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Abstract
This thesis collects our relevant research activities addressing the problem of energy-efficient train

operations in real-time rail traffic management. This is a relatively new field of research in Rail

Transport Optimization that especially concerns dispatchers, who are in charge of traffic management.

Due to traffic perturbations, dispatchers have to re-schedule train operations repeatedly to maintain

circulation as smooth as possible, therefore minimizing the total delay. Along with re-scheduling

decisions, train speed profiles have to be determined in such a way that a feasible train schedule is

preserved and the total energy consumption is minimized. Altering the speed profile of one train

not only alters its schedule, but may also invalidate those of the other trains circulating in the same

infrastructure. Therefore, it must be ensured that the speed profile of a train is compatible with that

of the other trains. A trade-off between energy-efficiency and other re-scheduling objectives, such as

delay minimization, is usually to be made. Research on decision support tools for this application

can lead to more advanced Traffic Management Systems (TMS), bringing a twofold benefit to rail

transport: an increased performance as a mode of transport, and a reduced environmental impact.

In the included papers, we consider the following optimization problems.

First, we address a single-train real-time Energy-Efficient Train Control (EETC) problem, envi-

sioned as a sub-problem of a hypothetical multiple-train Energy-Efficient Train Timetabling (EETT)

problem for real-time traffic management applications. Precisely, we focus on determining an energy-

optimal speed profile for a single train with a given schedule. We propose three algorithms: a

constructive heuristic; a multi-start randomized constructive heuristic; and a Genetic Algorithm. We

run experiments on real-life case studies provided by our industrial partner ALSTOM, which is a

world leader in rail transport.

Second, we address a real-time multiple-train EETT problem known as the real-time Energy

Consumption Minimization Problem (rtECMP), which is a subproblem of the real-time Rail Traffic

Management Problem (rtRTMP). The rtECMP asks for deciding the speed profiles of multiple trains

circulating in a given network during a given time window. The objective is to minimize the weighted

sum of total delay and energy consumption. Rail infrastructures are represented with a microscopic

level of detail including the interlocking system and signals. We propose a graph-based rtECMP

model and three meta-heuristic algorithms: Ant Colony Optimization (ACO); Iterated Local Search

(ILS); and Greedy Randomized Adaptive Search Procedure (GRASP). We run experiments on two

real-life case studies, considering mixed dense traffic subject to perturbations.
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Chapter 1

Introduction

1.1 Context & Motivation

Nowadays, the threat of global warming is more tangible than ever before. Recent

studies forecast a global temperature increase of 2°C by 2060 w.r.t. the pre-industrial

reference level. A temperature increase of this magnitude will cause disastrous effects

on the environment and, in turn, on the world’s economy (CotEU, 2021).

Transportation plays an enormous role in terms of environmental impact given

its nature and ever increasing demand. In Europe, approximately 25% of the overall

greenhouse emissions are caused by transportation alone (EC, 2021a).

The European Union is actively involved in reducing environmental impacts in

many sectors, including transportation. Indeed, the European Commission has set

the target of reducing the total greenhouse gas emissions of at least 55% by 2030,

compared to 1990 levels. This target is part of a broader plan, the so-called European

Green Deal, that aims to completely eradicate greenhouse gas emissions by 2050 (EC,

2021b).

Rail is widely recognized as one of the most sustainable, reliable and safe mode of

transportation. Its great sustainability is not only due to it being mostly electrified but

also to other intrinsic aspects, such as a low wheel-rail interface friction (Scheepmaker

et al., 2017). Given the zero-emission target and the virtues of railway systems, the

European union is pursuing a twofold goal: (OBEU-1) increasing the user base of

11



CHAPTER 1. INTRODUCTION 1.2. SCOPE

rail so to improve the whole transport sector from an environmental perspective, and

(OBEU-2) reducing the intrinsic environmental impact of rail itself even further. In

this context, 2021 has been declared the European Year of Rail, as part of an awareness

campaign of the European Union to promote mass adoption of rail (EYoR, 2021).

In this thesis, we present our research in the realm of railway optimization whose

outcomes are in line with both the objectives of the European Union in promoting rail

transport. Coherently with OBEU-1, we contribute to the evolution of the decision

support systems that can make rail transport even more efficient. This can further

boost rail attractiveness, leading more and more users to shift to it from less sustainable

modes of transport. Coherently with OBEU-2, we perform research that directly

addresses environmental matters: minimization of energy consumption.

We remark that, beside the environmental benefits discussed so far, saving energy

yields a significant cost reduction for train operators, further boosting the competitive

edge of rail transport. Indeed, an improvement in energy efficiency as small as 1% can

save up to several million euros for most railway systems each year (UIC, 2021).

The scope of this thesis is detailed in Section 1.2.

1.2 Scope

In this thesis, we focus on the problem of optimizing energy consumption for train

movements as they require very large amounts of energy if not adequately managed.

In this setting, minimizing energy consumption results in a twofold positive impact

for rail systems. First, it reduces greenhouse gas emissions. Second, it cuts energy

costs for train operators, further boosting rail competitiveness (Mart́ınez Fernández

et al., 2019). Such positive impacts are in line with the European Union environmental

objectives discussed in Section 1.1

12



CHAPTER 1. INTRODUCTION 1.2. SCOPE

The literature on minimizing energy consumption of train movements is usually

declined into two important problems: Energy-Efficient Train Control (EETC) and

Energy-Efficient Train Timetabling (EETT). Precisely:

• EETC aims to determine energy-efficient speed profiles for one or multiple trains

with a given schedule/timetable. A speed profile expresses the train speed as a

function of time or distance along its entire journey. By following a speed profile

obtained by EETC methods, a train will spend minimal energy while fulfilling

its planned timing.

• EETT integrates the train timetabling problem (Section 2.2.2) and EETC to

some degree, depending on the specific problem formulation and solution method.

Indeed, EETT aims to determine train timetables where energy-efficiency and

other objectives are jointly optimized. EETT methods make scheduling deci-

sions, such as arrival, departure, passing-through and dwelling times, for each

train while concurrently determining energy-efficient speed profiles to achieve

the schedule itself. Eventually, such methods achieve a trade-off between energy

consumption and the other objectives.

EETC and EETT do not indicate either specific mathematical formulations or

solution methods. Indeed, they are two rather broad families of quantitative ap-

proaches aiming at supporting both tactical and strategic service planning (Section

2.2) in achieving energy-efficient train operations. A fairly wide range of models and

algorithms has been proposed in the literature. However, most problems in EETC,

and therefore in EETT, are modeled with similar principles, which are outlined in

Section 2.3.2.

For a thorough review on EETC and EETT, we refer the reader to Scheepmaker

et al. (2017). For an extensive review focused on the Optimal Control Theory aspects in

EETC, we refer the reader to Albrecht et al. (2016a,b). Moreover, each of the included

papers contains a literature review focused on the respective topics (Chapters 3, 4 &

5).

13



CHAPTER 1. INTRODUCTION 1.2. SCOPE

From the literature, it emerges that a relevant research gap lies in optimizing

energy consumption of train movements during the operational horizon, to support

traffic control (dispatching) decisions, which are made in real-time as traffic flows. This

research area is only partially explored and very challenging. Indeed, due to its focus

on train operations and energy consumption minimization, this research area not only

demands very short computing times, for real-time applicability, but also an accurate

representation of train motion, that involves non-linear dynamic constraints typical of

optimal control problems (see Section 2.3.2). During train operations (Section 2.2.3),

traffic is subject to perturbations causing delays (e.g., a broken door on a car, an

unforeseen peak of demand increasing a dwelling time at a station). As a result, the

traffic controller (dispatcher) must re-schedule trains frequently over the operational

horizon to minimize delay propagation. Naturally, control decisions have to be taken as

quickly as possible, i.e., in real time, to prevent newly arisen delays from propagating

and thereby disrupting the service. This concerns two main areas of research, which are

subsets of EETC and EETT. We call them real-time EETC (rtEETC) and real-time

EETT (rtEETT).

This thesis collects our relevant publications that contribute to rtEETC and rtEETT

research branches (Section 1.4). We address two problems in particular: the first be-

longs to the rtEETC family, the second to the rtEETT one. Details are provided in

Sections 1.2.1 & 1.2.2.

1.2.1 real-time Energy-Efficient Train Control (rtEETC)

In this thesis, we tackle rtEETC in the form of single-train EETC (Howlett et al.,

1994a), i.e., computing an energy-efficient speed profile for one train at a time with

given schedule. We especially focus on developing optimization algorithms to be used

as a module for a rail Traffic Management Systems (TMS) to account for energy

consumption in real-time train (re-)scheduling decisions. Therefore, infrastructural

details and train interactions are not directly modeled. However, it is envisioned that

such details and interactions are handled by a TMS that, in this configuration, relies

upon the rtEETC module for computing energy-efficient speed profiles for single trains.

14



CHAPTER 1. INTRODUCTION 1.3. SCOPE LIMITATIONS

As a result, the TMS can make energy-aware train re-scheduling decisions for multiple

trains. Indeed, for each desired running time between two stations, the TMS can

determine a realistic energy-efficient speed profile, along with its energy expenditure.

Obviously, due to the unforeseen events continuing affecting traffic, the schedule of the

train may change during operations. Therefore, the algorithms are required run in a

very short computing time.

1.2.2 real-time Energy-Efficient Train Timetabling (rtEETT)

In this thesis, we tackle rtEETT in the form of the real-time Energy Consumption

Minimization Problem (rtECMP) (Montrone et al., 2018). The rtECMP requires

finding energy-efficient speed profiles for multiple trains running in a network fulfilling

the operational principles of railway systems, e.g., speed limits and safety distances

between trains. The goal of the problem is minimizing total energy consumption

along with delay given by traffic perturbations. The rtECMP accurately models both

the interactions between trains and infrastructural details of the considered railway

network and traffic state. A microscopic level of detail is adopted for achieving a

suitable accuracy in representing actual traffic in networks. Indeed, the interlocking

and signaling systems are modeled (see Section 2.3.1.1).

1.3 Scope limitations

In this thesis, we address the domain of rtEETC and rtEETT (Section 1.2) with the

following limitations and assumptions.

First, the proposed rtEETC/rtEETT methods are heuristic in nature: a sub-

optimal solution is sought. A short computing time is prioritized over exactness given

the nature of the application. In fact, as discussed in Section 1.2, we focus on energy-

efficient train operations in real-time traffic management, which require fast algorithms

to support dispatcher’s complex decisions. Moreover, highly accurate models of train

motion have to be considered along with railway operational constraints. As of to-

day, given the size of realistic instances and the tight computing time requirements,

15
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rtEETC/rtEETT are pretty much intractable with purely exact methods, see, e.g,

Montrone et al. (2018), Luan et al. (2018a,b) and Goverde et al. (2021).

Second, the models dealt are subject to simplifying assumptions. Precisely:

• We represent speed profiles as combinations of the four optimal driving regimes

resulting from the Pontryagin’s Maximum Principle optimality conditions (Scheep-

maker et al., 2017). These are maximum acceleration; cruising; coasting and

maximum braking. For further details, see Section 2.3.2.

• As common in this field, we only explore a reduced discrete subset of all the

possible speed profiles for each train. In particular, we make simplifying assump-

tions on both the switching points and driving regime sequences that constitute

train speed profiles. This largely reduces the search space and, thus, eases the

computational burden for the solution algorithms proposed (Scheepmaker et al.,

2017). By discretizing the search space, we therefore eliminate unneeded com-

plexity. Indeed, for instance, modeling switching point coordinates (time, speed,

distance) as a continuum of high-precision decimals might be more detrimental

than useful, leading to search space with a large number of similar speed profiles.

Furthermore, a human train driver is naturally sensitive only to coarse values

of speed, distance and time, effectively leading to a discretization of such values

when implementing driving actions. Discretization policies are under our con-

trol. Therefore, they let us achieve a trade-off between a model’s accuracy and

its complexity, matching the precision of the model’s solutions to the specific

application. See, e.g., Wang et al. (2016); Zhou et al. (2017); Montrone et al.

(2018); Luan et al. (2018a,b).

For an overview of speed profiles, switching points, and their related assumptions

see Section 2.3.2. In addition, detailed problem-specific assumptions can be

found in each included papers (Chapters 3, 4 & 5).

Third, for simplicity, we neglect the management of energy recuperation through

regenerative brake. For details on the subject, we refer the interested reader to, e.g.,

González-Gil et al. (2013); Scheepmaker et al. (2017).
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1.4 Included Papers

This thesis collects our relevant papers that contribute to rtEETC (Section 1.2.1) and

rtEETT (Section 1.2.2) fields. Such papers are:

Paper-1 Cacchiani, V., Di Carmine, A., Lanza, G., Monaci, M., Naldini, F., Prezioso, L.,

Suffritti, R., and Vigo, D. (2019). Energy-efficient train control. In Advances in

Optimization and Decision Science for Society, Services and Enterprises, pages

57–68. Springer

Paper-2 Naldini, F., Pellegrini, P., and Rodriguez, J. (2021). Real-time optimization

of energy consumption in railway networks. Transportation Research Procedia.

Accepted, in press.

Paper-3 Naldini, F., Pellegrini, P., and Rodriguez, J. (TBD). Energy optimization of

multiple trains in real-time rail traffic management considering signals and the

interlocking system. Under review for a major journal.

The papers are available in Chapters 3 (Paper-1), 4 (Paper-2) & 5 (Paper-3). Their

abstracts are reported in Sections 1.4.1, 1.4.2 & 1.4.3.

1.4.1 Abstract of Paper-1

This research presents a practical application of the Energy Efficient Train Control

(EETC) problem, which involves a collaboration between the Operations Research

group of the University of Bologna and ALSTOM Ferroviaria Spa. The work is car-

ried out within the framework of project Swift, funded by the Emilia-Romagna regional

authority. Given a train running on a certain line, the problem requires to determine

a speed profile that minimizes the traction energy consumption. In particular, we

consider the setting of a real-time application, in which the speed profile has to be re-

computed due to changes in the schedule caused by unpredictable events. We introduce

three solution methods: a constructive heuristic, a multi-start randomized construc-

tive heuristic, and a Genetic Algorithm. Numerical experiments are performed on
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real-life instances. The results show that high quality solutions are produced and that

the computing time is suitable for real-time applications.

1.4.2 Abstract of Paper-2

In railway traffic, perturbations may give rise to conflicts, causing delays. As a coun-

termeasure, effective re-scheduling and re-routing decisions can be taken by addressing

the real-time Rail Traffic Management Problem (rtRTMP). One of its subproblems is

the real-time Energy Consumption Minimization Problem (rtECMP). The latter en-

forces the train routing and precedences computed by a rtRTMP solver and defines

train timings and speed profiles. The objective is to minimize the weighted sum of train

energy consumption and total delay. In this paper, we propose an Ant Colony Opti-

mization algorithm for the rtECMP and we test it on the French Pierrefitte-Gonesse

control area with dense mixed traffic. The results show that, in a very short computing

time, a remarkable exploration of the search space is performed before convergence.

1.4.3 Abstract of Paper-3

Rail is widely recognized to be one of the most sustainable transport mode. How-

ever, its efficiency is often limited by the fact that perturbation-induced delays can

propagate in a snow-ball effect. This propagation can be mitigated with sensible train

re-scheduling and re-routing decisions, i.e., facing the real-time Railway Traffic Man-

agement Problem (rtRTMP). To optimize energy consumption and hence preserve

sustainability, we consider a subproblem of the rtRTMP named the real-time Energy

Consumption Minimization Problem (rtECMP). The rtECMP decides upon the speed

profiles and timings for multiple interacting trains running in a network to minimize

the weighted sum of total energy consumption and delay. In this paper, we propose

a graph-based model for the rtECMP, considering detailed interlocking and signaling

systems. Moreover, we propose three meta-heuristic algorithms to deal with it: Ant

Colony Optimization (ACO); Iterated Local Search (ILS); Greedy Randomized Adap-

tive Search Procedure (GRASP). We perform experimental analyses on two French

infrastructures with dense mixed traffic. High quality solutions are achieved in a very
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short computing time. The ACO algorithm achieves the best performance, with rather

small but statistically significant differences.

1.5 Contributions

In the included Paper-1 (Chapter 3), we contribute to the rtEETC research. Pre-

cisely, we propose fast and accurate heuristic and meta-heuristic algorithms to com-

pute energy-efficient single-train speed profiles with a given schedule. In the considered

setting, a train travel a line with distance varying-speed restrictions. Both track and

rolling-stock features affect the motion of the train. Experiments are run on case stud-

ies built with real-life rolling stock, schedule and line data, provided by our industrial

partner, Alstom ferroviaria SpA.

The main contributions of this paper w.r.t. the related literature at the time it

was being written are the following:

• It addresses an application critical to Alstom. The model, algorithms and solu-

tion quality assessment are in line with their industrial needs;

• It addresses new real-life case studies, including high-speed trains;

• It adopts an original fast constructive heuristic for generating speed profiles;

• Two of the proposed algorithms builds on top of the constructive heuristic: a

multi-start and a genetic algorithms.

• For increased accuracy of train dynamics model, an actual braking curve is

adopted instead of the more commonly used uniform deceleration rate;

• Computing time is suitable for real-time traffic management applications.

In the included Paper-2 & Paper-3 (Chapter 4 & Chapter 5), we contribute to

rtEETT research. Precisely, we propose a graph-based model and fast and accu-

rate heuristic & meta-heuristic algorithms for the rtECMP. Complex railway network

and their infrastructural characteristics are considered. Both track and rolling-stock

features influence speed profiles. In the route of each train, distance-varying speed
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restrictions are to be enforced. Experiments are run on case studies built with real-life

rolling stock, timetable and line data. Two real life infrastructures with mixed and

dense traffic are used as case studies. Train movements are realistically operated in

a microscopically detailed network in which the interlocking system and signals is are

modeled. For details on the microscopic level of detail in representing rail infrastruc-

tures, on the interlocking and on signals refer to Section 2.3.1.1. Both Paper-2 and

Paper-3 (Chapter 4 & Chapter 5) extend the work of Montrone et al. (2018), in which

the rtECMP was first introduced.

Paper-2 (Chapter 4) proposes an novel graph-based model for the rtECMP, capable

of dealing with additional constraints, and it introduces an Ant Colony Optimization

algorithm to address the model.

The main contributions of this paper w.r.t. the related literature at the time it

was being written are the following:

• A novel graph representation is introduced for the rtECMP, which extends the

MILP formulation of Montrone et al. (2018) by supporting more complex sig-

naling systems.

• A real-life case study is addressed: the Pierrefitte-Gonesse junction. It is a

complex junction with a quite intricate layout. Many potentially conflicting

train routes are available. Each instance derived from the Pierrefitte-Gonesse

infrastructure includes either 15 or 16 trains (high-speed, regional, intercity and

freight) over a 1-hour time window at peak-hour. The rtECMP instances that we

derived from the traffic in Pierrefitte-Gonesse are larger w.r.t. those addressed

the literature of the time.

• The proposed graph model is tackled effectively using an Ant Colony Optimiza-

tion algorithm (ACO). To the best of our knowledge, this is the first application

of ACO to the rtECMP.

• Computing time is suitable for real-time traffic management applications.

Paper-3 (Chapter 5) extends Paper-2 (Chapter 4) in several ways: the rtECMP

graph-based model definition is slightly improved; a highly effective Local Search is

20



CHAPTER 1. INTRODUCTION 1.5. CONTRIBUTIONS

devised; two additional meta-heuristic algorithms are proposed along with the ACO

of Paper-2; a new way of initializing the ACO is adopted; a thorough experimental

analysis is performed considering also railway oriented indicators; a comparison of

the three meta-heuristics is made; a statistical significance analysis of the experiment

results is carried out; a new real-life case study, leading to very large instances, is

considered.

The main contribution of Paper-3 (Chapter 5) w.r.t. the related literature at the

time it was being written are the following:

• Besides the Pierrefitte-Gonesse Junction, an additional real-life case study is

considered: a section of the Paris-Le Havre line. It is a long bi-directional

corridor with several stations, some of which with multiple stopping platforms.

Each instance includes either 15 or 16 trains (high-speed, regional, intercity and

freight) over a 1-hour time window at peak-hour, when traffic is most dense.

• The rtECMP is tackled with Iterated Local Search (ILS) and Greedy Random-

ized Constructive Procedure (GRASP). To the best of our knowledge, this is the

first application of such methods to the rtECMP.

• An effective Local Search algorithm is developed, and shared among the three

algorithms.

• Computing time is suitable for real-time traffic management applications.

1.5.1 Overview of the papers

As discussed in Section 1.2, the papers included in this thesis consider two related

problems, one of the rtEETC class (Paper-1: Chapter 3), the other of the rtEETT one

(Paper-2 & Paper-3: Chapters 4 & 5, respectively). Despite the similarities, different

methods and modeling assumptions are adopted. In this section, we summarize their

main similarities and differences.
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Let us introduce the following features for classifying the papers included in this

thesis:

AT1 computing time is suitable for real-time rail traffic management;

AT2 multiple interacting trains running in a network are handled;

AT3 microscopic details of rail infrastructures are considered (see Section 2.3.1.1);

AT4 scheduling/timetabling decisions are taken with EETC in mind;

AT5 realistic case studies are tractable;

AT6 reduction of total delay is considered along with energy efficiency.

Using the aforementioned features, we summarize the content of each paper in

Table 1.1.

Paper-1 Paper-2 Paper-3

Chapter 3 Chapter 4 Chapter 5

AT1 (real-time) X X X

AT2 (multi-train interactions) X X

AT3 (microscopic detail) X X

AT4 (Scheduling/Timetabling) X X

AT5 (realistic instances) X X X

AT6 (delay minimization) X X

Table 1.1: Overview of the papers.

Table 1.2 summarizes the algorithms proposed in each included paper and the case

studies dealt. The following notation is adopted: Ant Colony Optimization (ACO); It-

erated Local Search (ILS), Greedy Randomized Adaptive Search Procedure (GRASP);

Constructive Heuristic (CH); Multi-start Constructive Heuristic (MCH); Genetic Al-

gorithm (GA); Local Search (LS). Line A & B stand for undisclosed actual lines,

crucial to our industrial partner Alstom. The Pierrefitte-Gonesse Junction and Paris-

Le Havre line are well-known infrastructures located in France, characterized by mixed

dense traffic.
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Algorithm(s) Case studies

Paper-1 (Chapter 3) CH; MCH; GA Line A, approx 260 km

Line B, approx 270 km

Paper-2 (Chapter 4) ACO Pierrefitte-Gonesse Junction

Paper-3 (Chapter 5) ACO; ILS; GRASP; LS Pierrefitte-Gonesse Junction

Paris-Le Havre line (a section)

Table 1.2: Proposed algorithms and tested case studies.

1.6 Structure of the thesis

The rest of this thesis is laid out in the following fashion:

• Chapter 2 provides a brief overview of the domain-specific knowledge of rail

transport that are relevant to the included papers. First, the decision making

process is declined in its time horizons: strategical, tactical and operational.

For each planning horizon, the major optimization problems are discussed and

literature references are provided. Second, it presents the modeling principles

for rail infrastructures and speed profiles.

• Chapter 3 contains Paper-1 (see Section 1.4): “Energy Efficient Train Control:

a practical application”.

• Chapter 4 contains Paper-2 (see Section 1.4): “Real-Time Optimization of En-

ergy Consumption in Railway Networks”.

• Chapter 5 contains Paper-3 (see Section 1.4): “Energy Optimization of Mul-

tiple Trains in real-time Rail Traffic Management considering Signals and the

Interlocking System”.

• Chapter 6 reports our conclusions.
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Chapter 2

Railway System

2.1 Introduction

In this chapter, we outline the main problems arising in the design, deployment and

management of railway systems. These concerns planning decisions that have to be

taken in three horizons: strategic, tactical and operational (Section 2.2).

In the rest of the Chapter (Section 2.3), we outline the modeling principles for two

important areas: the railway infrastructure (microscopic and macroscopic levels) and

train movements (in terms of train dynamics and energy consumption computation).

2.2 Decision Making Process

In this section, we outline the decisions involved in railway service planning, i.e., the

design, deployment and management of railway systems. As for most public transport

system, these activities are complex and costly. Railway systems, in particular, are not

only extremely extended in terms of surface area, but also characterized by extremely

high volume of transported goods and passengers. In addition, high reliability and

safety standards have to be enforced through accurate control and regulation. This is

due to the great number of vehicles, moving at considerable speed on a shared railroad

network. Moreover, human actors, continuously entering and leaving the system, are

a critical liability to be addressed. Therefore, numerous components, either static
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or moving, must be effectively orchestrated on a daily basis also through accurate

planning.

Transportation sector is becoming more and more competitive and, therefore, a

high level of efficiency must be achieved and sustained through sensible railway ser-

vice planning decisions. Attention to performance-critical indicators such as, e.g.,

punctuality, is tightly correlated to customer satisfaction and is a requirement for

a state-of-the-art integrated, multi-modal transportation system. Moreover, due to

the large infrastructural and rolling-stock related investment, railway service planning

must also strive to maximize the utilization of the available capacity to increase profit.

Commonly, the planning process involves the interaction between two types of ac-

tor: the infrastructure managers (IM) and the railway undertakings (RU). An IM is

usually a firm in charge of an infrastructure in terms of maintenance, traffic manage-

ment, signaling and control. A RU is usually a public or private provider of trans-

portation services on rail for goods and/or passengers.

In its modern envisioning, the planning process is split into three phases: strategic

(Section 2.2.1), tactical (Section 2.2.2), operational (Section 2.2.3). The strategic

level mostly concerns demand forecasting and procurement decisions, i.e., securing the

acquisition of the required resources, such as, e.g., purchasing enough rolling stock to

satisfy the demand forecast. The tactical level is centered around resource allocation.

The operational level focuses on the day-by-day utilization of the resources in order

to achieve and maintain a high level of service throughout the year.

A major output of the service planning process is the so-called annual railway

service plan. It consists of a document with multiple sections, each describing the

plan for different aspects of the railway system. The three planning levels mentioned

above can be related to the start date of the annual rail plan and the so-called day of

operations. In particular, the strategic level covers a horizon of 5 to 15 years before

the start date of the annual plan; the tactical level covers a horizon of 5 years before

the start of the annual plan; the operational level focuses on the development of the

annual plan.

In the rest of this section, we offer an overview of the main decision problems aris-

ing in railway service planning at each horizon level. Precisely, Section 2.2.1, 2.2.2 and
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2.2.3 detail the strategic, tactical and operational horizons respectively. Figure 2.1

summarizes these optimization problems by classifying them by time horizon (strate-

gic, tactical and operational) and by decision maker (IM, RU or both). It also expresses

the nominal flow of activities in the form of arrows. Such activities, in real applica-

tions, may be subject to significant variations. In addition, backtracking or concurrent

solution of more than on problem may be necessary since problems of different levels

and/or decision can be mutually dependent to some extent.

2.2.1 Strategic

As shown in Figure 2.1, two main problems concern the strategic level: Network design

and Line planning. These are detailed below.

Network Design This problem involves making plans for building or altering

pre-existing infrastructures. Usually, this kind of decisions is in charge to an IM in

cooperation with the public authorities. However, RUs can take part in the process as

well and provide useful insights on customer behavior and demand forecasting. The

deployment of a new infrastructure from scratch or the alteration of an existing one are

usually motivated by significant changes in travel needs, increased demand, or a desire

to innovate or adhere to improved standards. For further details, we refer the reader

to Magnanti and Wong (1984), Guihaire and Hao (2008) and Canca et al. (2019).

Line Planning This problem requires defining train lines on an existing net-

work, which can be given by addressing a network design model. Precisely, a line

is an itinerary that connects an origin-destination pair, usually two major stations

of interest. Such itinerary potentially includes several minor stations in between. A

line plan must also specify the stop pattern, the type of rolling stock (engine model,

number of wagons, etc.) and the frequency of the line itself. Usually, the objective is

satisfying passenger demand while complying with network characteristics and capac-

ity limits. This problem is primarily faced by the RUs, which, however, may benefit

from a collaboration with the IM and, to some extent, with the regional or national

transportation authorities. For further details, we refer the reader to Goossens et al.
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IM IM&RUs RUs
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Figure 2.1: Railway planning decisions: strategic, tactical & operational horizons. The

rows indicate each planning phase. The columns indicate each actor involved in the

decisions.
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(2006), Schöbel (2012) and Fu et al. (2015).

2.2.2 Tactical

As shown in Figure 2.1, five main problems concern the tactical level: Maintenance

planning, Timetabling, Station capacity allocation, Rolling stock planning, Crew schedul-

ing. These are detailed below.

Maintenance planning This problem is usually addressed by the IM, who

is required to prepare a maintenance schedule matching the networks needs. When

maintenance operations are performed, portions of the network may become unavail-

able. This may greatly affect train operations and, therefore, the maintenance plan

should be known prior to making timetabling decisions. For further details, refer to

Higgins (1998), Caprara et al. (2006) and Forsgren et al. (2013).

Timetabling At the tactical level of railway service planning the IM has

to define a timetable to regulate traffic circulation on the network in terms of ar-

rival/departure times at points of interest along each line. The timetable therefore

expresses the nominal running time for each train and the dwelling times at each

planned stop. The IM receives train path and timing requests from several RUs and,

based on these, he constructs the timetable trying to accommodate each request as

much as possible. The requests are generally mutually incompatible and a compro-

mise has to be reached. Several constraints might be taken into account such as, e.g.,

headway times, speed limits, and connections between services. A tipical objective

is minimizing the deviation w.r.t. to the RU requests. This problem, which is also

known as train scheduling, is widely studied in the literature. See, e.g, Cordeau et al.

(1998), Cacchiani and Toth (2012) and Goverde et al. (2016).

Capacity allocation This problem requires to define a capacity allocation

plan to ensure the fruition of all services scheduled in the timetable. Such plan assigns

routes (given the actual infrastructure layout) and station platforms in such a way

that each train schedule is fulfilled. The capacity allocation problem is in typically in

charge to the IM. However, in case no feasible allocation is possible, the IM interacts
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with the RUs to re-negotiate their requests. In literature, this problems is referred

with several names, such as, train routing problem, track allocation problem, train

path allocation problem and train platforming problem. For further details, see, e.g,

Caprara et al. (2011), Lusby et al. (2011) and Borndörfer et al. (2012).

Rolling stock planning This problem requires the computation of the minimum-

cost assignment between rolling stock and the services scheduled in the timetable.

Empty runs, shunting movements and vehicle unavailability due to rolling stock main-

tenance are also considered. Usually, this kind of planning aims at reducing the overall

number of vehicles employed as it is strongly correlated with the total cost of meeting

the timetabled services. RUs are in charge of producing the rolling stock plan. For

further details, see, e.g., Abbink et al. (2004), Fioole et al. (2006), Steinzen et al.

(2010) and Cacchiani et al. (2012).

Crew scheduling This problem requires generating cost-efficient duty com-

binations for railway crews to cover all the scheduled trains over a time horizon. The

resulting crew schedules must comply with regulations and operational requirements.

Each RUs is in charge of scheduling its own crew. Relevant contributions are, e.g.,

Caprara et al. (1997), Abbink et al. (2005), Jütte and Thonemann (2012) and Heil

et al. (2020).

2.2.3 Operational

As shown in Figure 2.1, two problems concern the strategic level: Resource (re-)

Allocation and Operations Management and Rescheduling. These are detailed below.

Pre-operations resource (re)allocation The need of (re)allocating re-

sources at the operational level may occur for several reasons. For instance, additional

freight rains due to extra convoys, unplanned maintenance operations due to vehicle

malfunctions, unforeseen variations in crew rotations due, e.g., to strikes, etc. Usually

the time horizon for dealing with such unforeseen disruptions is of a few days. When

(re)allocation needs concern railway capacity, as for unplanned maintenance actions

or requests for additional train services, the IM is in charge of it. When the issue lies,
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instead, on resources such as rolling stock or crew members, the RUs are responsi-

ble of dealing with the (re)allocation needs. For further details, see, e.g., Jütte and

Thonemann (2012), Chu and Oetting (2013).

Operations management & re-scheduling Traffic must be overseen, coor-

dinated and managed in real time, because railway operations are subject to unforeseen

events that might negatively impact circulation (such as hardware failure, human er-

rors, forcast errors, etc.). Precisely, traffic perturbations cause so-called conflicts w.r.t.

the nominal schedule. A conflict is an event where one or more trains are forced to

slow down or even stop due to other trains no longer adhering to their original sched-

ule. This causes delays that can propagate to the whole system hindering service. As

a countermeasure, several train re-routing and re-scheduling decisions must be made

rapidly and sensibly by the IM. If addressed quantitatively, this means solving the

so-called real-time Rail Traffic Management Problem (rtRTMP), an NP-hard combi-

natiorial optimization problem. See, e.g., D’Ariano et al. (2007), Corman et al. (2011)

and Pellegrini et al. (2014). The rtRTMP can be considered a real-time version of

the timetabling problem (Section 2.2.2). The output of a rtRTMP solver is, indeed,

a whole new train schedule implying a new timetable: arrival/departure times, pass-

ing through times and dwelling times (for stops) at points of interest. Typically, the

rtRTMP is modeled with a highly detailed representation of the railway networks to

accurately schedule each train on the available physical routes.

The aforementioned papers refer to frequent, low-magnitude traffic perturbations.

A related research branch deals with infrequent, very large perturbations (disrup-

tions), that may hinder circulation for up to several hours. In this case, other traffic

management decisions are needed, e.g., short-turning (Zhan et al., 2015), rolling-stock

re-allocation (Nielsen et al., 2012) and crew rescheduling (Veelenturf et al., 2017).

Some of these may involve negotiation between RUs and the IM. For further details

on disruption management, see also Jespersen-Groth et al. (2009), Dollevoet et al.

(2012), Corman et al. (2017) and Hong et al. (2021). For a review on the rtRTMP

and disruption management, see Cacchiani et al. (2014).
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2.3 Modeling principles

This section briefly outlines the modeling principles that are relevant to the railway

optimization problems considered in this thesis. First, the railway infrastructure and

its modeling principles are discussed in Section 2.3.1. Second, train speed profile and

energy consumption modeling is addressed in Section 2.3.2.

2.3.1 Infrastructure

The railway infrastructure is a complex system including a network of tracks on which

train movements occur. Tracks guide a train motion so that no active steering is

required by means of a standardized wheel-flange interface. Tracks intersect at so-

called junctions, some of which are stations and, hence, passenger loading/unloading

may occur there. At junctions, switches (points) and crossings are located where one

or more tracks intersect. Both switches and crossings are mechanical devices that

are used to physically configure tracks according to each train’s scheduled route. At

a switch/crossing, each train is guided in the proper direction, according to plans,

preventing them from accessing the wrong track portions.

In the literature, railway infrastructures are represented with different levels of

detail commonly known as: macroscopic (least detailed); microscopic (most detailed,

closely represents real-life railway infrastructures); and mesoscopic (in-between micro-

scopic and macroscopic) model. The two extremes, microscopic and macroscopic, are

outlined in this section as they are relevant to the papers collected in this thesis. Mi-

croscopic modeling of railway infrastructure is introduced in Section 2.3.1.1. This level

of detail is is used in Paper-2 and Paper-3 (Chapters 4 and 5). Microscopic modeling

of railway infrastructure is discussed in Section 2.3.1.2. This level of detail is used in

Paper-1 (Chapter 3).

2.3.1.1 Microscopic representation

In this section, we offer a brief overview of the real-life railway system aspects that

are usually included in the microscopic modeling of railway infrastructures. At this
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level of detail, the following infrastructural elements are usually considered: track-

circuits, block sections, signaling and interlocking systems. This allows for an accurate

descriptions of train movements while ensuring their feasibility w.r.t. rail operational

principles. These elements are discussed in the following and examples are provided.

For real-time traffic management purposes, where the microscopic representation is

the most suitable (Pellegrini et al., 2014), the railway system is divided into portions

of network called control areas. Those are in charge to a dispatcher or controller,

who has to actively maintain a smooth traffic flow so that timetabled target times

are met by all trains as much as possible. A control area contains a set of possible

origin-destination pairs and many potential train routes connecting them. To overcome

delay caused by perturbations arising during train operations, a dispatcher can make

the following decisions: train re-routing (re-assigning each train a route connecting its

origin-destination pair), re-ordering (deciding the sequence of trains traversing a given

route) and re-timing (deciding train travel times). Such decisions must be implemented

as quickly as possible. For additional details on real-time traffic management, the

interested reader is referred to Section 2.2.3.

In the infrastructure contained in a control area, tracks are divided into track-

circuits : track stretches equipped with electrical devices capable of sensing train pres-

ence. For our purposes, track-circuits can be considered both fundamental and atomic

resources of railway networks. Indeed, utilization time of track-circuits by each train

have to be properly scheduled onto track-circuits to let traffic flow safely and in com-

pliance with the timetable. A track-circuit must be utilized by only one train at a

time for safety.

Track circuits are grouped into block sections, that are track sections delimited by

two signals: one at the entrance and one at the exit. For safety, only one train at a

time can be in a block section. A signal protects the entrance of its corresponding

block section by conveying instructions affecting the pace of trains approaching the

block section itself: a speed reduction or a full stop may be demanded. Each train in

a control area is assigned a route that it must follow. A route is an ordered sequence

of block sections and, therefore, an ordered sequence of track-circuits for a train to

traverse.
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Figure 2.2: Example railway infrastructure.

Figure 2.2 displays an example infrastructure including: track-circuits TC1 to

TC13; signals S1 to S8. The signals delimit the following block sections: S1-S2 (con-

taining TC1 and TC2); S2-S3 (containing TC3 and TC4); S3-S4 (containing TC5,

TC6 and TC7); S3-S5 (containing TC5, TC6 and TC8); S6-S7 (containing TC11 and

TC12); S8-S4 (containing TC13, TC5, TC6 and TC7); S8-S5 (containing TC13, TC5,

TC6 and TC8). A possible train route is displayed as an orange arrow. The route

is composed of block sections S6-S7, S7-S8, S8-S4 (composed of track-circuits TC9,

TC10, TC11, TC12, TC13, TC5, TC6, TC7).

Railway signals are design to maintain a safe distance between trains circulating

in a control area. Indeed, a signal is in essence a traffic light that conveys instructions

on whether a block section can be accessed or not by an approaching train. Moreover,

when a block section can be accessed, its entrance signal may impose a speed restriction

to a train approaching it if needed. The specific instruction displayed by a signal to

an approaching train depends on the utilization state of the track-circuits belonging

to the block sections following the one in which the train is currently located.

Let us consider a train approaching a signal while traveling on its planned route.

In the simplest case (a 3-aspect signaling system), the signal can display three colored

aspects to the train approaching it: green, yellow, red. Red indicates that the block

section after the signal must not be accessed, being already under utilization, or the

emergency brake will be triggered. Yellow indicates that the train must proceed with

caution. In fact, if the traffic state does not improve, the train will have to stop

before the next signal. Therefore, yellow may require the train to slow down as soon
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Figure 2.3: Example: the train on the left meets a yellow (Y) on a 3-aspect signal (s1).

Track-circuits are not shown here.

as possible. The yellow aspect is triggered by the the next signal being red. Green

indicates that the train should proceed at the planned speed. For a 3-aspect signal

to display a green aspect, the next two block sections must be available, i.e. every

track-circuit in them must not be utilized by any other train.

Figure 2.3 exemplifies the functioning of a 3-aspect signal. It shows two trains

sharing the same route, composed of block sections b0, . . . , b4 and signals s1, . . . , s4.

Signal s1 is a 3-aspect signal. Due to the train on the right occupying block section b2,

the train on the left, which is about to enter b1, meets a yellow (Y) aspect on s1. This

instructs the train to prepare for a possible stop within the length of block section

b1 in order to maintain safety distances. This is due to the aspect displayed on s2

being red (R) as b2 is physically occupied by another train. The blue curve represents

one of many possible speed profiles for the train on the left complying with the speed

restriction imposed by signal s1.

Theoretically, each signal can have any number n of aspects, including green, yellow

and red. In case of n-aspect signals, additional restrictive aspects, between green and

red, are used to instruct drivers to gradually reduce speed, if needed. This progression

of speed restrictions mediated by signals is conceived to enable a train to stop before

a red signal that is located farther ahead on the route. For a signal to display a green

aspect, the next (n − 1) block sections must be available. For instance, a 4-aspect

signal, can display the following aspects: green, flashing-yellow, yellow, red. Green is

displayed only when the next three block sections are available. Flashing-yellow warns

of a possible requirement to stop within two block sections. Yellow and red meaning

is unvaried.
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Figure 2.4: Example: the train on the left meets a flashing-Yellow (fY) on a 4-aspect

signal (s1). Track-circuits are not shown here.

Figure 2.4 exemplifies the functioning of a quite common 4-aspect signaling system.

It shows two trains sharing the same route, composed of block sections b0, . . . , b4 and

signals s1, . . . , s4. Signal s1 is a 4-aspect signal. This time, due to the train on the

right occupying both block section b3 and b4, the train on the left, which is about to

enter b1, meets a flashing-yellow (fY) aspect on s1. This aspect tells the driver that

a full stop could be required within two block sections, i.e., by the end of b2 and,

therefore, the speed of the train on the left, entering b1, must be adjusted accordingly.

If, for instance, the train on the right stood still, the train on the left would eventually

meet a yellow aspect on s2 and a red one on s3. The blue curve represents one of many

possible speed profiles for the train on the left to fulfill the displayed aspects on s1, s2

and s3.

Another fundamental infrastructure component is the interlocking system that

manages the proper train access to track-circuits and block sections for a safe and

coordinated circulation. It is in charge of handling the reservation, set up and release

of track-circuits so that each train route is formed as planned and traversed only when

it is safe to do so. The most basic rule the interlocking system enforces is that only

one train at a time can utilize the same track-circuit. Two block sections sharing one

or more track-circuits are called incompatible (with this definition, block sections are

considered incompatible with themselves). Two train routes sharing at least one track-

circuit are said to be conflicting. Figure 2.5 shows two conflicting routes assigned to

two distinct trains (orange and green arrows) located in the example infrastructure of

Figure 2.2. The green route is composed of block sections: S1-S2; S2-S3; S3-S5. The
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Figure 2.5: Example infrastructure with two trains having conflicting routes.

orange route is composed of block sections: S6-S7; S7-S8; S8-S4. Block sections S3-S5

(green route) and S8-S4 (orange route) are incompatible as they share track-circuits

TC5 and TC6.

The interlocking system regulates the flow of trains in incompatible block sections

so that the safety rules are fulfilled and proper route formation is ensured. To achieve

its purpose, the interlocking system continuously coordinates the signals with the

actual utilization of track-circuits in the control area. This requires exploiting the

train detection capabilities of track-circuits. With a red signal at the entrance of a

block section b, the interlocking system states that it is not safe for a train t to proceed

in it, as one or more track-circuits are currently under utilization in b. Moreover, the

block sections b∗ that are incompatible with b are made unavailable by the interlocking

system. Eventually, block section b is made available again as soon as its track-circuits

are cleared and released. This implies that not only the train’s tail has cleared b, but

also that enough time has elapsed for it to be considered released due to technical

reasons. Block sections b∗, instead, depending on the interlocking system type, can be

released even before that b becomes available again.

Figure 2.6 displays the routes and positions of two trains, A and B, on a simple

infrastructure. The route of B is depicted in orange and includes block sections S1-S2,

S2-S3, S3-S4. The route of A is depicted in blue and includes block sections S5-S6,

S6-S7, S7-S8. We assume a 3-aspect signaling system and that only trains A and B are

circulating in the infrastructure. In Figure 2.6, train B is currently occupying a track-

circuit that is shared between block sections S2-S3 and S6-S7, that are incompatible
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Figure 2.6: Example of route-lock and 3-aspect signaling. Train A: blue route. Train

B: orange route.

block sections. As a result, train A is denied access to S6-S7. Indeed, S6 displays

a red aspect for A. In addition, train A will encounter a yellow aspect on S5 when

approaching S5-S6, due to S5 being a 3-aspect signal. Signals S1 and S2 respectively

display yellow and red as S2-S3 is still under utilization.

Two interlocking system types are available: route-lock route-release and route-

lock sectional-release. Both systems have the same route-lock functioning, in which,

as discussed, a block section is considered inaccessible until each track-circuit in it is

no longer utilized (c.f. Figure 2.6). What differentiates the two interlocking system

types is the policy with which incompatible block sections are made available as shared

track-circuits are progressively released.

With the route-lock route-release interlocking system, all the track-circuits in a

block section are released only after that a train has completed their utilization. Then,

a new train can reserve the track-circuits in the block section if applicable. If this

kind of interlocking is deployed, track-circuit utilization details can be neglected and

block sections become the fundamental resources onto which train utilization time is

allocated. However, groups of mutually incompatible block sections must be know

and this information can be derived only from the infrastructural layout at the track-

circuit level of detail. A qualitative example of route-lock route-release is presented

in Figure 2.7 in a similar setting to Figure 2.6. Here, train B is located in S3-S4.

Assuming that enough time has elapsed to consider S2-S3 released and S6-S7 set,

train A can access block section S6-S7 with no restrictions. This scenario is reflected
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Figure 2.7: Example of route-lock route-release with 3-aspect signals.
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Figure 2.8: Example of route-lock sectional-release with 3-aspect signals.

in the signal aspect displayed: S2 is yellow, S3 is red, all the others are green.

With the route-lock sectional-release interlocking system, the track-circuits in a

block section b that are being traversed by a train t are released as soon as their

utilization by t itself ceases. In this way, such track-circuits can be made available

to other trains scheduled to traverse block sections other than b. Indeed, b remains

inaccessible until its last track-circuit has been released by train t. This kind of

interlocking requires knowing the utilization time of track-circuits by trains and can

yield a better saturation of the infrastructure’s capacity. A qualitative example of

route-lock sectional-release is presented in Figure 2.8 in a similar setting to Figure 2.6.

Here, train B is still located in S2-S3. However, it is now located on the last track-

circuit, right before signal S3. Assuming that enough time has elapsed to consider the

other track-circuits in S2-S3 released and S6-S7 set, train A can access block section

S6-S7, even if B has not released the last track-circuit in S2-S3 yet. This scenario is

reflected in the signal aspect displayed: S1 is yellow, S2 is red, all the others are green.
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Generally, implementing train movements in a control area requires complying with

the constraints imposed by both the interlocking and signaling systems. As discussed

so far, modeling this kind of constraints requires an accurate consideration of the

utilization times of each track-circuit (and block sections) by each train. Generally, the

utilization time does not coincide with exclusively the time a train physically occupies

a track-circuit. The Blocking theory (Pachl, 2009) is often applied to determine the

utilization time of track-circuits (and block sections), especially in the context of real-

time traffic management (Pellegrini et al., 2014).

Figure 2.9 illustrates the utilization time resulting by applying the Blocking Theory

to block section S8-S4 (track-circuits TC13, TC5, TC6, TC7). The horizontal and

vertical axes indicate distance and time, respectively. The two orange oblique lines

represent the train’s head and tail distance traveled as a function of time. A route-lock

sectional-release interlocking and a 3-aspect signaling systems are assumed to be in

place. For each track-circuit, the utilization time equals the sum of the following time

intervals:

1. formation time: it is the sums of (i) the time to set-up a block section (in terms

of configuring its moving elements, switches and crossings, and its entry signal)

and (ii) the time needed by the driver to see and react to the signal aspect at

the block section’s entrance;

2. reservation time: the time required by the train to traverse the preceding block

section where the reservation of track-circuits begins to ensure that a green aspect

is encountered on S8 (in case of 3-aspect signaling);

3. running time: the time it takes the train’s head to traverse a track-circuit, which

is tightly related to the chosen speed profile;

4. clearing time: the time it takes the train’s tail to leave a track-circuit, which is

tightly related to the chosen speed profile;

5. release time: the time that must elapse to make a track-circuit available again,

for technical reasons, after it has been cleared by the train.
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Figure 2.9: Utilization of block section S8-S4 by a train traveling the orange route.

Route-lock sectional-release interlocking. Reservation time is considered (3-aspect

signaling).

Each clear blue rectangle in Figure 2.9 represents the utilization time of each track-

circuit by a train. The dark blue rectangles, contained in the clear blue ones, represent

the physical occupation time of each track-circuit, i.e., running time plus clearing time.

The utilization times of a track-circuit by two trains must never overlap.

Figure 2.9 reflects the utilization time definition of many real-time traffic man-

agement approaches. See, e.g., Pellegrini et al. (2014). In this setting, conflict-free

schedules are directly sought. A schedule is said to be conflict-free if it implies that

every train crosses exclusively green signals along its entire trip (if no traffic per-

turbations occur). To obtain conflict-free schedules, track-circuits must be reserved in

advance as a train approaches a block section. In this setting, reservation time (Figure

2.9) becomes a part of utilization time. In case of n-aspect signals, the reservation of

a track-circuit must start before a train occupies the first track-circuit in the (n− 2)th

preceding block section, as the formation time must elapse first. In the example of

Figure 2.9, since we have n = 3, the reservation time concerns the previous block
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section only (n − 2 = 3 − 2 = 1). In any case, the train can actually enter the block

section only after the formation time has elapsed (Figure 2.9).

When obtaining a conflict-free schedule is not a hard constraint, the reservation

of track-circuits can be neglected. However the other components of utilization times

must still be computed. This is the case considered by Montrone et al. (2018), Paper-2

and Paper-3 (Chapters 4 and 5). Figure 2.10 illustrates the components of track-circuit

utilization time as it is modeled in Montrone et al. (2018), Paper-2 and Paper-3. For

example purpose, the setting of Figure 2.9 is reprised. However, now, a route-lock

route-release interlocking system is in adopted and reservation times are neglected.

Utilization times and occupation times are represented as clear and dark green rect-

angles, respectively. As usual, the utilization times of a track-circuit by two trains

must never overlap. As shown in Figure 2.10, the utilizations of TC13, TC5, TC6 and

TC7 last the same amount of time in this case. Each track-circuit’s utilization time

is the sum of: formation time; release time; the time interval between the physical

occupation of the first and the last track-circuits. For further details, see Montrone

et al. (2018).

The interlocking system discussed so far reflects the specifics of the fixed-block inter-

locking system from the European Rail Traffic Management System standard (ERTMS,

2021), which is currently deployed in most control areas around the world. The spe-

cific signal aspects described in this section, although reflecting the French signaling

system, are representative of most implementations worldwide. For further details

on the interlocking and signaling systems, we refer the reader to Theeg et al. (2009).

Additional details are also provided in Paper-2 and Paper-3 (Chapters 4 & 5).

2.3.1.2 Macroscopic representation

In this section, we outline of the so-called microscopic representation of railway sys-

tems. At this level of detail, infrastructural components such as track-circuits, block

sections and the interlocking and signaling systems (Section 2.3.1.1) are neglected.

A macroscopic model usually consists of a graph whose nodes symbolize junctions

or stations of interest and whose arcs represent existing rail connections between such
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Figure 2.10: Utilization of block section S8-S4 by a train traveling the orange route.

Route-lock route-release interlocking. Reservation time is neglected.

nodes. As a result, they are more natural and intuitive compared to microscopic

models. In addition, they are much easier to obtain, not requiring describing every

technical element composing the layout of an infrastructure.

In case of train scheduling, microscopic models account for only the total travel

times of the trains running between each pair of nodes. Each node is often assigned

a maximum and minimum number of trains that can be handled in terms of available

capacity. In addition, train separation is enforced by means of minimum headway

constraints. These impose a minimum distance (spatial or temporal) between two

consecutive utilizations of an arc by two trains. In reality, though, as discussed in Sec-

tion 2.3.1.1, train separation is dynamically managed through the interlocking system

and signals.

The reduced level of detail implies that microscopic models, in most cases, allow

for addressing very large rail networks preserving tractability. However, adopting

macroscopic models yields a largely inaccurate representation of train movements as

neither the actual track-circuits traversed nor the interlocking and signaling systems
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are considered. Therefore, such models are best suited for those problems that do

not require either infrastructural details or accurate modeling of train operations.

However, due to the fact that microscopic models often enable tackling very large rail

network instances, they are frequently used in several railway problems belonging to

the strategic and tactical planning horizons (Section 2.2.1 and 2.2.2).

For instance, the Train Timetabling Problem of the tactical planning horizon (Sec-

tion 2.2.2) is usually tackled with macroscopic models. This allows for rapid solutions

of large railway networks. However, the obtained timetables might be either ineffi-

cient, in terms of infrastructure capacity utilization, or infeasible due to the violation

of operational rules. In fact, for example, certain headway and running times may

be either underestimated or overestimated by a timetable, leading to under-utilization

of resources or to insufficient train separation and, hence, violation of safety rules.

Moreover, in this context, the model of train motion is usually extremely simplified,

i.e., the actual physical properties of the route, rolling-stock and, in particular, the

engine characteristics are ignored. This, along with no consideration of signal and in-

terlocking constraints, leads to infeasible timetables from a microscopic point of view,

which, nonetheless, are good enough for the tactical planning horizon. Assessing the

feasibility and capacity utilization that a timetable actually yields can be done ex-

post, e.g, with a rail simulator running on the corresponding microscopic model for

the considered network. This is to remark even further the importance of microscopic

infrastructural details when seeking accurate train operations modeling.

In Paper-1 (Chapter 3), a microscopic model is adopted for a single-train single-

line rtEETC application. The addressed problem calls for finding an energy-optimal

speed profile for a train running between two consecutive stops in a given line (a train

route). The line instances tackled are up to approximately 260km long. Each line

is corresponds to a specific route between an initial and final station where the train

respectively departs and arrives. The intermediate stations between the departure and

arrival stations are neglected as intermediate stops are not planned in the considered

instances. Naturally, track-circuits, block sections, the interlocking system and signals

are neglected. This macroscopic model includes a description of the enforced speed
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restriction, radius of curvature and slope as piece-wise functions of distance. Such line

features are crucial for modeling train dynamics and, hence, computing speed profiles

with accuracy (see Section 2.3.2). The so mentioned piece-wise functions are derived

from the properties of each track-circuit composing the line. Similar models are used

in many EETC approaches (Scheepmaker et al., 2017).

For details on track and rolling-stock physical features and their relationship with

train speed profiles, see Section 2.3.2.

For further details on macroscopic models, see, e.g., Caprara et al. (2002) and

Schlechte et al. (2011).

2.3.2 Train speed profiles & energy consumption

In this section, we provide a brief overview of the modeling principles adopted when an

energy-efficient speed profile is sought for a single train. Such principles are relevant

to most EETC approaches in the literature. Therefore, what we discuss in this section

is also crucial for the EETT class of problems, being indeed tightly related to EETC.

However, we remark that both EETC and EETT indicate two families of models and

algorithms. Despite usually sharing similar modeling principles that are rooted in

optimal control theory, EETC and EETT can take quite different forms depending on

the specific context (Scheepmaker et al., 2017). Only the modeling aspects that are

relevant to the papers collected in this thesis will be discussed here.

Let us focus on the motion of a single train whose state will be represented using

speed and distance as dependent variables and time as the independent one. Although

different variables can be chosen depending on the application, we believe this setting

to be the most intuitive for the purpose of this section. To accurately represent

the motion of a train one must consider characteristics of both the the train and

infrastructure it traverses. First of all, a train is frequently approximated as a point

mass and Newton’s second law of motion is used to describe the relation between its

speed v and time t (Brunger and Dahlhaus, 2009). The train motion can be described
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through the following system of differential equations:
F (t)− Fr(t) = mfp

dv(t)

dt

v(t) =
ds(t)

dt

(2.1)

where

• v(t) is the train speed at t

• s(t) is the train distance along its route at t

• F (t) , depending on its sign, is either an accelerating or decelerating force whose

magnitude and sign are under the control of the train driver at time instant t

• Fr(t) is the resistance force at t;

• m is the train mass

• fp is a correction factor to account for the rotating parts of the train

The engine of a train is capable of exerting a maximum force of FT (v) ≥ 0, that is

a non-increasing function of speed v. In most cases, FT (v) is effectively approximated

as a piece-wise hyperbolic function.

A maximum braking force FB < 0 can be exerted to decelerate the train or to stop

it. FB is often approximated as a constant value and its most frequently used values

are: service braking and sharp braking force (Brunger and Dahlhaus, 2009). Sharp

braking yields a higher deceleration rate and is hence meant for emergencies, while

service braking is preferred in regular operation.

The term F (t), which is the controlled variable, is bounded between the maximum

braking force FB < 0 and the maximum tractive force FT (v(t)) > 0.
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To move, a train must overcome the resistance force Fr. A quite common definition

for resistance Fr is the following:

Fr(t) = Lr(θ(s(t))) + Cr(ρ(s(t))) +Mr(v(t)), (2.2)

where

• Lr(θ(s(t))) is the line resistance, which depends on the track slope angle θ at

distance s(t) along the track;

• Cr(ρ(s(t))) is the curve resistance, which depends on the radius of curvature ρ

at distance s(t) along the track;

• Mr(v(t)) is the vehicle resistance, which depends on train speed v at distance

s(t) along the track.

Line resistance (Lr) accounts for the effects of gravity on inclined track portions.

It is computed as

Lr = m g sin(θ) ≈ m g tan(θ), (2.3)

where g is the standard gravitational acceleration for the surface of the earth. For

small values of θ, we have that sinθ ≈ tanθ.

Curve resistance (Cr) accounts for the resistive effects of track curvature on train

motion. It can be computed with different formulas. A quite common one is the Roeckl

formula (Wang et al., 2016):

Cr =

m
6.3
ρ−55

, if ρ ≥ 300 meters

m 4.91
ρ−30

, if ρ < 300 meters
(2.4)

In Paper-2 and Paper-3 (Chapters 4 and 5) we adopted the Roeckl formula, while in

Paper-1 (Chapter 3) we adopted a different formula that better matched the needs of

our partner Alstom.

Vehicle resistance (Mr) combines both rolling resistance and air resistance. It

depends on speed and on rolling stock features and is usually approximated with the

Davis formula (J.W. Davis Jr, 1926). Precisely:

Mr(v) = A+Bv + Cv2, (2.5)
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where A,B and C are non-negative empirical constants that depends on the specific

rolling stock.

The values of θ and ρ are dependent only on the position s(t) of the train along

its route. In practice, ρ(s) and θ(s) are usually defined piece-wise constant function

of distance s along the considered route. This implies that a train route is comprised

of a sequence of track intervals having a constant ρ and θ. In each of these intervals,

Fr becomes a function of speed only. As a result, for some applications, it is often

convenient to use distance s as the independent variable (Albrecht et al., 2016c).

Knowing that v = ds/dt by definition, (2.1) becomes:
F (s)− Fr(s) = mfpv(s)

dv(s)

ds
dt(s)

ds
=

1

v(s)

(2.6)

In this section, given its introductory nature, we maintain the more intuitive system

of differential equation (2.1).

To move along its route, a train requires a certain amount of mechanical energy

E, which is computed as follows:

E =

∫ τ1

τ0

F+(t)v(t)dt (2.7)

with (τ0 − τ1) being the travel time of the train: starting at time τ0 and ending at τ1.

The term F+(t) equals F (t) if F (t) > 0 and equals 0 if F (t) ≤ 0. Therefore, only the

positive values of F are considered in the computation of energy as the negative ones

do not imply energy consumption. Indeed, when F < 0, the brake is being engaged.

By definition, F+(t)v(t) is the mechanical power P (t) associated with the train motion

state at t.

Let us now discuss a simple example of a single-train EETC problem that includes

all the modeling aspects introduced so far in this section. A train is expected to

traverse a D-long route in a scheduled travel time (τ1 − τ0). We want to find a speed

profile v(t) with t ∈ [τ0, τ1] that minimizes the total energy consumption. The system

of differential equations (2.1) represents the law of motion for the train and boundary
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conditions have to be specified for it. The whole trip must start and end at times

τ0 and τ1, respectively. This implies that the initial and final distances are such that

s(τ0) = 0 and s(τ1) = D, respectively. Let us assume that the initial and final speed

values are equal to zero: v(τ0) = 0 and v(τ1) = 0. In addition, let us consider a

distance-dependent speed restriction constraint: v(t) ∈ [0, Ṽ (s(t))], where Ṽ (s) is

the maximum allowed speed at position s(t). In this setting, a train speed profile is

a function v(t), resulting from the chosen control law F (t), that solves the system

of differential equation (2.1) and that complies with the constraints and boundary

conditions described so far. To compute an energy-optimal speed profile v∗(t), one

wants to find a control law F ∗(t) such that it minimizes (2.7). The example problem

discussed so far, is summarized in Equations (2.8)-(2.14). This constitutes a common

optimal train control problem, i.e., optimal control theory (Lee and Markus, 1967)

applied to train motion. According to Scheepmaker et al. (2017), optimal control

problems, such as (2.8)-(2.14), are addressed in the literature with either indirect

exact methods, direct exact methods (Betts, 2010; Rao, 2014) or with heuristic/meta-

heuristic algorithms based on simplifying assumptions. The latter are the target of

this thesis. Optimal control theory is beyond our scope.

min
F (t)∈Ω(t)

{∫ τ1

τ0

F+(t)v(t)dt

}
(2.8)

Ω(t) := [FB, FT (v(t))] , t ∈ [τ0, τ1] (2.9)

F (t)− Fr(t) = mfp
dv(t)

dt
(2.10)

v(t) =
ds(t)

dt
(2.11)

s(τ0) = 0; s(τ1) = D (2.12)

v(τ0) = 0; v(τ1) = 0 (2.13)

v(t) ∈
[
0, Ṽ (s(t))

]
(2.14)
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In the EETC literature, many authors focused on indirect methods, which require

finding the necessary conditions for a speed profile to be energy-optimal. By using the

Pontryagin’s Maximum Principle, researchers have shown that an energy-optimal train

speed profile is necessarily a sequence of the four so-called optimal driving regimes. The

four optimal driving regimes are:

1. maximum acceleration (also known as acceleration or maximum traction);

2. cruising (also known as speed holding);

3. coasting ;

4. maximum braking (also known simply as braking).

Maximum traction is obtained by applying the maximum tractive effort, i.e., F =

FT (v(t)) in System (2.1), to accelerate a train. Generally, this is the most energy

consuming among the four optimal driving regimes.

Cruising is obtained by maintaining the net force acting on the train equal to zero,

i.e. F = Fr , so that the train moves with uniform speed. Although coasting consumes

energy, it is generally preferable than maximum acceleration.

Coasting is obtained by neither engaging the brake nor the engine so that a train

simply moves by inertia. This driving regime does not consume energy.

Maximum braking is obtained by exerting the maximum braking force F = FB,

i.e., F = FT (v) in System (2.1) to decelerate the train. This driving regime does not

consume energy.

For further details on optimal control formulations concerning train movements,

typical solution methods (such as direct & indirect methods) and the optimal driving

regimes see, e.g., Albrecht et al. (2015, 2016c); Scheepmaker et al. (2017); Goverde

et al. (2016).

A large number of EETC/EETT methods in the literature consists of heuristic/meta-

heuristic algorithms. They are usually based on the knowledge of the four optimal

driving regimes just discussed plus additional simplifying assumptions to reduce the

set of feasible speed profiles (Scheepmaker et al., 2017). In this context, the problem
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of finding an energy-efficient speed profile for a train is converted into to the problem

of finding a sequence of driving regimes and its corresponding sequence of switching

points. In general, one needs to find:

1. a sequence (d0, d1, . . . , dk, . . . , dL) of driving regimes, containing L of the four

optimal driving regimes, with L> 0 being an unknown integer;

2. a sequence (P0, P1, . . . , Pk, . . . , PL) of switching points, where each Pk is a coor-

dinate point (e.g., spatial or temporal) at which the switching to driving regime

dk occurs along the train route.

Figure 2.11 shows a distance-speed plot in which a train speed profile (blue curve)

is obtained with six (L = 6) switching points P0, . . . , P5. The driving regimes are

the following: cruising from P0; coasting from P1; maximum acceleration from P2;

braking from P3; coasting from P4; braking from P5. The profile starts and ends with

non-zero speeds. The red vertical lines indicate the distance intervals in which line

properties are uniform (e.g., speed limit, radius of curvature and slope angle). The

green horizontal lines indicate the speed limit values along the line.

In addition, to reduce complexity, further assumptions are usually made, especially

when computing speed is as crucial, as in this thesis. Precisely, the speed profile rep-

resentation is usually simplified to make the search space smaller (Scheepmaker et al.,

2017). An example could be Montrone et al. (2018), in which the number of switching

points along with their spatial coordinates are fixed beforehand and switching points

take only discrete speed values. Another example could be Luan et al. (2018a,b), in

which coasting is neglected, maximum acceleration curves are approximated and speed

values at switching points are discrete, as in Montrone et al. (2018).

The papers included in this thesis address rtEETC and rtEETT problems (Section

1.2 & 1.3) via meta-heuristic and heuristic algorithms based on the knowledge of the

four optimal driving regimes. As common practice, we made reasonable assumptions

to reduce the size of the search space so to deal with large realistic instances in a short

computing time. The details are discussed in the following paragraphs.
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Figure 2.11: Example of train speed profile (blue curve) and switching points (yellow

diamond shapes).

In Paper-1 (Chapter 3), only one train and a route are considered. The route

length is divided into a fixed number of subsections containing at most four switching

points. For each subsection, only the following ordered sequence of driving regimes

is permitted: (1st switching) maximum acceleration, (2nd switching) cruising, (3rd

switching) coasting and (4th switching) maximum braking. Driving regimes could be

omitted but the order stays unchanged. Switching points are not fixed, except for the

spatial coordinate of the first one in each subsection, being located at each subsection’s

entrance. Switching points take discrete speed values. If needed, only a subset of the

four allowed driving regimes may appear in a subsection. For instance, let us suppose

that maximum acceleration is to be avoided in a subsection for some reason. To do

so, the algorithms will have the second switching point overlap the first one so that

the undesired driving regime does not occur at all (maximum acceleration would be

held for either zero meters or zero seconds). A similar set of assumptions was used in

Li and Lo (2014b).

In Paper-2 and Paper-3 (Chapters 4 & 5), multiple interacting trains are considered

in a microscopically modeled infrastructure (Section 2.3.1.1). Each block section is

divided into a fixed number of subsections with equal length. Only at the beginning

of each subsection, a change of driving regime may happen. In each speed profile,

the switching between two regimes occurs at fixed positions within each block section.

Unlike Paper-1 (Chapter 3), the sequence of driving regimes is not fixed. For each
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Figure 2.12: Speed profile representation in Paper-2 and Paper-3. X-axis: distance; Y-

axis: speed; Vertical black lines: borders of the subsections in which the block section

is divided into; MA: maximum acceleration; Coast: coasting; CRU: cruising;

block section, several speed profiles are pre-computed (for those trains scheduled to

traverse that specific block section). Lists of initial-final speed pairs and of driving

regime sequences are used. As a result, the rtECMP is modeled as a combinatorial

optimization problem. For each train, the algorithms described in Paper-2 & Paper-3

(Chapters 4 & 5) perform a selection of a pre-computed speed profile for each block

section in the train’s route. This process builds a full speed profile for each train.

The set of available block section speed profiles is pre-computed using a version of the

TDRC algorithm (Montrone et al., 2018) that we slightly improved.

Figure 2.12 displays two possible speed profiles in a block section (solid and dashed

curves). They are obtained according to the assumptions of Paper-2 and Paper-3

(Chapters 4 & 5). The block section shown has been split into three subsections of

equal length. The dashed speed profile is composed of: maximum acceleration; coast-

ing; coasting. The solid speed profile is composed of: cruising; maximum acceleration;

cruising. As discussed, the switching of driving regimes occurs at the boundaries be-

tween subsections (on the black vertical lines). Both speed profiles share the same

initial speed.
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Chapter 3

Paper-1 : Energy-Efficient Train

Control: a practical application

3.1 Introduction

One of the major costs for railway companies is given by energy consumption. For

this reason, the development into a more mature and competitive market makes an

efficient energy management imperative for reducing the operating costs. Ecological

awareness is also a major driver for energy efficiency in railway systems in an effort

towards reducing air pollutants, e.g., carbon dioxide, whose emissions are one of the

causes of global warming (Luijt et al., 2017).

The construction of energy-efficient driving profiles has attracted large attention

from researchers in the recent years, being an effective way of saving energy. The

resulting problem is known as Energy-Efficient Train Control (EETC), and is some-

times also referred to as eco-driving or train trajectory planning problem. This problem

aims at finding the most energy-efficient driving profile for a given train traveling on a

certain line, while satisfying a number of operational constraints to ensure a safe and

punctual journey. Recent surveys on EETC have been proposed by Yang et al. (2016)

and Scheepmaker et al. (2017). A complete review on the Optimal Train Control

Theory has been given in Albrecht et al. (2016a,b).

Analyses based on the Pontryagin Maximum Principle (PMP) have shown that an
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optimal driving strategy consists of a sequence of four driving regimes, namely, max-

imum acceleration/traction (MT), cruising/speed-holding (SH), coasting (CO) and

maximum braking (MB), see, e.g., Howlett et al. (1994b) and Albrecht et al. (2016a,b).

An example speed profile consisting of MT-SH-CO-MB is shown in Figure 3.1.
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Figure 3.1: A profile consisting of MT, SH, CO and MB. The train runs on a track

approximately 35 kilometers long, and starts and ends at zero speed.

Based on this result, most of the algorithms proposed in the literature (Albrecht

et al. (2016b), Yang et al. (2016) and Scheepmaker et al. (2017)) define the driving

profile as a sequence of these four driving regimes, identifying suitable switching points

between consecutive driving regimes.

In this paper we focus on the EETC in its basic version, arising when the driving

profile of a single train has to be determined. We do not consider railway traffic

management, as we assume that the schedule of the train has already been optimized

by a (possibly online) scheduling algorithm (see, e.g., Bettinelli et al. (2017) and

Fischetti and Monaci (2017)). In this context, safety requirements impose that the

schedule of the train is given on input and cannot be changed. In addition, we do not

consider possible interactions between trains in terms of power exchange, as it could

happen in complex networks equipped with appropriate infrastructures and energy

storage systems.

This paper is organized as follows. In Section 3.2 we define the problem, and in

Section 3.3 the solution approaches are outlined. The results of the computational

testing on real-world instances are given in Section 3.4. Finally, Section 3.5 draws

some conclusions.
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3.2 Problem Definition

We are given a rail track having length D, and a train running on the track. The

train has a fixed schedule, imposing its travel time be equal to exactly T time units,

and is characterized by some known rolling-stock properties (e.g., its weight). The

track geometry, e.g., the position-varying slope and radius of curvature, is also known.

Finally, there are given speed limits that the train must respect, and that vary along

the track. The problem requires to determine a driving profile for the train such that

(i) the travel time of the train is exactly T ; (ii) speed limits are respected; and (iii)

the total amount of energy required for running the train is minimized.

We represent the track as a segment [0, D] and assume that the train travels on

the track from time instant 0 to time instant T .

For the sake of simplicity, we do not consider the case of steep uphill/downhill

tracks, i.e., we assume that the train, regardless of its speed, is always capable of

negotiating uphills/downhills or speed-holding. Moreover, we assume a continuous

control and neglect any form of energy recovery, as it happens with the so-called

Regenerative Brake. For details on steep uphills/downhills and on Regenerative Brake,

the reader is referred to Howlett et al. (1994b); Albrecht et al. (2016a,b).

In our setting, the motion of a train is approximated using the following point-mass

model

dv

dt
= u(t)−R(v(t)) +G(x(t)) (3.1)

dx

dt
= v(t), (3.2)

where time t ∈ [0, T ], is the independent variable, while speed v(t), position x(t) are

coordinates of the dynamical system and u(t) is the controlled acceleration.

Term R(v) represents the so-called Basic Resistance, taking into account several

resistive phenomena depending only on the given rolling-stock. In particular, it in-

cludes rolling resistances, mechanical resistances that are proportional to speed (e.g.,

rotation of axels and shaft, mechanical transmission, etc.), and air resistance (see,

Profillidis, 2016).
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Basic resistance is typically approximated using the well-known Davis Equation

R(v) = r0 + r1 v + r2 v
2, (3.3)

where r0, r1 and r2 are positive empirical constants depending on the rolling-stock

(see, J.W. Davis Jr (1926)).

Term G(x) is the Line Resistance, which measures the position-dependent forces

acting on the train along its route. This resistance considers the horizontal compo-

nent of gravity (depending on the position-varying track slope along the track) and

the curve resistance (depending on the position-varying radius of curvature along the

track). The analytic expression of G(x) has been provided by our industrial partner

as a piece-wise function through the empirical formula:

G(x) := −g sin

[
arctan

(
0.8

ρ(x)
+ tan θ(x)

)]
, (3.4)

θ(x) and ρ(x) being the (position-dependent) track grade and radius of curvature

respectively, and g the gravitational acceleration (see, Fayet, 2008; Sapronova et al.,

2017).

The controlled acceleration u(t) is bounded by two functions, i.e.

−uL(v) ≤ u(t) ≤ uU(v). (3.5)

where bounds uL(v) ≥ 0 and uU(v) ≥ 0 are the maximum deceleration and the maxi-

mum acceleration, respectively, that the train engine can handle. In the following, we

will always assume that uL and uU are decreasing non-linear functions of the speed.

As mentioned above, speed limits impose an upper bound on the maximum speed

0 ≤ v(t) ≤ V̄ (x(t)) (3.6)

where the upper bound value V̄ (x(t)) depends on the geometry of the track. In

addition, the following boundary conditions

x(0) = 0, x(T ) = D, v(0) = vinit, v(T ) = vfinal, (3.7)

are imposed to fix the position and speed of the train at time instants t = 0 and t = T ,

with vinit and vfinal given on input.
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Finally, the objective is to minimize the total energy spent by the train, given by

E =

∫ T

0

u(t) + |u(t)|
2

v(t)dt. (3.8)

Equation (3.8) is derived from the definition of work done on a point mass. Since

we do not account for energy recovery, negative values of u must be ignored. We

therefore introduce (u+ |u|) so that energy contribution is zero whenever u < 0. The

reader is referred to Albrecht et al. (2016a) and Scheepmaker et al. (2017) for further

details.

Observe that the Equations (3.1)-(3.8) constitute a well-known Optimal Control

Formulation for the EETC, see Albrecht et al. (2016a,b) and Scheepmaker et al. (2017).

3.2.1 Overview of the Solution Approach

In most practical cases, track geometry and speed-limits are described as piece-wise

constant functions of the space. Therefore, it is possible to partition the track [0, D]

into a sequence of n consecutive sections Sk = [x
(k)
o , x

(k)
f ], with x

(0)
o = 0, x

(n)
f = D and

x
(k)
f = x

(k+1)
o , (k = 0, 1, . . . , n − 1), that have constant slope, radius of curvature and

speed limit (see Haahr et al. (2017); Wang et al. (2012, 2013)). We will refer to those

sections as segments. This results in having a fixed Line Resistance along with a fixed

speed limit. In particular ∀ k = 1 . . . n:

G(x) = g(k) V̄ (x) = V̄ (k). (3.9)

As mentioned in the introduction, similar to what is done in Li and Lo (2014a),

our approach is based on the Optimal Train Control theory and assumes that a con-

catenation of at most four given driving regimes is used to define the speed profile in

each section. The driving regimes are characterized by the following conditions:

Maximum Traction, MT: u1 = uU(v) (3.10)

Speed Holding (or Cruising), SH: u2 = R(v)− g(k) (3.11)

Coasting, CO: u3 = 0 (3.12)

Maximum Braking, MB: u4 = −uL(v), (3.13)
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where u1, u2, u3 and u4 are the accelerations in every regime. Within a segment, each

regime can be executed at most once, and regimes must appear in fixed order, namely,

MT, SH, CO, and MB. Furthermore, some regimes may not be used in a segment.

As a consequence, Equations (3.1) and (3.2) can be simplified, because the term

u corresponds to one of the uj (j = 1, . . . 4) shown in Equations (3.10)-(3.13) and

G(x) = g(k) in each segment k.

We observe that, within our settings, energy is only consumed during the MT and

SH driving regimes. Let E
(k)
MT and E

(k)
SH , respectively, be the energy consumed in the

MT and SH regimes for segment k (k = 1 . . . n). Then Equation (3.8) reduces, for

MT, to

E
(k)
MT =

∫ t
(k)
2

t
(k)
1

u1(v(t)) v(t) dt, (3.14)

where t
(k)
1 and t

(k)
2 are the start and end time for MT in segment k. Similarly, for

regime SH, we have that (3.8) simplifies to

E
(k)
SH = u2(v

(k)
2 ) v

(k)
2 (t

(k)
3 − t

(k)
2 ), (3.15)

where v
(k)
2 is the constant speed value, while t

(k)
2 and t

(k)
3 are respectively the start and

end times for SH regime.

We note that, Equations (3.1), (3.2) and (3.14), can be pre-computed, for each

segment and driving regime, by using numerical methods or closed-form expressions

under some assumptions on u as in Ye and Liu (2017).

3.3 Heuristic Solution Approaches

In our application, train control has to be determined in short computing times, in

order to take into account possible changes in the schedule of the train due to some

unpredictable events. For this reason, we propose heuristic approaches for its solution.

In this section, we first introduce a constructive heuristic (CH), then, we present a

multi-start randomized constructive heuristic (RCH) and a Genetic Algorithm (GA).

58



CHAPTER 3. PAPER-1 3.3. HEURISTIC SOLUTION APPROACHES

3.3.1 Constructive Heuristic

The proposed constructive heuristic is an iterative procedure that starts from an in-

feasible solution and, at each iteration, tries to reduce infeasibility, until a feasible

solution is produced.

At the beginning, the algorithm computes the so-called allout speed profile, i.e.

the solution obtained by running the train at its maximum allowed speed. When

computing this speed profile, train motion laws and speed limits are taken into account.

Observe that the running time τAO associated with this solution provides a lower

bound on the running time for the train in any feasible solution. If this running time

is not equal to the required time T , the current solution is infeasible. To recover

feasibility we consider the actual maximum speed Ṽ (k) reached in every segment k,

and slow the train down by artificially reducing the speed limits. This speed reduction

is applied in one segment at a time.

For each segment k, we reduce its maximum speed by a given amount s (which is a

parameter of the algorithm), and re-compute the associated speed profile and running

time τ . If τ > T , then the last update of the maximum speed is canceled. If, instead

τ < T , the next segment is considered. This procedure continues until a feasible

solution is obtained. The pseudo-code of the algorithm is shown in Algorithm 1.
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Algorithm 1: CH

1 Compute the allout speed profile for the given route. Store travel time in

τ = τAO. Store in Ṽ (k) the maximum speeds that are actually reached by the

allout speed profile in each segment k;

2 Set wk := Ṽ (k), ∀k = 1 . . . n;

3 while τ < T do

4 for k = 1. . . n do

5 wk := wk − s;

6 Re-compute speed profile using the current speed limits in each segment

(i.e. w1, . . . wn). Store travel time in τ ;

7 if τ > T then

8 Undo the change, namely wk := wk + s

3.3.2 Multi-start Randomized Constructive Heuristic

The constructive heuristic of the previous section is used in a multi-start fashion to

determine a pool of feasible solutions. This allows to possibly find better solutions

and to determine an initial population of the genetic algorithm (see Section 3.3.3).

The multi-start randomized constructive heuristic performs a fixed number of iter-

ations, changing a set of parameters in a random way. At each iteration, γ1 segments

are selected (where γ1 is a parameter of the algorithm), and the maximum speed of the

selected segments is reduced by a random value. If the travel time of the allout profile

associated with the current w′k values is not larger than T , the constructive heuristic

of Section 3.3.1 is applied. Otherwise, the speed limits are re-defined, and the process

is repeated.

The algorithm produces one feasible solution per iteration and is executed for NI

(say) iterations. The best solution found among all iterations is then returned. The

pseudo-code is reported in Algorithm 2.
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Algorithm 2: RCH

1 Compute the allout speed profile for the given route. Store in Ṽ (k) the maximum

speeds that are actually reached by the allout speed profile in each segment k;

2 Set wk := Ṽ (k), ∀k = 1 . . . n ;

3 for i = 1 . . . , NI do

4 repeat

5 set w′k = wk for each segment k;

6 for c = 1 . . . γ1 do

7 Randomly select a segment k̃ according to a uniform random

distribution;

8 Define w′
k̃

as a random number within (0, γ2 wk̃] with 0 ≤ γ2 ≤ 1;

9 Re-compute speed profile using the current speed limits w′k;

10 Store travel time in τ ;

11 until τ ≤ T ;

12 Set wk := w′k, ∀k = 1 . . . n, and apply lines 3-11 of Algorithm 1;

3.3.3 Genetic Algorithm (GA)

In this section, we present a Genetic Algorithm, inspired by the work of Li and Lo

(2014a).

In our algorithm, each chromosome is associated with a solution and is represented

by a vector V containing the values of the initial speed for each driving regime. In

particular we have

V =
[
v

(k)
j

]
k=1...n
j=1...4

. (3.16)

The population contains M individuals. During each iteration, by means of crossover

and mutation operators, the current population might grow larger than M . The

selection operator restores the number of individuals to M by eliminating the lowest

ranking ones from the current population. A fixed number h of Elite individuals is

kept intact over the iterations.
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The evaluation of each chromosome c of a current population is carried out by

means of the following fitness function

f(c) = k1E(c) + k2H(c), (3.17)

where k1 and k2 are tuning parameters, E(c) represents the traction energy that is

spent driving the train according to solution c, and H(c) measures the diversity of

chromosome c with respect to the rest of the current population (thus making the fit-

ness function biased towards favoring diversity, instead of considering energy efficiency

only). H(c) is computed as a mean difference between c and the other individuals.

The main components of the GA are reported in the following list, according to

the order in which chromosomes are processed in each iteration:

1. Mutation Operator: this operator is applied, with probability Pm, to each

non-elite chromosome, producing new individuals. It consists of applying ran-

dom variations of speed to a set of randomly selected segments, according to

a uniform random distribution. The maximum variation amount is given as a

percentage m (parameter of the algorithm) of the maximum speed in a each seg-

ment. Preliminary experiments showed that better performances are achieved

when these operators are not applied to elite chromosomes;

2. Crossover Operator: it implements a single-point crossover to produce two

children chromosomes from a couple of parents, by recombining their genome

after splitting on a randomly selected segment boundary. The crossover break

point is randomly selected among all those genes that correspond to the end of

some segment. This operator has a probability Pc of affecting each chromosome,

excluding Elites and those chromosomes produced by mutation at the current

iteration;

3. Repair Operator: it restores feasibility of solutions after mutation and crossover,

if needed. It implements a procedure similar to the constructive algorithm in-

troduced in Section 3.3.1

4. Selection Operator: it ranks each chromosome c of the current population

by means of the fitness function.Then, it deletes the lowest ranking individuals
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exceeding the maximum population size M , while preserving a group of h Elites

intact.

3.4 Computational Experiments

The algorithms described in the previous section were implemented in C and executed

on a 2.9-Ghz Intel Core i7-7500U with 16 GB of RAM. Our benchmark is composed

by real-world instances provided by ALSTOM. All instances are associated with two

railway lines, denoted as ROUTE 1 and ROUTE 2. These lines have lenghts equal to

250 and 270 kilometers, respectively, and are composed by 42 and 67 segments, respec-

tively. For each line, we considered five different train models, denoted with letters A

to E in the following, and having different characteristics. This produced a benchmark

of 10 different instances. To evaluate the quality of the obtained solutions, we used

the following measure of efficiency, commonly used by ALSTOM’s practitioners:

e = 100 · EA − E
EA

, (3.18)

where EA represents the energy consumption of the aforementioned allout profile, while

term E corresponds to the energy consumption associated with the given solution.

The RCH algorithm (see Algorithm 2), which also initializes the GA, was iterated

32 times in each experiment in a multi-start fashion. Parameter s was set to 1 (m/s),

γ1 = 20 and γ2 = 40%. The GA was configured according to the following parameter

values: Pc = 0.97, Pm = 0.95, M = 9, h = 5 and m = 5%. A maximum number

of 300 generations was imposed. Moreover the GA was set to terminate after 11

non-improving consecutive generations.

Table 3.1 shows the results associated with ROUTE 1. For each train model we

report the fixed travel time T , the level of efficiency computed according to (3.18),

and the associated CPU time (in seconds).

The results show that, when the first line is considered, the constructive heuristic

is able to reduce the energy consumption, with respect to the allout profile, by around

10% on average. The associated computing times are rather small, being always

below 2 seconds. By executing the randomized multistart constructive heuristic and
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Efficiency CPU time (seconds)

Train T (s) CH RCH GA CH RCH GA

A 4560 3.2 5.4 7.2 0.2 1.5 4.4

B 4560 8.2 10.4 11.6 0.1 1.2 2.5

C 6525 6.6 11.5 25.3 0.3 4.9 10.6

D 10920 10.9 12.5 12.7 0.1 0.6 2.2

E 7079 18.8 20.2 21.6 0.2 0.7 2.1

Table 3.1: Results on ROUTE 1 (250 km, 42 segments).

the genetic algorithm we obtain further savings, about 12% and 15%, respectively.

Although these improvements could be expected, as the algorithms are built “on-top”

of each other, the additional savings that we obtained are quite significant. While the

increase in CPU time for the randomized multistart constructive heuristic is rather

limited, the genetic algorithm requires significantly larger computing times for some

instances: in these cases, a time limit can be imposed in order to use this algorithm

in a real-time system.

Efficiency CPU time (seconds)

Train T (s) CH RCH GA CH RCH GA

A 7285 6.6 13.7 23.7 0.5 9.6 15.8

B 7142 8.7 14.8 29.0 0.6 11.4 21.7

C 7933 9.9 13.4 27.2 0.8 15.9 29.4

D 11729 12.7 13.2 13.9 0.2 0.9 2.4

E 7595 18.2 18.9 22.2 0.3 1.7 5.2

Table 3.2: Results on ROUTE 2 (270 km, 67 segments).

The results for the second line, reported in Table 3.2, confirm those obtained for the

first line, although the computing times are larger than before. However, we observe

that energy reduction in Table 3.2 is also higher than in Table 3.1.
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3.5 Conclusions and future research

In this paper we studied the Energy-Efficient Train Control (EETC) problem. This

problem was solved using three approaches: a constructive heuristic, a multi-start

randomized constructive heuristic, and a genetic algorithm.

Computational results on real-life instances show that, in most cases, the com-

puting times of the algorithms are short enough to allow their use in a real-time

application.

Future research directions will be to consider real-time traffic management aspects,

related to the possibility of slightly changing the schedule of the train, as well as the

adoption of a system which allows energy recovery through regenerative brake.
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Chapter 4

Paper-2 : Real-Time Optimization

of Energy Consumption in Railway

Networks

4.1 Introduction & literature review

Managing traffic perturbations in railway networks to reduce the overall delay is known

as real-time railway traffic management problem (rtRTMP) (Pellegrini et al., 2014).

Its solution is a feature of modern rail traffic management systems (TMS). The task

of managing traffic to reduce delay is entrusted to a dispatcher, who is in charge of a

control area, i.e., a limited size railway network. The real-time Energy Consumption

Minimization Problem (rtECMP), as introduced by Montrone et al. (2018), has the

objective of minimizing the weighted sum of train energy consumption and total delay

by deciding speed profiles in a given control area and time horizon. It takes as input

the decisions on train routing and precedences made by a rtRTMP solver. In addition,

having to define energy-efficient speed profiles for multiple interacting trains, it takes

into accounts infrastructure characteristics, operational constraints and train dynam-

ics. The rtECMP ouputs include arrival, departure, passing through and dwelling

times along with speed profiles.

Minimization of energy consumption in train operations is the main concern of
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the literature on Energy-Efficient Train Control (EETC) and Energy-Efficient Train

Timetabling (EETT) of which Scheepmaker et al. (2017) provided a comprehensive

review. EETC methods focus on minimizing the traction energy consumption of one

or multiple trains given a timetable to fulfill and, therefore, they aim at computing

energy-efficient speed profiles. ETTT methods focus on scheduling one or multiple

trains. Here, energy saving by EETC is considered along with either timetabling

objectives, in case of nominal traffic, or re-scheduling objectives, in case of perturbed

traffic. For perturbed traffic, we refer the reader to, e.g., Wang and Goverde (2017),

Galapitage et al. (2018), Luan et al. (2018b), Montrone et al. (2018), Li et al. (2020).

For nominal traffic, we refer the reader to, e.g., Goverde et al. (2016), Wang and

Goverde (2019), Xu et al. (2020).

Montrone et al. (2018) proposed a mixed-integer linear programming formulation

for the rtECMP. However, the solution of such formulation quickly becomes impracti-

cal for realistic instances, due to too long computing times. In this paper, we extend

the research of Montrone et al. (2018) by proposing a graph-based rtECMP model

that we solve with an Ant Colony Optimization (ACO) algorithm, to which we refer

as ACO-rtECMP. An experimental analysis is conducted on a real life railway infras-

tructure (the Pierrefitte-Gonesse junction, located in France) subject to various traffic

perturbations.

The rest of the paper is structured as follows: Section 4.2 defines the problem

by also introducing operational constraints and characteristics of train speed profiles;

Section 4.3 describes our graph-based model for the rtECMP; Section 4.4 discusses

the proposed ACO algorithm; Section 4.5 explains our experimental setup; Section 4.6

analyzes the results; Section 4.7 exposes our conclusions.

4.2 Problem

As discussed in the introduction, solving the rtECMP requires defining an energy-

efficient speed profile for each train when traffic perturbations occur. The objective

is to jointly minimize the overall delay and energy consumption. It is crucial for the

chosen speed profiles to be compliant with traffic management decisions (routing and
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Figure 4.1: Example of a simple infrastructure in which T C denotes track-circuits, S

denotes signals. The dashed green arrow highlights a train route composed of block

sections S4-S5 (dotted red) and S5-S12 (dashed blue). Block section S1-S8 (dashed

orange) is incompatible with S5-S12 as they share TC3 and TC10.

precedences) and railway safety requirements. The problem constraints depend on two

main aspects: infrastructure characteristics and train physical capabilities impacting

possible speed profiles, and operational rules.

For what concerns possible speed profiles, we consider four alternative driving

regimes which have been proven to be convenient based on the Pontryagin’s maximum

principle: maximum traction, cruising, coasting and maximum braking. For further

details, see, e.g., Scheepmaker et al. (2017).

For what concerns the modeling of operational rules, we consider a microscopic

representation of rail infrastructures. Specifically, the infrastructure in a control area is

composed of track-circuits. These are track elements equipped with an electric device

for sensing the presence of a train. Track-circuits are grouped into block sections,

which are track stretches that can be traversed by only one train at a time to maintain

safe distancing. Every train is assigned a route in the infrastructure by a TMS. More

precisely, we define a route as a sequence of block sections linking an origin-destination

pair. Control areas are equipped with an interlocking system that ensures a coherent

route formation. To indicate whether a block section can be accessed or not, the

interlocking system employs signals, which are designed to give visual instructions to

drivers. In particular, every block section is delimited by two signals placed at its

entrance and exit location (see for instance Pachl 2002). Figure 4.1 shows an example

of a simple infrastructure.

In the simplest case, a signal can display three so-called aspects : green, yellow and
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red. A red aspect forbids the access to the following block section. A signal displaying

yellow allows the access and demands a slow down so that a full train stop is possible

before the following signal. Green grants the access to a block section and implies

that a driver can safely enter the following one at full speed, if suitable. Each signal

in a route may have a different number of aspects, up to some n ≥ 3. This means

that, when a n-aspect signal is crossed with a green, at least (n − 2) block sections

are available in front of it. In addition to red, yellow and green, n-aspect signals can

display further restrictive aspects. They progressively demand greater speed reductions

to be reached by the end of the block section considered, up to a stop before a red

signal. The interlocking system ensures that the length of (n − 2) block sections is

sufficient for a train to brake after a signal with n aspects, provided that the train

type is authorized to use the infrastructure.

Given a block section b, we designate all the block sections sharing one or more

track-circuits with b as incompatible (in Figure 5.1, block sections S5-S12 and S1-S8

are incompatible as they share track-circuits TC3 and TC10). When b is available,

having its opening signal displaying an aspect different from red, a train can enter it.

In addition to safety, the interlocking system also allows the enforcement of traffic

management decisions. As for routing decisions, it is in charge of setting block sections

for trains so that the planned route is indeed traversed. As for precedence decisions,

it allows unlocking block sections along a route only if all the included track-circuits

are to be used, first of all, along the routes itself.

4.3 Model

In this section, we propose a graph-based model for the rtECMP as defined in Section

4.2. In the model definition, a train speed profile is defined as a combination of partial

speed profiles. For each train and for each block section in the train’s route, we pre-

compute a discrete set of partial speed profiles.

We are given a set of trains i ∈ T and set of block sections composing a route for

each of the trains Bi. We refer to a generic block section in the route of train i as

j ∈ Bi. Let S be the set containing train-block pairs (i, j) : i ∈ T, j ∈ Bi, such that
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either j is the last block section in the route of i (before the train leaves the control

area), or j is where a scheduled stop for i is planned. For each (i, j) ∈ S, we denote

the scheduled departure time as λi,j. For each i ∈ T and j ∈ Bi, we are provided with

train precedence in the form of a set Pi,j containing train-block pairs (i∗, j∗). Only

when every train i∗ has released its block j∗, i can access j. Let G = (V,A) be a graph

with V and A set of vertices and arcs respectively. For each block section j ∈ Bi, we

pre-compute a discrete set of partial speed profiles with the following attributes: an

initial speed; a final speed; a value of energy consumed; a running time. Except for

two special vertexes, source (s) and terminal (t) (which indicate the beginning and

end of every route), each vertex in graph G represents a partial speed profile for a

train-block pair. The attributes of a generic v ∈ V are denoted by: iv (train to which

the node refers); jv (the considered block section of Biv); kv (initial speed); k′v (final

speed); rv (running time of iv in jv); Ev (energy consumption).

The set of arcs A of G is defined as follows:

• For all a, b ∈ V such that ia = ib, arc (a, b) exists if all following statements are

true: ja directly precedes jb in the train’s route; the final speed associated to

node a is equal to the initial speed associated to node b, i.e., k′a = kb.

• For all a, b ∈ V such that ia 6= ib, arc (a, b) exists if one of the following conditions

is verified: (ia, ja) is in Pib,jb ; ja and jb are compatible.

• For all v ∈ V , arc (s, v) exists if train-block pair (iv, jv) verifies the following

conditions: jv is the first block section in the route of iv; no other train precedes

iv in jv, i.e., Piv ,jv = ∅.

• For all v ∈ V , arc (v, t) exists if jv is the last block section of the route of train

iv.

An example G(V,A) is shown in Figure 4.2, where two trains, denoted as T1 and

T2, are considered. The route of T1 comprises block sections A and B. The route

of T2 comprises block sections C and D. Let us suppose that only block sections D

and B are incompatible, and that T2 must have cleared D before T1 can enter B,

i.e., (T2, D) ∈ PT1,B. Nodes are partitioned in four clusters (colored rectangles),
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s

t

(T1, A) (T2, C)

(T2, D)(T1, B)

Figure 4.2: Example G(V,A) described in Section 4.3.

each associated to a given train-block pair: (T1, A); (T1, B); (T2, C); (T2, D). The

black arcs connect compatible block section speed profiles for a train in terms of

initial/final speed. In addition, they connect the source to the first block sections’

nodes. Similarly, black arcs connects the last block sections’ nodes to the terminal.

As A and C are compatible, each vertex in (T1,A) is bidirectionally connected to each

vertex in (T2,C). The corresponding arcs are replaced by a single blue bidirectional

arc connecting the corresponding rectangles, for readability. The same applies for the

bidirectional arcs between: (T1, A)-(T2, D), (T1, B)-(T2, C), and (T1, A)-(T2, D).

Due to the precedence constraint, nodes in (T2, D) are connected to nodes in (T1, B),

but not viceversa. The blue arrow linking the two rectangles is hence monodirectional.

A path h in G that satisfies the following set of constraints is a feasible solution of

the rtECMP:

C1 For each (i, j) : i ∈ T, j ∈ Bi, exactly one vertex such that (iv, jv) = (i, j) must

be in h. This makes sure that a unique choice of partial speed profile is effected

per train-block pair.

C2 For each v, w ∈ h referring to two consecutive block sections jv and jw that

have to be traversed by the same train (iv = iw), it must be true that k′v = kw.

This ensures speed profile continuity on the boundaries between every pair of

consecutive block sections traversed by a train.
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C3 For each v ∈ h, k′v must be coherent with the signal aspect opening block section

jv when iv enters it. This constraint models the interlocking system functioning

as discussed in this section.

The optimal solution is the one minimizing the weighted sum of normalized energy

consumption and delay.

4.4 Algorithm

We propose an Ant Colony Optimization (ACO) algorithm (Dorigo and Stützle, 2004)

to tackle the graph model introduced in Section 4.3. Precisely, we adopt a MAX–

MIN ant system (MMAS) algorithm (Stützle and Hoos, 2000), to which we refer as

ACO-rtECMP.

ACO is a population-based meta-heuristic modeled after the pheromone-based co-

operative behavior of ants. In ACO, ants are computational agents implementing a

stochastic constructive heuristic for the problem at study. The elements of a solu-

tion are the nodes of a so-called construction graph. To build a solution, each ant

moves across the graph, one node at a time, selecting, at each decision step, a node in

the neighborhood of the current one. The selection of each node is done through the

so-called pseudo-random proportional rule. It is biased by two factors: heuristic infor-

mation and pheromone trails. The former is a problem-specific quantity associated to

nodes or arcs that represents a greedy measure of their attractiveness. The latter is a

quantity representing a collective memory on the quality of previously visited solutions

containing the node or arc on which pheromone is deposited. Pheromone constitutes

an indirect mean of communication between ants as it is deposited by them throughout

a run of the algorithm and it guides further ants’ individual search. The algorithm is

iterative: at each iteration, a group of ants, named colony, builds solutions. Based on

these solutions, the pheromone trail is updated to lead future ants towards promising

regions of the search space.

The rtECMP, by nature, is well suited to be addressed with a constructive, incre-

mental approach such as ACO. Precisely, from a chronological standpoint, the initial
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decisions made have a strong impact on the subsequent ones both in terms of feasi-

bility and in terms of resulting quality. In an ACO algorithm, decisions can easily be

made following both the chronological order and the one imposed by the precedence

constrains. This allows ants to choose the speed profile of each block section being

aware of the signal aspect opening it. Therefore, only the candidate profiles match-

ing the possibly necessary braking are considered and infeasible solutions are avoided

entirely. Furthermore, the rtECMP involves many complex space-time relations aris-

ing between groups of interacting trains. Here, another advantage of ACO is that

it does not require these relations to be formalized into a priori. Indeed, they are

autonomously learned through the evolution of the pheromone trails.

In the ACO-rtECMP, we use G as the construction graph as we tackle the model in

Section 4.3. Hence, an ant is required to construct a path h in G subject to constraints

C1-C3.

Each vertex v ∈ V is assigned a heuristic information value (denoted as ηv) defined

as:

ηv = w0

(
ε

(jv)
max − Ev

ε
(jv)
max − ε(jv)

min

)
+ w1

(
γ

(jv)
max − rv

γ
(jv)
max − γ(jv)

min

)
∀v ∈ V, (4.1)

where

• ε
(jv)
min and ε

(jv)
max are respectively the minimum and maximum energy-consumption

values w.r.t. all the available vertices associated to block section jv and train iv,

• γ
(jv)
min and γ

(jv)
max are respectively the minimum and maximum running-time values

w.r.t. all the available vertices associated to block section jv and train iv.

• parameters w0 and w1 are the weights of relative importance of, respectively,

energy and delay. The same weights are used in the objective function.

The so defined η varies between 0 and 1. It favors vertices representing faster and less

energy-consuming partial speed profiles.

A pheromone update is applied after each iteration. First, a pheromone evaporation

phase takes place, causing a fraction ρ < 1 of the current pheromone trails τ to be

removed. Second, a pheromone deposit is performed on the arcs of the best-so-far (bsf )
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Figure 4.3: Network layout of the infrastructure in the Pierrefitte-Gonesse control

area.

or the iteration-best (ib) solution. The use of one or the other is driven by parameter

fib. Moreover, every τ is bounded between τmin and τmax (Stützle and Hoos, 2000).

4.5 Experimental setup

We test the ACO-rtECMP on the French Pierrefitte-Gonesse control area (Figure 4.3).

It consists of an infrastructure with 89 track-circuits grouped into 79 block sections.

The possible train routes are 39 and the control area does not contain stations. The

traffic is dense: 336 trains are scheduled to traverse the control area in a classic week-

day timetable. Three kinds of trains are used here, with different rolling-stock features.

To construct a set of rtECMP instances, we first generate random perturbations of the

timetable and construct the corresponding rtRTMP instances. To do so, following the

literature (Pellegrini et al., 2015), we select a random sample containing 20% of the

trains planned in a real week-day timetable. We then create 100 daily perturbations

by delaying the nominal entry time in the control area, for each of the sampled trains,

of a random amount between 5 and 15 minutes. For each perturbation, we consider the

same 1-hour time horizon (06:00-07:00AM), which represents the morning peak time.

This leads to a set of 100 rtRTMP instances comprising either 15 or 16 trains. By
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employing the rtRTMP solver RECIFE-MILP (Pellegrini et al., 2015) to address the

100 perturbations, we finally obtain the routing and precedences required to construct

the corresponding 100 rtECMP instances. They correspond to the best (possibly

proven optimal) set of routes and schedules to minimize total delays found in the

available computational time.

To ensure real-time applicability, the solution of both the rtRTMP and the rtECMP

must be completed within a short computing time. Considering that, three minutes

are often allocated for real-time traffic management (Samà et al., 2016), we assign 30

seconds to ACO-rtECMP imagining that the remaining 150 seconds are devoted to the

rtRTMP. Such computing times, although to some extent arbitrary, are in line with

the currently envisaged deployment of a TMS (Shift2Rail, 2019). In particular, it is

in line with human-in-the-loop specifications: as dispatchers are meant to assess and

possibly modify optimization decisions before their implementation, some minutes are

to be appointed to decision making. Three of these minutes can reasonably be used

for optimization.

To choose the appropriate parameter setting of ACO-rtECMP, we use IRACE

(López-Ibáñez et al., 2016). It implements a set of machine learning tools for auto-

matically configuring algorithms. Half of the rtECMP instances is used to tune the al-

gorithm’s parameters. The values tested for these parameters are: exponential weight

of η and τ in the pseudo-random proportional rule in {1, . . . , 10}, the number of ants

in {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and ρ ∈ {0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.4, 0.5,

0.6, 0.8}. We perform one ib-based pheromone update every 50 iterations, i.e., fib =

1/50. We allow a total of 181, 500 algorithm executions. The chosen algorithm config-

uration confirms our intuition on the aimed algorithm behavior. Indeed, the heuristic

measure is a very good lead for ants’ decisions. Its weight in the pseudo-random pro-

portional rule is hence rather high compared to the pheromone’s one (10 vs 2). More-

over, pheromone evaporation rate is low (0.05) so as to give time to colonies to build

on the common knowledge cumulated throughout several iterations. A high number

of ants (100) compose each colony to preserve a remarkable level of exploration.

Experiments are run on the 50 instances that were not used used for tuning. We

test three configurations of weights (w0, w1) in the objective function: (0.9999, 0.0001)

75



CHAPTER 4. PAPER-2 4.6. RESULTS

where mostly the energy-consumption term matters; (0.5, 0.5) where both energy and

delay are equally weighted; (0.0001, 0.9999) where mostly the delay term matters. We

perform the tuning considering weights (0.5, 0.5) and we consider the selected configu-

ration for all cases. Preliminary analysis showed that the configuration performance is

not very sensitive to these weights. We benchmark the results we obtain against those

of a random search performed on the same instances and with the same computing

time limit.

We implement ACO-rtECMP in C++ and run the experiments on a AMD Ryzen™

7 2700X 8-core, 3.7GHz CPU with 64 GB of ram and Ubuntu 18.10 operating system.

4.6 Results

The results of our experimental analysis are reported in Table 4.1, in which the fol-

lowing aggregate indicators (w.r.t. the 50 tackled instances) are used:

• Ē: mean energy consumption in the final solution, expressed in megajoules;

• D̄: mean delay in the final solution, expressed in seconds;

• Ī: mean percentage improvement of the final solution w.r.t. the corresponding

first ib solution;

• iter : mean iteration at which ACO-rtECMP finds the best solution;

• time: mean time at which ACO-rtECMP finds the best solution;

• B̄: mean percentage improvement of the final solution w.r.t. the best solution

found by random search.

As expected, we can see in Table 4.1 that energy consumption decreases as more

weight is given to it in the objective function. The opposite holds for delay. The

highest value of Ī is obtained with w0 = 0.9999, i.e., when all importance is given

to energy consumption. This strongest improvement within the run of the algorithm

does not depend on the total number of iterations performed. Indeed, on average, the

total number of iterations completed are 252, 190 and 170 for w0 = 0.9999, 0.5 and

0.0001, respectively. However, the best solution is found sooner in the first case, i.e.,
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w0 w1 Ē [103J ] D̄ [s] Ī iter time [s] B̄

0.9999 0.0001 855 13,409 64% 92 (252) 12s 86%

0.5 0.5 2,119 8,248 28% 108 (190) 19s 48%

0.0001 0.9999 6,946 3,291 20 % 104 (170) 21s 26%

Table 4.1: ACO-rtECMP results on 50 instances (with 3 different objective function

weight (w0, w1) configurations) and benchmarks against the corresponding random-

search results. Time limit: 30 seconds.

at iteration 92 on average. We can observe a trend on Ī, iter and time: the highest the

importance of delay, the smaller the improvement of the algorithm with respect to the

first ib solution and the latest the final solution is found, both in terms of number of

iterations and of time elapsed. In all cases, the algorithm does not find any improving

solution for about one third of the computational time available, hence longer runs

would be useless. Column B̄ shows that ACO-rtECMP always outperforms the random

search, suggesting that the instances are not trivial. However, the difference is again

smaller when delay is more important.

The lower Ī values for w0 = 0.5 and w0 = 0.0001 can be explained by observing the

values of the heuristic information η with the different weight configurations. Indeed,

this measure assumes very similar values when most weight is given to delay. As an

example, Figure 4.4 reports a scatter plot of the values of η across all nodes for each

chosen setting of w0 in a representative instance. In Figure 4.4a, where w0 = 0.9999,

η varies in the whole range [0, 1] and its values tend to be noticeably different from

each other, although some denser clusters can be seen around values 0.35 and 0.65. In

Figure 4.4b, where w0 = 0.5, the range of η is compressed towards the upper bound so

that η varies between approximately 0.5 and one for almost all nodes. Although being

less evident, the same clusters appearing in Figure 4.4a are visible, thanks to the still

remarkable importance of energy consumption which allows discriminating between

nodes. In Figure 4.4c, in which w0 = 0.0001, the extent of the compression is even

more severe. Despite the presence of slightly more values lower than 0.5, the majority
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of points are shifted towards one.

Apparently, for w0 = 0.5 and w0 = 0.0001, the reduced variation of η impairs

its capability of guiding the search as it fails to bias the node selection probabilities.

This forces each ant to perform a somehow more uniformly random selection of nodes

until enough pheromone has been deposited and some convergence is achieved. This

is confirmed by the fact that the increase of w1 corresponds to a very large number of

explored arcs (denoted as na): in case of (w0, w1) = (0.9999, 0.0001), na = 5 millions

arcs; in case of (w0, w1) = (0.5, 0.5), na = 18 millions arcs; in case of (w0, w1) =

(0.0001, 0.9999), na = 23 millions arcs.

4.7 Conclusion

In this research, we developed a graph model and a meta-heuristic algorithm to address

the rtECMP, which is the problem of minimizing the weighted sum of total delay and

energy consumption given fixed train routing and precedences. In real-time traffic

management, whenever operations are perturbed, an rtRTMP solver computes new

routing and precedences that can be fed into an rtECMP solver. The latter computes

a speed profile for each train traversing a control area in a given time horizon.

We modeled the rtECMP as a graph. A path that fulfills a set of constraints is

a feasible solution. Each node of the graph is associated to a pre-computed partial

speed profile for a train in a block section.

To solve the problem, we introduced ACO-rtECMP, an ant colony optimization

algorithm that employs the aforementioned graph to construct solutions.

We tested ACO-rtECMP on instances derived from the peak-hour traffic in the

French Pierrefitte-Gonesse control area. For each instance, we studied the improve-

ment of the best ACO-rtECMP solution w.r.t. the best one found in the first itera-

tion with a time limit of 30 seconds. First, to indicate the non-trivial nature of this

problem, we showed how ACO-rtECMP results significantly outperform those of a

random-search. Second, we assessed the impacts of shifting the optimization prior-

ity from energy consumption to delay reduction. By focusing on energy consumption

minimization, the most remarkable improvements are obtained. This seems to be due
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Figure 4.4: Scatter plots of the heuristic information (η) in a representative instance

for each configuration of objective function weights.79
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to the range of values assumed by the heuristic information used to guide ants’ ex-

ploration of the search space. This is due to the fact that running times associated

to many train-block section speed profiles being very similar to each other. This im-

plies the inability of the algorithm to spot better and better feasible space regions

throughout the run, and thus its stagnation in a low quality local optimum.

In future research, we will address whether a different definition of the heuristic

information may improve the algorithm performance.

Another research direction consists of extending ACO-rtECMP with a local-search

algorithm, which is generally known to improve solution quality in conjunction with

meta-heuristics as ACO.

Future work will also be devoted to benchmarking the ACO-rtECMP results against

an exact rtECMP solver, such as TDRC-MILP (Montrone et al., 2018), on different

infrastructures.

Finally, an actual multi-objective definition of the rtECMP may be considered,

instead of relying on a weighted sum of its two objectives.
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Chapter 5

Paper-3 : Energy Optimization of

Multiple Trains in real-time Rail

Traffic Management Considering

Signals and the Interlocking System

5.1 Introduction

The European Union (EU) is committed in promoting environmental sustainability,

especially to prevent global warming (EEA, 2021). Since transportation plays a large

part in producing dangerous emissions, such as carbon-dioxide (CO2) ones, environ-

mental measures of the EU target the transportation sector as well. Railway is greener

than most other transport modes as it is largely electrically powered and intrinsically

energy-efficient, e.g., it is characterized by a low friction coefficient between wheels

and rails (Scheepmaker et al., 2017). Apart from environmental sustainability, railway

transport is also highly competitive in terms of safety and cost for both professional

and private users. Europe is approximately covered by a 200,000-km railway network,

making rail transport widespread and available for large portions of the population

(EYoR, 2021). The EU is therefore pushing for greater adoption of rail transport for

both goods and passengers. In this context, 2021 has been declared the European Year
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of Rail (EYoR, 2021), and an awareness campaign has been launched by the EU aimed

at promoting the mass use of rail transport. Moreover, the Community of European

Railway and Infrastructure Companies has set a target for emission reduction of 30%

by 2030 and another of 100% by 2050 (CER, 2021). Thus, not only does rail transport

seeks to increase its users in order to preserve the environment, but it also strives to

further reduce its carbon footprint in line with EU policies.

During operations, railway systems are subject to unforeseen events causing traffic

perturbations. The latter give often rise to conflicts, that occur when at least one

train encounters a restrictive signal that demands an unplanned deceleration. This

causes delays w.r.t. to the nominal timetable and these delays can propagate to the

whole system in a snow-ball effect. The task of managing traffic to reduce delay is

entrusted to a dispatcher, who is in charge of a control area. This is a limited size

railway network. Dispatchers can decide upon train-route assignment (routing) and

train ordering along common passing locations (scheduling). These decisions have to be

taken in a very short time frame to cope with unexpected perturbations. The problem

faced by dispatchers is commonly referred to as real-time railway traffic management

problem (rtRTMP) (Pellegrini et al., 2014) and its solution is a feature of modern rail

traffic management systems (TMS).

The real-time Energy Consumption Minimization Problem (rtECMP), as intro-

duced by Montrone et al. (2018), has the objective of minimizing both train energy

consumption and total delay by deciding the speed profiles in a given control area and

time horizon. It takes as input the decisions on train routing and precedences made

by a rtRTMP solver. In addition, to define energy-efficient speed profiles for multi-

ple interacting trains, it takes into accounts infrastructure characteristics, operational

constants and train dynamics. The rtECMP ouputs include arrival, departure, pass-

ing through and dwelling times along with speed profiles. As the rtRTMP, given its

real-time nature, the rtECMP has to be solved in a short computing time which starts

when the TMS is called to address newly arisen perturbations. Under this computing

time limit, one first needs to solve a rtRTMP instance, then solve the corresponding

rtECMP instance.
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In this paper, we extend the research of Montrone et al. (2018) by proposing

a graph-based rtECMP model that we solve with three meta-heuristic algorithms:

an Ant Colony Optimization (ACO), an Iterated Local Search (ILS) and a Greedy

Randomized Adaptive Search Procedure (GRASP). These algorithms exploit a set of

common algorithmic components: namely they use the same solution construction and

local search procedures.

A thorough experimental analysis is conducted on two real life railway infrastruc-

ture (the Pierrefitte-Gonesse junction and a portion of the Paris-Le Havre line, both

located in France) subject to various traffic perturbations.

The rest of the paper is structured as follows: Section 5.2 reviews the related liter-

ature; Section 5.3 defines the problem by also introducing the operational constraints

and the characteristics of train speed profiles; Section 5.4 describes our graph-based

model for the rtECMP;

Section 5.5 discusses the common components of the proposed algorithms, which

are detailed in Sections 5.6-5.8; Section 5.9 explains our experimental setup; Sec-

tion 5.10 analyzes the results; Section 5.11 exposes our conclusions.

5.2 Literature review

Minimization of energy consumption in train operations is the main concern of the

literature on Energy-Efficient Train Control (EETC) and the Energy-Efficient Train

Timetabling (EETT), of which Scheepmaker et al. (2017) provided a comprehensive

review.

EETC methods focus on minimizing the traction energy consumption of one or

multiple trains given a timetable, and therefore aim at computing energy-efficient

speed profiles. It is also known as optimal train control, train trajectory optimization

or optimal train trajectory planning.

ETTT methods focus on scheduling one or multiple trains in such a way that

energy saving by EETC is considered along with either timetabling objectives, in case

of nominal traffic, or re-scheduling objectives, in case of perturbed traffic.
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In this section, we present the relevant EETC/EETT literature in which the oper-

ation of multiple interacting trains and their speed profiles are considered. We omit

here the vast stream of research that is mostly focused on maximizing the effectiveness

of energy recuperation though regenerative braking by synchronizing accelerations and

brakings of nearby trains. For that, we refer the interested reader to, e.g., Li and Lo

(2014b), He et al. (2020) and the review paper by Yang et al. (2016). Papers on nomi-

nal traffic are discussed in Section 5.2.1, while those on perturbed traffic are discussed

in 5.2.2.

5.2.1 Nominal traffic

When energy consumption is to be optimized considering nominal traffic, the problem

consists in optimizing a train speed profile while respecting the defined timetable.

Yang et al. (2012) proposed an EETT approach with the objective of finding a

trade-off between total traction energy and total travel time in the railway network. A

Genetic Algorithm (GA), which incorporated an EETC simulation module, was used

to optimize the control of multiple trains running in a network by taking into account

headways, speed limits and riding comfort.

Li et al. (2013) developed a timetable optimization model to minimize energy

consumption, passenger travel times and greenhouse gas emissions. The model was

solved with fuzzy non-linear optimization techniques. The solution approach was

tested on instances with multiple trains running on a 10 station corridor.

Su et al. (2014) obtained a multi-train schedule in a metro system trough an iter-

ative algorithm that tried different values of cycle time and fleet size. The algorithm

incorporates an EETC module, based on a single-train integrated EETC-EETT model

that the authors themselves proposed.

Wang et al. (2014) considered the EETC for a leading-following train pair with the

objective of minimizing the total energy consumption for both trains.

Goverde et al. (2016), in a three-level timetabling framework, adapted a dynamic

programming algorithm from Binder and Albrecht (2013) to adjust the departure and

arrival times at the intermediate stops on lines between major stations for regional
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trains. The algorithm jointly finds the time supplement distribution and the optimal

speed profiles.

Zhou et al. (2017) proposed a model that integrates EETC and EETT. It is for-

mulated as a path finding problem on a space-time-speed (STS) graph, obtained by

discretizing space, time and speed values. The model considers a macroscopic repre-

sentation of rail corridors with multi-platform stations. The proposed solution method

is a dynamic programming algorithm.

Albrecht et al. (2018), extending their previous research (Albrecht et al., 2015),

addressed the two-train separation problem. It consists in jointly finding the energy-

efficient speed profiles for two trains traveling on the same track, in the same direction,

subject to prescribed intermediate clearance times (enforced by a signaling system) and

scheduled running times.

Wang and Goverde (2019) proposed an EETT approach based on a Multiple

Train Trajectory Optimization (MTTO) model. Energy-efficiency was achieved by

re-allocating the running times of a timetable given as input. The model was solved

with the Pseudospectral method. The MTTO model relied on the optimal control for-

mulation previously used in Wang and Goverde (2016) and Wang and Goverde (2017),

discussed in Section 5.2.2.

Xu et al. (2020) proposed an integrated micro-macro EETT approach as a Mixed

Integer Linear Program (MILP) that they reformulated as a STS network. The model

was solved with a two-step algorithm. First the EETC was computed for each train in-

dividually. Second, potential conflicts were resolved. The infrastructure representation

was macroscopic and speed profiles were simplified.

5.2.2 Perturbed Traffic

When energy is to be optimized in perturbed traffic, speed profiles must be decided

so as to minimize delay propagation and possibly quickly recovering the nominal sit-

uation.

Wang and Goverde (2016) addressed the EETC for two successive trains with

consideration of delays. Signaling constraints were incorporated in the Train Path
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Envelope (TPE), which is a set of prescribed time and speed windows to be fulfilled

by a speed profile at specific track positions. By considering multiple delays of the

first train, the speed profile of the second train was computed with the objective

to minimize a trade-off between delay and energy consumption. The Pseudospectral

method was adopted to find optimal train trajectories.

Wang and Goverde (2017) proposed a MTTO model for single-track corridors with

a focus on delay recovery. Precisely, they dealt with two trains on a single-track

line which meet at multiple-track stations. The MTTO method computed multiple,

conflict-free speed profiles simultaneously and chose meeting locations for opposite

trains with the aim of energy saving and delay reduction. The MTTO was formalized

as a multi-phase optimal control problem and was solved with the Pseudospectral

method.

Galapitage et al. (2018) developed a system that combines real-time driving ad-

vice calculation with real-time junction scheduling, with the joint objective of re-

ducing delay (at a junction entrance) and saving energy when traffic perturbations

occur. Junctions were represented with great approximation, as nodes with a set of

inbound/outbound traffic flows.

Luan et al. (2018b) proposed two models to integrate rtRTMP and EETC with

a simplified speed profile representation. Energy consumption (which may benefit of

regenerative brake) was accounted for as an additional objective along with delays.

Both models were solved heuristically. The solution algorithm for the first model

pre-computed a discrete set of speed profiles for each block section, which were then

combined by a commercial MILP solver into a feasible schedule. The solution method

for the second model consisted in a two-level heuristic approach that used a Genetic

Algorithm and a commercial Non Linear Programming (NLP) solver. Experiments

were carried out considering multiple trains in a corridor.

Li et al. (2020) applied the Non-dominated Sorting Genetic Algorithm II (NSGA-

II) to find energy-efficient delay recovery strategies for metro systems. When a train

was delayed, both its running time and those of the subsequent trains had to be revised,

along with the dwell times. Experiments were run on Chengdu Metro in China.
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Montrone et al. (2018) formalized the rtECMP (presented in Section 5.1) as a MILP

which requires pre-computation of a discrete set of energy-efficient speed profiles for

each train-block pair. The infrastructure was modeled microscopically: a route-lock

route-release interlocking system with 3-aspect signals was studied. Experiments were

run on a control area with multiple trains traveling in a one-hour time horizon and

intersecting routes. Several instances of re-scheduled traffic, including either 15 or 16

trains, were tested. Solutions were obtained with a commercial MILP solver.

We consider the rtECMP (Montrone et al., 2018) to be very relevant for the com-

petitiveness of rail transport, which nowadays has earned even more attention due

to its low environmental impact (Section 5.1). In particular, the rtECMP focuses on

two crucial aspects of real-time traffic management, delay and energy consumption

minimization. Furthermore, it considers accurate interlocking and signaling systems,

frequently approximated or neglected entirely. From the reviewed literature, we be-

lieve that further research should be devoted to extend Montrone et al. (2018) as their

proposed approach, a MILP addressed with a commercial solver, is not suitable for

relevant-size instances. Therefore, in this paper, we propose three meta-heuristic al-

gorithms to deal with the rtECMP. To do so, we first introduce a graph-based model

for the problem. As an evolution w.r.t. the formulation in Montrone et al. (2018), we

consider a more realistic interlocking system in which more than three signal aspects

may exist, as described in Section 5.3.2.

5.3 Problem

As discussed in the introduction, the rtECMP asks for minimizing the overall energy

consumption and delay of railway traffic when perturbations occur, in a control area

in a given time horizon. To do so, it decides upon the speed profile of each train in-

volved. Intuitively, slower profiles yield a lower energy consumption, but may increase

delay. Conversely, faster profiles may help reduce delay at the cost of more energy.

Furthermore, it is crucial for the chosen speed profiles to be compliant with traffic

management decisions and railway safety requirements. In particular, they must be
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compliant with the routing and precendences identified in an rtRTMP solution.

The problem constraints depend on two main factors: infrastructure characteristics

and train physical capabilities impacting possible speed profiles, and operational rules.

In the following, we focus on these two factors (Sections 5.3.1 and 5.3.2).

5.3.1 Speed profile definition

In this section, we report a brief outline of some of the major principles behind the

computation of energy-efficient train speed profiles.

The characteristics of the engine and of the braking systems of a train are crucial

for computing a speed profile. A train engine is capable of exerting a maximum force

of FT (v) > 0, which is a positive, non-increasing function of speed v. Usually, FT (v) is

approximated as a piece-wise hyperbolic function. A maximum braking force FB < 0,

which is negative as it opposes train motion, can be exerted to decelerate the train or

to stop it. FB is often approximated as a constant value.

Train motion is opposed by a resistive force that we denote as Fr, which accounts

for several factors such as rolling resistance, air resistance, track slope angle, weather

phenomena, presence of tunnels and curved sections of track.

The most commonly used components to express Fr are: vehicle resistance, which

accounts for both rolling resistance and air resistance and depends on speed and on

rolling stock features; line resistance, which depends on the track slope angle; curve

resistance, which accounts for the effects of curved track portions and depends on the

track radius of curvature. Vehicle resistance is usually approximated using the Davis

Formula, that is A + Bv + Cv2, where A,B and C are non-negative constants that

depend on the specific rolling stock.

In the literature, a train is usually approximated as a point mass. Newton’s second

law of motion is used to describe the relation between its speed v and time t or distance

s. Here, we adopt time t as the independent variable. This results in a system of

differential equations thanks to which we can compute the time spent by a train in a

track portion depending on the speed profile v(t) adopted, i.e., indirectly, on the force

applied. This time corresponds to the so-called running time of a track portion, i.e.,
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the time in which the head of the train travels within it. The same computation allows

quantifying the clearing time, i.e., the time in which the head of the train has left the

track portion but its tail is still there. We define travel duration the time required by

a train for traveling from its origin to its destination.

To overcome resistance Fr and move along its route according to a speed profile

v(t), a train requires mechanical energy E, which is obtained by integrating the train’s

traction power PT (t) over time. In detail, the traction power and the mechanical energy

can be respectively expressed as

PT (t) =
1

2
F+(t) v(t) (5.1) and

E =

∫ τ1

τ0

PT (t)dt, (5.2)

where F+ > 0 is the traction force acting on the train at time t.

Finding a speed profile v(t) that minimizes (5.2) constitutes a typical optimal con-

trol problem. Analyses based on the Pontryagin’s maximum principle performed on

the latter lead to the conclusion that an energy-optimal speed profile, when regener-

ative braking is neglected, is necessarily a sequence of the following optimal driving

regimes :

• maximum traction regime: application of the maximum tractive effort FT (v(t))

to accelerate a train;

• cruising regime: preservation of a net force equal to zero acting on a train, so

that it moves with uniform speed;

• coasting regime: neither brake nor engine engagement, so that a train simply

moves by inertia;

• maximum braking regime: excertion of maximum braking force FB to decelerate

the train.

We define a location where a switch from one driving regime to another occurs as

a switching point. In general, an energy-efficient speed profile results from a driving-

regime sequence having several switching points, in which each optimal driving regime

may appear several times.
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We refer the interested reader to, e.g, Albrecht et al. (2016c), Scheepmaker et al.

(2017) and Goverde et al. (2020) for further details on optimal train control.

5.3.2 Operational rules description

For describing operational rules, we consider a microscopic representation of the in-

frastructure of a control area. Specifically, the infrastructure in a control area is

composed of track-circuits. These are track elements fitted with an electric device

capable of sensing the presence of a train. Track-circuits are grouped into block sec-

tions, which are track stretches that can be traversed by only one train at a time to

maintain safe distancing. As mentioned in the introduction, every train is assigned a

route in the infrastructure by a TMS. More precisely, we define a route as a sequence

of block sections linking an origin-destination pair. Hence, a route can also be seen as

a sequence of track-circuits. Figure 5.1 depicts an example of train routes in a simple

infrastructure. Origin and destinations can either be a track-circuit at the limit with

an adjacent control area or a station platform. Stations can be inside the control area.

To ensure the coherence of route formation, control areas are equipped with an

interlocking system, which manages all necessary safety conditions to set a route and

afterward allows a movement to take place. The safety conditions are complex relations

between the state of different signaling system items and the route setting process of

incompatible routes. Once the route conditions are met, the signal protecting the

route can be cleared. Then, the signaling system comes into play by controlling signal

aspects to ensure train separation with block sections: every block section is delimited

by two signals placed at its entrance and exit location (see for instance Pachl 2002).

A signal is a device which conveys visual instructions to allow the driver to drive in

full safety. Instructions are visualized in the form of so-called aspects. In the simplest

case, a signal is capable of displaying three different aspects: green, yellow and red. A

red aspect forbids the access to the following block section. A signal displaying yellow

allows the access and demands a slow down so that a full train stop is possible before

the following signal. Green grants the access to a block section and implies that a

driver can safely enter the following one at full speed, if suitable.
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Figure 5.1: Example of a simple infrastructure in which T C denotes track-circuits, S

denotes signals. The dashed green arrow highlights a train route composed of block

sections S4-S5 (dotted red) and S5-S12 (dashed blue). Block section S1-S8 (dashed

orange) is incompatible with S5-S12 as they share TC3 and TC10.

Each signal in a route may have a different number of aspects, up to some n ≥ 3.

This means that, when a n-aspect signal is crossed with a green, at least (n− 1) block

sections are available in front of it (c.f. example E4 of Figure 5.2, n = 5). In addition

to red, yellow and green, n-aspect signals can display further restrictive aspects. They

gradually demand greater speed reductions to be reached by the end of the block

section considered, up to a stop before a red signal. The signaling system ensures

that the length of (n− 2) block sections is sufficient for a train to brake after the first

restrictive signal, provided that the train type is authorized to use the infrastructure.

As an example, let n = 5, where green is separated from red by 3 restrictive aspects:

flashing-green, flashing-yellow, yellow. A 5-aspect signal requires to consider the four

blocks that come after it. Let us consider a sequence of blocks (b0, b1, b2, b3, b4, b5) in

a train’s route, as shown in Figure 5.2. At the block sections’ boundaries we have

signals s1, s2, s3, s4, s5. Signal s1, which is between b0 and b1, is a 5-aspect signal.

Suppose that a train is currently in b0, approaching b1. When the train is close enough

(at visibility distance), the driver will be able to see s1 at the beginning of b1, i.e., at

the end of b0. When the train crosses s1, its speed profile must be adjusted so that

the following statements are true:

1. If green (G) is seen, no speed reduction is required (all blocks up to b4 are

accessible);

2. If flashing-green (fG) is seen, the train may have to fully stop before s4 (b4 cannot
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Figure 5.2: Example of speed profiles on a route composed of block sections

b0, b1, b2, b3, b4, b5 separated by signals s1, s2, s3, s4, s5. Four signaling scenarios are

presented considering Red (R), Yellow (Y), flashing-Yellow (fY), flashing-Green (fG),

Green (G). The aspects shown refer to the time at which s1 is crossed.

be accessed), hence its maximum speed cannot exceed 160 km/h at the end of

b1 (relevant if the maximum speed of the line is higher than this threshold);

3. If flashing-yellow (fY) is seen, the train may have to fully stop before s3 (b3

cannot be accessed);

4. If yellow (Y) is seen, the train may have to fully stop before s2 (b2 cannot be

accessed);

5. If red (R) is seen, the train brakes to full stop before s1 (b1 cannot be accessed).

These statements reflect the current French system. Some difference exists in the

signaling systems in different countries, as for example the specific meaning of an aspect

or the specific sequence of restrictive aspects. However, the same basic principle of

progressive speed reduction is always applied.

Given a block section b, we refer to all block sections sharing at least one track-

circuit with b as incompatible (see the example Figure 5.1, in which block section S5-S12

and S1-S8 are incompatible as they share track-circuits TC3 and TC10). When b is

accessible, having its opening signal displaying an aspect different from red, a train

can enter. Depending on the specific deployment, two kinds of interlocking systems
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are possible: route-lock route-release and route-lock sectional-release. The difference

lies in how incompatible block sections are made available to other trains.

• route-lock route-release: It implies that all the track-circuits of b have been

released before the incompatible block sections of b itself are made available.

• route-lock sectional-release: It implies that, once a track-circuit of b is re-

leased, all block sections incompatible with b itself and not including any not-

yet-released track-circuits are made available. When route-lock sectional-release

is adopted, infrastructure capacity can be more extensively exploited.

For further details on interlocking systems, we refer the reader to Theeg et al.

(2009).

In this paper, we consider the route-lock route-release interlocking system, following

the seminal paper on the rtECMP by Montrone et al. (2018). However, the proposed

approach can easily be extended to deal with the route-lock sectional-release system.

To implement traffic management decisions, we must take into account both the

restrictions due to the interlocking and signaling systems. The interlocking system is in

charge of setting block sections for trains so that the chosen route is indeed traversed in

coherence with train precedence constraints. The signaling system indicates whether

a block section is accessible at a given time, by displaying aspects other than red.

Moreover, the signaling system demands speed restrictions to preserve safety distances

between trains by means of restrictive signals. For instance, if a train t meets an aspect

other than red entering a block section b, it must be true that: b is in the route of

t; b is available to t according to the route-lock route-release policy; the precedence

constraints of t w.r.t. b are satisfied and therefore t can traverse b if applicable.

The signal that t meets entering b either displays a green aspect or a restrictive one

depending on the traffic state.

In conclusion, solving an instance of the rtECMP means defining the speed profile

of each train involved in the considered traffic situation (w.r.t. a given time horizon

and control area). The problem’s constraints, related to (I) train precedence, (II) rout-

ing and (III) safety constraints, are obtained by modeling the functioning of a control
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area’s interlocking and signaling systems, which enforce both traffic management de-

cisions and railway safety regulations. The aim is to minimize both a function of delay

and a function of the energy required to drive each train according to its chosen speed

profile.

5.4 Model

In this section, we propose a model for the rtECMP as defined in Section 5.3. We for-

malize the problem as that of finding a path on a graph subject to a set of constraints.

The notation and the graph definition are given in Section 5.4.1. The constraints are

discussed in Section 5.4.2. Finally, the objective function is described in Section 5.4.3.

In the model definition, we consider the following assumptions:

A1 [zero signal visibility distance]: With respect to the railway signaling system as

discussed in Section 5.3.2, as long as a signal is in a driver’s field of vision, after a

short reaction time, the driver can react to any change of aspect. In particular,

under typical speed control systems, he can react to any change reducing the

level of restriction imposed. This leads to an extremely large number of possible

speed profiles (Montrone et al., 2018). For instance let us consider a train that

has entered a block section with a yellow signal. The train decelerates for being

able to stop before the following signal, as a red aspect is possible. At some

point, the following signal is close enough to be visible and, due to the next

block section having been released, the aspect is green. As a consequence, a stop

is not required anymore and the train can re-accelerate. This translates into a

double choice of speed profile for a single block section entered with the same

restrictive signal aspect: one at the entrance and one at the latest between the

moment in which the following signal is visible and the one in which it changes

aspect. The location in which the train is when this second moment occurs also

depends on the first speed profile chosen, as a faster one may imply the train to

be closer to the next signal when its aspect changes.

As in Montrone et al. (2018), to contain the model’s complexity, we assume
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signal visibility distance to be zero. This implies that a signal’s aspect can only

be acknowledged as the train is about to enter a block section. This means that

only one speed profile is to be chosen for each block section and, precisely, at the

beginning of it. Let us consider the previous example again, this time applying

the zero-visibility assumption. Incapable of seeing the signal aspect changing

from red to green, the driver of the train simply brakes to a full stop at the block

section’s end. Only when the train is fully stopped, the green signal aspect is

acknowledged and the train accelerates. This somehow mimics the functioning of

specific speed control systems as, for example, the French KVB, in which a train

that entered a block section with a yellow signal cannot exit it at more than 40

km/h regardless the aspect of the following signal. This assumption implies then

a large energy consumption, due to the acceleration from null speed, and a long

running time, which may imply delays. As both objective functions considered

are penalized by the fact of crossing a restrictive signal, this assumption will

result in the attempt to avoid as many of them as possible. Hence, a zero-

visibility distance can be considered a reasonable assumption which does not

defeat the purpose of energy efficiency and delay reduction. However, when

restrictive signals are unavoidable, more costly brakings and accelerations will

penalize the objective functions more than what happens in reality.

A2 [discretization]: We define a train speed profile as a combination of partial speed

profiles. For each train and for each block section in the train’s route, we pre-

compute a discrete set of partial speed profiles. We then construct a graph

(see Section 5.4.1) in which each node is a partial speed profile. This lets us

define the rtECMP as a combinatorial optimization problem, in which deciding

a speed profile for a train means choosing a node for each block section in the

train’s route. We remark that the model and a solution method we propose are

entirely independent from the algorithm with which the partial speed profiles

are pre-computed.

A3 [prompt restart ]: A train that has stopped in a block section restarts as soon

as the following block in its route becomes available. With this assumption and
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the previous ones, the dwelling time of a train at a stop is fully determined by

the selection of the nodes in the graph. In case of a scheduled stop, a minimum

dwelling time and the scheduled departure times have to be considered.

5.4.1 Notation and graph definition

We are given a set of trains i ∈ T and a route Bi for each of the trains. We refer to

a generic block section in the route of train i as j ∈ Bi. Let S be the set containing

(i, j) : i ∈ T, j ∈ Bi such that either j is the last block section in the route of i (before

the train leaves the control area), or j is where a scheduled stop for i is planned. For

each (i, j) ∈ S, we denote the corresponding scheduled departure time as λi,j. For

each i ∈ T and j ∈ Bi, we are provided with train precedence in the form of a set Pi,j
containing train-block pairs (i∗, j∗) in which block sections j∗ are incompatible with

j, therefore possibly including j itself, as a block section is incompatible with itself.

Precisely, if one or more trains are to traverse j before i, one or more j∗’s will be equal

to j. Only when every train i∗ has released its corresponding block j∗, i can access j.

Let G = (V,A) be a graph with V and A set of nodes and arcs respectively.

As stated in Assumption A2, we represent a speed profile as a concatenation of

partial speed profiles, one for each block section in a train’s route. For each block

section j ∈ Bi, we pre-compute a discrete set of partial speed profiles having the

following attributes: an initial speed; a final speed; a value of energy consumed; a

running time; a clearing time.

Except for two special nodes, source (s) and terminal (t) (which are connected to

the beginning and end of every path), each node in graph G represents a partial speed

profile for a certain train-block pair. The attributes of a generic v ∈ V are denoted

by: iv (train to which the node refers); jv (the considered block section of Biv); kv

(initial speed); k′v (final speed); rv (running time of iv in jv); cv (clearing time of iv in

the block section that precedes jv); Ev (energy consumption).

The set of arcs A of graph G is defined as follows:

• For all a, b ∈ V such that ia = ib, arc (a, b) exists if all following statements are

true:
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1. ja directly precedes jb in the train’s route, and

2. the final speed associated to node a is equal to the initial speed associated

to node b, i.e., k′a = kb.

• For all a, b ∈ V such that ia 6= ib, arc (a, b) exists if, according to precedence

constraints, one of the following statements is true:

1. the decision on the event ia traversing ja is necessary and sufficient to

establish the conditions at which ib may traverse jb, or

2. the decision on the event ia traversing ja is independent on the event ib

traversing jb.

• For all v ∈ V , arc (s, v) exists if the train-block pairs (iv, jv) verifies the following

conditions:

1. jv is the first block section in the route of iv;

2. no other train precedes iv in jv, i.e., Piv ,jv = ∅.

• For all v ∈ V , arc (v, t) exists if jv is the last block section of the route of train

iv.

Let us consider the example in Figure 5.3. Two trains denoted as T1 and T2,

are considered. The route of T1 comprises block sections A, B and C. The route of

T2 comprises block sections D, E and F. The two routes intersect on blocks C and

F, sharing two track-circuits. Hence, C and F are incompatible. Let us assume the

following precedence constraint: train T2 must traverse F before T1 is allowed to

traverse C. Let us assume a 3-aspect signaling system for the whole infrastructure.

An example G(V,A), modeling the scenario in Figure 5.3, is shown in Figure 5.4.

The nodes are partitioned into six clusters (colored rectangles), each associated to a

given train-block pair: (T1, A); (T1, B); (T1, C); (T2, D); (T2, E); (T2, F). The black

arcs connect compatible block section speed profiles for a train in terms of initial/final

speed. In addition, they connect the source to the first block sections’ nodes. Similarly,

black arcs connect the last block sections’ nodes to the terminal. For readability, we

97



CHAPTER 5. PAPER-3 5.4. MODEL

(T1,A)
(T1,C)

(T2,E) (T2,F)

(T1,B)

(T2,D)

Figure 5.3: Example intersection described in Section 5.4.1 concerning the graph in

Figure 5.4

introduce the blue arcs connecting clusters. A blue arc between two clusters means

that each node in the first cluster is connected to each node in the second one. The

blue arcs can either be unidirectional or bidirectional. In the example, the nodes in

clusters (T1, A) and (T2, D) can be chosen in any order: a bidirectional blue arrow

links the clusters. The same holds for the other clusters of T2 w.r.t. (T1, A). Instead,

a unidirectional arc links (T2, F) and (T1, B).

Indeed, the aspect crossed by T1 entering B will be either yellow or green depend-

ing on whether block C is available when T1 is entering B. Due to the precedence

constraint, block C becomes available only after that F has been cleared and released

by T2. The time at which this happens is known only when the speed profile of T2

along its route, D-E-F, is fully known. According to the graph definition in this sec-

tion, an arc from (T2, F) to (T1, C) could be included. However, it would never be

used and thus it is not drawn in Figure 5.4. Indeed, deciding on a profile for (T1, C)

requires first deciding on one for (T1, B), which is a decision only available after a

profile has been decided for (T2, F).

A path h in G that satisfies a set of constraints (see Section 5.4.2) represents a

solution of the problem. Indeed, h entirely describes the speed profile of each i ∈ T as

well as the dwelling time in the blocks where stops occur (see assumption A3). For each

train-block pair (i, j) : i ∈ T, j ∈ Bi, we denote the actual departure time of i from

j as lij(h), which is a function of the chosen path h. While the scheduled departure

time λij is a fixed parameter for each instance, lij(h) is a variable that depends on the

chosen speed profiles.
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(T1, A) (T2, D)

(T2, E)(T1, B)

(T2, F)(T1, C)

...

......

...

......

s

t

1 2

3

4

5

6

Figure 5.4: Example G(V,A) described in Section 5.4.1. An example path s-1-2-3-4-

5-6-t is displayed with its arcs and nodes highlighted.

Figure 5.4 also reports an example path s-1-2-3-4-5-6-t with thicker arcs. The path

nodes are numbered and highlighted with a blue fill. Clearly, the first and last nodes

are s and t. The other nodes, from 1 to 6, are respectively in clusters (T1, A), (T2,

D), (T2, E), (T2, F), (T1, B) and (T1,C). This arrangement is consistent with the

requirement of deciding the speed profiles for T2 in D, E and F before that of T1 in

B.

5.4.2 Constraints

To be a feasible solution of the rtECMP, a path h in G must satisfy the following

constraints:

C1 [Partial speed profile selection]: For each (i, j) : i ∈ T, j ∈ Bi, exactly one node

v such that (iv, jv) = (i, j) must be in h. This ensures that a choice of a partial

speed profile for a train-block pair is made and is unique. In addition, a node

must be in h at most once for each (i, j).
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C2 [Speed profile continuity ]: For each v, w ∈ h referring to two consecutive block

sections jv and jw that have to be traversed by the same train (iv = iw), it must

be true that k′v = kw. This ensures speed profile continuity on the boundaries

between every pair of consecutive block sections traversed by a train.

C3 [Signaling ]: For each v ∈ h, k′v must be coherent with the signal aspect opening

block section jv when iv enters it. This constraint models the functioning of the

signaling system as discussed in Section 5.3.

5.4.3 Objective function

To account for the two objectives of the rtECMP, i.e., energy efficiency and delay

reduction, we minimize the objective function in (5.3). It is the weighted sum of

two terms, Eh and Dh, which respectively account for the normalized total energy

consumption and delay. The terms w0, w1 ∈ [0, 1] such that w0 = 1 − w1 are weight

parameters that control the importance of one objective against the other.

min
h
{w0Eh + w1Dh} , h is a path in G(V,A) subject to C1 to C3. (5.3)

The energy consumption term in (5.3) is given by the following expression:

Eh =
1

ψ

(∑
v∈h

Ev
ωjv

)
(5.4)

where Ev is the energy consumption associated to node v (Section 5.4.1), ωjv is the

maximum energy consumption value among the nodes associated to block section jv

and ψ is defined as
∑

i∈T |Bi|, where |Bi| is the number of block sections in Bi. The

terms ω and ψ are used to normalize Eh.

The delay term in (5.3) sums train delays at their exit from the control area and

at each scheduled stop. It is given by the following expression:

Dh =
1

φ

 ∑
(iv ,jv)∈S

max { 0, livjv(h)− λiv ,jv }

 (5.5)

where φ is a normalization factor for Dh, defined as φ = d̂ |T | with d̂ being a conven-

tional value representing the maximum possible delay.
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Remark that trains running ahead of schedule, for which livjv(h) − λiv ,jv < 0, do

not contribute to the delay term Dh.

The term livjv(h) is equal to the earliest time at which train iv can exit block

section jv, which is either the last one of its route or one in which it has a scheduled

stop. For each block section, the earliest time at which the respective train can exit it

is the minimum between the sum of the time at which the train itself enters the block

section plus the running time corresponding to the speed profile represented by the

node, and the time defined by the prompt restart assumption.

5.5 Algorithmic components

In this section, we detail the algorithmic components for the meta-heuristic algorithms

proposed in Section 5.6, 5.7 and 5.8. Such components serve as shared building blocks

composing the logic of such algorithms.

In Section 5.5.1, we present two constructive procedures for building feasible solu-

tions.

In Section 5.5.2, we discuss a local search algorithm for improving solutions.

5.5.1 Constructive procedures

In this section, we propose a Stochastic Greedy (SG) and a greedy algorithm used

as building blocks in the proposed meta-heuristic algorithms. The SG algorithm is a

stochastic construction heuristic that incrementally builds a feasible path in G. Each

node v ∈ V in G is assigned a profit score σv. It is a problem-dependent quantity

representing an heuristic measure of attractiveness of a node v. The higher the σv, the

more likely it is for v to be added to a path being constructed by the SG algorithm.

We define it as the relative gain in energy and running time w.r.t. the alternative

nodes. Precisely:

σv = w0

(
ε

(jv)
max − Ev

ε
(jv)
max − ε(jv)

min

)
+ w1

(
γ

(jv)
max − rv

γ
(jv)
max − γ(jv)

min

)
∀v ∈ V, (5.6)
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where ε
(jv)
min and ε

(jv)
max are respectively the minimum and maximum energy-consumption

values w.r.t. all the available nodes associated to block section jv. The terms γ
(jv)
min

and γ
(jv)
max are respectively the minimum and maximum running-time values w.r.t. all

the available nodes associated to block section jv and train iv. The aforementioned ε

and γ coefficients are introduced to normalize (5.6) so that σ varies between 0 and 1.

The first term in round brackets is associated to the energy consumption of v, while

the second to its running time. The value of σ increases as Ev or rv decrease. As a

consequence, σ indicates the greedy attractiveness of v and favors nodes representing

faster and less energy-consuming partial speed profiles. In coherence with the objective

function in (5.3), weights w0 and w1 are here used to determine the importance of each

component of σ.

The SG algorithm selects a sequence of feasible nodes connecting the source node

(s) to the terminal node (t). It adds one node v ∈ V at a time. Each v is selected

at random according to a non-uniform probability distribution, biased by σv. The

probability of selecting a node v among the candidate nodes reachable from a parent

node w is given by:

pw,v =
σβv∑

l∈Nw

σβl
(5.7)

where Nw is the neighborhood of w, v is in Nw and pv is the probability of v being

selected. The term β is a parameter of the algorithm that controls the impact of the

difference between σ’s on the difference of probabilities. Remark, only the nodes that

contribute to satisfying the model constraints (Section 5.4) belongs to Nw.

We also define a greedy algorithm as a deterministic variant of the SG algorithm.

In this paper, we use it to initialize the proposed meta-heuristic algorithms. Precisely,

the greedy algorithm construct a path in G by repeatedly selecting the node v with

the highest σv among the available candidates. Therefore, as for the SG algorithm,

(5.7) drives the selection of nodes in the greedy algorithm too. Due to its deterministic

nature, the greedy returns an unique solution given an instance, β, w0 and w1. There-

fore, it is suitable to be used as a mean of comparison in our experiments. In fact, we

assess the performance of each proposed algorithm as the percentage improvement of

the best solution w.r.t. to greedy solution. For further details see Section 5.10.
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5.5.2 Local Search

In this section, we propose the Local Search (LS) algorithm used as a building block

in the proposed meta-heuristic algorithms. It is detailed in Algorithm 3.

Algorithm 3: Local Search algorithm

Input: original path; k; first-improvement flag; fullSet; first-improvement

1 h← original path;

2 N ← selection of k nodes in h to be replaced;

3 foreach v ∈ N do

4 h(v) ← ∅;

5 fbest ← f(h);

6 Wv ← selection of the candidate replacement nodes for v according to

fullSet;

7 foreach w ∈ Wv do

8 h′ ← move(h,v,w);

9 if h′ is infeasible then

10 h′ ← repair(h′);

11 end

12 if f(h′) < fbest then

13 h(v) ← h′;

14 fbest ← f(h′);

15 If first-improvement then Break;

16 end

17 end

18 If h(v)! = ∅ then h← h(v)

19 end

Output: h

The LS algorithm, first of all, selects a set N of k nodes to be replaced in a given

path h. The selection is based on a selection criterion (SC). They are alternatively the

nodes: (SC1) resulting from a uniform random selection; (SC2) suffering the largest
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delay at their exit from the infrastructure; (SC3) having the worst η value; (SC4)

referring to the trains with highest criticality score. This score is a proxy of the

number of restrictive signals of which a train may be responsible. For a train i, it is

the sum of a criticality index associated to each of its blocks b: this is equal to the

number of trains that follow i, i.e., the number of sets Pi′,j′ to which (i, b) belongs.

For each node v in N , the algorithm makes a list Wv of candidates for replacing

it. These can either be all the nodes reachable from the node preceding v in h or a

subset of them. In the latter case, the subset contains only the nodes whose exit speed

is the same as the one of v. This is set through a binary parameter of the algorithm

(fullSet).

We define a move of the LS algorithm as the replacement of one node in a path

h. A function (move) is used to swap a node v ∈ N with a replacement candidate

w ∈ Wv.

A single move can make a path infeasible. Precisely, one or more of the nodes

following a replaced node v could violate the problem constraints. If needed, a repair

function is used. Starting from the first node after v, it sequentially replaces each

infeasible node. Each replacement node for repair is chosen in the same way as the

SG algorithm determines its moves (Section 5.5.1).

For each v ∈ N to be replaced, the LS algorithm can either select the first w ∈ Wv

yielding an improvement in solution quality or the w yielding the best improvement

overall. In the latter case, all the potential moves on v have to be evaluated. A

binary parameter of the algorithm regulates whether the first or the second strategy

is adopted (first-improvement).

5.6 Ant Colony Optimization

In this section, we propose an Ant Colony Optimization (ACO) algorithm to tackle

the rtECMP model in Section 5.4. Precisely, we adopt a MAX–MIN ant system

(MMAS) algorithm (Stützle and Hoos, 2000). We refer to it as ACO-rtECMP.

ACO is a well know meta-heuristic in which a colony of artificial ants cooperate in

finding good quality solutions to hard combinatorial problems in a short computing
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time. An artificial ant is a computational agent that implements a stochastic con-

structive heuristic for the problem at hand. Precisely, an ant figuratively moves from

node to node in an ad-hoc construction graph adding, as it moves, each selected node

to a partial solution being built. The ant can only select one of the nodes in the

neighborhood of the last chosen node. The selection of each move is stochastic with

a probability biased by two factors: heuristic information (η) and pheromone trails

(τ). The former is a problem-specific quantity associated to nodes or arcs and repre-

senting a greedy measure of their attractiveness. The latter is a quantity representing

the cumulated knowledge on the quality of previously visited solutions including the

node or arc on which the pheromone is deposited. Artificial pheromone constitutes a

mean of communication between ants: it is deposited by them throughout a run of the

algorithm and it guides further ants’ individual search. The algorithm is iterative: at

each iteration, a group of artificial ants, named colony, stochastically builds solutions.

Based on these solutions, the pheromone trail is updated to lead future ants towards

promising regions of the search space.

In ACO-rtECMP, we adopt G as the construction graph. Here, ants construct

paths in G subject to constraints C1-C3. They use the SG algorithm (Section 5.5.1)

to build solutions, with a slight variation of the equation defining the probability of

selecting nodes (7). Specifically, this probability is defined as:

pw,v =
(τw,v)

α(ηv)
β∑

l∈Nw

(τw,l)α(ηl)β
(5.8)

Here, the classic MMAS product of heuristic information and pheromone trail is

considered.

The heuristic information (ηv) is associated to nodes v ∈ V in G, and coincides

with σv of (5.6).

Instead, the pheromone trail τw,u is associated to arcs, to better capture the de-

pendency of subsequent choices.

Similar to β, α is a parameter of the algorithm that weights pheromone trails.

Equation (5.8) is commonly referred to as pseudo-random proportional rule. For de-

tails, see Dorigo and Stützle (2004).
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Before the first iteration, we initialize all pheromone trails with the value τ0 given

by

τ0 =
1

ρχẐ
(5.9)

where Ẑ indicates the objective function value of the solution returned by the greedy

algorithm (Section 5.5.1).

After each iteration, a pheromone update is applied. First, a pheromone evapora-

tion phase takes place, causing a fraction ρ < 1 of the current pheromone trails τ to be

removed. Value ρ is a parameter of the algorithm. It is called pheromone evaporation

rate.

After evaporation, a pheromone deposit is performed only on the arcs composing,

alternatively, either the best-so-far (bsf ) solution found or the iteration-best one (ib).

Specifically, for each concerned (w, v) ∈ A, the corresponding τw,v is increased by 1/Z

with Z denoting the objective function value of the solution being used. The frequency

with which bsf and ib are used is controlled by a parameter of the algorithm, denoted

as fib , and typically has an impact on the convergence behavior of the algorithm. The

pheromone matrix we adopt for ACO-rtECMP is symmetric whenever possible, i.e.,

whenever both (v, w) ∈ A and (w, v) ∈ A exist.

As specified by the MMAS paradigm, every τ is bounded between a τmin and

τmax (Stützle and Hoos, 2000). The two bounds depend on the bsf solution. When a

new bsf is found, the new values for τmin and τmax are given by

τmax =
1

ρχZbsf
(5.10)

τmin = τmax
(1− n

√
0.05)

(avg − 1)( n
√

0.05)
(5.11)

where, Zbsf is the objective function value of the bsf itself and avg is a proxy of the

average number of available choices for an ant at each step of solution construction.

Terms τmax and τmin must be in [0, 1]. As our objective function Z is by definition

smaller than one, we introduce term χ = 10, 000.

To improve solution quality of ACO-rtECMP at each iteration, we employ the

LS algorithm introduced in Section 5.5.2, which we apply to the ib solution of each

iteration. When the LS algorithm is used with ACO-rtECMP, it uses (5.8) instead of
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using (5.7) to compute the selection probability of a candidate node. This holds for

the repair procedure as well.

5.7 Iterated Local Search

In this section, to tackle the rtECMP model in Section 5.4, we propose an Iterated

Local Search (ILS) algorithm (Stützle T., 2018). We refer to it as ILS-rtECMP.

ILS is a well-known meta-heuristic paradigm that iteratively applies both a sub-

sidiary local search and a perturbation algorithm. This is meant to exploit the capa-

bilities of a local search while preventing the premature convergence to a low quality

local optimum. ILS starts by constructing an initial solution and then applies a local

search algorithm to it. Then, the algorithm performs the following three steps during

each iteration. First, the current solution is perturbed by applying moves in a larger

neighborhood w.r.t. the one of the LS algorithm. Second, the perturbed solution is

passed to the LS algorithm. Third, before the iteration ends, an acceptance criterion

decides whether the next iteration will continue from either the solution returned by

the LS or from the one before perturbation. When termination conditions are met,

the best-so-far is returned.

For building the initial solution, we use the SG algorithm (Section 5.5.1).

As the subsidiary local search, we use Algorithm 3 (in Section 5.5.2).

As the acceptance criterion, we take all the solutions whose value is better than

the best-so-far value. Solutions that are, on the contrary, worse than the best-so-far

are accepted only if they satisfy a threshold of maximum percentage worsening w.r.t.

the best-so-far value. Such threshold is a parameter of the algorithm (wT ).

As the perturbation, we propose a simple algorithm that, given a path h and an

integer parameter kp, repeats the following steps kp times: (I) a random node in h is

chosen and then replaced with another node, which is selected as in the SG algorithm

(Section 5.5.1); (II) if needed, the repair function of Algorithm 3 is used; (III) finally,

the procedure restarts from step (I) using the current h.
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5.8 Greedy randomized adaptive search procedure

In this section, to deal with the rtECMP model in Section 5.4, we propose a Greedy

Randomized Adaptive Search Procedure (GRASP) (Resende and Ribeiro, 2010). We

refer to it as GRASP-rtECMP.

GRASP is a meta-heuristic whose iterations consist of, first, constructing a solution

with a randomized greedy algorithm and, second, improving it through a local search.

GRASP-rtECMP uses the SG and LS algorithms proposed in Section 5.5.1 and

5.5.2 respectively. The first algorithm constructs the solutions, while the second im-

proves them at each iteration. The greedy algorithm (Section 5.5.1) is used in the first

iteration of GRASP-rtECMP rather than the SG one.

5.9 Experimental setup

We test ACO-rtECMP, ILS-rtECMP and GRASP-rtECMP on two French control

areas: the Pierrefitte-Gonesse junction (Figure 5.5a) and a section of the Paris-Le

Havre line (Figure 5.5b). The Pierrefitte-Gonesse junction consists of an infrastructure

with 89 track-circuits grouped into 79 block sections. The control area does not contain

stations. The section of the Paris-Le Havre line we consider here comprises 236 track-

circuits grouped into 150 block sections. It approximately covers an 80-km length

between the stations of Rosny sur Seine and St. Etienne du Rouvray. In the rest of

the paper, we will refer to this control area as Rosny-St. Etienne. The control area

contains ten stations, some of which having multiple platforms that can be used in

both directions.

The traffic is dense in both infrastructures. Precisely, the number of trains sched-

uled to circulate, in a typical week-day timetable, is around 330 and 220 for Gonesse

and Rosny-St. Etienne respectively. Very different trains circulate in both control

areas: high-speed, conventional passenger and freight trains.

To construct a set of rtECMP instances, we first generate random perturbations

of the timetable and solve the corresponding rtRTMP instances. To do so, for each

of the two considered control areas, we select a random sample containing 20% of the
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(a) Pierrefitte-Gonesse control area.
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(b) Rosny-St. Etienne control area.

Figure 5.5: Infrastructure layout of the considered control areas.

trains planned in a real week-day timetable. We then create a daily perturbation by

delaying the nominal entry time in the control area, for each of the sampled trains, of

a random amount between 5 and 15 minutes. By repeating this procedure, we obtain

100 perturbations per control area. For each perturbation, we consider the same 1-

hour time horizon, i.e., 06:00AM-07:00AM, which represents the morning peak time.

This leads to a set of 100 rtRTMP instances per control area, comprising either 15 or

16 trains. By employing the rtRTMP solver RECIFE-MILP (Pellegrini et al., 2015),

we address the 200 perturbations. As a result, we obtain the routing and precedences

required to construct the corresponding 200 rtECMP instances: 100 for Gonesse and

100 for Rosny-St. Etienne. They correspond to the best (possibly proven optimal)

set of routes and schedules to minimize total delays found in the available computing

time.

To ensure real-time applicability, the solution of both the rtRTMP and the rtECMP

must be completed within a short computing time. Since three minutes are often

allocated for real-time traffic management scenarios (Samà et al., 2016), we assign

150 seconds to RECIFE-MILP and the remaining 30 seconds to one of the three
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algorithms (Sections 5.6, 5.7 & 5.8).

Such computing times are in line with the currently envisaged TMS deployment in

some European countries (Shift2Rail, 2019). In particular, it is in line with human-

in-the-loop specifications: as dispatchers are meant to assess and possibly modify

optimization decisions before their implementation, some minutes are to be appointed

to decision making. Three of these minutes can reasonably be used for optimization.

Short term traffic prediction is exploited as a baseline for optimization (Quaglietta

et al., 2016).

To compute the set of possible speed profiles for every train-block pair (i, j) :

i ∈ T, j ∈ Bi, we utilize the Train Driving Regime Combination (TDRC) algorithm

by Montrone et al. (2018). TDRC splits each block section j into q subsections of

equal length, in which exactly one driving regime is to be used, if the infrastructure

characteristics allows doing so. Given (i, j) : i ∈ T, j ∈ Bi, an initial speed k and a per-

mutation of optimal driving regimes C containing exactly q regimes, TDRC computes

a speed profile by applying each driving regime in C to its corresponding subsection.

As a result, we obtain the attributes of each v ∈ V of G (Section 5.4). In TDRC, we

set q = 3 as it yields tractable values of |V | and reasonably good solution values as

shown in Montrone et al. (2018). Moreover, we exclude all profiles implying a running

time higher than 10 minutes per block section as they would not be reasonable in

practice. In our experiments, |V | amounts to about 150, 000 and 230, 000 for Gonesse

and Rosny-St. Etienne respectively.

The tuning of the three algorithms is carried out on half of the available instances

for each control area as detailed in Section 5.9.1. Therefore, the experiments are run

on the 100 instances that are not used for tuning: 50 for Gonesse and 50 for Rosny-St.

Etienne.

We test the following three configuration of weights (w0, w1) of the objective func-

tion: (0.9999, 0.0001) where mostly the energy term in (5.3) matters, denoted as “En-

ergy”; (0.5, 0.5) where both terms in (5.3) are equally weighted, denoted as “Both”;

(0.0001, 0.9999) where mostly the delay term in (5.3) matters, denoted as “Delay”.

Let us recall that we normalize the energy consumption and delay values so as each

objective function component is within 0 and 1.
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Initially, we measure solution quality of each proposed meta-heuristic algorithm by

comparing it with the corresponding solution of the greedy algorithm of Section 5.5.1.

For each combination of (w0, w1), the greedy algorithm is run on the same instance of

each meta-heuristic algorithm and with the same value of parameter β. We consider

the performance of the greedy algorithm as a baseline benchmark, which each meta-

heuristic is expected to outperform. Then, we compare ACO-rtECMP, ILS-rtECMP

and GRASP-rtECMP with each other to identify the best performing one.

Finally, we assess the impact of the best performing algorithm through a set of

railway oriented indicators and we present a visualization of the speed profiles obtained.

We implement all algorithms in C++ and run the experiments on a AMD Ryzen™

7 2700X 8-core, 3.7GHz CPU with 64 GB of ram and Ubuntu 18.10 operating system.

5.9.1 Parameter tuning

The tuning of ACO-rtECMP, ILS-rtECMP and GRASP-rtECMP is performed by

using the IRACE package (López-Ibáñez et al., 2016), which implements a set of

machine learning tools for automatically configuring algorithms. Half of the rtECMP

instances referring to Gonesse and Rosny-St. Etienne is used to tune the parameters of

the algorithms. We configure IRACE to perform a total of 25, 000 runs per algorithm.

As discussed in Sections 5.6-5.8, the three proposed algorithms use the same LS

algorithm. Therefore, the LS parameters are common to all meta-heuristic algorithms.

The LS parameters we tune are: bI , which is set to “best” if the best improving

candidate is selected for each v ∈ N , “first” otherwise; fullSet, which is set to “true” if

all potential candidate replacement nodes are to be considered, “false” otherwise; the

node selection criteria in {SC1, SC2, SC3. SC4}; k ∈ {20, 40, 80, 100}. Moreover, as

all meta-heuristic algorithms use the SG one or a slight variation of it, its parameter

β is in the set of common ones too, and its possible values are the integer numbers

between zero and 20.

In addition to the common parameters, for ACO-rtECMP, IRACE tests the follow-

ing parameter values: α ∈ {1, . . . , 20}; the number of ants in {10, 20, 30, 40, 50, 60, 70, 80,

90, 100}; ρ ∈ {0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8}. We perform one ib-based
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α ρ ants β bI k sel. crit. fullSet

Gonesse 10 0.8 10 20 best 100 SC1 true

Rosny-St. Etienne 5 0.6 20 20 best 100 SC1 true

Table 5.1: ACO-rtECMP tuning.

wT kp β bI k sel. crit. fullSet

Gonesse 0 0 10 best 100 SC1 true

Rosny-St. Etienne 0 0 10 best 80 SC1 true

Table 5.2: ILS-rtECMP tuning.

pheromone update every 50 iterations, i.e., fib = 1/50, and we apply the LS algorithm

to each ib solution of ACO-rtECMP.

For ILS-rtECMP, IRACE tests the following parameter values: kp ∈ {0, 1, 2, 3, 4, 10,

20, 30, 40}; wT ∈ {0%, 1%, . . . , 15%}.

GRASP-rtECMP has no additional parameters to be tuned after considering the

common ones.

We run preliminary experiments on the Gonesse instances to understand the need

for adopting a different tuning for each (w0, w1) combination. For them, we use ACO-

rtECMP as it is rather sensitive to its configuration due to its numerous parameters

(Pellegrini and Birattari, 2011). First, we tune ACO-rtECMP for each (w0, w1) com-

bination. Second, for each of the three resulting parameter configurations, we run

ACO-rtECMP with all (w0, w1) configurations. We observe no relevant difference in

performance between the three tuning results. Specifically, no statistically significant

difference emerges according to the Wilcoxon Signed-Rank Test with a 95% confidence

level.

After observing this scarce sensitivity, we run control area-specific tuning for each

meta-heuristic algorithm only considering (w0, w1) = (0.5, 0.5), and we use the con-

figuration obtained for all weight combinations. These configurations are reported in

Tables 5.1, 5.2 and 5.3 for ACO-rtECMP, ILS-rtECMP and GRASP-rtECMP, respec-

tively.
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β bI k sel. crit. fullSet

Gonesse 20 best 100 SC1 true

Rosny-St. Etienne 19 best 100 SC1 true

Table 5.3: GRASP-rtECMP tuning.

5.10 Results

In this section, we discuss the results of the experiments performed in the setting

presented in Section 5.9. First, in Section 5.10.1, we compare the results obtained with

the three proposed meta-heuristic algorithms with the greedy algorithm of Section 5.5.1

and with each other, showing that ACO-rtECMP typically achieves the best results.

Second, in Section 5.10.2, we discuss the impact of ACO-rtECMP from a railway point

of view.

5.10.1 Comparison between the algorithms

As discussed in Section 5.9, the experiments are run for three weight combinations:

“Energy” (w0 = 0.9999, w1 = 0.0001); “Both” (w0 = 0.5, w1 = 0.5); “Delay” (w0 =

0.0001, w1 = 0.9999).

Tables 5.4 and 5.5 report the results achieved by each meta-heuristic algorithm

for Gonesse and Rosny-St. Etienne instances respectively. The following aggregate

indicators, w.r.t. the 50 tackled instances for each control area, are shown in the

columns:

• Ī: mean percentage improvement of the best solution w.r.t. the corresponding

solution of the greedy algorithm;

• Ē: mean total energy consumption in the final solution, expressed in megajoules;

• D̄: mean total delay in the final solution, expressed in seconds;

• Time: mean time at which the algorithm finds the best solution, expressed in

seconds.
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As discussed in Section 5.5.1, we adopt the solution of the greedy algorithm as a

mean of comparison in assessing solution quality. This is done through the indicators

Ī in Table 5.4 and 5.5. The comparison between the proposed algorithms is done

through Ī as well.

Column Ī of Table 5.4 and 5.5 shows that ACO-rtECMP, ILS-rtECMP and GRASP-

rtECMP always outperform the greedy algorithm. This shows the pertinence of using

elaborated algorithms as the meta-heuristic ones, as the problem is not trivial and

cannot be effectively solved by the one-shot greedy approach. As expected, we can

see from Table 5.4 and 5.5 that Ē decreases progressively as more relevance is given

to energy consumption in the objective function, i.e., when we move from Delay to

Energy. The opposite holds for D̄.

For the Gonesse instances (Table 5.4), the highest value of Ī is obtained with

Energy, i.e., when all importance is given to energy consumption. We can observe

a trend on Ī: the highest the importance of delay, the smaller Ī. While GRASP-

rtECMP finds the best solution almost immediately, the other two algorithms do so

after about 25 seconds. With Energy and Both, for ACO-rtECMP and ILS-rtECMP,

the last solution improvements occur closer and closer to the time limit as we shift

focus towards delay. In fact, with Delay, the best solution value keeps improving up

to the time limit itself. This may suggest that, by increasing the time limit, better

performance might be reached.

Table 5.4 shows that the difference between the performance of the three algorithms

are quite small. However, they are rather regularly in favor of ACO-rtECMP, with

ILS-rtECMP ranking second. These differences are statistically significant according

to the Wilcoxon Signed-Rank Test with a 95% confidence level. Therefore, additional

experiments would likely have ACO-rtECMP ranking first. However, the differences

in the absolute value of the returned solutions especially for ACO-rtECMP and ILS-

rtECMP, would likely be very small.

In the results reported in Table 5.4, Ī decreases as the importance of delay increases.

This point was addressed in a similar context by Naldini et al. (2021) and is discussed

in the following. As delay gains relevance in the objective function, the variation range
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Algorithm Weights Ī Ē [MJ] D̄ [s] Time [s]

ACO-rtECMP Energy 48 % 155 4,265 20

Both 15 % 180 3,863 23

Delay 7 % 3,364 1,941 29

ILS-rtECMP Energy 46 % 154 4,229 23

Both 10 % 226 4,046 26

Delay 7 % 3,454 1,947 30

GRASP-rtECMP Energy 36 % 185 4,728 3

Both 7 % 254 4,124 1

Delay 3 % 4,522 2,015 1

Table 5.4: Results of the experiments for Gonesse instances.

of σ (or η) narrows progressively. As a result, σ becomes less effective in steering the

stochastic search to better regions of the search space and, therefore, the improvement

is less marked as w1 increases. The narrowing of σ can be explained as follows. As w1

is increased, the delay term in (5.6) gradually becomes more important and constitutes

more of the value of σ. The variation range of the delay term depends on the one of

the running time of the nodes in G, which is quite narrow on average. Hence, the

range of σ narrows when the delay term is more relevant. For a thorough analysis,

refer to Naldini et al. (2021).

For the Rosny-St. Etienne instances (Table 5.5), the highest value of Ī is obtained

with Both rather than with Energy. Here, Energy yields the second best value of Ī.

Delay yields the minimum Ī as for Gonesse. Except for GRASP-rtECMP, the best

solution value keeps improving up to the time-limit for Both and Delay as in Gonesse.

With Energy, ACO-rtECMP and ILS-rtECMP find the last solution one to two seconds

away from the time limit. Again, as in Gonesse, GRASP-rtECMP is the first to

stop improving its solution, although this happens later in Rosny-St. Etienne. Table

5.5 shows that the differences between the performance of the three meta-heuristic

algorithms are the same as in Gonesse. However, they are here larger in absolute value
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Algorithm Weights Ī Ē [MJ] D̄ [s] Time [s]

ACO-rtECMP Energy 40 % 5,610 40,820 28

Both 54 % 12,160 12,928 30

Delay 9 % 19,658 8,479 30

ILS-rtECMP Energy 39 % 5,695 42,609 29

Both 53 % 14,133 12,595 30

Delay 8 % 19,794 8,495 30

GRASP-rtECMP Energy 33 % 6,340 42,787 5

Both 36 % 12,894 20,925 8

Delay 5 % 21,309 8,821 2

Table 5.5: Results of the experiments for Rosny-St. Etienne instances.

and therefore more marked. These differences are statistically significant according to

the Wilcoxon Signed-Rank Test with a 95% confidence level, hence, confirming the

algorithm ranking as in Gonesse: ACO-rtECMP, ILS-rtECMP, GRASP-rtECMP.

As mentioned in Table 5.5, Ī is best for Both in the for Rosny-St. Etienne results,

which is the most marked difference w.r.t. the Gonesse results, where Ī is best for

Energy. This point is discussed in the following.

To explain this difference, let us first observe that stops are scheduled for most

trains in the Rosny-St. Etienne instances. As delay at each scheduled stop contributes

to the objective function, multiple positive delay terms appear if a train traverses

the whole infrastructure late. Due to this multiplicity, the objective function is very

sensitive to delay. This is true especially for delays occurring at early stops in a train

route as they can impact the punctuality at the subsequent stops as well. For example,

let us consider a train with ns scheduled stops in its route and let us assume no running

time buffers exist. In such setting, if a delay occurred at the first stop, it would be

summed ns times in the objective function, greatly worsening the total delay term.

If buffers are present, as it is for Rosny-St. Etienne, delays can be absorbed to some

extent. However, the multiplicative impact of a stop delay on the total delay term
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cannot be eliminated. For what concerns energy consumption, scheduled stops have

a sort of flattening impact. Indeed, trains, must stop and re-accelerate at least some

times due to scheduled stops, which limits the flexibility in terms of energy.

The better value of Ī that is observed for Rosny-St. Etienne with Both is due

to a poor total delay value of the greedy solutions. Indeed, decisions in the greedy

algorithm are entirely based on σ (Section 5.5.1), where the running time in a block

section is used as a proxy of the total delay term of the objective function. In Rosny-

St. Etienne, the multiplicative impact of delay on the objective function value is not

represented at all by running times. Therefore, variations of running times may not be

very representative of their impact on total delay. With Both, the greedy algorithm

tends to select rather slow running times, as σ also rewards energy efficiency. This

often leads to extremely negative impacts on total delay, which are not predicted at all

by the running times themselves. In contrast, with Delay and Energy, the poor-quality

proxy is not an issue. With Delay, σ only rewards minimal running times, which is

indeed an effective strategy for the greedy to minimize total delay. With Energy, delay

is ignored and so is the low representativeness issue.

In contrast, in Gonesse, the variation of delay and energy in the objective function

is reversed to some extent. The former is much thinner as no stations are present, and

therefore no scheduled stops. If conflicts allow it, to only minimize energy, a train may

coast along its entire trip, while, to minimize delay, it could select the fastest driving

regime available in each block section. Therefore, energy consumption can vary largely

in Gonesse. Instead, the differences in travel time, and hence in delay, are quite small,

as the routes are much shorter than those in Rosny-St. Etienne.

Since ACO-rtECMP and ILS-rtECMP, often, find the best solution either near or

at the time limit, we run additional experiments with an extended computing time:

five minutes instead of 30 seconds. In Gonesse, the results show a slight improvement

of Ī. With ACO-rtECMP, we have that Ī is 54%, 18% and 9% for respectively Energy,

Both and Delay. With ILS-rtECMP, we have that Ī is 55%, 13% and 9%. In Rosny-St.

Etienne, with both ACO-rtECMP and ILS-rtECMP, we have that Ī is 41%, 58% and

9% for respectively Energy, Both and Delay. In all these experiments, the best solution
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is found between about 100 and 200 seconds. Again, we run a Wilcoxon Signed-Rank

Test with a 95% confidence level. This time, however, the differences in performance

do not result statistically significant. Therefore, no statement can be made on which

algorithm would likely yield the best results if additional experiments were made.

Since, in this paper, we aim at short computing times, we consider ACO-rtECMP the

best as per the 30-second experiment results.

In our opinion, the rtECMP, by nature, is well suited to be addressed with a

constructive, incremental approach such as ACO. Indeed, from a chronological point

of view, the initial decisions made have a strong impact on the subsequent ones both in

terms of feasibility and in terms of resulting quality. In an ACO algorithm, decisions

can easily be made following both the chronological order and the one imposed by

the precedence constraints. This allows ants to choose the speed profile of each block

section being aware of the signal aspect opening it. Therefore, only the candidate

profiles matching the necessary braking are considered and infeasible solutions are

avoided entirely. Trajectory based algorithms, as ILS and GRASP, being based on the

perturbation of solutions, cannot directly aim at feasibility in their exploration of the

search space, implying a strong recourse to the repair mechanism. This hardly allows

them to exploit the chronological and precedence relations between speed profiles.

Furthermore, the rtECMP involves many complex space-time relations arising between

groups of interacting trains. Another advantage of ACO is that it does not require

these relations to be formalized a priori to be taken into account. Indeed, they are

autonomously learned through the evolution of pheromone trails.

5.10.2 Practical impact analysis

In this section, we discuss the results of ACO-rtECMP from a railway oriented point

of view. We consider the following average indicators, computed over all instances:

• acc, cru, coa, brk: number of subsections (Section 5.9) in which each driving

regime is used: acceleration (acc), cruising (cru), coasting (coa) and braking

(brk);
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• stops: total number of unscheduled stop;

• vmin , vMax : minimum and maximum speed held by the trains, expressed in meters

per second;

• G, Y, fY, fG: total occurrences of each aspect when trains cross signals: Green

(G), Yellow (Y), flashing-Yellow (fY), flashing-Green (fG). The yellow signals

caused by scheduled stops are ignored. Since Rosny-St. Etienne does not include

signals with either four or five aspects, only G and Y are shown.

These indicators are shown in Table 5.6 and 5.7 respectively for Gonesse and Rosny-

St. Etienne. We group the data by objective function weights as in Section 5.10.1.

From Table 5.6, we can observe that the number of accelerations and cruisings

increase as the importance of delay increases, while the number of coasting decreases.

This is sensible as faster profiles contribute to a lower total delay. The number of

brakings and stops is approximately the same in each weight configuration. No sched-

uled stops are planned in Gonesse, as no stations are present. Being the number of

stops imposed by traffic very low, the minimum speed averaged for all trains is grater

than zero.

These results show lower number of brakings with Both compared to Energy and

Delay. With Energy, most trains tend to coast their whole travel. Trains entering

the control area first are undisturbed and generally they choose the slowest running

times. Therefore, the trains entering later have to brake and then coast to maintain

a safe distancing. This occurs more frequently with Energy rather than with Both,

which explains the two additional brankings. With Both, trains tend to go faster, in

average applying twice the cruising regime, rather than once. Finally, in Delay, trains

tend to go as fast as possible and, therefore, they require longer braking distances to

meet changing speed limits along their routes or to simply respect restrictive signals.

As expected, with Delay the number of braking is hence the highest. Moreover, to

shorten running times, the fastest regimes (acceleration and cruising) are used more

often.

From Table 5.7, for Rosy-St. Etienne, we observe more or less the same trends
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acc cru coa brk stops vmin vMax G Y fY fG

Energy 2 1 547 16 1 11 44 177 1 6 4

Both 3 2 546 14 1 13 44 178 1 5 4

Delay 134 29 385 18 1 22 56 185 1 2 1

Table 5.6: Railway indicators for Gonesse (average over 50 instances).

acc cru coa brk stops vmin vMax G Y

Energy 40 56 855 69 5 0 38 271 5

Both 110 138 686 86 3 0 44 271 3

Delay 307 92 511 111 3 0 44 272 3

Table 5.7: Railway indicators for Rosny-St. Etienne (average over 50 instances).

as in Gonesse for most indicators. In contrast to Gonesse, the number of cruisings is

maximum with Both. In addition, the number of brakings increases and the one of

unplanned stops tends to slightly decrease as the relevance of delay increases. The

higher number of stops with Energy, may be counter intuitive: as after stops, since

trains necessarily have to accelerate, energy consumption is not negligible. However,

consumption would be even higher if these stops were to be avoided: the algorithm

chooses to exploit very rarely acceleration and cruising, although this imply additional

stops.

The most marked difference w.r.t. Gonesse concerns the number of occurrences of

the cruising regime: here it reaches a peak with Both. This peak is due to the total

delay term dominating the objective function value, as discussed in Section 5.10.1.

In fact, ACO-rtECMP mostly leverages on total delay minimization to improve the

objective function value. To do so, it tends to return solutions in which trains travel

rather fast: they accelerate after stops and then cruise at relatively high speeds. These

speeds, imply rather long braking distances to deal with lowering speed limits and

scheduled stops, hence requiring brakings in several block sections. Even higher speeds

are chosen with Delay, which bring to more accelerations and brakings and fewer

cruisings.
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In both control areas (Table 5.6 & 5.7), we observe that green is markedly the most

crossed aspect. This is due to the trains self-organizing into platoons, to some extent.

This happens when groups of interacting trains run at a similar speed to maintain

proper distancing. This let them avoid restrictive signals as much as possible, keeping

traffic flow smooth. As a result, constraints C3 are very rarely active. Hence, they do

not restrict the available speed profiles to be selected in each block section most of the

times. Such behavior is especially noticeable in the Rosny-St. Etienne results, where

the occurrence of green is practically unaffected by the weights of energy consumption

and total delay in the objective function. Speed typically decreases when more weight

is given to energy consumption (Table 7) but it is quite uniform across trains.

Figures 5.6 and 5.7 show the speed profile plot (distance-speed) of two trains se-

lected from a representative instance of the Rosny-St. Etienne line. The speed is

expressed in kilometers per hour and the distance in kilometers from the train en-

trance in the control area. The green vertical lines indicate where signals are located

along each train’s route. In each figure, three alternative speed profiles of the train are

presented. The profiles respectively correspond to those obtained with Delay, Both

and Energy, from top to bottom. As we can observe, the more relevant the delay (the

upper the plot in the figure), the highest the average speed in each profile. In fact,

especially in Delay, the trains maintain on average a faster pace to preserve punctu-

ality w.r.t. the timetable. Indeed, as energy is not important, they tend to accelerate

as much as possible if they need to recover some delay. In some cases, the presence of

buffer allows not suffering any delay even if the speed is reduced eventually. An exam-

ple of this can be seen in Figure 5.6 (top), where the train slows down before the third

stop. As energy consumption importance is almost negligible here, the train slows

down and then re-accelerates rather than using some less energy demanding regime.

When energy is not neglected, as in the middle plot of Figure 5.6, cruising and coasting

are preferred. As a corollary remark, let us note that the braking of the train before

the second stop in the top and middle plots of Figure 5.6 are due to the fact that the

train must go through a portion of track with a lower speed limit at Km 23. This is

not visible in the bottom plot as the train keeps coasting and cruising after the initial

121



CHAPTER 5. PAPER-3 5.10. RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Distance (km)

0
20
40
60
80

100
120
140
160

Sp
ee

d 
(k

m
/h

)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Distance (km)

0
20
40
60
80

100
120
140
160

Sp
ee

d 
(k

m
/h

)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Distance (km)

0
20
40
60
80

100
120
140
160

Sp
ee

d 
(k

m
/h

)

Figure 5.6: Speed profile (distance-speed): Delay (top), Both (middle), Energy (bot-

tom).

acceleration at departures, and gets to this point at a low enough speed. In general,

in the two figures we see that as energy is prioritized (the lower the plot), the speed

profile progressively shift from having high speed cruisings and frequent accelerations

to having more extended coasting and low speed cruising. When the optimization

focus is entirely on energy, coasting makes up for the majority of the speed profile.

Despite differently in various speed profiles, Figures 5.6 and 5.7 show quite clearly

the effect of the decision decomposition in terms of block sections and subsections. A

quite evident case is in the top plot of Figure 5.6, where the train brakes to immediately

re-accelerate at about Km 41. Right after that, the train performs a series of repeated

acceleration-cruising sequences within the next four block sections. Another case is in
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Figure 5.7: Speed profile (distance-speed): Delay (top), Both (middle), Energy (bot-

tom).
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the top plot of Figure 5.7, where the train, between the second and the third block

section, switches from acceleration to coasting and then back to acceleration again.

Indeed, these are rather impractical speed profiles for a train, which in general will

follow a more uniform profile characterized by one phase of cruising followed by one

phase of coasting. Indeed, the more fragmented profile returned by ACO-rtECMP

may be the best feasible one in some cases, due to traffic, but often the more uniform

alternative would be possible. Typically, a uniform and a fragmented profile will

be equally evaluated by the algorithm as far as their impact on delay and energy

consumption is equal. A possibility to obtain more uniform profiles would be to include

the number of regime switches in the objective function to be minimized. However,

we think this would excessively burden the algorithm, worsening the solution quality

w.r.t. the current objectives. Another possibility is the identification of track sections

where speed profiles may be smoothed through a post-processing without impacting

traffic.

5.11 Conclusion

In this research, we designed a graph model and three meta-heuristic algorithms to

address the rtECMP (Montrone et al., 2018). This problem requires minimizing the

weighted sum of total delay and energy consumption given fixed train routing and

precedences. In real-time traffic management, whenever operations are perturbed, an

rtRTMP solver computes new routing and precedences that can be fed into an rtECMP

solver. The latter computes a speed profile and timing for each train traversing a

control area in a given time horizon, considering their interactions. This research aims

at supplying decision support tools to boost the performance of the railway system

and, by doing so, to increase the sustainability and the efficiency of railway mobility.

In this paper, we modeled the rtECMP as a graph of which a path fulfilling a

set of constraints is a feasible solution. Each node of the graph is associated to a

pre-computed partial speed profile for a train-block pair.

To solve the graph model, we introduced three meta-heuristic algorithms: ACO-

rtECMP, ILS-rtECMP and GRASP-rtECMP. We tested them on instances derived

124



CHAPTER 5. PAPER-3 5.11. CONCLUSION

from the peak-hour traffic in two French control areas. In both control areas and with

all combination of objective function weights we tested, ACO-rtECMP achieved the

best results in general. The difference is often quite small in absolute terms, but it is

statistically significant.

After identifying ACO-rtECMP as the best algorithm, we observed the practical

relevance of the solutions it returned. The analysis displays the clear difference of

speed profiles followed by trains in different situations. In all cases, ACO-rtECMP

manages to find profiles with which traffic flows quite smoothly across both control

areas.

In future research, we will benchmark ACO-rtECMP against optimal solutions. To

do so, we first need to extend the exact method TDRC-MILP (Montrone et al., 2018)

to support a signaling system as general as the one considered in this paper. Then,

we will use the optimal solutions it returns as a term of comparison.

Furthermore, we will introduce a multi-objective definition of the rtECMP, instead

of relying on a weighted sum of its two objectives.

Focusing on the practical applicability of rtECMP solutions, we will also study the

possibility of applying an a posteriori technique to obtain speed profile as uniform as

possible. Indeed, currently our solutions may propose fragmented regimes, changing in

all block sections, while train drivers typically prefer to change regime only few times

between stops. However, we think the practical interest of a uniform profile rather

than a fragmented one will largely decrease when a higher automation will be put in

place and train control will not require the driver to actively implement regimes.

Finally, we will study the impact on the problem definition of two planned technical

evolutions of the railway system, namely moving block and virtual coupling. These

evolutions change the ratio at the basis of train safe separation, and may require a

major change of the problem definition.
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Conclusions & future research

Saving energy is not only very important from an environmental point of view, but

it also results in a significant cost reduction for transport companies, especially for

railway ones. For this reason, it is important to take energy efficiency into account

when scheduling trains. During train operations, traffic is subject to perturbations that

may require adjustments to train schedule and routing in real-time. In fact, due to

unforeseen events, such as, e.g., a train door not opening or a modest underestimation

of passenger demand, one or more trains will run behind schedules forcing other trains

to slow down or even make unplanned stops in turn. With this mechanism, delay

propagates. Traffic controllers (dispatchers) are in charge of making sensible re-routing

and re-scheduling decisions to minimize the overall delay in the control area they are

assigned. In the literature, this is embodied by the so-called real-time Rail Traffic

Management Problem (rtRTMP). In itself, the rtRTMP is a very hard problem and

thus energy consumption is usually neglected, especially when we deal with several

trains and more complex networks. Research in decision support to achieve energy-

efficient train operations in real-time traffic management is an extremely important

but immature field. It can be declined into two classes of problems: real-time Energy

Efficient Train (rtEETC) Control and real-time Energy Efficient Train Timetabling

(rtEETT). Contributions in this field are instrumental for the development of next-

generation railway Traffic Management Systems (TMS) that can improve both the

competitiveness and environmental sustainability of rail transport.
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In this thesis, we addressed both classes of problems: rtEETC and rtEETT.

In Chapter 1, we first introduced the scope, presented the papers we included in

this thesis, outlined their content and contribution, emphasized the scope limitations.

In Chapter 2, we presented an introduction to railway systems. We first discussed

the phases of rail transport planning and its decision making process, declined in

strategic, tactical and operational phases. For each phase, we presented the most

relevant problems from the broader literature of rail transport.

In Chapters 3, 4 & 5, we collected our relevant papers on rtEETC and rtEETT.

In the first paper (Chapter 3), we dealt with an optimization problem of the

rtEETC class: a single-train energy-efficient train control problem for real-time appli-

cations. It asks for finding a speed profile that minimizes energy consumption for a

train with a give schedule. Realistic case studies are considered. The instances are

tractable in real time and results are promising.

In the remaining two papers (Chapters 4 and 5), we dealt with an optimization

problem of the rtEETT class: the real-time Energy Consumption Minimization Prob-

lem (rtECMP). It minimizes the weighted sum of the total energy consumption and

delay by deciding the speed profiles for multiple trains. More in detail, the paper in

Chapter 4 proposes an Ant Colony Optimization (ACO) algorithm and a graph-based

model for the rtECMP. These results are extended in the last paper (Chapter 5) by

introducing a Local Search (LS), an Iterated Local Search (ILS) and a Greedy Ran-

domized Search Procedure (GRASP) algorithms. A detailed computational analysis

is performed, considering also an additional infrastructure w.r.t. Chapter 4. The best

performing algorithm turned out to be ACO. The instances from both infrastructures

are tractable in real time and solution quality is promising.

In Chapter 3, we stated that our future research on the rtEETC will be focused

on designing a way of using the proposed single-train approach as a module in a

multiple-train context to obtain a rtEETT method. In particular, we will allow slight

variations of the schedule of each train to achieve a trade-off between energy efficiency

and punctuality. Moreover, energy recuperation by regenerative brake will be tackled.

In Chapters 4 and 5, we highlighted the following future research directions. First,
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we will compare the quality of ACO solutions against optimal solutions by extending

the MILP proposed by Montrone et al. (2018). Second, we will explore a multi-

objective definition of the rtECMP. Third, we will study the impact on the rtECMP

of two planned technical evolution for railway systems: moving block and virtual

coupling. Fourth, we will evaluate whether a different formulation of the ACO heuristic

information may lead to increased performances.
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Jütte, S. and Thonemann, U. W. (2012). Divide-and-price: A decomposition algorithm

for solving large railway crew scheduling problems. European Journal of Operational

Research, 219(2):214–223.

Lee, E. B. and Markus, L. (1967). Foundations of optimal control theory. Technical

report, Minnesota Univ Minneapolis Center For Control Sciences.

Li, W., Peng, Q., Wen, C., Wang, P., Lessan, J., and Xu, X. (2020). Joint optimization

of delay-recovery and energy-saving in a metro system: A case study from china.

Energy, 202:117699.

Li, X. and Lo, H. K. (2014a). An energy-efficient scheduling and speed control approach

for metro rail operations. Transportation Research Part B: Methodological, 64:73 –

89.

Li, X. and Lo, H. K. (2014b). Energy minimization in dynamic train scheduling and

control for metro rail operations. Transportation Research Part B: Methodological,

70:269 – 284.

Li, X., Wang, D., Li, K., and Gao, Z. (2013). A green train scheduling model and fuzzy

multi-objective optimization algorithm. Applied Mathematical Modelling, 37(4):2063

– 2073.

Luan, X., Wang, Y., De Schutter, B., Meng, L., Lodewijks, G., and Corman, F.

(2018a). Integration of real-time traffic management and train control for rail net-

works - part 1: Optimization problems and solution approaches. Transportation

Research Part B: Methodological, 115:41 – 71.

Luan, X., Wang, Y., De Schutter, B., Meng, L., Lodewijks, G., and Corman, F.

(2018b). Integration of real-time traffic management and train control for rail net-

works - part 2: Extensions towards energy-efficient train operations. Transportation

Research Part B: Methodological, 115:72 – 94.

135



BIBLIOGRAPHY BIBLIOGRAPHY

Luijt, R. S., van den Berge, M. P., Willeboordse, H. Y., and Hoogenraad, J. H. (2017).

5 years of dutch eco-driving: Managing behavioural change. Transportation Research

Part A: Policy and Practice, 98:46 – 63.

Lusby, R. M., Larsen, J., Ehrgott, M., and Ryan, D. (2011). Railway track allocation:

models and methods. OR spectrum, 33(4):843–883.
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