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Abstract: Recently, the superiority of multi-phase systems in comparison to three-phase energy
systems has been demonstrated with regards to power generation, transmission, distribution, and
utilization in particular. Generally, two techniques, specifically semiconductor converter and special
transformers (static and passive transformation) have been commonly employed for power generation
by utilizing multi-phase systems from the available three-phase power system. The generation of
multi-phase power at a fixed frequency by utilizing the static transformation method presents
certain advantages compared to semiconductor converters such as reliability, cost-effectiveness,
efficiency, and lower total harmonics distortion (THD). Multi-phase transformers are essential to
evaluate the parameters of a multi-phase motor, as they require a multi-phase signal that is pure
sine wave in nature. However, multi-phase transformers are not suitable for variable frequency
applications. Moreover, they have shortcomings with regard to impedance mismatching, the unequal
number of turns which lead to inaccurate results in per phase equivalent circuits, which results
in an imbalance output in phase voltages and currents. Therefore, this paper aims to investigate
multi-phase power transformation from a three-phase system and examine the different static multi-
phase transformation techniques. In line with this matter, this study outlines various theories and
configurations of transformers, including three-phase to five-, seven-, eleven-, and thirteen-phase
transformers. Moreover, the review discusses impedance mismatching, voltage unbalance, and per
phase equivalent circuit modeling and fault analysis in multi-phase systems. Moreover, various
artificial intelligence-based optimization techniques such as particle swarm optimization (PSO) and
the genetic algorithm (GA) are explored to address various existing issues. Finally, the review delivers
effective future suggestions that would serve as valuable opportunities, guidelines, and directions for
power engineers, industries, and decision-makers to further research on multi-phase transformer
improvements towards sustainable operation and management.

Keywords: power conversion; multi-phase transformer; transformer rectifier units; artificial intelli-
gence; electrical machine; high phase order

1. Introduction

The multi-phase-based power system has various advantages over a three-phase-
based power system such as the capability to handle a higher magnitude of power, better
fault tolerance and low harmonics. Furthermore, it provides numerous benefits such as
reduced amplitude and rotor current harmonics, increased torque pulsation frequency,
reduction in current per phase without increasing the per phase voltage, lowered DC-link
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current ripples, more fault tolerance, and a reduced power switch rating. By expanding
the number of phases, it is possible to increase the power or torque per root mean square
(RMS) ampere for a similar volume machine. The crudest records of multi-phase systems
date back to 23 February 1894, when S. P. Thompson delivered an article in front of the
Royal Institution [1]. The first application of multi-phase variable speed drives was studied
in the late 1960s, where the inverter-fed AC drives were in the underlying advancement
phase [1]. The comparative analysis between a three-phase machine and a multi-phase
machine is presented in Table 1.

Table 1. Comparison of three-phase and seven-phase systems.

Properties Three-Phase Machine Multi-phase Machines

Torque ripple frequency (f -fundamental
frequency) 6f 2nf(>6f)

Ordre of the lowest spatial mmf
harmonics 5 and 7 2n + 1

Power/Torque per-phase (P/Te) P/3(Te/3) P/n(Te/n)
Continues operation after an open-phase
fault

Not possible without modification of the
power converter topology

Continuous post-fault operation but at
reduced capacity

Torque enhancement by stator current
harmonic injection Not possible Yes (concentrated winding machines)

Transmission Line Towers Higher Tower Heights, Lower Tower Heights
Phase-to-Phase voltage at rated power Higher Lower
Magnetic Interference due to
transmission lines and transposition
requirements

Higher Lower

Current/Conductor P/3Vp (Vp is Phase Voltage) P/nVp (reduced as n > 3)

From Table 1, it is seen that a multiple-phase transformer has several advantages,
including low magnetic interference, low phase-to-phase voltage at rated power, and contin-
uous operation after fault occurrence with reduced capacity. There are some disadvantages
associated with the multi-phase systems which pose challenges to researchers and create
new opportunities for further research. These are:

(a) Complex design procedures.
Multi-phase transformer design is not as straightforward as single-phase and three-
phase transformer design due to multiple windings in each phase. Appropriate turn
ratios and proper connection of multiple windings are vital in the creation of phasors
of the multi-phase. Therefore, human expertise and knowledge are essential for
designing multi-phase transformers.

(b) Unequal series parameters.
It is worth mentioning that the secondary of a multi-phase transformer is made from
multiple windings with an unequal number of turns. This creates unequal series
impedance of the secondary side which, in turn, creates unbalances in the output
voltages. Hence, appropriate phase balancing is required to study the per phase
equivalent circuit to achieve accurate outcomes.

(c) Lack of fault and unbalancing studies.
To find the sequence components of an unbalanced multi-phase voltage or current,
the Fortescue theorem is necessary to investigate faults and any unbalancing of a
multi-phase system. Unfortunately, these kinds of studies are very limited in the
literature. Therefore, further studies are needed on fault and unbalancing studies.

(d) Higher cost.
The cost of a multi-phase transformer is higher due to larger copper requirements and
design complexity. Thus, further exploration is necessary to reduce its price.

The utilization of a multi-phase system is observed in electric power generation,
transmission, and utilization [2]. The exploration of multi-phase generators began recently,
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and only a few references are available in the literature [3]. The usage of phases in multi-
phase machines is prominent in drive applications, making a beeline for an expanded
enthusiasm for multistage AC drive applications, particularly related to traction [2], electric
vehicles (EVs) and hybrid electric vehicles (HEVs), and electric ship propulsion system [3,4].
An increase in the phases may improve the effectiveness, robustness, and reliability at a
cost of the increased complexity of the multi-phase converter and other equipment [5–7].
Multi-phase transmission lines can furnish a similar power handling capability with a
lower phase-to-phase voltage and smaller, compact towers than standard double circuit
three-phase lines [8]. The geometry of the multi-phase compact towers may help in the
decrease in magnetic fields [8]. The multi-phase power system in some instances is seen to
be more efficient compared to a three-phase system, as it utilizes less conductor material
and short height towers to transmit the power than a comparable single-phase or two-phase
system at a similar voltage magnitude.

The three-phase alternating current (AC), two-phase AC, multi-phase voltage source
inverter (VSI) can be applied for carrying out static multi-phase transformation. With
regards to industrial application, the power delivered to the machine can be carried out by
AC–DC–AC transformation, where the input three-phase AC is converted to multi-phase
AC. Studies demonstrate that the employment of special transformers can be utilized for di-
rectly converting a three-phase or two-phase AC into multi-phase AC [5–8]. In recent times,
the applications of direct AC–AC matrix converters have been increasing compared to the
traditional AC–DC–AC converters due to their various advantages [9–13]. The various
benefits of AC–AC matrix converters include operating at unity power factor irrespective of
the loading condition and their requirement for minimum energy storage [4]. Nonetheless,
matrix converters suffer from several disadvantages regarding limited voltage transfer ratio
and require semiconductor devices in larger numbers [4]. Multi-phase research, especially
on multi-phase VSI, multi-phase drives, and multi-phase induction machines, is what
has been investigated so far. Recently, controlling a five-phase induction machine with a
three-phase inverter via a three-to-five phase transformer was explored [14]. A method
for reducing the common-mode voltage in a seven-phase brushless DC motor (BLDCM)
application is described in [15]. Recent advances in nine-phase applications include the
development of an improved and efficient nine-phase three-level [16] and nine-phase five-
leg inverter [17]. The optimal design of the slots per pole for multi-phase machines of a
prime number of phases is presented in [18]. The introduction of static phase conversion
dates back to 1894 where S.P. Thompson delivered an article in front of the Royal Institu-
tion, and on the first of March around the same time, C.F. Scott delivered his noteworthy
research work in front of the National Electric Light Association in Washington [1]. In 1895,
M. Leblance employed an alternate plan including a single three-limbed transformer for
a close connection between two-phase alternators and three-phase transmission lines [1].
Numerous studies have explored the applications of five-phase and seven-phase VSI in the
literature. Studies on five- and seven-phase VSI are found abundantly in the literature. The
multi-phase transformer with a number of phases in multiples of three or even-phase are
much more explored in the literature. Unfortunately, prime-phase (five-, seven-phase, etc.)
multi-phase transformers are the least discussed in the literature. Although the technology
of the three-phase to six-, nine-, and twelve-phase static transformation is straightforward
and mature enough, little work has been carried out for prime numbers of phases such as
five, seven, eleven, or thirteen. This paper addresses the extensive review of the available lit-
erature and enumerates the potential research scope for a three-phase to an n(prime)-phase
system [7].

This review paper showcases the new research directions in the static multi-phase
transformation to fill the research gaps in the existing works in this field. This review work
deals with the following contributions in the field of static multi-phase transformation:

• A simplified and standard procedure to calculate the number of turns of primary and
secondary windings of the multi-phase transformer is discussed.

• A three-phase to five-, seven-, eleven-, thirteen-phase transformer is discussed.
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• Key issues and challenges of multi-phase power generated by three-phase to the
multi-phase transformer are highlighted, discussed and accordingly, a few effective
solutions are proposed.

• Some constructive recommendations are given at the end that open new research
directions in the field of the multi-phase transformer.

This paper is divided into five sections. Section 1 is the previously discussed introduc-
tion. Section 2 deals with the different theories of static phase transformation available in
the literature and its application with three-phase to the five-phase transformer, three-phase
to seven-phase transformation, and other multi-phase transformers. Section 3 deals with
the potential and available application of multi-phase transformers. Issues and challenges
associated with a multi-phase transformer are discussed in Section 4. The validation and
experimental results are highlighted in Section 5. Finally, the conclusion and recommenda-
tions are presented in Section 6.

2. Configuration of Phase Transformation Techniques
2.1. m-Phase to n-Phase Transformation

The design of an electrical machine involves the exploration of an appropriate number
of turns in a winding, as well as the dimensions, magnetic field density, and insulation, and
other factors [18]. The design of the windings of a multi-phase alternating machine was
reported in [19]. The design of a multi-phase transformer is similar to that of the design of a
three-phase transformer except for the winding design, as the number of windings and its
connection are the key factors for multi-phase output. This section describes a generalized
theory that can create any number of phases.

A generalized hypothesis of phase change by the pulsating flux transformer method
was introduced in [1], i.e., the utilization of k-limbed transformer for m-phase to n-phase
transformation where m, n, and k are whole numbers of values more than one. If it is
assumed that the k-phase system consists of a balanced imaginary primary and is wound
on a k-limbed transformer as in Figure 1. The circuit configuration consists of primary (P)
with of m-phase, secondary (S) with n-phase, and imaginary winding (Q) with a k-phase.
The primary, secondary and imaginary windings are joined to a balanced m-phase voltage
source. The symbols Q, P, and S will be utilized to individually recognize the turns in the
k-phase, m-phase, and n-phase systems. Refer to Figure 1 [1], the balanced k-phase winding
can be expressed as

Q11 = Q22 = Q33 . . . = Qkk (1)

In double-suffix notation, the first digit refers to the phase number, while the sec-
ond indicates the limb upon which the winding is wound. The following mathematical
expressions can be formulated to express the following n relation for each set of windings.

Sx = (Sx1, Sx2, . . . Sxk ) (2)

Px = (Px1, Px2, . . . Pxk ) (3)

where x refers to the values from 1, 2 . . . n for S and up to m for P.
The magnitude of the S and P components should be in such as manner to obtain an

appropriate transformation ratio and phase shift between them. The sets S and P should be
balanced accurately with respect to electromotive force (EMF) and magnetomotive force
(MMF) [1]. The following equations express the relationship between the balanced voltages
of the k-phase system:

vQ11 = V1q = λ1
kV2q = λ2

kV3q = . . . = λk−1
k Vkq (4)

V1s = λnV2s = λ2
nV3s = . . . = λn−1

n Vns (5)

V1s + V2s + V3s + . . . + Vns = 0 (6)

where λk, λn refers to the operators for ej2π/k, ej2π/n and v denotes the volts per turn.
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The solutions of Equations (4)–(6) can deliver precise turn ratios for every winding for
a multi-phase conversion from k-phase to s-phase.

Figure 1. A basic k-limbed multi-phase transformer.

2.1.1. Two-Phase to n-Phase Transformation

The fundamental concept and methodology of a two-phase to n-phase transformation
technique are presented in [20]. It was suggested that the configuration of n-phase structure
from a three-phase AC could be carried out by utilizing a unique given transformer design.
Further, the primary and secondary turn ratios could be calculated from the generalized
equations. The output waveform produced would be less harmonic compared with that
produced by other VSIs, such as the one reported in [21].

As observed from Figure 2 [20], for a primary Scott connection, Vα and Vβ are consid-
ered the outputs of three-phase to two-phase conversion. The magnitude of the induced
voltage in RO and YB winding can be represented as Vα and Vβ, which have similar RMS
values compared to the supply phase, but the phase shift is observed to be 90 degrees since
both constitute two-phase AC power.
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Figure 2. Representation of a phasor diagram for two-phase to n-phase transformation.

The phase transformation of a two-phase to n-balanced phase is depicted in Figure 2.
Let Vi be the ith phasor of a balanced n-phase system at an angle of iδ having a mag-
nitude of V, where δ = 2π

n refers to the phase difference between each phase. For ith
phase, the projection of Vi along the α and β axes would be Viα and Viβ as expressed
in the following equations. Here Vi is now used as the magnitude of the vector in the
subsequent expressions.

Viα = Vi cos(iδ) (7)

Viα
Vi

= cos(iδ) (8)

aα = cos(iδ) (9)

Likewise, the following are true:

Viβ = Vi sin(iδ) (10)

Viβ
Vi

= sin(iδ) (11)

aβ = sin(iδ) (12)

where i refers to the phase of a balanced n-phase system which ranges from i = 0,1,2 . . .
. . . (n−1)), Viα, and Viβ are the projection of the ith phasor along the x-axis and y-axis,
respectively. aα and aβ refer to ith phase turn ratio along the x-axis and y-axis, respectively
with regards to Core 1 and Core 2 windings, where 90 degrees out of phase flux is generated
by Core 2 with regard to Core 1.

Therefore, the application of two core transformation techniques could transform a
two-phase system to an n-phase from a balanced supply. At the same time, a 90 degrees
phase shift is reported in pulsating flux. Henceforth, the voltage expression and turn ratios
can be framed as a matrix, as presented by Equations (13) and (14).
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The voltage relationship in a matrix form can be expressed as:

V1
V2
.
.
Vi
.
Vn


=



1 0
cos(δ) sin(δ)
. .
. .
cos(i− 1)δ sin(i− 1)δ
. .
cos(n− 1)δ sin(n− 1)δ


[

Vα
Vβ

]
(13)

The generalized turn ratios can be expressed as

1 0
cos(δ) sin(δ)
. .
. .
cos(i− 1)δ sin(i− 1)δ
. .
cos(n− 1)δ sin(n− 1)δ


(14)

2.1.2. Three-Phase to n-Phase Transformation Utilizing Optimization Methods

This approach was presented in [21]. In this approach, n number of windings are con-
nected in a series for three-phase to n-phase transformation. With reference to Figure 3, to
obtain the desired output with n phases, the ith phase voltage is expressed by Equation (15):

Vi =
Ni1
Np

ep1 +
Ni2
Np

ep2 +
Ni3
Np

ep3 (15)

where Ni1, Ni2, and Ni3 refer to the windings inserted on phases X, Y, and Z, respectively as
shown in Figure 3 [21]. Let us assume that the reference output voltages of n phases are as
shown below:

Vre fi = Vm × sin
(

ωt +
(i− 1)2π

n
+ θ

)
(16)

Figure 3. Schematic diagram of three-phase to n-phase transformation.

In this method, the objective function is the RMS error of Vre fi and Vi, which is
optimized through the genetic algorithm for an optimum number of turns Ni1, Ni2, and Ni3.
The number of turns, if represented in matrix form, can be shown by Equation (17). The
turns utilized in the windings represent the value of matrix elements. A series connection is
represented for the windings of each row of the matrix. A minus (-ve) sign for the elements
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of the matrix indicates that the windings should be connected in the reverse order to that
of the positive sign:

Mx =


N11 N12 N13
N21 N22 N23
...

...
...

Nn1 Nn2 Nn3

 (17)

Furthermore, the lowest value member in each row of the matrix Mx is not considered,
i.e., marked as zero. Further, the algorithm re-evaluates it to fit the other elements in such a
manner to bring down the RMS error to the lowest value.

2.1.3. Three-Phase to n-Phase Transformation Using Phasor Algebra

This technique of transformation was found to be used in [5,6]. Although it is not as
simple and straightforward as in [7,20,21], it is not too difficult to implement compared
to the method discussed in Section 2. In this method, each phase of the multi-phase is
constructed by the phasor addition of either of the two input phases, scaled down to a
certain level. If compared with the input winding turn ratios, the scaling level can be
computed by the generalized theory as shown below in Figure 4 [5].

Figure 4. Phasor diagram of an n-phase system.

It is obvious that the different phases of a three-phase to the n-phase transformer are
constructed by phasor addition and or subtraction of part of three-phase x, y, z. Mathemati-
cally, the phase voltage of the transformer can be written as

Vr = [±Vxsin(θ) +±Vysin(∅)±Vzsin(γ)]

where θ, φ, and γ are unknown to be derived. The above expression can also be written as
below in a more generalized form.

Vr = [(−1)aVxsin(θ) + (−1)bVysin(∅) + (−1)cVzsin(γ)] (18)
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where r is the phase number, i.e., 1,2,3 . . . n. The values of the parameter of Equation (18)
can be written as below in (Equation (19)–(27)) [5].

Vx = 0 when
(

π

3
≤ 2(r− 1)π

n
≤ 2π

3

)
or
(

4π

3
≤ 2(r− 1)π

n
≤ 5π

3

)
(19)

where n is the number of phases of the system:

Vx = 0 when
(

0 ≤ 2(r− 1)π
n

≤ π

3

)
or
(

π ≤ 2(r− 1)π
n

≤ 4π

3

)
(20)

Vx = 0 when
(

2π

3
≤ 2(r− 1)π

n
≤ π

)
or
(

5π

3
≤ 2(r− 1)π

n
≤ 2π

)
(21)

a =

 1, when
(

2π
3 ≤

2(r−1)π
n ≤ 4π

3

)
(small arc)

2, when
(

5π
3 ≤

2(r−1)π
n ≤ π

3

)
(small arc)

 (22)

b =

 1, when
(

4π
3 ≤

2(r−1)π
n ≤ 2π

)
(small arc)

2, when
(

π
3 ≤

2(r−1)π
n ≤ π

)
(small arc)

 (23)

c =

 1, when
(

0 ≤ 2(r−1)π
n ≤ 2π

3

)
(small arc)

2, when
(

π ≤ 2(r−1)π
n ≤ 5π

3

)
(small arc)

 (24)

θ =



(
π
3 −

2(r−1)π
n

)
, when

(
0 ≤ 2(r−1)π

n ≤ π
3

)(
2(r−1)π

n − 5π
3

)
, when

(
5π
3 ≤

2(r−1)π
n ≤ 2π

)(
2(r−1)π

n − 2π
3

)
, when

(
2π
3 ≤

2(r−1)π
n ≤ π

)(
4π
3 −

2(r−1)π
n

)
, when

(
π ≤ 2(r−1)π

n ≤ 4π
3

)


(25)

∅ =



(
2π
3 −

2(r−1)π
n

)
, when

(
π
3 ≤

2(r−1)π
n ≤ 2π

3

)(
2(r−1)π

n − 2π
3

)
, when

(
2π
3 ≤

2(r−1)π
n ≤ π

)(
2(r−1)π

n − 4π
3

)
, when

(
4π
3 ≤

2(r−1)π
n ≤ 5π

3

)(
2π − 2(r−1)π

n

)
, when

(
5π
3 ≤

2(r−1)π
n ≤ 2π

)


(26)

γ =



(
2(r−1)π

n

)
, when

(
0 ≤ 2(r−1)π

n ≤ π
3

)(
2π
3 −

2(r−1)π
n

)
, when

(
π
3 ≤

2(r−1)π
n ≤ 2π

3

)(
2(r−1)π

n − π
)

, when
(

π ≤ 2(r−1)π
n ≤ 4π

3

)(
5π
3 −

2(r−1)π
n

)
, when

(
4π
3 ≤

2(r−1)π
n ≤ 5π

3

)


(27)

Equations (18)–(27) can be used to determine the number of turns ratios with respect
to the three-phase input winding for a desired n-phase technique. A transformer is a
bilateral network so the reverse transformation is also possible with the same transformer.
It means three-phase can be produced from an n-Phase system. Figure 4 illustrates the
phasor diagram of three-phase to n-phase transformation and vice versa.

2.2. Three-Phase to Five-Phase Transformation Configurations

A three-phase to five-phase transformer consists of a core-type three-phase transformer
with three separate limbs. Each limb comprising of a single primary coil and multiple
secondary coils. These secondary coils are wound and connected such that the voltages
add, and a 72-degree phase shift between each five-voltages is obtained in a predetermined
method by joining the secondary coils comprising of an uneven number of turns. To
design the transformer, three distinct configurations are considered. While considering the
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three-phase to five-phase transformation technique, three configurations are included to
conduct the literature review. Additionally, a comparative analysis for the three-phase to
five-phase transformation techniques, namely configuration 1, configuration 2, and configu-
ration 3 [22]. Each transformation configuration is presented with the number of turn ratios
and method for connecting different turns. The connection technique for configuration
1–3 with their turn ratio is depicted in Figures 5–7. Figure 5 presents configuration 1 of
a three-phase to five-phase transformer [22]., while Figures 6 and 7 denote configuration
2 for a three-phase to five-phase transformation [6], and three-phase to the five-phase
transformer is depicted in configuration 3 [7].

Figure 5. Configuration 1 for a three-phase to the five-phase transformer.

Figure 6. Configuration 2 for a three-phase to the five-phase transformer.
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Figure 7. Configuration 3 for a three-phase to the five-phase transformer.

2.2.1. Configuration 1

In this scheme, the transformation occurs at a balanced three-phase supply input,
i.e., the summation of all three input phase voltages equals zero [22]. In this scheme, it is
possible to obtain a five-phase output by using only 15 secondary coils, thus decreasing the
total number of turns and subsequently decreasing the size of the transformer compared
with the other two proposed schemes (refer to Figure 5). Nonetheless, for configuration 1,
there is no possibility of developing a pentagon connection at the secondary. Precisely, the
secondary winding connection can only be carried out in the star topology, thus setting
a limit on the utilization of the transformer. Moreover, the three-phase current in the
presented connection technique denotes 5.6% of rated current, represented by a zero-
sequence component. This requires the connection of a star point in the primary winding
to permit neutral current flow.

2.2.2. Configuration 2

The transformation from three-phase input to five-phase output can be achieved by
considering three different primary cores and several secondary windings [6]. Nevertheless,
the two cores in the primary consist of three secondary windings resulting in a total of
14 secondary coils, as opposed to 15 in the first configuration.

2.2.3. Configuration 3

Another possible solution involves the transformer connection coils. According to the
generalized theory presented in [1,7], the structure of a five-phase output can be developed
by employing 2n − 1 or 9 secondary. The core volume is significantly minimized due to the
application of only two cores to carry out the transformation. Subsequently, the increased
utilization of turns results in a rise in resistance and further copper losses. The occurrence
of high magnetizing reactance is also exhibited, which would result in significant iron
losses and harm the effectiveness of the designed transformer.

2.2.4. Comparison of Design Parameters

All secondary coils had a similar cross-sectional area, which is not like the first scheme,
where the cross-sectional area of one secondary coil is greater to deal with the flows of
currents. In high-rating transformers, this could result in an irregular distribution of
losses, leading to variable thermal loading; thus, a more complex cooling system would
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be required. The number of secondary winding turns required in configuration 1 is more
than that needed in configuration 2 and 3. This would decrease the expense and enhance
the proficiency of the transformer. A comparative study for the three schemes is presented
in Table 2. It is observed from Table 2 that configuration 1 is utilized for a higher number
of turns as compared to the other two configurations. Additionally, configuration 1 has
bigger space requirements than the other two configurations.

Table 2. Comparative analysis of different configurations for the application of three-phase to
five-phase transformation.

Parameters Configuration #1 Configuration #2 Configuration #3

Total Primary Turns 387 387 387
Total Secondary Turns 825 648 709

Total Turns 1212 1035 1096
Primary Resistance (Ω) 0.053 0.053 0.053

Secondary Resistance (Ω) 0.049 0.038 0.042
Space required by primary (mm2) 418 418 418
Space required by secondary (mm2) 1310 1030 1126

Total space required (mm2) 1728 1448 1544

2.3. Three-Phase to Seven-Phase Transformation

The information and explanation regarding the multi-phase conversion technique
from three-phase to seven-phase conversion are assessed and analyzed in [5,20]. The
solution available in [5] is based on the method described in Section 2.3, while the solution
presented in [20] is based on the method described in Section 2.3.

2.3.1. Configuration 1

In configuration 1, the primary side of the transformer is connected either in star or
delta, while the secondary side of the transformer is connected distinctly, as presented
in Figure 8b. The turn ratios and the windings connection are answers for developing a
suitable number of phases. The number of turn ratios is assigned as per the information
presented in Table 3. The phasor addition results in creating a phase difference of 51.43◦

between the phases. The stated transformer circuit has an input–output ratio of 1:1. To step
up and step down, the voltage transformation ratio can be achieved by multiplying the
number of turn ratios by a scaling factor.

Table 3. Turn ratios of the secondary windings.

Winding N2/N1 Winding N2/N1 Winding N2/N1

a1a2 0.1721 b1b2 0.7854 c1c2 0.5010
a3a4 1.000 b3b4 0.5010 c3c4 0.7854
a5a6 0.1721 b5b6 0.9028 c5c6 0.3404
a7a8 0.6505 b7b8 0.3404 c7c8 0.9028
a9a10 0.6505 - - - -

This configuration utilizes either three single-phase transformers or a three-phase
transformer. In a three-phase transformer-based scheme, the three separate iron cores will
carry one primary and four secondary coils, except in one core where five secondary coils
are wound. Six terminals of primaries are joined in a suitable way, which results in star
or delta connections. Further, the secondary coils consisting of twenty-six terminals are
connected in a predetermined style, resulting in the seven-phase winding with a star or
heptagon connection.
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Figure 8. (a) Configuration 1 (b) Configuration 2 of the two alternative wiring diagrams for a
three-phase to seven-phase transformer circuit.

2.3.2. Configuration 2

A new updated technique for phase transformation is presented in [20], which differs
from the technique shown in [5], as this technique utilizes a primary winding Scott connec-
tion. The two-phase flux flow is carried out by employing two limbs, while the return flux
path is circulated by utilizing the third limb. The primary outcome of configuration 2 is the
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generation of two-phase flux carried out by implementing the primary Scott connection.
The ratio of the primary turn is 1 : 1/

√
3 : 1/

√
3 to produce the two-phase flux.

The seven-phase transformer with requisite phase differences is obtained by connect-
ing the secondary winding, as shown in Figure 8a [5,20]. While connecting the windings
appropriately, the turn ratios of the secondary winding should be as shown in Table 4:

Va
Vb
Vc
Vd
Ve
V f
Vg


=



1 0
cos(δ) sin(δ)
cos(2δ) sin(2δ)
cos(3δ) sin(3δ)
cos(4δ) sin(4δ)
cos(5δ) sin(5δ)
cos(6δ) sin(6δ)


[

Vα
Vβ

]
(28)

Table 4. Turn ratios of different windings.

α Axis aα β Axis aβ

a1a2 1 - -
b1b2 +0.6234 b3b4 +0.7818
c1c2 −0.2225 c3c4 +0.9749
d1d2 −0.9009 d3d4 +0.4338
e1e2 −0.9009 e3e4 −0.4338
f1f2 −0.2225 f3f4 −0.9749
g1g2 +0.6234 g3g4 −0.7818

Here, aα and aβ represent secondary winding turn ratios with regard to primary
windings RO and YB, respectively. Specifically, the turn ratios can be tabulated from
Equation (12), as presented in Table 4. A positive sign represents the summation of
phase voltages, while the negative sign denotes the subtraction of phase voltage. A phase
difference of 51.42◦ is obtained between the output phase voltages by employing suitable
turn ratios. The governing phasor equations are illustrated in [20].

Multi-phase power systems possess two or more line voltage contrasts to a three-phase
system where only one line voltage appears. Likewise, a five-phase system has one line
voltage, a second line voltage (adjacent line voltage), and a third line voltage (nonadjacent
line voltage), as defined in [23]. Similarly, a seven-phase system’s line voltages are defined
as follows [24]:

(a) Phase Voltage: Phase voltage with regards to neutral or star point O (e.g., Va, Vb, Vc,
Vd, Ve, Vf, and Vg);

(b) Adjacent Line Voltage: The voltage difference of two phases having a phase difference
of 51.42◦ (e.g., Vab1, Vb1c, Vcd, Vde, Vef, Vfg, and Vga);

(c) Nonadjacent1 Line Voltage: The voltage difference of two phases having a phase
difference of 2 × 51.42◦ (e.g., Vac, Vb1d, Vce, Vdf, Veg, Vfa, and Vgb);

(d) Nonadjacent2 Line Voltage: The voltage difference of two phases having a phase
difference of 3 × 51.42◦ (e.g., Vad, Vb1e, Vcf, Vdg, Vea, Vfb1, and Vgc).

2.4. Other High Phase Order Systems
2.4.1. Three-Phase to Eleven-Phase System

A three-phase to the eleven-phase transformer was researched in [21,25,26], but [21]
is worth reporting here. This transformation is based on the algorithm discussed in
Section 2.1.2. Genetic algorithm-based optimization is used to design the winding turn
number and the turn ratio. It is made out of four stages. The first stage relates to selecting
the starting population that represents the winding turn number Ni1, Ni2, and Ni3. The
second stage refers to the selection of the best individual by utilizing the technique of
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tournament selection [27]. The third stage is the crossover of the best individual, while the
fourth stage presents the mutation to generate a new population.

The determination of the best individual was finished by considering the criteria of the
reduced root mean square (RMS) error. This criterion was utilized to reduce the RMS error
between the ideal eleven-phase voltage and the obtained eleven-phase voltages that were
calculated by utilizing the algorithm discussed in Section 2.1.3. A subsequent condition
was applied to lessen the number of windings utilized, which was meant to increase the
simplicity and reduce the complexity. The introduced approach benefited from evading
the analytical calculation while searching for the appropriate number of turns and proper
configuration or connection of windings.

Referring to Equation (17), the smallest component from every column of the matrix
Mx is not considered and marked as zero and the evaluation is performed again to fit
different components so that RMS error is minimized. Further, in the case of star-connected
winding on the secondary of the transformer, if two or more elements of a column were
equal, then they shared only one winding to create the output voltage. On the way toward
diminishing the matrix elements, some elements were set to zero, and the matrix was
reoptimized to fit the best values. A new matrix is received, and it can be realized that
a high RMS error in certain phases such as two, three, eight, ten, and eleven can be
obtained [21]. This indicates that the eliminated values of the matrix were not right, and
they needed to be changed. Finally, matrix Mx was optimized, and the output turned out
to be a balanced eleven-phase system, as shown in Figures 9 and 10 [5–7,21,25,26], along
with the five-, seven- and thirteen-phase systems.

Figure 9. Cont.
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Figure 9. Root mean square (RMS) error in the process of elimination of elements for matrix Mx
(a). Stage 1, (b). Stage 2, (c). Final stage.

Figure 10. Cont.
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Figure 10. (a) Three-phase input and output voltage waveforms of three-phase to (b) five-, (c) seven-,
(d) eleven-, and (e) thirteen-phase transformers.

2.4.2. Three-Phase to Thirteen-Phase Transformer

A unique thirteen-phase transformer that converted the three-phase supply to a bal-
anced thirteen-phase output was designed and simulated in MATLAB [28]. The underlying
design theory was the same as [5,6,22] and the one discussed in Section 2.1.3. The input
terminal and output terminal could be configured with the following connections:

1. A star-connected input and star-connected output;
2. A star-connected input and tridecagon-connected output;
3. A delta-connected input and star-connected output;
4. A delta-connected input and tridecagon-connected output.
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Vm, . . . . . . Vz denotes the thirteen-phase voltage, while Vi, Vj, and Vk denote the
three-phase input voltages. The turn ratios for a balanced thirteen-phase output for a 1:1
transformer are shown in the matrix (Equation (29)). The matrix has to be multiplied by a
scaling factor for a step-up or step-down transformer. The thirteen-phase output is shown
in Figure 10e. The configuration of various transformation techniques for multi-phase
transformation is presented in Table 5.
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Table 5. Configuration of various transformation techniques for multi-phase transformation.

References Configuration Transformation
Techniques

Primary
Connection

Secondary
Connection

Advantages Disadvantages

[1,7,20] m-Phase to
n-Phase
Transformation

-Two-Phase to
n-Phase
Transformation

-Scott -Star or Delta
alike

-Design is simple
and
straightforward.

-Unbalance in
input as well as
output side.

[21] -Optimized
Three-Phase to
n-Phase
transformation

-Star or
Delta

-Star or Delta
alike

-Winding materials
used are minimized
using optimization
technique.

-Winding design is
lengthy and
cumbersome.

[5,6] -Phasor
Algebra-based
three-Phase to
n-Phase
Transformation

-Star -Star or Delta
alike

-No primary side
unbalance.

-Winding design is
complex.

[22] Three-Phase to
Five-Phase
Transformation

-Configuration 1 -Star -Star -Simple
configuration.

-Copper
requirement is
high.

[6,22] -Configuration 2 -Star -Star -Most economical
design.

-Unbalance in
input as well as
output side.

[7,22] -Configuration 3 -Star -Star -Copper
requirement is
high.

[5] Three-Phase to
Seven-Phase
Transformation

-Configuration 1 -Star -Star -No primary side
unbalance.

-Winding design is
difficult.

[20] -Configuration 2 -Scott -Star -Copper
requirement is less.

-Unbalance in
primary as well as
secondary side.
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Table 5. Cont.

References Configuration Transformation
Techniques

Primary
Connection

Secondary
Connection

Advantages Disadvantages

[21,25,26] Other High
Phase Order
Systems

-Three-Phase to
Eleven-Phase
System

-Star -Star -Less number of
windings required.

-Winding design is
complicated as an
optimization
technique is used.

[28] -Three-Phase to
Thirteen-Phase
Transformer

-Star -star -No primary side
unbalance.

-Winding design is
lengthy and
cumbersome.

3. Applications of a Multi-Phase Transformer
3.1. Electric Drives

A multi-phase system has numerous applications in generators [29], high-performance
drives [30–32], transmissions [33–37], power quality improvement [38], wind energy con-
version systems [39], and power supplies [40]. The requirement of accurate motor pa-
rameters is essential for multi-phase motor drives such as direct torque control (DTC) or
field-oriented control (FOC) to obtain high performance and efficiency.

For the applications of variable speed control of multi-phase electric motors, the appro-
priate number of parameters is assigned by the controller such as stator and rotor resistance,
leakage and magnetizing reactance, iron loss component resistance, stray reactance, and
inertia [39]. The motor undergoes various tests such as the no-load, load, and blocked
rotor tests to obtain the needed parameters. Such tests require a pure sine wave supply.
Usually, the pure sine wave is not generated by the power electronic converters [41–43]. A
multi-phase transformer can be used effectively to find the precise machine parameters
that are required in highly efficient electrical drives for multi-phase motors, such as field-
oriented control (FOC) or direct torque control (DTC). Henceforth, the possible solution
is the utilization of a transformer that transforms the readily available three-phase grid
supply to the desired n-phase (where n > 3), which, in a later stage, is used as a pure
sine wave multi-phase source. Moreover, higher cost-effectiveness and reliability with
the desired multi-phase output at fixed speed operations are achieved by utilizing an
improved passive transformer design. The power electronics converter is most suitable for
variable frequency drives. At the same time, the transformer is used where pure sine wave
multi-phase application is required, or there are fixed frequency application requirements.
The power electronics converter might have a high THD, while the multi-phase transformer
may show an increased imbalance in the output voltage. As such, both solutions have
their advantages and disadvantages, and the superiority of one over the other is purely
application-based.

3.2. Transmission of Bulk Power

The employment of six-phase and twelve-phase power systems is carried out for the
economical transmission of bulk power. The six-phase and twelve-phase power systems
are an effective solution for the transmission lines traveling through agricultural lands,
mountains, forests, and so forth [33–37]. The necessity of three to six-phase transformation
is needed in AC–DC converters circuits. The number of phases from 6 to 40 are introduced
in the literature for AC–DC converter supplies. The higher the number of phases at the
converter’s input, the lower the ripples in the DC outputs that improve the current shape
at the source side are.

Multi-phase systems can be utilized for various applications, such as offshore energy
harvesting, electrical vehicles, electric ship propulsion, and airplanes. The previous pro-
posed research depicted the superior quality of multi-phase machines for acquiring better
and more reliable performance.
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One of the most crucial research fields of multi-phase transmission systems is devel-
oping an improved protection system for multi-phase power such as the development of a
six-phase circuit breaker and its optimal placement for the most suitable protection region).

3.3. Wind Energy Conversion System

Multiple researchers suggested the application of multi-phase generators and a seven-
phase to the three-phase transformer in wind energy conversion systems (WECSs) [37].
Recent advances in the field of multi-phase static transformation include design, modeling,
and protection scheme development [44–48]. Multiple researchers suggested the applica-
tion of multi-phase generators and a seven-phase to the three-phase transformer in wind
energy conversion systems (WECSs) [39]. Recent advances in the field of multi-phase static
transformation include design, modeling, and protection scheme development [44–48].
In [39], the work was based on the application of a seven-phase induction generator, a
rectifier, and an inverter. The schematic block diagram for the potential application of a
multi-phase (seven-phase) induction motor and a three to seven-phase transformer-based
DFIG concept is presented in Figure 11. This arrangement shall be more efficient and
economical compared with that presented in [39].

Figure 11. Schematic block diagram of a wind energy conversion system (WECS)-based multi-
phase IG.

Very recently, a comprehensive state-of-the-art overview on the monitoring, fault
diagnosis, and prognosis of wind turbine systems was addressed in [49], which promoted
the research and development of reliability and safety for wind turbine systems. The
proposed technique also provided the monitoring and diagnosis operation for power trans-
formers and power systems. The wind energy industry has strong demand to increase
system reliability and fault detection due to the 10–35% total life cost in maintenance.
Signal-based, model-based, knowledge-based, and hybrid approaches are the well-known
methods that were found in the literature for the diagnosis of faults in WECSs. Model-based
fault diagnosis and monitoring algorithms have excellent real-time efficiency due to their
onboard implementation and off-line design. Signal-based fault diagnosis and monitoring
approaches utilize the measured signals of sensors that are more convenient for implemen-
tation. Knowledge-based approaches use historical data for training and searching.

The prognosis methodology requires deep research and development compared with
fault diagnosis and condition monitoring due to the complexity of wind turbine systems.
The prognosis and resilient control methodologies are beneficial in the condition monitoring,
and fault diagnosis approaches [49].

3.4. HVDC Transmission System

Transformer rectifier units (TRUs) are used more in electric aircraft, HVDC transmis-
sion systems, wind energy conversion systems, and -pulse, 6-pulse, 12-pulse, 24-pulse, and
48-pulse TRUs based on one or more three-phase transformer connections were found in
the literature. A higher number of pulses reduces the ripple voltage while increasing the
ripple frequency. This leads to reduced filter requirements. The application of a multi-phase
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transformer in place of a three-phase transformer will undoubtedly improve the output
DC voltage, reduce ripple, and lower the size of the filters. A comparison of three-phase
and seven-phase TRU pulses in a single cycle is shown in Table 6.

Table 6. Transformer rectifier unit (TRU) pulses three- and seven phases in a single cycle.

Three Phases Seven Phases

Transformer
Connection

Number of Pulses
in a Cycle Transformer Connection Number of Pulses

in a Cycle
Half wave (Star) 3 Half wave (Star) 7

Center tapper T/F 6 Center tapper T/F 14
Y–Y and Y–∆ 12 Star–star and star–heptane 28

- - - - - - - - - 18 - - - - - - - - - 42
- - - - - - - - - 24 - - - - - - - - - 56
- - - - - - - - - 48 - - - - - - - - - 112

It was suggested in [21] that a single winding be used if duplication occurred to reduce
complexity. If a single winding is used for the combination of two different phases, the
winding must carry additional current so that a particular winding can be designed to
carry the extra current. It is better to use two windings instead of one for uniform current
distribution among each winding.

The multi-phase transmission system was more economical and has a lower tower
height and bulk power transmission compared with its three-phase counterpart. The most
crucial part of the multi-phase power system is the protection system. The protection
system and circuit breakers are essential for developing a multi-phase power system. Work
in this area was not available in the literature. One of the applications of a multi-phase
transformer for power quality improvement is depicted in Figure 12 [38].

Figure 12. Application of multi-phase transformer in power quality improvement.

4. Issues and Challenges of Multi-Phase Transformer
4.1. Impedance Mismatching

One of the key concerns for implementing the multi-phase transformer technique
is impedance mismatching. Impedance mismatching is introduced due to the different
number of turns in the secondary winding of a multi-phase transformer. It is evident
that at a lower current value, the phenomena of impedance mismatching is not noticeable.
However, at a higher magnitude of current, a different value of output voltage from each
secondary phase is obtained due to different phases impedance leading to the unbalanced
output voltage. In the study of load mismatch, it was found that the systems which were
multiples of 3 (e.g., 6, 9, and 12) had zero mismatches, whereas the five-phase and ten-
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phase systems had a mismatch of 5.6%, and the seven-phase and fourteen-phase systems
had a mismatch of 2.3% [5]. The four-phase system delivered the highest mismatch of
50% [5]. It is observed that mismatch is decreased when the phase system number increases,
particularly with prime-numbered systems, as the acquired mismatch was 0.325% for a
nineteen-phase system [5,6]. Apart from the limitations of impedance mismatching in
multi-phase transformer applications, the issue of mismatching in load sharing is also
considered, which is associated with high-order phase operation. Therefore, these issues
are explored in this review article. As far as efficiency is concerned, a three-phase to seven-
phase transformer was found to be more efficient compared to a three-phase to three-phase
transformer of a similar rating [5]. Figure 13a depicts the efficiency comparison at different
pf values, while Figure 13b shows the impedance mismatch of an n-phase system [5].

Figure 13. (a) Efficiency comparison of 3–7 and 3–3 transformers. (b) Impedance mismatch of an
n-phase system.

4.2. Voltage Unbalance

Standardization and definition of sequence networks for higher-order phase systems
are required. The phase voltage unbalance factor (PVUF), line voltage unbalance rate
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(LVUR), voltage unbalance factor (VUF), and complex voltage unbalance factor (CVUF) are
the factors that may be used to study unbalancing in multi-phase power [50]. The PVUF in
a seven-phase system was reported in [50].

The voltage unbalance in the output voltage of the transformer appears due to
impedance mismatching. Any unbalanced n-phase system can be converted into a set of
n − 1 balanced n-phase systems with a zero sequence, according to the well-known work
by Fortescue work. For example, an unbalanced three-phase voltage can be broken into
sequence components such as positive sequence, components, negative sequence compo-
nents and zero sequence components. Similarly, a five-phase unbalanced voltage can be
converted into similar five sequence components and a seven-phase voltage into seven.
The references are found in the literature for the definitions of five-phase sequence net-
works [23] and seven-phase systems [24]. This nomenclature for these sequence networks
shown in Table 7 is author-defined only.

Table 7. Sequence network nomenclature.

Serial Number Five-Phase System Seven-Phase System

1 Positive Sequence Adjacent Positive Sequence
2 Adjacent Negative Sequence Adjacent Negative Sequence
3 Nonadjacent Positive Sequence Nonadjacent1 Positive Sequence
4 Nonadjacent Negative Sequence Nonadjacent1 Negative Sequence
5 Zero Sequence Nonadjacent2 Positive Sequence
6 - Nonadjacent2 Negative Sequence
7 - Zero Sequence

4.3. Per-Phase Equivalent Circuit Modeling

The application of a per-phase equivalent circuit is considered an important tool to
study multi-phase transformer techniques. Although the application of three-phase to five-
or seven-phase transformation techniques are mentioned [5,6,20], effective solutions to
address the mismatching issue with a secondary winding, the per-phase equivalent circuit
modeling, are still in a primitive stage. The research investigation covers the development
of a per-phase equivalent circuit similar to a three-phase transformer study. Since the
primary side is already three-phase, thus the objective is to model for the secondary side
only. In Figure 14, it can be observed that all the secondary side of a multi-phase (seven-
phase in this case) consists of different series resistances and reactances. In Figure 15,
it is shown that after the application of the optimization technique, a single equivalent
circuit can be used for each phase. The artificial intelligence-based per-phase equivalent
circuit modeling can addressed the mismatching issues [51]. In [52], Secondary side of
a seven-phase transformer is optimized by utilizing genetic algorithm (GA) and particle
swarm optimization (PSO) for the development of per-phase equivalent circuit. Both the
optimization schemes can be utilized for modeling the multi-phase transformer circuits
that pose unbalancing as a challenge [51].

4.3.1. Formulation of Objective Function and Analytical Modeling

Refer to Figure 14, if resistances and self-inductance of the reference phase (Phase a)
are assumed to be R2a and X2a then resistances and inductances of the rest of the phases
can be expressed in terms of the reference phase as below.

Rb = 1.4052Ra, Xb = 1.4052Xa
Rc = 1.1974Ra, Xc = 1.1974Xa
Rd = 1.3347Ra, Xd = 1.3347Xa
Re = 1.3347Ra, Xe = 1.3347Xa
R f = 1.1974Ra, X f = 1.1974Xa
Rg = 1.4052Ra, Xg = 1.4052Xa
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Figure 14. Exact equivalent circuit of the secondary windings.

Figure 15. Per-phase equivalent circuit of the secondary windings.

Output voltages of all seven phases under steady-state conditions can be deduced
from the circuit diagram shown in Figure 14 as below.

Voa = E2 − IL(R2a + jX2a)
Vob = E2 − IL(R2b + jX2b)
Voc = E2 − IL(R2c + jX2c)
Vod = E2 − IL(R2d + jX2d)
Voe = E2 − IL(R2e + jX2e)

Vo f = E2 − IL

(
R2 f + jX2 f

)
Vog = E2 − IL

(
R2g + jX2g

)
(30)

The output voltage of the per-phase equivalent secondary circuit is

Vo = E2 − IL(kR2a + jkX2a) (31)

Let us formulate the error voltage (difference of secondary voltages) as the objec-
tive function,

f1(k) = Vo −Voa
= E2 − IL(kR2a + jkX2a)− (E2 − IL(R2a + jX2a))
= IL((k− 1)R2a + j(k− 1)X2a)

(32)
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Similarly
f2(k) = IL((k− 1.4052)R2a + j(k− 1.4052)X2a))
f3(k) = IL((k− 1.1974)R2a + j(k− 1.1974)X2a))
f4(k) = IL((k− 1.3428)R2a + j(k− 1.1.328)X2a))
f5(k) = IL((k− 1.3428)R2a + j(k− 1.1.328)X2a))
f6(k) = IL((k− 1.1974)R2a + j(k− 1.1974)X2a))
f7(k) = IL((k− 1.4052)R2a + j(k− 1.4052)X2a))

(33)

It is clear from Equation (33) that f1(k), f2(k), f3(k), and f4(k) are the only objective
functions to be optimized for this multi-objective optimization problem. This problem is
solved by making a single objective function and then using the PSO algorithm to find the
best value of the variable, k. The aim of the optimization problem is to achieve the best
value of k for which the functions (given in Equation (34)) have the least value. For this, a
common objective function (or fitness function) is defined and is written as:

OF(k) =
1(√

R2
2a + X2

2a

)
I2
L

[| f1(k)|2 + | f2(k)|2 + | f3(k)|2 + | f4(k)|2] (34)

The terms for functions f5(k), f6(k) and f7(k) will have the same effect as that due
to functions f4(k), f3(k) and f1(k), respectively, so these terms have not been used in the
objective function. This optimization problem is a minimization problem such that OF has
the minimum value for a particular value of k.

The application of PSO for finding the best value of k using the defined fitness function
OF was represented in the flowchart in Figure 16. Similarly, GA was applied to find the
best value of k using the defined OF.

4.3.2. Simulation Results

The circuit configurations and results of the work are shown in Figure 8b, Figures 17–19 [51]
and Table 8, respectively. Figure 17 shows the 3D representation of the results obtained
for the PSO convergence characteristic using MATLAB as the variation of the value of an
objective function with respect to the value of k. It can be observed that the value of the
fitness function converges to its minimum value before the 50th iteration. It can be seen that
the global optimum point is tracked, and the curve gets converged with a few iterations.
The convergence characteristic outcomes for GA are shown in Figure 18. It is observed that
the convergence to the optimal value using GA is obtained at a faster rate and the final
value is achieved with only 10 iterations. Thus, GA has a faster convergence rate compared
to PSO. However, the optimized value obtained by PSO is more precise compared to GA
results which are shown in Table 8. The value of k is found to be 1.236.

Table 8. Comparison of results among different per-phase equivalent circuit models.

Technique Attained Optimum Value of k Corresponding Value of
Objective Function

GA 1.2363 0.0972204
PSO 1.2364 0.0972200

From Plot 1.2360 0.0973
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Figure 16. Flowchart of PSO applied for finding the best value of k.

Figure 17. PSO convergence characteristic results.
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Figure 18. GA convergence characteristic results.

Figure 19. Per-phase equivalent circuit of the secondary side of the transformer.

The per-phase equivalent circuit of the secondary side of the transformer is shown in
Figure 19 and can be employed for different studies such as voltage, regulation, efficiency
calculation and single-lone diagram, etc. The value of per phase reactance and resistance
can be obtained using the optimum value attained by the PSO method (discussed in detail
in Section 4.3.1).

4.4. Fault Analysis of a Multi-Phase Transformer

Several techniques are used for faults, condition assessment, and monitoring in a
three-phase transformer [53–55].

These methods hold for a three-phase to the multi-phase transformer. As far as
winding deformations caused by mechanical forces are concerned, originating from EMFs
induced in the coil, most of the methods failed. Frequency response analysis (FRA) was
best suited for condition assessment and monitoring the deformations in a winding [56].

A transformer has winding resistance, winding, inductance, and capacitance due to
insulation layers between the coils, windings, winding and core, core and tank, and tank
and winding, among others. Therefore, a transformer can be considered a complex RLC
network [57]. Any physical damage to a transformer will result in a disturbance to the
original RLC network. FRA is based on the concept that physical damage will alter the
RLC network and the network transfer function’s various frequencies [58]. A multi-phase
transformer or a multiphase solid-state transformer and its fault studies may be the key
research area for future study [59,60]. Table 9 summarizes the testing methods and their
application areas.
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Table 9. Transformer fault testing methods and their applications.

Testing Methods Applications

Thermal monitoring

Transformer condition monitoring and assessment

Partial discharge measurements
dissolved gas analysis (DGA)

Tan δ and capacitance
Turns ratio, winding impedance and inductance measurement

Magnetizing current measurements
Thermal monitoring

Reactance measurement method
and low voltage impulse (LVI) Winding deformations

Frequency Response Analysis (FRA)

Short circuits
Loss of clamps
Inter-disk fault

Axial displacement
Dielectric test of transformer bushings and associated faults

In [54], a new application of DGA for faults in on-load tap changers (OLTCs) was
reported apart from the other six types of fault detection by DGA.

In addition to the discussion outlined above, this review identifies several key prob-
lems, issues, and challenges related to power conversion using various phase transforma-
tion techniques which are highlighted below:

• Fault Analysis of Multi-phase System: The fault analysis is an essential tool for evaluating
various faults occurring in a specified electrical system. The appropriate information
and data are needed to choose various equipment of specified ratings. The existing
research works on fault analysis for a three-phase system is mature and abundant in
literature but Fault analysis for a multi-phase system is absent. Therefore, an in-depth
investigation is needed to develop a fault analysis mechanism of a multi-phase system.

• Per-phase equivalent circuit: An important design consideration to analyze various
multi-phase transformation techniques is implementing the per-phase equivalent tech-
nique. A per-phase equivalent circuit is an Unequal number of turns in each winding
of a multi-phase transformer that leads to unequal series impedance. Therefore, de-
veloping a per-phase equivalent circuit for a multi-phase transformer is a challenging
task and maybe future research direction.

• Fixed Frequency operation: Usually, the converter circuits operate at a fixed frequency;
nonetheless, the phase displacement controls the output voltage at the latter conversion
stages. In the case of a transformer, the operation is conducted at a fixed frequency;
nonetheless, it is not suitable for a variable frequency drive. In association with this
multi-phase VSI has superiority over multi-phase transformer.

• Lack of multi-phase Circuit breaker and Relays: The circuit breaker and relays are con-
sidered important equipment for control and protection in electrical power systems.
However, the application of multi-phase circuit breakers and relay has not been
explored significantly. Therefore, the development of circuit breakers and relays
operating at multi-phase power might be breakthrough research.

5. Validation and Experimental Results

The appropriate validation and experiential platform are necessary to demonstrate
the effectiveness of the multi-phase transformer system under various unbalanced voltage
and load conditions. Several experiments were carried out and reported in the liter-
ature to verify the conceptual design of phase transformation by a multi-phase trans-
former [5–7,20,24,46,52].
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5.1. Experiment 1

In [5], a 2 kVA, 220 V/phase prototype multi-phase (three to seven) transformer was
designed with the 1:1 transformation ratio. The underlying design concept was the same
as discussed in Section 2.1.3. The transformer secondary was connected to star-connected
seven-phase resistive and inductive loads, indicating 25 Ω and 60 mH, respectively. The
input voltage was balanced by providing a three single-phase autotransformer to the
primary winding of the transformer. The secondary voltages are taken on Yokogawa four-
channel digital oscilloscope. Due to channel limitations, two separate plots were taken
as shown in Figure 20a. It can be seen from the plot that each seven-phase has an equal
phase difference that implies that a balanced seven-phase can be obtained from a balanced
three-phase by employing this transformer.

Figure 20. The experimental results for unbalanced seven-phase output voltages (a) Seven-phase
configuration 1 (b) Seven-phase configuration 2.

5.2. Experiment 2

In another study [20], a novel seven-phase transformer was structured, and its concep-
tual design was discussed in 2.1.1. In this work, a seven-phase prototype transformer was
configured with a capacity of 2 kVA, 220/220 Volts, 1:1 transformation ratio. A pentagon
connected RL load was connected to the secondary side of the transformer. The secondary
voltages were plotted on Yokogawa’s four-channel DSO. Due to channel limitations, two
separate plots were taken as shown in Figure 20b. The first plot of Figure 20b consists of
three separate phases and the current of one phase while the second plot shows the rest of
the four phases. It is observed that a balanced three-phase can be utilized to develop equal
phase difference in each phase for seven-phase output which suggests a high-performance
accuracy of the proposed model.

The performance of the developed three-phase to seven-phase transformer is com-
pared with the similar three-phase to three-phase transformer at rated load of different
power factors. The comparison results are shown in Figure 21 [5]. It can be depicted from
Figure 21 that a multi-phase transformer performance is better than a similar three-phase
transformer. The efficiency of the multi-phase transformer during low power factor value
remains higher compared to three-to-three phase transformation while during high power
factor value, the efficiency of three-to-three-phase and three-to-seven-phase is closer.
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Figure 21. Efficiency comparison of a similar 3–7 phase transformer (data 1) vs. 3–3 phase transformer
(data 2).

6. Conclusions and Recommendations

In this review article, a comprehensive exploration of power conversion methods based
on static multi-phase from a three or two-phase power supply is performed. Configuration
of various transformation techniques for multi-phase transformation, advantages and
disadvantages are discussed. Further, various configurations of multi-phase transformer
systems along with different AI-based optimization techniques for the development of
per-phase equivalent circuit modeling are reviewed and discussed thoroughly. This study
outlines the different layouts that can convert a three- or two-phase system to any (n-phase)
desired number of phases. As far as the multi-phase transformer is concerned, more
research is available in the literature for three-phase to six-, nine-, or twelve-phase (multiple
of three) systems. Nonetheless, information on a three-phase approach to an odd-phase
(except multiples of three) such as five, seven, eleven, or thirteen conversion system is
limited. This review has summarized, analyzed, and presented the development of the
multi-phase transformers (e.g., five-phase, seven-phase, eleven-phase, and thirteen-phase).
The issues concerning the impedance mismatch and hence unbalanced output voltages,
especially at a low load, are explained. In addition, the challenges and problems related
to various transformer fault analyses are discussed. Finally, potential research areas and
possible applications of multi-phase transformers are highlighted. This review offers some
selective future recommendations for further improvement mentioned below.

• An in-depth comparative analysis of efficiencies between three-phase and multi-phase
transformers is essential to be performed.

• Thermal modeling of a transformer is performed to accurately predict winding and
the component temperature rises above ambient temperature. Each phase of a multi-
phase transformer winding comprises two or more windings. Connecting windings
together may cause a local hotspot if not appropriately addressed. Therefore, advanced
thermal modeling of a multi-phase transformer is necessary to examine the winding
temperature, oil temperature, and local hotspot at the winding junction point.
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• The finite element method (FEM) is used to simulate the core losses of a transformer
and investigate the flux density behavior in the transformer’s core. Hence, it is vital
in the design process of a transformer, especially a multi-phase transformer. Substan-
tial literature can be found for finite element analysis of a three-phase transformer.
Different numbers of turns for each phase in a multi-phase transformer may create
a spark at the junction or joint, leading to localized hotspots or discharge. A finite
element analysis-based five-phase transformer design is presented in the literature but
the study is limited to magnetics only. The same can be extended to all multi-phase
transformers.

• Further exploration related to the fault tolerance ability of the multi-phase conversion
system can be carried out, which could lead to an increase in robustness and efficiency.

• The multi-phase circuit breaker and electrical relay are significant in future research
activities. Therefore, the execution of multi-phase circuit breakers and relay circuits in
a multi-phase system needs to be further investigated.

The suggestions offered would provide valuable guidelines and solutions to the power
engineers and researchers to develop advanced power conversion strategies towards future
sustainable operation and management in various power and energy-related applications.
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