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Abstract 
 

This thesis developed a 6DOF pose detection algorithm using machine learning capable of 

providing the orientation and location of an object in various lighting conditions and at 

different angles, for the purposes of space robotic rendezvous and docking control. The 

computer vision algorithm was paired with a virtual robotic simulation to test the feasibility 

of using the proposed algorithm for visual servo. This thesis also developed a method for 

generating virtual training images and corresponding ground truth data including both 

location and orientation information. Traditional computer vision techniques struggle to 

determine the 6DOF pose of an object when certain colors or edges are not found, therefore 

training a network is an optimal choice. The 6DOF pose detection algorithm was 

implemented on MATLAB and Python. The robotic simulation was implemented on 

Simulink and ROS Gazebo. Finally, the generation of training data was done with Python 

and Blender.  
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Chapter 1: Introduction and Justification 
 

Summary: This chapter defines the problem, justifies the undertaking of this research, and 

outlines the various approaches used to complete set objectives. A layout of this thesis is 

provided as well. 

1.1 Space Robotics 

Space Robotics is increasingly used for autonomous space debris removal and on-orbit 

servicing (OOS). With OOS, the possible applications for space robotics consist of 

assembly, maintenance, repair, deployment, releasing, retrieving, extra-vehicular activity 

(EVA) support, inspection, refueling, and multi-arms cooperation [1]. With the space 

debris population increasing, studies show active space debris (ADR) missions are needed 

to halt the growth of low earth orbit (LEO) debris collisions [2]. There are disadvantages 

to space robotics missions though, such as high development and manufacturing costs [3], 

but it has been shown that OOS is economically feasible by repairing satellites rather than 

launching new ones, and de-orbiting them with robot manipulators if necessary [1]. 

To successfully service or grasp a target, four phases are completed as part of the 

rendezvous procedure: (1) launch and early orbit, (2) far range rendezvous (5 km to 300 m 

from the target), (3) close range rendezvous (less than 300 m from the target), and (4) 

capturing &/or removal [1] [4] [5]. These can be seen in Figure 1.1. The European 

Proximity Operations Simulator (EPOS) is a facility in Germany that studies phases 3 and 

4 [4] [6]. To control a robot in space, four approaches are used: (1) fixed spacecraft attitude 



2 

 

 

and position, (2) fixed spacecraft position, (3) free-floating system, and (4) free-flying 

systems [7] [8]. A free-floating system has its advantages, such as less fuel consumption 

leading to longer mission life [8].  

 

Figure 1.1: The multiple phases of a space rendezvous procedure. Not drawn to scale. 

Since current space robotics methods consist of teleoperation and semi-autonomous 

operations [9], space robotics research is now shifting towards autonomy. Timing and 

communication are large challenges that autonomy can overcome [10]. Operations in LEO 

need autonomy due to blackout periods from Earth ground stations and operations in the 

geostationary orbit (GEO) need autonomy due to time delays [6]. With that said, 

autonomous systems must be capable of identifying hazards in their surrounding 

environment and on-board algorithms must be well tested [9]. Pre-verification and 

simulations, along with highly confident computer vision algorithms are necessary for 

autonomy to take the next step and to assist in solving the problem of space debris [11]. 



3 

 

 

The research question posed in this study is: How can we efficiently rendezvous with a 

target for on-orbit servicing or removal using visual servo based autonomous space 

robotics. 

1.2 Scope of Research 

While the development of a hardware system capable of rendezvous and docking is 

necessary to assist with the problem of space debris and on-orbit servicing, a software-in-

the-loop (SIL) system provides a way to test capabilities. The aim of this study is to develop 

a 6DOF pose detection algorithm and simulated visual servo robot control. 

The scope of this study is limited to the simulation environment due to the limit on access 

to lab in the COVID-19 pandemic period. The 6DOF pose detection algorithm will be 

developed without the use of a physical target object. The visual servo robot control 

software will be developed using a simulated computer vision algorithm, focused on close 

range rendezvous and a free-floating robot. Tests will be completed with virtual data and 

virtual simulations. The only physical hardware used for testing is the NVIDIA Jetson 

Nano, used for testing the deployment capabilities of the 6DOF pose detection algorithm 

on a microcomputer.  

1.3 Justification of Research 

1.3.1 Space Debris and On-Orbit Servicing 

Space debris consists of non-functional man-made objects without the capability of 

resuming their functions taking up space in orbits [12]. These pieces are often non-
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cooperative and are therefore differ from targets for OOS [13]. Debris is either (1) mission-

related, (2) accidental, or (3) intentional [14]. Mission-related debris consists of payload 

shrouds, launch vehicle stages, aluminum oxide due to solid-rocket motors, leaking 

thermal-control systems, explosive bolts, instrument covers, adapter rings, and paint or 

surface materials from ultraviolet (UV) radiation or oxidation [12] [15]. During launch, 

spacecraft payloads only account for a fraction of the mass brought into space [12]. 

Accidental debris consists of items lost during EVAs by astronauts or unintentional 

explosions or collisions [14]. Intentional debris can accumulate from experiments meant 

to test satellite weapon capabilities, like the tests completed by the United States of 

America and Soviet Union in the 20th century [14]. 

As of 2015, there was a tracked orbital debris population of 33, 323; of which 17, 000 were 

larger than 10 cm. Orbits of 800 km in LEO are found to be the most crowded, whereas 

orbits near 600 km, 800 km, and 1000 km are considered to have the largest mass of debris. 

Orbits at inclinations of 82.5̊ to 83.5̊ and at altitudes of 900 km to 1050 km are primary 

targets for debris removal [4]. A 10 cm piece of debris traveling at the average speed of 10 

km/s, the average speed of tracked debris, can cause damage equivalent to 7 kg of TNT in 

a collision [8]. 

There are hazards to the space debris population increasing over the years since Sputnik-1 

was launched. The probability of a collision in 2013 with an object larger than 1 cm was 

50% - 67% per year, an increase from 2007 (25% - 33% per year) [14]. As probability 

increases, an increase in the debris population is a result, even if new launches are halted, 
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which is the theory behind the Kessler Syndrome [4]. Some other hazards of debris include 

collisions in space and debris falling back to Earth [12] [15]. To halt this, many methods 

for space debris removal have been studied such as the use of tentacles, net capturing, 

electric tethers, and harpoons [4] [13]. 

Along with space debris, failures in space are common and costly. From 1996-2000, 18% 

of payloads launched into space suffered a failure [16]. Rather than repairing and launching 

replacement satellites is costly and leads to unnecessary debris. In GEO, non-functional 

satellites occupy limited orbital slots. Astronauts have been tasked with repairs in the past, 

but this is a costly method and not feasible in higher orbits. Not advancing the field of OOS 

earlier has been a costly mistake made by the space sector [16].  

On-orbit servicing can allow for assembly, maintenance, repair, deployment, release & 

retrieval, EVA support, inspections, and refueling of non-functional satellites [1]. This 

market is increasing and is projected to be a $4.5 billion USD industry by 2028 [17].  

Space robots are applicable to space debris removal and on-orbit servicing. 

1.3.2 6DOF Pose Estimation 

As objects in space move in their orbital directions, non-functional debris tumbles. 

Tumbling takes place when the orientation of a spacecraft or an object is uncontrolled. 

Defunct satellites in GEO have been found to be tumbling at maximum rates of 2.60 ̊/sec, 

like the Intelsat-604 satellite [18]. To grasp and align with tumbling space debris or 

tumbling OOS targets, the target’s 6DOF pose needs to be determined. The 6DOF pose of 
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an object is both its position and orientation relative to a reference frame, which in robotics 

can be calculated in a camera frame or in the base frame. Determining the 6DOF pose is 

important in tracking objects, autonomous driving, augmented reality, and robotics [19]. 

Effective 6DOF object detection allows for better awareness of autonomous systems and 

avoiding collisions with obstacles, which can cause costly damage.  

A technique for detecting the 6DOF pose of a target object is deep learning (DL). Using 

artificial intelligence (AI) allows for greater accuracy and eliminates the need for singling 

out key features, which is needed with traditional computer vision (CV) methods [20]. This 

is especially difficult in the space environment where lighting conditions can be extreme. 

Artificial neural networks (ANN) can make predictions with incomplete data as well, 

which is difficult with traditional CV techniques [21]. An AI based 6DOF pose detection 

algorithm can be applied to autonomous vehicles, autonomous unmanned aerial vehicles 

(UAV), and autonomous underwater vehicles.  

ANNs are layered, inspired by the human brain. Networks consist of neurons connected to 

other neurons. During training, information is passed through the layers of neurons and the 

network is tasked with learning patterns between the input and output [21]. An example of 

an ANN’s architecture can be seen in Figure 1.2. 
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Figure 1.2: An example of the architecture of an artificial neural network. Included are 

the input layer, multiple hidden layers, and an output layer. 

1.3.3 Limitations of Existing Methods 

There are numerous methods being researched for active space debris removal such as net 

capturing, tethers, and harpoons [4]. Using humans is a method that has been used in the 

past for both space debris removal and on-orbit servicing as well. The Discovery Space 

Shuttle and its team was used to retrieve two non-functional satellites and an Endeavor 

Space Shuttle team was used for repairing the Hubble Space Telescope. This method has 

been proven to be costly compared to robots, and work on non-cooperative debris is 

difficult to complete with EVAs [22]. Electric tethers take up valuable space on satellites 

and cannot be used for the debris already in orbit as they must be on-board the satellite as 

a payload. A 30-50 kg tether payload needs to be on-board with a 5 km tether and a 10 m 

balloon to de-orbit a 500 kg satellite over multiple weeks [23]. Nets are difficult to control 

since the angle at which the net is pushed out drives the net capture distance [24]. Harpoons 

can lead to more debris as small fragments of targets can enter orbits [25]. Lasers are 



8 

 

 

another technique researched, but they can be classified as weapons, making it ethically 

difficult to approve their use in space [26]. The use of robotics presents a cost-effective 

method for both space debris removal and on-orbit servicing. Combined with computer 

vision, robotic manipulators can match the angular rates of objects as well and quickly de-

orbit them with a push towards the Earth’s atmosphere.  

1.4 Objectives of Research 

The objectives of this research are to: 

(i) Develop a method for detecting the 6DOF Pose of a target object, 

(ii) Develop robot equations for kinematic control and visual servo of Fanuc M-

20iD/25 Robot, and 

(iii) Implement the method for detecting the 6DOF Pose of a target object on a 

microcomputer. 

1.5 Methodology of Approach 

The methodology to meet the set objectives in Chapter 1.4 can be seen in Figure 1.3. Many 

mature architectures exist for object localization with the help of AI, all capable of 

detecting occluded objects, or multiple classes in a single frame. The second version of the 

You Only Look Once (YOLO) architecture is effective for real time tracking and is used 

along with a depth sensor, the RealSense d435i depth camera, to localize an object in the 

pixel frame and to derive the 3D position in the camera space. Using a new CNN developed 

based off the framework presented in [27], the 3D orientation of the target is predicted. To 

maximize computational efficiency and to mitigate gimbal locking, quaternions are used 
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for orientation estimation. Concurrently, the robot equations and virtual simulations are 

developed for the Fanuc M-20iD/25 industrial robot. Kinematic controllers are developed 

for efficient joint control to meet range and velocity limits. Both the computer vision and 

robot control algorithms are implemented together for the virtual simulation of robotic 

docking. Due to Covid-19, all methods were completed virtually as lab access was 

restricted. In Table 1.1, the hardware used is listed. 

Table 1.1: The various hardware devices used in this thesis work and their specifications. 

DEVICE SPECIFICATIONS 

Computer: used for 

training CNN’s and 

the robot simulation 

• Intel Core i5-9400F CPU 

• 32 GB DDR4 memory 

• NVIDIA GeForce GTX 1660 (1408 CUDA cores, 6 GB) 

• Windows 10 and Ubuntu 18.04 

Camera: used for 

depth sensor and 

intrinsic matrix 

• RealSense D435  

Microcomputer: used 

for deploying CV 

algorithm 

• NVIDIA Jetson Nano 

• NVIDIA Maxwell GPU 

• Quad-Core ARM Cortex-A57 processor 

• 4 GB memory 
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Figure 1.3: Methodology of the parallel development of the computer vision algorithm 

and robot simulation for a virtual implementation. 

1.6 Layout of Thesis Document 

This document consists of seven chapters. Following Chapter 1’s introduction, Chapter 2 

provides a comprehensive literature review of relevant work in the following four areas: 

(1) existing computer vision approaches, (2) object localization, (3) object pose estimation, 

and (4) visual servo control. Chapter 3 gives a detailed description of the development of 

a 6DOF pose detection algorithm. Chapter 4 showcases the deployment of the 6DOF pose 

detection algorithm on a space grade board. In Chapter 5, an outline of creating virtual 

training data for training the 6DOF pose detection network and other networks is presented. 
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Chapter 6 is devoted to the derivation of robot equations of the Fanuc M-20iD/25 industrial 

robot and virtually simulating its control. Finally, Chapter 7 concludes the work, and 

outlines methods for future work. 
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Chapter 2: Literature Review 
 

Summary: This literature review consists of two main topics. The first topic covers 

computer vision in practice for both object localization and object pose estimation. The 

second topic covers space debris mitigation techniques and space robotics. 

2.1  Computer Vision  

The work here is motivated by the need for an accurate computer vision algorithm for 

6DOF pose detection, accurate path planning, and to effectively drive the end-effector of a 

robotic manipulator towards an object for docking. This problem is divided into two parts: 

object detection and object orientation estimation. 

2.1.1 Object Detection 

Object detection is a subsection of computer vision, which, since its origination in 1960 at 

MIT, has aimed to assist in developing autonomous systems to complete tasks like human 

vision [28]. Object detection can be broken down further into multiple subsections such as 

traditional CV and deep learning. Traditional CV techniques are the oldest techniques and 

are considered feature descriptors. Some examples of feature descriptors for feature 

extraction in images are the SIFT, SURF, BRIEF, and FAST methods [29] [30].  

The SIFT method learns representations of images that are scale invariant, meaning 

features do not change if the size of the image or its features change. This standardizes all 

images in the process [29] [31]. The SURF method is faster than SIFT as it uses box 
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blurring to extract features from an image. Box blurring extracts the average of all image 

values in a rectangular patch [29] [32]. The BRIEF method is faster than typical feature 

description methods as it selects a patch of pixels and computes a pixel intensity metric to 

represent the image [29]. The FAST method is a high-speed corner detector using sixteen 

pixels around a potential corner in an image. If the pixels around the candidate are brighter 

than the candidate, it is labeled as a corner [30].  

Traditional CV has advantages over deep learning techniques. Feature extractors are 

efficient and can be programmed in less code, making it easier to deploy algorithms on 

low-cost microcontrollers. Programmers have full transparency of the mechanics of 

traditional CV methods, unlike deep learning techniques which are black boxes; this allows 

for parameters to be tweaked to improve performance [20]. 

Deep learning methods have emerged with the growth of deep learning in general. Neural 

networks allow for greater accuracy and more flexibility with training as the programmer 

can highlight features needed for detection in training sets [20]. Mature network 

architectures are readily available such as R-CNN, Fast R-CNN, Faster R-CNN, SSD, 

YOLO, and RefineNet; and have been tested using large, standardized datasets such as 

VOC 2007 and VOC 2010.  

Girshick et al introduced R-CNN for accurate object detection. R-CNN uses region 

proposals in which an object’s predicted location is proposed, a large CNN for feature 

extraction, and class specific support vector machines for each region proposal. This 

network achieved 53.7 mean average precision (mAP) on the VOC 2010 test dataset. This 
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network is not optimal for tracking though as it is slow [33]. Girshick et al also introduced 

Fast R-CNN, a network which builds on R-CNN. This network allows for 9 times faster 

training than R-CNN and 213 times faster detection, as calculated during testing. This 

network achieved 68.8 mAP on the VOC 2010 test dataset [34]. To build on Fast R-CNN 

further, Ren et al developed a Region Proposal Network (RPN) to use with Fast R-CNN. 

This allows for convolutional features to be shared between an RPN and the Fast R-CNN 

network. The RPN takes an image as the input and outputs object scores for the region 

proposal. This network allows for up to 5 frames per second (fps) of detection [35]. 

Zhang et al developed the RefineNet network which overcomes the inefficiencies of Faster 

R-CNN and provides high efficiency. This network processes images at 40 fps for images 

of size 320 x 320 and scored 80.0 mAP on both the VOC 2007 and VOC 2012 datasets 

[36]. SSD is a network introduced by Liu et al which outperforms Faster R-CNN and scored 

74.3 mAP on the VOC 2007 dataset [37]. The YOLO network developed by Redmon et al 

can detect up to 45 fps with the regular network and up to 155 fps on a smaller network 

called Fast YOLO. This network learns general representations of objects and only looks 

at an input image once. YOLO makes half the number of background errors compared to 

Fast R-CNN and outperforms R-CNN. YOLO also scores more than twice the mAP of 

other real-time tracking networks [38]. There have been multiple iterations of the YOLO 

network, with each improving on the previous [39] [40].  

Other popular networks include SqueezeNet, used for autonomous driving; and MobileNet, 

used for mobile applications [41]. 
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Xiang et al developed PoseCNN, a network that uses convolutional layers for feature 

extraction and embedding to detect and label an object [42]. ConvPoseCNN, developed by 

Capellan et al, builds on PoseCNN, but also does semantic detection of objects [43]. Both 

these networks use custom layers for object detection and are not readily available 

networks. 

2.1.2 Object Orientation Estimation 

To accurately understand where a target object is and its trajectory, its position and attitude 

are needed relative to a camera, or in the case of OOS or debris capture, the servicing 

satellite. Targets are often uncooperative, especially if the target is a piece of debris, 

therefore orientation estimation needs to be done on-board without humans-in-the-loop. In 

these tasks, monocular cameras are preferred due to their simplicity and low power 

requirements, especially for smaller satellites [44]. Many methods exist for pose 

estimation, both traditional and deep learning based, each with their advantages. 

Traditional methods require less code and can be efficiently deployed on low-cost 

microcontrollers. Deep learning methods provide greater accuracy but require large 

datasets for training [20] [44]. 

Chen et al developed a method for pose estimation using deep learning and geometric 

methods. This method uses a single image to estimate landmark coordinates and relating 

them back to 3D points on a known 3D object model. To solve for the object’s pose, non-

linear optimization is used. Training images are used to create a 3D model of the target 

satellite to train a deep network which predicts the landmarks [45]. As mentioned, deep 
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learning methods have disadvantages and traditional methods can be more efficient. Liu et 

al introduced a method in [46] which uses lasers to determine the pose of a non-cooperative 

target. Three lasers project lines onto a satellite creating various points along the adapter 

ring. Using these points, a solution for real-time pose estimation can be developed. This 

method is accurate near the target. First the breakpoints are calculated using edge detection 

to determine the 3D coordinates of each point. The six points are then used to determine 

the normal vector of the surface by using the least squares method. In [47], the development 

of point clouds of an object using triangulation of 2D image features is used to identify and 

track targets. The generated point cloud is compared to a reference model point cloud, 

similar to using a 3D model of a target. Matching different feature points, the pose can be 

found. For tracking of the object and to reduce noise, the estimated pose values are used in 

an unscented Kalman Filter over time.  

There are also several different techniques that can be adopted for space-robotics to 

estimate spacecraft pose, both traditional and deep learning based. In [48], 2D images are 

used with CAD files to estimate the 3D coordinates of an object. There is an offline system 

that stores a text file of poses and Z-coordinates of the object model in a data base. An 

online system acquires images using a 2D camera in MATLAB. The online system 

compares the image with the poses and Z-coordinates in the database to find a match. This 

method has been adapted for robotic handling. Casado et al developed a detection system 

using 2D pattern recognition to determine the pose of an object. This approach uses two 

cameras, one RGB and the other NIR, both used in different applications. During detection, 
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the orientation angle is estimated of the object using the scale and position of the image. 

Linear equations can then be used to determine the pose in the X and Y directions. 

Unfortunately, this method has high computational costs, even with low resolution images 

[49]. In [50], Barrois and Wohler introduce a method for spatial-temporal pose estimation 

of objects. For this method, stereo images are needed to use 3D depth points. A 3D model 

is created from the stereo images and converted into a 3D point cloud to infer the translation 

and rotation of the object relative to the stereo images. In [51], it is shown that a Clustered 

Viewpoint Feature Histogram (CVFH) with a Kinect camera’s roll histogram can 

effectively determine the pose of objects in real environments by relating images back to 

CAD models of targets. A CVFH represents point clusters for object recognition.  

3D CAD models are also used in [52] where CAD models and real images aligned together 

for different poses can allow a model to be used to estimate the pose in real images. The 

model introduced here is the FPM, which is a fine pose parts-based model. This model uses 

geometric information of 3D parts and appearance information relating to the objectness 

of the object for accurate pose determination.  

Deep learning methods make use of CAD models as well. In [53], analysis-by-synthesis is 

used with RGB-D images. The input image is compared with a rendered image of the target 

at a specific pose. Due to occlusions, a traditional comparison like the one in [48] can be 

inaccurate, therefore a CNN is introduced that completes the comparison. The CNN takes 

a combination of inputs that include the rendered objects coordinates, rendered depth from 

a 3D model, the observed object coordinates, and observed object depth. The output is an 
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energy function which is minimized. In [54], RGB images are matched to CAD models 

using a Quadruplet CNN. One of the four branches takes the real image as its input, another 

takes the same view but of a rendered version of the image. The last two branches take 

different rendered views of the object. This allows for different feature sets to be extracted 

and combined for accurate estimation. Since multiple views and branches are needed, this 

method is computationally expensive. To mitigate some computational cost, this method 

does not require expensive 3D pose annotations for training.  

Dwibedi et al use 2D bounding boxes to create 3D bounding boxes. Initially, a 2D image 

is inputted to localize the object of interest with a 2D bounding box. From there, the corners 

of the object are localized, producing a 3D interpretation of the object. An RPN is used to 

localize the object. The localized object is inputted back into the network and fully 

connected layers are used to predict the location of the corners [55]. This method is well-

defined for cuboid shaped targets. The method introduced in [56] is similar to the one in 

[55], as segmentation is used to detect the object of interest in 2D. A CNN is used to predict 

the 2D projections of the corners of a projected 3D bounding box around the target. This 

method works for objects of any size but is limited to a specific range of poses used in 

training to be effective for symmetric objects.  

Crivellaro et al have developed a method in [57] which predicts the 3D pose using 

grayscale images. The objective is to detect control points on the object, similar to 

landmarking. The control points, such as corners of an object, are then projected in 2D to 

create a 3D representation of the object. This method is useful for occluded objects as only 
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specific parts of an object are needed for detection, not the whole object. This method is 

computationally expensive as a CNN is used for control point detection, needing one CNN 

for each 32 x 32 patch of the input image. The detected parts are then inputted into a second 

CNN which takes 64 x 64 patches of the image centered around the control points to predict 

2D projections. The approach introduced by Grabner et al in [58] uses an approach similar 

to control points. An RGB image is used to detect an object and a CNN is used to predict 

the location of the 2D projections of a 3D bounding box around the object. A PnP algorithm 

is used after finding the projections to determine the pose of the object.  

Do et al proposed a method that extends the Mask R-CNN object detector to include a pose 

regression branch. By decoupling translational detection from rotational detection using 

Lie Algebra, quick pose detection can be attained. The network is trained with 480 x 640 

sized images and 6DOF labels. Using the Lie Algebra output, Rodrigues mapping is used 

to create a rotation matrix. To obtain the translation of the object, the predicted Z 

component is used with 3D to 2D projection to find the X and Y location of the object [59].  

Guo et al developed a method using RGB-D images to estimate the camera pose relative 

to a target. A CNN called PoseNet is used to determine a camera’s pose parameters, while 

an LSTM block is used for adding temporal information for improved accuracy [60]. 

Melekhov et al developed a method for determining the pose between two images of the 

same object using CNNs. RGB images are used for training the network and is similar to 

using CAD models, but rather than comparing an image to a CAD model, the network 

compares it to a pre-defined image with known pose of the target [61]. 
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Liu et al introduced a technique in [62] which uses a cropped image within the 2D bounding 

box detection as an input into Q-net, a network which regresses a unit quaternion rotation 

of the object relative to the camera. The quaternion is used along with the translation of the 

object to create a 3D bounding box around the object for visualization. Langlois et al 

introduce a network which uses 2D images to predict the quaternion of an object relative 

to the camera as well. Their network is trained by using virtually rendered images of an 

object with transparent backgrounds. During training, the transparent background is 

replaced with different environments on the fly. The network itself is small with only eight 

layers including the input and output. This network is trained on 64 x 64 grayscale images. 

This network is simple, yet effective [27]. The PoseCNN network uses quaternion 

regression as well for predicting object rotation. The orientation branch of the network uses 

bounding boxes encompassing the object in an input image after the image goes through 

the feature extraction network. Pooling layers are used to extract quaternions for each 

object of interest in the image [42]. The ConvPoseCNN network builds on the PoseCNN 

network by using semantic labels to filter out objects, rather than bounding boxes. The 

orientation prediction branch uses convolutional layers on the semantic segmentations to 

predict the orientation quaternion of each object of interest in the image [43]. Mahendran 

et al developed a network that regresses 3D pose with a small CNN, but rather than 

quaternions as the output, an axis-angle representation is given. The network has ten layers 

including the input and output. To train this network, data augmentation is carried out by 

changing the camera tilt and azimuth of images to create larger training sets. Real RGB 

images are used for training [63].  
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Pose regression networks provide quick predictions of quaternion rotations with small 

networks which are computationally efficient, which is an asset when deploying software 

on a satellite’s computer.  

2.2   Debris Removal and Space Robotics 

Space debris is a growing issue. As more satellites are launched, the probability of 

collisions increases. There are methods being researched for space debris removal which 

include using tentacles, net capturing, tethers, harpoons, and robotic arms [13].  

One application of a tentacle gripper is the TAKO-Flyer, a concept developed by Kazuya 

et al. This technology is a robotic device made up of numerous fingers working like octopus 

tentacles. Using fewer actuators than traditional robotic joints would, it in theory is able to 

grasp arbitrary shapes with tumbling motion by wrapping itself around the target. The 

mission concept consists of rendezvous and fly around, separation and approach, grasping 

and stabilization, and robotic capture or deorbiting [64]. The OctArm Continuum 

Manipulator is another example of a tentacle used for grasping targets. The goal of using a 

continuum manipulator is to replace the serial chain of rigid links found on robotic arms 

with continuous and flexible links. The OctArm was able to grasp and manipulate objects 

of varying sizes and shapes in testing. The downside of this concept was its use of air to 

actuate the joints in the fingers, which is not feasible in the space environment [65]. 

Nets have been studied for deorbiting space debris or to park non-functional spacecraft into 

graveyard orbits. The ROGER Spacecraft created by ASTRIUM is a proposed net to 
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transport targets into graveyard orbits. The mission concept uses 20 nets to capture a target 

by closing them around the target, then pulling the target into a graveyard orbit and severing 

ties to the net to leave the target satellite. Each net is proposed at 9 kg, but this concept 

leaves nets in the graveyard orbit with the target, creating more debris [66]. Lavagna et al 

proposed the D-CoNe project in [67], where a cone shaped net is designed for medium 

sized debris capture. The net is shot from a satellite, grabbing debris, and moving it to a 

disposal position. This project has proved the feasibility of using nets for object capture, 

but further testing in a microgravity environment is needed. The Junk Hunter mission 

concept consisted of using a deployable, inflatable boom with a mesh netting capable of 

grabbing debris, targeting large debris in the 800 – 900 km altitude range with inclinations 

of 82 – 83 ̊, where a large population of debris already exists. The project was proven to be 

feasible for operation in orbit [68].  

York University launched its own mission to test the capabilities of an electrodynamic 

tether for deorbiting, called DESCENT. Electric current runs through the electrodynamic 

tether, creating a Lorentz force when the current interacts with the Earth’s magnetic field. 

The Lorentz force can be increased or decreased to increase the altitude or to decrease the 

altitude of the spacecraft. The DESCENT spacecraft was launched into space in October 

2020 and entered its orbit the following month [69].  

Harpoons have been tested at ASTRIUM Stevenage for penetrating ability, resistive 

strength, and how much extra debris is created when latching on to a satellite. Tests have 

shown this method is feasible [70]. 
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Robotic arms provide the most promise due to their ability to adapt to OOS missions along 

with space debris capture and due to their maturity in terrestrial applications. One proposed 

mission for robotic arm de-orbiting is the DEOS mission from the DLR. This mission 

consists of a 7DOF robot on a servicing satellite tasked with capturing a tumbling non-

cooperative satellite or object, servicing it, and de-orbiting it from LEO. Since it is in LEO, 

it is possible for a direct radio link with the servicing satellite during operation, therefore 

the system is controlled semi-autonomously and from Earth [71]. 

There have been space robotics missions operating in orbit to test robotic capabilities. The 

ROTEX mission from DLR tested space automation by verifying joint control in 

microgravity, evaluating 6-DOF hand controllers, and verifying a man-machine interface. 

The robotic arm had 6 joints and was teleoperated with 5 – 7 seconds of lag. Image 

processing was done on ground to ensure less computation was taking place on-board the 

spacecraft [72].  

ETS-VII was tested next by the DLR to verify autonomous rendezvous, docking, and 

robotics technology in space. A servicing satellite and a target satellite was launched with 

a 6-DOF arm on the servicer. This was also teleoperated from ground controllers with a 7 

second delay [72]. 

The ROKVISS program demonstrated the feasibility of high performance of intelligent 

robotic systems in space for OOS by the DLR. This was also teleoperated but with less 

communication lag than the ROTES and ETS-VII satellites [72]. 
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Canada has also developed robotic arms for use in space. Canadarm was developed by 

Canadian companies and installed on-board the Space Shuttles. This arm was controlled 

both manually and could be programmed to complete tasks autonomously. Canadarm 

completed OOS tasks such as sending satellites into orbit, capturing satellites for repairs, 

and assembling the International Space Station. Canadarm was also used for assisting 

astronauts in EVAs [73]. 

Canadarm2 is a robotic manipulator system on-board the International Space Station 

teleoperated by ground control teams at the CSA or NASA. With multiple arms having 7 

joints each, this manipulator is used for installing or replacing small equipment on the 

International Space Station, replacing defective components, and testing new tools or 

robotic techniques [74].  

An issue with space robotic missions when servicing in further orbits is increased 

communication lag and the need for autonomy. Space is an expensive environment to test 

in, therefore testing for autonomous systems needs to be completed on the ground in 

dynamically simulated systems. DLR’s EPOS facility tests high risk rendezvous and 

docking with a hardware-in-the-loop system. Two 6-DOF industrial robots are used, one 

equipped with a mock satellite on a 25-meter rail system simulating close range approach. 

The second robot is equipped with a vision based gripping system. The objective of this 

system is test autonomy for orbital life extensions for geostationary satellites [75].  

The WMS LEMUR facility is dedicated to the testing of capturing tumbling satellites 

autonomously. A 7-DOF robotic arm is used for testing short range rendezvous, formation 
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flying, and active space debris removal missions. Contact forces are measured between the 

gripper and mock target [76]. Testbeds can also be used for testing the autonomy of 

potential space manipulators by using air bearing tables to simulate microgravity on a 

manipulator [77]. 

2.3 Conclusion 

In conclusion, although traditional CV methods are mature and efficient, they do not 

provide effectiveness in detecting objects moving through a changing environment like 

space. Neural network-based object detectors are well researched, and some architectures 

have been developed with the capability of real-time object tracking, which is needed when 

objects are moving at orbital velocities in space. Traditional CV methods are not quite as 

effective at 3D orientation and therefore a neural network is needed to accurately predict 

an object’s 3D orientation. Combining two neural networks provides the ability to quickly 

predict the 6DOF pose of an object at various orientations and in changing lighting 

conditions with occlusions and noise.  

Neural networks have been paired already with industrial robots for grasping and placing 

objects in factory settings, and the maturation of this field will allow for adaptation for the 

space environment, rather than having to advance technologies such as nets, harpoons, or 

tentacles. These technologies are being researched but provide their own challenges. 

Whereas robotics is well advanced on Earth and provide a simpler transfer to the space 

environment. Combining 6DOF pose detection with robotics will allow for visual servo 

control to rendezvous and dock with a target for active space debris removal or OOS. 
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Chapter 3: 6DOF Pose Detection 
 

Summary: In this chapter, a detailed description and derivation is given of a deep learning 

based 6DOF pose detection network. First, by using an object detection network, the 3D 

position of an object is determined by using a depth camera. Once localized, the image of 

the object is inputted into a second convolutional neural network to determine its 

quaternion orientation relative to the camera. Although quaternions are predicted, the Euler 

angle rotation can be calculated. The two networks are linked together to create a pipeline 

for 6DOF pose detection. 

3.1 Introduction 

The current thesis is motivated by the need for an effective computer vision algorithm 

capable of detecting the 6DOF pose of an object of interest in varying environments. The 

algorithm needs to be fast for real-time tracking, especially in the space environment where 

objects are traveling at orbital velocities. To address the limitations of current computer 

vision algorithms used in space applications, a 6DOF pose detection algorithm using deep 

learning is developed. An object detection network is trained using the YOLOv2 structure 

for real time object tracking applications and a pose regression network is trained for fast 

quaternion pose regression of an object.  

3.2 Object Detection 

For object detection, the YOLOv2 network architecture was used. This network was 
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chosen due to its fast object detection capabilities of up to 45 fps, which is optimal for 

object tracking [38]. An improvement of YOLOv2 over the original YOLO network is the 

use of anchor boxes. Anchor boxes are filters of predetermined size tiled across an input 

image when the network is making predictions as seen in Figure 3.1. Rather than predicting 

the location of objects by using a sliding window across the input image, anchor boxes 

allow the network to predict across the whole image at once [78].  

 

Figure 3.1: An example of anchor boxes tiled across an image. 

Another advantage of using the YOLOv2 network is the implementation of batch 

normalization on all convolutional layers [38]. Batch normalization regularizes a network 

by equalizing the data batches which are being inputted into the layers of the network. Seen 

in Figure 3.2 is the network architecture of the YOLOv2 network. 
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Figure 3.2: The YOLOv2 network architecture. 

A general neural network is designed to develop a relationship between the input data and 

the expected output by using features found in the input data. As seen in Figure 3.2, the 

YOLOv2 network consists of convolutional and pooling layers. Convolutional layers are 

used to create convolutional kernels capable of scanning the input data for features. Pooling 

layers down sample the feature maps outputted from convolutional layers to summarize 

the features. The YOLOv2 network is closed off with fully connected layers which are 

present for the purpose of connecting all neurons from one layer to the next.  

To create the object detection model, MATLAB was used. The network size is 188 layers 

from input to output with a LeakyRelu52 feature layer and darknet53 feature extraction 

layer. The Leaky ReLu function is an activation function used in neural networks, helping 

networks create relationships between the input and output in complex data. A leaky ReLu 

function builds on the ReLu function, but rather than having a slope of 0 for negative x-

values, it has a scaled slope. The equation for a leaky ReLu function is seen in Equation 



29 

 

 

3.1. The darknet53 network was chosen since it is a CNN commonly used as a backbone 

for object detection networks like YOLO.  
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The object being detected is a funnel due to it being similar to a satellite thruster nozzle. 

The comparison can be seen in Figure 3.3. The network was trained on virtually rendered 

images with ground truth labels consisting of the x and y position of the top left corner of 

a bounding box around the target, and the width and height of the bounding box. 

 

Figure 3.3: A funnel was used as the target due to its similarity to a thruster nozzle. 

The object detection network was trained on an NVIDIA GTX 1660 6 GB GPU for images 

of size 224 x 224. The network was trained through 100 epochs with a mini-batch size of 

4. The initial learning size was set to 0.001 and the sgdm solver was used. The number of 

epochs in machine learning is the number of times the training data will be passed through 
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during the training process. The mini-batch size is the size of the batch of data to be used 

for each training set. After the amount of training data specified in the mini-batch size is 

passed through by the network, the network updates its weight. The initial learning rate is 

a tuning parameter used to calculate the step size while training to minimize the loss 

function. The sgdm solver is a stochastic gradient descent solver.  

The network was trained on 648 virtually generated images of a funnel which were 

augmented to generate more training data. Augmenting data generates modified versions 

of pre-existing training data to lower overfitting during the training process, generating 

more training data in the process [79]. Overfitting occurs when a model creates a 

relationship with noise present in training data, making it difficult to perform well with 

new inputs [80]. Figure 3.4 shows augmented versions of an example training image. The 

top left image in Figure 3.4 is the original training image, the remaining three are 

augmented images. 
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Figure 3.4: Augmentation of training data to increase the size of the training data set. 

When an object is detected, the predicted output is the x and y pixel coordinates of the 

bounding box’s top left corner, the width and height of the bounding box, and the 

confidence score of detection. The object class can also be outputted which is beneficial 

when detecting multiple classes in one frame or for image classification. The x and y pixel 

coordinates are in the pixel frame, a 2D frame which can be visualized in Figure 3.5. The 

xpixel coordinates increase from left to right in an image, the ypixel coordinates increase from 

the top to the bottom of an image. The confidence score is the probability the object of 

interest is inside the bounding box as determined by the neural network.  
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Figure 3.5: The origin and orientation of a pixel frame relative to an image. 

To get the 3D position of the object of interest, the object’s depth information, and a 

transformation from the pixel coordinate frame to the camera world frame is needed. To 

determine the depth of the object, a depth camera was used. Both RGB and depth images 

were used in unison to complete the transformation. A depth image is unique, as each pixel 

value contains the distance between the depth sensor to a surface, rather than pixel 

intensities. Figure 3.6 shows an example of a depth image. Equations 3.2 and 3.3 use the 

bounding box parameters after detecting the object of interest’s location to find the 

coordinates at which to detect the object’s distance to the camera sensor. The top left corner 

of the bounding box typically does not contain the object; therefore, the center location of 

the bounding box is needed. This is deemed to be the geometric center of the object. 
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Figure 3.6: A depth frame with the funnel shown inside the red ellipse. 

The transformation from the pixel frame to the camera world frame can be seen in Equation 

3.4 [46]. Figure 3.7 shows the camera world frame relative to the camera sensor.  

 

Figure 3.7: Camera world frame origin and orientation relative to a camera sensor. 
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After re-arranging the transformation above, Equations 3.5, 3.6, 3.7 are used to calculate 

the X and Y position of the object in the camera world frame.  
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The values fx and fy are the focal length of the camera in the x and y direction, measured 

in pixels. The values cx and cy are the principal points of the projection, measured in pixels. 

This is the intersecting point of the optical axis and the image plane, where the optical axis 

is normal to the camera sensor towards the image plane. To obtain the intrinsic parameters 

of the RealSense d435i, calibration and measurements were not required. Intel provides a 

software wrapper for controlling RealSense cameras in Matlab, allowing intrinsic 

parameters to be extracted. The following are the intrinsic values for a 224 x 224 image. 
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To test the feasibility of Equations 3.5 to 3.7, ROS Gazebo Simulator was used. In the 
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simulation, a virtual Kinect camera was used to determine the (X, Y, Z)world coordinates of 

a target using Equation 3.9 by detecting the object in front of it. The camera was moved to 

the calculated (X, Y, Z)world coordinates to prove Equations 3.5 to 3.7 are accurate for a 

transformation between the image frame to the simulated camera world frame. The 

following is the intrinsic matrix of the virtual Kinect camera used in the simulation. Figure 

3.8 shows the initial simulation setup and then the camera meeting the target.  
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Figure 3.8: The initial simulation setup with the Kinect camera and a target, and then the 

camera docking with the target.  

Figure 3.9 shows examples of object detection with the bounding boxes around the target 

and respective confidence scores. Figure 3.10 shows the detection of a physical funnel and 

the calculated (X, Y, Z)world coordinates.  
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Figure 3.9: Examples of object detection from the YOLOv2 network. 

 

Figure 3.10: Detecting a physical funnel and retrieving the 3D coordinates of the funnel. 

3.3 Pose Detection 

For regressing the 3D pose of an object, the regression network seen in Figure 3.11 was 

developed based on the network used by Langlois et al [27].  
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Figure 3.11: The custom pose regression network architecture. 

The input layer of this network takes an input shape of 224 x 224 x 3 leading in to the first 

2D convolutional layer. The first convolutional layer uses a ReLu activation function and 

has 96 kernels of size 11 x 11 to look for features throughout the data. The features from 

the kernels are pooled with a max pooling layer of size 2 x 2. The second convolutional 

layer uses a ReLu activation layer as well, but with 384 kernels of size 5 x 5. An identical 

max pooling layer is used to pool all data. The first two fully connected layers use ReLu 

activations function with 512 and 64 neurons, respectively. A flattening layer is used to 

convert data from the first fully connected layer into a 1D array. The output layer is a fully 

connected layer of size 4 and uses a tanh activation function. The four outputs each 

represent the four parameters found in a quaternion. A tanh activation function, the 

equation of which can be seen in Equation 3.10, constrains all four output values from -1 

to 1, forcing the output quaternion to be a unit quaternion. The network has a relatively 

small architecture meant for quick pose regression. 
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To train the network, Python was used along with the TensorFlow and Keras libraries. 

Images used to train the object detection network were used to train the pose network, but 

with quaternion ground truth labels and transparent backgrounds. Initially, each training 

image was rendered with Euler angles. The Euler Angles were then transformed to 

quaternions using an XYZ transformation. The network was trained over 100 epochs with 

a learning rate of 0.001 with the Adam optimizer. The Adam optimizer combines the best 

traits of other optimizers that use root mean square methods to improve their ability to work 

with noisy data. The default parameters of the Adam optimizer work well enough to train 

networks effectively [81]. Figures 3.12 and 3.13 highlight the improvements in model 

accuracy and model loss of the network throughout training. 

 

Figure 3.12: Model accuracy vs. training epoch of the training and validation data. 
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Figure 3.13: Model loss vs. training epoch of the training and validation data. 

The same computer was used to train the pose network as the object detection network. 

The funnel was once again the object of interest due to its similarity to satellite thrusters. 

All training images used had transparent backgrounds to eliminate unnecessary noise from 

the image data. Figure 3.14 is an example of a training image with its quaternion ground 

truth listed. The format for quaternions used was [w, x, y, z], where w is the scalar number 

representing the rotation about the axis described by xî + yĵ + zk̂. 
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Figure 3.14: The quaternion orientation of the funnel is [-0.541, -0.159, -0.249, 0.787]. 

Quaternions can be used to represent orientation in a 3D space and are often used in the 

control of aircrafts or rockets since they can represent orientation in one rotation, rather 

than three with Euler angles. This saves time and storage [82]. They are also used in 3D 

graphics and recently, computer vision applications [83].  

Orientation can be represented using rotation matrices, Euler angles, and quaternions. 

Rotation matrices are disadvantageous due to computational inefficiency since 9 

parameters need to be regressed. For pure rotations, back-propagation is needed, and 

orthogonality needs to be enforced on the matrix outputs [84]. Back-propagation is a 

technique used in training neural networks where the previous epoch’s loss value is fed 

back into the model being trained to adjust model weights [85]. Rotation matrices are also 

unintuitive for picturing rotations, and thus were not chosen for orientation representation.  



41 

 

 

Euler angles provide orientation with three distinct rotation matrices about the axis of 

rotation, as seen in Equations 3.11 to 3.13. The disadvantages of using Euler angles come 

from rotation order. A Rx(30)Ry(30)Rz(30) rotation differs from a 

Ry(30)Rx(30)Rz(30) rotation, as seen in Figure 3.15. There are six orders of 

multiplication with Euler angles, all with up to six different final orientations, making it 

difficult to regress rotation order. Euler angles also face the problem of gimbal locking, a 

phenomenon in which the second rotation angle goes to 90 ̊, locking the other two rotations 

[84]. Euler angles were not chosen for orientation representation either.  
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Figure 3.15: On the left is a 𝑅𝑥(30)𝑅𝑦(30)𝑅𝑧(30) rotation, on the right is a 

𝑅𝑦(30)𝑅𝑥(30)𝑅𝑧(30) rotation. 

Quaternions are compact as they have four parameters needed for regression. They are 

computationally efficient, rotation order does not matter, and they do not experience 

gimbal locking [84]. 

From the trained network, outputs were in the form of unit quaternions in Python and an 

example is shown in Figure 3.16. When feeding an input into the pose regression network, 

the image was read by Python using the cv2.imread function, then scaled down by dividing 

each pixel value by 255. The updated image array was then reshaped to have a size of (-1, 

224, 224, 3). To get an output, the predict function was used.  

 

Figure 3.16: Example of an output from the pose regression network after a prediction. 

3.4 Pipeline 

The combined network pipeline can be seen in Figure 3.17. An input image of size 224 x 

224 x 3 is inputted and goes through the YOLOv2 object detection network discussed in 
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Chapter 3.2. The output from the YOLOv2 network is the bounding box information 

consisting of the x and y pixel locations of the top left corner of the box, and the confidence 

score. Using Equations 3.5 to 3.7 and the intrinsic properties of the RealSense depth 

camera, along with the depth measurement of the object; the camera world coordinates 

were found.  

The image is cropped within the pipeline using the determined bounding box and expanded 

to 224 x 224 to input the cropped image into the pose regression network. The output from 

the pose network is the quaternion orientation of the object as discussed in Chapter 3.3. 

 

Figure 3.17: Architecture of the custom 6DOF pose detection pipeline. 

To get the 6DOF pose output of the object of interest, the quaternion output is converted 

to the XYZ Euler angles, the same rotation order used when converting training data from 

Euler angles to ground truth quaternions. The formula for the conversion is seen in 

Equation 3.14 [86]. 
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In total, the combined network consists of 197 layers. There are no parallel branches, all 

layers are in series. Depth images are not inputted into the network, they are used in parallel 

to determine the world coordinates of the object.  

3.5  Image Parameters 

All training images were color images of size 224 x 224 x 3. The training data used for the 

pose network was normalized by dividing all pixel values by 255 since RGB values have 

256 possible values ranging from 0 (black) and 255 (white). Depth maps have distance 

values encoded into each pixel of the depth image. Their size was 224 x 224 x 1.  

The object of interest in the training images was always set to 0.4 m away from the camera, 

with a spotlight being placed near the object in random locations for different lighting in 

each frame, as seen in Figure 3.18. Different lighting allows the network to better fit to 

different lighting environments when used in practice.  
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Figure 3.18: The image on the left had the spotlight to the right of the camera, the image 

in the middle had the spotlight placed above the object, and the image on the right had the 

spotlight placed above the camera. 

3.6  Experimentation and Results 

When evaluating object detection networks; Intersection Over Union (IOU), precision, 

recall, average precision, and mean average precision are used. IoU measures the accuracy 

of a network and is the ratio of the area of overlap between a predicted bounding box & 

the ground truth bounding box and the area of the image covered by both bounding boxes. 

The formula can be seen in Equation 3.15. Figure 3.19 shows how this is calculated.  

 
Area of Overlap

IoU
Area of Union

=  (3.15) 

 

Figure 3.19: The area of overlap is the blue region; the area of union is the gray and blue 
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regions combined. 

Precision is the ratio of true predictions made by the network and the total number of 

predictions as shown in Equation 3.16. A prediction is a false positive based on an IoU 

threshold set by the developer, typically less than 0.5.  

 
Pr

Pr
Pr Pr

True edictions
ecision

True edictions False edictions
=

+
 (3.16) 

Precision does not consider the total number of objects of interest in an image as it does 

not account for objects missed by the network, therefore recall is used as well. Recall is the 

ratio of true predictions and all ground truth positives in the data as seen in Equation 3.17. 

 
Pr

Re
Pr

True edictions
call

True edictions False Negatives
=

+
 (3.17) 

Precision and recall are typically plotted against each other in a precision-recall plot, which 

is a model evaluator. The area under the precision-recall curve is the single performance 

measure used with precision-recall plots and is known as average precision. The general 

equation for average precision is seen in Equation 3.18. The average precision is bounded 

from 0 to 1. When more than one object is being detected by a model in data, mean average 

precision is used. Each object’s average precision is calculated, then the mean of the 

average precisions is calculated to find the mean average precision.  

 
1

0

Pr Pr ( ) ReAverage ecision ecision R dR where R is call=   (3.18) 

To test the performance of the YOLOv2 object detection model, test images were rendered 
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virtually and inputted into the network. From the outputted results, the precision-recall plot 

was generated, and the average precision of the model was found, seen in Figure 3.20. The 

mean average precision was not generated since only one object class was detected. The 

average precision was 1.00 on the hardware used to train the network. This is an 

improvement over the studies conducted in [38] but should take into consideration the fact 

only one object was being detected in a test set made up of virtual images with little to no 

noise. 

 

Figure 3.20: The precision-recall plot of the YOLOv2 network. 

To test the pose regression network, test images were rendered with the ground truth 

quaternions. On each test image, predictions were made and were written to a file. The 

quaternion predictions were converted to Euler angles using an XYZ transformation, the 
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same used to convert ground truth Euler angles to ground truth quaternions. For each 

prediction, the difference between the ground truth and the prediction was calculated in 

each of the three axes. The mean error in each axis can be found in Table 3.1. 

Table 3.1: The errors in the X, Y, and Z axis of the pose regression network.  

X ERROR Y ERROR Z ERROR 

3.2712 ̊ 4.3342 ̊ 3.2111 ̊ 

This is an improvement over the results for the X and Z axes from the study conducted in 

[27].  

In conclusion, a 6DOF pose detection algorithm was developed to localize an object in a 

3D space, allowing for a second convolutional network to predict the orientation of the 

target. The method presented is able to perform at a standard higher than studies done in 

the field. This algorithm is to be paired with a robotics simulation to successfully 

rendezvous and dock with a non-cooperative target.  
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Chapter 4: Board Deployment 
 

Summary: In this chapter, a detailed description of the methodology for deploying the 

computer vision algorithm discussed in Chapter 3 on a microcomputer is given. Since the 

objective of this thesis is to develop a simulation of space robotics rendezvous and docking 

for active space debris removal, it is of interest to deploy the computer vision algorithm on 

a computer with computational abilities similar to spacecraft computers. An NVIDIA 

Jetson Nano is used for testing the feasibility of the developed computer vision program.  

4.1 Introduction 

To further test the 6DOF pose detection network discussed in Chapter 3 for space 

applications, it is to be tested on a microcomputer. The microcomputer being used is an 

NVIDIA Jetson Nano, which can be seen in Figure 4.1.  

Onboard computers on satellites include microprocessors, memory banks, and interfacing 

chips to communicate with different subsystems. They are used for attitude determination 

and control using sensors and actuators, telemetry management, communications, 

housekeeping, on-board time synchronizing, and fault detection [87].  

Of the three heat transfer methods, radiation is most used in space. Convection requires the 

transfer of heat energy through a fluid, conduction requires contact between two substances 

to move heat, whereas radiation transfers heat energy through space by electromagnetic 

radiation [88]. Therefore, on-board computers do not have fans, as no air is present to 

dissipate heat.  
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An effective on-board computer has good processing power with the ability to process 

desired operations, such as the NVIDIA Jetson Nano’s dedicated GPU capable of handling 

computer vision algorithms. They also have reliable software, use low power, and have a 

small physical footprint [87].  

The NVIDIA Jetson Nano was chosen for testing the computer vision algorithms due to its 

cooling system. It does not use a fan and allows for modular heat exchange systems to be 

developed by the end user for their needs. The operating temperature of the board is -25 ̊C 

to 97 ̊C. The Jetson Nano was also tested for mechanical shock loads of 140 G (multiples 

of gravitational acceleration) and 50 G, sine vibrations of 3 G, and random vibrations of 2 

G and 1 G; all tests completed on space grade computers to withstand random shocks to 

the system during operational and launch loads [89]. The operating system on the board is 

Linux based. The board is 100 mm x 80 mm x 29 mm and uses 5 to 10 W of power 

depending on usage.  

 

Figure 4.1: An image of the NVIDIA Jetson Nano board [90]. 
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4.2 Board Hardware 

Onboard the NVIDIA Jetson Nano is 4 GB of memory, a quad-core ARM Cortex-A57 

processor, and an NVIDIA Maxwell GPU as mentioned in Table 1.1. Maxwell GPUs are 

used for computational applications such as machine learning using built in CUDA cores. 

The board has three (3) USB ports for peripherals such as a depth camera and MIPI CSI-2 

connectors to directly connect a compatible camera sensor to the board. The advantage of 

this board is it can decode video inputs at high resolutions, optimal for object tracking.  

4.3 Experimentation and Results 

Initially, the NVIDIA Jetson Nano’s operating system was flashed on to a micro-SD card 

to be able to use the board. Figures 4.2 and 4.3 below show the experiment setup. 

Connected to the board during the experiment were a keyboard, mouse, the RealSense 

d435i camera, ethernet, and an HDMI cable for display. To use the RealSense d435i camera 

on the NVIDIA Jetson Nano board, the RealSense wrapper developed by Intel needed to 

be installed as it did on MATLAB. This was a simple installation and allowed for the use 

of the depth sensor and for the extraction of the intrinsic matrix, although the intrinsic 

matrix was already known. After installing the RealSense library, it could be called in 

Python code [91]. 
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Figure 4.2: The NVIDIA Jetson Nano with all connections during the experiment. 

 

Figure 4.3: A wider view of the experimental setup with the camera. 

To run the object detection component on the board, a YOLOv2 network using darkflow 
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was installed on the board with the imported weights trained in MATLAB, rather than 

converting the MATLAB network to Python for execution on the board [92]. Using the 

weights trained on MATLAB allow for the MATLAB trained network to be replicated on 

the board. A separate script was used to transform from the pixel coordinates of the image 

to camera world coordinates. Again, the funnel, this time physical, was used. 

To use the trained 3D regression network for 3D pose detection, the code and surrounding 

library was uploaded to GitLab, and was then downloaded to the board. All dependencies 

needed were installed on the board, such as TensorFlow and Keras to be able to use the 

developed network.  

When combining the two networks into a singular pipeline and running the algorithm 

together, the 6DOF pose detection was capable of running at 3 fps, with spikes to 6 fps 

during some time intervals and with dips to 1 fps. The regression network is small, as 

described in Chapter 3, and therefore did not play a large effect on the performance of the 

overall pipeline. The YOLOv2 network from [92] was averaging approximately 4 fps for 

the original designer on the NVIDIA Jetson Nano. 

This is not a feasible result, and therefore it is recommended that separate boards are used 

to run the 3D object localization component and the 3D orientation detection, and then the 

result being combined. This is possible due to the NVIDIA Jetson Nano’s small footprint 

and low power consumption. The YOLOv5 network can be used to replace the YOLOv2 

network as well on the board as it is an improvement over the latter and is faster, providing 

up to 12 fps on the NVIDIA Jetson Nano [93].  
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Chapter 5: Creating Virtual Training and Testing Data 
 

Summary: In this chapter, a detailed description of the methodology for rendering virtual 

data sets in varying lighting and backgrounds is given. Within the script for rendering 

images, the object of interest is placed at random orientations a set distance away from the 

camera and a light source is placed in random positions around the object of interest. 

Ground truth bounding boxes and quaternions are automatically generated. Using virtual 

data limits noise and is an effective method for training neural networks.  

5.1 Introduction 

The current thesis is motivated by the need for a computer vision algorithm used for 

effectively detecting the 6DOF pose of an object in varying environmental conditions. 

Training neural networks to be effective requires a wide variety and a large size of training 

data, which is difficult to obtain with real images. Along with the images, accurate ground 

truth labeling is needed. With real images, labeling tends to be completed by human input 

which has its own biases. One individual may bound an object differently than another or 

may bound an object in one image differently than in another image. For pose detection, 

labeling real images with the orientation of an object relative to the camera introduces 

human error into measurements. The errors in annotations are introduced into the neural 

network and can lead to overfitting. Real images also tend to be noisy as not all camera 

sensors are the same. Some images may be noisy with lower resolutions compared to 

others. With noise, overfitting is also introduced into a network. To overcome these 
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limitations, an algorithm to render virtual images with accurate ground truth labels of any 

size in different lighting conditions and different object orientations was developed. 

5.2 Advantages of Using Virtual Data 

There are many advantages to using virtual data for training. The lighting position, lighting 

intensity, and light temperature can be adjusted in every rendered frame with code or by 

manually changing parameters in a software. Camera parameters such as focal length and 

resolution can be adjusted for more diversity in training datasets. The background can be 

changed, and occlusions can easily be added. Colors can be mixed, and material properties 

can be adjusted. Images can be saved in the PNG format for lossless saving of data, as 

compared to the compression formatting of JPEG images [94]. 

As discussed in Section 5.1, the virtual ground truth labels are accurate and do not 

incorporate human biases and error when automating labeling. Thousands of images can 

be generated with ground truth labels in minutes, as compared to the tedious work of 

manually labeling real images.  

As mentioned above, some real images can be noisy and another advantage of using virtual 

data is the ability to decrease or eliminate noise. Prior to the use of virtual data, the 

following figures were used for training. These images were taken with a low-quality 

camera, the only available at the time, and introduced noise into the training images. The 

ground truth labels also needed to be constructed manually, introducing human error.  
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Figure 5.1: An example of real images used for initially training a network without 

ground truth labels.  

 

Figure 5.2: An example of real images used for initially training a network without 

ground truth labels. 

 

Figure 5.3: An example of real images used for initially training a network without 

ground truth labels. 
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5.3 Methodology 

To virtually render images, initially a CAD model of the object of interest, a funnel, was 

developed using SolidWorks and an STL file was generated from it. The STL model can 

be seen in Figure 5.4. 

 

Figure 5.4: Custom STL file of a funnel. 

The STL file was then imported into Blender, a software used for 3D modeling, animations, 

and rendering images of objects. In Blender, the color of the object was changed to match 

that of the real funnel seen in Figure 5.1. The reflective and absorptive properties were 

changed to resemble a steel funnel. The scaling of the object was changed as well to depict 

an accurate representation of the object in a real scene. Figure 5.5 shows the dimensions of 

the funnel.  
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Figure 5.5: Scaling of the virtual funnel. 

 

To automatically render images, Python was used to script functionality into Blender. The 

camera sensor was placed at 0.4 m away from the center of the funnel along the Z-axis of 

the Blender environment. Figure 5.6 shows the setup in the Blender world and Figure 5.7 

shows the default orientation of the funnel.  

 

Figure 5.6: Environment setup in Blender. The red line is the X-axis, the green line is the 

Y-axis, and the blue line is the Z-axis. 
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Figure 5.7: Default orientation of the funnel. 

In Blender, the script automatically rotated the funnel using XYZ Euler transformations 

within the ranges listed in Table 5.1. The spotlight used for illumination was randomly 

placed at any point within the combination of the ranges listed in Table 5.2. 

Table 5.1: The ranges of orientation of the funnel used in each axis during data generation. 

AXIS RANGE 

X -45 ̊ to 45 ̊ 

Y -45 ̊ to 45 ̊ 

Z 0 ̊ to 180 ̊ 
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Table 5.2: The ranges of the position of the spotlight used in each axis during data 

generation. 

AXIS RANGE 

X -2 m to 2 m 

Y -2 m to 2 m 

Z 0 m to 2 m 

 

With changing the parameters i and j, the number of images generated can be found with 

Equation 5.1.  

 
2*( 1)Number of images i j= +  (5.1) 

The image size can be changed to train networks of different sizes. With every render, the 

funnel’s XYZ orientation was recorded along with each renders file path in separate text 

files.  

To automate the generation of ground truth bounding box data, the images were all inputted 

into a MATLAB script using each image’s file path. Since the images had transparent 

backgrounds, MATLAB automatically assigned the background pixels a value of 0. To 

find the bounding box coordinates; the left most, right most, top most, and bottom most 

pixel indices of value greater than 0 were found. Each image needed a training label 

consisting of the top left coordinate, width, and height. Table 5.3 lists how to find these 

values. Figure 5.8 below shows a ground truth label around the funnel. 
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Table 5.3: Method for finding the different coordinates of a bounding box. 

TOP LEFT COORDINATE 

OF THE BOUNDING BOX 

(Left most pixel index, Right most pixel index) 

WIDTH Right most pixel index – left most pixel index 

HEIGHT Bottom most pixel index – top most pixel index 

 

 

Figure 5.8: Automated ground truth label around the virtual funnel in a training image. 

 

To generate quaternion ground truth labels, the XYZ Euler angles generated in Blender 

were inputted into a MATLAB script which used Equation 3.14 for the transformation. The 

quaternion labels were outputted into a Microsoft Excel file along with each image’s file 

path. The Microsoft Excel file was inputted into a Python script for training the pose 
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regression network discussed in Chapter 3.3. Figure 5.9 shows the format of XYZ Euler 

angles outputs from Blender in a text file and the quaternions in a Microsoft Excel 

spreadsheet. 

 

Figure 5.9: An example of Euler outputs from Blender (left) converted to their respective 

Quaternions (right). 

In conclusion, a technique was developed to generate an arbitrary number of virtual images 

for the purpose of training artificial neural networks with bounding box and orientation 

ground truth. It is shown in Chapter 3 that using virtual images expands the training set and 

allows neural networks to be effective.  
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Chapter 6: Robot Control 
 

Summary: In this chapter, a detailed description of the FANUC M20iD/25 robot in a 

virtual environment is given. The physical specifications are described, and the robot’s 

equations are derived using the Denavit-Hartenberg method. Limitations are placed on the 

robot joints in terms of range and velocity to keep the virtual setup consistent with the 

future Hardware-in-the-Loop setup. Finally, control methodologies are described for 

controlling the robot along in the Simulink and ROS environments for running experiments 

on the visual servo-controlled robot. Finally, the results are shown for the joint movements.  

6.1 Introduction 

The current thesis is motivated by the need for an effective robotic control technique for 

real-time object rendezvous and docking in the space environment. In Chapter 3, a 

computer vision algorithm was developed for the purpose of being paired with a robot to 

grasp a target object. To test real-time object rendezvous and docking, two industrial robots 

will be used in a Hardware-in-the-Loop simulation at the Space Engineering Design Lab 

at York University. A proposed general setup is seen in Figure 6.1. The two robots are 

FANUC M20iD/25 robots, one being the chaser robot paired with the computer vision 

algorithm and robotic controls algorithms, and a gripper; the second being the target robot 

equipped with a mock satellite and exhibiting free-flying motion.  
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Figure 6.1: The proposed setup for the FANUC robots at the Space Engineering Design 

Lab at York University. 

Unfortunately, due to the COVID-19 pandemic, lab access was restricted, resulting in the 

robotics component being completed in a virtual environment with a Software-in-the-Loop 

simulation. A kinematic representation of the robots is used to drive the chaser robot to the 

target after using the 6DOF pose detection technique to accurately locate the target. PI 

controllers are used to drive each joint to the desired position, in turn moving the end-

effector. MATLAB Simulink and the Robot Operating System are used together to test 

docking with the target.  
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6.2 Robot Specifications 

An image of the FANUC M20iD/25 robot can be seen in Figure 6.2.  

 

Figure 6.2: The FANUC M20iD/25 robot [95]. 

 

Table 6.1: Joint ranges and maximum joint speeds of the FANUC M20iD/25 robot. 

JOINT MAXIMUM RANGE MAXIMUM SPEED 

1 340 ̊ 210 ̊/sec 

2 260 ̊ 210 ̊/sec 

3 475 ̊ 265 ̊/sec 

4 400 ̊ 420 ̊/sec 

5 280 ̊ 420 ̊/sec 

6 540 ̊ 720 ̊/sec 
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Table 6.1 shows the range of motion for this robot in all its six (6) axes along with the 

maximum rotational speed. The operational weight of one robot is 250 kg and can carry a 

maximum load of 25 kg, allowing for a mock satellite to easily be placed on the end effector 

of the target robot [96]. The robot’s motion range can be seen in Figure 6.3. 

 

Figure 6.3: The motion range of the FANUC M20iD/25 robot [97]. 
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6.3 Limitations on the Robot 

The Software-in-the-Loop virtual simulation is meant to mimic the proposes Hardware-in-

the-Loop simulation, therefore the limitations intended to be imposed on the hardware must 

be imposed on the virtual robot. Table 6.2 lists these limitations on each of the six (6) joints. 

Table 6.2: Joint limits imposed on the FANUC M20iD/25 robot.  

JOINT JOINT MINIMUM JOINT MAXIMUM 

1 -29.8 ̊ 29.8 ̊ 

2 -20.1 ̊ 60.2 ̊ 

3 -45.3 ̊ 45.3 ̊ 

4 -90.0 ̊ 90.0 ̊ 

5 -45.3 ̊ 45.3 ̊ 

6 -90.0 ̊ 90.0 ̊ 

 

The range limitations are used to avoid walls and other obstacles when operating in a small 

laboratory area during the Hardware-in-the-Loop simulation. The velocity limits were set 

to the maximum values presented in Table 6.1. 

6.4 Robot Equations 

The proposed control methodology is based on kinematics; therefore, the forward 

kinematics equations need to be derived for the FANUC M20iD/25 robot. The forward 

kinematics of a manipulator relates the end-effector position and orientation to the inputted 
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joint parameters. To derive the forward kinematics equations, a geometric approach can be 

used, where each joint position is determined by adding the previous link length vectors 

and their orientations as shown in Figure 6.4.   

 

Figure 6.4: A planar 2 link kinematic arm. 

In Figure 6.4, to get the end-effectors position (x2, y2) in terms of the base frame (x0, y0), 

Equations 6.1 and 6.2 are derived. This gets more complex as more robot links are added 

to the system and as the system expands into 3-dimensions. 

 ( ) ( )2 1 1 2 1 2  cos cosx a a  = + +  (6.1) 

  ( ) ( )2 1 1 2 1 2  sin siny a a  = + +  (6.2) 

An alternative to the geometric approach is using the Denavit-Hartenberg (DH) method for 
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complex systems. The DH convention simplifies the forward kinematics problem by 

representing each homogeneous transformation from one joint to another with four (4) 

parameters associated with each link and joint. The four parameters are: (1) li: the link 

length, (2) bi: the link offset, (3) αi: the link twist, and (4) θi: the joint variable (θi for a 

revolute joint, di for a prismatic joint) [98]. Figure 6.5 shows a general DH frame 

assignment.  

 

Figure 6.5: Parameters used with the DH method for forward kinematics [98]. 

As seen in Figure 6.5, θi is the angle between axis xi-1 and xi from xi-1 to xi along the zi-1 

axis. The link twist, αi is the angle between zi-1 and zi from zi-1 to zi along the xi axis.  

The calculations shown from this point forward will use the following notation in reference 

to Figure 6.5: axis i-1 in Figure 6.5 will be referenced as i and axis i in Figure 6.5 will be 

referenced as i+1. The link length will be referred to as li and the link offset will be referred 
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to as bi. 

To retrieve the end-effector position and orientation in the base frame, the following 

equations are used. 

 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 Position P a Q a Q Q a Q Q Q a Q Q Q Q a Q Q Q Q Q a= = + + + + +  (6.3) 

 1 2 3 4 5 6Orientation Q Q Q Q Q Q Q= =  (6.4) 

where  

  

0

i i i i i

i i i i i i

i i

cos cos sin sin sin

Q sin cos cos sin cos

sin cos

    

    

 

− 
 

= −
 
  

 (6.5) 

  

i i

i i i

i

l cos

a l sin

b





 
 

=
 
  

 (6.6) 

Figures 6.6 and 6.7 show the DH frames for the FANUC M20iD/25 robot. Table 6.3 is the 

DH table for the FANUC M20iD/25, in which all the DH parameters are listed for each of 

the six (6) joints.  



71 

 

 

 

Figure 6.6: The joint frames for the DH method. As seen in Figure 6.3, all frames 

originate in the same plane (x0-z0 plane).  

 

Figure 6.7: Another image of the derived DH frames for the FANUC M20iD/25 robot. 
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Table 6.3: The DH table for the FANUC M20iD/25 robot. 

LINK li (mm) bi (mm) αi θi 

1 75 425 +90 ̊ θ1 

2 840 0 0 ̊ θ2 

3 215 0 +90 ̊ θ3 

4 0 890 +90 ̊ θ4 

5 0 0 +90 ̊ θ5 

6 90 0 0 ̊ θ6 

 

The following are the homogeneous transformation matrices for each link and the ai 

vectors, derived using Table 6.3 and Equations 6.5 and 6.6. 

 

1 1

1 1 1

0

  0

0 1 0

cos sin

Q sin cos

 

 

 
 

= −
 
  

 (6.7) 

 

2 2

2 2 2

0

  0

0 0 1

cos sin

Q sin cos

 

 

− 
 

=
 
  

 (6.8) 

 

3 3

3 3 3

0

  0

0 1 0

cos sin

Q sin cos

 

 

 
 

= −
 
  

 (6.9) 
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4 4

4 4 4
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cos sin

Q sin cos
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 (6.10) 

 

5 5

5 5 5
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cos sin

Q sin cos
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 (6.11) 

 

6 6

6 6 6
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cos sin

Q sin cos
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 (6.12) 
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1 1
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cos

a sin
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 (6.13) 

 

2

2 2
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0

cos

a sin
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 (6.14) 

 

3

3 3
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cos

a sin
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 (6.15) 

 4

0

  0

890

a
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 (6.16) 
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 5

0

  0

0

a
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 (6.17) 

 

6

6 6

90

  90

0

cos

a sin





 
 

=
 
  

 (6.18) 

Using Equation 6.3, the following are the expressions for the end-effector position with 

respect to the individual joint values in the robot base frame. 

 

1 1 2 1 2 3

1 2 3 1 2 3

1 2 3

1 2 3 1 2 3 4

1 4

75cos( ) 840cos( )cos( ) 215cos( )cos( )cos( )
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 (6.19) 
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To go along with the end-effector positions, the end-effector orientation matrix can be 

found using Equation 6.4. Due to the size of the elements, each of the nine (9) components 

are listed separately below.  
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33 2 3 2 3 4 5

2 3 2 3 5
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The forward kinematics equations can be used to find the Jacobian matrix of a manipulator, 

which is used to map the joint velocities to both the end-effector linear and angular 

velocities. This matrix is also important in the development of control laws for smooth path 

planning, for deriving the dynamics equations of a manipulator, and for transforming forces 

and torques from the end-effector to the joints [98]. The dexterity of a manipulator and 

manipulator singularities can also be determined with the Jacobian matrix. 

The following equation is used in relating the end-effector velocities to the joint rates. 

 X Jq=  (6.31) 

where �̇� is the 6x1 column vector of the end-effector velocities (linear and angular), J is 

the 6x6 Jacobian matrix, and �̇� is the 6x1 column vector of the joint velocities. 

The Jacobian matrix can be further broken down into two (2) components, a linear and 
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angular component, as seen in Equation 6.32. 

  
vJ

J
J

 
=  
 

 (6.32) 

𝐽𝑣 is the linear component and relates the linear end-effector velocities to the joint 

velocities. The form for this matrix is the following. 

 

1

1

1

 

n

v

n

n

x x

q q

y y
J

q q

z z

q q

  
 
  
  

=  
  
  
 
  

 (6.33) 

where x, y, z are the end-effector positions determined from the forward kinematics 

problem, and n is the DOF of the robot. 

The angular component of the Jacobian, 𝐽𝜔 , relates the angular end-effector velocities to 

the robot’s joint velocities. To find each component of the angular Jacobian, the spin axis 

of each joint relative to the base frame is needed. The following is the form of the angular 

Jacobian. 

 
1

ˆ ˆbase base

nJ   =    (6.34) 

where �̂�𝑖
𝑏𝑎𝑠𝑒 is a 3x1 column vector. To find this column vector for each joint, a 

transformation from the base to each respective joint needs to be completed, then the spin 

axis component is extracted [96]. From Figure 6.7, the DH parameters are set up in such a 
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way to ensure each joint revolves around its respective z-axis.  

Due to the size of the parameters inside of the Jacobian, each of the 18 components of the 

linear half Jacobian is listed separately below from Equation 6.35 to Equation 6.52. 
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Equations 6.53 to 6.58 are the components consisting of the angular half of the Jacobian 

matrix. 
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6.5 Control 

The main control technique used was combining visual servo and linear control. Visual 

servo uses computer vision data to drive a robot to a place and/or orientation by combining 

image processing, computer vision, and control theory. There are two (2) visual servo 

methods, both aiming to minimize the error between the current position of a camera sensor 

and the desired position of the camera. Equation 6.59 is the error term being minimized 

with visual servo control 

  
*( ) ( ( ), )e t s m t a s= −  (6.59) 

where m(t) is the set of image measurements used to determine a vector of k visual features 

s(m(t), a), a is the set of parameters representing the system, and s* is the desired values of 

visual features [99].  

The first visual servo method is Image-based Visual Servo Control (IBVS) where the visual 

features vector, s, consists of a set of features available in a 2D image. Position-based 

Visual Servo control (PBVS) consists of the feature vector, s, being a vector of 3D 
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parameters estimated from image measurements [99].  

IBVS uses image coordinates to define the visual features vector s(m, a), with m being the 

pixel coordinates of a feature, and a being the intrinsic parameters of the camera. To control 

a 6-DOF robot, three (3) points are needed. With a 3D point �̅� = (𝑥, 𝑦, 𝑍) in the camera 

world frame, Equations 6.60 and 6.61 translate this point to the world frame 

 uu c
X

f

−
=  (6.60) 

 vv c
Y

f

−
=  (6.61) 

where m = (u,v), a = (cu, cv, f, α) and α is the ratio of pixel dimensions. The velocity of the 

3D point can be related to the camera spatial velocity as seen in Equation 6.62 and the set 

of equations from Equation 6.63 to Equation 6.65. 

 
c=− − cX v X  (6.62) 

 
x y zX v Z Y = − − +  (6.63) 

 
y z xY v X Z = − − +  (6.64) 

 
z x yZ v Y X = − − +  (6.65) 

 

Using Equation 6.66, the camera’s velocity can be controlled with Lx is the interaction 

matrix as seen in Equation 6.67. To create a 6x6 interaction matrix, three (3) points are 
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needed as mentioned earlier [99].  

 = x cx L v  (6.66) 

 

2

2

1 0
(1 )

1
1

0

x

xy x yZ
Z

y y xy x
Z

Z

 
 − +−

=  
− + − − 

  

xL  (6.67) 

PBVS uses the camera’s pose with respect to a reference coordinate system to define a 

visual features vector. For this, the camera’s intrinsic matrix is needed along with a 3D 

object model of the target [99].  

There are four (4) different robot control types: (1) point-to-point control, (2) continuous-

path control, (3) controlled-path control, and (4) stop-to-stop control. Point-to-point control 

requires locations for the robot to move towards to be loaded into memory as the robot is 

only able to move to and from specific points. Continuous-path control allows for a robot 

to move along a prescribed path continuously and all points along this path must be stored 

in robot memory. Controlled-path control allows the robot to take any path to get from a 

starting point to the end point. Stop-to-stop control is open looped control where the 

position and velocity of the robot is not known to the controller [100].  

The control technique used to control the FANUC M20iD/25 robot to dock with a target 

combined IBVS, linear control and controlled-path control. The controllers were 

implemented kinematically, rather than dynamically. Only the joint values were driven by 

controllers, rather than torques. Kinematic modeling studies robot motion without 



89 

 

 

considering forces and torques acting on the robot and causing motion as the end effector 

pose is dependent on just the joint values. Dynamic modeling uses a relationship between 

applied torques and forces and the movement of a robot [101]. 

To control the joints, Proportional-Integral (PI) controllers were used. An image of a 

typical PI controller can be seen in Figure 6.8.  

 

Figure 6.8: The general form of a PI controller. 

PI controllers are feedback controllers which use a proportional term, P, and an integral 

term, I, to reduce the error of a system. The proportional term outputs the proportional 

error, which can be adjusted with a proportional gain term. The integral term uses both the 

magnitude of the error and considers the time over which the error takes place. This term 

tends to improve the steady-state error which is present in just a proportional (P) controller 

[102]. The proportional and integral terms can be seen in Equations 6.68 and 6.69.  

 

 ( )pP k e t=  (6.68) 
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 ( )II K e t dt=   (6.69) 

The PI controllers used provided desired responses. These responses, as seen in Figure 6.18 

to Figure 6.23 had fast rise times, did not oscillate about the steady state, and were able to 

stabilize about the steady state. As seen in Figure 6.9 below, responses from controllers 

that are overdamped are not able to reach the desired position which is not desirable for a 

robotic arm. With an underdamped system, the oscillations can cause vibrations in the 

manipulator and can fluctuate past the joint limits. A response similar to critically damped 

is desired.  

 

Figure 6.9: The various types of responses from a controller output [103]. 

The controllers were implemented in MATLAB Simulink, where the software simulated 

the movement and responses of the robot joints. These joint values were sent as commands 

to ROS Gazebo, where a Kinect camera was acting as the end effector and sending image 

data to Simulink for computer vision processing. Figure 6.10 is the method of operations 
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of the algorithm. The software implementation is discussed further in Chapter 6.6. 

 

Figure 6.10: Method of operations of the developed simulation algorithm. 

 

6.6 Simulink Environment Setup 

To control the robot, MATLAB Simulink was used in tandem with ROS Gazebo. Figures 

6.11, 6.12, and 6.13 show the developed Simulink program. In Figure 6.11, two (2) ROS 

subscriber blocks were used. ROS uses messages to communicate among nodes on a 

network, a subscriber receives data on the network. The two subscribers were subscribed 

to RGB image data and depth image data from ROS, respectively. In ROS Gazebo, a virtual 

camera (Kinect camera) was set up to take images of a target while the simulation ran as 

seen in Figure 3.8. These images were inputted into Simulink. The raw RGB and depth 

data was forwarded to the respective Read Colour Image and Read Depth Image blocks. 

These blocks were predefined blocks available in Simulink for converting raw image data 

from ROS to viewable images used for computer vision. The getCoordinates block was a 

user-defined function that reads in the RGB image and depth image to retrieve the target’s 
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world coordinates in the camera world frame and the pose of the target in the camera world 

frame. The world coordinates were then transformed to the base frame of the robot and 

combined with the target pose relative to the base frame as a 4x4 transform matrix. The 

transform matrix states where the target object is oriented in 6-dimensions relative to the 

base of the robot. 

In Figure 6.12, the transform matrix was inputted into the Inverse Kinematics block, which 

determined the joint values needed to position and orient the end-effector at the target’s 

location. The joint states were first sent to a controller block, which was user-defined and 

contained the six (6) PI controllers used to control each of the six (6) joints. The outputs 

from the controller block were inputted into the Fanuc Robot block, which contained the 

robot’s joints, links, actuators, and the environment the robot was functioning in. The PI 

controller block used negative feedback, therefore the joint values from the Fanuc Robot 

block were inputted into the PI Joint Controller block. Figures 6.14 and 6.15 show PI Joint 

Controller and Fanuc Robot blocks in expanded detail. 

In Figure 6.13, the joint values from the Fanuc Robot block were inputted as a vector into 

the Forward Kinematics1 block. This was also a predefined block that outputted the end-

effector position of a robot when joint values were inputted. The end-effector position and 

the XYZ pose output were inputted into a user-defined block called sendMessages. This 

function block was created to organize the 6DOF end effector pose to allow for easy 

publishing to the ROS network. The outputs from this block were all the values being sent 

to the ROS network to move the camera to the desired position in the ROS Gazebo 
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simulation. The Publish kinects pose1 block was the publisher block, the counterpart to the 

subscriber blocks seen in Figure 6. Rather than receiving data from nodes, this block sent 

data to other nodes across the ROS network.  

 

Figure 6.11: The first part of the Simulink block diagram to communicate with ROS 

Gazebo and to control the robot. 
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Figure 6.12: The second part of the Simulink block diagram to communicate with ROS 

Gazebo and to control the robot. 

 

Figure 6.13: The third part of the Simulink block diagram to communicate with ROS 

Gazebo and to control the robot. 
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Figure 6.14: The PI Joint Controller block in more detail. 

 

Figure 6.15: The Fanuc Robot block expanded in more detail.  

 

Figure 6.14 shows the PI Joint Controller block in detail. Included are the inputs from the 
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Inverse Kinematics block and the feedback from the Fanuc Robot block. Each of the 

controllers were tuned using the Tuner App provided with MATLAB. A saturator was used 

for each joint to limit the joint values to the joint limits stated in Table 6.2. 

Figure 6.15 shows the Fanuc Robot block in detail. The joint values from the PI Joint 

Controller block were inputted to the respective joints. The Mechanism Configuration 

block on the left contains the gravity vector the robot functions with. Gravitational 

acceleration was set to 0 in all three dimensions as for a Free-Flying robot, gravity is not 

considered. Each joint block contained the joint limits, joint velocity limits, and origins. 

Each link block contained the STL files of the respective link to visualize the robot in 

simulation. The joint transforms were also included between the two joints on either end 

of the link in each link block. The mass moment of inertias of each link were also included 

for when a dynamic simulation is used.  

To connect with ROS, the ROS environment was started on a virtual machine on the same 

computer as the Simulink program. When running, the ROS Master node had its own IP 

address and port number. The Simulink simulation was connected to this IP address using 

the Configure ROS Network Addresses function provided with the ROS Toolbox in 

Simulink as seen in Figure 6.16.  
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Figure 6.16: The Configure ROS Network Address function in detail. 

Once the Simulink environment was connected to the ROS Master node, the subscriber 

and publisher blocks could be configured to act as nodes over the ROS network and could 

receive or send messages, respectively.  
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6.7 Experimentations and Results 

Figure 3.8 shows the Kinect camera in the ROS Gazebo environment which takes images 

and sends them to Simulink over the ROS network. The experiment that was run for the 

robotics simulation consisted of having the target placed away from the camera, the camera 

taking an RGB image and depth image of the target, and then the images being sent to 

Simulink. In Simulink, computer vision was used to retrieve the targets 6DOF pose, which 

was transformed into a 4x4 matrix. Inverse kinematics calculations were done on the 4x4 

transform and the derived joint values were sent to the joint controllers. The goal of the 

joint controllers was to get a smooth but fast response in getting the robot’s end-effector 

from its home position to the target for docking. Based on the robot’s movement, the goal 

was to move the camera in the ROS Gazebo environment as if the robot’s end-effector had 

moved. Due to hardware constraints, only the Kinect camera was placed in ROS Gazebo 

as using the full Fanuc robot was computationally expensive with a virtual machine.  

As seen in Figure 3.8, the camera was able to dock with the target as if the end-effector of 

the robot had docked. The plots seen in Figures 6.18 to 6.23 are the responses of each of 

the joints outputted from the controllers. All the controllers provided a smooth response to 

its end goal, which is the ideal response. Figure 6.17 shows the images taken by the Kinect 

camera and Figure 3.8 shows the cameras position relative to the target.  
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Figure 6.17: The images taken by the Kinect Camera inside ROS Gazebo. 

Table 6.4 shows the coordinates of the target relative to the camera and the coordinate of 

the target in the robot’s base frame. Table 6.5 shows the joint values obtained from the 

inverse kinematics block in Simulink.  

Table 6.4: The coordinates of the target relative to the camera and robot base in the setup 

seen in Figure 3.8.  

AXIS CAMERA WORLD FRAME ROBOT BASE FRAME 

X -0.01961 2.00 

Y 0.002801 -0.0196 

Z 1.035 1.463 

 

To convert from the camera world frame to the robot base frame, the following equations 

were used. 
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 0.965robot cameraX Z= +  (6.70) 

 69.624 10robot cameraY X x −= +  (6.71) 

 1.48robot cameraZ Y= +  (6.72) 

Table 6.5: The joint values obtained from the inverse kinematics block in Simulink from 

the setup seen in Figure 3.8. 

JOINT VALUE [RAD] 

1 -0.009806 

2 0.7824 

3 -0.79 

4 -7.89 x 10-6 

5 -0.79 

6 0.02725 

 

Figures 6.18 to 6.23 are of the six (6) joint controller responses. 

 

Figure 6.18: Joint controller response for joint 1. 
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Figure 6.19: Joint controller response for joint 2. 

 

Figure 6.20: Joint controller response for joint 3. 

 

Figure 6.21: Joint controller response for joint 4. 
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Figure 6.22: Joint controller response for joint 5. 

 

Figure 6.23: Joint controller response for joint 6. 

In conclusion, a robotics rendezvous and docking simulation was successfully created with 

the integration of a 6DOF pose detection algorithm to accurately locate a target object. This 

exercise was a successful precursor to implementing robotic rendezvous and docking in a 

Hardware-in-the-Loop simulation.  
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Chapter 7: Conclusion and Future Work 
 

Summary: This chapter consists of three sections. First, a summary of the overall results 

and general conclusions from this thesis are given. Second, the contributions from this 

thesis are provided. Finally, future work recommendations that can further improve the 

abilities to test space robotics rendezvous and docking are given.  

7.1 General Conclusions 

7.1.1 Thesis Accomplishments 

7.1.1.1 Neural Network for Object Detection 

The thesis was divided into two sections, one consisted of developing a computer vision 

algorithm for 6DOF pose detection, and the second consisting of developing visual servo 

control for robotic rendezvous and docking. The computer vision algorithm was developed 

using artificial intelligence, as the current approaches in the space environment use 

traditional computer vision techniques. A you-only-look-once network was used as the 

backbone for object detection due to its real-time object tracking capabilities. Using AI and 

a depth camera, this thesis work demonstrated that trained networks could be used to detect 

the position of an object in real time relative to the camera for real time tracking purposes.  

7.1.1.2 Development of a Custom Neural Network for Pose Detection 

To complete the 6DOF pose detection network, a custom 3D pose detection neural network 

was developed. This network was able to detect the orientation of an object in quaternion 



104 

 

 

form relative to a camera sensor, which could then be converted to Euler Angles using an 

XYZ transformation. Both the object detection and pose detection neural networks were 

combined to create one single pipeline for input data. In this pipeline, the image is initially 

inputted into the YOLO network to localize the object and to obtain its 3D position 

coordinates. Then the localized object is inputted into the pose detection network to obtain 

the orientation. The thesis work validated the real time 6DOF pose detection capabilities 

of the custom computer vision algorithm.  

7.1.1.3 Deployment of 6DOF Pose Detection Network on a 

Microcomputer 

To test the capabilities of the 6DOF pose detection network on a space grade board, the 

algorithm was deployed on an NVIDIA Jetson Nano board. The pipeline was functional 

and provided the 6DOF pose of a target in real time on the board, although at low speeds. 

Therefore, recommendations for improvement were provided which including using 

multiple boards or deploying an updated YOLO network for faster performance. 

7.1.1.4 Development of an Algorithm for Custom Virtual Data 

Generation 

To compensate for the lack of available training data for a funnel and to have accurate 

ground truth data to assist in training an effective neural network for 6DOF pose detection, 

an algorithm was developed to generate custom virtual training data in Blender and Python. 

The object of interest was able to be placed in any orientation and with chosen lighting 
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conditions. The thesis confirmed the ability to train an effective network with custom 

virtual data.  

7.1.1.5 Validation of a Software-in-the-Loop Simulation for Robotic 

Rendezvous and Docking 

Finally, the thesis work was wrapped up with the development of a Software-in-the-Loop 

simulation for robotic rendezvous and docking in Simulink and ROS Gazebo with the 

integration of visual servo. For visual servo, the 6DOF pose detection algorithm was used. 

It was shown that given the predictions of an object’s 6DOF pose, a robot could be driven 

to dock with the object using kinematic joint control.  

7.2 Contributions of Thesis Work 

The thesis work developed a 6DOF pose detection algorithm using artificial intelligence. 

This work was motivated by the need to actively remove space debris, which is becoming 

a growing problem in the space environment, and by the expansion of the on-orbit servicing 

industry. Objects move and rotate quickly in the space environment, and traditional 

computer vision techniques struggle when not able to detect certain edges or certain colors. 

The space environment also has changing lighting conditions as objects move through their 

orbits. An artificially intelligent computer vision algorithm can be trained for these changes 

and track an object in real-time. By using a depth sensor and the intrinsic matrix of the 

depth camera, we can estimate the 3D location of a target object relative to the camera 

frame and after a transformation, relative to the base of a robot. Without the need for 
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another camera sensor, we can estimate the orientation of the object relative to the camera 

frame and after a transformation, relative to the base of a robot. We can use this custom 

computer vision pipeline to create visual servo control laws to drive the joints of a robot to 

a desired location for rendezvous and docking, exhibited by the virtual simulation of the 

robot in Simulink and ROS Gazebo in Chapter 6. 

This work was presented at the Canadian Society for Mechanical Engineering International 

Congress Conference in 2021. This work will contribute to the engineering design and 

scientific study of space robotic rendezvous and docking.  

7.3 Future Work 

From the contributions of this thesis, the following are considered for future studies: 

7.3.1 Hardware Setup and Integration 

Initially, the plan for this thesis was to program industrial robots in a Hardware-in-the-

Loop simulation to test the capabilities of control techniques with artificially intelligent 

computer vision algorithms for space rendezvous and docking. Due to the COVID-19 

pandemic, all in-person studies on campus at York University were halted, causing the 

initial plan to pivot. Due to the pandemic, the industrial robots were not installed at the 

Space Engineering Design Laboratory and the rendezvous and docking simulations were 

done virtually. A virtual simulation is useful for testing software before deployment on 

hardware and can mimic simulations meant to be taken place, but a virtual scenario tends 

to portray the optimal situation. The virtual robot controllers were also kinematic 
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controllers, whereas actual robots will need dynamic controllers, allowing for better control 

of the manipulators. Setting up the industrial robots is important for integration of all 

subsystems working together for testing rendezvous and docking. The laboratory setup will 

also allow for changing the lighting conditions and setting them to mimic the space 

environment with the help of star trackers on the ceiling, black curtains placed for creating 

darkness, and with spotlights to mimic the Sun.  

The integration of the computer vision algorithms developed as part of this thesis with the 

industrial robots is an important next step for testing rendezvous and docking too. The 

computer vision algorithm was only used in a virtual simulation, on virtual images, in set 

lighting conditions, and on models of a target with material conditions that are not perfect. 

There was minimal noise in the images tested on the computer vision algorithm alone and 

in the robot simulation. Using the computer vision algorithm in the Hardware-in-the-Loop 

simulation will truly test its capabilities in different lighting, in noisy images, and on 

objects with complicated reflective properties not mimicked in a virtual setting.  

Figure 7.1 below is an example of the DLR’s OOS docking simulation setup, similar to 

what the plan is for the setup in the Space Engineering Design Laboratory at York 

University, but with an extra manipulator on the chaser satellite.  
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Figure 7.1: The DLR’s OOS docking simulation setup, similar to what is being planned 

at the Space Engineering Design Laboratory at York University [104]. 

7.3.2 Re-Training the Object and Pose Detection Network 

The current computer vision algorithm used in the virtual docking simulation was only 

trained to detect a funnel as a funnel was initially planned as the docking point on the mock 

satellite for the Hardware-in-the-Loop simulation. This was due to a funnel’s similarity to 

a thruster nozzle of a satellite. In reality, different areas of a satellite can be used for 

docking depending on orientation, such as the solar panels, adapter rings, thruster nozzles, 

and corners. Re-training the computer vision algorithm to detect multiple objects and to 

detect various areas of the same object, rather than a general representation of the object, 

will improve the effectiveness of the algorithm and allow it to be more adaptable in 

different conditions.  
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7.3.3 Obstacle Avoidance 

The current control scheme does not include obstacle avoidance, which is necessary to 

avoid docking with sensitive areas of a target satellite. Obstacle avoidance will also assist 

in avoiding collisions between the chaser satellite and the target satellite, the target 

colliding with different areas of the manipulator, i.e., different joints or links; and the 

manipulator colliding with the chaser satellite it is mounted on.  

7.3.4 Improving Joint Controllers 

In the current thesis, linear joint controllers were tested. In the future, non-linear controllers 

should be tested and studied to gauge their effectiveness at driving the torque inputs to each 

joint. To add to this, intelligent control techniques should be tested as well. Fuzzy logic 

can be tested in the future for joint control, which allows for logic to be partially true, rather 

than strictly true or false. Techniques such as reinforcement learning, a subset of machine 

learning, can be advantageous for path planning and determining the optimal path to the 

target for low energy consumption as well.  
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