
MACHINE LEARNING INTERFERENCE MODELLING FOR
CLOUD-NATIVE APPLICATIONS

ALEXANDRU BĂLUŢĂ

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

NOVEMBER 2021

© Alexandru Băluţă, 2021

Abstract

Modern cloud-native applications use microservice architecture patterns, where fine granular
software components are deployed in lightweight containers that run inside cloud virtual ma-
chines. To utilize resources more efficiently, containers belonging to different applications are
often co-located on the same virtual machine. Co-location can result in software performance
degradation due to interference among components competing for resources. In this thesis,
we propose techniques to detect and model performance interference. To detect interference
at runtime, we train Machine Learning(ML) models prior to deployment using interfering
benchmarks and show that the model can be generalized to detect runtime interference from
different types of applications. Experimental results in public clouds show that our approach
outperforms existing interference detection techniques by 1.35%-66.69%. To quantify the
intereference impact, we further propose a ML interference quantification technique. The
technique constructs ML models for response time prediction and can dynamically account
for changing runtime conditions through the use of a sliding window method. Our technique
outperforms baseline and competing techniques by 1.45%-92.04%. These contributions can
be beneficial to software architects and software operators when designing, deploying, and
operating cloud-native applications.

ii

Co-Authorship

This thesis is based on my published work as detailed below. My contributions to these
publications consisted of: proposing research ideas and direction, conducting literature
reviews, constructing experimental setups, designing experiments, collecting data, performing
data analysis and modelling, and serving as the primary author in writing the publications
themselves.

The publications are listed as follows:

1. Alexandru Baluta, Joydeep Mukherjee, Zhen Ming Jiang, Marin Litoiu, Machine
Learning based Interference Detection in Cloud-Native Applications: Submitted to
IEEE Transactions on Cloud Computing

2. Alexandru Baluta, Joydeep Mukherjee, Marin Litoiu, Machine Learning based In-
terference Modelling in Cloud-Native Applications: Submitted to 13th ACM/SPEC
International Conference on Performance Engineering

iii

Acknowledgements

I would like to sincerely thank my supervisor, Professor Marin Litoiu for all his guidance
and mentorship. His insight in the fields of Machine Learning, Software Engineering, and
Adaptive Systems was instrumental in expanding my knowledge and realizing my thesis. I
am greatly appreciative of the support and counsel of Professor Joydeep Mukherjee. His
support enabled me to continuously improve my skills and research output. I would also like
to thank Professor Zhen Ming (Jack) Jiang for the invaluable guidance and feedback in my
research works. I would like to express my gratitude to the team members I got to work
alongside at CERAS labs. Thank you to Yar Rouf, Raphael Rouf, Kim Long Ngo, Calin
Armenean, Christianne Huber, and Farzin Zaker. Our collaborations and knowledge sharing
were of great benefit.

I would like to dedicate this work to my friends and family that supported me in my grad-
uate studies. My success was made possible by your unending support and encouragement.

iv

Table of Contents

Abstract ii

Co-Authorship iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Research Questions . 4
1.2 Contributions . 6

2 Related Work 8
2.1 Performance Interference Detection . 8
2.2 Performance Interference Quantification . 9
2.3 Performance Interference Mitigation . 11

2.3.1 Container Placement . 11
2.3.2 Virtual Machine Placement . 12

3 Performance Interference Detection 13
3.1 Methodology . 13

3.1.1 AIOps and Interference Detection . 14
3.1.2 Interference as a Classification Problem 15
3.1.3 General Methodology . 18
3.1.4 Data Collection and Pre-Processing for ML 20
3.1.5 ML Model Training . 22
3.1.6 ML Model Runtime Deployment . 24

3.2 RQ-1: Performance Interference Characterization 24
3.2.1 Experiment Setup . 24
3.2.2 Results Analysis . 29

3.3 RQ-2: ML for Known Interfering Applications 31
3.3.1 Experiment Setup . 32

v

3.3.2 Results Analysis . 33
3.4 RQ-3: ML for Unknown Interfering Applications 37

3.4.1 Experiment Setup . 38
3.4.2 Results Analysis . 39

3.5 Threats to Validity . 40
3.6 Summary . 40

4 Performance Interference Quantification 42
4.1 Methodology . 42

4.1.1 Static Models for Interference . 43
4.1.2 Runtime Models for Interference . 50

4.2 General Experiment Setup . 53
4.3 RQ-4: Static ML for Known Interfering Applications 56

4.3.1 Experiment Setup . 56
4.3.2 Results Analysis . 57

4.4 RQ-5: Static ML for Unknown Interfering Applications 60
4.4.1 Experiment Setup . 60
4.4.2 Results Analysis . 61

4.5 RQ-6: Runtime ML . 61
4.5.1 Experiment Setup . 62
4.5.2 Results Analysis . 63
4.5.3 Comparative Analysis and Practical Considerations 63

4.6 Threats to Validity . 65
4.7 Summary . 66

5 Conclusions and Future Work 68

Bibliography 76

List of Tables

3.1 Details of ML Modeling used by the H2O AutoML Framework 19
3.2 Acme Air + stress-ng Interference in Single VM 30
3.3 Acme Air + Acme Air Interference in Single VM 31
3.4 Acme Air + IoT Interference in Single VM 31
3.5 Acme Air + stress-ng Interference in Dual VM 32
3.6 Top Performing ML Model Per Dataset . 33
3.7 Acme Air + Acme Air Interference in Dual VM 34
3.8 Acme Air + IoT in Dual VM . 34
3.9 Evaluation of Competing Model . 35
3.10 Sensitivity Analysis with stress-ng Interference 36
3.11 Evaluation for Unknown Interference . 38

4.1 Observed Resource Utilization Ranges . 57
4.2 Observed Response Time Ranges . 58
4.3 Static Model with Known Interfering App 59
4.4 Static Model with Unknown Interfering App 62
4.5 Runtime ML vs. Runtime GP and Static LQM 64
4.6 Comparison of Static and Runtime ML . 65

vii

List of Figures

3.1 AIOps and Interference Detection . 14
3.2 Effect of Interference on Resource Utilization 16
3.3 Overview of Interference Detection Technique 18

4.1 Overview of Interference Quantification Training Phase 43
4.2 Overview of Interference Quantification Runtime Phase 44
4.3 Overview of Runtime Modelling Interference Quantification 49
4.4 Overview of Model Manager . 50

viii

Chapter 1

Introduction

DevOps is an emerging paradigm that integrates the development and operations teams to

enable fast and efficient continuous delivery of software [1]. DevOps practice encourages the

use of microservice architecture, where a traditional monolithic application is broken down into

a collection of easier-to-manage smaller services. Benefits of microservice architecture include

better scalability, easier continuous delivery support, data decentralization and improved fault

isolation. Due to these advantages, more application developers are adopting the microservice

architecture recently. Microservices are deployed as cloud-native applications on public cloud

platforms with each service encapsulated within a container running inside a cloud instance.

Containers have risen in popularity for their faster deployment speeds and their ability to

allow applications to run in complete isolation from one another without incurring extra

overhead. Container orchestration platforms such as Docker [2] and Kubernetes [3] are

increasingly gaining popularity and are commonly used in public cloud platforms such as

Amazon Web Services (AWS) [4] and Google Cloud Platform [5].

Multiple microservices are generally consolidated on a single cloud instance. This is

done to improve resource consumption levels inside a cloud instance and thereby optimize

cloud costs. When multiple microservices are deployed on the same instance, they can often

compete with each other for shared host-level resources. Such shared resource contention can

1

alter the application behavior and make it deviate from the development time specifications

and performance. This interference has been observed before in applications running on

public cloud environments [6–13]. Interference can be also generated by malicious code or

applications running concurrently along with legitimate applications [14]. It is therefore

important that an application detect, quantify, and mitigate when its execution environment

is perturbed by other malicious applications.

Detecting runtime interference in cloud-native applications is a challenging task. Cloud

providers typically do not provide any built-in support for interference detection. Researchers

[15] have used application instrumentation in the past to record mean request response times

for the different services consolidated on the same instance. These runtime service response

times were then compared against baseline service response times for significant deviations

to detect the presence of interference. However, past research has shown that continuously

instrumenting application code and monitoring the runtime response times of services [16]

can significantly increase the cost of development and maintenance. In addition, continuous

monitoring of service response time can incur a prohibitive overhead when the service is facing

a heavy workload [17, 18]. Furthermore, interference detection techniques that model the

containerized system environment may not generalize well to scenarios where the interfering

application changes at runtime. Finally, since the incoming workload to services typically

vary at runtime, it is often difficult to interpret by response time monitoring alone if the

increase in response time is due to interference or workload fluctuation.

In light of the above challenges, we propose an interference detection technique that uses

Machine Learning (ML) models to classify interference in cloud-native applications. Our

ML based interference detection approach is non-intrusive and does not require extensive

application modification. We use resource utilization metrics that can be easily collected at

runtime from within each application container and the cloud instance along with simple

application level metrics such as request throughput as the input to our ML model. Collecting

these metrics is lightweight in nature, i.e. it does not incur any substantial performance

2

overhead on the service’s response time. Our ML model can be easily integrated into

the DevOps architecture which can then be used to automate interference detection and

subsequently maintain a desired level of QoS.

When performance interference is detected, modelling the impact of that interference allows

an application owner to quantify how significant the application performance degradation

is and derive a suitable mitigation strategy. To quantify performance interference in cloud-

native applications, performance engineering techniques are utilized. Performance engineering

techniques typically leverage runtime metrics that describe the runtime environment as well

as the cloud-native application of interest in order to construct performance models. In

cloud-native applications, there are several layers of abstraction from which metrics can be

derived, for example, the physical machine (PM), the virtual machine (VM), the containers,

or even the application itself. As a consequence, varying degrees of instrumentation are

required of the environment and application to obtain the necessary runtime metrics for

modelling. These metrics typically include request response time, throughput, as well as

container and VM utilizations. State-of-the-art performance engineering techniques often

leverage Queuing Networks or Regression models.

Queuing Network models are static models that leverage queuing theory to express

application behavior as a function of runtime metrics. Static modelling techniques often have

a training and runtime phase. The static models are pre-trained in the training phase and

deployed in the runtime phase where they are leveraged to make predictions. A benefit of

static modelling is that model training can consider a large amount of performance data, often

resulting in a well-performing model. However, the two phase nature of static modelling can

be overly cumbersome. If the training phase takes a significant amount of time to complete,

static modelling techniques may not keep up with frequent changes in cloud environments.

Regression models are trained models, that can either be trained in a static pre-deployment

fashion or at runtime, and are derived from runtime metrics often used in statistical or machine

learning based approaches. Regression models are favored for being able to capture application

3

behavior that is otherwise difficult to express explicitly. Runtime regression models are trained

at runtime and can quickly capture changes in the cloud environment. At runtime, model

training must be done quickly in order to leverage the new model that accounts for current

environment conditions. Accordingly, the amount of data required to train models at runtime

tends to be substantially less than that of a static model. As a consequence, runtime models

may be less accurate than their static model counterparts.

We propose a Machine Learning (ML) based technique to quantify performance interference

in cloud-native applications. Our technique can be leveraged to construct both static and

runtime ML models, is non-intrusive, and outperforms competing state-of-the-art techniques.

We utilize a realistic e-commerce application benchmark as well as an Internet of Things

(IoT) microservice to generate performance interference in our experiments. Furthermore,

our approach leverages runtime monitoring metrics that can be captured easily from both

the environment and the application.

We attempt to answer the following research questions with our approach:

1.1 Research Questions

RQ-1: How severe is the impact of performance interference in cloud-native applications

deployed on public cloud instances? To address this, we run experiments to characterize the

impact of interference on a realistic microservice benchmark called Acme Air [19] hosted

on the AWS EC2 cloud platform. Results indicate that the response time of Acme can be

severely impacted by interference by at least a factor of 39% and at most a factor of 6955%

at moderate CPU utilization levels.

RQ-2: How well does our machine learning based detection approach perform when

the interfering application used for model training and deployment is the same? To answer

RQ-2, we train ML models to detect interference caused by a single benchmark application.

Our models perform binary classification (interference or no interference) and are trained

4

using readily available system metrics without response time instrumentation. Results show

that our approach outperforms competing regression based and threshold based interference

detection techniques by at least 2.18% and at most 96.27%. Furthermore our method incurs

minimal overhead of only 1% to 2% on the service response time at runtime.

RQ-3: How well does our machine learning based detection approach perform when the

interfering applications used for model training and deployment are different? To address

RQ-3, we show that we can train our ML model to detect interference caused by an application

that stresses the same resources as used by the target application. In addition, this model

generalizes well for detecting interference from different containerized interfering applications.

As presented in our results, our technique outperforms competing regression based and

threshold based interference detection techniques by at least 1.35% and at most 66.69%.

RQ-4: How effective is a static ML model based approach to quantify the impact

of performance interference in cloud-based microservices at runtime when the interfering

application used for model training and deployment is the same? We address the use case in

which the application owner wants to predict the impact of co-locating applications in a cloud

environment. In this scenario, the interfering application and system resource utilization

details are known. To answer RQ-4, we train static ML models to quantify interference caused

by an interfering application that stresses the same resources as our monitored application.

The same interfering application is used at training time and also at runtime. The ML models

are trained using easily obtainable system metrics. Our results show that our approach

outperforms competing interference quantification techniques by at least 14.13% and at most

1271.37%.

RQ-5: How effective is a static ML model based approach to quantify the impact

of performance interference in cloud-based microservices at runtime when the interfering

application used for model training and deployment are different? This serves to address

the use case in which an application owner does not have visibility into the application(s)

co-located along their own application. For RQ-5, we evaluate how well our static ML models

5

generalize in runtime scenarios where a different interfering application is present as opposed

to the one encountered at training time. Our technique outperforms competing techniques

by at least 2.49% and at most 668.81% as shown in our results.

RQ-6: How effective is a runtime ML model based approach to quantify the impact of

performance interference in cloud-based microservices at runtime? This addresses the use

case where an application owner lacks visibility of interfering applications in the environment

hosting their own application. To address RQ-6, we leverage a sliding window technique to

continuously train ML models at runtime for fixed time intervals. Next, these ML models

are used to quantify interference at runtime for a fixed interval and then interchanged with

another ML model. As highlighted in our results, our technique outperforms competing

state-of-the-art techniques by at least 1.45% and at most 92.04%.

Five contributions are made in this thesis as follows:

1.2 Contributions

1. We develop a machine learning based interference detection technique that generalizes

to unknown interfering applications.

2. We construct our machine learning models for performance interference detection using

readily available microservice, instance, and application metrics that impose minimal

runtime overhead.

3. We develop a static machine learning based interference quantification technique that

generalizes to unknown interfering applications at runtime and outperforms competing

state-of-the-art static quantification techniques by at least 14.13% and at most 1271.37%.

4. We develop a runtime machine learning based interference quantification technique

that generalizes to unknown interfering applications at runtime, has minimal model

training overhead, and outperforms competing state-of-the-art runtime quantification

6

techniques by at least 1.45% and at most 92.04%.

5. We present a comparative analysis between our static and runtime ML quantification

techniques.

The remainder of this Thesis is organized as follows. Section 2 discusses related work.

Section 3 details the methodology, experimental setup, results, and threats to validity of our

proposed ML Interference Detection technique. Section 4 discusses the methodology, experi-

mental setup, results, and threats to validity of our proposed ML Interference Quantification

technique. Section 5 concludes this paper and discusses future work.

7

Chapter 2

Related Work

2.1 Performance Interference Detection

Y. Koh et al. [7] investigate the impact of VM-level performance interference from co-located

workloads and characterize interference impact on low level system metrics. They further

cluster workloads by interference type and construct performance prediction models for

co-located workloads using weighted means and regression analysis approaches. I. Paul et

al. [8] similarly characterize performance interference in co-located VMs and further measure

the application performance degradation and impact on low-level system metrics. The authors

go on to highlight types of workloads that perform well or not when co-located. As opposed

to the aforementioned papers, we characterize the impact of interference among containerized

microservices.

Novaković et al. [9] propose DeepDive to mitigate VM-level performance interference. Their

approach detects interference by comparing low-level system metrics against a workload’s

baseline values and migrates VMs to other physical machines as needed. S. Wang et al. [10]

present Vmon, a system that detects and quantifies VM-level performance interference. Vmon

profiles an application running on a VM to observe how Hardware Performance Counters

correlate with application performance. These works detect VM-level interference through use

8

of low-level system metrics whereas our work detects microservice interference using metrics

that are readily available and do not pose prohibitive overhead in collecting. Additionally,

our work is differentiated in that we evaluate the effectiveness of model re-use across different

scenarios.

D. N. Jha et al. [11] measured intramicroservice and intermicroservice interference using

four benchmark microservices. The results of their experiments showed significant container

interference present in both intra-container and inter-container cases. S. K. Garg, and

J. Lakshmi. [12] ran experiments using well known containerized benchmarks to detect

microservice interference and accordingly identified the shared resources subject to contention

in these scenarios. K. Joshi et al. [13] propose Sherlock, a method for detecting long-lived

performance interference in containerized services caused by co-located VMs. The authors

employ a statistical regression detection technique to model performance interference using

VM-level and application-level metrics at runtime. We differentiate our work from Sherlock

in that we focus on use of ML techniques to detect interference as opposed to traditional

statistical regression techniques. Our work further differentiates as we explore machine

learning as a means to re-use interference detection models in varying environments.

2.2 Performance Interference Quantification

Several performance engineering techniques attempt to model an application’s runtime

behavior in order to predict application performance [20–24]. Some techniques leverage static

modelling, where a model is constructed pre-deployment and subsequently utilized at runtime

to predict application performance [22, 25]. Static modelling does not require at runtime

instrumentation which can be intrusive and add prohibitive overhead itself. However, static

modelling may not adequately model point in time application behavior. Other techniques

employ runtime modelling in which models are continuously constructed and replaced at

runtime based on certain criteria [23,24]. These runtime techniques can in fact capture point

9

in time performance however as mentioned, careful attention is required for the additional

instrumentation and overhead that is added at runtime.

Prominent performance engineering techniques often construct Layered Queuing Models

(LQM) which are an extension of Queuing Network Models (QNM) [26–28] or Regression

models [21–24]. These models serve to predict a metric of interest like response time or

resource utilization.

Prior works have utilized LQMs as performance models for both monolithic and microser-

vice software applications [26–28]. Barna et al. [26] leverage the LQM as a performance model

of their target cloud-native application. Particularly, they utilize the LQM for response time

predictions of their proposed model identification adaptive controller technique to maintain

system goals with robustness and cost-effectiveness. Shoaib and Das [27] similarly utilize

the LQM for performance modelling of a cloud-native application. The LQM’s response

time predictions serve as an input to their proposed genetic algorithm that aims to aid

application providers in optimizing cloud-native application scale and placement. Gias et

al. [28] propose ATOM, an autoscaling controller for microservices that leverages the LQM

to evaluate potential performance gain resulting from deployment decisions. In their work,

the LQM serves to make throughput and utilization predictions.

Iqbal et al. [21] build polynomial regression models to predict response time of applications

hosted on virtual machines. They subsequently leverages response time predictions to decide

whether the application is at risk of breaking service-level agreements and if so, their

technique auto-scales the application. Rahman and Lama [22] construct several types of

Machine Learning models to predict microservice performance. These models utilize metrics

from the multiple abstraction layers of the cloud including the VM, container, and application

layers.

Shekhar et al. [23] propose an online Gaussian Process method that uses sliding windows

to make response time predictions for containerized yet monolithic applications. Based on

those predictions, their method decides whether to vertically scale the application or not.

10

Kang and Lama [24] similarly propose an online probabilistic Machine Learning method that

leverages Gaussian Process models and sliding windows to predict microservice performance.

The models use metrics from multiple abstraction layers and are trained in real time to adapt

to the dynamically changing cloud environment.

2.3 Performance Interference Mitigation

To mitigate performance interference, container and VM placement and re-assignment strate-

gies are often used. That is, they assess where and how to place an application to minimize

performance interference. If deemed necessary, a container may be migrated to another VM

or a VM itself may be migrated to another physical machine in order to minimize interference.

Placement strategies often employ heuristics to ensure computational tractability given

problem constraints.

2.3.1 Container Placement

Mao, Ying, et al. [29] proposed a resource aware container placement algorithm that considers

container resource needs against hosts’ resource availability. Their algorithm, DRAPS, better

utilized resources compared to the default placement algorithm in Docker known as Spread,

which simply assigns containers to whichever host has the fewest containers irrespective of

resource needs.

Lv, Liang, et al. [30] broke down container placement into two phases; the initial container

placement and the dynamic container reassignment. They formulated a cost function subject

to a set of constraints for which resources and network communication are highlighted. They

stated resources need to be efficiently managed to co-locate complementary containers and

network communication, or the transit latency of a request between two containers, needs

to be minimized for overall optimal application latency. A Communication Aware Worst

Fit Decreasing algorithm is proposed to drive initial container placement and a Sweep and

11

Search algorithm is proposed for container placement re-balancing at runtime.

Sampaio et al. [31] considered container placement as a Bin-packing problem to drive

container placement re-balancing at runtime. With respect to container placement, solutions to

the Bin-packing problem require utilizing as little hosts as needed while satisfying constraints.

Sampaio et al. propose an optimal solution and heuristic solution to this bin-packing

representation which incorporated resource constraints, application network affinities, as well

as application resource usage history. Their implementation used a MAPE-K loop to provide

an autonomic solution.

2.3.2 Virtual Machine Placement

Slama, Wafa Ben, et al. [32] estimated a virtual machine interference score based on application

execution times and consequently leveraged the estimate and fuzzy formal concepts analysis

to derive a virtual machine placement strategy that minimized their resource interference

score as well as network latency.

Alves, Maicon Melo, et al. [33] constructed a virtual machine interference score based on

application slowdown times which they attempted to minimize with an Iterated Local Search

algorithm that informed placement of virtual machines.

12

Chapter 3

Performance Interference Detection

In this chapter, we address Research Questions 1-3 with respect to Performance Interference

Detection. We characterize the impact of performance interference and propose an ML

based performance interference detection technique. Section 3.1 details the motivation and

methodology. Section 3.2 describes the experimental setup and results of RQ-1. Section 3.3

presents experimental setup and results of RQ-2. Section 3.4 details experimental setup and

results of RQ-3. Section 3.5 presents threats to validity. Section 3.6 is a summary of our

Performance Interference Detection work.

3.1 Methodology

We describe how our proposed interference detection technique can fit inside an AIOps

platform in Section 3.1.1. In section 3.1.2, we provide an intuitive reasoning behind using

ML models to classify interference in cloud-based microservice applications. In section 3.1.3

we define the assumptions our technique makes about the environment and applications

contained therein. In section 3.1.4 we detail data generation and pre-processing. We then

describe the methodology behind training an ML model for interference detection in Sec

3.1.5. Finally, we detail the application of an ML model for interference detection at runtime

in Sec 3.1.6.

13

Figure 3.1: AIOps and Interference Detection

3.1.1 AIOps and Interference Detection

DevOps is a cross-community of practice that is targeted towards planning, building, evolving

and operating rapidly-changing large scale software systems. The ever increasing scale

and complexity of modern software services pose significant challenges for building non-

intrusive interference techniques that can be efficiently integrated with current DevOps

practices aimed towards effective runtime operations for such services. In this regard, AIOps

(Artifical Intelligence for IT Operations) is the latest set of practices that enables DevOps

engineers to support and maintain services by using artificial intelligence and machine learning

techniques [34,35].

Figure 3.1 shows how our ML Model based approach can be integrated with several

components that manage a software application’s operation. As seen in the figure, this

involves two loops, a feedback loop and a model switch loop. The environment represents a

one VM or multi VM distributed deployment system hosting the software application. The

ML Model serves to make interference predictions (interference or no interference) based

on the inputs obtained from monitoring the application and the cloud environment. The

prediction from the ML Model describes the state of the microservice application and is

forwarded to the Adaptive Manager. The Adaptive Manager is in charge of taking control

14

actions by prescribing corrective measures to the cloud environment. This corrective action

is meant to drive the microservice application towards the desired state and knowledge about

the cause of current state can help the Adaptive Manager to make better decisions. For

example, if the deviation from a performance target is caused by interference, then the

Adaptive Manager could migrate the microservice to an environment with greater resource

availability. If the deviation is not caused by interference but by the workload, then the

Adaptive Manager could scale up the microservice instances. The feedback loop is used by

the Adaptive Manager to continuously monitor for further corrective action until the desired

state is reached. We note that these corrective actions are orthogonal to this work. The model

switch loop is used by the ML Model to input the control actions taken by the Autonomic

Manager to adapt the model, and eventually to switch to a different model if needed. For

example, the ML Model can switch between one VM or multi VM deployments based on the

output of the Adaptive Manager. In this paper, we aim to build a non-intrusive ML model

that can be used by AIOps practitioners to develop an interference detection technique by

using simple monitoring metrics from the cloud and application environment.

3.1.2 Interference as a Classification Problem

In this section, we explain how interference can be formulated as a ML classification problem

by using the fundamentals of Queuing Network Models (QNM). To begin with, we consider a

containerized Web application a running inside a cloud instance without any interference,

as seen in Figure 3.2. We assume that the application a stresses a single resource k in the

instance so as to incur an utilization of Ua,k on the resource. We assume a request arrival

rate of λa to application a. If, at runtime, we had a way to measure service demand Da,k of

application a at resource k, we could then predict the no-interference mean request response

time Ra of application a as:

Ra =
Da,k

1− Uk

(3.1)

15

Figure 3.2: Effect of Interference on Resource Utilization

where Uk is the total utilization incurred at resource k in the instance. Since in a no-

interference scenario, the only application stressing resource k is our monitored application a,

Uk = Ua,k. Finally, we substitute Uk with Ua,k in eqn. 3.1 to obtain the response mean time

Ra of application a in a no-interference environment as given by:

Ra =
Da,k

1− Ua,k

(3.2)

Next, consider another interfering application b running inside the same cloud instance,

as seen in Figure 3.2. Application b incurs an utilization of Ub,k on resource k inside the

instance. Accordingly, from eqn. 3.1, the new response time Rnew
a of application a when it

faces interference from application b is given by:

Rnew
a =

Da,k

1− Unew
k

(3.3)

where Unew
k represents the total utilization of resource k, i.e. the sum total of the utilization

incurred by both applications a and b at resource k given by:

16

Unew
k = Ua,k + Ub,k (3.4)

Based on eqn. 3.2 and eqn. 3.3, we observe that a point [λa, Ra, Uk] is transposed

to [λa, Rnew
a , Unew

k] in the same tri-dimensional space under the impact of interference.

We note that these equations can be extended to multiple resources and many different

kinds of applications. Based on this observation, we aim to use resource utilization metrics

to train our ML model that can classify two distinct classes of response time values, one

class denoting the no-interference scenario represented by Ra, and the other denoting the

interference scenario represented by Rnew
a . We note that we use ML models instead of QNMs

for interference detection since it is practically infeasible to accurately measure resource

service demands for all containers belonging to a monitored microservice application serving

different kinds of workloads. Furthermore, multiple levels of virtualization involved in a

cloud-based microservice container can involve estimating service demands for unknown

virtualized resources [36], which can be difficult. In contrast, our ML models use resource

utilization and throughput metrics that are easy to collect at the container and VM levels.

We use our understanding of QNMs as motivation for applying machine learning to

detect interference. From eqn. 3.3, since the new response time Rnew
a of application a is

only impacted by the total utilization Uk incurred at resource k, it follows that Rnew
a remains

unchanged even if Uk is incurred by different types of applications as long as the levels of

total utilization incurred at resource k are similar. Consequently, we aim to use this logic

as motivation for training our ML models to predict interference classes with one type of

benchmark application which can then be used at runtime to classify similar interference

from other types of applications.

17

Figure 3.3: Overview of Interference Detection Technique

3.1.3 General Methodology

We refer to the application owner’s cloud-based microservice application as the target ap-

plication. The application owner deploys their target application to run on managed cloud

services. In doing so, the application owner no longer manages physical servers or even VMs

as that responsibility is delegated to the cloud provider. Consequently, the application owner

only has guaranteed visibility into the containers of the target application and access to VM

level metrics, but not other application containers. Our target application consists of multiple

tiers of microservices, with each microservice bundled inside a lightweight container. We note

18

ML Algorithms Algorithm Hyperparameters
XGBoost booster, col_sample_rate, col_sample_rate_per_tree,

max_depth, min_rows, ntrees, reg_alpha, reg_lambda,
sample_rate

Generalized Linear Model
(GLM)

alpha

Random Forest (DRF) N/A
Gradient Boosting Machine
(GBM)

col_sample_rate, col_sample_rate_per_tree,
learn_rate, max_depth, min_rows,
min_split_improvement, ntrees, sample_rate

Deep Neural Net (DL) activation, epochs, epsilon, hidden, hid-
den_dropout_ratio, rho

Extremely Randomized For-
est (XRF)

N/A

Stacked Ensemble (All Mod-
els)

N/A

Stacked Ensemble (Best of
Family)

N/A

Table 3.1: Details of ML Modeling used by the H2O AutoML Framework

that it is typical for microservice applications to be distributed over several cloud instances,

with each instance hosting one or more microservice containers. In our study, we consider an

interfering application as one that runs on the same cloud instances as the target application

and competes for shared instance resources.

Our detection technique monitors resource utilization data from inside the cloud instance

and the application containers that are easy to collect, does not require any application-

level instrumentation and incurs extremely low performance overhead. To this end, we

record container utilization metrics at each target application container along with instance

utilization metrics collected at a sampling interval of t seconds. We also record the overall

application throughput, measured in terms of requests per second, at each sampling interval.

We note that the sampling interval needs to be tuned for each target application so as to

incur minimal levels of performance overhead on the system.

19

3.1.4 Data Collection and Pre-Processing for ML

Figure 3.3 presents the high level overview of our interference detection technique. As seen

in the figure, our technique runs in two phases. The first phase is the training phase where

we run controlled experiments to train and build our ML model in an offline model training

environment. In the training phase, we run our target microservice application on the cloud in

a controlled environment where its response time is not impacted by performance interference.

This is done by running the target application in isolation on the n cloud instances hosting

the microservice without the presence of any interfering application. The objective is to

obtain the baseline response times where no interference is present. To this end, we increase

the arrival rate of the application workload to the target application in steps to incur a wide

range of resource utilization observed at each container hosting the application. This is done

through a Workload Generator tool running inside a Detector instance which resides alongside

the application instances on the same cloud platform, as seen in Figure 3.3. We ensure that

our workload generation setup is free from internal software bottlenecks and network latency

issues by following the approach detailed in past work [6]. Since application owners can

only access metrics from the VM and their own application containers, we omit including

metrics of any other kind in our data set for ML model training. To this end, a Metric

Monitor tool from inside our Detector instance, as shown in Figure 3.3, collects measurable

metrics from the target application and its environment such as application response time and

throughput, container resource usage, and VM resource usage. We note that instrumenting

the application response time is done only in the training phase for constructing the ML

model. We also note that although we choose the average request response time of a target

application as our performance metric, other metrics such as the 90th percentile response

time or the mean throughput values can also be used. Using only the application throughput

along with instance and application resource utilization metrics as input allows for a smaller

feature set that is easy to monitor, collect and does not incur prohibitive monitoring overhead

at runtime.

20

We repeat each step of workload generation N times to obtain N estimates of the average

application request response time Rbase at each step. We refer to N as the number of workload

repetitions. We use this data to construct the 95% Confidence Interval (CI) of the baseline

application response time at each step. The upper and lower limits of this CI are denoted

as maxRbase and minRbase, respectively. We note that in order to ensure that our baseline

response time is not impacted by performance variability inherent in public cloud platforms,

we repeat each step, i.e. set the value of N in our training phase such that the width of

our CI is within 5% of its sample mean at each step. Alternatively, if the cloud platform

has significant performance variability, the application owner may consider deploying the

application containers inside dedicated instances which have same specification as general

instances and are offered by public cloud platforms to provide stable performance. Although

dedicated instances are more expensive than general instances, the application owners only

need to use them for a short period of time to collect training data for ML models.

Once we obtain the 95% CI of the application’s baseline response time, we next introduce

interference into the system. For this purpose, we run a controllable interfering probe along

with the target application on the n cloud instances hosting the target application as shown

in Figure 3.3. Doing so imposes additional stress on shared resources which is expected to

increase response time as depicted in Equation 3.3. Similar to before, we send the same

step-wise increasing workload to our target application from our workload generator tool

from inside the Detector instance. Additionally, we also simultaneously vary load on the

interfering probe to diversify its degree of shared resource contention and introduce different

levels of performance interference on our target application at each step. We record the

average request response time Rt of the target application along with VM and container

utilization metrics collected by the Metric Monitor tool when the interfering probe is also

running. This is done at our sampling interval of t seconds continuously for a duration of

x seconds to obtain the training data set to be used in the ML model. We note that the

application throughput along with the container and VM utilization metrics obtained at each

21

sampling interval represent a single row of record in the training data set of our ML model.

We use the baseline response time data obtained in the training phase to label the ML

data set in our offline model training. For this purpose, in our data set, we first pair the

average response time of the target application Rt along with its corresponding throughput,

container and VM utilization metrics in a record obtained at the exact same timestamp. As

mentioned before, our ML model outputs binary classification with 2 labels, where label 1

indicates interference and label 0 indicates no-interference. To this end, we use the 95% CI

of the baseline response time of the target application recorded at each step of workload

generation to label our training data set. As done in previous anomaly detection work [36], we

compare the value of Rt at each record in this set with its corresponding value of maxRbase

obtained at the same step of workload. If Rt exceeds maxRbase, we infer that the application

response time suffers from performance interference and accordingly assign the label 1 to the

record. Otherwise, the record is assigned with label 0. Once the training data set is labeled,

we remove the associated response time pairing from each record to construct the final input

data set to the ML model.

3.1.5 ML Model Training

AutoML [37–39] has gained popularity as an effective solution for training well-performing ML

models. The AutoML framework evaluates several ML models trained on the same data set

against one another and outputs the best performing model. We leverage the H2O AutoML

framework [39] in our ML model construction. This framework can be easily integrated with

the DevOps feedback loop to automate runtime interference detection. The details of the ML

modeling done by the H2O AutoML framework are shown in Table 3.1.

As shown in the table, the framework trains multiple models including but not limited to

XGBoost, Generalized Linear Models, Deep Neural Nets, and Random Forests. Additionally,

two stacked ensemble models are also constructed and evaluated. An ensemble model is

composed of several ML models and combines the predictions of the underlying models to

22

construct a prediction. The expectation is that the resultant prediction is better than the

predictions of individual underlying models. H2O AutoML’s first ensemble strategy is to

build a stacked ensemble model consisting of all trained models. The second strategy is to

construct a stacked ensemble consisting of only the best performing models per algorithm.

The framework automatically tunes ML algorithm hyper-parameters using random grid

search over a predefined range of possible hyper-parameter values. H2O AutoML iteratively

evaluates models under these varying hyper-parameter configurations and outputs the best

performing model. In addition, the H2O AutoML framework employs 5-Fold cross validation

by default to promote models generalizing well to unseen data.

We observe that our labelled data set is imbalanced. Hence, we configure the H2O

AutoML training job to balance classes. Doing so enables the classifiers to learn indicators of

performance interference as opposed to reporting the majority class. Furthermore, we employ

an 80-20 stratified train-test set split to preserve class ratios. We evaluate our models by

Precision, Recall, and F1 score. These metrics are defined as follows:

• True Positive (TP) denotes a correct positive prediction.

• False Positive (FP) denotes an incorrect positive prediction.

• True Negative (TN) denotes a correct negative prediction.

• False Negative (FN) denotes an incorrect negative prediction.

Precision =
TP

TP + FP
(3.5)

Recall =
TP

TP + FN
(3.6)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.7)

23

When a model makes positive predictions indicating interference as present, the precision

scores measures how often interference is truly present in the environment. Recall on the

other hand measures how well a model identifies true instances of interference relative to

all positive predictions made by the respective model. F1 score is the harmonic mean of

precision and recall and summarizes their joint behavior in a single metric.

3.1.6 ML Model Runtime Deployment

Once the ML model construction is complete, we move on to the second phase, i.e., the

runtime phase, where we deploy the ML model to detect container interference at runtime as

seen in Figure 3.3. In this phase, we continuously monitor throughput, instance and container

resource utilization at runtime as the microservice serves client traffic. Subsequently, this

data is fed as input to the ML model, which in turn classifies the current runtime state of

the target application as either ‘interference’ or ‘no-interference’.

3.2 RQ-1: Performance Interference Characterization

We design experiments to characterize the impact of performance interference on a target

application in Section 4.3.1. Section 4.3.2 details the results of these experiments.

3.2.1 Experiment Setup

Our experiments were run in the AWS EC2 Cloud. We use multiple m5.large EC2 instances

residing in the same availability zone on the EC2 cloud platform. These instances run Ubuntu

16.04 and each have 2 VCPUs, 8GiB of RAM, and 64GiB of Elastic Block Storage. We used

Docker version 19.03.13 as the containerization platform on our EC2 instances.

24

Web Benchmarks

As mentioned before, our target Web application is an open-source e-commerce benchmark

microservice application called Acme Air. The Acme Air benchmark emulates transactions

for an airline website and consists of 2 microservices, a NodeJS Web server, and a MongoDB

database. Acme Air is a well known and frequently used benchmark [40, 41]. We run these 2

microservices in their own Docker containers. We refer to these containers as the Acme-Web

and Acme-Db containers respectively.

We leverage two setups to host our target and interfering applications: a single VM

setup and a dual VM setup. To induce performance interference on our benchmark Acme

Air application, we ran experiments with three different interfering applications. These are

application benchmarks designed to run along side Acme Air and compete for shared host

resources. To this end, we use the stress-ng application [42] that serves as a configurable

artificial application benchmark which can be used to generate a wide range of resource

utilization levels. Prior work [43] has used the stress-ng benchmark to incur varying level of

resource utilization by stressing the system under study. We used a containerized version

of stress-ng as the interfering application in our experiments. For our second interfering

application, we use a second copy of the Acme Air application that consists of running both

the Acme-Web and the Acme-Db containers on the same VM instance under test. Running a

Web microservice benchmark like Acme Air provides a more realistic deployment scenario as

compared to running the command line stress-ng tool as the interfering application. For our

third interfering application, we used the Air Quality Monitor application [44] which is an

Internet of Things (IoT) application. Running an IoT microsevice benchmark like the Air

Quality Monitor represents a deployment scenario in which diverse and distinct microservices

are co-located.

25

Workload Characteristics

We use httperf [45] as the Workload Generator tool to send workload to our target Acme Air

application. The httperf client runs inside a separate VM instance and is not containerized.

We use the httperf tool to submit the default workload obtained from the official Acme Air

project [19] as the workload transaction mix submitted to Acme Air.

We use the number of concurrent connections and inter-request arrival time settings in

httperf to drive variation in application utilization. Our Acme Air workload has a step size

increase of approximately 12.5% CPU utilization. We configure the stress-ng application

to incur CPU utilization levels at 20%, 40%, 60%, 80%, and 100% respectively. The Air

Quality Monitor workload is similarly configured with a step size increase of approximately

20% CPU utilization. The workloads were chosen such that for scenarios without interference

present, there are other scenarios with interference present that have comparable Acme

Air utilization levels. Otherwise, lacking overlap between interference and non-interference

scenarios, a simple utilization threshold algorithm could detect interference with ease. We

use our step size increases in workload to that end. Next, we set the number of workload

repetitions N = 40. As such, each workload variation is run 40 times per environment to

capture variance. Finally, for the purpose of this study, we set the workload duration x = 120

seconds.

Metrics Monitoring

To monitor our environment, we leveraged prominent industry solutions for running the Metric

Monitor. Prometheus is an open-source monitoring solution that integrates with multiple

metrics exporters [46]. Node exporter is one such metrics exporter that we incorporate in

our setup to get virtual machine metrics [47]. cAdvisor, another metrics exporter, natively

supports Docker and so we use it to record our Docker container metrics [48]. Grafana [49], a

metrics analysis and querying solution that integrates with Prometheus, is used to collect

the aforementioned metrics, merge them based on timestamp, and export the resultant data

26

set. Additionally, application metrics averages were output in httperf logs. The application

metrics are also joined with the container and virtual machine metrics by timestamp. These

metrics are used in analysis, data labelling, and ML model construction.

With cAdvisor, we record the CPU and memory utilization at each target application

container collected at a sampling interval of t = 5 seconds. In our study, we set the value of

the sampling interval t to 5 seconds since we incurred a maximum response time overhead of

only 2% at this setting. We choose to collect only the CPU and memory utilization from

inside our target application containers since our target application incurs significant levels

of resource utilization for just these two resources. Furthermore, we collect the average

end-to-end baseline response time of our target microservice application.

Single Instance Experiments Design

We first conduct experiments on a single VM instance. In this scenario, we consolidate our

target microservice application along with the interfering application on the same VM instance.

As mentioned before, we use Acme Air as our target application. We run experiments where

the interfering application is either stress-ng, another copy of Acme Air, or our IoT application

which refers to our Air Quality Monitor application. Using another copy of Acme Air as the

interfering application is done to simulate a realistic scenario where interference is caused

when a realistic Web microservice application is scaled up and deploys additional containers.

In this case, we run the second copy of the Acme-Web and Acme-Db containers inside the

same VM instance on which the original target Acme Air application containers are running.

Using the IoT application as the interfering application simulates realistic scenarios in which

another diverse and distinct application is co-located along our target application. The IoT

application’s containers run along side the target application’s containers on the same VM

instance(s). We use our httperf Workload Generator tool to send a workload to Acme Air

while also running our interfering application to incur a wide range of resource utilization

and interference levels on our target application.

27

In particular, when stress-ng is the interfering application, our target Acme Air appli-

cation’s web-server container Acme-Web CPU utilization varies in range of 3% to 82% and

Memory utilization in range of 1% to 2%. The target application’s database container

Acme-Db CPU utilization varies in range of 1% to 50% and Memory utilization in range of

1% to 59%. Furthermore, CPU utilization of the VM instance varies in range of 4% to 95%.

In our experiments where another copy of Acme Air serves as the interfering application,

our target application’s web-server CPU utilization is varied in range of 3% to 73% and

Memory utilization in range of 1% to 2%. The target application’s database CPU utilization

varies in range of 1% to 47% and Memory utilization in range of 1% to 41%. CPU utilization

of the VM instance varies in range of 4% to 100%.

Furthermore, we run experiments in which our IoT application serves as the interfering

application. Our target application’s web-server CPU utilization ranges from 3% to 80% and

Memory utilization ranges from 1% to 2%. The target application’s database CPU utilization

ranges from 2% to 59% and Memory utilization ranges from 2% to 36%.

Dual Instance Experiments Design

We also conduct experiments on a dual instance setup where our target Acme Air application

is running on a dual VM instance setup. This is done to motivate large-scale real world

use cases where a microservice application like Acme Air is typically hosted in different

microservice containers running across different cloud instances. In this scenario, we run the

Acme-Web and Acme-Db containers on 2 separate VM instances respectively. Similar to the

one instance scenario, we first use stress-ng as the interfering application. To this end, we

run 1 stress-ng container on each of the 2 instances hosting the Acme-Web and Acme-Db

containers respectively. We send the same workload to these 2 stress-ng containers when

they are running alongside the Acme Air containers. We vary the workload to the target and

interfering applications to incur a wide range of resource utilization on our host instances.

Specifically, we vary CPU utilization on the 2 host instances from 12% to 85% in increments

28

of 10%.

Similar to our single instance scenario, we further run experiments with copies of Acme Air

as interfering applications in the dual VM instance seup. In this case, each of the two virtual

machines has its own interfering Acme Air application running on it. We vary workload to our

applications to incur a wide resource utilization range in both instances. Specifically, we incur

CPU utilization ranges from 12% to 94% and 8% to 84% in the 2 VM instances respectively.

By varying the workload to our applications, we incur varying amounts of interference on

Acme Air.

In addition, we run experiments with the IoT application serving as the interfering

application. Each of the two virtual machines run a copy of the IoT application. Workloads

to each of these two copies are varied to incur a wide range of resource utilization. We incur

CPU utilization in range of 4% to 99% and 4% to 90% in the 2 VM instances respectively.

3.2.2 Results Analysis

Single Instance Experiments Results

We first evaluate the results where stress-ng served as the interfering application. Table 3.2

shows the target Acme Air application’s utilization values along the impact of interference

on the average request response time of Acme Air. Accordingly, Web CPU and Web Mem

refer to the target Acme Air’s Web server. Similarly, DB CPU and DB Mem refer to the

target Acme Air’s Database server. Rbase and Rt refer to the baseline response time of our

target Acme Air application without interference and the runtime response time of Acme Air

with interference respectively. As seen in the table, depending on the resource utilization and

workload levels, the average response time of Acme Air is impacted by interference. At heavy

interference scenario, the average response time of Acme Air increases from 9ms to 12.53ms,

which is a 39% increase.

Table 3.3 captures the target Acme Air application’s utilization values along with associated

interference impact on average request response time of Acme Air when it is running alongside

29

Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

Req/s

14.36% 1.31% 7.56% 41.18% 1.33 1.34 238.9
28.66% 1.35% 13.65% 41.83% 1.91 1.93 469.40
37.68% 1.39% 18.09% 41.99% 2.58 2.87 631.49
53.66% 1.51% 27.88% 42.00% 9.00 12.53 937.03

Table 3.2: Acme Air + stress-ng Interference in Single VM

a second copy of Acme Air. As seen in the table, the average response time of Acme Air is

heavily impacted by different levels of interference incurred by the interfering application.

Even at comparatively light interference levels, the response time of Acme Air more than

doubles, as can be seen in the first row in Table 3.3. In the worst case scenario, the average

Acme Air response time increases from its baseline response time of 7.35 ms to a very high

value of 518.53 ms which is an increase of 6954.83%.

Similarly, Table 3.4 details the target Acme Air application’s utilization values and

associated interference impact from the IoT Air Quality Monitor application. Again, the

average response time of Acme Air is heavily impacted. In the worst case scenario, the

average Acme Air response time increases from its baseline of 16.48 ms to 590.88 ms which is

an increase of 3485.44%.

Dual Instance Experiments Results

Table 3.5 shows the impact of interference on the average request response time of Acme Air

running along with the stress-ng containers in the dual VM instance setup. As seen in the

table, the impact of interference on the average response time of Acme Air in a dual instance

setup can be significant. In the worst case scenario, the average Acme Air response time

increases from 5.66 ms to 24.1 ms, a 325.8% increase.

Table 3.7 shows the effect of interference by running a second copy of Acme Air on the

response time of Acme Air in a dual instance scenario. As seen in the table, the response time

of Acme degrades significantly when running alongside a second copy of the Acme application.

30

Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

Req/s

17.93% 1.25% 9.19% 26.65% 1.22 2.66 238.90
34.15% 1.41% 16.90% 27.35% 1.78 24.74 469.29
41.80% 1.44% 21.99% 27.66% 2.40 104.13 631.48
45.95% 1.49% 23.18% 28.01% 7.35 518.53 673.49

Table 3.3: Acme Air + Acme Air Interference in Single VM

Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

Req/s

15.38% 1.43% 10.04% 20.56% 2.38 8.10 238.90
28.08% 1.32% 17.25% 20.64% 2.98 31.83 469.39
37.19% 1.40% 23.28% 20.86% 4.16 135.66 631.40
54.04% 1.50% 36.50% 20.78% 16.48 590.88 938.97

Table 3.4: Acme Air + IoT Interference in Single VM

In the worst case scenario, the response time of Acme increases from 3.46 ms to 202.47 ms.

Table 3.8 details the impact of interference when running the IoT Air Quality Monitor

application as the interfering application along side our target Acme Air application. Again,

Acme’s response time degrades significantly in this scenario as well. In the worst case, the

response time of Acme increases from 2.32 ms to 90.22 ms.

RQ-1: Through extensive experimentation, we characterize interference through its impact

on container utilization metrics. Results show significant impact of interference on the

response time of Acme Air in all cases. For both the single and dual instance scenarios,

response time degrades by at least a factor of 39% and at most a factor of 6955% at moderate

CPU utilization levels between 40% and 60%.

3.3 RQ-2: ML for Known Interfering Applications

We first attempt to evaluate our ML based approach to detect performance interference

where the interfering application is known in the training and runtime phases. Section 3.3.1

describes our experimental setup. Section 3.3.2 details results of our experiments.

31

Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

Req/s

26.03% 1.56% 11.82% 45.20% 1.11 1.81 469.39
34.83% 1.61% 15.56% 45.39% 1.57 2.80 631.48
48.88% 1.66% 21.90% 45.39% 3.02 12.23 937.00
54.63% 1.66% 24.29% 45.78% 5.66 24.10 1099.85

Table 3.5: Acme Air + stress-ng Interference in Dual VM

3.3.1 Experiment Setup

We conduct experiments to compare our interference detection technique with baseline and

state-of-the-art interference detection techniques. To this end, we first set up experiments

where we compare our technique against a simple utilization-threshold based detection

technique as used in previous work [50]. This serves as a baseline technique where we

continuously monitor the resource utilization metrics from the Acme-Web and Acme-Db

containers at runtime, and indicate the presence of interference if these metrics exceed

their pre-defined threshold values. To this end, we set the pre-defined thresholds of CPU

and memory utilization in Acme-Web to 38% and 1.5%, and in Acme-Db to 18% and 38%

respectively. We chose these pre-defined threshold values since we observed from our earlier

experimentation that at these utilization levels, the baseline response time of Acme Air

without interference is 3 ms, which is the average baseline response time recorded over all

utilization levels incurred by Acme Air. We compare the container utilization metrics of

Acme to see if they exceed the pre-defined container utilization thresholds. If so, interference

is inferred. We evaluate the Precision, Recall, and F1 score when this baseline technique is

applied to the single and dual instance experiments.

We also conduct another set of experiments to compare our interference detection technique

with a state-of-the-art regression detection technique used in current research [13]. We chose

this technique since it is a statistical regression based approach commonly used in interference

and anomaly detection. To this end, we adopt the detection method outlined in [13] to

construct logistic regression models for interference detection at runtime. We leverage

32

the scikit-learn library [51] for our regression implementation. Tunable parameters of this

implementation include, but are not limited to, the penalty, stopping criteria tolerance, solver,

and maximum iterations for solver convergence. The regression models are fit on the same

datasets that were constructed and used for our ML approach as described in section 3.1.4.

At runtime, we use the logistic regression model in our single and dual instance experiment

setups to predict whether interference is present or not in our Acme Air application. Similar

to before, we evaluate the Precision, Recall, and F1 score of the logistic regression model.

3.3.2 Results Analysis

We report the ML models with highest F1 Score for both the single and dual instance

experiments in Table 3.6. Datasets represented in this table are described by the number of

VMs in the environment as well as the interfering application. As seen in the table, GBM

models performs best for interference detection in all single and dual VM scenarios in which

a second copy of Acme Air serves as the interfering application. In the dual VM scenario

where stress-ng is the interfering application, a stacked ensemble model performs best. In

all scenarios where the IoT Air Quality Monitor was the interfering application, a stacked

ensemble model also performed the best. These ensembles were composed of all trained

models of type: GBM, DRF, XRT, DL, GLM.

Dataset Best ML
Model

F1 Score Precision Recall

stress-ng / 1VM GBM 87.41% 83.54% 91.66%
stress-ng / 2VM Ensemble 96.38% 95.56% 97.21%
Acme / 1VM GBM 98.94% 99.21% 98.67%
Acme / 2VM GBM 99.09% 99.09% 99.09%
IoT / 1VM Ensemble 96.27% 94.02% 98.63%
IoT / 2VM Ensemble 94.55% 91.72% 97.56%

Table 3.6: Top Performing ML Model Per Dataset

33

Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

Req/s

17.52% 1.31% 9.81% 33.70% 1.11 2.46 238.9
33.16% 1.44% 17.6% 33.94% 1.33 12.91 469.34
41.92% 1.49% 22.22% 34.28% 1.55 28.47 631.50
57.11% 1.56% 30.12% 34.67% 3.46 202.47 907.29

Table 3.7: Acme Air + Acme Air Interference in Dual VM

Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

Req/s

14.18% 1.42% 9.35% 26.19% 1.24 5.46 238.9
25.98% 1.33% 15.22% 26.44% 1.23 13.67 469.4
34.42% 1.38% 20.74% 26.52% 1.45 26.68 631.50
49.55% 1.49% 30.97% 26.54% 2.32 90.22 939.21

Table 3.8: Acme Air + IoT in Dual VM

Single Instance Experiment Results

Table 3.9 captures algorithm performance of our ML approach and competing techniques

as described in section 3.3.1. Notably, the best model in the single instance scenario with

stress-ng is the ML model which achieves an F1 score of 87.41%, precision of 83.54%, and

recall of 91.66%. Furthermore, as seen in Table 3.9, in the single instance scenario with Acme

Air as the interfering application, our best model is the ML model which achieves an F1

score of 98.94%, precision of 99.21%, and recall of 98.67%. Finally, as seen in Table 3.9, in

the single instance scenario with the IoT Air Quality Monitor as the interfering application,

our best model is the ML model which achieves an F1 score of 96.27%, precision of 94.02%,

and recall of 98.63%. In Table 3.9, we observe that our ML approach outperforms all other

competing methods in the one virtual machine environment. Irrespective of what interfering

application is used, our proposed ML technique still achieves the highest F1 score, precision,

and recall.

34

Dataset Approach F1 Score Precision Recall
stress-ng / 1VM Threshold 29.14% 21.6% 44.72%
stress-ng / 1VM Regression 12.16% 34.04% 7.41%
stress-ng / 1VM ML 87.41% 83.54% 91.66%
Acme / 1VM Threshold 10.60% 94.41% 5.61%
Acme / 1VM Regression 95.83% 96.03% 95.77%
Acme / 1VM ML 98.94% 99.21% 98.67%
IoT / 1VM Threshold 0.00% 0.00% 0.00%
IoT / 1VM Regression 87.39% 78.96% 97.84%
IoT / 1VM ML 96.27% 94.02% 98.63%
stress-ng / 2VM Threshold 30.99% 39.31% 25.57%
stress-ng / 2VM Regression 61.57% 67.35% 56.71%
stress-ng / 2VM ML 96.38% 95.56% 97.21%
Acme / 2VM Threshold 39.82% 88.04% 25.73%
Acme / 2VM Regression 96.91% 97.42% 96.41%
Acme / 2VM ML 99.09% 99.09% 99.09%
IoT / 2VM Threshold 19.27% 91.38% 10.77%
IoT / 2VM Regression 87.04% 83.59% 90.79%
IoT / 2VM ML 94.55% 91.72% 97.56%

Table 3.9: Evaluation of Competing Model

Dual Instance Experiment Results

The dual instance experiments observed a high F1 score, precision, and recall for both

interfering applications. For experiments using the stress-ng application, we observed as high

as a four times increase in response time when interference was present. The best model

trained on the dual instance with stress-ng actuator was the ML model which achieved an F1

score of 96.38%, precision of 95.56%, and recall of 97.21% as per Table 3.9.

For experiments using the Acme Air interfering application, at worst we observe a fifty

times response time increase when interference is present. The best model for this scenario

was again the ML model which achieves an F1 score of 99.09%, precision of 99.09%, and

recall of 99.09% as seen in Table 3.9. Finally, when using the IoT Air Quality Monitor as the

interfering application, the best model is the ML model with an F1 score of 94.55%, precision

of 91.72%, and recall of 97.56%.

In Table 3.9, we observe that our ML approach outperforms all other competing methods

35

in the dual instance environment. Again, irrespective of what interfering application is used,

ML still achieves the highest F1 score, precision, and recall. Second to ML, the logistic

regression technique performs relatively well, beating the simple threshold technique.

Scenario Interval (%) F1 Score Precision Recall
1VM 0-10 0 0 0
1VM 10-20 0.89 1.0 0.8
1VM 20-30 0.71 0.83 0.63
1VM 30-40 0.81 0.74 0.90
1VM 40-50 0.75 0.75 0.75
1VM 50-60 0.99 1.0 0.98
1VM 60-70 0.96 0.95 0.98
1VM 70-80 1.0 1.0 1.0
2VM 0-10 0.85 0.84 0.86
2VM 10-20 0.95 0.98 0.92
2VM 20-30 0.99 0.98 0.99
2VM 30-40 0.97 0.98 0.95
2VM 40-50 0.95 1.0 0.91
2VM 50-60 0.98 0.99 0.97
2VM 60-70 1.0 1.0 1.0
2VM 70-80 1.0 1.0 1.0

Table 3.10: Sensitivity Analysis with stress-ng Interference

Sensitivity Analysis

We conduct sensitivity analysis to see how well our approach detects performance interference

when the target application is facing light, medium and heavy levels of incoming workload.

To this end, we partition the test data set into resource utilization intervals. Each interval

spans a utilization range of 10% to which the data points are assigned, for e.g., all data points

are assigned to the interval 0%-10% whose CPU utilization falls between these 2 bounds.

Since the Acme-Web and Acme-Db containers are CPU and memory intensive, we focus on

only these 2 resources for this analysis. We calculate the F1 score, precision, and recall values

obtained from our ML model for each interval in both single and dual instance scenarios.

Our sensitivity analysis results using the stress-ng interfering application is shown in

36

Table 3.10. We partition the data set based on the Acme-Web CPU utilization. In the single

VM data set, 11% of data points were labelled as interference present. In the dual VM data

set, 38% of data points were labelled as interference present. As seen in the table, our ML

model based approach achieves the highest F1 score, precision, and recall at medium Acme

Web CPU utilization levels between 50%-80%. When partitioning the same data set by the

Acme-Db Memory utilization, we notice a similar observation pattern.

We conduct a similar analysis on our data set partitioned again by the Acme-Web CPU

utilization for scenarios where a second copy of Acme Air was run as the interfering application.

In both the single and dual VM data sets, 83% of data points were labelled as interference

present. We note that there is more interference present across all segments when a second

Acme Air application serves as the interfering application as opposed to stress-ng. This

is because the two Acme Air replicas are competing for exactly the same shared instance

resources. F1 score, precision, and recall were consistent across all intervals. F1 score ranged

from 0.97 to 1.0, precision ranged from 0.93 to 1.0, and recall ranged from 0.96 to 1.0. We

observe similar pattern when partitioning based on the Acme-Db Memory utilization for

scenarios with Acme Air as the interfering application.

RQ-2: We validate our ML approach against competing interference detection techniques

where the interfering application is the same in the training and runtime phases. The logistic

regression technique outperforms the simple threshold technique by sizeable margins in all

but one experiment. Our ML models outperform both the logistic regression and simple

threshold techniques in each of our evaluated experiments in F1 score by at least 2.18% and

at most 96.27%.

3.4 RQ-3: ML for Unknown Interfering Applications

Cloud environments of scale are subject to frequent change. Containerized microservices

may be co-located and scaling actions may introduce additional containers that in turn

37

Scenario Interfering Probe
/ Interfering App

Approach F1

Score
Precision Recall

1VM stress-ng / Acme Threshold 10.6% 94.41% 5.61%
1VM stress-ng / Acme Regression 37.47% 77.18% 24.74%
1VM stress-ng / Acme ML 44.78% 96.67% 29.14%
1VM stress-ng / IoT Threshold 0.0% 0.0% 0.0%
1VM stress-ng / IoT Regression 0.0% 0.0% 0.0%
1VM stress-ng / IoT ML 1.35% 96.29% 0.68%
1VM Acme / IoT Threshold 0.0% 0.0% 0.0%
1VM Acme / IoT Regression 86.4% 77.72% 97.29%
1VM Acme / IoT ML 89.87% 90.26% 89.49%
2VM stress-ng / Acme Threshold 39.82% 88.04% 25.73%
2VM stress-ng / Acme Regression 20.73% 99.89% 11.56%
2VM stress-ng / Acme ML 72.64% 98.9% 57.4%
2VM stress-ng / IoT Threshold 17.80% 85.43% 9.93%
2VM stress-ng / IoT Regression 34.46% 92.32% 21.18%
2VM stress-ng / IoT ML 54.61% 92.52% 38.74%
2VM Acme / IoT Threshold 17.80% 85.43% 9.93%
2VM Acme / IoT Regression 83.27% 77.53% 89.92%
2VM Acme / IoT ML 84.49% 82.91% 86.12%

Table 3.11: Evaluation for Unknown Interference

stress the underlying instances. It is impractical to train an interference model for every

possible deployment combination. Accordingly, we attempt to construct a ML model that

performs well when our target application is subject to a different interfering application in

the runtime phase as opposed to its training phase. Section 3.4.1 describes our experimental

setup. Section 3.4.2 presents our experiment results.

3.4.1 Experiment Setup

We run experiments to evaluate the effectiveness of ML models in detecting performance

interference when the interfering application is unknown. We evaluate models by their F1

score, precision, and recall. Competing techniques considered are the same Regression and

Threshold based techniques as introduced in 3.3.1. To this end, we use the same methodology

as described in section 3.1.5 to train ML models. Our ML models are trained in either a single

38

VM instance environment or dual VM instance environment as discussed in section 3.2.1 and

section 3.2.1 respectively. For these environments, we choose one of our three applications to

serve as the interfering probe benchmark application in the ML model training. Next, we

deploy these trained ML models in the runtime phase as described in section 3.1.6. However,

at runtime, we evaluate the resultant ML models where a different interfering application is

present in the environment than as seen at training time.

The goal is to evaluate the model performance against an unknown interfering application

that has not been seen by the ML model before. To measure the effectiveness of our generalized

ML model, we evaluate our method against competing models of the logistic regression and

simple threshold techniques described in section 3.3.1. The logistic regression model follows a

similar methodology as our ML model in that the interfering application seen at runtime is

different than interfering probe application used at training time. For the simple threshold

technique, given its thresholds are static, the model does not change across datasets for

making predictions. To compare performance across these competing models, we evaluate

and compare their respective F1 scores, precision, and recall values.

3.4.2 Results Analysis

Table 3.11 shows our results from the experiments conducted in section 3.4.1. Table 3.11

denotes the interfering probe used at training time as well as the interfering application present

at runtime. In this way the ML models were evaluated in scenarios where the interfering

application is unknown and previously unseen. Notably, ML outperformed competing methods

in both single VM and dual VM environments. In each scenario, ML obtained the highest

F1 score when compared to competing techniques. It’s also notable that the models trained

using the second copy of Acme Air as the interfering probe at training time and tested

at runtime with IoT interference resulted in a better F1 score than the models where the

interfering probe at training time was stress-ng. Models where the interfering application is

known perform substantially better over their counterparts where it is unknown. However,

39

using a model trained for use with unknown interfering applications does not suffer from long

pre-deployment or training phases.

RQ-3: We validate our ML approach against competing interference detection techniques

where the interfering application is different in the training and runtime phases. Our ML

models outperform competing techniques in F1 score by at least 1.35% and at most 66.69%.

3.5 Threats to Validity

We identify some threats to validity of our work in this section and classify them as per Wohlin

et al [52]. We note as an external threat that our approach of training a ML model using a

benchmark interfering application and using this model to detect interference from unknown

interfering applications might not work if the resource utilization signature of the benchmark

interfering application is significantly different from that of the interfering application at

runtime. In other words, if the benchmark interfering application used in the training phase

and the interfering application at runtime stresses different instance-level resources in different

ways, our technique may be unable to classify interference. Furthermore, as another external

threat, in multi-instance deployment strategies frequently used for microservice deployment,

if the instance characteristics at runtime change relative to what was used in the training

phase, our ML models may not be successful and will need to be re-trained.

3.6 Summary

In Chapter 3, we characterize the impact of performance interference in cloud-native applica-

tions with a realistic microservice benchmark to address RQ-1. At moderate CPU utilization

levels, we observe target application performance degradation of as much as 6955%. To detect

such interference, we propose a Machine Learning based technique that does not require

application instrumentation and imposes minimal overhead of 1-2% CPU utilization. We

40

evaluate our ML detection technique in cloud environments where an interfering application is

known to address RQ-2. In this scenario, our technique outperforms baseline and competing

detection techniques by at least 2.18% and at most 96.27%. Furthermore, we evaluate our

technique in cloud environments where an interfering application is unknown to address RQ-3.

This was done to measure how well our ML models generalize in dynamic cloud environments.

Under these conditions, our ML technique outperforms baseline and competing detection

techniques by at least 1.35% and at most 66.69%.

41

Chapter 4

Performance Interference Quantification

In this chapter, we address Research Questions 4-6 with respect to Performance Interference

Quantification. We propose an ML based performance interference quantification technique

usable for both static and runtime modelling. Section 4.1 discusses methodology. Section 4.2

describes the common environment and application setup used in addressing our research

questions. Section 4.3 details the experimental setup and results of RQ-4. Section 4.4

describes the experimental setup and results of RQ-5. Section 4.5 presents the experimental

setup and results of RQ-6. Section 4.6 frames the threats to validity. Section 4.7 is a summary

of our Performance Interference Quantification work.

4.1 Methodology

We use the methodology described in this section to address our research questions. The

microservice application deployed by the application owner is denoted as the target application

and is the application for which we want to maintain a good QoS. The target application is

hosted in one or more containers which we refer to as Monitored Application Containers as

seen in Figure 4.1. These containers are distributed across n VMs. An interfering application

denotes an application distinct from the target application but whose container instances

have been or might be co-located on the same VM as the target application. Accordingly,

42

the interfering application competes with the target application for shared resources.

Figure 4.1: Overview of Interference Quantification Training Phase

4.1.1 Static Models for Interference

For static quantification, our methodology consists of two phases: the training phase and the

runtime phase. Figure 4.1 presents an overview of our interference quantification training

phase in which we construct static models. The training phase is an offline phase where

controlled experiments are run to simulate an environment with and without inference present.

The Workload Generator is a configurable tool that sends traffic to the target application at

varying intensities. In that fashion, a wide range of utilization levels can be generated for the

target application. In addition, the interfering application, called probe, can be co-located on

43

Figure 4.2: Overview of Interference Quantification Runtime Phase

the same VM as the target application. Similarly to the target application, the utilization of

the interfering probe can be varied on demand to cover a large space of resource utilization.

Furthermore, in the training phase, the environment and the target application are

monitored by the Metric Monitor. The Metric Monitor collects data from the VM(s),

container(s), and target application at a fixed time interval t. The metrics obtained by the

Metric Monitor are used to construct static models. In our experimentation, the static models

predict the response time of the target application. Other metrics of interest can be predicted

with our proposed technique however.

These static models are subsequently deployed in the runtime phase to quantify the

impact of interference on our target application’s response time. Models can be deployed

for use in scenarios where the interfering application is known and is the same one that was

encountered in the training phase. In addition, models can also be deployed in scenarios

where the interfering application is unknown and where the interfering application may be

44

different from the one encountered in the training phase.

The runtime phase is similar in nature to the training phase, with a few key distinctions.

In the runtime phase, as seen in figure 4.2, instead of a Workload Generator and Interfering

Probes, we have the Client Workload and Interfering Applications which in practice are not

controllable. The runtime phase furthermore leverages deployed models to make predictions.

As previously mentioned, a benefit of static quantification is that we do not have frequent

model re-training although as a consequence, static models may be less accurate in their

predictions if they do not generalize well.

Layered Queuing Models

We draw from Queuing Theory to motivate the use of Queuing Networks for quantifying

performance interference as a static quantification technique. The LQM is an extension of

the QNM and so we start with a discussion of the Queuing Network model accordingly.

In a QNM, the response time of an application a running on a virtual machine is expressed

as a function of service demand as well as the total utilization of a resource k as follows:

Ra =
Da,k

1− Uk

(4.1)

where Da,k is the service demand of application a at resource k and Uk is the total

utilization incurred at resource k.

The total utilization Uk is further expressed as a function of utilization incurred by all

applications in the system that utilize resource k. Consider a system in which an application

a and an application b both utilize resource k. The total utilization Uk is expressed as follows:

Uk = Ua,k + Ub,k (4.2)

Now suppose an application b is co-located on the same virtual machine and also stresses

resource k. Application b imposes its own resource utilization on the virtual machine. The

45

multi-class form of equation 4.1 that predicts the response time of application a is expressed

as:

Ra =
Da,k

1− Ua,k − Ub,k

(4.3)

where Ua,k represents the utilization incurred by application a on resource k and likewise

Ub,k represents the utilization incurred by application b on resource k.

From equation 4.3, it follows that an application b co-located on the same VMs as our

target application, application a, and which utilizes the same resource k as does application

a, can impact the response time of application a.

LQMs are static, non-linear queuing models that represent both the software and hardware

components of a system as a set of layers [20]. In addition, they explicitly express the topology

of an application to represent the different tiers of the application as queues. In an LQM the

response time, or service time, at each tier of an application is expressed as a function of the

response times of the previous tiers and any additional queuing time incurred [20].

As per Franks et. al. [20], applications, or services, are broken down into two main

components; clients and servers. Clients make requests to servers and servers process those

requests accordingly. Its important to note that a service can be both a client and a server.

Clients and servers each represent the different layers of a service. As mentioned, hardware

components are also represented as layers. A client makes requests to hardware layers to

obtain resources as need.

Consider that an application a is composed of two tiers, say tier i and tier j where tier i

calls tier j. Let Ra denote the response time of application a, Ra,i the response time of tier i

in application a, and Ra,j the response time of tier j in application a. We can express Ra,i as:

Ra,i = Ra,j +Qi,j (4.4)

where Qi,j represents the queuing time incurred by tier i while waiting for a response

46

from tier j of application a. It follows that the total response time of application a as viewed

by a client c is then:

Ra = Ra,i +Ra,j +Qc,i (4.5)

where Qc,i represents the queuing time incurred by the client waiting on a response from

tier i of application a.

Given that an application’s response time is influenced by the response times of each of

its tiers as per equation 4.5 and furthermore influenced by the amount of utilization imposed

on the system’s resources as per equation 4.1, it follows that each tier is susceptible to

performance degradation which can have cascading effects on subsequent tiers.

Given the aforementioned characteristics of LQMs, they are well suited for modelling

microservice applications. Accordingly, we leverage LQMs as a competing static model that

we evaluate our static ML technique against. Our method uses the aforementioned Metric

Monitor to obtain utilization values of the target application.

In addition to utilization metrics, LQMs require some prior knowledge of the demand

imposed on the system to make a response time prediction as per equation 4.1. Drawing

from Queuing Theory again, we can estimate the demand of a system as:

Da,k =
Ua,k

Xa

(4.6)

where Da,k is the service demand of application a on resource k, Ua,k is the utilization of

application a on resource k, and Xa is the throughput of application a. We utilize Formula

4.6 in conjunction with the utilization and throughput metrics of our target application to

estimate the service demand imposed by our application. With service demand estimates and

utilization metrics, we have the necessary inputs to construct LQMs that model our target

application.

We leverage OPERA [53], a tool that has been used in prior work for constructing LQMs

47

for performance modelling of cloud-native applications [26]. OPERA constructs LQMs given

workload specifications, application topology, resource utilization metrics, and system demand

estimates. The workload specification defines the client throughput to the target application

a. The application topology is representative of application a and the environment. Resource

utilization metrics are obtained from the Metric Monitor and consist of CPU utilization

metrics from the VMs and containers in use. Finally, the system demand estimates are derived

from resource utilization metrics and the workload specification. OPERA [53] is employed

in the training phase to construct the LQM models. These LQM models are subsequently

deployed in the runtime phase where the interfering application may either be known or

unknown. The LQM models are used for performance interference quantification of the target

application a.

Static Machine Learning Models

Automatic Machine Learning (AutoML) frameworks aim to automate and abstract away

the complexity required to train well performing ML models. These frameworks train and

evaluate a variety of ML models on a user’s provided dataset and outputs the best performing

model. In addition, AutoML optimizes the model search space and may even make trade offs

between exploration and exploitation. Furthermore, popular AutoML frameworks can be run

with several constraints configured. For instance, user’s can constrain the AutoML training

time to a maximum time budget. In our work, we leverage the H2O AutoML framework [39]

in both a static and runtime fashion to construct ML models for performance interference

quantification.

The H2O AutoML framework considers several ML algorithms like Deep Neural Networks,

XGBoost, and Stacked Ensembles. Each algorithm may have one or more hyperparameters

that the AutoML framework tunes. H2O AutoML performs a random grid search over the

set of hyperparameters when training models of each ML algorithm. It does so in an attempt

to find hyperparameter values that result in the best performing model for the particular ML

48

algorithm.

Our ML technique relies on CPU and Memory utilization metrics from the VMs and

containers in the environment as well as the throughput of the target application a. This

combination of multi-layer metrics make up the feature set for our ML models. These metrics

are obtained from the Metric Monitor. Our models predict the response time of our target

application which makes the prediction task a regression problem.

Figure 4.3: Overview of Runtime Modelling Interference Quantification

Given the data obtained from the Metric Monitor, we utilize the H2O AutoML framework

to train ML models in the training phase of our technique. Trained ML models are subsequently

deployed in the runtime phase to be used for performance interference quantification of the

target application a where the interfering application is either known or unknown.

49

4.1.2 Runtime Models for Interference

Our runtime quantification technique consists of one single phase; the runtime phase. All

operations, including model training and deployment, are conducted at runtime. Figure 4.3

depicts an overview of our runtime interference quantification technique. As in the static

interference quantification approaches, the runtime approach also has a target application,

interfering application, and client workload(s). Our runtime quantification technique also

leverages a Metric Monitor which serves the same purpose as it does in the static interference

quantification technique. That is, the Metric Monitor polls the environment and target

application for metrics of interest at a fixed time interval t. In addition to these components,

the runtime quantification technique has a Model Manager as depicted in 4.4.

Figure 4.4: Overview of Model Manager

The Model Manager is responsible for the end to end life cycles of models trained and

deployed in our runtime phase. The Model Manager employees a Model Deployment Strategy,

50

as defined by the DevOps team, that defines when a model should be trained or by extension,

re-trained. When model training and re-training is done at runtime, this constitutes a runtime

quantification technique. If the Model Manager indicates a new model is required, the Model

Manager triggers the Model Training process. In the Model Training process, the Model

Manager queries the Metric Monitor for the relevant metrics and trains a new model at

runtime. When a new model is trained, the Model Manager swaps out the old model for

newly trained one, which we refer to as the Active Model. The Model Prediction process

invokes the Active Model to obtain runtime performance predictions. We predict the response

time of our target application in our experimentation although our technique can be used to

predict other metrics of interest as well.

Gaussian Process Models

Gaussian Process (GP) [54] models are probabilistic models that utilize Bayesian theory

to derive their predictions. Prior works [23, 24] have employed GP models with sliding

windows in modelling response time of containerized applications. In particular, the recent

work of Kang and Lama [24] uses GP models for the modelling of microservice performance

interference. As such, we consider their implementation of the GP model as a competing

technique in our work.

Kang and Lama [24], as with other prior works, leverage VM, container, and application

metrics for their feature sets. These metrics are used to train GP models at runtime as well

as utilizing those same models for response time predictions. In their model definition, Kang

and Lama [24] formulate their GP models using the sum kernel of the Radial Basis Function

(RBF) kernel plus the Rational Quadratic kernel. Furthermore, they employ a sliding window

technique in which a limited number of datapoints, in this case 200, are used to train GP

models at runtime such that the training time as a result is less than 30 seconds. Their

motivation for doing so is to keep overhead like the data collection and model training times

less than their sampling interval.

51

Runtime Machine Learning Models

Our Runtime Machine Learning technique utilizes a Sliding Window Model Deployment

Strategy in conjunction with the AutoML framework as detailed in section 4.1.1. Our runtime

AutoML technique’s feature set is made up of the same metrics used in our static AutoML

technique’s feature set as mentioned in section 4.1.1. That is, it consists of CPU and memory

utilization from the VM and target application containers as well as the target application’s

throughput. We predict the response time of our target application which again constitutes a

regression task.

Prior works have employed a sliding window technique to trigger model training and

re-training at runtime [23,24]. Sliding window techniques configure a fixed time interval t.

Model training is conducted with respect to this time interval t. That is, model training only

considers a dataset of points acquired within the fixed time interval t. The intent is to set t

such that there are enough points to construct a well performing model while also keeping t

small enough as to minimize required model training time. With a small enough t, it follows

that sliding window techniques can be employed at runtime.

By utilizing a sliding window for model re-training and deployment, changes in the cloud

environment can be captured in a dynamic fashion. For instance, assume a new unknown

interfering application is co-located alongside the target application. The use of a sliding

window technique allows for new models to capture the interference impact this new interfering

application has on the target application at runtime.

AutoML frameworks like H2O have parameters in which a user can set a fixed training

time budget. Model training time cannot exceed this budget and so the framework optimize

how best to spend the training time. In our technique, we set the H2O AutoML training time

budget equal to t. That is, the Model Training process does not exceed the sliding window

interval. For each interval, a new model is trained and deployed at runtime.

52

4.2 General Experiment Setup

We run experiments in the AWS cloud on EC2 VMs running in the same availability zone. We

utilized m5.large VMs running Ubuntu 16.04 and Docker 19.03.13. Each VM was allocated

2 VCPUs, 8GiB of Ram, and 64GiB of Elastic Block Storage. We conduct two sets of

experiments. The first set of experiments deploys the target application on a single VM,

which we refer to as the 1VM deployment strategy. The second set deploys the target

application across 2 VMs, which we refer to as the 2VM deployment strategy.

Target Application

The target application we use is called Acme Air [19] which is an e-commerce benchmark

microservice previously used in other related works [40,41]. Acme Air consists of a NodeJs

Web Server and a MongoDB database, each of which are each containerized and denoted as

Acme-Web and Acme-Db respectively.

Interfering Applications

In our experiments, we leverage three different interfering applications. Only one interfering

application is ever deployed concurrently with our target application.

The first interfering application we leverage is a containerized version of the stress-ng

benchmark [42]. stress-ng has been used in prior work [43] to induce stress on system

resources at varying configurable levels. stress-ng is well suited for our experiments given we

can configure the level of stress induced on the system. We can evaluate how well our models

work at varying levels of performance interference.

Our second interfering application is a second copy of Acme Air that runs concurrently

with the target application. The interfering application copy of Acme Air has its own distinct

and configurable workload making for a more realistic deployment scenario. We use a second

copy of Acme Air to model scenarios with high levels of performance interference. Given

that the interfering application is a copy of the target application, their resource utilization

53

patterns are the same. Therefore, there will be abundant resource competition.

Finally, our third interfering application is an Internet of Things (IoT) microservice

application called the Air Quality Monitor [44]. We leverage the Air Quality Monitor as an

interfering application to represent a realistic scenario in which two distinct microservices are

co-located. We refer to the Air Quality Monitor application as IoT.

Client Workloads

We devise workloads to each target and interfering application such that they incur incremental

step size increases in utilization. Doing so allows us to capture performance interference

behavior across a wide range of resource utilization levels. Each workload is run for N = 40

repetitions in each environment to ensure variance is captured. Furthermore, each workload

is run for a duration x = 120 seconds.

For our target application, Acme Air, we leverage httperf [45] to serve as the Workload

Generator. The workload itself represents the default workload mix provided with the

Acme Air application. The step size increase of this workload is approximately 12.5% CPU

utilization. For our interfering application, stress-ng, we configure the application itself

through a command line script to stress CPU resources with a step size increase of 20%

CPU utilization. The command line script represents the Workload Generator for stress-ng.

Next, when we use a second copy of Acme Air as the interfering application, we leverage

the same default workload mix previously mentioned to incur a step size increase of 12.5%

CPU utilization. The target application copy of Acme Air and the interfering application

copy of Acme Air each have their own distinct workloads that may be configured at the same

or different levels at any one point in time. Finally, for Air Quality Monitor, we leverage

JMeter [55] as the Workload Generator. The step size increase for the Air Quality Monitor is

20% CPU utilization.

54

Metrics Monitor

Prometheus, a frequently used open-source monitoring tool serves as the Metrics Monitor

in our experiments. Prometheus integrates with metrics exporters to obtain metrics as

configured by the user. To obtain virtual machine level metrics, we utilize a metrics exporter

known as Node exporter [47]. With respect to container level metrics, we use cAdvisor [48],

a metrics exported that integrates with Docker. Application level metrics for our target

application, Acme Air, are obtained from the logs output by its Workload Generator, httperf.

Grafana [49] is utilized to query, merge, and export virtual machine and container metrics.

We configure the metrics exporters to record only CPU and Memory utilization metrics

as our target application, Acme Air, heavily utilizes just these two resources. Metrics are

configured in Prometheus to be collected at sampling interval t = 5 seconds as to incur a

minimal overhead of 2% CPU utilization on each virtual machine.

1VM Deployment Strategy

We construct performance interference models for two deployment strategies. The first consists

of deploying our target application, Acme Air, along with one of the interfering applications on

a single VM. As previously mentioned, we leverage stress-ng, a second copy of Acme Air, and

the IoT Air Quality Monitor as interfering applications in our experimentation. The target

application is deployed to the single VM and a single interfering application is co-located

alongside the target application on the same VM. Each application’s Workload Generator is

used to incur utilization on system resources and consequently induce performance interference.

Meanwhile, our Metric Monitor, Prometheus, captures relevant metrics from the single VM

and containers running on the VM.

2VM Deployment Strategy

The 2VM deployment strategy distributes our target application, Acme Air, across two

VMs. Acme Air’s Web Server is deployed on one of the VMs and Acme Air’s Database is

55

deployed on the other VM. Microservices are frequently deployed across several VMs so we

account for this deployment strategy in our experimentation. With respect to the interfering

application, each of the two VMs has its own copy of the interfering application deployed

to it. Therefore, both VMs can be subject to performance interference. Each interfering

application copy has its own Workload Generator. Again, we vary the workloads sent by the

Workload Generators to target and interfering applications to incur varying levels of resource

utilization. Concurrently, the Prometheus Metric Monitor records metrics from both VMs

and the containers that run on the two VMs.

4.3 RQ-4: Static ML for Known Interfering Applications

To quantify performance interference with respect to RQ-1, we utilize the setup as presented

in section 4.2 in which we can induce performance interference on a target application. For

the experimentation in this section, we assume the interfering application is known to the

target application owner. We induce performance interference as described in section 4.2

and collect the resultant target application’s performance metrics. With these metrics, we

evaluate the performance of our static technique versus baseline and competing techniques.

Section 4.3.1 describes our experimental setup. Section 4.3.2 presents the results of our

experiments.

4.3.1 Experiment Setup

For each deployment strategy, we sent varying workloads to both target and interfering

applications while monitoring the environment. The metrics collected are used in training

static performance interference models. We evaluate our proposed static AutoML technique,

as detailed in section 4.1.1, against baseline and competing state-of-the-art techniques. We

leverage Linear Regression as a simple, statistical baseline technique. We further evaluate

our technique against the competing Layered Queuing Model (LQM) as described in section

56

4.1.1. As mentioned before, LQMs have frequently been used in performance modelling of

monolithic and microservice applications [26–28]. The interference models are subsequently

used at runtime to predict our target application Acme Air’s response time when subject to

interference from a known interfering application.

4.3.2 Results Analysis

Observed Resource Utilization

By varying the target and interfering application workloads, we observed a wide range of

resource utilization values as depicted in Table 4.1. This enables us to model performance

interference impact at varying levels of resource consumption. Notably, we are able to evaluate

periods of little to no interference, periods of high interference, and levels of interference

between those two extremes.

VMs Interfering
App.

Component CPU
Range

Memory
Range

1VM stress-ng VM 4%-95% 9%-57%
1VM stress-ng Acme Web 3%-82% 1%-2%
1VM stress-ng Acme Db 1%-50% 1%-59%
1VM Acme Air VM 4%-100% 10%-90%
1VM Acme Air Acme Web 3%-73% 1%-2%
1VM Acme Air Acme Db 1%-47% 1%-41%
1VM IoT VM 5%-100% 15%-39%
1VM IoT Acme Web 3%-80% 1%-2%
1VM IoT Acme Db 2%-59% 2%-36%
2VM stress-ng VM 2%-94% 7%-53%
2VM stress-ng Acme Web 2%-73% 1%-2%
2VM stress-ng Acme Db 1%-40% 2%-66%
2VM Acme Air VM 2%-100% 1%-100%
2VM Acme Air Acme Web 3%-79% 1%-2%
2VM Acme Air Acme Db 2%-49% 1%-43%
2VM IoT VM 4%-100% 4%-41%
2VM IoT Acme Web 3%-77% 1%-2%
2VM IoT Acme Db 2%-58% 2%-45%

Table 4.1: Observed Resource Utilization Ranges

57

VMs Interfering
App.

Rbaseline
(ms)

Rinterf.
(ms)

Percent
Increase

1VM stress-ng 1.33-9.00 1.34-12.53 39.22%
1VM Acme Air 1.22-7.35 2.66-518.53 6954.83%
1VM IoT 2.38-16.48 8.10-590.88 3485.44%
2VM stress-ng 1.11-5.66 1.81-24.10 325.80%
2VM Acme Air 1.11-3.46 2.46-202.47 5751.73%
2VM IoT 1.24-2.32 5.46-90.22 3788.79%

Table 4.2: Observed Response Time Ranges

Observed Response Times

We further report the response time ranges observed in our experimentation as shown in Table

4.2. We again partition our table by the VM deployment strategy and interfering application

in use. The Rbaseline column depicts the range of baseline response times for our target Acme

Air application when there is no interference present. The Rinterf. column depicts the range of

response times for our target Acme Air application subject to performance interference. The

Percent Increase column represent the worst case percent increase in response time subject

to interference relative to the baseline response time. When a second copy of Acme Air is

used as the interfering application we see the largest percent increase in response time. This

is followed by the IoT interfering application. stress-ng interference causes the least impact

on the target Acme Air application’s response time.

Model Evaluation

We evaluate the effectiveness of models by the Mean Absolute Percentage Error (MAPE) as

used in prior works [22,24]. MAPE is defined as:

• Let n denote total number of records observed

• Let RA,i denote actual response time observed for record i

• Let RP,i denote predicted response time made for record i

58

MAPE =
1

n
∗

n∑
i=1

RA,i −RP,i

RA,i

(4.7)

Our metrics are delineated by scenario. That is, we calculate the MAPE for each

combination of interfering application and deployment strategy in use. Table 4.3 details the

MAPE of our static AutoML approach as well as baseline and competing techniques. Across

all scenarios, our static AutoML technique outperforms baseline and competing techniques by

as little as 14.13% and as much as 1271.37%. In all scenarios, AutoML selected the Gradient

Boosting Machine (GBM) as the best performing ML model considered. Furthermore, as per

Table 4.3, QNM ranks in second place by outperforming the corresponding baseline Linear

Regression models in all scenarios.

VMs Interfering App. Model MAPE
1VM stress-ng Regression 109.06%
1VM stress-ng LQM 98.07%
1VM stress-ng AutoML 3.87%
1VM Acme Air Regression 1297.9%
1VM Acme Air LQM 50.28%
1VM Acme Air AutoML 26.53%
1VM IoT Regression 701.37%
1VM IoT LQM 69.76%
1VM IoT AutoML 19.26%
2VM stress-ng Regression 122.83%
2VM stress-ng LQM 38.59%
2VM stress-ng AutoML 5.88%
2VM Acme Air Regression 558.52%
2VM Acme Air LQM 48.39%
2VM Acme Air AutoML 14.92%
2VM IoT Regression 243.45%
2VM IoT LQM 43.52%
2VM IoT AutoML 29.39%

Table 4.3: Static Model with Known Interfering App

In scenarios with less interference impact observed on response times relative to baseline

response times as measured by the Percent Increase column in Table 4.2, we observe a lower

59

MAPE as seen in Table 4.3. Conversely, the greater the impact on response time relative to

baseline response times, the larger we observe MAPE to be. We observe the least amount of

performance interference impact on response time when stress-ng is the interfering application

and likewise the smallest MAPE scores. When a second copy of Acme Air is the interfering

application, we observe the most amount of interference impact and consequently the largest

MAPE scores. Finally, the IoT interfering application generates more impact on response

time than stress-ng but less than a second copy of Acme Air and the same pattern is observed

in MAPE scores.

4.4 RQ-5: Static ML for Unknown Interfering Applica-

tions

In a cloud environment, an application owner may not have visibility into the other applications

co-located on the same physical server or even VM. Accordingly, we evaluate the effectiveness

of performance interference quantification using static models where the interfering application

is unknown. In other words, we evaluate how well our technique generalizes when a new

interfering application is encountered at runtime which was not previously seen at training

time. Section 4.4.1 covers our experimental setup and section 4.4.2 details our results.

4.4.1 Experiment Setup

We leverage the experimental setup detailed in section 4.2. With that setup, we evaluate

our static ML technique against baseline and competing techniques. Our baseline technique

again is Linear Regression. LQM serves as the competing technique. Again, we compare

techniques by MAPE to measure their effectiveness. We leverage the same ML model training

methodology as described in section 4.1.1. We assess the techniques across the 1VM and

2VM deployment strategies for our target application. Furthermore, we ensure the interfering

application encountered at runtime is different from the interfering application encountered

60

at training time. In that fashion we can evaluate how well techniques perform when faced

with an unknown interfering application.

4.4.2 Results Analysis

The workloads used in experimentation across our research questions are fixed and so we

observe the same levels of resource utilization as detailed in Table 4.1. Likewise, we observe

the same levels of response time as detailed in Table 4.2. We report the MAPE of each

technique and scenario in Table 4.4. AutoML consistently outperformed the Regression

and LQM models across all scenarios by as little as 2.49% and as much as 668.81%. For

each 1VM scenario, a stacked ensemble model was the best performing ML model in our

AutoML technique. For our 2VM scenarios, when stress-ng was the training time interfering

application and Acme Air was the runtime interfering application, a GBM model performed

best among the considered ML models. The same was true in the 2VM scenario in which

Acme Air is encountered at training time and the IoT application is encountered at runtime.

In the 2VM scenario when stress-ng is encountered at training time and the IoT application

at runtime, a stacked ensemble was selected by our AutoML technique.

4.5 RQ-6: Runtime ML

As previously mentioned, cloud-native application owners may not have visibility of other

co-located interfering applications on their physical server or even VM. In contrast to the work

presented in section 4.4 where static quantification techniques were employed, in this section

we evaluate the performance of runtime performance interference quantification techniques.

Section 4.5.1 discusses experimental setup. Section 4.5.2 highlights the results of our runtime

quantification technique. Finally, section 4.5.3 presents a comparative analysis and practical

considerations between static and runtime AutoML models and their performance across our

different scenarios.

61

VMs Training
Interf.
App

Runtime
Interf.
App

Model MAPE

1VM stress-ng Acme Air Regression 455.63%
1VM stress-ng Acme Air LQM 72.19%
1VM stress-ng Acme Air AutoML 60.0%
2VM stress-ng Acme Air Regression 131.48%
2VM stress-ng Acme Air LQM 128.34%
2VM stress-ng Acme Air AutoML 85.41%
1VM stress-ng IoT Regression 106.72%
1VM stress-ng IoT LQM 84.47%
1VM stress-ng IoT AutoML 74.0%
2VM stress-ng IoT Regression 103.86%
2VM stress-ng IoT LQM 68.0%
2VM stress-ng IoT AutoML 65.39%
1VM Acme Air IoT Regression 820.16%
1VM Acme Air IoT LQM 83.86%
1VM Acme Air IoT AutoML 71.96%
2VM Acme Air IoT Regression 737.55%
2VM Acme Air IoT LQM 71.23%
2VM Acme Air IoT AutoML 68.74%

Table 4.4: Static Model with Unknown Interfering App

4.5.1 Experiment Setup

We compare the performance of our runtime quantification technique as described in Section

4.1.2 against baseline and competing techniques. To that end, we leverage the static LQM

technique as depicted in section 4.1.1 as our baseline technique. Furthermore, we leverage

a state-of-the-art Gaussian Process technique as presented in section 4.1.2 which itself is a

runtime technique. Runtime AutoML models are constructed following the methodology in

section 4.1.2.

We leverage the same setup as presented in section 4.4.1. That is, we employ 1VM and

2VM deployment strategies for our target application Acme Air. In addition, we leverage the

same Prometheus Metric Monitor. We utilize stress-ng, a second copy of Acme Air, and the

IoT application as interfering applications in our experiments.

62

For the runtime techniques, model training occurs at runtime. Consequently, the Active

Model is likely to be employed when there is runtime interference from the same interfering

application encountered in model training. Should the interfering application change at

runtime, the new interfering application is unknown to the Active Model. However, given the

dynamic nature of the sliding window, subsequent models trained at runtime will detect the

new interfering application’s impact in their respective model training.

4.5.2 Results Analysis

Resource utilization levels are detailed in Table 4.1 and again consistent across all our

experimentation. Response time ranges are presented in Table 4.2 which are also consistent

across our experimentation. In Table 4.5, we detail the MAPE of our technique and competing

techniques across each scenario. Notably, AutoML outperforms both the LQM and GP models

across all scenarios. In four of the six scenarios, the GP model comes in second place by

outperforming the LQM. In two of the six scenarios, the LQM outperforms the GP model to

come in second place.

4.5.3 Comparative Analysis and Practical Considerations

Static and runtime performance models each have benefits and drawbacks. Having employed

techniques from both categories, we compare the performance of the best static and runtime

AutoML techniques as captured in Table 4.6. The table is partitioned the runtime interfering

application and the VM deployment strategy in use for the target application. Furthermore,

we denote the evaluated technique; either Static AutoML or Runtime AutoML. Then we

denote whether or not the technique in use had visibility of the interfering application in use

in the Interference Visibility column. This column is only applicable to static techniques

as runtime techniques construct new models at runtime periodically. Therefore there are

periods in which the Active Model in a runtime technique may or may not have been trained

using data with interference impact from the current interfering application(s).

63

VMs Interfering App. Model MAPE
1VM stress-ng LQM 98.07%
1VM stress-ng GP 7.48%
1VM stress-ng AutoML 6.03%
1VM Acme Air LQM 50.29%
1VM Acme Air GP 50.67%
1VM Acme Air AutoML 38.29%
1VM IoT LQM 69.75%
1VM IoT GP 36.13%
1VM IoT AutoML 26.74%
2VM stress-ng LQM 38.59%
2VM stress-ng GP 20.9%
2VM stress-ng AutoML 18.54%
2VM Acme Air LQM 48.39%
2VM Acme Air GP 32.81%
2VM Acme Air AutoML 24.04%
2VM IoT LQM 43.52%
2VM IoT GP 54.46%
2VM IoT AutoML 38.85%

Table 4.5: Runtime ML vs. Runtime GP and Static LQM

It’s particularly noteworthy that the static AutoML technique with interference visibility

outperforms its counterpart static AutoML technique lacking interference visibility as well

as the runtime AutoML technique. However, the applicability of static techniques with

interference visibility is limited to scenarios where the application owner knows what interfering

applications may be or are co-located with the target application. Nevertheless, this is a

useful scenario when the application owner wants to scale manually or automatically known

applications and would like to see the effects on another application. These static AutoML

models were trained using data collected over a period of 40 hours and as previously noted,

the cloud-native application owner may not have visibility into the co-located interfering

applications. If we consider the generalized form of our static AutoML technique, where the

interfering application is unknown at runtime, the MAPE degrades by approximately 2x - 6x.

It is therefore unwise to use static models to predict interference impact induced by unknown

applications.

64

The runtime AutoML technique performs comparatively well with respect to its static

AutoML counterparts. While it does not outperform the static AutoML models that assume

interference visibility, the runtime AutoML models perform within 2.16% and 12.66% of

their counterpart. The runtime AutoML technique does not require visibility of co-located

interfering applications so it can account for changing environment conditions. Also, it does

not require a long training time unlike the static technique counterparts. Therefore runtime

quantification is highly recommended for modelling the interference cause by applications

unknown at runtime.

VMs Interfering
App.

AutoML
Technique

Interference
Visibility

MAPE

1VM stress-ng Static Known 3.87%
1VM stress-ng Runtime N/A 6.03%
1VM Acme Air Static Known 26.53%
1VM Acme Air Static Unknown 60.0%
1VM Acme Air Runtime N/A 38.29%
1VM IoT Static Known 19.26%
1VM IoT Static Unknown 83.86%
1VM IoT Runtime N/A 26.74%
2VM stress-ng Static Known 5.88%
2VM stress-ng Runtime N/A 18.54%
2VM Acme Air Static Known 14.92%
2VM Acme Air Static Unknown 85.41%
2VM Acme Air Runtime N/A 24.04%
2VM IoT Static Known 29.39%
2VM IoT Static Unknown 65.39%
2VM IoT Runtime N/A 38.85%

Table 4.6: Comparison of Static and Runtime ML

4.6 Threats to Validity

We describe some threats to validity with respect to our work. We leverage the threats to

validity classification of Wohlin et. al. [52].

We note that an internal threat to validity is the configuration of the fixed number

65

of datapoints considered in the sliding window of our runtime AutoML technique. If this

configuration is set too small, the MAPE of our trained models may deteriorate. If this

configuration is set too large, model training may become too slow to keep up with changing

environment dynamics.

We further note as an external threat to validity that our experiments were conducted

in a single availability zone in the AWS cloud. Our experimentation considers multi-VM

deployment strategies within the same availability zone. We do not consider deployment

strategies cross multiple availability zones.

4.7 Summary

In Chapter 4, we propose a Machine Learning based Performance Interference Quantification

technique. We utilize the technique in both static and runtime modelling. With respect to

RQ-4, we evaluate our static ML technique to quantify performance interference when the

interfering application is known. That is, when the interfering application encountered at

deployment time is the same as the one encountered at model training time. Results show our

static ML technique outperformed competing interference quantification techniques by at least

14.13% and at most 1271.37%. Additionally, we evaluate the static ML technique when the

interfering application is unknown to answer RQ-5. This constitutes evaluating our models

at runtime when the interfering application is different than the one encountered at model

training time. Our static ML technique outperforms competing interference quantification

techniques by at least 2.49% and at most 668.81% in this scenario. Furthermore, we evaluate

our runtime ML technique against competing interference quantification techniques as per

RQ-6. The runtime ML technique trains ML models at runtime using a sliding window

method to account for changing cloud environment dynamics. Our runtime ML technique

outperforms competing techniques by at least 1.45% and at most 92.04%. Finally, we present

a comparative analysis between our static and runtime ML models. We favor the runtime

66

ML models for their ability to account for changing runtime dynamics while also maintaining

good accuracy.

67

Chapter 5

Conclusions and Future Work

In this thesis, we first characterize the impact of performance interference on a cloud-native

microservice. We measure the performance degradation of a target application subject to

varying levels of interference from an interfering application. At moderate levels of interference,

we observed a response time degradation up to 6955%. As a first step towards mitigating this

performance interference, we propose a performance interference detection technique that

leverages Machine Learning. We design a suite of experiments in which our target application is

subject to varying levels of performance interference. Models of our ML interference detection

technique are trained and evaluated on the microservice resource utilization metrics collected

from these experiments. Our approach does not require expensive service instrumentation

and does not pose prohibitive monitoring overhead. Our proposed technique is effective in

detecting performance interference for a realistic microservice benchmark running on the

EC2 cloud platform. When the runtime interfering application is known, our ML detection

technique outperforms baseline and competing techniques by 2.18%-96.27%. Our ML models

are also effectively used in varying cloud environments where the interfering application is

unknown. Accordingly, they outperform baseline and competing techniques by 1.35%-66.69%.

In addition, we propose static and runtime Machine Learning techniques for performance

interference quantification in cloud-native applications. The static ML technique consists of

68

two phases; the training phase and runtime phase. The runtime ML technique consists of

a single phase, the runtime phase. The runtime ML technique leverages a sliding window

method to continuously train and re-train ML models at runtime. Both static and runtime

ML models are trained using easily obtainable environment and application metrics. No

application instrumentation is required to obtain these metrics and collecting the metrics

imposes minimal overhead. We evaluate our techniques against competing state-of-the-art

techniques using realistic microservice application benchmarks and across varying deployment

strategies. Our static ML models outperform competing methods by 14.13%-1271.37% when

the interfering application is known and by 2.49%-668.81% when the interfering application

is unknown. Our static ML quantification technique are highly accurate at deployment

time provided the interfering application is the same as the one encountered in the model

training phase. Our runtime ML technique is effective in quantifying performance interference

and outperforms competing state-of-the-art techniques by 1.45%-92.04%. Furthermore, our

runtime ML technique is practical in that it does not require long training times and can

efficiently account for changes in the cloud environment.

With respect to future direction, we intend to integrate our performance interference

quantification technique with microservice placement strategies. Quantifying the potential

impact of microservice co-location provides a meaningful signal to derive suitable microservice

placement. By utilizing our proposed runtime ML performance interference quantification

technique, we can measure how significant target application performance degradation is

or would be in a system. That is, we can define both reactive and proactive microservice

placement strategies. In the reactive case, a placement strategy would migrate an already

running microservice to another cloud instance provided a significant level of performance

interference is detected at runtime. In the proactive case, a placement strategy would predict

how much performance interference could be present if two microservices were co-located. If

the level of interference is significant, the placement strategy could avoid co-location of the

two microservices and seek an alternate placement.

69

Bibliography

[1] M. Httermann, DevOps for Developers (1st ed.). Apress, USA., 2012.

[2] D. Merkel, “Docker: Lightweight linux containers for consistent development and deploy-

ment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[3] ([Online]) Production-grade container orchestration. [Online]. Available:

https://kubernetes.io/

[4] ([Online]) Amazon web services. [Online]. Available: https://aws.amazon.com/

[5] ([Online]) Google cloud. [Online]. Available: https://cloud.google.com/

[6] J. Mukherjee and D. Krishnamurthy, “Subscriber-driven cloud interference mitigation

for network services,” in 2018 IEEE/ACM 26th International Symposium on Quality of

Service (IWQoS). IEEE, 2018, pp. 1–6.

[7] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An analysis of

performance interference effects in virtual environments,” in 2007 IEEE International

Symposium on Performance Analysis of Systems & Software. IEEE, 2007, pp. 200–209.

[8] I. Paul, S. Yalamanchili, and L. K. John, “Performance impact of virtual machine

placement in a datacenter,” in 2012 IEEE 31st International Performance Computing

and Communications Conference (IPCCC). IEEE, 2012, pp. 424–431.

[9] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini, “Deepdive: Transpar-

ently identifying and managing performance interference in virtualized environments,”

70

in Proceedings of the 2013 USENIX Conference on Annual Technical Conference, ser.

USENIX ATC’13. USA: USENIX Association, 2013, p. 219–230.

[10] S. Wang, W. Zhang, T. Wang, C. Ye, and T. Huang, “Vmon: Monitoring and quantifying

virtual machine interference via hardware performance counter,” in 2015 IEEE 39th

Annual Computer Software and Applications Conference, vol. 2. IEEE, 2015, pp.

399–408.

[11] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A holistic

evaluation of docker containers for interfering microservices,” in 2018 IEEE International

Conference on Services Computing (SCC). IEEE, 2018, pp. 33–40.

[12] S. K. Garg and J. Lakshmi, “Workload performance and interference on con-

tainers,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Ad-

vanced & Trusted Computed, Scalable Computing & Communications, Cloud &

Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2017, pp. 1–6.

[13] K. Joshi, A. Raj, and D. Janakiram, “Sherlock: Lightweight detection of performance

interference in containerized cloud services,” in 2017 IEEE 19th International Confer-

ence on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and

Systems (HPCC/SmartCity/DSS). IEEE, 2017, pp. 522–530.

[14] R. R. Karn, P. Kudva, H. Huang, S. Suneja, and I. M. Elfadel, “Cryptomining detection in

container clouds using system calls and explainable machine learning,” IEEE Transactions

on Parallel and Distributed Systems, vol. 32, no. 3, pp. 674–691, 2020.

[15] Y. Amannejad, D. Krishnamurthy, and B. Far, “Detecting performance interference in

cloud-based web services,” in 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM). IEEE, 2015, pp. 423–431.

71

[16] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and root cause

analysis for cloud-hosted web applications,” in Proceedings of the 26th International

Conference on World Wide Web, ser. WWW ’17. Republic and Canton of Geneva,

CHE: International World Wide Web Conferences Steering Committee, 2017, p. 469–478.

[Online]. Available: https://doi.org/10.1145/3038912.3052649

[17] V. Horký, J. Kotrč, P. Libič, and P. Tůma, “Analysis of overhead in dynamic java

performance monitoring,” in Proceedings of the 7th ACM/SPEC on International

Conference on Performance Engineering, ser. ICPE ’16. New York, NY, USA:

Association for Computing Machinery, 2016, p. 275–286. [Online]. Available:

https://doi.org/10.1145/2851553.2851569

[18] S. Agarwala, Y. Chen, D. Milojicic, and K. Schwan, “Qmon: Qos-and utility-aware

monitoring in enterprise systems,” in 2006 IEEE International Conference on Autonomic

Computing. IEEE, 2006, pp. 124–133.

[19] “Acme air,” [Online]. [Online]. Available: https://github.com/acmeair

[20] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “Enhanced modeling

and solution of layered queueing networks,” IEEE Transactions on Software Engineering,

vol. 35, no. 2, pp. 148–161, 2008.

[21] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, “Predictive auto-scaling of multi-

tier applications using performance varying cloud resources,” IEEE Transactions on

Cloud Computing, 2019.

[22] J. Rahman and P. Lama, “Predicting the end-to-end tail latency of containerized mi-

croservices in the cloud,” in 2019 IEEE International Conference on Cloud Engineering

(IC2E). IEEE, 2019, pp. 200–210.

[23] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Koutsoukos, “Perfor-

mance interference-aware vertical elasticity for cloud-hosted latency-sensitive applica-

72

tions,” in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD).

IEEE, 2018, pp. 82–89.

[24] P. Kang and P. Lama, “Robust resource scaling of containerized microservices with

probabilistic machine learning,” in 2020 IEEE/ACM 13th International Conference on

Utility and Cloud Computing (UCC). IEEE, 2020, pp. 122–131.

[25] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran, “Bench-

marking machine learning methods for performance modeling of scientific applications,”

in 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High

Performance Computer Systems (PMBS). IEEE, 2018, pp. 33–44.

[26] C. Barna, M. Litoiu, M. Fokaefs, M. Shtern, and J. Wigglesworth, “Runtime performance

management for cloud applications with adaptive controllers,” in Proceedings of the 2018

ACM/SPEC International Conference on Performance Engineering, 2018, pp. 176–183.

[27] Y. Shoaib and O. Das, “Cloud vm provisioning using analytical performance models,” in

2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, 2019,

pp. 68–72.

[28] A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven autoscaling for microser-

vices,” in 2019 IEEE 39th International Conference on Distributed Computing Systems

(ICDCS). IEEE, 2019, pp. 1994–2004.

[29] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu, “Draps: Dynamic and resource-

aware placement scheme for docker containers in a heterogeneous cluster,” in 2017 IEEE

36th International Performance Computing and Communications Conference (IPCCC).

IEEE, 2017, pp. 1–8.

[30] L. Lv, Y. Zhang, Y. Li, K. Xu, D. Wang, W. Wang, M. Li, X. Cao, and Q. Liang,

“Communication-aware container placement and reassignment in large-scale internet

73

data centers,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp.

540–555, 2019.

[31] A. R. Sampaio, J. Rubin, I. Beschastnikh, and N. S. Rosa, “Improving microservice-based

applications with runtime placement adaptation,” Journal of Internet Services and

Applications, vol. 10, no. 1, pp. 1–30, 2019.

[32] W. B. Slama, Z. Brahmi et al., “Interference-aware virtual machine placement in cloud

computing system approach based on fuzzy formal concepts analysis,” in 2018 IEEE

27th International Conference on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE). IEEE, 2018, pp. 48–53.

[33] M. M. Alves, L. Teylo, Y. Frota, and L. M. Drummond, “An interference-aware virtual

machine placement strategy for high performance computing applications in clouds,” in

2018 Symposium on High Performance Computing Systems (WSCAD). IEEE, 2018,

pp. 94–100.

[34] Y. Dang, Q. Lin, and P. Huang, “Aiops: real-world challenges and research innovations,”

in 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion). IEEE, 2019, pp. 4–5.

[35] A. Masood and A. Hashmi, “Aiops: Predictive analytics & machine learning in operations,”

in Cognitive Computing Recipes. Springer, 2019, pp. 359–382.

[36] J. Mukherjee, A. Baluta, M. Litoiu, and D. Krishnamurthy, “Rad: Detecting performance

anomalies in cloud-based web services,” in 2020 IEEE 13th International Conference on

Cloud Computing (CLOUD). IEEE, 2020, pp. 493–501.

[37] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Combined

selection and hyperparameter optimization of classification algorithms,” ser. KDD ’13.

New York, NY, USA: Association for Computing Machinery, 2013, p. 847–855. [Online].

Available: https://doi.org/10.1145/2487575.2487629

74

[38] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter,

“Efficient and robust automated machine learning,” in Proceedings of the 28th Interna-

tional Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’15.

Cambridge, MA, USA: MIT Press, 2015, p. 2755–2763.

[39] E. LeDell and S. Poirier, “H2O AutoML: Scalable automatic machine learning,” 7th ICML

Workshop on Automated Machine Learning (AutoML), July 2020. [Online]. Available:

https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf

[40] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for microservices,” in

2016 IEEE international symposium on workload characterization (IISWC). IEEE,

2016, pp. 1–10.

[41] Y. Ueda and M. Ohara, “Performance competitiveness of a statically compiled language

for server-side web applications,” in 2017 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, 2017, pp. 13–22.

[42] ([Online]) Stress-ng. [Online]. Available: https://kernel.ubuntu.com/ cking/stress-ng/

[43] R. Gao and Z. M. Jiang, “An exploratory study on assessing the impact of environment

variations on the results of load tests,” in 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR). IEEE, 2017, pp. 379–390.

[44] “Air quality monitor,” [Online]. [Online]. Available: https://github.com/jlofw/air-quality-

monitor

[45] D. Mosberger and T. Jin, “Httperf—a tool for measuring web server performance,” vol. 26,

no. 3, p. 31–37, Dec. 1998. [Online]. Available: https://doi.org/10.1145/306225.306235

[46] ([Online]) Prometheus. [Online]. Available: https://prometheus.io/

[47] ([Online]) Node exporter. [Online]. Available:

https://github.com/prometheus/node_exporter

75

[48] ([Online]) cadvisor. [Online]. Available: https://github.com/google/cadvisor

[49] ([Online]) Grafana. [Online]. Available: https://grafana.com/

[50] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan, “Prepare: Predictive

performance anomaly prevention for virtualized cloud systems,” in 2012 IEEE 32nd

International Conference on Distributed Computing Systems.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[52] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Experimenta-

tion in Software Engineering. Kluwer Academic Publishers, 2000.

[53] M. Litoiu, “Optimization, performance evaluation and resource allocator (opera).” 2013.

[Online]. Available: http://www.ceraslabs.com/technologies/opera

[54] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. the

MIT Press, 2005.

[55] ([Online]) Apache jmeter. [Online]. Available:

https://jmeter.apache.org/usermanual/componentreference.html

76

