into consideration. Table 2.3 reports the
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number of non-valid measurements with respect to the total amount of circa
fifteen million readings.

Attribute #10 # of Readings
Valid 13,231,251

Non-valid 1,898,128
Total 15,129,379

Table 2.3 Readings: Valid/Non-valid (attribute #10)

Then, we focus on attributes #11 (Certification on the ERP) and #12 (Final
Billing). Once selected only valid readings, there are 45 different combinations
of attributes #11 and #12. Anyway, just seven of them cover almost 99% of the
total amount of readings in the dataset, as shown in the first seven lines in Table
2.4. According to the domain experts, readings to be considered fully valid have
to be correctly recorded onto the company ERP system (#11 = 2) and have to
be correctly billed to the final client (#12 = 2). Hence, after this step, the total
amount of readings decrease from 13,231,251 to 11,856,582.

Attributes # of Readings#11 #12
2 2 11,856,582
3 2 407,592
2 4 282,527
2 6 132,409
2 5 110,363
2 3 106,742
3 5 105,957

Other 229,079
Total 13,231,251

Table 2.4 Readings: main categories for attributes #11 and #12 (with relative
amount of readings)

The third step in the definition of the semantics of validity consists in se-
lecting only real measurements taken on the field by reading a water meter. In
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fact, among the readings of the previous steps, many of them are mathemati-
cal re-adjustments of estimated values of presumed water consumption values
(computed for billing purposes). The balance between real measurements vs.
re-adjustments is reported in Table 2.5. Obviously, such re-adjustments bring
much noise and are to be removed consequently.

Valid Readings # of Readings
Real 8,185,163 (69%)

Adjustments 3,671,419 (31%)
Total 11,856,582

Table 2.5 Proportion of real measurements vs. adjustments of valid readings

Such a set of conditions is the results of such an iterative process which
saw the involvement of domain experts in the loop and we will refer to it as the
semantics of validity.

We then move on to select the features to be used as input of our deep neural
network. This is a key task since irrelevant or redundant features can significantly
impact the training activities [59, 92]. In our case, nonetheless, this thing goes
smooth as reading values (current and previous), and relative dates, compose the
minimal set of information from which learning algorithms can extract interesting
relationships (attributes #3, #4, #5, #6 of the readings dataset). Further, on the
basis of precise suggestions provided by the company, we also include the
following additional features from the meter datasets: producer (attribute #2),
material (attribute #4), meter type (attribute #7), year of construction (attribute
#9), and use category (attribute #15). Summarizing, Table 2.6 reports all the
aforementioned selected features.

A preliminary experiment with the data enjoying the proposed semantics
of validity lead us to obtain an average AUC in the ten-fold cross-validation
equal to 0.61. Such a negative result denotes a problem in the semantics of data
validity that needs to be fixed.

Our intuition is that semantics disregards the role played by time. In essence,
of great importance is the time interval between two consecutive valid readings,
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No Features
1 Reading Value
2 Previous Reading Value
3 Reading Date
4 Previous Reading Date
5 Serial Number of the Producer
6 Material ID
7 Meter Type ID
8 Year of Construction
9 Use Category

Table 2.6 Features used

taken on a given meter. In fact, to use those data to train a neural network, crucial
is the regularity of the frequency with which readings, respecting the semantics
of validity, are taken over time.

Figure 2.2 below provides insightful information with this regard. On the
x-axis, we plot the differences of two subsequent readings, values in terms of
cubic meters of consumed water, that respect the semantic of validity, while on
the y-axis there are the time intervals (measured in days) between two subsequent
valid readings.

It summarizes some millions of reading values taken over a lot of time, and
it has to be interpreted as follows. Points, that lie on the y-axis and are very far
from zero, correspond to measurements that are not taken without any regularity
(while, instead, Italian laws prescribe two/three real readings per year). Points,
that lie on the x-axis and are very far from zero, account instead for phenomena
where the consumption of water is exaggeratedly high.

For this reason, always in collaboration with the domain experts, we add
further conditions to the set of rules of the initial semantics of validity. It is
noteworthy that all previous conditions still have to be satisfied: a human operator
reads a value on a water meter and validates it as correct, the reading is correctly
recorded onto the company ERP, it has been correctly billed to the final client,
and it is a real measurement. The further requirement is that two consecutive
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Fig. 2.2 Time intervals vs differential water consumption (two consecutive
readings)

readings have to be taken not too far from the others, from a temporal viewpoint.
In particular, we set such a time interval to six months. Readings taken more
distant in time are not considered valid. We will refer to such semantics of
validity as enhanced semantics of validity. After applying it, the overall number
of readings falls down to less than two million.

2.6 Results

This Section goes through two different phases. First, we present the accuracy
results of the prediction we have obtained using training data enjoying the
enhanced semantics of validity, and then we provided a comparative analysis of
the results we have obtained with our deep neural network contrasted against
those that can be obtained with alternative, more traditional methods. In the latter
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phase, instead, we present our experience when experimenting on a different
dataset, containing Pareto-distributed categorical data. At the end of such an
experience, we propose our approach to handle this type of data.

2.6.1 Predicting Water Meter Failures

We carry out our machine training activities with meters (faulty and non-faulty)
whose readings enjoyed the enhanced semantics of validity, always taken in the
period beginning 2014 – mid 2018. We assemble a set of positive examples
comprised of some 45,000 non-faulty meters, randomly sampled from the million
available ones. Along with them, we select all the faulty meters available, 15,000
ones, always with readings respecting the enhanced semantics of validity. Water
meters are randomly divided into training and test sets in a stratified way, with
the aim of preserving the same percentage of non-faulty and faulty water meters
in both sets.

As already mentioned, we employ the ten-fold cross-validation on the train-
ing set, using the deep neural network presented in the previous Section. We
experimented with series of readings of different lengths, to take advantage of
the memory of the network, ranging from two to five readings.

The results of the ten-fold cross-validation are reported in Figure 2.3. Of
particular interest are the average validation results (gray bars) that provide AUC
values always over the threshold of 80%, precisely in the range [82-88]%. For
the sake of completeness, we also report the average training AUC values (black
bars).

These results obtained during the validation phase of our deep neural network
training process were well promising, yet we wanted to have final confirmation
of the efficacy of the deep neural network trained on data respecting the enhanced
semantics of validity. Hence, we test the model on the test set. Just series of
either two or three readings are tested, for the sake of simplicity. Figure 2.4
portrays those results. The results confirm the efficacy of our approach, with
AUC values of 0.86 for two readings and 0.89 for three readings.
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Fig. 2.3 Training and validating with Deep Neural Network: AUC results

Then, we conduct a comparative analysis to contrast the performance of
our deep neural network with some of the most common machine learning
algorithms that, different from our recurrent deep network, do not use memory.
We experimented with all the following traditional machine learning algorithms:

• Linear Regression (LR) [133],

• Lasso (LA) [124],

• Elastic Net (EN) [167],

• Classification and Regression Tree (CART) [31],

• Support Vector Regression (SVR) [117],

• K-nearest neighbors (KNN) [50],

• Adaptive Boosting (AB) [122],

• Gradient Boosting (GB) [74],
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Fig. 2.4 Final testing with Deep Neural Network: AUC results

• Random Forest (RF) [119],

• Multi-Layer Perceptron (MLP), with only one hidden layer with 100
neurons [96].

We use regression algorithms to predict the probability of a water meter
being a faulty one. They are implemented using the Scikit-learn library [113].

In Figure 2.5, a plot with the AUC results obtained during the validation of
each aforementioned algorithm is reported, contrasted against the result achieved
with our deep neural network (DNN) with three readings.

The Figure shows that acceptable average AUC values can be achieved in
some specific cases; for example, with the GB and MLP algorithms, that yield
almost an 80% value of accuracy. Nonetheless, DNN performs significantly
better as it reaches an average accuracy value of 85% with just three readings.
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Fig. 2.5 Comparative Results: DNN against all others machine learning algo-
rithms

2.6.2 Experiments with Pareto Distributed Categorical Data

In a further experiment, the company asked us to re-use our methodology on a
different set of water meters and relative readings. The dataset included 17,714
devices, where 15,652 were non-defective ones, and the remaining 2,062 were
defective. For each water meter, the features provided are the same as Table
2.6, there are three consecutive readings, enjoying the enhanced semantics of
validity.

We follow the same methodology and deep learning algorithm described in
Section 2.4. However, we observe a drop in the performance of the classifier.
The AUC during the cross-validation passed from 85% to 78% while on the
testing set it goes down from 89% to 83%.

Analysis of Categorical Data

Our intuition is that the problem lies in categorical data, that are:

• The type of material (attribute #6): it can take on 98 different values. From
now on, we will refer to it as the categorical variable A.
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• The specific type of the device (attribute #7): it can take on 45 different
values. From now on, we will refer to it as the categorical variable B.

• The manufacturer of the meter (attribute #5): it can take on 48 different
values. From now on, we will refer to it as the categorical variable C.

• The type of usage of the meter (attribute #9): it can take on 14 different
values. From now on, we will refer to it as the categorical variable D.

Traditional Approaches to Dimensionality Reduction

To confirm our intuition and to overcome the problem with these data, we
conduct three different experiments. In the first one, we used only numerical
values to have proof of our intuition. Then, we reintroduce them employing
two different techniques to tackle the problem of dimensionality reduction: the
Principal Component Analysis (PCA) [99] and the Binning [109]. With the PCA,
we set the sum of variances of all individual principal components approximately
equal to 90%, decreasing the learning space dimensionality to 128. With the
Binning, instead, it is reduced to 48, selecting the most frequent values and
adding an "Other" to group all the other values.

The results of these experiments are reported in Table 2.7: with all the
categorical variables (first row), without them (second row), using PCA (third
row), and using Binning (fourth row). For each of them, we reported the AUC
achieved during both the ten-fold cross-validation and testing (third and fourth
columns).

As shown, the results confirm our intuition, since the removal of the categor-
ical data allows us to return on performance similar to the ones obtained with
the other dataset (experiment #2). Not only that, but also an attempt to reduce
the dimensions of that space, using traditional techniques like PCA and Binning,
either provided no real benefit (experiment #4, 85%, Binning) or caused a further
deterioration of the prediction accuracy (experiment #3, 81%, PCA).

In essence, we have found a case where there is no way to obtain an improve-
ment of the accuracy of the predictions if categorical data are added, whatever
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Exp
Categorical

Space
Dimension

Validation Testing # Water Meters

Defective Non-defective
#1 205 78% ± 8.5% 83% 2,062 15,652
#2 0 85% ± 1.7% 86% 2,062 15,652
#3 128 73% ± 12.5% 81% 2,062 15,652
#4 48 76% ± 13.4% 85% 2,062 15,652

Table 2.7 Prediction accuracy: w/ categorical variables, w/o categorical variables,
PCA and Binning

technique is employed. At that precise point, we took the decision to adopt an
alternative method.

Dimensionality reduction with a Pareto Analysis

We decide to better enquire on how the values taken by each categorical variable
were distributed over our 17,714 water meter devices.

In Figure 2.6, histograms are plotted that begin to reveal an important fact.
There are many devices that possess a given characteristic (or take on a specific
value) of a certain categorical variable, while many other characteristics/values
are scarcely relevant for those devices.

If we better analyze Figure 2.6, we see that we have four plots, each one for
each analysed categorical variable. From top to bottom: A, B, C, and finally D. In
each plot, one can read the number of devices that possess a certain characteristic
(or value) for that categorical variable, using the scale set at the leftmost side of
the y-axis of the Figure, while the n different characteristics (or values), for each
categorical variable, are distributed over the x-axis. Obviously: n = 98 with A; n
= 45 with B; n = 48 with C and n = 14 with D. It goes without saying that the
higher is a histogram, the more are the devices possessing that given categorical
characteristic.

There is another information portrayed in Figure 2.6: for each categorical
variable, we have a dotted curve with the cumulative percentage distribution
of those n values over our devices. As an additional note: Figure 2.6 has been
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Fig. 2.6 Number of devices possessing a given categorical characteristic (From
top to bottom: variables A, B, C, and D)
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drawn only for the defective meter devices. For the sake of conciseness, we have
omitted to report an additional figure for non-defective devices, as it would show
very similar results.

In the end, a careful analysis of Figure 2.6 reveals that the distribution of
the categorical characteristics possessed by our 17,714 devices is shaped like a
quasi-Pareto function [94].

As to this choice of identifying with a Pareto distribution, the curves ac-
cording to which the categorical values possessed by our devices is shaped, we
could notice that there is a wide hierarchy of several other power-law or Pareto
distributions (known, for example, as Pareto type I, II, III, IV, and Feller–Pareto
distributions). However, our intent, here, is simply to emphasize that our em-
pirical observation of the curves of Figure 2.6 shows that the typical 80-20
Pareto rule, stating that 80% of outcomes are due to 20% of causes, precisely
reflect the situation under investigation. Only the adoption of a quasi-Pareto
function fits well the trend of our four categorical variables where just a few of
the most frequent values would provide a contribution in terms of knowledge
representation of this phenomenon. In other words, what happens is that, given a
categorical variable, just a small subset of its characteristics (or values) is pos-
sessed by most part of the water meter devices. On the contrary, a lot of values
(or characteristics) that a categorical variable can take on are not representative
of any device.

Table 2.8 better summarizes this aspect numerically. For each categorical
variable, it reports: i) the number n of all the values a given variable can take on,
ii) the number of the most frequently used values, and finally, iii) the number
of devices (both defective and non-defective) that possess those most frequent
characteristics. In essence, what emerges from Table 2.8 is that, on average,
around the 90% of meter devices possess about the 20% of values of a given
categorical variable.

By virtue of this analysis, we reconsider our approach to manage categorical
data, not as input data on which to train the model, but as relevant information
to take into account to reshape the training dataset. In essence, the idea at the
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Variable # Values # Frequent
Values

# of Meter Devices
Faulty Non-Faulty Total

A 98 23 (23%) 1,855 (90%) 13,474 (86%) 15,329
B 45 7 (16%) 1,854 (90%) 13,707 (88%) 15,561
C 48 11 (23%) 1,889 (92%) 13,369 (85%) 15,258
D 14 3 (21%) 1,945 (94%) 13,963 (89%) 15,908
Table 2.8 A quasi-Pareto distribution of the categorical characteristics

basis of our approach is that of employing the most frequent values (of a given
categorical variable) to select the water meter devices on which a deep learning
model should be trained. At the end of this first step, there are four deep learning
models, one for each categorical variable in use. We can call them, respectively:
DLM_A, DLM_B, DLM_C, and DLM_D. Obviously, each model can return a
different prediction, each one with its associated accuracy. The predictions of
the four models can then be merged using bagging [41].

The deep learning models have the same architecture depicted in Figure 2.1,
but they use only the time series input and not the one for categorical data.

Results with the proposed approach

The results of the ten-fold cross-validation (with also the computation of the
standard deviation values) and on the test sets of the four deep learning models
are reported in Table 2.9.

Model Cross-Validation Testing
DLM_A 87% ± 1.4% 88%
DLM_B 87% ± 1.4% 87%
DLM_C 86% ± 1.1% 88%
DLM_D 87% ± 1.5% 87%

Table 2.9 Results using our approach to manage Pareto distributed categorical
data
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We would like to conclude by highlighting the fact that the prediction ac-
curacy returned by our models, whose examples are selected with the Pareto
rule, ranges from 87% to 88%. If we compare this result with the AUC value
of 83% (obtained with a model trained with both the numerical and categorical
variables, experiment #1, Table 2.7), we can observe a not negligible improve-
ment. Nonetheless, this improvement can appear more limited if we look at other
alternatives that either do not make use of categorical variables (86%, experiment
#2, Table 2.7) or do exploit some dimension reduction procedure, like Binning,
for example (85%, experiment #4, Table 2.7). Nonetheless, even in this case, we
deem as important to have proposed a new and original method able to increase
the prediction accuracy in the presence of categorical variables.

Finally, we have applied a Bagging strategy on that subset of our water meter
devices, both defective and non-defective, in the testing set, that possessed the
categorical characteristics of all the four models (DLM_A, DLM_B, DLM_C,
and DLM_D). This intersection counted 2,304 non-defective devices and 313
defective ones. In this way, we have an improvement for what concerns the AUC
which goes from 87%-88% to 90%.

2.7 Discussion and Conclusion

The answers to the research questions presented in Section ?? are presented and
discussed in isolation in the following Subsections.

2.7.1 On the usefulness of the deep learning algorithm for
predicting water meters failures

Once trained a deep learning algorithm able to predict the failures of water meters
with good levels of accuracy, even if not perfect, a question arises spontaneously.
How can such a model be effectively exploited even if it is not perfect?

To help with this question, it is important to describe first the current pro-
cedure that the company currently exploits to detect faulty meters. It goes as
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follows. A software procedure identifies all the meters in which the last two
consecutive valid (i.e., respecting the initial semantics of validity) are read with
almost a null increment in water consumption. These meters make up the list of
candidates to be faulty. At this point, an expensive human-based process starts to
individuate, among the candidates, those meters that actually need a replacement.
In some cases, controls are performed to make a report of suspected failure,
by screening additional databases containing relevant information that could
validate or not that suspect. For example, it could be the case when both water
and gas are supplied by the same company. In this case, to confirm a suspicion
of a failure occurring at a given water meter, the gas meter serving the same
client should be recording a non-null gas consumption. Anyway, to be sure of a
fault, verification interventions have to be scheduled and performed by human
operators, who have to reach the place where the meter is installed and verify
its operation. This is obviously unfeasible for all the faulty candidates. Finally,
note also that not all those meters that are greatly suspected as faulty are finally
changed, due to both operational and business motivations.

It is important, at this point, to talk about a few statistics regarding the
company of interest. On average, per year: some 10,000 water meters are
considered as faulty candidates, based on the estimates the company makes.
Always on average, almost 5,500 are those meters that are greatly suspected as
faulty after the execution of the procedures mentioned above, while some 1.500
meters are finally replaced in a year. The reader should put attention to this latter
value of 1,500 replaced meters per year, as this is currently the maximum amount
of faulty meters that the company can replace, based on its replacement policy.

With this data in mind, we can now discuss how the deep learning algorithm
could be employed and integrated into the business processes.

Take for example the results we got with the testing phase conducted with
almost 30,000 meters, with readings enjoying enhanced semantics of validity.
Out of those 30,000 meters, 6,652 meters were suspected as faulty, while 22,634
were the non-faulty ones, as stated by the company. Just to remind it, our
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classifier was able to make predictions in that context with an accuracy of 86%,
in terms of the AUC-ROC metric, in the case of two readings.

We then could initially try to use our classifier, set with a decision threshold of
0,46, the one that minimizes the number of both the false negative (faulty meters
predicted as non-faulty) and the false positive (non-faulty meters predicted as
faulty), as per Figure 2.7. With that threshold, we would obtain a classification
of faulty/non-faulty, like that represented in the confusion matrix of Figure 2.8.

Fig. 2.7 False Positives vs False negatives rates

At this stage, we could propose two alternative operational approaches to
replace faulty meters, that combine the results of our classifier with the traditional
procedures already in use.

With the first one, we could suggest to the company not to scrutinize all the
meters that our classifier has predicted as non-faulty (precisely 20,513 meters,
computed as the sum of the top and the bottom quantities on the left side
of Figure 2.8), and to concentrate their attention, as well as to deploy their
traditional verification procedures, only to those meters that were predicted as
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Fig. 2.8 Confusion matrix (decision threshold = 0.46)

faulty (i.e., greatly suspected; precisely 8,773 meters, obtained by summing
all the quantities on the right side of Figure 2.8). Unfortunately, this approach
does not work well in this case, due to the fact that the company should use its
traditional and expensive verification procedures on a number of meters (8,773,
for a six-months-long period) that almost doubles the average quantity of meters
that are considered as faulty with the methods already in use (5,500, over a
period of a year). Not only, with this approach, we know for sure that some
1,937 faulty meters will never be detected (left bottom sector in Figure 2.8).

To solve this latter problem, we could then move the decision threshold
towards the direction of minimizing the number of false negatives; for example,
setting the decision threshold at the value of 0.3, as per the confusion matrix
of Figure 2.9. This would have the effect of decreasing the number of faulty
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meters that are never detected down to 443 (left bottom sector in Figure 2.9).
Unfortunately, this way, we have further exacerbated the problem of scrutinizing
a huge number of meters that are suspected of being faulty, yielding almost
18,509 water meters to be verified with expensive procedures (computed as the
sum of the quantities on the right side of Figure 2.9).

Fig. 2.9 Confusion matrix (decision threshold = 0.30)

Well promising, instead, is the second approach we propose.
The idea is that of minimizing the number of false positives, for example

moving the decision threshold to a value of 0.65, as per Figure 2.10. With this
approach, our suggestion to the company is to adopt a brand, new procedure
to replace faulty meters, which is as follows: focus only on the meters that our
classifier has predicted as faulty (1680 meters on the right side of Figure 2.10),
and proceed directly with the replacement of all those meters.
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Fig. 2.10 Confusion matrix (decision threshold = 0.65)

Following this approach, the company will have to replace a number of faulty
meters that is comparable to the maximum number of those it can replace based
on its current replacement policy (1680 vs circa 1500), yet without the need to
resort to complex and expensive procedures to individuate them.

Further, in this situation minimized is also the amount of those meters that
go replaced even if they did not need any replacement. Indeed, only 21. In other
words, in this case, meters have been predicted as faulty and then replaced with
a precision of 98,75%. As a final consideration, this discussion demonstrates
how savvy use of our intelligent classifier can help the company to detect faulty
meters to be replaced without any interference on the business process currently
in use [19].
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The proposed approach highlights how deep learning algorithms, even if
have not perfect prediction capabilities, can be effectively employed by the
company. The use of machine learning algorithms does not have to be an all-
or-nothing phenomenon in which machines have to be perfect. Such a claim
of perfection is probably a cultural projection of the western culture and the
results of the Christian apocalyptic thinking [27] in which there is a binary
vision: technological apocalypse against techno-utopianism. On the one hand,
there is the desire for perfect machines while on the other, a single case of
failure is enough to put into question all of them. But when working in the real
world, the perfect machine does not (yet) exist. Anyway, according to our vision,
the question is not whether or not to rely on an imperfect machine, rather it is
deciding how much autonomy we are willing to give to them. In fact, there is a
wide spectrum of automation from fully normal to fully automatic performance.
Hence, machine learning algorithms can substitute humans (task substitution)
until complementing humans (task augmentation) [121]. In this case study, we
showed how the deep learning algorithm can support humans, evaluating all
those cases in which they are highly confident while humans will analyse the
remaining cases, the most doubtful ones, in which the machine tends to make
mistakes. In this way, we return to have the same concept of machines that
humanity has always had, consisting of taking away the useless work.

2.7.2 Evaluating the Effect of human-in-the-loop Data Prepa-
ration

At the end of our experiments, we were able to successfully train a deep neural
network that predicts water meters failures with good levels of accuracy, such
that to allow its inclusion within company processes, as proposed in the previous
Subsection. Then, we reflect on the implications of all the operations we had
carried out so far on data. In fact, not all the data available that serves the interests
of some specific business process can be considered adequate to instruct an
intelligent machine that is intended to implement a new service if this process is
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conducted without a deep reflection on the validity, sense, and subtle implications
of the training data.

As described in Section 2.5, there has been a high level of interaction between
humans (both domain experts and machine learning experts) and data, with the
final aim of removing impurities and operational data, to be able to define a
dataset in which the phenomenon of water consumption is adequately described.
Hence, avoiding the negative consequences of a lack of attention on data.

In particular, we focus on the data relative to water consumption. We consider
the consumption of the readings included into 1) the set of readings respecting the
semantics of validity, 2) the set of readings enjoying the enhanced semantics of
validity, and 3) the set of readings randomly, sampled from the ones of enhanced
semantics of validity, used for training.

Take into consideration the plots of Figures 2.11 and 2.12. They both aim
to measure the number of readings (y axis) whose average value equals a given
value, say X (on the x axis). In Figure 2.11, we have the case of the dataset with
the semantics of validity, while in Figure 2.12 we have the enhanced semantics
of validity. As seen from a visual comparison of the two plots, we have a clear
impression that the shapes of the two curves are not that different, even if the
quantity of readings with an amount of consumed water equal to any given value
X in the first dataset is larger than the correspondent quantity of readings with
the X-Factor.

In order to have a deeper understanding, we subjected these values to statisti-
cal tests. Table 2.10 report for each of the three set the total amount of readings,
the average (µ), and the standard deviation (σ ) values of the consumed water
per reading (cubic meters of consumed water).

Id Dataset # of Readings µ σ

1 Semantics of Validity 11,856,582 5,307 86,45
2 Enhanced Semantics of Validity 1,973,493 3,674 17,796
3 Sampled for training 135,018 3,647 11,852

Table 2.10 Water consumption statistics
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Fig. 2.11 Water consumption values using the semantics of validity

Since data are normally distributed with known values for both average and
standard deviation, we use the Z test, whose results are reported in Table 2.11.
The null hypothesis is that the average values of consumed water per reading are
the same. We tested our null hypotheses with two different significance α values,
0.05 and 0.01. As seen from Table 2.11, the null hypothesis that the average
values of consumed water per reading in the initial semantics of validity and in
the subset of readings subjected to the enhanced semantics of validity are equal
is to be rejected (first line). Instead, it cannot be rejected the null hypothesis
that the whole subset of readings with the enhanced semantics of validity has
an average value of consumed water per reading equal to the specific subset of
those readings specifically used for training.

We can now go back to the initial research question: "How much is the
impact of human-in-the-loop approaches in data preparation?". Starting from
the analysis presented in this subsection, we can state that our human-in-the-loop
approach to data preparation had a significant impact on the dataset and, conse-
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Fig. 2.12 Water consumption values using the enhanced semantics of validity

Test p-value α = 0.05 α = 0.01
µ1 = µ2 < 10−5 Reject Reject
µ2 = µ3 0.75 Fail to reject Fail to reject
µ1 = µ3 < 10−5 Reject Reject

Table 2.11 Z Test - Results

quently, on the performance of the deep learning algorithm. In fact, the presented
results highlight how the data preparation phase changed the characteristics of
the dataset, from a statistical perspective. Such a result can be taken as a further
confirmation that attention has to be paid with respect to the importance and the
impact of data preparation from a statistical point of view.

2.7.3 Dimensionality Reduction for Pareto Distributed Data

We have proposed an approach to treat categorical, high dimensional data and
we now emphasize both the advantages and the possible limitations of it. Our



46 Imperfect machines and the role of humans in data science processes

approach has proven to be useful in all those cases with categorical variables
when it can be shown that the training data are distributed following a (quasi)
Pareto statistical distribution. This should not be considered as a limitation,
because the field of application may extend very far from the field we have
chosen for our study (i.e., the predictive maintenance of water meter devices) up
to other research topics where this kind of unbalanced statistical data distributions
often occur.

Second, another intriguing issue is that it could seem that, in our training
process, we have mixed notions from two different genres (feature selection
using the Pareto rule and deep learning). To this aim, we would like to emphasize
the fact that while it is true that one of the strong advantages of a deep learning
model is its inherent hierarchical feature selection along with the successive
level of increasing abstraction in detecting patterns, many practical situations
exist where the data have huge dimensions and are also very sparse. In those
cases, it becomes difficult to use a pure deep learning approach. In those specific
situations, a good practice can be that of using adequate projection algorithms
that decrease the number of features to a reasonable number, which can be then
effectively tackled by deep learning. When this happens, we should interpret
such a procedure more as a feature extraction procedure, rather than a feature
selection, which is more typical with classical machine learning algorithms. In
simple words, the new features that are extracted are somewhat meaningless
from the point of view of the deep learning method, yet their extraction can be
useful to drive the learning process, in some specific cases. This has been exactly
also our case. Not only, but a new type of literature is emerging that describes
similar situations, like for example in [137, 106, 165].

This latest issue has another interesting implication which can be summarized
with the question of whether more traditional machine learning classification
algorithms, like Support Vector Machines, for example, could perform better with
respect to the deep learning models we have utilized selected based on the Pareto
rule. To investigate this subject, we have carried out an additional experiment,
where more traditional machine learning algorithms were used. We employed
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two classical machine learning algorithms like Support Vector Machine (SVM)
[35] and Classification and Regression Trees (CART) [85], implemented using
the Scikit-learn library [113]. Results from these experiments are shown in Table
2.12. In particular, in the second column of Table 2.12 the AUC values are
reported, along with the correspondent standard deviation values, obtained with
the ten-fold cross-validation procedure. In the third column, instead, we show
the AUC values achieved during the final testing phase.

As it is evident from a comparison of these results with those from Table
2.9, traditional machine learning algorithms have provided, in our case, predic-
tion accuracy performances that are worse than that obtained with the method
proposed in this section, thus confirming the validity of our choices.

Model Cross-Validation Testing
SVM w/ Categorical 69% ± 10.4% 80%

SVM w/o Categorical 76% ± 2.6% 77%
CART w/ Categorical 65% ± 6.3% 73%

CART w/o Categorical 74% ± 2.7% 74%
Table 2.12 Comparative results using SVM and CART with and without categor-
ical data

Third, it is important to provide an answer to a more practical question
that could emerge at this point of the discussion: How can our method be
serviceable if applied to any of the meter devices that are utilized to measure
water consumption in our case? In other words, if we have to make a prediction
on a new meter device, how can we proceed? The answer to this question relies
on the simple application of the following procedure. We should, first, consider
that device, and check if it possesses the categorical characteristics of either
the variable A or B or C or D. If that device possesses any of the categorical
characteristics of interest, we can use the corresponding model (either DLM_A,
or DLM_B, or DLM_C, or DLM_D) to make our predictions. Instead, in the
negative case, we should not use our models to make a reliable prediction for
that device, and we should resort to a more traditional approach. However, it
should be noticed that the likelihood that a device does not possess any of those
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characteristics, at least in the context of the dataset we have studied, is quite low;
i.e., below 10% on average, as our Pareto analysis has demonstrated.

Fourth and final. The approach we have proposed can be seen as a method
that can be used in combination with additional techniques, useful to improve its
predictive performances, like Bagging. This can be employed whenever there
is a device that possesses the characteristics of all the four models together, in
the following way. We could use each different model, in isolation, to return its
prediction results for that given device, and then we could average over all those
returned results, to produce a unique and comprehensive prediction. Obviously,
we can expect that this Bagging strategy, at least with our dataset, can work only
for a limited quantity of meter devices; yet it could provide finer predictions,
whenever applicable.

Our experience can be considered as a further confirmation of the role of
humans in the data science processes. In fact, they can provide insights and
propose new methods to address possible problems. This is exactly our case,
where we were able to devise a method to handle high-dimensional Pareto-
distributed categorical data. The novelty of our approach rests upon the idea of
exploiting those categorical values to better select the sets of devices on which
the model goes trained. Avoiding the use of those categorical characteristics
as a direct input to the model has removed the danger of an explosion of the
dimensions of the learning space, and with this approach, we have reached
predictive accuracies ranging from 87% to 90%, for an amount of 90% of the
available devices. We have provided empirical evidence that this approach
maintains its validity even if compared with more traditional space dimension
reduction methodologies and classical machine learning algorithms.



Chapter 3

On combining statistical
approaches ad machine learning to
observe a phenomenon

Can statistical approaches combined with machine
learning be used on big data to observe different
phenomena?

— RQ-4

The big data era has sparked the debate which opposes data-driven to
knowledge-driven science. In this chapter, we aim to contribute to such a
discussion by presenting our idea that data combined with statistical methods
and machine learning algorithms should be used to observe two phenomena,
confirming or refuting hypotheses, as has always been the case using the sci-
entific method. In particular, we studied the potential relationship between air
pollution and CoVid-19 infections using statistical approaches and machine
learning on data relative to the Emilia-Romagna region (Italy) and the New York
State (USA). Findings show that such a relationship could exist.



50
On combining statistical approaches ad machine learning to observe a

phenomenon

3.1 Introduction

In the Big Data era, different positions are emerging according to which science
should be driven by data [77]. This unprecedented availability of data can
be exploited with several advanced data analysis techniques such as artificial
intelligence approaches, in particular with machine learning ones, to extrapolate
theories from the data. Contrary to these positions, scientists are claiming the
importance of theory even in presence of such massive amounts of data, stating
that "Big data need big theory too" [36]. Following this line of thought, data
combined with statistical methods and machine learning algorithms should be
used to confirm or refute hypotheses, as has always been the case using the
scientific method. This is exactly the approach that we adopted in our case study,
where we evaluated the possible relationship between air pollution and CoVid-19
infections.

Although CoVid-19 has originated in Wuhan, China in late 2019, several
provinces of northern Italy have soon become among the hardest-hit regions in
Europe. This virus outbreak spread with particular intensity to the Italian regions
of Lombardy, Veneto, Emilia-Romagna, and Piedmont, in the period from late
February to late April, with a severe toll in terms of human deaths. As simple
evidence of this disaster, it suffices to remind that the Italian Institute of Statistics
(ISTAT) has recently computed for Italy an average increase of 49,4% in the
number of all the fatalities that occurred during the month of March 2020, as
compared with the number of deaths of March 2019 [69]. Not to mention that, in
the same month of March 2020, the official death toll, for some given provinces,
like Bergamo and Brescia (in Lombardy), stands at more than five times the
value recorded one year before, same period [69]. While it is true that Italy had
the bad luck of being the first European country to be devastated by the outbreak,
what has gone wrong has motivations in a combination of demographic, political,
organizational, industrial, climatic factors, and low Intensive Care Unity (ICU)
capacity as well, that need further specific investigations.

With regard to the New York State, the first case of CoVid-19 was recorded
in New York City (NYC) on March 1st, 2020. A woman, travelling back from
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Iran, was tested positive. This was only the first of a long series of infections,
with the pandemic that swept through the whole State of New York, reaching
in just one month the considerable amount of 25,665 infected people and more
than 200 deaths [55]. We were just at the beginning of a sad story, since in
the following three months NYC experienced a widespread diffusion of this
contagion, recording over 200,000 infections and more than 21,000 confirmed
deaths. After the words of the Governor, Andrew Cuomo: “The apex is higher
than we thought and the apex is sooner than we thought”, many measures were
implemented to contain the spread of this virus, including public school closures
on March 15th, and stay-at-home orders (for non-essential workers) on March
22nd [169]. While newly diagnosed infections, hospitalizations, and deaths
peaked in April, this lockdown regime led to a substantial drop in May, and to a
subsequent re-opening phase for industries, and other business activities, starting
on June 7th, 2020 [163]. Since then, NYC has experienced a relatively long
period with the number of the new daily CoVid-19 cases that have continued to
fall, while they were climbing in the rest of the United States.

All this said many studies have been developed by scholars who have in-
vestigated how the CoVid-19 spreads and decays [161, 129]. While of great
interest are those scientific investigations that look for the most effective non-
pharmaceutical containment countermeasures, that could help to keep a lid on the
epidemic (including contact tracing and testing) [40, 128, 125, 84, 3, 61, 79, 62],
much attention has been also paid to inquire into the factors that can favour the
contagion [38, 143]. In this broad spectrum of research, studies are emerging
that have tried to understand if a possible association exists between the exposure
to air pollution and CoVid-19 infections and deaths.

Our contribution, here, is to provide a further investigation on the possibil-
ity that a causal correlation exists between the two cited phenomena (i.e., air
pollution and spread of the infections). We, as investigators, have to admit that
we do not possess any prior knowledge of the researched correlation at a level
appropriate to the scale of this phenomenon, e.g., biological, chemical, and phys-
ical, and we want to limit our study to an examination of the plausibility of the
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existence of that correlation at a statistical level. In particular, we are interested
in verifying if that correlation comes either confirmed (or rejected) with two
different approaches in two different geographical areas: the Emilia-Romagna
region (Italy) and the New York state (USA).

First, we subjected those temporal series of data to a Granger causality
statistical hypothesis test. Testing for Granger causality means verifying the
statistical hypothesis that a time series X Granger-causes another time series Y:
in other words, X values would allow to better predict future values of Y, beyond
the information contained in past values of Y alone. To do that, two different
regression models are, typically, tested on the Y values. The first one uses only
previous values of Y, while the second exploits both previous Y values, plus
lagged values of X. If those tests are successful, it can be concluded that X values
provide a statistically significant predictive information about future values of Y.
In simple words, X Granger-causes Y. To this aim, it is worth mentioning that we
analysed the daily values of the following air pollutants: PM2.5, PM10, and NO2,
treated as time series occurring in a given temporal period that has preceded the
series of the CoVid-19 infections, in all the provinces of the Emilia-Romagna
region and counties of the New York State. It is also worth mentioning that
we know very well the limitations of the Granger-causality tests, that well be
adequately treated and discussed [100].

Second, in order to provide further evidence in favor of this correlation, we
conducted an additional series of experiments, using some Machine Learning
(ML) algorithms. Specifically, four different ML algorithms were exploited
in the following (non-traditional) way. At each step of this procedure, they
were trained with the data (CoVid-19 infections vs. pollution) relative to all the
scrutinized counties or provinces, except for the one for which we asked the
algorithms to predict the number of the daily infections, given the concentrations
of the pollutant occurred in the previous days. This procedure was repeated for
all the counties and provinces of interest, resembling a kind of county/province
cross-validation methodology.
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Nevertheless, our study does not have to be treated as the final proof of a true
causality nexus between the two phenomena, but as an additional clue on a case,
that does not deserve to be already archived.

Finally, with our experiments, we want to contribute to the discussion about
knowledge-driven as opposed to data-driven science, highlighting the importance
of theory even in the big data era. Surely, this massive amount of data can
be successfully exploited using artificial intelligence and statistical methods
and present unique opportunities, providing further ways to confirm or refute
hypotheses. However, theories are important as well as conceptual insights from
the humans involved in the experiments.

The remainder of the chapter is structured as follows. Section 3.2 presents
some related works. In the next Section, we detail the research questions that
drove this study. Section 3.4 describes the methodology behind our approach
while Section 3.5 presents the results we yielded. Finally, Section 3.6 concludes
the chapter, critically discussing the answer to the research question.

3.2 Background and Related Work

CoVid-19 manifests as a severe respiratory disease, mostly pneumonia. This has
led many researchers to focus their attention and study the potential relationship
between exposure to particulate pollution and the rapid contagion brought by
this virus. With this in view, recently, many international scientific studies were
developed to investigate the relationship between particulate of various types
and the CoVid-19 incidence.

Exemplar is the work by Jiang, Wu, and Guan that addresses two relevant
issues, with reference to the association between particulate and CoVid-19
[72]. They start from the very general consideration that air pollutants raise
concerns over their association with infectious diseases, being often the cause
of local epidemics [164, 65]. This is typical with influenza since the airborne
air pollutants perform as condensation nuclei for the virus to attach, as also
confirmed by several other studies [145, 86, 93, 48]. Owing to this consideration,
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Jiang, Wu, and Guan proceed with the following reasoning: since CoVid-19
is known to cause human-to-human transmission by infectious secretions [91],
these secretions could be transferred in many different ways, including ambient
air pollutants. Not only, Jiang, Wu, and Guan also observe that is not by chance
that PM2.5 is the air pollutant constantly associated with an increased CoVid-19
incidence in all the Chinese cities of their study, namely: Wuhan, Xiaogan, and
Huanggang. Besides the fact that particulate could provide condensation nuclei
for viral attachment, Jiang, Wu, and Guan add a second biomedical argument
which is as follows. It has been discovered that the receptor for CoVid binding is
the angiotensin-converting enzyme 2, which concentrates on the type II alveolar
cells [168]. Since, type II alveolar cells are located in the alveoli, which are only
reachable to particles with diameters less than 5 micrometers, it becomes evident
that very small airborne pollutants, such as PM2.5, have the potential to penetrate,
unfiltered, the respiratory tract, down to the alveolar region [18, 146, 63, 141].

Similarly, interesting results were found also by Pansini and Fornacca who
investigated the incidence of CoVid-19 mortality rate in highly polluted areas.
They focused their attention on selected areas from different countries (including,
among others, China, Italy, and US), and considered also CO and NO2, in
addition to particulates. In particular, they collected data about air quality from
two kinds of sources: ground monitoring stations and satellites. According to
the analysis they performed, they found significant positive correlations between
CoVid-19 infections and air quality variables. Yet, while in China the strongest
correlation was found with the (satellite-derived) CO values, in Italy and in the
US the highest correlation values, with the incidence of CoVid-19, were those
of NO2, derived respectively from satellite (Italy) and ground measurements
(US). One of their final observation is that the CoVid-19 mortality ratio is higher,
regardless of the higher number of infections, in all those areas with poor air
quality, that is, where values of CO, NO2 and PM are constantly higher than the
acceptable limits [111].

Nevertheless, besides this set of international studies developed in this field
(the interested reader can refer also to [160, 108]), we scrutinized, with spe-
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cial interest, just those recently conducted by members of the Italian scientific
community, for two main reasons. First, the impact of particulate pollution was
already being severely felt like a huge health problem in Northern Italy, well
before the advent of CoVid-19, and second, those studies have been put at the
centre of a heated debate in Italy, and considered not convincing under different
perspectives.

To be precise, (almost) all those papers at the centre of this controversy have
followed two concurrent lines of reasoning, that are typical when one wishes
to infer causal relations from data. On one side, they have tried to acquire
(through experimentation) the knowledge of the biological/chemical/physical
mechanisms at the basis of the possible correlation between the particulate and
the virus spread. On the other side, they have tried to confirm the existence of
a true causal relationship between the two aforementioned phenomena, using
some kind of statistical hypothesis testing.

The works conducted by Setti et al., for example, provided a quite convincing
contribution to this discussion, by both revealing that traces were found of
the CoVid-19 RNA in PM10 samples in Bergamo [134], and also testing the
hypothesis of such a correlation between the daily surplus of that particulate and
the consequent contagion between humans by exploiting the statistical model
of the coefficient of determination [135]. Daily infections were recorded in the
period from February 24th to March 13th, while the surplus of PM10 values was
considered, on a daily basis, in the period from February, 9th to February 29th.

Conticini, Frediani, and Caro, instead, without any statistical testing activity
in support of their hypothesis, argued about the fact that poor air quality can lead
to a state of permanent body inflammation and chronic respiratory difficulties,
along with a hyper-activation of the immune system; being these all circum-
stances that make human lungs prone to be attacked by the virus. This is their
hypothesis explaining the high mortality rate, recorded in Emilia- Romagna and
Lombardy, owing to the virus outbreak [34].

Finally, Becchetti et al. analysed both the PM10 and PM2.5 values, although
recorded on an annual basis, and correlated them to CoVid-19 infections and
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mortality, using a cross-sectional regression statistical method. Theirs is a vast
study, where scrutinized are also other factors, including temperature, popula-
tion density, income, number of lung ventilators, and public transport usage.
Nonetheless, the conclusion is that air pollution can be considered as a strong
predictor for both virus contagions and mortality [11]. In that paper, again, cited
as mechanisms at the basis of the correlation between the particulate pollution
and the contagion are, respectively, the hypotheses that: i) humans living in
highly polluted areas have a reduced respiratory capacity to react to the virus,
and ii) the particulate may act as a carrier for the virus.

It is important to remind that all these papers present evidence of the correla-
tion between air pollution and CoVid-19 infections based on statistical analysis.
Hence, they should not be treated as final proof, as criticized by some scholars
who underlined that all those discoveries boil down to vague clues, completely
preliminary, with some of them not yet subjected to peer-review by experts in
the field [26].

3.3 Research Questions

Starting from the background analyzed in the previous sections, in this chapter
our goal is to respond to the following research questions:

RQ-4 Can statistical approaches combined with machine learning be used
on big data to observe different phenomena?

3.4 Methods

We now present some preliminary information relevant to our study and a
description of the data we have used, along with some reflections on the statistical
methodology we have employed.
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3.4.1 Data Description

Emilia-Romagna

As already anticipated, in this study we are interested in reasoning around the
plausibility of a correlation between air pollution and the spread of CoVid-19
infections in the Emilia-Romagna region.

Prior to beginning, it is important to make clear that we have taken into
considerations all the provinces of the Emilia-Romagna region, in the period
of interest, namely: Bologna, Ferrara, Forlì-Cesena, Modena, Parma, Piacenza,
Reggio nell’Emilia, Rimini, and Ravenna. It is worth mentioning that this Italian
region is populated by almost 4,500,000 citizens and has been one of the more
seriously affected by this virus, with a total number of infections of 26,719, and
as many as 3,827 fatalities, as of May 9th, 2020.

Relevant for considering this process from the right temporal perspective is
also the chronology according to which restrictions were first imposed on human
activities in those provinces and then released after a substantial decay of the
virus incidence. In particular, we can count four subsequent phases:

• Prior to 8 March 2020, no specific restriction was imposed, which was
valid for all the nine provinces of Emilia-Romagna, except for some local
control measures (for example, for schools and universities);

• A full lockdown was first imposed to the provinces of Modena, Parma, Pi-
acenza, Reggio nell’Emilia, and Rimini, as of 8 March 2020 [51], and then
extended to the remaining provinces of Bologna, Ferrara, Forlì-Cesena,
and Ravenna on 10 March, 2020 [52];

The data on which we exerted our testing activity were essentially of two
types: i) the time series relative to the new daily CoVid-19 infections, and ii)
the air pollution In Emilia-Romagna, under the form of the measurements of
the following pollutants: PM2.5, PM10, and N02, taken on a daily basis at all
the aforementioned provinces (Bologna, Ferrara, Forlì-Cesena, Modena, Parma,
Piacenza, Reggio nell’Emilia, Rimini and Ravenna).
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The number of daily infections was collected using the GitHub repository of
the Italian Civil Protection, for the entire period starting on February, 24th and
closing on April, 17th, 2020 [37].

The daily values of the pollutants mentioned before, instead, were collected
using the website of the Regional Environmental Protection Agencies (ARPA) of
the Emilia-Romagna region, for all the nine provinces we have cited before [10].
Since there were multiple monitoring stations distributed over each province,
an average of the values returned by each station was computed, on a daily,
provincial basis.

More important is what follows. We have all learnt that this CoVid-19
infection can be subjected to an incubation period, whose duration can range
from a few days to almost 14 before an infected human begins to manifest
some given symptoms. More precisely, authors of [83] maintain that the median
incubation period can be estimated to be 5.1 days (with a confidence interval
of 95%, it takes from 4.5 to 5.8 days) and that the 97.5% of those who develop
symptoms will do so within 11.5 days (with a confidence interval of 95%, it
takes from 8.2 to 15.6 days). These estimates imply, in the end, that 99% of
the infected population will develop symptoms within 14 days. Further, other
authors also emphasize that a spare delay of 3.6 days can be experienced from
the moment in time the result of a virological test is performed, and the time
when it is recorded in the correspondent database [29].

These are the reasons why we designed the two different time series:

• the one with the average daily pollution values (say X), and the one with
the number of the new daily infections (say Y),

• where X was anticipated in time with respect to Y of 14 days.

We decided not to use an offset of sixteen days (as resulting from the sum of
12.5 with 3.6) between a) and b), simply because this minimum time difference
lag was absorbed by the specific statistical methodology we have employed (i.e.,
the Granger causality), where we have varied the so-called lag length parameter
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in a range from 3 to 8 days (as better explained in the Subsection 2.4 below)
[56].

Following this reasoning, the period when we measured the particulate
(specifically, PM2.5, PM10, and NO2) started on February, 10th and closed on
April, 3rd, 2020. As already told, instead, the period for measuring the infections
was: February, 24th – April, 17th, 2020.

Hence, in the end, it should be clear that an offset has been put that temporally
separates these two time series, due to the consideration that all that can happen
on a given day, say x, may have its effect in terms of manifestations of the
infection after a period in time which can be as long as x + 14 days.

Figures 3.1, 3.2, and 3.3 report the twenty-seven graphs showing how our
time-series (PM2.5, PM10, and NO2 vs. infections) evolve in time.

As already anticipated, we are interested in studying the relationship between
air pollution and CoVid-19 infections also with machine learning. The idea is to
count the number of daily infections registered per each province, in all the nine
provinces of Emilia-Romagna, during the four days that preceded the lockdown
decision taken by the Italian Government on 8–10 March 2020 (the specific day
depends on the specific province).

Once those infections counts were obtained, we computed an average value
of those daily numbers on a per-province basis for those 4 days. We then got
nine numbers that were finally aggregated on a regional basis, under the form
of a further average count, thus yielding the average number of infections per
province on a regional basis in Emilia-Romagna. The result was 17 (from now
on, the so-called threshold). Told differently, the daily number of infected people,
in Emilia-Romagna, averaged over those four days, amounts to 17 times 9 = 153.

Now, please follow the reasoning. If the Italian Government, using its
own decisional models, opted for a lockdown decision, as soon as the average
regional number of daily infections on a per-province basis in Emilia-Romagna
had surpassed the threshold of 17, then we could use that number as a key to
design the predictions scheme of our ML model. Not to forget also the fact
that Emilia-Romagna was, at that time, the region with the largest number of
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Fig. 3.1 Particulate matter (PM2.5) and CoVid-19 infections (all the examined
periods in Emilia-Romagna)
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Fig. 3.2 Particulate matter (PM10) and CoVid-19 infections (all the examined
periods in Emilia-Romagna)
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Fig. 3.3 Nitrogen dioxide (NO2) and CoVid-19 infections (all the examined
periods in Emilia-Romagna)
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infections after Lombardy. Hence, the number of infections that occurred in this
region has had an important role in that lockdown decision.

To conclude this reasoning, our intention is to replace the initial idea to
predict if, in a given day, the number of infected people will surpass that threshold
of 17, on that day, on a per-province, regional basis. More precisely, we ask our
ML model to compute the probability that, in a given future day, each province
in Emilia-Romagna will count a number of infections larger than 17—and, then,
we look at the regional picture with all its nine provinces, and the probability
that the number of infections for each exceeds 17.

For the sake of completeness, in Figure 3.4, we provide a graph with the
cumulative quantities of infected people, per day, for all the nine provinces of
interest, plus the cumulative values of the regional and the national averages,
registered during the four days prior to 8–10 March 2020.

In Figure 3.4, one can read: Bologna, bo; Ferrara, fe; Forlì-Cesena, fc;
Modena, mo; Parma, pr; Piacenza, pc; Ravenna, ra; Reggio nell’Emilia, re;
Rimini, rn; Emilia-Romagna, er; and Italy, ita.

Important to note is the fact that, in Figure 3.4, our regional infection average,
being cumulative over those four days, amounts to 17 times 4 = 68 (as read at
the rightmost end of the figure).

By contrast, if one takes into consideration the national average, one can
notice that the following value of 8 times 4 = 32 can be computed (as read at the
rightmost end of the figure). This smaller quantity at a national level is due to
the fortunate fact that many regions in Southern Italy were not severely affected
by the virus, thus providing a smaller contribution to the national average.

Interesting to remind is also the average number of infections per day in
Lombardy, computed in a similar way (i.e., the average per-province number
of infections, on a regional basis), which was as high as 38. This latter number
is important. It is well known that in that period, Lombardy was really the
hardest-hit Italian area, thus becoming a sort of hotspot for CoVid-19 diffusion
in Italy. This is why we decided not to choose this number (i.e., 38) in our



64
On combining statistical approaches ad machine learning to observe a

phenomenon

Fig. 3.4 4–7 March 2020—cumulative number of infections: Modena, Parma, Pi-
acenza, Reggio nell’Emilia, and Rimini; 7–10 March 2020—cumulative number
of infections: Bologna, Ferrara, Forlì-Cesena, and Ravenna; cumulative regional
and national infections averages

scheme. It would have been somewhat misleading, especially in consideration of
the fact that we want predictions that are valid for the Emilia-Romagna region.

At this point, it is important to mention that, using the value of 17, we have
essentially split our initial dataset into two separate portions:

• The former, with all those days with a number y of daily infections, equal
or smaller than 17; and

• The latter, with those days registering a number of newly infected people
larger than 17.

Not only this but also, to properly manage the hypothesis of a relationship
between pollutants and infection spread, crucial is also the concept of lag. In
particular, with lag, we account for the following fact: On a given day, say z, we
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may have registered a certain number of infections, say y. Those y infections
could have manifested themselves after exactly fourteen days since the original
contagion happened exactly on the day: z - 14. Nonetheless, we also know that
there is a degree of uncertainty, affecting the exact number of days that should
be taken into account for this count.

To take this fact into account, with a lag equal to 4, for example, we reason as
if all the y infections, which occurred on day z, originated from the contribution
of pollutants that were in the air during a longer time interval of length 4 (starting
from day: z - 14). In this specific case, our interval would go from day z - 14 up
to day z - (14 - 4 + 1), that is, day: z - 11.

This is an important fact, giving rise to an important implication: With the
concept of lag, which can range from 1 to 8 in our model, we try to mitigate the
uncertainty concerning the exact day when people get infected.

State of New York

Also in this case, the data at the base of our study was essentially corresponding
to two types of time series.

The former was relative to the new daily CoVid-19 infections registered in
all the counties of interest in the period March 4th - 22nd 2020, while the latter
was concerned with the air pollution, in particular, the particulate matter PM2.5

registered on a daily basis, in the period February 19th - March 8th, 2020, in all
the counties of interest.

The information relative to the daily CoVid-19 infections was retrieved from
the website of the New York State Department of Health - CoVid-19 Tracker
[104], while the daily pollution PM2.5 levels were collected from the website
of the United States Environmental Protection Agency, under the Outdoor Air
Quality Data section [152]. Since, in each county there were different sensor
stations returning pollution values, at various times during the same day, the
correspondent data was aggregated using an average daily value, for each county.
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The first issue to explain regarding these two time series of data is concerned
with the different periods that were analyzed, that is February 19th - March 8th
(PM2.5) vs. March 4th – March 22nd (CoVid-19 infections).

It is also important to note that our investigation period ends on March 22nd,
in correspondence with the announcement of the Governor of New York State,
Andrew Cuomo, who placed the statewide stay-at-home order, starting from
8 p.m. on March 22nd [105]. Hence, the reason to limit our study to the pre-
lockdown period is that the lockdown measures might have significantly altered
the general situation, with a slowdown of human activities and a consequent
change in the pollution levels.

The two corresponding curves of our interest (pollutant and infections),
staggered by 14 days, are shown in the plots of Figure 3.5, where those curves
are reported for all the counties we have examined (precisely: New York, Kings,
Bronx, Richmond, Queens, Nassau, Suffolk, Rockland, Westchester, Onondaga,
Oneida, and Monroe).

In Figure 3.5, black lines are the PM2.5 pollutant values and the corresponding
time period, while red lines are the new daily infections and the relative time
period of interest. For each plot, one can see (leftmost) the measurement unit of
the PM2.5 pollutant (measured in micrograms/m3) and (rightmost) the number
of the new daily infected people.

Now is the time to provide the motivations behind our choice of investigating
those precise 12 counties in the New York state, represented in grey in the map
of Figure 3.6. The rationale was essentially the following: to evaluate if the
(potential) relationship between the PM2.5 pollutant and CoVid-19 diffusion
remained valid through very different scenarios, yet all geographically relative
to NYC.

This was translated into the following two conditions. First, we have wanted
to investigate both densely populated districts, like those comprised in the city
of New York, and also in less populated areas. Second, we have wanted also to
extend our analysis both to those counties that are comprised in NYC (or are
very close to NYC) and to those counties that are further away from NYC. In
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Fig. 3.5 PM2.5 and relative period (Black) vs. CoVid-19 infections and relative
period (Red).
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the end, we decided to choose 12 different counties, that can be considered as
clustered in three different groups. First, the counties/boroughs of NYC: New
York (Manhattan), Kings (Brooklyn), Bronx (The Bronx), Richmond (Staten
Island), and Queens (Queens). Second, the counties that are very/quite close to
NYC: Nassau, Suffolk, Rockland, and Westchester. Third, a group of suburban,
less populated counties that are far away from NYC: Onondaga, Oneida, and
Monroe.

Fig. 3.6 New York State map (scrutinized counties: in grey).

Also for the New York State chosen counties, we computed the threshold
of infections, the led to the decision of a full lockdown. We followed the same
approach used for the Emilia Romagna region. We counted the number of daily
infections registered per each county, in all the twelve counties of interest, during
the four days that preceded the lockdown decision. Once obtained those daily
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infections counts, we computed an average over all those 4 days, on a per-county
basis. We, then, got 12 numbers that were definitely aggregated under the form
of a final average count, thus yielding an infections threshold equal to 122.8. All
the values used to compute our average are reported in Table 3.1.

County Infections
03/17 03/18 03/19 03/20

New York 69 161 335 437
Kings 39 264 273 674
Bronx 29 123 154 191

Queens 38 123 336 519
Richmond 11 26 33 116

Nassau 24 52 186 385
Westchester 157 158 261 292

Rockland 9 8 23 48
Suffolk 22 31 62 193
Monroe 1 4 13 5

Onondaga 1 0 3 3
Oneida 0 0 2 0

Daily Average 122,7916667
Table 3.1 Number of CoVid-19 infections over four different days per each
county.

3.4.2 Granger Causality Approach

As already mentioned, we have employed a Granger causality testing model to
study if a causal correlation may exist between particulate matter and the spread
of new CoVid-19 infections in Emilia-Romagna [111].

This is a statistical hypothesis testing model typically used to determine if
there is a causal relationship between two time series. In particular, a time series
X is said to Granger-causes a time series Y if the prediction of the nth value of Y,
using both the past values of X and Y, provides more information rather than the
prediction based only on past values of Y [57].
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This model typically rests upon two axioms. The former is that past and
present may cause the future, but the future cannot cause the past. The latter
is that the cause contains unique information about its effects. Usually, the
null hypothesis of such a test is set to the fact that the time series X does not
Granger-cause the time series Y, while, consequently, the unique alternative
hypothesis is that the time series X Granger-causes the time series Y.

In our study, the alternative hypothesis was that the pollutants’ time series
Granger-causes the time-series of the infections. Hence, our aim has been to
verify if we could reject the opposite null hypothesis (i.e., pollution does not
Granger-cause infections), based on the available data.

To this aim, we set the level of significance at 5%, hence preparing to
reject the null hypothesis, only in the case that the corresponding p-values came
less than 0.05. Further, as the test assumes that both the time-series under
investigation should be stationary, we check and found this condition satisfied
using the well-known augmented Dickey-Fuller method [39].

Not only. Since we have designed two time series where the former (X =
pollution) temporally precedes the latter (Y = infection), we did not need to check
if the infection Granger causes the pollution, given that the time precedence of Y
by X comes naturally.

Nonetheless, it is important to repeat, here again, a concept we have al-
ready anticipated in the Introduction. Neither the Granger causality method,
nor any other statistical test can provide a final and convincing evidence that
two phenomena are correlated, from an epistemological viewpoint, if one has
neither a clear knowledge of the motivation that causes that relationship nor
has developed sufficient experiments at a scale that should be appropriate to the
observed phenomena.

With this regard, the Granger causality approach suffers from an additional
problem. In fact, if both X and Y are driven by a common third process, say W,
one might still accept the alternative hypothesis of Granger causality (X Granger
causes Y), even though it is evident that both X and Y have a common cause
(i.e., W), that determines their mutual correlation [9].
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Fig. 3.7 Causality structure

Moving this argument at the center of our specific case, one could even argue
that the human activities (playing the role of W, here) have been the common
basis for the correlation between pollution and infections (as portrayed in ex-
ample a) of Figure 3.7) and, hence, a true causality relation between pollution
and infection could not be demonstrated, even when our alternative hypothesis
is accepted. Nonetheless, in the next section we will show results, taken both
before and after the lockdown decisions (when almost all human activities were
at a minimum), that do seem to confirm the existence of a causal structure similar,
instead, to that shown in example b) of Figure 3.7.

To better understand how a Granger causality testing model works from a
computational perspective, fundamental is the following explanation.

We start from two time series X and Y (i.e., pollution and infections), whose
causal relationship is to be either demonstrated or rejected. In other words, X and
Y are the time series under investigation that can be modeled with the following
Granger causality equation:

Yt =
L

∑
i=1

αiYt−i +
L

∑
i=1

βiXt−i + εt

Specifically, Yt and Xt are the single elements of the two series Y and X,
and, in our case, they correspond to the values that Y and X can take on, on a
daily basis. In essence, with the formula above we can compute current values
of Y, based on previous values of both X and Y. How far back one can go with
previous values of X and Y, to perform the computation of the current value of
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Y, is given by the value of L, the so-called lag. To complete the formula, εt is a
white-noise-random vector.

This said, now comes the turn of explaining how to use this formula for
performing a Granger causality hypothesis testing. To this aim, crucial is the role
of the β coefficients. In fact, we can say that X Granger-causes Y only if the β

coefficients are not zero, since only in this case past values of X (and Y) become
useful to compute current values of Y. On the contrary, β coefficients equal to
zero make a null contribution to the final sum. It is now easy to understand that
modelling a causal relationship with the Granger formula amounts to perform a
statistical hypothesis test, where the null hypothesis is that all the β coefficients
are zero:

H0 : β1 = β2 = ...= βL = 0

The alternative hypothesis is, instead, that at least one of the β coefficients is
different from zero.

From a computational perspective, at this point, in a case like that of our study,
assigned all the actual values for Y and Y, a vector autoregressive procedure
(VAR) is to be run to derive the β coefficients. Upon computation of those β

coefficients, the F test procedure must be performed to check if those computed
values fit with all zero distributions of the null hypothesis. This statistical test
will return p-values. The higher the returned p-values, the more plausible is the
null hypothesis. The lower the p-values, the more plausible is the alternative
hypothesis: that is, X Granger-causes Y.

Said about the general Granger computational process, now comes the moti-
vation why we have chosen this procedure for our study, rather than other more
traditional statistical approaches, like, for the example, the one adopted in [145].

To better understand, consider the following example: Suppose we want
to evaluate if a relationship exists between the number of viral infections that
happened on a specific day (e.g., February 28th) and the amount of pollution
in the air. To do that, traditional approaches would compute values, based on
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measurements taken on just two days: the day of the infections vs. the day
assumed to be the one when the pollution occurred that was considered at the
basis of those infections, say for example February 14th. Exactly like in the
example a) of Figure 3.8.

With the approach based on the Granger formula, instead, we can take into
simultaneous consideration multiple days, each with its amount of measured
pollution. This is by virtue of the lag factor (i.e., the L value in the Granger
formula above) that allows one to go back as many days as one wants in the
computation. For example three days, like in the case b) of Figure 3.8 (or from 3
to 8, like in the case of our study, see Subsection 2.2).

This is a prominent computational aspect that should not go neglected since
the information on when a given infection precisely occurs comes with a large
amount of uncertainty. Still more remarkably, since CoVid-19 is manifesting with
variable temporal dynamics, we should adopt flexible computational methods to
study it. From this point of view, as the series shown in Figure 3.9 comparatively
demonstrate, methods à la Granger should be preferred, since they hold the
promise to analyze simultaneous contributions to the cause of a unique effect.

Fig. 3.8 The role of the lag factor in the Granger formula
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Fig. 3.9 Comparing temporal series: traditional methods (a); à la Granger meth-
ods (b)

3.4.3 Machine Learning Models

Essentially, we devised a non-traditional procedure, resembling a kind of an ML
(province/county) cross-validation methodology which went as follows: during
the training activity, we let some ML algorithms be instructed with the daily
values of the PM2.5 (input) and the CoVid-19 infections (output). The periods of
these two series of daily data were different for the Emilia-Romagna region and
the New York counties. For the former, the PM2.5 ranged from February 10th up
to June 30th, 2020 while the CoVid-19 infections spanned from February 24th
to July 7th. For the latter, instead, we consider from February 19th to March 8th
for PM2.5 and from March 4th to March 22th for CoVid-19 infections.

More precisely, the number of the CoVid-19 infections for each given precise
day, say X, were put in relation with the amount of the values of the PM2.5,
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registered in all those days included in the following time interval: [X – 7, X
– 14]. The choice of these eight days, prior to X, was taken depending on two
different factors: i) the need to be as close as possible to the correspondent lag
value used in the Granger analysis (which was equal to 5), and ii) as a result
of the ML hyper-parameters optimization process. After this learning phase,
this procedure went through a kind of testing validation where the instructed
algorithms had to predict if in a given day, in a specific province/county, the
number of infections either exceeded a predefined infections threshold or they
did not.

To summarizing, the entire process worked as follows. With each round of
our procedure, our ML algorithms were trained with the data (PM2.5 vs. CoVid-
19 infections) relative to all nine provinces of Emilia-Romagna regions and to all
the twelve scrutinized New York counties, except for the ones for which we asked
our algorithms to predict the number of daily infections, given the concentrations
of the PM2.5 particulate occurred in previous days. This procedure was repeated,
in turn, for all the provinces/counties under investigation. Obviously, the more
accurate were the predictions on the infections threshold exceedances, for the
counties subjected to our investigation, the more was confirmed the hypothesis
of a correlation between PM2.5 and the CoVid-19 spread, in those areas.

We now come to the employed ML algorithms. We used the following ones:

• K-Nearest Neighbors [75],

• Support Vector Machine [35],

• Multi-Layer Perceptron [96],

• Extra Tree [53].

With regard to their hyper-parameters, they are reported in Table 3.2.
Finally, as concerns the evaluation metrics, we employ the F1 score. In a

classic classification problem (comprising true and false positives, and true and
false negatives), it is intended to be the harmonic mean of the precision and
recall values, where such a score reaches its best at one. In turn, precision is
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Algorithm Hyper-parameters Value

KNN N Neighbors 5
Weights uniform

SVC

C 1
Kernel RBF
Degree 3
Gamma 1/8

MLP

Hidden Layer 1
Hidden Layer size 100

Max Epochs 500
Activation Function ReLU

Optimization Algorithm Adam
Batch Size 16

Learning Rate 0,001

ET

N Estimators 50
Criterion Gini

Min Samples Split 2
Min Samples Leaf 1

Max Features Sqrt(8)
Bootstrap False

Table 3.2 ML algorithms hyper-parameters
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the number of true positives divided by the number of true positives plus the
number of false positives, while recall is the number of true positives divided
by the number of true positives plus the number of false negatives (i.e., all the
samples that should have been identified as positive).

3.5 Results

3.5.1 Granger Causality: results on Emilia Romagna region

We present the results returned by the Granger causality test on the data of the
Emilia-Romagna region, differentiating between those illustrating the situation
before the lockdown measures were adopted that contained the infection surge,
and those showing the ex-post situation.

Before the lockdown

Figure 3.10 reports the results of our Granger causality testing campaign, con-
ducted for all the nine aforementioned provinces of the Emilia-Romagna (Bologna-
BO, Ferrara-FE, Forlì-Cesena-FC, Modena-MO, Parma-PR, Piacenza-PC, Ravenna-
RA, Reggio nell’Emilia-RE and Rimini-RM).

As already anticipated, we tried to verify if the series X, comprised of all
the average daily values of a given pollutant (e.g., PM2.5), measured in terms of
micrograms per cubic meter, starting on day x1 and closing on day x2, Granger
causes the series Y of the new daily infections, measured in terms of infected
human beings, starting on day y1 and closing on day y2, where obviously: y1 =
x1 + 14 and y2 = x2 + 14, for all the days between x1 and x2.

For each of the possible combination pollutant (PM2.5, PM10, and NO2)
infections, our Figure 3.10 shows in the correspondent cell the p-value obtained
through a pairwise series computational comparison, using Granger. All this
yields a total amount of 189 pairwise series comparisons. In particular, to read
well the results: if a cell in Figure 3.10 reports a p-value less than 0,005, we have
a confirmation of the causality relation between pollutant and infections (finally,
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note that if a cell in the Figure reports the value of 0, this means that a p-value
less than 10-4 was computed).

For an easier comprehension of the Figure, one should also notice that the
time scale values reported at the left of Figure 4 are the closing days of the two
series (respectively, for pollutants and infections), namely the values termed: x2
and y2.

Precisely, x2 ranges in the Figure from March, 1st to 7th or from March, 3rd
to 9th, depending on the specific province under consideration with its corre-
spondent lockdown date (March, 8th, or 10th), while y2 may range from March,
15th to 21st or from March, 17th to 23rd, due to the 14 days-long temporal shift
with which we distanced the two series (pollution precedes infections).

To note, finally, is the fact of prominent importance that all the pairwise
series comparisons whose results are reported in Figure 3.10 were conducted
during a period when the lockdown measures were still inactive since the specific
series supposed as the cause of this relation (that is X, the pollutants) starts on
February, 10th and closes on March, 7th or 9th, depending on the province.

All this said, what is clear from an analysis of Figure 3.10 is that we have
got a total amount of 175 (out of 189) statistical confirmations (almost 93%) that
X Granger causes Y; that is. that the pollutants under consideration have some
effect on the number of new infections, from a Granger-causality perspective. In
particular, this correlation is slightly more evident with PM2.5 (yielding 94%),
rather than with PM10 and NO2 (92%). Further, to be specified is the fact that
189 are the different pairwise temporal series comparisons, each performed with
the Granger method.

Nonetheless, before one can come to some final conclusion, we have to
remember, here again, the reflection we have anticipated in the previous Section,
and that we can repeat, under the alternative form of a question: What about if
the human activities carried out in the period from February, 10th to March 7th
or 9th, were the only common cause for both pollution and infections, exactly
like in the causality scheme portrayed in the example a) of Figure 3.7?
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Fig. 3.10 Particulate matter and CoVid-19 infections (before lockdown): Granger-
causality and p-values

If so, the value of the analysis we have conducted so far would be almost
controversial. To respond to this doubt, we ask the reader to refer to the next
Subsection.

After the lockdown

As already told, the causal modeling method proposed by Granger was designed
to handle pairs of variables, and consequently, it may suffer from a typical
limitation when a third variable is engaged in the relation, as explained in a
previous Section. In our specific case, this third variable could be identified with
all the variety of human activities that could be the common cause for both the
air pollution and the spread of infections in Emilia-Romagna.

Nonetheless, an important factor has come to the scene through which we
will try to argue that the relationships identified in the previous Subsection still
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hold. This factor amounts to the lockdown decisions taken either on March 8th
or 10th, depending on the specific province under investigation.

As a result of these decisions, human activities had fallen down to a minimum
starting again on either March 8th or 10th, depending on the province under
consideration. This has a precise meaning with an impact on the rationale behind
our analysis, which is as follows: All that happens after those dates can no longer
be ascribed to the activity carried out by humans (if not minimally).

Nonetheless, looking at this from an opposite perspective, one should also
argue that this new factor (i.e., the lockdown) can also have a confusing effect
on the researched phenomena since the absence of humans in the scene could
open the way to new unexpected implications, and hence to a variety of different
possible interpretations.

To avoid this possible pitfall, we have redesigned our experiments with
specific care to select for our analysis only those provinces whose general char-
acteristics could be considered to be more easily observable, with less external
interferences. Two design principles drove us for this new set of experiments.
The first was to exclude from our analysis all those provinces with a too high
number of infected individuals per population, with respect to the average value
of the region under investigation. This way, Piacenza, Reggio nell’Emilia, Parma,
and Rimini were excluded, yielding the highest percentages of infected individu-
als per population, namely: 1.509%, 0.906%, 0.723% and 0.606% (as recorded
on May 9th, 2020). For an analogous reason, we excluded the largest province in
the region, precisely Bologna, since it is suffering a very high number of infected
individuals, which are currently as many as 4,751. For an opposite motivation,
we cut off from the second part of our study also the province of Ferrara, which
for a long time, fortunately, had hit the lowest rate of infected individuals per
population (even though it has recently recorded higher values, thus reaching
currently the percentage of 0.281%).

Finally, excluded went also the province of Forlì-Cesena, in this case, due to
the fact that we measured a marked decrease in the amount of the values of the
particulate measured during the new period of investigation.
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To this aim, it is interesting to notice that the difference between the amount
of particulate matter taken both before and after the lockdown, computed as
an average of the daily measurements of the two two-weeks long periods that
preceded and followed the lockdown date, ranged in an interval from + 8.65
micrograms per cubic meter (Parma) to – 3.33 micrograms per cubic meter
(Rimini) for the PM2.2.5 pollutant, and from + 6.30 micrograms per cubic meter
(Parma) to – 10.47 micrograms per cubic meter (Rimini) for the PM10 pollutant.
(At this point, it is also interesting to remind the reader that the acceptable daily
limit considered for PM10 pollutant is set to be 50 micrograms per cubic meter).

All this considered, both the province of Modena and Ravenna were rather
stable under this perspective, with incremental values amounting to: + 7.86
(PM2.5) and + 6.11 (PM2.5) micrograms per cubic meter for Modena, and + 2.09
(PM10) and - 3.37 (PM10) micrograms per cubic meter for Ravenna.

In essence, our post-lockdown analysis was confined to just the two provinces
of Modena and Ravenna, because they both satisfy all the following require-
ments:

• a rate of infected individuals ranging from moderate to mild (Modena,
0.538%-3,792; Ravenna, 0.281%-995);

• the number of infected individuals not hitting the highest values in absolute,
like instead Reggio nell’Emilia (4,835) and Bologna (4,751), for example;

• relative stability in the in/decrease of the particulate matter after the re-
strictions imposed by the lockdown.

Summing up, our choice towards these two provinces has been orientated by
the fact that they looked like to us as the only provinces on which the changes
induced by the lockdown had a minimal external impact, even though the human
activities were prohibited. In some sense, they were those provinces less affected
by interferences whose causal factors rest not observable and unknowable.

All this said Figure 3.11 reports the results of our Granger causality analysis
conducted for the provinces of both Modena (MO) and Ravenna (RA).
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Fig. 3.11 Particulate matter and CoVid-19 infections (after lockdown): Granger-
causality and p-values

For a full comprehension of the Figure, one should notice that all have
remained unchanged here, with respect to Figure 3.10, as to how the experiments
were developed, with just these three natural considerations:

• each observed series closes in a period ranging, respectively, from March
8th (Modena) and March 10th (Ravenna) for the pollutants’ series, and
from March 22nd (Modena) and from March 24th (Ravenna) for the infec-
tions, up to April 1st (Modena) and to April 3rd (Ravenna) for the pollu-
tants’ series, and up to April 15th (Modena) and to April 17th (Ravenna)
for the infections;
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• the beginning day for both series (pollution and infections) remains the
same as in the comments provided for Figure 3.10;

• the analysis, this time, was conducted just for the particulate matter of type:
PM2.5 and PM10, not being available at that time stable measurements for
NO2.

In essence, our scientific target, here, was to verify if the pairwise series
correlation observed before was still confirmed, even if we have been adding
some more 25 days at each series, with all the 25 days that happened after that
the lockdown took place.

To this aim, an analysis of the p-values of Figure 3.11 shows that we have
got a total amount of 97 (out of 100) statistical confirmations (yielding a 97%
value) that X Granger causes Y; that is, that some given pollutants have some
effect on the number of infections, from a Granger-causality perspective.

To be precise, interesting is the fact that a similar analysis conducted for all
the other provinces (Bologna, Ferrara, Forlì-Cesena, Parma, Piacenza, Reggio
nell’Emilia and Rimini) provides a more controversial result, with a lower num-
ber of statistical confirmations (approximately around 50%), probably depending
on all those interferences, happened as a consequence of the lockdown, which
we mentioned before as the motivation of our decision for the exclusion.

3.5.2 Machine Learning: results on Emilia Romagna region

The results of the province-cross-validation are reported in Table 3.3. In the
Province column, we reported the province used as validation. We tested sep-
arately each Machine Learning model: K-Nearest Neighbors (KNN), Support
Vector Machine (SVC), Multi-Layer Perceptron (MLP), and Extra Tree (ET).
We also add a column and a row with the average values for each province and
algorithm. All the results are in terms of the F1 score.

Important to note is the fact that we allowed the models to learn our function
with all the pollutants (i.e., PM2.5, PM10, and NO2) considered together.
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Province KNN SVC MLP ET Avg per province
MO 0.87 0.9 0.88 0.91 0.89
PR 0.83 0.8 0.78 0.83 0.81
PC 0.86 0.83 0.85 0.87 0.85
RE 0.82 0.89 0.8 0.91 0.86
RN 0.72 0.73 0.72 0.77 0.74
RA 0.82 0.75 0.82 0.79 0.80
BO 0.79 0.85 0.8 0.8 0.81
FE 0.79 0.74 0.82 0.8 0.79
FC 0.84 0.79 0.79 0.85 0.82

Avg per Algorithm 0.82 0.81 0.81 0.84
Table 3.3 ML results for Emilia-Romagna region: F1-score obtained with data
from to each province as validation set

In essence, each cell in Table 3.3 tells us how accurate, on average, the
prediction was that a given model has made that the threshold of 17 infections
was either surpassed or not, for a given day, with a certain amount of pollutants
in the air.

If one accurately analyzes Table 3.3, they can find that almost all the ML
models have comparable performances. In fact, all the four models under
consideration yielded a reasonably good performance; nonetheless, the one with
the best F1-score was ET, Extra Tree, which achieved an average F1-score of
0.84 compared to 0.81 and 0.82 values, reached by the other models. In other
words, ET is the model that better learned the function of pollution/infections on
which our hypothesis is based. This can be considered as a further clue of the
relationship between air pollution and CoVid-19 infections.

3.5.3 Granger Causality: results on New York counties

The results returned by the Granger procedure are reported in Table 3.4. As
previously mentioned, we have subjected to our Granger tests the data relative to
the following counties of New York State: New York, Kings, Bronx, Queens,
Richmond, Nassau, Westchester, Rockland, Suffolk, Monroe, Onondaga, and
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Oneida. For each county, we have evaluated if the time series of the average daily
values of the PM2.5 particulate (X) Granger-causes the time series of the new
daily CoVid-19 infections (Y). The two time series were staggered by fourteen
days. This means that, for each Yi, the following temporal relation held Yi - 14
= Xi. The time series of the new daily infections started on March 4th. The
air pollution time series started consequently fourteen days before, precisely on
February 19th. With regard to the end of the infections time series, we considered
different alternatives, using March 20th, 21st, and 22nd as the final days. As a
consequence, the end of the PM2.5 time series was set, respectively, on March
6th, 7th, and 8th. Therefore, for each county, we subjected three different time
series to our Granger procedure. Since we are considering twelve counties, the
total number of tests we carried out was thirty-six. For each of these thirty-six
tests, Table 3.4 shows the corresponding p-values.

As previously explained, the null hypothesis can be rejected only if the
corresponding p-value, returned by the statistical test, is lower than 0.05. Only
in that case, we can maintain that the PM2.5 time series Granger-causes the time
series of the CoVid-19 infections.

As shown in Table 3.4, out of thirty-six tests, the null hypothesis was rejected
in as many as thirty-three cases, yielding a 92% of experiments in favor of a
hypothesis of an association between the PM2.5 particulate and the spread of
the CoVid-19, in the various geographical areas relative to NYC. The few cases
when the null hypothesis was not rejected are highlighted in red in Table 3.4.

3.5.4 Machine Learning: results on New York counties

We have now come to the end of this Section by showing Table 3.5, where all the
forty-eight values of the accuracy of the predictions returned by our algorithms
are reported, given in terms of the F1-score metric. Except for just one case
(Nassau/SVC), we have obtained forty-seven good F1-score values, all exceeding
the value of 0.7. This is both for those counties comprised in (or closer to) NYC,
and also for those counties that are further away from the City. In Table 3.5, we
have also reported the mean F1-score, respectively computed, averaging both
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Start Date (Infections) 04/03
End Date (Infections) 03/20 03/21 03/22

New York < 10−4 0.0518 0.0902
Kings < 10−4 0.0003 < 10−4

Bronx < 10−4 0.0011 0.0003
Queens < 10−4 0.0002 0.1283

Richmond < 10−4 < 10−4 < 10−4

Nassau < 10−4 < 10−4 0.0018
Westchester < 10−4 < 10−4 < 10−4

Rockland 0.0071 0.0 < 10−4

Suffolk < 10−4 < 10−4 < 10−4

Monroe < 10−4 0.0058 0.001
Onondaga < 10−4 < 10−4 < 10−4

Oneida < 10−4 < 10−4 < 10−4

Table 3.4 Granger causality tests with New York counties

on the twelve counties and on the four algorithms. If we look at the average
F1-scores for the counties comprised in (or near to) New York City, they range
from 0.84 to 0.89, while average values from 0.87 to 0.95 were returned for those
counties that are further away from NYC (i.e., Onondaga, Oneida, and Monroe).

3.6 Discussion and Conclusion

CoVid-19 has radically changed the habits of millions of people around the
world, being a global threat that has pushed the healthcare sector all over the
world to its limits, causing a dramatic death toll. Hence, factors increasing the
risks for severe and fatal courses of such a disease have been deeply studied
and include demographic, healthcare, political, business, organizational and
climatic ones [159, 13]. Since it mainly manifests as respiratory disease, mostly
pneumonia, many researchers are studying the potential relationship between
exposure to air pollution, in particular under the form of particulate matter, and
the rapid contagion brought by this virus.
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County KNN SVC MLP ET Avg per county
New York 1 1 0.95 0.82 0.94

Kings 0.95 0.8 1 0.79 0.89
Bronx 0.85 1 0.95 0.82 0.91

Queens 0.9 0.89 0.89 0.89 0.89
Richmond 0.87 0.87 0.87 0.91 0.88

Nassau 0.8 0.7 0.95 0.89 0.84
Westchester 0.95 0.83 0.76 0.76 0.83

Suffolk 0.9 0.85 0.85 0.9 0.88
Rockland 0.77 0.82 0.82 0.82 0.81

Avg per algorithm 0.89 0.86 0.89 0.84
Monroe 0.85 0.85 0.88 0.91 0.87

Onondaga 0.85 0.88 0.91 1 0.91
Oneida 0.91 0.94 1 0.94 0.95

Avg per algorithm 0.87 0.89 0.93 0.95
Table 3.5 ML results for New York counties: F1-score obtained with data from
to each county as validation set

We presented a study with the aim of providing further proof of this pos-
sible relationship, contributing to this discussion. We considered different air
pollutants, including PM2.5, PM10, and NO2, under the form of time series of
daily values and we evaluated their relationship with respect to the time series of
CoVid-19 infections. We considered data relative to two different geographical
areas. The former one is the nine provinces of the Emilia-Romagna region,
which has been one of the hardest-hit regions in Italy and in Europe, especially
at the beginning of the pandemic. The latter one, instead, is the New York State,
of which we studied some of the counties, with a particular focus on the ones
nearby New York City.

We have conducted a statistical analysis that confirms, under a Granger
causality perspective, that a causal correlation may exist between the two re-
searched phenomena of air pollution and CoVid-19 infections, in both the Emilia-
Romagna region and in the New York State counties. Furthermore, using the
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air pollution data, it was possible to predict if in a given province or state the
number of infections exceeds, or not, a certain threshold.

With regard to the possible limitations of our study, we feel necessary to
discuss, at least, the three following points: i) the robustness of the scientific
methodology we adopted, ii) the choice of the Emilia-Romagna region and the
New York State as the primary subjects of our study, and finally iii) the scientific
validity of the data we used.

As far as the methods employed, we have already admitted that neither
Granger causality, nor Machine Learning algorithms, nor any other statistical
testing procedure, can provide final evidence that the two phenomena we have
studied (i.e., air pollution vs. CoVid-19 infections) are definitely correlated in
nature. In fact, to achieve an ultimate knowledge of this correlation, statistical ev-
idence, like those demonstrated in this chapter, should be always accompanied by
additional experiments at a scale that is appropriate to the observed phenomena;
that is, in this case, at a biomedical, chemical or even physical level. Apart from
this issue, our study has demonstrated that using Granger and Machine Learning
algorithms may be valid solutions, over alternative computational methodologies,
to infer statistical evidence from sets of data subjected to high levels of temporal
uncertainty.

To move on to the second issue, we understand very well that the choice to
limit our study to only two different geographical areas, the Italian region of
Emilia-Romagna and some counties of the New York State, can be a source of
controversy, and a limitation, as well. Anyway, the choice of using two distant
and different areas whose populations have populations with very different
cultures mitigate such a drawback.

Thirdly, it is the turn of the data. First, we want to emphasize that all the
data and statistics used were publicly available, at the time of our investigation,
on Italian governmental sites [69, 37, 10], the New York State Department of
Health [104], and the United States Environmental Protection Agency, under
the Outdoor Air Quality Data section [152]. It is also worth noticing that all our
experiments are reproducible using the data available in the public repositories
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we have mentioned. Nevertheless, it is also a fact that CoVid-19 infections are by
now assumed to be more widespread than initially expected, thus making many
of the studies conducted so far (including ours) a poor proxy for understanding
the extension of this infection, with all the relative implications [140].

It is important to remind that final proof of the connection between the spread
of this fatal virus and air pollutants is not possible employing statistical methods
but it requires deep investigations at different levels such as the biological, chem-
ical, and physical ones. However, with our experience, we want to contribute to
the discussion about the paradigm shift from knowledge-driven to data-driven
science. While we are well aware that big data have been one of enabling factors
for the resurgence of artificial intelligence, and in particular of machine learning,
in our opinion, the theory has still a central role. In particular, we believe that
artificial intelligence and statistical methods can be successfully exploited to
confirm or refute hypotheses, based on conceptual insights from the humans
involved in the experiments.





Chapter 4

On the interaction with machines
for codifying and transferring
knowledge

How humans should interact with algorithms to
codify and transfer knowledge to them?

— RQ-5

With the development and diffusion of artificial intelligence, organizations
and machines increasingly share existing knowledge and generate new knowl-
edge. In this chapter, we contribute to the understanding of the role of human-
machine interaction as instances of knowledge codification and transfer. Once
modeled different training strategies based on organizational learning theories,
we use them to structure the interaction between expert geologists (the trainers)
and a set of twelve neural networks (the trainees) to identify the underwater path
of an optical cable. Then, we vary: i) the amount of information provided, ii) the
level of interaction between the trainers and the trainees, and iii) the empirical
setting. Finally, we discuss the implications of the use of the different training
strategies and their impact.
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4.1 Introduction

Knowledge and competencies are part of companies’ intangible assets [95, 70,
33, 58]. Their importance is crucial in an economy where investments in human
resources, information technology, and research and development have become
critical to prosper and grow [20, 32, 45, 89]. For companies, intangible assets
represent a crucial resource for their value creation and competitive advantage
[54, 60, 88, 154, 155].

The widespread use of artificial intelligence is affecting our society, including
the way companies develop, manage and take advantage of their knowledge base.
The 2016 report of the Stanford Committee of the so-called One Hundred Year
Study on Artificial Intelligence [144] highlighted the positive impact in many
industries and applications, concluding that there is no reason to fear evolution
in the field. The proper framing of the current situation is deemed key to face
the different decisions that governments, institutions, and firms are called to
make on many grounds; from regulation to value building propositions. More
skeptical conclusions have been instead presented in the OECD Next Production
Revolution Report released in June 2017 [107] based on the analysis of a broader
set of technological trajectories and country-level productivity data. Anyway,
advancing our understanding of how the introduction of AI could impact an
individual organization can, therefore, provide a significant contribution to many
companies and their profitability [144]. Rahwan et al. recently framed a new
field of study called machine behavior consisting of “... the scientific study
of intelligent machines, not as engineering artifacts, but as a class of actors
with particular behavioral patterns and ecology.” [120]. In this chapter, we aim
to provide a contribution to this emerging field, combining computer science
and strategic management perspectives. In fact, this work has born from a
collaboration with colleagues from the Department of Management. We present
the design and deployment of AI-based decision-making systems and their
interaction with routines and competencies at both individual and organizational
levels, with the aim of providing empirical evidence to advance the debate on



4.1 Introduction 93

the role of human-machine interaction as instances of knowledge codification
and transfer, and, therefore, critical to sustain competitive advantage.

The adoption of AI systems involves several steps. Some of them are char-
acterized by objective elements, such as the dataset, while others consist of
subjective choices, like the framing of the problem to be solved and how the
system is designed and trained [101]. Therefore, such systems are the results of a
human-machine interaction [139], that requires several decisions directly related
to organizational and individual knowledge-based assets. A structured solution
might improve the codification of previously tacit routines and competencies. At
the same time, embedding both individual and organizational knowledge into a
specific algorithm might reduce its relevance within a company and alter the level
of expertise required in the organization. The study of the interaction between
humans and machines when implementing an AI-based system is important to
understand the implications on the evolution of knowledge-based assets and how
this could change and affect their competitive advantage.

Crucial decisions in the introduction of AI systems, in particular those based
on Machine Learning, regard the training process [47]. The nature of data, the
level of supervision during training, the choice of the hyper-parameters, and the
overall feedback provided to improve the learning process are just examples of
such decisions. Implicitly, these processes lead to the development of learning-
to-learn routines at the machine level, exploiting individual and organizational
knowledge combined with the technical expertise of the developers. As much
as training is essential to understand how knowledge and competencies are de-
veloped within organizations, machine training becomes essential to understand
where these competencies will reside and how they could be leveraged.

In this chapter, we present our experience in the implementation of an AI
system based on a company-specific knowledge base. The company operates in
the field of geological services. It mainly conducted underwater explorations,
collecting, analyzing, and packaging underwater soil characteristics to provide
drilling maps and underwater routes to clients in different sectors, including
oil and gas, power cables, and telecommunications industries. The distinctive
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competencies of the company are the knowledge and experience of its geologists.
Hence, the way such knowledge is codified and transferred becomes crucial for
the company competitive advantage. We conducted five experiments testing
different training strategies to evaluate the feasibility of supporting the geologists
in their work of defining the routes or redefining their role in the company.

At the end of our experiments, we were able to successfully develop a system
able to support geologists in tracing underwater routes for the installation of
submarines cables. Our experience offers several insights. First of all, it is clear
that different interactions between the trainer and the trainee has a significant
impact on the transferred knowledge and, therefore, on the overall learning
process. Then, once the learning has been completed, the routines developed
generate consistent behavior in similar scenarios. Hence, the introduction of
AI-based approaches into existing processes might lead to the development of
new routines and competencies related to the training and deployment of AI.

The remainder of the chapter is structured as follows. Section 4.2 employs
organizational learning literature to model different learning strategies and their
impact on organizational routines and competencies. Then, Section 4.3 illustrates
the research questions at the base of this study. Section 4.4 presents the context
and the problem tackled together with the experiments conducted, the results of
which are described in Section 4.5. Finally, Section 4.6 concludes the chapter,
summarizing our findings, their limitations, and implications for research and
practice.

4.2 Background and Related Work

This Section first presents some work to highlight the impact of AI on organiza-
tional learning and then discusses the importance of the training phase.
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4.2.1 The impact of AI on organizational learning

Two factors have contributed to the possibility of leveraging on AI-based systems,
a higher amount of data and the decreasing cost of computational power [144].
Many experts from the academia and from the industry converged on the idea
that AI will soon be the core of a company’s operating model and an integral part
of organizational learning, thus facilitating the reshaping of businesses through
the affirmation of forms of collaborative intelligence [157, 82, 123].

However, given the different types of learning processes highlighted above,
there are multiple ways in which the interaction between organizational and
machine learning can occur. While some applications are opening up radically
new markets, many are increasingly used by companies to speed up decision pro-
cesses, improve their market understanding, increase manufacturing efficiency,
and re-engineer their current processes [144]. When the focus is on information
processing and coding and on aligning the current routines and processes to
the opportunities offered by the novel solutions [2], companies engage in what
we have previously described as single-loop/first-order learning. Rather than
reconfiguring the organization significantly to face an unexpected exogenous
change, they adapt to the changes required by the new opportunities. Through
organizational memory, an integral element of the learning process, organizations
encode, store, and retrieve relevant knowledge. AI solutions can help preserve,
refine, and update an organization’s memory, making the availability of routines
independent of individuals and capable of surviving considerable turnover over
time, complementing organizational learning in the exploitation of historical
knowledge [112].

AI technologies could be beneficial not only for exploiting their current
knowledge base, but they could also contribute to challenging existing routines
and learning to unlearn [90]. The different techniques identified in the literature
– e.g., learning by rote, learning by deduction, learning by analogy, and learning
by induction, further categorized into supervised and unsupervised learning -
are analogous to specific processes deployed at an organizational level [14].
When trained to identify inconsistent assumptions, they can extend their impact



96 On the interaction with machines for codifying and transferring knowledge

to ‘double-loop learning’ processes and act as a strategic complement of the
organizational learning process, increasing the complexity of the interaction
between the organization and the machine.

AI systems could help overcome two specific types of difficulties. First, they
could reduce the relevance of computational hurdles and increase the ability to
combine large datasets to identify new opportunities through different aggre-
gations or the isolation of deviations. Second, they could go beyond existing
assumptions by combining information usually treated separately due to previous
experience and practice.

4.2.2 Machine training as a distinctive organizational capa-
bility

As well as what happens for human capital in organizations, training is crucial for
machines. Large amounts of data, the so-called big data, and high computational
power, alone, are not enough. In fact, AI-based systems performance strictly
depends on the quality and relevance of the information used for training, and
how the training process is carried out. These aspects have caught the eye of
scholars from different disciplines, that have focused on the interaction between
humans and machines during training [120].

Studies on different types of applications ranging from algorithmic trading to
parole decisions [98, 43] show that, if human-specific cognitive biases character-
ize the information used to train the machines, so will be the prediction generated.
Similarly, studies ranging from autonomous driving to online pricing [16, 7]
show the relevance for the predicted outcome of the assumptions used to design
how to train the machines. Within a ‘single-loop learning’ perspective, training is
relevant to determine the level of efficiency of the new technology in the selected
applications. Within a ‘double-loop learning’ perspective, the training process
generates the opportunity to develop a new set of routines associated with the
deployment of the new technology within the organization.
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Compared to other technologies, AI-based systems have specific novelties. In
particular, a higher level of interaction with the existing organizational knowledge
is required to design and carry out the training process [149]. The different
training choices not only have an influence on the quality of the output of the
process but have also an impact on how the system will be incorporated in the
organization processes and how it will be used in the future [68]. Focusing
on the training processes of machines is, therefore, relevant to shed light on
how the interaction between humans and machines could impact organizational
knowledge codification and transfer and its strategic implications.

4.3 Research Questions

In this chapter, given the context presented in the previous Sections, we focused
our attention on the following research question:

RQ-5 How humans should interact with algorithms to codify and transfer
knowledge to them?

4.4 Methods

In this Section, we describe the context of our case study, the formulation of
the problem that we tackled, the dataset provided by the company, the machine
learning algorithm employed, and all the experiments conducted.

4.4.1 The Context

We performed our experiments in collaboration with a company that provides
geological services supporting underwater explorations. Such a company is
particularly concerned with collecting, analyzing, and packaging underwater
soil characteristics with the final aim of providing drilling maps and underwater
routes to companies working in various sectors, including oil and gas, power
cables, and telecommunications ones.
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The key competencies of the company derive from the combination of knowl-
edge and advanced tools. With the term knowledge, we mean all the technical
notions and experience of the work team, which includes different figures such
as surveyors, geologists, computer scientists, and geophysicists. The advanced
tools consist of highly technical seabed sampling and testing devices. Hence, we
can state that the way geologists codify and share their knowledge is, therefore,
an important differentiating factor for companies within this context.

Our case study, in particular, regards the telecommunications industry, with
the company that had to identify an underwater route for the installation of
cables. Essentially, the company has to find a path, given a set of constraints
and parameters, including the risk of cable breaking and route length. The
geologists operate using numerous parameters inferred from the reconstruction
of sonar-based maps to determine a point-to-point route within a corridor, usually
not larger than half a sea mile. As the sea-bed could not be fully observed,
though, the geologists’ experience in cable route surveying and charting of
the seas is critical. The company provided us with the data of two similar
projects in different settings with significant geomorphological differences. For
confidentiality reasons, we call these two settings Atlantis and Heracleion.

4.4.2 Problem Formulation

At first glance, it might seem like a typical path-finding problem. Such a
type of problem is usually tackled and modelled using traditional optimization
techniques. In fact, such problems can be traced back to the shortest path
problem, using a graph and employing Dijkstra’s algorithm to find the shortest
path between two vertices. Or, considering machine learning, one could employ
Reinforcement Learning, in which an agent takes actions in an environment with
the aim of maximizing a cumulative reward.

Yet, we are not here to question those approaches, as their efficacy has been
often demonstrated in several contexts. However, those approaches typically
leverage on either basic or complex decision logic, i.e. a set of local/general rules
to be satisfied within a specific context, in the presence of all the data that need
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to fully describe it, and clear rules that determine the costs (and, considering
this case study, the risks). Unfortunately, the situation we are encountering in
this case study, in an underwater scenario, does not present these peculiarities.
In fact, discussing with several geologists of the company, it was not possible
to determine the complete set of parameters evaluated by them in determining
the best path and their respective weights. In some sense, it was not possible to
formalize the tacit knowledge.

For these reasons, we treated the problem as a supervised one. The idea is
to train a machine learning model to understand, given the information relating
to the current point of the route and to those of its neighbors, what the next
point should be. The available information consists of: i) the starting and the
ending points, ii) all the points where it is possible to pass the cable with the
relative characteristics, and iii) the extent to which the cable could bend. Such
data are the same used by the team of geologists when a contract is acquired.
When new colleagues join the team, they are provided with these data and work
closely with their older teammates to learn from their experience. Our model,
therefore, could be trained accordingly. However, we could not account for
possible biases related to the geologists’ previous experience, as well as any
form of tacit knowledge.

4.4.3 Dataset Description

For both Heracleion and Atlantis settings, the two datasets consist of: i) seabed
points with latitude and longitude values, expressed as coordinates x and y, and
the sea depth as their z coordinate; ii) the soil types description with the lists of
polygons that delimit areas characterized by such soil types, and iii) the optimal
routes identified by the geologists.

In the Atlantis case, x values vary between 0m and 117,183m., while y
between 0m and 71,160m. The total amount of points included in the dataset is
2,302,913, characterized by eleven soil typologies, reported in Table 4.1. The
points are spaced 50m from each other.
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# Soil Type
1 coarse sediment
2 fine sediment
3 rock
4 subcropping rock
5 seagrass
6 gas charged sediment
7 depressions
8 slumps
9 scars
10 pipe

Table 4.1 Atlantis soil types

Instead, in the Heracleion case, the x coordinates vary between 0 and
256,735m, while the y between 0m and 143,722m. In this setting, the total
number of points included in the dataset is 8,802,133. With respect to soil
typologies, in the Heracleion setting, there are twenty-one different ones, eight
of which are shared with Atlantis, and thirteen new ones.

# Soil Type # Soil Type
1 coarse sediment 12 escarpment
2 fine sediment 13 hardened sea floor
3 rock 14 linear sonar contact
4 subcropping rock 15 magneto
5 gas charged sediment 16 pock
6 slumps 17 sonar contact
7 scars 18 sond
8 pipe 19 stiffclay
9 cable 20 wreck
10 conefacies 21 vcs
11 debris

Table 4.2 Heracleion soil types
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In both settings, the dataset used to train the machine learning algorithm is
created as follows. For each point of the route traced by the geologists, we collect
its typology and those of neighboring points. These are used as the input for the
algorithm. The output, instead, is represented by the movements, expressed as
classes, to reach the subsequent points of the route.

4.4.4 Machine Learning algorithm

We chose to use a Multi-Layer Perceptron (MLP) with only one hidden layer
composed of fifty neurons. As already mentioned, the MLP, given a position
in a grid with the soil types of the neighbors, has to learn at which point it
has to move in. We employ the Rectified Linear Unit (ReLU) as the activation
function, using Adam as the solver with a learning rate equal to 0.001. We set the
maximum of iterations to 200 even if the training process stops if the validation
score has not improved in the last ten epochs.

We divided the dataset into training and test sets, using two-third of the data
for the training and the remaining one-third for the testing, in a stratified way.
The validation set is composed by randomly selecting the 10% of the training
set. To avoid unfortunate cases, in each experiment, we trained twelve different
MLPs, randomly changing the composition of the training and test sets. To
evaluate the performance of the MLPs, we employ the Area Under the Curve
(AUC) of the Receiver Operating Characteristic (ROC).

Once the training is completed, we use the MLPs to generate the routes. The
generated routes are evaluated considering two main aspects. The former one
is that the points of the routes have to be within the inspected seabed corridors.
Hence, we count how many times the routes get outside the seabed corridor. The
latter is the route length, which has to be comparable to the one traced by the
geologists.
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4.4.5 The Experiments

We conduct several experiments by manipulating the way geologists supervise
the MLPs to model four different types of training approaches and the correspond-
ing learning processes, characterized by an increasing level of human-machine
interaction. In Experiment 1, we simply trained the MLPs using data relative
to the soil type of the surrounding points. The human-machine interaction is
minimal and limited to the provisioning of a portion of the relevant information
available. The machine, therefore, learns in a pure experiential way. Basically,
our MLPs learn how to move on a bi-dimensional grid, like that in Table 4.3. In
particular, given the current point (x,y), at the center of the grid, our MLPs have
a freedom of choice in terms of movements which has no limits. In essence, it
can go straight up to reach point six, left-up to reach point five, right-up to reach
point seven, and so on to reach each and any different point within the grid. No
other contextual information was initially formalized.

5 6 7
4 x,y 0
3 2 1

Table 4.3 Experiment 1, possible movements

In Experiment 2, we complete the information context by adding cable
bending constraints. This is done by simply reducing the possible movements,
which now depends also in the direction of which the cable is pulled. The
movements allowed now are simply three: 1) Turn right forty-five degrees, 2) go
straight, and 3) turn left forty-five degrees. Learning is still purely experiential as
in Experiment 1, but here the MLPs are given all the codified knowledge present
in the organization and which was available to its geologists when faced with
the original problem.

In Experiment 3, we complement the general scenario by backtracking the
MLPs every time they move outside the portion of the seabed covered by the
sonar maps. This is equivalent to having the trainers correct the trainee anytime
it makes a wrong choice, based on the information available and their experience,
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without explaining why the trainee made a mistake. The trainers, therefore,
interact with the machine favoring vicarious learning.

In Experiment 4 we further increase the level of human-machine interaction
between the human and the machine. More specifically, the MLPs learn from
errors identified by the geologists through a vector recording incorrect moves
chosen at any round. This error vector becomes additional training information
available at the beginning of the subsequent round. At the end of each round,
the vector is updated to include new errors, and this procedure is repeated until
no further error occurs. The trainer, therefore, identifies the errors made by the
trainee and shares them for future improvements through generative learning.

In Experiment 5, we repeat Experiment 4 to replicate the most sophisticated
type of human-machine interaction in a different seabed. The same 12 MLPs
used in all previous experiments in Atlantis are deployed in Heracleion.

Table 4.4 summarizes the 5 experiments and their main components: the
trainer-trainee relationship, the type of learning process observed, and the set-
tings.

# Exp Trainer – Trainee
interaction Learning Setting

1
Basic information

transfer

Experiential with
incomplete
information

Atlantis

2
Complete

information
transfer

Experiential with
complete

information
Atlantis

3 Backtracking Vicarious Atlantis

4
Feedback

on mistakes Generative Atlantis

5
Feedback

on mistakes Transductive Heracleion

Table 4.4 A summary of the experiments
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4.5 Results

The results of the experiments are discussed in isolation in the following Subsec-
tions.

4.5.1 Basic Information Transfer

The results of Experiment 1 are reported in Table 4.5. The columns are the
classes of moves coherent with the alternatives available. Each row reports the
AUC value after the training for each set of moves for all MLPs, and the average
AUC of each MLP across all meaningful classes. In fact, it is important to notice
that there were no examples for classes five and six. Hence, it is not possible to
evaluate the accuracy of the classifiers on those classes.

In Experiment 1, experiential learning with incomplete information (i.e.
based only on seabed characteristics alone) shows very different levels of AUC
performance, with a minimum of 0,61 and a maximum of 0,96, and the average
AUC value varying between 0,78 and 0,84.

Istance Classes and relative AUC
0 1 2 3 4 5 6 7 avg

MLP 1 0.83 0.75 0.90 0.77 0.85 - - 0.75 0.81
MLP 2 0.86 0.74 0.92 0.73 0.83 - - 0.81 0.81
MLP 3 0.83 0.74 0.92 0.70 0.82 - - 0.81 0.82
MLP 4 0.70 0.70 0.93 0.75 0.80 - - 0.89 0.80
MLP 5 0.89 0.74 0.90 0.70 0.86 - - 0.81 0.82
MLP 6 0.88 0.73 0.91 0.81 0.84 - - 0.87 0.84
MLP 7 0.89 0.62 0.95 0.73 0.89 - - 0.87 0.83
MLP 8 0.85 0.70 0.96 0.70 0.82 - - 0.87 0.82
MLP 9 0.87 0.72 0.93 0.65 0.83 - - 0.75 0.79
MLP 10 0.89 0.73 0.93 0.61 0.82 - - 0.69 0.78
MLP 11 0.87 0.75 0.93 0.76 0.83 - - 0.81 0.83
MLP 12 0.88 0.70 0.93 0.76 0.84 - - 0.87 0.83

Table 4.5 Results for Experiment 1 (Experiential learning with incomplete infor-
mation)
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Then, we used the twelve trained MLPs to generate twelve different paths,
portrayed in Figure 4.1. As shown, in many cases, the MLPs completely fail in
generating the route.

4.5.2 Complete Information Transfer

In Experiment 2, when we include the additional information about the impos-
sibility to bend the cable more than forty-five degrees, the number of classes
useful to guide the MLP after the training is further reduced to classes 1, 2,
and 3, as explained in the previous Section. Table 4.6 report the results of the
Experiment 2. Also in this case, the columns are the classes of moves coherent
with the alternatives available. When the characteristics of the cable and the
corresponding directionality constraints complete the information provided to
guide experiential learning, AUC values improve. The overall minimum raises
to 0,71 and the maximum to 0,97, while the average values vary between 0,8 and
0,88.

Istance Classes and relative AUC
1 2 3 avg

MLP 1 0.86 0.78 0.97 0.87
MLP 2 0.85 0.78 0.96 0.86
MLP 3 0.85 0.80 0.97 0.87
MLP 4 0.84 0.80 0.97 0.87
MLP 5 0.84 0.77 0.96 0.86
MLP 6 0.82 0.78 0.96 0.86
MLP 7 0.85 0.78 0.96 0.86
MLP 8 0.83 0.71 0.96 0.83
MLP 9 0.86 0.77 0.92 0.85

MLP 10 0.85 0.80 0.97 0.87
MLP 11 0.82 0.79 0.97 0.86
MLP 12 0.86 0.80 0.97 0.88

Table 4.6 Results for Experiment 2 (Experiential learning with complete infor-
mation)
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(a) MLP 1 vs Geologists (b) MLP 2 vs Geologists (c) MLP 3 vs Geologists

(d) MLP 4 vs Geologists (e) MLP 5 vs Geologists (f) MLP 6 vs Geologists

(g) MLP 7 vs Geologists (h) MLP 8 vs Geologists (i) MLP 9 vs Geologists

(j) MLP 10 vs Geologists (k) MLP 11 vs Geologists (l) MLP 12 vs Geologists

Fig. 4.1 Experiment 1: MLPs (Light Gray) vs Geologists (Black)
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Despite this improvement, however, the overall performance remains unsatis-
factory. In fact, after the completion of the training process, we generated twelve
routes, using the twelve MLPs. They are depicted in Figure 4.2. Considering the
costs associated with laying an underwater cable, making the machine learn only
based on the codified information available will generate considerable inefficien-
cies, even after an extensive training period conducted on different subsets of
the benchmark available. Therefore, in a high number of cases, the MLPs fail to
reproduce the benchmark.

4.5.3 Backtracking

From Experiment 3, we increase the level of interaction between the trainer and
the trainee. In the beginning, the MLPs have the same knowledge acquired in
Experiment 2 (i.e., they are the same twelve MLPs trained during Experiment 2).
In this experiment, a minimum amount of feedback is provided by sending the
MLPs back in the mapped sea-bed corridor anytime it chooses a move that would
place them outside. The feedback is minimum because no other information is
given, nor is this information used for training. The MLPs, therefore, bounce
within the corridor and perform a single run of the estimates for the full route,
always completing the path. Hence, as already explained in Subsection 4.4.4, we
report also two different measures of performance: the number of errors, and the
length ratio, contrasting the MLPs final path with the benchmark. Such measures
are summarised in Table 4.7.

The average length ratio varies between a very low 1.01 and a very high 5.72,
and the number of errors with the corresponding corrections between 6 and 831.
For some, the improvement from Experiment 2 is considerable, while others
perform very poorly. The results, therefore, depend both on the new training
strategy, and on the subset used in Experiment 2 for training.

For completeness, we have reported the various routes generated during
Experiment 3 in Figure 4.3.
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(a) MLP 1 vs Geologists (b) MLP 2 vs Geologists (c) MLP 3 vs Geologists

(d) MLP 4 vs Geologists (e) MLP 5 vs Geologists (f) MLP 6 vs Geologists

(g) MLP 7 vs Geologists (h) MLP 8 vs Geologists (i) MLP 9 vs Geologists

(j) MLP 10 vs Geologists (k) MLP 11 vs Geologists (l) MLP 12 vs Geologists

Fig. 4.2 Experiment 2: MLPs (Light Gray) vs Geologists (Black)
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(a) MLP 1 vs Geologists (b) MLP 2 vs Geologists (c) MLP 3 vs Geologists

(d) MLP 4 vs Geologists (e) MLP 5 vs Geologists (f) MLP 6 vs Geologists

(g) MLP 7 vs Geologists (h) MLP 8 vs Geologists (i) MLP 9 vs Geologists

(j) MLP 10 vs Geologists (k) MLP 11 vs Geologists (l) MLP 12 vs Geologists

Fig. 4.3 Experiment 3: MLPs (Light Gray) vs Geologists (Black)
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Istance N° of Errors Length Ratio
MLP 1 23 1.02
MLP 2 688 4.52
MLP 3 22 1.41
MLP 4 28 1.02
MLP 5 6 1.04
MLP 6 743 4.96
MLP 7 11 1.08
MLP 8 37 1.17
MLP 9 831 5.72

MLP 10 34 1.04
MLP 11 25 1.16
MLP 12 45 1.01

Table 4.7 N° of errors and Length Ratio for Experiment 3 (Vicarious learning)

4.5.4 Feedback on Mistakes - Atlantis

Then, in Experiment 4, we further increase the level of interaction between the
trainer and the trainee. Also in this case, in the beginning, the MLPs are the
same twelve ones from Experiment 2 but we then introduce a training strategy
based on error-based learning with codified feedback. As in Experiment 3, each
MLP is sent back in the mapped sea-bed corridor anytime it chooses a move that
would place it outside. This time, however, the errors are saved into an additional
information set used to fine-tune each MLP in the following rounds. In fact, at
the end of each round, the MLPs are re-trained using these additional data sets.

The results are shown in Table 4.8. As shown, the overall performance
improves significantly across all MLPs. The length ratio varies between 1,00
and 1,04, 7 out of 12 MLPs make no error in round 2 after learning from those
made in round 1, and all the others take only one more round to report no error
(Table 4.8, Round 3). The new training strategy, therefore, reduces performance
variance among networks, neutralizing the effects of the training choices that
generated a high level of performance variance in Experiment 3.
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Istance N° of Errors Length RatioRound 1 Round 2 Round 3
MLP 1 20 14 0 1.02
MLP 2 285 0 - 4.52
MLP 3 10 0 - 1.41
MLP 4 30 8 0 1.02
MLP 5 1 0 - 1.04
MLP 6 8 0 - 4.96
MLP 7 493 0 - 1.08
MLP 8 41 18 0 1.17
MLP 9 457 12 0 5.72

MLP 10 37 0 - 1.04
MLP 11 4 0 - 1.16
MLP 12 115 39 0 1.01

Table 4.8 N° of errors and Length Ratio for Experiment 4 (Generative Learning)

The routes generated by each MLP during the final round of Experiment 4
are depicted in Figure 4.3.

4.5.5 Feedback on Mistakes - Heraclion

Finally, in the fifth and last experiment, we apply the same strategy used in
Experiment 4, using the same set of the twelve MLPs employed in the final
round. But we do not generate routes in the Atlantis setting but in the Heraclion
one. This process falls within the category of transductive learning, where the
problem is the same, and the corresponding knowledge base, in this case, what
we have learned with respect to training strategies, is applied to a different
domain. The results of Experiment 5 can be found in Table 4.9. Error-based
learning with codified feedback adapts to the new scenario with good levels of
efficacy and efficiency, although the MLPs had never been trained before with
any data based on Heracleion. The length ratio varies between 1.04 and 1.18,
and all 12 MLPs make no error after round 2. Overall the length ratio values are
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(a) MLP 1 vs Geologists (b) MLP 2 vs Geologists (c) MLP 3 vs Geologists

(d) MLP 4 vs Geologists (e) MLP 5 vs Geologists (f) MLP 6 vs Geologists

(g) MLP 7 vs Geologists (h) MLP 8 vs Geologists (i) MLP 9 vs Geologists

(j) MLP 10 vs Geologists (k) MLP 11 vs Geologists (l) MLP 12 vs Geologists

Fig. 4.4 Experiment 4: MLPs (Light Gray) vs Geologists (Black)
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Instance N° of Errors Length RatioRound 1 Round 2 Round 3
MLP 1 723 10 0 1.07
ANN 2 654 4 0 1.08
ANN 3 464 3 0 1.09
ANN 4 269 79 0 1.07
ANN 5 707 27 0 1.06
ANN 6 834 10 0 1.06
ANN 7 1003 252 0 1.04
ANN 8 992 231 0 1.05
ANN 9 815 204 0 1.05

ANN 10 518 64 0 1.18
ANN 11 475 6 0 1.08
ANN 12 1684 189 0 1.14

Table 4.9 N° of errors and Length Ratio for Experiment 5 (Generative learning
in a new scenario)

higher than in Experiment 4, but in 9 out of 12 cases are within an 8% range,
which is considered acceptable given the specific context of the application.

Finally, the routes generated in the third round of Experiments 5 are reported
in Figure 4.5.

4.6 Discussion and Conclusion

In this chapter, we presented our experience in the implementation of an AI
system based to support geologists of a company in finding the best underwater
path for the installation of cables in two different sea-beds. We designed five
different experiments in which we manipulated the trainer-trainee relationship,
that determines the type of learning process observed. Following Rahwan et al.
[120] adaptation of Tinbergen’s categories [150], we focus on how a particular set
of machines (in our experiments MLPs) acquire their behavior at a hybrid human-
machine scale of inquiry. Our findings show that experiential learning with no
interaction is less effective even if the codified information set is complete.
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(a) MLP 1 vs Geologists (b) MLP 2 vs Geologists (c) MLP 3 vs Geologists

(d) MLP 4 vs Geologists (e) MLP 5 vs Geologists (f) MLP 6 vs Geologists

(g) MLP 7 vs Geologists (h) MLP 8 vs Geologists (i) MLP 9 vs Geologists

(j) MLP 10 vs Geologists (k) MLP 11 vs Geologists (l) MLP 12 vs Geologists

Fig. 4.5 Experiment 5: MLPs (Light Gray) vs Geologists (Black)
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Moreover, the most effective training strategy is based on generative learning.
Not only it improves the average accuracy of all MLPs, but it significantly
reduces their variance to values that make each one fully competitive against
the benchmark. Furthermore, when moved in a different scenario, it still offers
similar performance, without the need for additional training.

Codifying and transferring information between humans and machines can
critically affect knowledge-based assets, that are strategical for an organization.
More sophisticated training strategies reduce the impact of potentially subjective
choices in the design of the training but they require a non-trivial understanding
of both the technical components of AI and of the problem to be solved. Even if
most of the debate is currently concentrated around the shortage of supply of the
former [147], the latter is often taken for granted as if it could be easily made
available or codified to facilitate its transfer and use. It is through the combination
of technical and domain-specific knowledge, though, that organizations create,
inform and model the behavior of the machines. Several studies focused on the
choice of the algorithms and the data as critical aspects to be closely monitored
and considered [149, 78]. Our results highlight the relevance of training strategies
as an additional component to carefully design and control.

The interaction between humans and machines in terms of AI-based systems
could affect the way companies exploit existing knowledge-based assets and
develop new ones [153]. All the approaches that fall within the AI umbrella
require the transfer of knowledge from organizations to the machine, that is then
able to perform a complex, yet narrow, task instead of simply following a set of
instructions [68].

To reap the benefits of this new approach, it is important to pay attention
to both the technological and the human sides. The behavior of machines in-
structed with information and feedback can bring about a change in the behavior
of the company with respect to problem-solving and experimentation of new
approaches to work. They require data, knowledge, and expertise coming from
different parts of an organization. Corporate functions that are not used to talk
to each other, filled with resistance in sharing results and progress, will found
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uncomfortable struggling with the need to start collaborative sessions. When
each silo in a firm has its own data, it’s impossible to build connections across
the silos or with external networks or ecosystems [68]. Differently, companies
that transfer their encoded experiences on a regular basis will leverage these
new opportunities to enhance communication and collaboration, as well as to
reinforce and spread their knowledge base. Our results show that the more
they rely on the latter to develop and sustain their competitive advantage, the
greater the strategic importance of the design, planning, and deployment of their
human-machine interactions.

Based on our results, we also expect that the development of collaborative
intelligence forms will increase the strategic role of human resource management
[21, 157]. The new required abilities will include teaching intelligent machines
new skills or thinking of new ways to overhaul processes to gain improvements.
New organizational roles will emerge, such as trainers (of the machines), explain-
ers (of the results stemming out from AI predictions), and sustainers (for the
responsible use of machines). New roles will require specific career paths and
incentive systems, a redefinition of organizational critical competencies, the way
their knowledge-base is aligned with its vision and goals, the way it is stored,
developed, protected, and deployed. Our results suggest that expecting a plug-
and-play approach to the incorporation of AI-based systems would significantly
discount the relevance of all these complementary investments.

In this chapter, we have experimented with a scenario where humans develop,
train, and manage AI applications, allowing machines to work as collaborative
partners. Our results are limited to a specific set of cases, where existing knowl-
edge and routines can be extended by the use of new technologies. It is an
incremental approach relevant for many organizations that are incorporating new
methodologies in their routines. Moreover, we incorporated the human-machine
interaction in our manipulation of the information set to generate alternative
learning opportunities and we made general use of errors in the learning process.

These design choices limit the generalizability of our results in different ways.
First, future research should investigate their applicability to more complex
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situations such as creative thinking and experimentation, improvisation, and
strategy development. Second, we have observed and compared the behavior of
the machine based on a change in the behavior of the human component, but not
vice-versa. Future research should benefit from field-level studies monitoring
the interaction from both sides and explicitly considering the reaction of humans
to changes in machine behavior. Third, we isolated our experiments from any
exogenous influence or specific organizational constraints, which might, directly
or indirectly, modify human-machine interactions and their evolution. Future
research should consider explicitly monitoring the relevance and influence of
additional organizational factors to help highlight the specificity, if any, of the
adoption of AI-based systems. Finally, learning through failure can be costly and
not all mistakes are alike, as we treated them in our studies. Future work should
consider if a more parsimonious approach might further improve the efficiency
of the training without hampering its effectiveness.





Chapter 5

Conclusions

The presence of big data and the consequent diffusion of machine learning algo-
rithms are profoundly shaping social, economic, and political spheres, becoming
part of the collective imagination. In this thesis, we have focused on how big
data and machine learning algorithms influence the interaction between humans
and computers. Starting from different case studies, specially chosen for their
characteristics, we have presented some high-level reflections with the aim of
contributing to the framing of such a phenomenon. This chapter sums up the
various contributions of this thesis, starting from the research questions we
presented in Chapter 1.

Chapter 2 describes a case study in which we have designed and implemented
a deep learning algorithm with the aim of predicting water meter failures. We
collaborated with a company that supplies water in Northern Italy. They provided
us with a huge dataset comprised of almost fifteen million water meter readings,
plus other contextual information, relative to more than one million water meters.
The historical data relates to a period of four years, ranging from the beginning
of 2014 to the end of 2018. This chapter answers the research questions RQ-1,
RQ-2, and RQ-3. Once implemented the deep learning algorithm, we studied
how this can be effectively exploited by the company and how this could be
integrated into its processes, even if it is not perfect (RQ-1). At the end of the
process, we also evaluated the impact of the human-in-the-loop data preparation
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activities we carried out from a statistical point of view (RQ-2). Finally, we
also proposed an approach to deal with high-dimensional Pareto-distributed
categorical data (RQ-3).

Then, Chapter 3 aims to contribute to the discussion that contrasts data-
driven with knowledge-driven science, answering the research question RQ-
4. We conducted an observational study to evaluate the potential relationship
between air pollution and CoVid-19 infections. In particular, we studied the
time series of air pollution (in the form of both particulate matter 2.5 and
10 and nitrogen dioxide) and infections relative to two different geographical
areas: the Emilia-Romagna region (Italy) and some counties of the New York
State, with a particular interest on those of New York City. We employed both
statistical approaches and machine learning algorithms. In particular, we took
advantage of the Granger causality approach and we tested several machine
learning algorithms including K-Nearest Neighbors, Support Vector Machine,
Multi-Layer Perceptron, and Extra Tree. Our findings suggest that a possible
correlation between the two aforementioned phenomena could exist, even if
it is important to remind that a final proof of the connection requires deep
investigations at completely different levels such as the biological, chemical, and
physical ones.

Finally, Chapter 4 presents a work done in collaboration with colleagues
from the department of Management, in which we focused on knowledge codifi-
cation and transfer, from a human-machine interaction perspective. The chapter
answer the research question RQ-5. We worked in collaboration with a company
that design underwater paths for the installation of cables. We implemented
different machine learning algorithms, modelling different training strategies
based on organizational learning theories. Our findings show that codifying
and transferring information between humans and machines can critically affect
knowledge-based assets, that are strategical for an organization. Our findings
highlight the relevance of training strategies as an additional component to
carefully keep under consideration during the design and the implementation.
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With regard to future contributions, there are plenty of other aspects about the
interaction between human and intelligent algorithms, that could be investigated,
keeping the user at the centre. Just to cite a few, it could be interesting evaluating
in which contexts the users are more prone to trust algorithms predictions or
studying how the accuracy of those algorithms affects the user trust.
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