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Abstract

Music style translation has recently gained attention among music processing stud-

ies. It aims to generate variations of existing music pieces by altering the style-

variant characteristics of the original music piece, while content such as the melody

remains unchanged. These alterations could involve timbre translation, reharmo-

nization, or music rearrangement.

In this thesis, we plan to address music rearrangement, focusing on instrumen-

tation, by processing waveforms of two-instrument pieces. Previous studies have

achieved promising results utilizing time-frequency and symbolic music represen-

tations. Music translation on raw audio has also been investigated using single-

instrument pieces. Although processing raw audio is more challenging, it embodies

more detailed information about the performance, timbre, and dynamics of a music

piece. To this end, we introduce Music-STAR, the first audio-based model that can

transform the instruments of a multi-track piece into another set of instruments,

resulting in a rearranged piece.
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1 Introduction

Artificial intelligence and music, both highly intertwined with our lives, look far

apart from each other at first glance. However, their intersection offers considerable

potential. One cannot entertain the idea of replacing the extraordinary composers

and musicians of human history with machines, but can aim to provide a more

convenient way to explore musical creativity, have a richer exposure to musical

content, and adopt technology-based approaches for understanding music. For

instance, we can see AI-based applications such as AIVA 1, Brain.fm 2, and Amper

Music 3, that compose and generate original music pieces, songs, and soundtracks.

Music-related studies have been a topic of interest to musicians and researchers

for a long time. Analyzing the content of audio signals goes back to 20th century

[68]. For instance, the first attempt on automatic music transcription [74] was made

in 1977 where filters were used to detect the note frequencies. [29] However, the

1https://www.aiva.ai/

2https://www.brain.fm/

3https://www.ampermusic.com/
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advent of AI-based methods enabled us to go after more complex problems engaging

concepts at a higher level than signals and physical features. Today, these problems

extend from classification tasks, such as genre classification [101], to novel music

and lyrics generation [6, 24]. The recent advancements of deep neural networks

in image processing, as well as music information retrieval have created unique

opportunities for new applications.

One of the newly emerged subjects is music style translation, defined as manip-

ulating an existing music piece’s style-related components, such as instrumentation

or performance details, to create variations of the original piece while preserving the

content. We have encountered this when listening to a music piece by an artist who

has covered another artist’s work or has rearranged a masterpiece. Automated mu-

sic translation allows us to practice musical expressiveness utilizing existing musical

content.

Music style translation can be defined in several ways based on what is referred

to as style. Some studies address timbre translation [48, 54] where the instruments’

timbre is the focus of attention. Timbre, also known as tone color, is the sound

quality that helps us distinguish between different instruments, and transforming

one to another corresponds to changing the performing instrument.

Other studies address music rearrangement [9, 17, 50]. In music, an arrangement

is an adapted version of a previously composed piece. It can be obtained by altering
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the original piece in various ways, including and not limited to reharmonization,

i.e., altering the chordal accompaniment of an existing melody, instrumentation, i.e.,

assigning musical instruments to perform different parts of the piece, and altering

the piece’s structure in terms of the melodic phrases.

In this thesis, the term rearrangement refers to selecting musical instruments

different from those in the original performance and automatically deriving an audio

performance using the new set of instruments. Based on this definition, there is

a correlation between rearrangement and manipulating multiple timbres in music

pieces. Therefore, we consider our work as polyphonic timbre translation.

The existing AI music composers, such as AIVA, can help anyone who is not

necessarily a musician generate novel pieces based on their preferences. However,

if performed at high quality, automatic music rearrangement can assist musicians

and composers in experimenting with their pieces instrumentation. It can offer

the opportunity to explore new ideas for creating cover songs and help vocalists

generate their preferred version of the backing tracks for their songs. In this thesis,

we try to take a step toward this goal.

Like many other studies in the audio and music domain that have been inspired

by advancements in the image domain, music translation was formed based on

image-to-image translation that refers to transforming images from a source style

to a target style while keeping the image content unchanged. Image colorization,
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season transfer, and image to painting conversion are some of the tasks covered in

this area. In recent years, researchers have been practicing the same idea in audio

and music to perform voice conversion or music translation.

From a technical point of view, style translation tasks can be portrayed as gen-

eration problems with some pre-defined constraints, such as keeping the content

unaltered. That is why the effectiveness of generative models, i.e., different au-

toencoders such as variational autoencoders [5, 9], VQ-VAE [15], and GAN-based

[48, 54, 70] architectures, have been investigated in the field.

Some music translation models [48, 54, 70] have treated audio as an image

using a three-dimensional representation of audio, known as a spectrogram. Spec-

trograms are obtained by transforming an audio signal from the time domain into

the frequency domain using short-time Fourier transform (STFT). However, this

approach poses some challenges and limitations, one of which is transforming the

frequency representation back to the time domain and constructing the output au-

dio. The existing methods for this task, including inverse STFT and the Griffin-Lim

algorithm, are not efficient enough and can affect the output quality drastically.

This problem has been encountered in many other music/audio-related studies

and has motivated the researchers to investigate other means. Some studies [9,

17, 71], have tried to model music using symbolic representation, such as Musical

Instrument Device Interface (MIDI). MIDI was introduced as a standard protocol to
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allow digital musical instruments, computers, and other tools to communicate with

each other. As a file format, MIDI stores musical events and transmits messages

to determine the system’s behavior and how things should be played. Symbolic

representation has been widely used in music generation and translation studies

where the models output MIDI that can be played after being converted to audio.

Such conversion is made possible using tools such as digital audio workstations

(DAW) and virtual software instruments.

Despite being easy to work with, the audio generated from MIDI usually sounds

so unnatural that one can distinguish between a virtual performance and a real

one. Besides, there are many details in actual performances that MIDI data do not

necessarily represent. Consequently, these limitations have created the demand for

working with raw audio.

As exciting as it sounds to deal with raw audio, it brings about complications

due to its high resolution. In order to clarify the extent of such a challenge, we

can compare the size of an image with the size of a digital audio file while training

deep neural networks: If we use 720x720 px images to train a network, each image

is presented by roughly 520,000 pixels. On the other hand, a two-minute song at

CD quality (44.1 kHz and 16 bps) includes over ten million samples and makes

it extremely difficult to capture high-level features and long-range dependencies of

the audio.
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Despite this, speech processing studies [47, 79, 89] developed deep architectures

to deal with raw audio. However, the advent of a generative model for raw audio

synthesis called WaveNet was a breakthrough in the area. Inspired by autoregres-

sive image generation models [78], WaveNet succeeded at increasing the receptive

field and learning long-range dependencies. Conditional audio synthesis was also a

novelty introduced by WaveNet, which allows a higher quality in speech synthesis

when the network is conditioned on text or linguistic features.

The WaveNet vocoder was then employed in a WaveNet autoencoder [31] to

perform music note synthesis. Utilizing the autoencoder architecture, Mor et al.

[75] introduced the only audio-based music translation network currently published.

Their experiments demonstrate that their model can successfully translate one do-

main of music, i.e., one instrument track, to another, by changing the timbre.

Although their model can effectively translate an arbitrary instrument track

into six different target domains, this question remains unanswered: what if more

than one instrument is in the source piece?

In this thesis, we explore the idea of multi-instrument translation through which

we aim to perform audio-based rearrangement. Instead of single-instrument trans-

lation, we quest after a model to translate multiple instruments and provide a new

arrangement of the music pieces by redoing the instrumentation.

To this end, we have put forward multiple approaches. The first solution that
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suggests itself is to apply the single-instrument translation model to the separate

tracks of the piece, transform each of them into a target domain, and put them

together to generate the final arrangement. Nonetheless, this approach is only

practical when the separate audio tracks of the input mixture are available, which

is a rare case as we nearly always have access only to the final mixed and mastered

audio.

Consequently, another solution may arise: separating the input audio tracks us-

ing music source separation models and applying the single-instrument translation

to the isolated track. Although it seems to be a feasible solution, it still adds an

extra step which might hurt the output’s quality since the source separation models

are not flawless.

In this thesis, we propose Music-STAR, a model designed explicitly for multi-

instrument music translation that facilitates audio-based rearrangement. Music-

STAR is based on the WaveNet autoencoder and offers two training approaches,

unsupervised and supervised. In the unsupervised setting, we do not engage the

target performance of the source pieces in the training phase, and the pre-trained

single-instrument translation models assist us in the task. Conversely, the super-

vised setting depends on the availability of paired data in the training set.

Since none of the existing audio datasets satisfy the criteria we seek for training

our model, we create StarNet, a dataset that includes music pieces comprising two
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instrument tracks and their stems performed by two combinations of instruments,

i.e., strings-piano and clarinet-vibraphone.

We evaluate the performance of Music-STAR by comparing its results to the

baselines that we named as potential solutions to our research questions, i.e., apply-

ing single-instrument translation to separate tracks or forming a pipeline of source

separation and single-instrument translation to account for the cases where only

mixture inputs are available. We assess the resulting outputs based on content

preservation, style fit, and audio quality through qualitative and quantitative eval-

uation methods, exhibiting Music-STAR’s success in performing multi-instrument

music translation.

1.1 Research Contribution

In our research, we investigate several approaches to address multi-instrument mu-

sic translation that enables us to perform automated music rearrangement. Our

research contributions are:

– The introduction of the StarNet dataset containing 9 hours of two-instrument

music pieces performed by two sets of instruments, strings-piano, and clarinet-

vibraphone.

– The extension of supported instruments in the state-of-the-art audio-based
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single-instrument music translation model through finetuning the model on

the StarNet dataset.

– The extension of supported instruments in the state-of-the-art audio-based

source separation model through retraining the model on the StarNet dataset.

– The introduction of an unsupervised and supervised approach towards multi-

instrument translation based on a WaveNet autoencoder architecture.

– The demonstration of our proposed model superiority to the baseline models

through two evaluation methods based on three criteria: content preservation,

style fit, and audio quality.

1.2 Thesis Outline

This thesis is structured into five chapters. The first chapter provided an overview

of our research problem, our path towards the possible solutions, and our work’s

major contributions. Chapter 2 discusses the related literature and concepts that

illuminate different aspects of our research. In Chapter 3, we present the StarNet

dataset and our proposed solution to the problem of multi-instrument rearrange-

ment. The evaluation of our model compared to the baseline models is outlined in

Chapter 4. We finally conclude our research with the key findings of our research

and discuss the potential future work in Chapter 5.
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2 Background

In this chapter, we discuss the relevant studies that have paved the way for us to

conduct this research. We first look into the progression of deep neural network

architectures through time and some of their applications in the pioneering domains,

such as image processing; then, we discuss their applications in the audio domain

focusing on music processing. We also present a summary of the existing research

on music style translation and other topics that play a role in the configuration of

this research.

2.1 Artificial Neural Networks

Machine learning is the study of enabling computers to learn from data. Although

some statistical models such as Markov chains had been discovered, the first official

learning studies go back to 1950 when Alan Turing proposed the idea of The Im-

itation Game, asking the critical question of whether computers can think. Since

then, machine learning has been extensively studied and has become one of the
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most popular techniques in artificial intelligence for task automation. It has found

its way into our lives through social networking, medical diagnosis, online shopping,

and many other applications. Numerous models have been proposed so far, some

of which have gained a significant amount of popularity - support vector machines

[19], and random forests [43], to name a few.

Today, the most advanced machine learning models are based on deep neural

networks, the idea of which was discussed even prior to learning algorithms. In-

spired by the networks of neurons in the brain, artificial neural networks were first

introduced in 1943 when a mathematical model was proposed in [72] on how the

brain’s neurons communicate and perform logical processes. The idea of a simple

neural network like a perceptron was explored in 1957 by Frank Rosenblatt and

then was elaborated into multilayer perceptrons (MLP) by Alexey Ivakhnenko in

1965, which was a starting point for deep architectures.

In the following years, the early versions of other network architectures such

as convolutional neural networks [33], and recurrent neural networks [45] were dis-

covered. However, neural networks could not prove their true potential due to

limited computational power and issues related to training. An important train-

ing issue was solved when the backpropagation algorithm that was first introduced

in [59] was successfully applied and explained in 1985 by Rumelhart et al. [86].

The combination of backpropagation with gradient-based learning [65] was another
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groundbreaking innovation that greatly helped in training the neural networks.

Since then, the considerable number of studies for improving deep architectures

and the increase of computational powers caused by the utilization of Graphical Pro-

cessing Units (GPUs) have largely contributed to making deep learning the state-

of-the-art approach in AI world. In the following sections, we will briefly discuss a

variety of neural network architectures, namely convolutional neural networks, re-

current neural networks, autoencoders, and generative adversarial networks, along

with their applications in music studies relevant to this research.

2.1.1 Convolutional Neural Networks

Similar to neurological connections having inspired artificial neural networks, con-

volutional neural networks, first seen in [33], specifically resulted from modeling the

brain’s visual cortex. According to physiological and psychological studies, visual

perception occurs in multiple stages, each of which is addressed by a specific re-

gion in the brain. The studies also show that the neurons in the different parts of

the visual cortex have different responsibilities. Some have smaller receptive fields

and process simple visual forms like edges, while others with larger receptive fields

perceive higher-level features, such as detecting objects. The same scenario applies

to convolutional neural networks. They recognize the patterns in the input signal

in a hierarchical manner in which the initial layers capture low-level patterns and
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deeper layers learn the higher-level ones.

Besides, the natural signals’ properties such as stationarity, locality, and com-

positionality [8] make the convolutional neural networks efficient in computations

by maintaining parameter sharing and sparsity. These properties remove the need

for fully connected layers in the networks leading to a limited receptive field and

fewer inter-layer connections.

LeNet [66], the first convolutional network trained by the backpropagation tech-

nique, was used to recognize handwritten digits. Sub-sampling layers that today

we know as pooling layers were first used in LeNet architecture.

AlexNet [61], the next groundbreaking CNN model, managed to achieve state-

of-the-art results in classifying the images from the ImageNet dataset, which has

become one of the benchmark datasets in image processing research. While adopt-

ing more layers in the network’s architecture, the authors took advantage of multiple

training techniques such as regularization, dropout [95], and Rectified Linear Unit

(ReLU) activation.

In the following years, researchers worked on improving CNNs by exploring

more complex and deeper architectures. The benchmark datasets grew, and the

advancements of GPUs were definitely a significant help. By 2015, multiple versions

of VGG [93] and Inception [99] networks were introduced, each of them increas-

ing in the number of layers and becoming more powerful in image classification.
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The residual blocks and skip connections that were first adopted in ResNet [42]

succeeded in overcoming some training complications, such as vanishing gradient

caused by the large number of layers, enabling the networks to go even deeper.

Xeception [14] was the first network that took advantage of depth-wise separable

convolutions to reduce the number of parameters.

CNNs are also capable of performing image segmentation, i.e., detecting the

objects in an image and classifying the pixels accordingly. Image segmentation is

remarkably helpful in biomedical image diagnosis. U-Net [84] is a successful image

segmentation model with a u-like architecture consisting of two paths. In the down-

sampling path, the network applies convolutional layers along with pooling layers to

increase the receptive field and capture the context of the image. In the upsampling

path, transposed convolutions, also known as deconvolution layers, are applied to

retrieve the original image resolution and the localization of the objects.

Today, CNNs are successfully adopted in real-life use cases such as face recogni-

tion, visual search, medical image analysis, self-driving cars and have been applied

to many areas other than computer vision.

2.1.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) emerged to model temporal dependencies ob-

served in sequential data such as speech, text, DNA sequences, and music notes.
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Although there are successful models that address temporal data using CNNs, some

of the limitations of the convolutional neural networks, like the fixed length of in-

put and output was a reason to start seeking more adaptable models. Hopfield

Network [46], the very first recurrent neural network, was developed in 1982. The

author introduces the idea of maintaining associative memory so that the network

can store some patterns and recall them when necessary.

RNNs are able to handle inputs and outputs of different sizes. While sharing

the parameters for all the time steps, the hidden states carry information from one

step to the next. The hidden state at every step is obtained by processing the input

and is then fed to the next step. Hidden states represent the idea of memory as

they pass on information, but they cannot account for long-term memory if the

number of layers in the network increases, mainly caused by vanishing (exploding)

gradient in which the gradients’ values get so close to zero (infinity), while the high

number of layers get trained through backpropagation.

Long Short-Term Memory (LSTM) [44] recurrent neural networks were sug-

gested as a solution for this issue. The main idea behind the LSTMs is to only re-

member the relevant information for as long as it is necessary instead of constantly

maintaining a long-term memory that may contain unnecessary information. Every

cell in the LSTM decides what information to pass to the next step as the memory,

what information to output, and what to forget using three different neural net-
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works called gates: the input gate, output gate, and forget gate. LSTMs have been

mainly used in speech recognition [38], and sequence-to-sequence learning applied

to machine translation [98] both in academic research and commercial products.

In 2014, Gated Recurrent Unit (GRU) [13], a variant of LSTMs was introduced.

By merging the cell-state and the hidden state, GRUs reduced the number of gates

to two, which results in fewer parameters and thus less complexity. This property

makes GRUs faster in training and a better candidate for cases when less training

data is available. Similar to LSTMs, GRUs have also been employed in state-of-

the-art systems for sequential modeling.

LSTMs and GRUs can only use the information from the past to predict the

future. However, there are cases that useful information might be extracted from

future data and bidirectional recurrent neural networks [91] can help in such cases.

In bidirectional RNNs, there are two recurrent neural networks, one of which passes

the information from the past to the future, and the other carries them from the

future to the past by processing the inverted sequences of the input.

Bidirectional LSTMs have been successfully employed in speech recognition and

text-to-speech systems. One of the exciting applications of BiLSTMs has been

seen in PixelRNN [102], designed for modeling the joint distribution of natural

images and generating life-like images. According to their autoregressive model, the

joint distribution of every pixel can be estimated as the product of the conditional
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probabilities of the preceding pixels, and that is how they modeled an image as

sequential data. However, RNNs are slow both during training and inference due to

their sequential nature; that is why a CNN version of the model was also presented

as PixelCNN that was soon promoted to generate images conditionally [78].

As mentioned before, sequence-to-sequence models for neural machine transla-

tion are one of the well-known applications of RNNs. In machine translation, the

input and the output do not necessarily have the same length. The sequence-to-

sequence model [98] was proposed to handle such language modeling problems with

an encoder-decoder architecture where both the encoder and the decoder are made

of RNN units. In the case of machine translation, the encoder comes up with a

context vector of the sentence from the source language, and the decoder predicts

the translated sentence in the target language.

The attention mechanism [103] was first introduced to provide an alignment

model between the input words and the output words so that the decoder can have

access to any valuable data that has been forgotten and is missing in the context

vector. Since then, attention has been applied to many deep learning models to

direct the network toward the important parts of the input data.
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2.1.3 Autoencoders

Autoencoders are one of the types of neural networks that have been popular for

their applications in data reduction, feature learning, denoising, and building gen-

erative models. Today, they are among the most effective frameworks in deep

architectures and are largely engaged in unsupervised learning. They were first in-

troduced in [87] to address the problem of mapping the input to the output through

the internal representations learned by the hidden units in the network.

Autoencoders consist of three components: the encoder, the code, and the de-

coder. The encoder takes the input and provides a meaningful reduced represen-

tation, also known as the code, based on which the decoder can reconstruct the

input. However, some constraints should be placed either by minimizing the size

of the code or adding some noise to the input data to prevent copying the input

to the output via an identity function that prevents learning meaningful features.

Deep autoencoders are obtained by employing deep networks in implementing the

encoder and the decoder and can vary in the architecture resulting in feedforward,

convolutional or RNN-based autoencoders.

Autoencoders were traditionally used for dimensionality reduction by limiting

the code size. The curse of dimensionality and its complications have consistently

forced researchers to adopt dimensionality reduction techniques, and autoencoders
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became a serious rival for long-standing methods such as Principal Component

Analysis (PCA). Undercomplete autoencoders with lower dimensionality in the code

than the input provide the dimensionality reduction in their bottleneck layer, and

can handle more complexities because of the presence of neural networks. [2]

Adding noise to the input data and training the autoencoder to generate clean

data by removing the corrupted parts have been investigated in Denoising Autoen-

coders [105]. This technique is either used as a general training technique or an

independent application for error correction. [2]

Although autoencoders are well-known representatives of unsupervised learn-

ing, they also contribute to semi-supervised settings. The encoder plays a role as a

feature extractor, and the obtained representation is used for classification purposes

under the assumption that the encoder outputs similar representations for the data

samples from the same class. [2] Discovering the correlations between data points

based on the encoded representations has made the idea of autoencoder-based rec-

ommender systems possible [92, 62].

Variational Autoencoders (VAEs) [60] brought the autoencoder framework into

the world of generative models. As a probabilistic generative model, VAEs learn the

underlying probabilistic distributions of the features in the input data and represent

them in the code produced by the encoder. Then the decoder randomly samples

from the learned distributions in the latent representation and generates an unseen
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datum. The reparameterization trick is used to make backpropagation possible for

random sampling. VAEs applications have been explored in the domains of image,

text, and audio generation.

2.1.4 Generative Adversarial Networks

Generative adversarial networks (GANs) [37] are a group of generative models that

learn to implicitly capture the underlying distribution of the data and sample new

ones from the learned distribution. GANs are composed of two neural networks:

the generator and the discriminator. These two networks play a minimax game

against each other. Take image synthesis as an example. In this case, the generator

tries to generate a realistic image given a random distribution without seeing any

images from the training set. On the other hand, the discriminator has access to

the real data and tries to distinguish the generated image from the real ones. Using

the feedback it receives from the discriminator, the generator should finally learn

to output an image similar to the authentic data so that the discriminator cannot

tell them apart.

Although the general idea of adversarial networks has caught a great deal of

attention, training GANs was not an easy task from the beginning. Throughout

the years, researchers have investigated different stabilizing methods and training

tricks to mitigate the complications. One of the major concerns is synchronizing
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the training of the discriminator and the generator. If the discriminator improves

faster than the generator, its loss converges to zero and will not allow the generator

to get updated. Another critical issue is mode collapse. This happens when the

diversity of generated data samples decreases, and as a result, the discriminator

cannot provide constructive feedback resulting in the generator getting stuck in

local minima.

The original GAN architecture [37] took advantage of fully connected layers in

the generator and the discriminator. Later on, CNNs found their way into GAN

architectures, and deep convolutional GAN (DCGAN) [81] overcame the difficulties

of training deep convolutional layers by applying tricks like strided and fractionally

strided convolutions, batch normalization, ReLU, and Leaky ReLU activations.

The generative recurrent adversarial network (GRAN) [52] was the first GAN

architecture with a generator consisting of recurrent feedback loops designed for im-

age synthesis. Bidirectional GANs (BiGAN) [27] introduced the idea of adversarial

feature learning by adopting an encoder to map the input to a latent representa-

tion and asking the discriminator to judge based on both the generator’s and the

encoder’s outputs.

As of today, hundreds of GAN architectures have been proposed to adapt the ad-

versarial networks to various domains and applications. So far, GANs have learned

to create novel artistic pictures by deviating from the style of an input picture as
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seen in the CAN [28] model. GANs are applied to a variety of techniques for image

editing and manipulation [107, 7] especially for facial editing [1, 25]. GANs have

managed to synthesize images based on text descriptions [83]. GANs are used to

upscale and enhance the quality of photos and videos, even the ones from a century

ago. They are able to generate videos of people speaking only by seeing their photos

and are well-known for being at the forefront of deepfake technologies.

2.1.5 Image-to-Image Translation

Image-to-image (I2I) translation is a class of computer vision tasks that aims to

translate images across domains. It takes various forms, such as image inpaint-

ing, image colorization, and neural style transfer.There are four approaches toward

image-to-image translation according to [80]:

1. Supervised I2I: Using paired images of the source and target domains to train

the model, i.e., the same image content before and after translation.

2. Unsupervised I2I: Using unpaired images and learning the mapping between

two image collections.

3. Semi-supervised I2I: Using the source images along with a limited number of

source-target training data.

4. Few-shot I2I: A few examples adapt a pre-trained network to a source-to-
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target translation inspired by transfer learning.

Image style transfer [36] was among the earliest models in this area and ex-

plored both photograph-to-artwork and photograph-to-photograph translation us-

ing CNNs trained on paired data. Their work was later promoted to preserve the

coloring of the source image during the transfer [35].

Recently, GAN-based image-to-image translation techniques have received sig-

nificant attention. Pix2Pix [53] was the first framework using conditional GAN to

translate the style of images in a supervised setting with paired images.

Although it is more challenging to address image translation in an unsupervised

setting, unpaired translation models have become popular as they do not depend

on a dataset that includes the original image and its counterpart after translation.

CycleGAN [108] addressed this problem by adopting cycle consistency in which

the network learns to perform both forward and backward translations. In other

words, the network should be able to translate the input image into the target style

and also retrieve the original image from the translated version. The effectiveness

of this model has been proved in object transfiguration, season transfer, and photo

enhancement.

An unsupervised translation network called UNIT [69] was built based on the

idea that a pair of corresponding images from two different domains can be mapped

to shared latent space. By adopting VAEs, GANs, and cycle consistency, the model
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learns to enforce one latent representation to generate images in two domains.

UNIT can successfully translate satellite images into maps and perform animal

species translation.

UNIT introduced a one-to-one or unimodal mapping between domains. Later,

MUNIT [49] was proposed to address multimodal image-to-image translation to

capture the distribution of all possible outputs. A key factor in their model is that

they decompose the latent space into the content space and style space. Assuming

that the images from different domains can only share the content space, MUNIT

combines the content space of the source image with a random style code from the

target style space to generate diverse outputs.

2.2 Deep Learning in Audio and Music Processing

In the previous section, we discussed deep learning advancements and the pioneering

models that mainly manifest in the image domain or natural language processing.

This section will delve into the research contributions in audio and music processing

and sheds light on how preexisting deep architectures have paved the way for this

discipline to grow. But first, we will review the fundamental concepts of audio

and music representation used in data modeling. Then, we will present the most

relevant applications of deep learning to our research, such as audio synthesis, music

source separation, and music style translation.
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Music-related studies that fall under the fields of music information retrieval and

computer music emerged later than audio and speech processing. These studies

are multidisciplinary, engaging multiple areas like signal processing, musicology,

psychoacoustics, and machine learning. The recent music processing techniques

mainly concern automating machines in understanding, analyzing, manipulating,

and even generating music using deep learning models.

The extended accessibility of music through music streaming services, mobile,

and web applications has made it possible for us to take advantage of these research

achievements. We have encountered new songs based on recommender systems

built upon music embeddings; we have used the audio fingerprinting techniques

embedded in virtual assistants or applications like Shazam to help us identify the

songs we hear in a cafe; and we can use chord recognition applications to learn how

to play our favorite songs.

Below are some other music processing tasks that researchers have been working

on:

– Music classification: Categorizing music recordings based on their genre (pop,

rock, jazz, blues, etc.) [101] or their mood (sad, happy, angry, relaxed) [64].

– Instrument recognition: Identifying the musical instruments played in the

music recordings. [32, 41]
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– Query by humming or singing: Identifying songs based on the hummed or

sang melody. [39, 88]

– Automatic music transcription: The task of extracting score parameters from

a music recording like the note events, time signature, key signature, and

dynamics. [4, 12]

– Music source separation: Extracting individual instruments and vocal tracks

from a mixed recording. [97, 22]

– Automatic music generation: Composition of novel melodies, chords, or full

songs without human assistance. [6, 24]

Before the rise of machine learning techniques, developing high-level algorithms

was challenging and music-related studies mainly depended on algorithmic analy-

sis and algorithmic composition [85]. For instance, traditional music transcription

depended on onset detection, and pitch tracking [3]. Automatic music composition

was explored through different techniques, such as Markov chains, genetic algo-

rithms, and pattern-processing algorithms. [18] However, today, the possibility of

low-level processing is taken for granted, thanks to deep learning models, and state-

of-the-art research has taken up the challenge to deal with audio directly. Despite

all the limitations that have remained unresolved, music technology is standing at
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the point where systems like AIVA and Amper Music can generate songs corre-

sponding to a specific genre or mood.

2.2.1 Music and Audio Representation

Deciding on how to represent the audio is a determining factor in our model design

since it specifies the type of input the neural network should process. Raw audio,

time-frequency, and symbolic representations are the most commonly used types of

representation that will be discussed below.

2.2.1.1 Raw Audio Representation

Sound is generated when the vibrations of a source like human vocal folds or a

string of an instrument propagate through a medium, such as air, in the form of an

acoustic wave.

Sound is harmonic in nature. If we listen to a sinusoidal wave, we hear a pure

tone with only one present frequency. However, most of the sounds we hear are

more complex than a pure tone. When a specific pitch is played by an instrument,

it contains other frequencies that are integer multiples of the lowest frequency. The

lowest frequency is known as the fundamental frequency, and its multiples are the

harmonics.

Sound embodies various properties that play significant roles in how we perceive
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it, some of which are explained below:

1. Pitch: Pitch is a perceptual attribute related to the sound wave frequencies.

In music, every pitch is notated by a letter and a number. The letter indicates

the pitch class, while the number indicates the octave. For example, A1, A2,

..., A8 all belong to the pitch class A. The pitch A4, known as the concert

pitch, has a fundamental frequency of 440 Hz, while A3 has a frequency of

220 Hz (i.e. 440
2

) and A5 has a frequency of 880 Hz (i.e. 440 ∗ 2). Since all

the A notes in different octaves are harmonically related and share a unique

mathematical relationship, they are perceived similarly by the human brain.

This quality applies to all notes and is the reason that the same notes are

repeated in every octave.

2. Loudness: Loudness is a subjective attribute that depends on the sound wave

intensity and frequency. Individuals may perceive the loudness of the same

voice differently. The loudness is measured in decibels (dB) which is a measure

of intensity. Moreover, frequency has a significant effect on how loud a sound

seems. Since the ear is more sensitive to some frequency ranges, i.e., 2000

to 5000 Hz, the same intensity is perceived as louder than the sounds near

the high and low-frequency extremes. Dynamics is also a general term in

music that correlates with loudness and is concerned with how loud or quiet
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different notes should be [76].

3. Timbre: Timbre or tone color is a subjective quality of musical sound that

helps us differentiate between two instruments or voices when they produce

the same pitch with the same loudness. Different instruments generate dif-

ferent harmonics of a fundamental frequency with varying intensities and

therefore generate different timbres.

An audio signal is an electrical representation of the sound wave, where air

pressure variations are converted into an analog electrical signal by a transducer

such as a microphone. In other words, the instantaneous air pressure is presented

as the instantaneous voltage or current. The electrical signal can also be recorded

by a recording machine, such as a tape recorder into a magnetic tape or a record

cutter into a vinyl.

Digital audio is obtained when the analog audio signal is converted into a digital

format using an Analog-to-Digital Converter (ADC). This technology is a more

accessible and cheaper way to record, manipulate, and reproduce sound. Since the

analog audio is a continuous signal, an ADC discretizes the signal in terms of time

and amplitude. Thus, the sample rate and the bit depth are two parameters that

need to be considered in digitization. The sample rate determines the number of

times we sample one second of audio. The bit depth indicates how many bits are
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used to quantize the amplitude.

Consider an audio file with a sample rate of 44.1 kHz and a bit depth of 16 bits

per sample (bps). Every second of this audio signal has been sampled 44100 times,

and every sample is quantized using 16 bits encoding 216 different values for the

amplitude. The sample rate of digital audio files mainly ranges from 16 kHz to 48

kHz to satisfy the minimum sample rate based on the Nyquist–Shannon sampling

theorem concerning the analog audio reconstruction performed by a Digital-to-

Analog Converter (DAC).

While reproducing and playing audio, the number of communication channels

the signal passes through indicates if the sound is monophonic (one audio channel)

or stereophonic (two audio channels).

It is clear that from a sample-based perspective, audio signals have high tempo-

ral resolutions, and even ten seconds of audio seems like a massive amount of data.

Accordingly, we sometimes need to resample the audio with lower rates or quantize

the audio using fewer bits for raw audio processing. Mu-law encoding or other

companding algorithms are usually used for quantization, and their application is

twofold. Firstly we reduce the number of bits for the sake of less computational

complexity. Secondly, mu-law encodes the audio in a semi-logarithmic manner so

that encoding sensitivity toward the softer parts of the signal is higher, which is

similar to the human perception. Applying 8-bit mu-law allows quantizing the

30



amplitude into 256 different values as follows:

F (x) = sgn(x)
ln(1 + µ |x|)

ln(1 + µ)
(2.1)

where −1 ≤ x ≤ 1 and µ = 256.

2.2.1.2 Time-frequency Representation

Time-frequency representations are obtained by applying the Fourier transform and

accounts for audio at frame-level rather than sample-level. The Fourier transform

captures the frequency and phase content of the audio signal. As mentioned earlier,

every audio signal embodies a series of frequencies, and decomposing a signal into

these frequencies provides a good representation of that signal. In order to account

for the signal changes over time, short-time Fourier transform (STFT) is used,

which applies fast Fourier transform to windowed segments of the audio. The

result will be a three-dimensional representation called a spectrogram in which one

axis accounts for time, one accounts for frequency bins, and one represents the

loudness of frequencies at every time step usually reported in decibels and shown

by the color intensity.

Human audio perception can distinguish lower frequencies better than the higher

ones and has been modeled experimentally based on this property, resulting in a
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logarithmic scale known as Mel-scale. Mel-spectrograms replace the linear or log

spectrograms in many studies so that the frequencies are presented according to the

Mel-scale and close to our auditory perception. In that regard, many researchers

find the Constant-Q Transform (CQT) a better substitute for STFT as it exhibits

higher spectral resolution for lower frequencies and higher temporal resolution for

higher frequencies.

Time-frequency representations are also helpful in extracting a variety of audio

features, one of which is the Mel frequency cepstrum coefficients (MFCCs). In

simple words, MFCCs contain information about the vocal tract of speech sources

and timbre-related information of musical instruments. MFCCs are obtained by

applying cosine transform to the log of the Mel-scaled spectrum of the audio signal.

It should be noted that for the sake of simplicity, the phase contents are often

ignored when processing the audio in the frequency domain. However, there are

times that the signal should be converted back to temporal audio. In such cases,

the Griffin-Lim algorithm is used to convert STFT representation to waveform

domain by approximating the phase data, which we cannot consider as a loss-less

reconstruction.
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2.2.1.3 Symbolic Representation

Symbolic representations provide a high-level description of musical data that is

simply understandable by humans and can be easily parsed by computers. Piano-

rolls and MIDI are the most commonly used symbolic representations.

During the 19th and 20th centuries, continuous rolls of paper called piano rolls

were used by self-playing pianos. Each music note took a whole line in the roll, and

the places where the note should be played were punched with its length dependent

on the note duration. The same idea is being used in the piano-roll representation.

It is a two-dimensional visualization of notes showing the pitch values on one axis

and the time-related information such as the start and end of the notes on another

axis.

Musical Instrument Digital Interface (MIDI) is a communication protocol that

enables electronic musical instruments, audio devices, and music software programs

like Digital Audio Workstations (DAW) to connect for editing and recording pur-

poses. As a symbolic music representation, MIDI embodies messages that encode

musical activities such as the pitch, velocity, duration, and onset.

Many studies music use data in the form of piano rolls and MIDI to train their

models to find patterns among the events or generate the output in these formats.

Although using symbolic representations is more straightforward than other rep-
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resentation techniques, they cannot represent detailed information on human-like

performance or human voice.

2.2.2 Audio Synthesis

Audio synthesis is the task of generating sound using computational techniques

controlled by user-defined settings and was traditionally performed using physical

modeling and acoustic modeling. In physical modeling, mathematical approaches

are employed to create the waveform, while acoustic modeling applies oscillators

and filters to produce an acoustic wave with desirable attributes. Nonetheless, these

methods provide limited control over the output. [51]

Today, deep generative models have reached the ability to learn the underlying

distribution of audio features seen in the training set and generate novel audio sam-

ples with respect to the learned distribution. These models allow exercising control

parameters over the output to use them as robust speech vocoders or to generate

musical sounds conditionally. The audio synthesis systems are mainly categorized

into two classes based on how they model the latent structure: autoregressive mod-

els and GAN-based models, which will be discussed below.
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2.2.2.1 Autoregressive Models

We briefly mentioned the autoregressive nature of some generative models like Pix-

elCNN [78] applied to image synthesis before. They model the joint probability of

every pixel of an image as the product of conditional probabilities of the preced-

ing pixels in that image. WaveNet [77], one of the recent groundbreaking audio

synthesis models, leverages the same idea in which every audio sample is predicted

using the product of the preceding audio samples’ probability as shown in equation

below:

p(x) =
T∏
t=1

p(xt|x1, ..., xt−1) (2.2)

where x = {x1, x2, ..., xT} is the audio signal.

WaveNet uses one-dimensional convolutions to process audio samples. Never-

theless, there are two key factors that need to be considered in the design of this

model. The first is that the network should not have access to future data samples

at every step. PixelCNN takes advantage of masking convolutions to remove the

impact of future pixels. In WaveNet, this requirement has led to the utilization

of causal convolutions to keep future data out of reach by shifting methods. Sec-

ond, we know that raw audio enjoys a high temporal resolution, and reaching an

extended receptive field requires an inapplicably large number of layers. WaveNet
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addresses this issue by introducing dilated convolutions that skip a number of sam-

ples according to the dilation factor, and as a result, the receptive field increases

exponentially in every layer.

Another trick that WaveNet has borrowed from PixelCNN is to apply gated

activation units. When the first version of PixelCNN was proposed, although it

was faster, it could not beat PixelRNN in terms of performance. One of the reasons

is believed to be the gated activations in the LSTM architecture which have been

proven effective in PixelCNN and WaveNet as well. Sigmoid and Tanh nonlinearities

are adopted in the formation of the gated activation unit as follows:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (2.3)

where ∗ and � represents convolution and element-wise multiplication operators

respectively, W∗,k is a learnable convolution filter, k is the layer index, and f and

g denote filter and gate.

WaveNet has also provided the opportunity of conditional synthesis by taking

a condition vector as an input that determines some of the characteristics of the

target audio. It is a great advantage for multi-speaker speech synthesis, where the

speaker’s identity specifying the voice timbre, accent, and tone is provided as a

condition. In text-to-speech synthesis, linguistic embeddings could be applied as
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the condition. In speech or music synthesis, the spectrogram can be presented as

the condition, and the network can successfully replace the imperfect Griffin-Lim

algorithm when processing time-frequency representations. If gated activation unit

and the conditioning feature are put together, the activation function will become:

z = tanh(Wf,k ∗ x+ V T
f,kh)� σ(Wg,k ∗ x+ V T

g,kh) (2.4)

where h is the condition and V∗,k is a learnable linear projection.

Engel et al. [31] designed and implemented a WaveNet autoencoder for gen-

erating musical notes. In their model, the WaveNet-like encoder with non-causal

dilated convolutions outputs a temporal embedding, and the WaveNet decoder gen-

erates the audio conditionally. According to the authors, their motivation was to

remove the need for an external condition as the encoder learns to provide the re-

quired condition in the embedding. They collected a dataset of musical notes called

NSynth and used it for training the autoencoder. The model’s encoder is able to

capture the notes’ attributes such as pitch and timbre and provide a strong signal

to the decoder that cannot be ignored. [31]

The Wavenet-based architectures that model the raw audio directly have the

privilege of accounting for phase information and show higher fidelity compared to

phase reconstruction algorithms.
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SampleRNN [73] is another autoregressive model aiming at unconditional audio

synthesis. GRUs or LSTMs handle the sequential modeling of the probabilities

in this architecture. In order to mitigate the complication of long-term depen-

dencies of audio, SampleRNN adopts a hierarchical structure with multiple tiers.

Each of the tiers accounts for a different temporal resolution. Higher tiers address

lower temporal resolution by operating on non-overlapping frames and condition

the high-resolution tiers below them, and finally, the lowest tier nodes have the re-

quired information to model the probability of every sample using softmax function.

SampleRNN’s advantage over WaveNet is its flexibility in allocating computations

resources since not all the tiers require the same resources as those needed in the

sample-level tier.

2.2.2.2 GAN-based Models

Following the success of GANs in image generation, it was expected that by re-

placing images with spectrograms (as an image-like representation of the audio),

GANs could be applied to audio generation. However, using lossy estimations like

the Griffin-Lim algorithm does lead to undesirably noisy outputs.

WaveGAN [26] was the first successful GAN-based audio generator that has

been built based on DCGAN and processes raw audio using one-dimensional con-

volutions. The generator exploits transposed convolution to increase the receptive
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field and can produce one second of audio at 16 kHz. A method called phase shuf-

fling is used to stop the discriminator from allowing artifactual patterns caused by

transposed convolutions.

In contrast to WaveGAN, GANSynth [30] with a convolutional architecture op-

erates on a time-frequency representation that encodes both magnitude and phase.

The network learns to capture timbre-related information by global conditioning

on pitch information. The presence of phase information boosts the audio quality

compared to WaveGAN but not to the extent that it beats autoregressive models.

MelGAN [63] is a raw waveform generation model designed for text-to-speech

and music synthesis. It mainly functions as a mel-spectrogram inversion system.

The generator has a fully convolutional architecture. It exploits residual blocks and

dilated convolutions to increase the receptive field. There are three discriminators

in the multi-scale architecture of MelGAN. Each discriminator operates on different

audio scales to model the audio at different resolutions.

GANs are faster than autoregressive models both in the training and inference

phase. GAN-based models’ number of learnable parameters is considerably lower

than autoregressive models, making GANs computationally more efficient. Nev-

ertheless, they have not been able to surpass autoregressive models in terms of

fidelity.

39



2.2.3 Music Source Separation

Audio source separation is the task of isolating the different sounds of a mixture

signal. A famous example of source separation is the cocktail party problem in

which people are talking simultaneously in a room, and the listener tries to follow

one of the discussions. Although the human brain can isolate one of the speech

sources, it is a complex problem in digital signal processing.

In the music domain, source separation refers to recovering the contributions

from different stems. Stems are fragments of a whole music piece, packaging the

tracks of the same instruments. For instance, a piece may include guitar, bass,

drums, and vocals stems, where every stem consists of one or more tracks of its

corresponding instrument.

Having the stems of a music piece can be useful for remixing and editing purposes

and can make some entertainment opportunities like karaoke possible. Music source

separation can also assist other music-related tasks such as music transcription,

singer identification, and instrument recognition.

The complexity of source separation depends on several factors. For instance,

after adding audio effects and mixing the stems, separating the sources will be

more difficult, especially when multiple instruments play in harmony. The number

of audio channels may impact the level of difficulty. When there are more than
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one channels, some source signals can be easily separated depending on the spatial

positioning of the source. [11]

Before deep learning approaches were widely used, source separation systems

were implemented using different model-based techniques such as kernel, spectro-

gram factorization, and sinusoidal models. [11] These models separate each of the

sources by computing a corresponding binary or soft mask, and by applying the

mask to the mixture, that specific source will be extracted. Non-negative matrix

factorization (NMF) is one of the most common models used in source separation.

NMF factorizes a non-negative matrix M into two non-negative matrices, W and

H, by solving a minimization problem. For source separation purposes, NMF is

applied to the magnitude spectrogram of the audio represented by M; the values in

W represent the spectral characteristic of the sources, and H determines the time

activation of those characteristics.

The model-based techniques all have shortcomings and cannot perform well

unless the input signal satisfies their conditions. Some of them work better for

instrument separation rather than singing voice separation and others operate based

on assumptions that are hard to generalize. Fortunately, deep neural networks do

not suffer from such drawbacks. Different architectures of neural networks have

been investigated in this area.

DeepConvSep [10] with a convolutional encoder-decoder architecture is a spectro-
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gram-based model that predicts a soft mask for each source. The magnitude spec-

trogram of each source is extracted by applying the corresponding mask to the

mixture, and using the mixture phase information, the separated waveforms are

estimated.

OpenUnmix [97] is a popular spectrogram-based model decomposing music

recordings into four stems: bass, drums, vocals, and other instruments. The encoder

consists of a 3-layer BiLSTM, and the decoder is implemented as fully connected

layers. The model estimates full-band masks to filter the mixture spectrogram.

The before-mentioned models all use spectrograms as input, and we know the

phase information does not take part in processing spectrograms. At the time of

converting the separated sources’ spectrograms into the temporal domain, these

models either use phase reconstruction algorithms or use the mixture phase for all

the separated sources, both of which are inaccurate. Only recently, advances in

deep learning have enabled us to process raw audio easier, and as a result, studies

on sample-based source separation are being conducted.

Wave-U-Net [96] is one of the early successful models operating in the time

domain for multi-instrument and singing voice separation inspired by the U-Net

[84] architecture. It handles long-term dependencies of audio by learning feature

maps through the down-sampling path of the encoder using 1D convolutions. The

up-sampling blocks at each layer apply linear interpolation to the low-resolution
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feature maps, and by combining them with the encoder feature map of the same

layer, the network predicts the samples of each source directly.

Demucs [22] is a state-of-the-art waveform-based model with a convolutional

autoencoder architecture. It also employs skip connections between the encoder and

decoder similar to U-Net and Wave-U-Net. The encoder downsamples the audio

using 1D convolutions followed by a BiLSTM network at the bottleneck layer. The

decoder employs transposed convolution for upsampling and predicts the source

samples separately inspired by the music notes synthesis model proposed in [23].

Although music source separation systems have come a long way, they still have

limitations that need to be resolved. The existing models should be trained on

isolated sources; they can only separate the sources they are trained for with the

number of sources known in advance. Due to copyright restrictions, such a dataset

is hardly available for free. The largest free dataset available is MuseDB [82] with

10 hours of data only containing the stems of bass, drums, vocals, piano, and other

accompaniment. At this point, separating all the instrument stems is impractical,

and those we can separate have artifacts as inevitable parts of them.

2.2.4 Music Style Translation

We previously discussed how image-to-image translation emerged to automate cross-

domain mappings of image styles. In recent years, translation techniques have been
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investigated in the audio domain, where we encounter two main streams: voice con-

version and music style transfer.

Voice conversion, both for speech and singing vocals, deals with translating the

voice from a source speaker to a target speaker by changing the speaker’s identity

attributes like the timbre, accent, and emotion, uttering the same content. Voice

conversion applications are seen in personalized speech synthesis and voice dubbing

for movies.

Before deep learning methods emerged, voice conversion was studied through

statistical approaches like Gaussian mixture models and vector quantization. [94]

These models, along with the earlier translation networks, were designed based on

parallel data. Such networks require paired data for training and also take two

inputs, one representing the content and another representing the voice type. In

numerous studies around voice conversion with parallel data, fully connected net-

works, LSTMs, and encoder-decoder architectures have been employed. In recent

years, the advent of image style translation using GAN-based models has made un-

paired voice conversion possible. For instance, the CycleGAN architecture has been

used in multiple studies leading to multiple versions of CycleGAN-VC [56, 57, 58].

As our research is concerned with music style translation, we will discuss the

studies in this area in more detail. Although it is an inaccurate terminology, music

style transfer and music style translation are used interchangeably in the literature.
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Music style transfer, similar to its counterpart in the image domain, works with

paired data to combine the content of one with the style of the other, whereas style

translation is not limited to this setting.

Music style translation takes various forms due to various definitions of style in

music. Dai et al. [20] classify music style translation into three categories:

1. Composition style translation: changing those features of a music piece ad-

dressed in reharmonization while keeping the piece’s structure unchanged.

2. Timbre style translation: changing the timbre of a music piece from one

instrument or source of style, such as whistling, to another.

3. Performance style translation: changing the performance-related features from

one artist to another artist in terms of their expressiveness.

Recent studies have mainly focused on timbre and composition styles. Almost

all the composition style translation systems deal with symbolic representations,

i.e., MIDI and piano rolls. On the contrary, timbre translation systems mostly use

time-frequency representations.

The following paragraphs provide details on the existing composition style trans-

lation models.

The composition style translation system in [71] addresses homophonic music

composed of a predominant melody and accompaniments. The system uses the
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melody as the condition to translate the accompaniment into jazz or classical style

using piano roll matrices. The network architecture is inspired by the LSTM-based

music generation model called DeepBach [40] to account for temporal dependencies.

It also employs dilated convolution blocks similar to WaveNet to model the joint

probability of pitch information.

Hung et al. [50] propose two composition translation models that mainly focus

on rearrangement. Instead of a direct transfer, the audio’s CQT representation is

transcribed into a symbolic representation, specifying the instruments and pitch

content. Following the style transfer setting, the networks combine the pitch con-

tent of a source clip with the timbre information of a target clip. Both models,

DuoED and UnetED, have fully convolutional encoder-decoder architectures and

learn pitch and timbre representations separately. DuoED uses two different de-

coders to separate the representations, while UnetED with a U-Net-like structure

applies adversarial training to disentangle pitch and timbre information.

In contrast to other models that overlook the dynamics, MIDI-VAE [9] accounts

for note velocities. MIDI-VAE is a GRU-based variational autoencoder that changes

the pitches, note velocities, and instruments of the accompaniment part toward one

of the target styles of classical, jazz, or pop. The network consists of three encoders

and three decoders to model pitch, instrument, and velocity distributions. The

model also employs a style classifier to guarantee the disentanglement of style-
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related information in the latent representation.

Similarly, Groove2Groove [17] keeps the main melody of a source piece and

transfer the accompaniments into the target style specified by the target piece. The

system is an extension to the one introduced in [16] which could only support a

limited number of styles and ignored velocity. The network consists of two encoders

to capture the content and style implemented by CNNs and GRUs. The decoder

adopts an architecture based on sequence-to-sequence models with attention.

Wang et al. [106] have introduced the only GAN-based model that operates on

symbolic representation. They consider the unsupervised translation task a domain

adaptation problem and tackle it using a bidirectional GAN structure. One GAN

translates the source domain to the target domain, and the other does the inverse.

This configuration is used to form a cycle consistency loss similar to the one in

CycleGAN.

The following paragraphs provide details on the existing timbre translation mod-

els.

Modulated variational autoencoders (MoVE) [5] were first introduced to per-

form multi-domain timbre transfer with only one VAE rather than multiple de-

coders. The joint and conditional distributions are modeled in the latent space

for several instruments by adopting efficient domain conditioning and external con-

trol variables, alleviating the need for adversarial training. The model operates on
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Mel-spectrograms and converts them back to the audio domain using Griffin-Lim.

The timbre translation model in [70] is inspired by the MUNIT approach and

uses a Relativistic average GAN (RaGAN) [55] to translate the timbre of the input

into one of the three instruments of piano, guitar, and string quartet. The network

operates on Mel-spectrograms and exploit MFCCs in the consistency loss to ensure

the timbre-related features are captured.

TimbreTron [48] is another GAN-based model which applies CycleGAN archi-

tecture to the CQT representation of audio. Then a WaveNet synthesizer recon-

structs the audio conditioned on the generated spectrogram. TimbreTron operates

in the style transfer setting and takes both the source and target timbre as the

input.

The first attention-based timbre transfer system was introduced in [54] based

on the CycleGAN architecture with an attention-guided generator. This archi-

tecture was initially developed for image-to-image translation. Therefore, Mel-

spectrograms are utilized as an image-like representation of the audio. The system

employs a MelGAN conditioned on the generated Mel-spectrograms to reconstruct

the audio.

The very recent work by Ćıfka et al. [15] presents an extension of the vector-

quantized variational autoencoder (VQ-VAE) operating via disentangled pitch and

timbre representations. VQ-VAE is a variational autoencoder with discrete latent
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representation, which is used for modeling the pitch content. A regular encoder

is also employed to produce the style code. In order to ensure style and content

disentanglement, using paired data is avoided in the training phase. Both encoders

and the decoder are composed of convolutional layers followed by GRU layers. The

model uses log-STFT representation, and Griffin-Lim is used for audio reconstruc-

tion.

The universal timbre translation network in [75] is the only model to the best

of our knowledge that processes raw audio waveforms. Inspired by the WaveNet

autoencoder architecture in [31], it translates an arbitrary source piece to sev-

eral specific timbre domains. Although one universal encoder is used to code the

pitch-related features, every domain needs to have a specific conditional WaveNet

decoder. The decoders are conditioned on the pitch content and generate audio that

entails the specific timbre they have been trained for. A convolutional confusion

network is adopted to ensure that no timbre-related information is encoded in the

latent representation so that the decoders cannot memorize the pitch information.

Table 2.1 shows a summary of the models addressing music style translation

with some of their attributes.

So far, we have discussed all the network architectures, models, and studies that

will assist in better understanding the contributions of this thesis, which will be

elaborated on in the following chapter. Inspired by the work in [75], we propose
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Table 2.1: Music style translation models and their attributes.

Category Reference Styles Input Domain Architecture

Composition
Style

Translation

[71] Jazz, Classical Piano-roll LSTM + WaveNet

[50]
Instrumentation

(Piano, Strings, Acoustic, Band)
MIDI Encoder-decoder

[9] Jazz, Pop, Classical Piano-roll VAE

[16], [17]
Jazz, Pop,

Instrumentation
(Piano, Guitar, Bass, Drums, Strings)

MIDI Encoder-decoder

[106] Jazz, Pop, Classical MIDI GAN

Timbre
Style

Translation

[5]
Saxophone, Flute,

Violin, French-Horn
Mel-spectrogram VAE

[70] Piano, Guitar, Strings Mel-spectrogram RaGAN

[48]
Piano, Flute, Violin,

Harpsichord
CQT CycleGAN + WaveNet

[54] Piano, Violin Mel-spectrogram CycleGAN

[15]
Keyboards, Guitars, Bass,

Woodwinds, Strings
Log-STFT VQ-VAE

[75] Piano, Strings, Woodwinds Raw Audio WaveNet Autoencoder
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a model for audio-based multi-instrument music translation. The ultimate goal of

our research is to perform automatic music rearrangement by altering the set of

performing instruments, which was first addressed in [50]. To this end, we leverage

the WaveNet autoencoder architecture [31] comprising convolutional encoders and

WaveNet decoders. The universal timbre translation model [75] and the state-of-

the-art audio source separation model [22] will also be employed in our experimental

setups.
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3 Methodology

In this chapter, we introduce Music-STAR, a model based on WaveNet autoen-

coders specifically designed for audio-based multi-instrument music translation that

promotes audio-based rearrangement. We propose Music-STAR with two training

approaches, unsupervised and supervised, both of which will be elaborated in Sec-

tion 3.4.

Before delving into the details of our proposed model, we present the Star-

Net dataset, used to train the architectures forming our research experiments in

Section 3.1. Next, we present two baseline models to perform multi-instrument

translation: single-instrument translation (Section 3.2), and separation-translation

pipeline (Section 3.3), which will be compared to Music-STAR in terms of transla-

tion quality.
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3.1 Dataset

Having the right dataset in terms of quality and quantity is the first step to-

wards successfully training deep architectures. Conducting this thesis requires a

dataset containing multi-track pieces played with different instruments alongside

their stems. Since accessing actual songs’ stems is hardly possible due to copyright

limitations, we use a multi-track dataset in MIDI format and then convert it to

audio by applying virtual software instruments.

Virtual software instruments are pieces of software that translate symbolic mu-

sic notation, such as MIDI, to audio. Different techniques are used to create such

instruments, such as sampling and using synthesizers. Today, almost all real in-

struments are available as a virtual instrument, and it is trivial to convert MIDI

inputs into audio performed by arbitrary musical instruments using a DAW.

In this manner, we create StarNet, a dataset for training and evaluating Music-

STAR, and our baseline models. In StarNet, every piece consists of two instruments,

one accounting for the melody line and the other complementing the melody as the

accompaniment. The MIDI files we used are mainly from the MusicNet dataset

[100]. MusicNet is a collection of freely licensed classical music recordings containing

the work of 10 well-known classical composers and 11 instruments in total. We

applied virtual software instruments using GarageBand (Figure 3.1), a digital audio
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Figure 3.1: GarageBand Environment - The library section on the left is a collection

of available virtual instruments. Each of the instruments in our dataset has been

assigned to one of the MIDI tracks.

workstation developed by Apple.

We previously argued that one advantage of raw audio over MIDI representation

is incorporating performance details, determined by articulations, dynamics, and

the performer’s choice of expressiveness. Since StarNet is created by applying

virtual instruments to MIDI data, it is not necessarily rich in such details either.

Nonetheless, StarNet is sufficient to exhibit the capacity of Music-STAR as an

audio-based rearrangement model. More advanced ingredients can be investigated

using a more ornate dataset in the future.

Figure 3.2 shows the process of applying virtual instruments to MIDI tracks and
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Figure 3.2: The process of obtaining the target arrangement by applying virtual

instruments to MIDI input.

mixing them into a two-instrument piece. Through this approach, we also obtain

the gold standard for our experiments (R0), which indicates how the rearranged

outputs should sound ideally according to the quality of pieces in our dataset.

We present three versions of StarNet, raw, pre-processed, and reduced, the

details of which are discussed below.

3.1.1 Raw Data

We utilize four virtual instruments in StarNet, piano, string ensemble (including

violin, viola, cello, and bass accounting for different pitch ranges), vibraphone and

clarinet.

The dataset is composed of two domains created by strings-piano and clarinet-

vibraphone combinations of one piece. Six audio files present every music piece in

StarNet:

– First MIDI track performed by strings.

– Second MIDI track performed by piano.
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– Strings-piano mixture.

– First MIDI track performed by clarinet.

– Second MIDI track performed by vibraphone.

– Clarinet-vibraphone mixture.

so that strings and clarinet can be the source/target instruments for the first track,

while piano and vibraphone determine the source/target instruments for the second

track.

We have chosen piano↔ vibraphone and strings↔ clarinet translations because

we want the source and target instruments to be controlled by the same type of

excitation while being played. More precisely, piano and vibraphone notes originate

with discrete excitations, while clarinet and strings notes can be played with a

continuous stream of excitations.

As mentioned before, StarNet is created based on the MIDI files from MusicNet,

which contains solo performances, duets, and a few musical ensembles. As the tracks

are separated in the MusicNet MIDI files, converting them to audio both separately

and as a mixture is possible.

We select a variety of music pieces from the MusicNet collection, and instead of

using their original instruments, we apply the above-mentioned virtual instruments.

Some of the pieces are originally composed for solo piano, and we apply two different
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instruments to the right-hand and the left-hand tracks. For instance, we keep

the right-hand track performing the melody with the piano while applying the

string ensemble to the left-hand. In other cases, we pick two tracks of a string

quartet, accompanied clarinet pieces, or other woodwind instruments ensembles.

The resulting dataset contains 100 two-instrument classical pieces adding up to

roughly 11 hours. We render the audio as stereo WAV files with a sample rate of

44.1 kHz and a bit depth of 16 bps.

3.1.2 Pre-processed Data

After creating the raw dataset, we pre-process it using the functions explained

below.

1. Audio Trimming: Since the instrument tracks and their combination are used

to train the models at sample level, it is necessary to make sure that all the

tracks of one music piece have the same length, i.e., the same number of

samples. Otherwise, the alignment between the individual tracks and the

mixture could be disrupted. There are many pieces in the raw dataset that

have one instrument track longer than the other resulting in two audio files

with different durations. To mitigate this issue, we apply audio trimming to

discard the extra samples at the end of the longer tracks.
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2. Silence removal: In the raw version of StarNet, there are inevitably many

intervals in every piece that one or both instruments are silent. However, to

deliver the purpose of our proposed model, we should make sure that the two

instruments are played simultaneously for a considerable amount of time and

reduce the duration of solo parts as much as possible. Therefore, we need to

detect the silent intervals by indicating the minimum loudness and minimum

silence duration and remove all those intervals from all tracks of a particular

piece. After the silence removal, the dataset size shrank to roughly 9 hours.

3.1.3 Reduced Data

The pre-processed version of StarNet includes uncompressed stereo WAV files with

a sample rate of 44.1 kHz and depth of 16 bps, i.e., the audio quality of a CD. We

can reduce the amount of data by resampling the audio at a lower sample rate. We

resample the audio at a rate of 16 kHz, which results in a lower quality than 44.1

kHz, but with enough resolution to present all different timbres.

Moreover, using stereo audio files doubles the volume of data and the number

of parameters in the models accordingly. In order to reduce the data size, we merge

the two audio channels and output mono audio.
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Figure 3.3: The process of obtaining the target arrangement by applying single-

instrument translation.

3.2 Single-Instrument Translation

The most simplistic approach toward multi-instrument translation is applying single-

instrument translation to each instrument. However, this is only possible when the

music stems are available. We consider this approach as a baseline in our exper-

iments and will evaluate how Music-STAR performs compared to this baseline.

Figure 3.3 shows how a new arrangement (R1) is generated by applying single-

instrument translation and mixing the translated tracks. The obtained results

from this task are expected to be of lower quality than R0 in Figure 3.2.

Since we discuss audio-based rearrangement in this thesis, we employed the

universal network [75], the only audio-based music translation model, which is

built upon the WaveNet autoencoder architecture [31] trained in an unsupervised

manner. This model consists of a universal encoder and six decoders corresponding

to six domains used for network training, all collected from the MusicNet audio

dataset:

– Bach’s solo cello
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– Beethoven’s solo piano

– Cambini’s woodwind quintet

– Bach’s Solo Piano

– Beethoven’s accompanied violin

– Beethoven’s string quartet

The temporal encoder with a WaveNet-like architecture learns the pitch con-

tent embeddings, while for every target domain, an individual decoder is trained

to generate realistic audio by being conditioned on the encoder’s embedding. In

order to prevent the autoencoder from memorizing the data and make it capture

meaningful features in the code, a distorted version of the input is fed into the

network. In other words, the network is trained as a denoising autoencoder that

learns to recover the original input.

In addition to the encoder and the decoders, a domain classification network is

employed for adversarial training of the encoder using the domain confusion loss

[34]. This confusion network is used to prevent the encoder from encoding the

input’s domain-specific features. Accordingly, the confusion network should not be

able to classify the generated embeddings into the correct domain.
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Figure 3.4: The detailed view of the universal music translation network [75] archi-

tecture. The confusion network and audio input of the decoder are employed only

during training.
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3.2.1 Model Architecture

The detailed view of the network components is shown in Figure 3.4. The architec-

ture is almost identical to the original WaveNet-autoencoder presented in [31]. The

encoder starts with a non-causal non-dilated convolution followed by three blocks

of 10-layer residual networks composed of non-causal dilated convolutions with a

kernel size of 3 followed by ReLU nonlinearity and a 1x1 convolution. The dilation

increases in every layer by a factor of 2, while the channel number, i.e., 128, remains

unchanged throughout the layers. The residual summation of every layer creates

the input for the next layer. The final code of size 64 is obtained by applying a 1x1

convolution and average pooling to the output of the final layer.

The code is then upsampled using nearest neighbor interpolations and is fed

into the decoder as the condition. The WaveNet decoders are implemented with

four blocks each consisting of 14 layers. A causal dilated convolution with a kernel

size of 2 is applied to the input, and a 1x1 convolution is applied to the condition

in every layer. Sigmoid and Tanh nonlinearities are then used as gated activation

units applied to the sum of the input and the condition. Residual connections

provide the input for the subsequent layers, while skip connections pass the output

of every block. The final output will be the result of 1x1 convolutions followed by

ReLU activations applied to the summation of the skip connections. Since 8-bit
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mu-law encoding is applied to the input, the final layer of the decoder predicts

every sample with 256 possible values.

The confusion network used for adversarial training consists of three 1x1 con-

volution layers with a channel size of 100. It uses ELU nonlinearity and outputs a

k-dimensional vector where k is the number of domains. If the encoder succeeds at

excluding the domain-specific information, it is expected that the confusion network

cannot classify the generated code better than random.

3.2.2 Model Training

The network is originally trained on six classical music domains from the MusicNet

dataset. Since the available amount of data for different domains varies, the model

has a different level of expressiveness in translating to each domain.

In [75], the authors emphasize the role of data augmentation, which is performed

as modulating the pitch locally in every training audio segment. While the encoder

learns to capture the pitch content of the augmented data, the decoder learns how

to denoise the distorted audio. The teacher forcing technique is used for training

the decoder where the ground truth of one time-step is applied as the input of

the next, enabling the decoder to be trained in parallel. On the contrary, no data

augmentation is applied during inference, and the decoder generates the output

sequentially due to its autoregressive nature.
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Training the network takes place in a jointly manner, in which the encoder,

the decoder, and the domain confusion network get updated according to the loss

functions they correspond to. The universal encoder and the decoders are trained

to minimize the loss below:

∑
j

∑
sj

ErL(Dj(E(O(sj, r))), sj)− λL(C(E(O(sj, r))), j) (3.1)

where D, E, O, and C represent the decoder, the encoder, the augmentation process,

and the confusion network respectively. L is the cross entropy loss, j = 1, 2, ..., 6

accounting for the six domains, and sj is the input segment which is identical to

the target output.

The classification loss of the confusion network is defined as:

∑
j

∑
sj

ErL(C(E(O(sj, r))), j) (3.2)

The original model has been trained on mono audio segments with a sample

rate of 16 kHz, that are quantized by 8-bit mu-law. The input files are randomly

selected, and then a 0.75-second audio chunk is randomly segmented out of the

file for every training input on the fly. A duration between 0.25 to 0.5 seconds of

that segment is then selected for applying distortion. Training has been done using

Adam optimization with a learning rate of 1e−3 and a decay factor of 0.995 with
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a batch size of 32. The model was trained for three days on six nodes, each with

eight Tesla V100 GPUs, i.e., 48 GPUs in total, for 92 epochs.

In order to use this architecture as a baseline, we needed to make sure that the

decoders can generate the instruments’ timbre from our datasets which are piano,

string ensemble, clarinet, and vibraphone. Therefore, we tried to train the model

from scratch using the StarNet pieces performed by the four single instruments.

However, emulating such training configuration with a high number of GPUs re-

quires access to considerable resources, which were not available, and thus the

generated outputs could not compete with the pre-trained models. As a result, we

decided to use the pre-trained universal encoder and finetune the decoders using

our dataset. Since the original encoder has been trained on six domains and cap-

tures domain-agnostic features, it is powerful enough to encode inputs from other

domains successfully.

Furthermore, the domains that the original model has been trained for also

include piano, string quartet, and woodwind quintet, which are related to three

instruments in the StarNet dataset. We finetuned these decoders using the corre-

sponding instrument pieces from StarNet to ensure the learned timbre is as close

as possible to what we are offering in the dataset. We also trained a separate de-

coder for vibraphone, which was initialized with the pre-trained piano decoder. We

finetuned the decoders with a batch size of 16 and a learning rate of 0.98 for 100
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Figure 3.5: The process of obtaining the target arrangement by applying separation-

translation pipeline.

epochs using the reduced version of StarNet, where 8-bit mu-law is applied.

3.3 Separation-Translation Pipeline

Although the before-mentioned gold standard and baseline set good examples of

what our model’s ideal output could be, they do not correspond to actual use cases

where the instrument tracks are not available separately, and the system should

take the audio mixture as input.

One way to model music rearrangement without having the stems is to adopt

a pipeline of audio source separation and single-instrument translation. We de-

sign an experiment to demonstrate the performance of this pipeline. The input

audio mixtures are from two domains, strings-piano and clarinet-vibraphone, as

discussed in the dataset section. The source separation module isolates each of the

tracks so that a single-instrument translation model, as discussed in Section 3.2,

can transform each of them into a target instrument (Figure 3.5).

To perform source separation we adopted Demucs [22], a state-of-the-art music

source separation model that operates at the sample level, taking an audio mixture
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Figure 3.6: Demucs architecture. [22]

and outputting isolated audio waveforms. According to the authors, their archi-

tecture is closer to the audio generation models than the masking models since the

final outputs are directly the predicted separated stems.

3.3.1 Model Architecture

Demucs has a U-Net architecture with a convolutional encoder and decoder. Skip

connections are used to apply residual learning between the corresponding layers of

the encoder and the decoder in the downsampling and upsampling paths, respec-

tively.

Figure 3.6 depicts Demucs’s architecture. The models’ encoder comprises six
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convolutional blocks. The encoder takes a stereo mixture, i.e., a two-channel input,

and through the first convolutional block, the number of output channels will reach

64. In the subsequent blocks, the number of channels will be doubled per block.

Every block consists of a 1D convolutional layer with a kernel size of 8 and a stride of

4, followed by a ReLU function. The feature map is then fed into a 1x1 convolutional

followed by a Gated Linear Unit (GLU) [21], which improves performance based on

the results of the ablation study. A 2-layer bidirectional LSTM is placed right after

the encoder to help with the loss reduction, followed by a linear layer to adjust the

size of the final code.

Demucs’s decoder has the same number of blocks as its encoder, and every

decoder block is almost the inverse of an encoder block except that the 1x1 convo-

lution is replaced by 1D convolution with a kernel size of 3 and stride of 1. This

convolutional layer is used to engage the context of neighboring samples while up-

sampling the code with GLU activation coming afterwards. The upsampling is

performed through the transposed convolutions with a kernel size of 8 and a stride

of 4, and a RELU activation. Every block of the decoder reduces the number of

channels by the factor of 2 to the point that the final output estimates the two-

channel (stereo) sources. Figure 3.7 provides a detailed view of Demucs’s encoder

and decoder layers.

Inspired by Wave-U-Net [96], the first successful audio source separation model,
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Figure 3.7: Detailed view of the Demucs layers encoders on the left and decoders

on the right. [22]

Demucs adopts skip connections to transmit some useful information that is essen-

tial for audio reconstruction, such as phase information of the mixture.

3.3.2 Model Training

Demucs is originally trained on MuseDB [82] and is able to separate four stems:

bass, drums, vocals, and other accompaniments. As mentioned before, the existing

pre-trained source separation models cannot separate every single instrument of

the mixture, and it is probably due to the unavailability of all the tracks in the

training sets. However, it is vital for our experiment that the network separates

the two instruments present in the mixtures. Therefore we trained Demucs using

the pre-processed version of StarNet. We randomly selected 80 pieces to use as the
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training set and 20 tracks as the validation set. Every mixture audio was segmented

into 5-second slices as one instance of the input on the fly, and the corresponding

segments of the sources were used as the ground truth. Additionally, four types of

data augmentation were applied:

– Shifting: Randomly shifting the audio in time.

– Flipping channels: Swapping the left and the right audio channels.

– Flipping polarity: Multiplying the sources by ±1 randomly.

– Scaling: Scaling the value of the samples within a fixed range randomly.

– Remixing: Shuffling sources within one batch to generate a new mix.

Demucs is trained to minimize the loss below:

min
θ

∑
x∈D

S∑
s=1

L(gs(x; θ), xs) (3.3)

where x is an example from the dataset D, S is the total number of stems, gs(x; θ)

is the predicted waveform for stem s given x parameterized by θ, xs is the ground

truth for stem s in x, and L is L1-loss:

L1(x̂s, xs) =
1

T

T∑
t=1

|x̂s,t − xs,t| (3.4)
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where xs is the waveform of stem s containing T samples and x̂s is the predicted

waveform corresponding to stem s.

Demucs was originally trained on sixteen V100 GPUs with 32 GB of RAM using

a batch size of 64. We trained the model on eight V100 GPUs using a batch size

of 32 for 250 epochs.

We trained Demucs with the original learning rate of 3e−4 and Adam optimizer,

which were used for training Demucs on MuseDB. The resulting model can take an

arbitrary length of an input mixture and successfully isolates strings tracks from

piano and clarinet tracks from vibraphone.

3.4 Music-STAR

So far, we have discussed different approaches to account for multiple instruments

in music translation:

1. If we have the MIDI tracks, we can apply virtual software instruments.

2. If we have the separated audio sources, we can take advantage of single-

instrument translation models.

3. If we have the audio mixtures, we can use source separation models to isolate

each instrument track and apply single-instrument translation.
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Nevertheless, our goal is to realize the idea of multi-instrument audio rearrange-

ment where we do not face the restrictions of the before-mentioned techniques. To

this end, we introduce Music-STAR, a system specially designed for this task. We

discuss two approaches: unsupervised and supervised. In the unsupervised ap-

proach, there is no need to have paired data, i.e., the same music piece performed

in the source and the target domains. On the contrary, having paired data is

necessary for supervised training.

The details of these approaches will be unfolded in the subsequent sections. But

before that, we introduce a notation of the system’s input and outputs to help us

present the approaches more precisely.

Every audio track consists of pitch, loudness, duration, and timbre data. To

simplify our discussion, we consider the loudness and duration as parts of the pitch-

related information. Thus, we can notate a piano audio track as follows:

Apiano = Tpiano + Ppiano

where A stands for audio, T is the timbre and P is the pitch. Separating these

two components is a study topic known as pitch-timbre disentanglement, which

has been leveraged in previous music translation studies [9, 50, 75] and is mostly

addressed by adversarial learning in encoder-decoder architectures.
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In the universal translation model that we used as our baseline, the autoencoder

is originally trained in such a way that the encoder captures the P component, i.e.,

the pitch content, and the decoder learns to synthesize audio corresponding to the

P by applying the timbre T . During the training phase the autoencoder is trained

to denoise and reconstruct the input audio. However, any arbitrary input can

source the model for pitch information during inference while the decoder applies

the learned timbre to the pitch component. For example, violin to piano translation

will take place as follows:

1. Input = Aviolin = Tviolin + Pviolin

2. The encoder generates a code for Pviolin.

3. The code is fed into the piano decoder.

4. Output = Av2p = Tpiano + Pviolin

In our research, we are tackling a more complex problem as we are working with

multi-instrument pieces. Our system’s input will be either:

– Amix1 = Apiano + Astrings = Tpiano + Ppiano + Tstrings + Pstrings, or

– Amix2 = Avibraphone + Aclarinet = Tvibraphone + Pvibraphone + Tclarinet + Pclarinet

73



As a result, the pitch-timbre disentanglement does not suffice as we need to isolate

two timbre and two pitch components. Since we do not intend to engage source

separation modules in our system, we propose two methods to deal with such a

problem.

3.4.1 Unsupervised Music-STAR

In this approach, we employ a method that does not require paired data from the

source and target domains. To be specific, for the input:

Ainput = Apiano + Astrings

the training set does not need to have the corresponding output:

Aoutput = Avibraphone + Aclarinet

where:

Ppiano = Pvibraphone and Pstrings = Pclarinet

Nonetheless, what we use in this approach are the stems of the input: Apiano and

Astrings.
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Unsupervised Music-STAR performs a semi-separation task through the encod-

ing process, where the encoder learns to capture the pitch content of one of the two

instruments in the mixture. To this end, we need a supplementary encoder that

can provide the pitch content for single instruments and assist the Music-STAR en-

coder in distinguishing between the instruments. Recall that the universal encoder

in our baseline model learns to extract pitch-related information from the input.

Thus the output of such an encoder can provide the exact information we want to

be extracted from a mixture. Based on this, we can train the Music-STAR encoder

to mimic the output of the universal encoder when given a mixture as the input.

For instance, if we have the mixture as:

Amix = Apiano + Astring

we feed the piano track Apiano:

Apiano = Tpiano + Ppiano

into the universal encoder, and the output will contain piano track pitch information

(Ppiano). We then input the mixture Amix to the Music-STAR encoder and train

it to output the same code (Ppiano). This way, we can finally have a piano-specific
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Figure 3.8: Training Music-STAR using the unsupervised approach. The Music-

STAR encoder is trained to generate the same code as the universal encoder.

encoder to extract the piano pitch content from every mixture. Figure 3.8 illustrates

how this method works and how Music-STAR with unpaired data makes multi-

instrument rearrangement possible.

Via this approach, we can isolate the information corresponding to one instru-

ment without applying actual source separation. We can train one encoder per

instrument with the help of the universal encoder. During inference, a pre-trained

WaveNet decoder can also be engaged to translate the code to an arbitrary target

instrument.

Nevertheless, the question may arise: if we are using the components from the

single-instrument model to train the multi-instrument model, why not keep prac-
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ticing the same idea of the baseline model, in which the instruments are translated

one by one and then mixed together? The answer to this question is that we are

accounting for the case when we only have audio mixtures as the input. While a

tremendous amount of audio data is available on single instruments, our access to

multi-instrument pieces along with their stems is quite limited. However, we can

mix those single-instrument tracks to generate multi-instrument datasets and train

the Music-STAR encoder without concern if they are actual music pieces. Ulti-

mately, the same encoder can isolate one instrument out of many when the input

is a true musical mixture.

3.4.1.1 Model Architecture

As explained above, we adopt an autoencoder architecture as the backbone of the

model. The focus of this method is to train the Music-STAR encoder with the

help of the universal encoder discussed in the baseline model (Section 3.2). The

architecture of the universal encoder is depicted in Figure 3.9. Since the Music-

STAR encoder should learn to extract the same information as the universal encoder

from a mixture rather than a stem, we expect a more complex architecture to benefit

the performance. The final architecture of the Music-STAR encoder is shown in

Figure 3.9. Similar to the universal encoder, it starts with a non-causal non-dilated

convolution. The encoder blocks consist of four blocks of 14-layer residual networks
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Figure 3.9: Detailed view of the Music-STAR encoder.

composed of non-causal dilated convolutions with a kernel size of 3, followed by

ReLU nonlinearity and a 1x1 convolution. A GLU activation function follows the

1x1 convolution, and the output is summed with the input to form the residual

connection. The result of this connection is then fed into the next layer of the

encoder. The dilation increase factor of 2 and 128 channels are selected identical

to the universal encoder. Our experiments show that the presence of the GLU

nonlinearity boosts the performance compared to the case where we adopt the

same architecture as the universal encoder only with more layers. The formula of
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GLU function is as follows:

GLU(a, b) = a⊗ σ(b) (3.5)

where a and b are formed by cutting the input in half along the selected dimension,

σ is the sigmoid function, and ⊗ is the element-wise product between matrices.

Note that we want the Music-STAR encoder to output a code with the same

dimensions as the universal encoder, i.e., 64 channels. Since the GLU activation

splits the input, the 1x1 convolution before the GLU doubles the number of the

channels. After passing through the GLU, it will be reduced to its original dimen-

sion. The average pooling applied to the final code has a kernel size of 800 samples

resulting in a code of size 64x15.

The pre-trained WaveNet decoders are attached to the Music-STAR encoder

during inference to translate the code into the target instruments, and the summa-

tion of their results will demonstrate the rearrangement. The details of the decoder

architecture are illustrated in Figure 3.4 and described in Section 3.2.

3.4.1.2 Model Training

Unlike the baseline model that trains a universal encoder for all the domains in

the training set, we need to train a single encoder for each instrument to extract

79



pitch information from a mixture. We feed the instrument track to the universal

encoder and use the generated code as the ground truth for training the Music-

STAR encoder, which takes a mixture as the input. To be concrete, the model

strives to minimize the loss function below:

∑
j

L(Ei
m(mixj), Eu(x

i
j)) (3.6)

where Em is the Music-STAR encoder, mixj is the jth fragment from the audio

mixture, Eu is the universal encoder, xij is the jth fragment of the instrument track

we want to extract from the mixture, and L is L1 loss.

Similar to the baseline model, the encoder is trained on mono audio segments

with a sample rate of 16 kHz from reduced StarNet, that are quantized by 8-bit

mu-law. The 0.75-second audio chunks are randomly segmented out of the mixture

files, and the same segments are extracted from the instrument tracks. We train the

model using Adam optimization with exponential learning rate decay. We adopt a

learning rate of 3e−4 and a decay factor of 0.98 with a batch size of 16 for a total

of 100 epochs.

During inference, what we achieve as the resulting rearranged piece is formulated
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as:

∑
i∈I

Di
t(E

i
m(mix)) (3.7)

where I = {1, 2} since there are two instrument tracks in the mixtures and Di
t is

the target decoder chosen for the ith source instrument.

3.4.2 Supervised Music-STAR

This section presents another approach towards audio-based music rearrangement

based on the WaveNet autoencoder architecture, where we take advantage of paired

audio tracks. In other words, for every mixture consisting of piano and strings

Amix1 = Apiano + Astrings

there is a counterpart performed by vibraphone and clarinet:

Amix2 = Avibraphone + Aclarinet

where Pvibraphone = Ppiano and Pclarinet = Pstrings.

Before we extend upon how this method works, we need to illuminate some

details from the original WaveNet autoencoder [31] and its enhanced version used
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for music translation [75].

Following the WaveNet’s success in conditional audio synthesis and speech gen-

eration, OpenAI introduced the WaveNet autoencoder to synthesize musical notes

with no need for external conditioning. The idea behind this model was to cap-

ture the long-term temporal structures by the encoder and then use the generated

code to condition the WaveNet decoder to reconstruct the musical notes. Their

achievements in manipulation and interpolations of timbre inspired the authors of

[75] to take it one step further and use the same architecture for music translation.

We look into specific parts of their contribution once again to shed light on how

their model helps us tackle our research question in this approach. As previously

mentioned in Section 3.2, they trained the WaveNet autoencoder with two critical

considerations:

1. Adopting a confusion network ensured that the encoder extracted the pitch

information while the decoder learned to apply the timbre-related features.

2. Using a random local pitch modulation, they ensured that the encoder did

not memorize the pitch content and trained the whole network to reconstruct

the original audio as a denoising autoencoder. To this end, the teacher forcing

technique was used in the training phase, where the decoder takes two inputs:

the original audio segment and the condition produced by the encoder. On
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Figure 3.10: The network learns to denoise and reconstruct the input audio segment.

the other hand, the conditioning code is the only input during inference, and

the decoder starts from scratch to synthesize the audio sample by sample.

Figure 3.10 presents the model’s training procedure. Consider the case when

we train the network on a one-second piano fragment Apiano where:

Apiano = Tpiano + Ppiano

The pitch modulation is applied to a segment of length 0.25 to 0.5 to distort the

audio fragment before it is fed into the encoder:

Ain = Tpiano + Ppiano + Pdistortion

Since the encoder learns to extract pitch information, we expect the code to

embody Ppiano + Pdistortion. However, the decoder will learn due to the teacher

forcing technique to reconstruct Apiano. Given an input of noisy pitch information,
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it should make the encoder provide a code for Ppiano by removing the distortion,

and apply timbre Tpiano. Consequently, the decoder learns to reconstruct the audio

correctly, and the encoder learns to generate the proper code that the decoder needs

for its task.

Now, we formulate the task of two-instrument translation once again with the

input audio as:

Amix = Apiano + Astrings = Tpiano + Ppiano + Tstrings + Pstrings

Our desired output is the rearranged piece in which the piano and string instruments

are translated into vibraphone and clarinet, respectively. We expect that a single

decoder can only learn the timbre information of one instrument, and we assume

that for obtaining Aout, we need to mix the results from two separate decoders.

To ensure simplicity, we first consider the case where we translate only one of the

instruments in the mixture, e.g., piano. Thus the output we are looking for is:

Aout = Avibraphone = Tvibraphone + Pvibraphone

where Pvibraphone = Ppiano.

To achieve this output, we should make sure that:
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Figure 3.11: Training Music-STAR using the stem-supervised approach.

1. The encoder includes only Ppiano in the code, removing the other three com-

ponents of Amix (Tpiano, Tstrings, and Pstrings), which has been proven possible

when removing the distortion in [75].

2. The decoder applies the vibraphone timbre to the output that depends on

the audio segments we use in the teacher forcing procedure.

Accordingly, we conclude that if we:

1. Use the strings-piano mixture as the encoder’s input;

2. Use the vibraphone counterpart of the piano track to train the decoder;

the autoencoder will finally be able to extract the piano component of any

mixture and translate it into vibraphone (Figure 3.11).

The feasibility of this method depends on the existence of the paired data in

our training set. When the decoder is learning to upsample the encoder’s code

to generate the vibraphone’s segment, it inevitably guides the encoder to hand
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Figure 3.12: Training Music-STAR using the mixture-supervised approach.

in helpful information for the task, which should be the piano pitch information

since it’s the only feature the input and the target output have in common. This

approach will apply to other instruments if included in the training set.

We consider two configurations in the supervised approach:

1. Stem-supervised, where the model takes a mixture as the input and outputs

the translated version of one of the stems, as demonstrated in the example

above. In this case, we employ one autoencoder for each of the instruments.

(Figure 3.11)

2. Mixture-supervised, where the model takes a mixture as the input and outputs

the translated mixture using one autoencoder. (Figure 3.12)

We examine the autoencoder’s ability to detect the mutual features and remove

unwanted information at different levels through these configurations.

By introducing stem-supervised and mixture-supervised Music-STAR, we take

the applications of the WaveNet autoencoder even one step further to perform
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audio-based music rearrangement.

3.4.2.1 Model Architecture

We use the famous WaveNet autoencoder architecture in the supervised approach

where we replace the encoder with the Music-STAR encoder (Figure 3.9). The

decoders’ architecture is identical to the original WaveNet discussed in Section 3.2.

In stem-supervised Music-STAR, we employ two autoencoders, each for isolating

and translating one of the instruments in the mixture, and combine their outputs

in the end to obtain the rearranged mixture.

In mixture-supervised Music-STAR, the rearrangement takes place using one

encoder and decoder in an end-to-end manner.

3.4.2.2 Model Training

We trained the models on the reduced version of StarNet quantized by 8-bit mu-

law. We picked random one-second audio segments of a mixture file as the input

and extract the same segment in the target tracks to use them for teacher forcing

the decoders. The encoders and the decoders are trained jointly in stem-supervised

and mixture-supervised models.
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Stem-supervised loss function is formulated as

∑
j

L(D(E(mixj), tj)) (3.8)

where L is the cross-entropy loss, D is the decoder, E represents the encoder, mixj

is the jth input sample, and tij is the jth target sample performed by instrument i.

Mixture-supervised loss function is formulated as

∑
j

L(D(E(mixj), tj)) (3.9)

where L is the cross-entropy loss, D is the decoder, E represents the encoder, mixj

is the jth input sample, and tj is the jth sample from the target mixture.

Training is done using the Adam optimizer and exponential learning decay,

where a learning rate of 3e−4 and a decay rate of 0.99 are applied. The model is

trained for a total of 100 epochs with a batch size of 16.

The resulting rearranged piece during inference is formulated as below for the

stem-supervised model:

∑
i∈I

Di(E(mix)) (3.10)
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The mixture-supervised models is inferred as:

D(E(mix)) (3.11)
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4 Results and Evaluation

The previous chapter proposed Music-STAR, a system designed to perform multi-

instrument music rearrangement, with three approaches: unsupervised, stem-super-

vised, and mixture-supervised. Music-STAR is able to translate music pieces from

(into) two domains: strings-piano and clarinet-vibraphone. We also provided de-

tails on the design and implementation of our baseline models, single-instrument

translation, and separation-translation pipeline. All the models mentioned above

are based on WaveNet autoencoders.

Single-instrument translation is performed through finetuning the pre-trained

models discussed in [75] with the StarNet dataset. The separation-translation

pipeline leverages the Demucs network for the separation process and the same

single-instrument translation models as above to generate the outputs. Unsuper-

vised Music-STAR uses a Music-STAR encoder to extract the pitch information of

one instrument track from a mixture and then employs the same decoders as in

single-instrument translation to generate the audio. All three models mentioned
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above use the same pre-trained WaveNet decoders for audio generation.

Stem-supervised Music-STAR performs a two-to-one translation where one of

the stems in the input mixture is directly translated to its corresponding target

instrument. Mixture-supervised Music-STAR takes a mixture as the input and

generates the target mixture in an end-to-end manner.

In this chapter, we present the generated arrangements using these five models

and evaluate them on three criteria:

1. Content preservation: how much of the pitch content of the input is retained

in the output.

2. Style fit: How well the output presents the target timbres.

3. Audio quality: How clean and distortion-free the generated audio is.

We take two approaches in evaluating the results, i.e., subjective and objec-

tive. Subjective evaluation involves human participants who are asked to rank the

outputs based on the criteria mentioned above. Objective evaluation adopts quan-

titative measures to compare the models’ performances based on the same criteria.

The following sections provide the results, the details of the evaluation, and the

comparison outcomes.
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4.1 Results

We test and evaluate the models on ten music pieces, each presented as a 10-second

audio file. Some of these pieces are from the StarNet dataset performed by both

domains along with their stems. The rest are 10-second segments of famous music

pieces obtained by applying the StarNet Instruments to their MIDI files. The audio

samples are provided on the supplementary web page.

4.1.1 Single-Instrument Translation

The outputs of the single-instrument translation can be found here. In the case of

clarinet-vibraphone to strings-piano translation, every clarinet track is translated

into string ensemble, and every vibraphone track is translated into the correspond-

ing piano version. The resulting tracks are mixed, forming the new arrangement.

In the case of strings-piano to clarinet-vibraphone, the translation takes place con-

trariwise.

4.1.2 Separation-Translation Pipeline

The outputs from the separation-translation pipeline are presented here. In the case

of clarinet-vibraphone to strings-piano translation, the input mixture is fed into the

Demucs network. The isolated clarinet and vibraphone tracks are extracted and
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then translated into strings and piano, respectively. By mixing the translation

outputs, the new arrangement is delivered. In the case of strings-piano to clarinet-

vibraphone, the translation takes place contrariwise.

4.1.3 Unsupervised Music-STAR

The outputs of unsupervised Music-STAR are provided here. In the case of clarinet-

vibraphone to strings-piano translation, the input mixture is fed into two encoders,

one of which extracts the pitch information of clarinet and the other extracts the

pitch information of vibraphone. Then the piano and strings audio is generated

by corresponding decoders and mixed together to form the new arrangement. A

similar process applies to strings-piano to clarinet-vibraphone translation.

4.1.4 Stem-supervised Music-STAR

The outputs of stem-supervised Music-STAR are found here. In the case of clarinet-

vibraphone to strings-piano translation, two autoencoders take in the input mix-

ture, one outputs the piano track, while the other outputs the strings track. The

two outputs are then mixed. Strings-piano to clarinet-vibraphone translation is

possible in a similar manner.
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4.1.5 Mixture-supervised Music-STAR

This link provides the outputs from mixture-supervised Music-STAR, in which the

input mixture is directly translated into the target mixture using one autoencoder.

4.2 Evaluation

4.2.1 Subjective Evaluation

We carried out the subjective evaluation by distributing a survey (Appendix A)

among 30 participants, some of whom had a musical background. Each survey con-

tains one target mixture from each domain (strings-piano and clarinet-vibraphone)

to demonstrate the gold standard, followed by corresponding translation outputs

resulting from the five models. Since we have 10 test samples, each translated into

two domains, ten surveys were created to cover all combinations. According to

the number of participants, each target piece is assessed three times. The audio

samples’ order was different for the two pieces, and the participants had no prior

knowledge of the order.

Every music piece in the survey is evaluated through four questions asking the

participants to rank the five outputs (from (a) to (e)) based on:

1. How well they preserve the target musical content, which accounts for content

preservation.
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Figure 4.1: The models’ rankings based on subjective evaluation

2. How well they present the instruments’ sound colors (timbre) of the target

piece, corresponding to style fit.

3. How clean and noise-free they are, presenting the audio quality.

4. Their overall quality compared to the target piece.

After collecting the surveys, we concluded the rankings by scoring the five mod-

els. Every model receives a score of 5 if one of its generated outputs is ranked first,

a score of 4 if ranked second, a score of 3 if ranked third, a score of 2 if ranked

fourth, and a score of 1 if ranked last.

Figure 4.1 demonstrates the number of times each model gets a specific ranking

in terms of content preservation, style fit, audio quality, and overall quality for
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both domains. For instance, out of thirty participants, eighteen people ranked

mixture-supervised Music-STAR first in content preservation for the strings-piano

domain. Eight participants ranked it second, while only one person found it to be

the third. Two people picked it as the fourth model, and one person ranked it as

the last model. Accordingly, the score of mixture-supervised Music-STAR in terms

of content preservation will be: 18 ∗ 5 + 8 ∗ 4 + 1 ∗ 3 + 2 ∗ 2 + 1 ∗ 1 = 130

Figure 4.2 shows the scores of all five models for both domains separately and

in total regarding the four questions in the survey. According to the final scores,

mixture-supervised Music-STAR is performing best in all four criteria for both

domains. While stem-supervised Music-STAR is the second-best model for the

strings-piano domain, it cannot compete with other models in clarinet-vibraphone

translation. On the other hand, single-instrument translation has been the second-

best model for clarinet-vibraphone except for audio quality measure as it is placed

after the separation-translation pipeline.

4.2.2 Objective Evaluation

The subjective evaluation provides a qualitative assessment of our models mainly

based on how users perceive the generated outputs. We aim to provide a quan-

titative quality assessment using techniques employed in previous studies through

the objective evaluation. To this end, we address the same criteria, i.e., content
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Figure 4.2: The models’ scores based on subjective evaluation
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preservation, style fit, and audio quality, the details of which are discussed below.

4.2.2.1 Content Preservation

Following the work by Ćıfka et al. [15], we assess the models on content preservation

by calculating the Jaccard similarity between the pitch contours of the outputs and

their corresponding gold standards. Pitch contours provide the perceived pitches

in a sound signal over time. Since we are addressing multi-instrument music in

our study, we extract the pitch contours using the multi-pitch Melodia algorithm

[90] which provides the existing pitch frequencies in hertz. We round the frequency

values to the nearest semitone. Then we express the similarity of the pitch sets of

each time step (A and B) in terms of the Jaccard index:

J(A,B) =
|A ∩B|
|A ∪B|

(4.1)

Higher Jaccard similarity between the output and the gold standard signifies

better content preservation. Figure 4.3 reports the average Jaccard similarity of the

five models for both domains separately and in total. According to this measure,

mixture-supervised Music-STAR surpasses the other models in terms of content

preservation. As shown in the figure, the other models perform differently in the

case of the two domains.
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Figure 4.3: Jaccard similarity between pitch contours for content preservation as-

sessment.

4.2.2.2 Style Fit

We evaluate the style fit factor using the deep metric triplet network offered by

Lee et al. [67]. The network consists of a backbone model, which provides an

embedding for the three inputs, and a triplet model that outputs a similarity score

between the three embeddings. The three inputs are called the anchor, the positive,

and the negative input. The goal is to output a similarity score between the anchor

and the other inputs. It is expected that the anchor resembles the positive input

while being considerably different from the negative input.

Following Ćıfka et al. [15], we use MFCCs as the input features. As mentioned

before, MFCCs provide timbre-related information of the input audio. We trained

the triplet network using the mixtures in the StarNet dataset. The MFCCs of eight-

second clarinet-vibraphone audio segments were used as both the anchors and the
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Figure 4.4: The cosine similarities between MFCCs for style fit assessment

positive inputs in the training phase. At the same time, their counterparts from

the strings-piano domain were considered as the negative inputs.

During inference, we presented the translation outputs from the five models

as the anchors, their corresponding gold standard as the positive input, and the

performance from the other domain as the negative input.

Figure 4.4 reports the average cosine similarity between the outputs of each

model and their corresponding gold standards. Higher cosine similarity denotes

more likeness to the target timbre and a better style fit. Stem-supervised and

mixture-supervised Music-STAR have comparable results in both domains, per-

forming as the best two models in terms of style fit. The other three models

perform differently for the two domains.
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4.2.2.3 Audio Quality

We take advantage of the source-to-distortion ratio (SDR) [104] to evaluate the

audio quality of the translation outputs. SDR metric has been widely used to assess

the quality of audio source separation models. It provides an overall measure by

involving error terms for interference (einterf ), noise (enoise), and additive artifacts

(eartif ) which are distorting the target signal (starget):

ŝj = starget + einterf + enoise + eartif (4.2)

In our work, interference accounts for the amount of the source instruments that

can be heard in the output, noise is caused by the sensors such as the microphones,

and artifacts are the sonic material created due to audio manipulation.

SDR is reported in decibels and formulated as :

SDR = 10 log10(
‖starget‖2

‖einterf + enoise + eartif‖2
) (4.3)

We calculate the SDR of every generated output compared to its corresponding

gold standard. The higher the SDR value, the better is the sound quality. As

shown in Figure 4.5, mixture-supervised Music-STAR has the highest SDR for

both domains. The other models perform differently for the two domains.
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Figure 4.5: SDR metric for audio quality assessment

4.2.3 Discussion

So far, we have presented the results from both objective and subjective evaluations.

In this section, we investigate if the two evaluation methods agree with each other.

To this end, we compare the models’ rankings achieved through the two evaluation

methods.

4.2.3.1 Content Preservation

Figure 4.6 shows the final rankings of the five models on content preservation.

The evaluation methods have a 60% agreement on the rankings. Their differ-

ences mainly lie in the performances of single-instrument translation, separation-

translation pipeline, and unsupervised Music-STAR. As shown in Figure 4.3 the

reported similarity rates of these three models are not considerably different. Since
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Figure 4.6: The models’ rankings on content preservation

the first two models use the same universal encoder to capture the pitch informa-

tion and the encoder in unsupervised Music-STAR is trained based on the universal

encoder, this analogy seems reasonable.

According to the final rankings, mixture-supervised Music-STAR puts in the

best performance in terms of content preservation.

4.2.3.2 Style Fit

The models’ rankings on style fit are shown in Figure 4.7. The two evaluation

methods seem not to agree about any of the models’ overall performance. However,

there is an explanation for this matter. By referring to Figure 4.4, we can see

that the difference between mixture-supervised and stem-supervised Music-STAR

in their average performance is only 0.001 that can be definitely ignored. As a
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Figure 4.7: The models’ rankings on style fit

result, we can assume that the two models perform comparably in terms of style

fit.

Moreover, we mentioned earlier that single-instrument translation, separation-

translation pipeline, and unsupervised Music-STAR share the same WaveNet de-

coders and that the decoders are in charge of applying the target timbres. As a

result, we can see in Figure 4.4 that the three models have a close contest with each

other, and this can justify the mismatch between the evaluation results.

4.2.3.3 Audio Quality

The models are ranked based on their audio quality in Figure 4.8. The two evalua-

tion methods agree 100% on the overall rankings, demonstrating the superiority of

mixture-supervised Music-STAR.
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Figure 4.8: The models’ rankings on audio quality

4.2.3.4 Discussion Summary

We conclude the evaluation as follows:

1. Our evaluation outcomes conclude that mixture-supervised Music-STAR is

the predominant model in performing multi-instrument music translation.

This is most likely caused by training the model in a supervised manner and

the fact that the encoders are not shared among the domains. Although

training an unsupervised model is much easier on the dataset and employing

a universal encoder gives us a more generalized model, it might all come at

the cost of performance, and the results from our baseline models confirm

this.

2. Although we expected stem-supervised Music-STAR to have a similar or even
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better performance than mixture-supervised Music-STAR, it failed to execute

the clarinet-vibraphone translation at high quality. We will investigate the

reasons for this discrepancy as a part of our future work.

3. Unsupervised Music-STAR is, on average, the worst-performing model, and

it is acceptable for one main reason. The Music-STAR encoder used in this

model is trained based on the universal encoder’s outputs to extract the pitch

information of one instrument out of a mixture. Having an imperfect ground

truth places the model at the disadvantage of even more unsatisfactory per-

formance. Besides, unsupervised Music-STAR uses the same decoders as the

baseline models, which brings it no additional advantage.

4. The rankings of single-instrument and separation-translation models on differ-

ent criteria seem exchangeable as they display a very similar translation qual-

ity. Thanks to the great source separation quality by Demucs, the separation-

translation pipeline could produce quite flawless inputs for the translation

model.
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5 Conclusion

This thesis aimed to investigate the feasibility of multi-instrument music translation

establishing music rearrangement as the ultimate goal. To this end, we proposed

Music-STAR, a system implemented through three approaches to conduct multi-

instrument music translation. In this chapter, we summarize the contributions of

our research and discuss how it can be expanded in the future.

5.1 Thesis Contributions

We enumerate the major contributions of this thesis as follows.

1. In this thesis, we introduced the only audio-based multi-instrument music

translation system in which every stem is translated into a specified target

instrument. Our goal was to tackle this problem without applying explicit

source separation to the input mixtures. Accordingly, we proposed Music-

STAR, a system with an autoencoder as the backbone that makes both source

separation and pitch-timbre disentanglement possible in the latent space.
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2. To address multi-instrument music translation, we proposed Music-STAR

with three models: unsupervised, stem-supervised, and mixture-supervised.

The three models are based on WaveNet autoencoders, where a Music-STAR

encoder replaces the original encoder. Incorporating more layers and non-

linearities makes the Music-STAR encoder powerful enough to process the

mixture inputs.

3. In order to train and test Music-STAR models, we required a dataset that in-

cludes music pieces performed by different sets of instruments along with their

stems. Therefore, we created StarNet, an audio dataset containing roughly

nine hours of classical music pieces performed in two domains: strings-piano

and clarinet-vibraphone.

4. We considered two baseline models to compare Music-STAR’s outputs to. The

first is applying single-instrument translation to the stems and then mixing

the outputs, which is only applicable when the stems are available. The second

is to separate the stems using music source separation models and then apply

single-instrument translation, which we referred to as a separation-translation

pipeline. To bring these models into play, we needed to a) finetune the existing

single-instrument translation model on StarNet to support the exact timbres

we account for in the dataset, b) to retrain the source separation model to
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separate the stems of strings-piano and clarinet-vibraphone mixtures.

5. After training the baseline and Music-STAR models, we assessed the out-

puts through subjective and objective evaluations. Although the models

performed differently on the two mixture domains, both evaluation meth-

ods agreed that mixture-supervised Music-STAR is the best approach toward

multi-instrument music translation overall.

5.2 Future Work

Our work is the first attempt toward audio-based multi-instrument music trans-

lation, and there are many other questions and problems to be addressed in the

future. For instance:

1. Increasing the number of instrument tracks in the mixtures.

2. Adding to the variety of instrument combinations in the dataset and including

music genres other than classical music.

3. Accounting for voice-to-instrument translation or enable voice conversion to

make the whole idea of cover song generation possible.
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[32] Slim Essid, Gaël Richard, and Bertrand David. Musical instrument recog-

nition by pairwise classification strategies. IEEE Transactions on Audio,

Speech, and Language Processing, 14(4):1401–1412, 2006.

[33] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition. In Competition

and cooperation in neural nets, pages 267–285. Springer, 1982.

[34] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo

Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.

Domain-adversarial training of neural networks. The journal of machine

learning research, 17(1):2096–2030, 2016.

[35] Leon A Gatys, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Pre-

serving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897,

2016.

[36] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer

using convolutional neural networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2414–2423, 2016.

[37] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial networks. arXiv preprint arXiv:1406.2661, 2014.

[38] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recogni-

tion with deep recurrent neural networks. In 2013 IEEE international confer-

ence on acoustics, speech and signal processing, pages 6645–6649. Ieee, 2013.

114



[39] Zhiyuan Guo, Qiang Wang, Gang Liu, and Jun Guo. A query by hum-

ming system based on locality sensitive hashing indexes. Signal Processing,

93(8):2229–2243, 2013.
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A User Study Survey

The following pages include an examples of the survey used for subjective evalua-

tion.
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Figure A.1: Subjective evaluation survey - description and consent
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Figure A.2: Subjective evaluation survey - piece 1 questions
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Figure A.3: Subjective evaluation survey - piece 2 questions
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