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Abstract

In this thesis we study the asymptotic Cauchy problem of general relativity with positive
cosmological constant in arbitrary (n+ 1)-dimensions. Our aim is to provide geometric
characterizations of Kerr-de Sitter and related spacetimes by means of their initial data
at conformally flat (n-dimensional) I . In our setting, the conformal Killing vector fields
(CKVFs) of I become very relevant because of their relation with the symmetries of
the spacetime.

In the first part of the thesis, we study the CKVFs ξ of conformally flat n-metrics γ,
as well as their equivalence classes [ξ] up to conformal transformations of γ. We do
that by analyzing in detail SkewEnd(M1,n+1), the skew-symmetric endomorphisms of
the Minkowski space M1,n+1. The cases n = 2, 3 are worked out in special detail. A
canonical form that fits every element in SkewEnd(M1,n+1) is obtained along with several
applications. Of relevance for the study of asymptotic data is that it gives a canonical
form for CKVFs which allows us to determine the conformal classes [ξ] and study the
quotient topology associated to these clases. In addition, the canonical form for CKVFs
is applied to the n = 3 case to obtain a set of coordinates adapted to an arbitrary
CKVF. With these coordinates we provide the set of asymptotic data which generate
all conformally extendable spacetimes solving the (Λ > 0)-vacuum field equations and
admitting two commuting symmetries, one of which axial. From this, a characterization
of Kerr-de Sitter and related spacetimes follows. Our study provides in principle a
good arena to test definitions of mass and angular momentum for positive cosmological
constant.

In the second part of this thesis we focus in the asymptotic Cauchy problem in arbitrary
dimensions. For this we use the Fefferman-Graham formalism. We carry out an study of
the asymptotic initial data in this picture and extend an existing geometric characteri-
zation of them, in the conformally flat I case, to arbitrary signature and cosmological
constant. We discuss the validity of this geometric characterization of data beyond
the conformally flat I case. We provide a KID equation for asymptotic analytic data
(which comprise Kerr-de Sitter). This equation being satisfyied by the data amounts to
the existence of a Killing vector field in the corresponding spacetime. With the above
results in hand we provide a geometric characterization of Kerr-de Sitter by means of
its asymptotic initial data, which happen to be determined by the conformally flat class
of metrics [γ] and one particular conformal class of CKVFs [ξ] of [γ]. These data admit
a generalization, keeping [γ] conformally flat, by allowing [ξ] to be an arbitrary confor-
mal class. This extends the so-called Kerr-de Sitter-like class with conformally flat I ,
defined in previous works in four spacetime dimensions, to arbitrary dimensions. We
study this class and prove that the corresponding spacetimes are contained in the set
of (Λ > 0)-vacuum Kerr-Schild spacetimes, which share (conformally flat) I with their
background metric (de Sitter). We name these Kerr-Schild-de Sitter spacetimes. The
proof largely relies on our study of the space of classes of CKVFs and in particular on
the properties of its quotient topology. In addition, we prove the converse inclusion,
providing a full characterization of the Kerr-de Sitter-like class as the Kerr-Schild-de
Sitter spacetimes.
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Chapter 1

Introduction

1.1 Context and motivation

Eversince its original formulation in 1915, the Einstein general theory of relativity has

become the paradigm which governs the large and massive scales in nature. The aston-

ishing phenomenology predicted in its final version [45], later observationally confirmed,

largely contributed to its settlement. The original predictions were three: the preces-

sion of the perihelion in planetary motion, the gravitational redshit and the bending of

light rays by effect of gravity. The precession of Mercury’s perihelion had puzzled astro-

physicists for decades, because no neat argument arose from Newton’s laws, leading to

rather cumbersome explanations such as postulating the existence of an intramercurian

planet. However, in Einstein’s theory, this precession appeared as a natural and accu-

rate consequence of the equations. On the other hand, the bending of lightrays was soon

observed in the celebrated Eddington and Dyson expedition in 1919 [42]. The gravita-

tional redshift experiments took some more time to give concluding measurements, by

Popper [126] in 1954, since the first ones by Adams [4] were considered too poor (see also

[80, 81]). Since then, all these phenomena have been repeatedly observed. Indeed, the

gravitational lensing, based in the bending of light rays when passing nearby massive

spots in the universe, is today a useful effect for astronomical observations.

The theory delivered other exotic and controvesial predictions, such as the existence of

black holes and the emision of gravitational waves, for which experimental confirmation

had to be awaited until the new century. The first black hole solution was actually the

first exact solution of the Einstein equations published soon after Einstein’s theory by

Schwarzschild [134]. For long time black holes were not considered as a serious physical

prediction and their inherent singularities were regarded as a pathological consequence of

the high symmetries of the model. This view, however, was proven wrong in both sides.

In the formal aspect, the singularity theorems by Penrose [121] and Hawking and Penrose

[76] showed that singularities are a stable feature of general relativity (see also the
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reviews [136, 137]). In the observational aspect, the extreme motion of stars measured

at the center of our galaxy evidenced the presence of a black hole [68]. Moreover, with

the Event Horizon Telescope array, the direct reconstruction of black hole shadows is

possible and there are currently available images from data taken at the center of the

galaxy M87 [44]. The processing of data taken from the center of our galaxy is now in

progress and the results are expected soon. Therefore, the existence of black holes is

today accepted by the vast majority of the general relativistic community.

The first theoretical approach to gravitational waves was carried by Einstein with its

famous quadrupole formula. The later works by Bondi et al. [21], Sachs [130] and

Newman and Penrose [109] gave the basic setting for a fully non-linear analysis of the

gravitational waves, which largely relies on the asymptotic behaviour of the gravita-

tional field. Subsequent works by Penrose in the 1960’s [120, 122, 123] got deeper into

the asymptotic analysis of general relativity, on which we will expand later. The tech-

nological challenges that the experimental measurements of gravitational waves entail

delayed their first observation until 2017, where the LIGO experiment [1] confirmed the

detection of the gravitational waves generated by the merge of two black holes. Note,

however, that this detection is more than just another confirmation of Einstein’s theory.

It is claimed by the observational community that the surprisingly high number of events

registered in the years following 2017 by the gravitational wave detectors LIGO Virgo

and KAGRA is changing our understanding of the universe.

In view of the success of general relativity in explaining nature, there is no doubt that,

within its range of applicability, it is the “correct” theory. The search for new exciting

theories extending the general relativity, may lead one to believe that the theory is,

in words of H. Friedrich, “essentially understood” [62], and that the formal study of

general relativity is a matter of sharpening ideas. However, the simplicity of the Einstein

equations is only apparent, namely,

Ric(g̃)− Scal(g̃)

2
g̃ + Λg̃ =

8πG

c4
T,

where Ric(g̃) stands for the Ricci curvature tensor of the metric g̃, Scal(g̃) is the trace

of Ric(g̃), Λ the cosmological constant and T the stress-energy tensor, which accounts

for presence of matter, radiation and other fields. This becomes obvious if one expands

the tensor in terms of the metric components and its derivatives and casts the Einstein

equations as a non-linear PDE problem. Just to make ourselves an idea, the Ricci tensor
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looks like

Rµν =
1

2
gρσ∂ν∂ρgµσ +

1

2
gρσ∂µ∂ρgνσ −

1

2
gρσ∂ρ∂σgµν −

1

2
gρσ∂µ∂νgρσ

− 1

2
∂ρg

ρσ ∂νgµσ +
1

2
∂ρg

ρσ ∂µgνσ −
1

2
∂ρg

ρσ ∂σgµν −
1

2
∂νg

ρσ ∂µgρσ

+
1

4
gκλ∂νgµκ g

ρσ∂λgρσ +
1

4
gκλ∂µgνκ g

ρσ∂λgρσ −
1

4
gκλ∂κgµν g

ρσ∂λgρσ

− 1

4
gκλ∂µgκρ g

ρσ∂νgλσ −
1

2
gκλ∂κgµρ g

ρσ∂σgνλ +
1

2
gκλ∂κgµρ g

ρσ∂λgνσ.

The unknown mathematical implications of these equations are still many and, perhaps,

with a better understanding of them, even new phenomenology might be predicted.

Therefore, the study of the formal aspects of the Einstein theory of general relativity

is not purely a mathematical exercise, but also fundamental in physics. In this thesis,

we shall address some of these mathematical problems, which will be described in the

remainder of this introduction.

A spacetime is said to be globally hyperbolic if it contains a Cauchy surface, which is

a spacelike hypersurface that is intersected exactly once by each inextendible timelike

curve. Global hyperbolicity is a reasonable requirement for a physical spacetime. This is

primarily because globally hyperbolic spacetimes are known to be uniquely determined

by their initial configurations. Indeed, the Einstein equations admit a Cauchy problem

which is longtime known to be well-posed by the landmark results of Y. Choquet-Bruhat

[54] and Choquet-Bruhat and Geroch [30]. This allows, in particular, to extract interest-

ing properties of the solutions without actually having to deal with the full complexity

of the Einstein equations. This Cauchy problem splits the Einstein equations into con-

straint equations on an initial spacelike hypersurface1 plus evolution equations, which

propagate the fields (and the constraints). This is the classical initial value formula-

tion and a set of initial data is by definition any solution of the constraint equations.

Although certainly simpler that the full Einstein equations, they still pose a difficult

problem in geometric analysis (see e.g. [85] and references therein). In addition, the

solutions evolving from a set of initial data are local due to the intrinsic hyperbolicity

of the evolution equations.

As mentioned above, the works by Bondi et al. [21], Sachs [130] and Newman and

Penrose [109] were motivated by the fully non-linear study of the gravitational radiation.

This led them to consider what in today’s language would be called an asymptotic

characteristic initial value problem. Following this track, the works by Roger Penrose

[120, 122, 123] pioneered the use of conformal techniques in general relativity, enhancing

the role that the conformal structure plays in the Einstein equations. He gave a precise

definition of asymptotic flatness in terms of conformal extensions of the physical metric g̃.

Namely, given a smooth2 manifold (M̃, g̃), a conformal extension of (M̃, g̃) is a smooth

1It can be also cast as a characteristic initial value problem if the initial hypersurface is null (see
[128]).

2We consider the smooth case for simplicity, but one could assume ”sufficient differentiability“ instead.
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manifold (M, g) with boundary ∂M, whose interior can be identified with M̃ = Int(M)

and such that there exists a smooth function Ω in M which is positive in M̃, where

it satisfies g = Ω2g̃, and Ω |∂M= 0 and dΩ |∂M 6= 0. The boundary equipped with its

first fundamental form γ is denoted I . This manifold, called conformal infinity or null

infinity, gives a precise definition of the asymptotic region for the spacetime (M̃, g̃). If

the Ricci tensor of g̃ satisfies Ric(g̃) = 0 in a neighbourhood of I or, more generally,

decays sufficently fast to zero at I , then g̃ is called asymptotically flat. The physical

importance of asymptotically flat manifolds is that they are considered to model self-

gravitating isolated systems, which are sufficiently far away from other systems so that

one can ignore the influence of the latter except, possibly, for the effects of gravitational

radiation.

When written in terms of the conformal metric g, the Einstein equations of g̃ are sin-

gular at I . However, in a remarkable achievement H. Friedrich was able (by means of

introducing carefully chosen variables) to rewrite the equations in spacetime dimension

four as a system of geometric PDE that are regular at I (see the seminal works [57], [56]

and the reviews [61], [63]). These equations allow to take into account the asymptotic

behaviour of the spacetime by posing an “asymptotic PDE problem”, on which we shall

comment next. Furthermore, it should be mentioned that the conformal formulation of

the Einstein equations have important consequences in the field of numerical relativity.

We shall not discuss any of these here, as they are beyond the scope of this thesis, but

we refer to [55] for a detailed review of the conformal field equations and their numerical

aspects.

So far we have discussed classical results which historically have assumed zero cosmolog-

ical constant. When it comes to determine the nature of the asymptotic PDE problem

posed by the Friedrich equations, the sign of the cosmological constant has drastic con-

sequences. This is because the Einstein equations determine the causal character of I ,

which is null if Λ = 0; timelike if Λ < 0 and spacelike Λ > 0. The Λ zero and negative,

are respectively a characteristic initial value problem and boundary value problem, for

which existence and uniqueness is a hard and subtle issue. We shall briefly comment on

these again in subsection 2.4.1, but let us now focus on the central case for this thesis,

which is the positive Λ case.

From the physical point of view, it is noteworthy that the Supernova Cosmology Project

have determined a universe with positive cosmological constant [125], recently confirmed

again by the Planck collaboration [3]. Since then, the paradigm of cosmology assumes

a positive cosmological constant, while the zero Λ case is still having an important

relevance in mathematical relativity. However, in the recent years, the positive cosmo-

logical constant has increasingly caught the attention of several general relativists and

many advances have been done in this direction. Just to quote some, on the general

asymptotic framework [8, 11], on the gravitational radiation [12, 13, 51, 52, 132], the
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peeling property of the Weyl tensor [53] and on the definition of mass and momenta

[23, 24, 41, 131, 143, 144].

The present thesis is yet another example.

From the formal side, it was also proven by Friedrich [58] that the Cauchy problem

at I is always well-posed if the cosmological constant is positive. The well-posedness

already gives a special interest to this problem. It is also noteworthy that associated to

a conformal metric g solving the conformal Friedrich equations, there is a solution to

the Einstein equations g̃ which is “semiglobal” (i.e. the “physical” spacetime g̃ = Ω−2g

extends infinitely towards the future or past, depending on whether I is a final or an

initial state). Morever, a remarkable simplification occurs in the constraint equations

at I , as opposed to the standard constraint equations of the classical initial value

problem. The data at I consist of a Riemannian three-manifold (Σ, γ) which prescribes

the (conformal) geometry of I , together with a symmetric two-tensor D with vanishing

trace an divergence, i.e. a transverse and traceless (TT) tensor. This tensor prescribes

certain components of the suitably rescaled Weyl tensor at I , known as the electric part

of the rescaled Weyl tensor. Of course, since the result cannot depend on the conformal

scaling of the physical metric, there is a large residual gauge freedom in the data, being

all sets (Σ, ω2γ, ω−1D) equivalent to (Σ, γ,D) for any smooth positive function ω of Σ.

As we shall discuss in more detail in subsection 2.4.1, the Friedrich conformal field

equations are specially taylored to dimension four and do not appear to extend to higher

dimensions. The basic problem is that there do not appear to be enough evolution

equations that remain regular at I [61]. Actually, one of the fundamental objects in

the conformal Friedrich equations is the rescaled Weyl tensor, which plays a central role

in this thesis. Our analysis in Chapter 5 shows that in dimension higher than four this

object is regular at I only in few particular cases. Thus, there are reasons to believe

that any attempt to find a regular Cauchy problem well-posed at I based on this object

will be unfruitful.

Before entering into the discussion of the mathematical aspects of the higher dimensional

general relativity, it should be mentioned that there are also physical motivations in its

study. These are, basically, that the modern theories aiming to concilliate general rela-

tivity with quantum mechanics, such as string theories or the AdS/CFT correspondence,

seem to require more than four spacetime dimensions. We shall not discuss the physical

aspects in any detail, as many of them lie beyond the classical formulations of general

relativity, which is our interest here. We refer the interested reader to the reviews in

string theory [106], AdS/CFT correspondence [83] and also in higher dimensional black

hole [46].

As mentioned above, the higher dimensional Cauchy problem in general relativity re-

quires a different approach than the one given by Friedrich to the four dimensional

case. The formalism which eventually allowed for well-posedness results in appropriate
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circumstances is due to Fefferman and Graham, first given in the paper [48] and later

extended into a monograph [50]. We review the basics of this formalism in Section 2.3,

so we may just introduce here the very basic ideas in order to discuss the initial value

problem of general relativity.

An important part of the Fefferman and Graham work focuses in the so called Poincaré

metrics. Roughly speaking, these are asymptotically Einstein (n+ 1)-dimensional met-

rics, namely, conformally extendable metrics which satisfy the Einstein equations with

non-zero cosmological constant (to a certain order) at (n-dimensional) I . In the

Fefferman-Graham formalism, their study is carried through an asymptotic formal series

expansion, usually called Fefferman-Graham (FG) expansion, which is generated from

the Einstein equations at I . It should be noticed that the analysis by means of formal

series expansions does not necessarily require the series to be convergent away from I .

This, however, sets a framework which allows to study asymptotic properties of Poincaré

metrics and, as we shall next see, even prove some existence and uniqueness results if

these metrics are Einstein also in a neighourhood of I . From now on, we shall use n+1

for the spacetime dimension and n for the dimension of I .

The term “asymptotic expansion” means in this case that it is performed in terms of

the conformal factor Ω “near” the boundary {Ω = 0}. In the Fefferman and Graham

setting a very particular conformal factor is employed, namely, the one whose gradient

is geodesic with respect to the conformally extended metric g = Ω2g̃. The FG expansion

associated to an asymptotically Einstein metric g̃ is generated as follows. The first order

coefficient is given by the boundary metric γ induced by g. Then, provided that the

Einstein equations at I are satisfied to order m, the coefficients of an even power series

expansion (directly obtained from derivatives of the metric in Ω) up to order m are

recursively determined. However, a remarkable difference appears between the cases n

even and n odd. If n is odd, one may keep generating even order terms to infinite order,

by demanding that the Einstein equations are satisfied to infinite order at I . If n is even,

generically no power series expansion can be generated beyond the n-th order because

of the presence of the so-called obstruction tensor O(γ), which is entirely determined

by γ. One is then forced to introduce logarithmic terms, which spoil smoothness, but

allows one to satisfy the Einstein equations to infinite order at I . It is also remarkable

that for both n even and odd, one can always introduce an undetermined smooth term

g(n)Ω
n, with the only constraint that the trace and divergence of g(n) are determined by

γ, being both zero if n is odd. The presence of this term does not destroy the Einstein

asymptoticity, but of course, modifies the subsequent coefficients. Hence, the seed data

which generate the FG expansion are a pair (γ, g(n)).

Interestingly it is the obstruction tensor what allows Anderson [6] to find an asymptotic

Cauchy problem for the Einstein equations in the n odd case. Although the core idea

appears for the first time in [6], neither this paper nor [7], which attempts to give

a detailed proof, are fully correct. The mistakes in those papers have recently been
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identified in [86] where a complete proof of the existence results has been provided. The

idea in [6] relies on the fact that the obstruction tensor is conformally covariant and

that it vanishes for all conformally Einstein metrics. Then, for n + 1 even dimensional

metrics g̃, this tensor provides a differential equation O(g̃) = 0, which for Lorentzian

conformally Einstein metrics, can be cast as a Cauchy problem at I . Anderson (and

the subsequent works mentioned above) proves that solutions of this Cauchy problem

exist and are uniquely determined for every pair of symmetric two-tensors (γ, g(n)), γ

positive definite and g(n) traceless and transverse w.r.t. γ. A posteriori, γ determines

the geometry of I and g(n) is n-th order coefficient of the asymptotic expansion of g̃.

Thus, Anderson’s theorem associates a unique FG expansion, which recall a priori need

not to be convergent, to a unique Einstein metric g̃ in a neighbourhood of I . This

idea is not extendable to the n even case, for no obstruction tensor can be built out of

g̃ when n + 1 is odd. In this case, however, a result by Kichenassamy [87] proves the

convergence of the FG expansion in the case where the data are analytic, regardless of

the parity of n. It should be noticed that in the n even case, the initial data (γ, g(n))

also determine the geometry of I and the n-th order coefficient of the FG expansion,

but g(n) has generically non-zero trace and divergence determined by γ (cf. Appendix

A). In addition, just like in the four spacetime dimensional case, the initial data in these

problems have a large conformal gauge freedom, namely, data (Σ, ω2γ, ω2−ng(n)) (where

Σ is the manifold on which γ is defined) are equivalent to (Σ, γ, g(n)) for every smooth

positive function ω of Σ.

An existence and uniqueness theorem can be used to characterize spacetimes by means of

their Cauchy data. The situation is particularly interesting in the case of the asymptotic

Cauchy problem for positive Λ, because of the simplicity of the data (specially if n

odd), which potentially allows one to achieve classification results for spacetimes whose

explicit form need not to be known. However, for this definition to be geometric, we

must have a proper geometric characterization of the initial data, which for n > 3 is not

straightforward. The original definition of the coefficient g(n) is not covariant, because

the Fefferman-Graham expansion is constructed in a very particular set of coordinates,

that is not in general easily obtainable. This issue will be addressed in Chapter 5, where

we shall reformulate the initial data (Σ, γ, g(n)), with (Σ, γ) locally conformally flat, as

an equivalent set (Σ, γ, g̊(n)) , where g̊(n) is geometrically defined, up to a constant, as

the electric part of the rescaled Weyl tensor at I . This extends to the Λ > 0 case

a previous result by Hollands-Ishibashi-Marolf [82] in the Λ < 0 case. Actually, this

extension is straightforward if one takes into account general results [5],[139] relating

the coefficients of the Fefferman-Graham expansion for opposite signs of Λ. A geometric

reformulation of the initial data (Σ, γ, g(n)) in the general case should be possible, but

as we shall also discuss, it is not immediate to relate g(n) with the electric part of the

rescaled Weyl tensor in general.

It should be remarked that geometric characterizations of spacetimes are important

in general relativity because of the intrinsic diffeomorphism covariance of the theory.
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Namely, for a physical spacetime (M̃, g̃), i.e. with g̃ satisfying the Einstein equations

in M̃, the (also physical) manifold (M̃, φ?(g̃)) for every diffeomorphism φ of M̃, is

physically equivalent to (M̃, g̃). It is in general a very hard task to determine by in-

spection whether two metrics are diffeomorphic to each other and obtaining a geometric

characterization may simplify this problem. Thus, geometric characterizations are also

fundamental from a physical perspective.

In this context, it is worth highlighting the famous uniqueness theorems of stationary

black holes. More specifically, the no-hair conjecture asserts, roughly speaking, that

every stationary electrovacuum black hole solution is entirely characterized by its (suit-

ably geometrically defined) mass, angular momentum and electric charge. The no-hair

conjecture has been extensively studied in the zero cosmological constant setting and

it is well-known (see e.g. [32, 102] and references therein) to be satisfied by static

(i.e. Schwarzschild) and stationary axisymmetric configurations3 (i.e. Kerr). The latter

cases are of particular relevance because of the role that they are believed to play as the

endpoint states of collapsing self-gravitating systems.

An alternative local characterization of the Kerr and Kerr-NUT metrics among space-

times with one Killing vector field can be given in terms of the vanishing of the so-called

Mars-Simon tensor [93, 138]. Remarkably, it has been shown [98] that in the non-zero

cosmological constant case, the vanishing of the Mars-Simon tensor also characterizes the

Kerr-NUT-(A)de Sitter metrics and related spacetimes. Recall that the latter generalize

Kerr-NUT to the arbitrary cosmological constant setting, so they are also important

from a physical perspective. Particularly, in the case of positive cosmological constant,

the geometric characterizations of Kerr-de Sitter are interesting because this metric is

expected to satisfy a uniqueness theorem among stationary, axisymmetric, (Λ > 0)-

vacuum black hole spacetimes. We remark that a uniqueness theorem (in the sense of

black holes uniqueness theorems) is a much more subtle result than simply a geometric

characterization. Nevertheless, it is a step towards a possible uniqueness result in the

future.

The results in [98] are used in [99, 100] to provide a characterization in terms of asymp-

totic initial data of Kerr-NUT-de Sitter metrics and related spacetimes, which altogether

define the so-called Kerr-de Sitter-like class4 (see also [66, 67] for a similar character-

ization of Kerr-de Sitter and Schwarzschild-de Sitter with spinorial techniques). An

important part of this thesis is devoted to deepen into this characterization. Namely,

we identify, in terms of asymptotic initial data, the Kerr-de Sitter-like class and Kerr-de

Sitter family among the set of asymptotic initial data with n = 3 of all spacetimes with

two symmetries, one of which axial. In addition, we obtain the asymptotic initial data

3The proof of the stationary case is not considered fully general, as one has to assume non-degenerate
analytic horizons, which imply axisymmetry. Giving a general proof of this is still today a difficult open
problem.

4We stress the difference between the Kerr-de Sitter family and Kerr-de Sitter-like class, the first
being one of the multiple families included in the latter.
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of Kerr-de Sitter in all dimensions, which allows us to extend to higher dimensions the

definition of the Kerr-de Sitter-like class in the conformally flat I case. We will come

back to this in subsection 1.2 below.

In any dimension, the initial data, that we denote generically (Σ, γ,D), must store all

the information of the spacetime evolving from them. Specifically, the necessary and

sufficient conditions for the existence of symmetries in the spacetime has been studied

in four spacetime dimension. In the asymptotic Cauchy problem with positive Λ, this

was determined by Paetz in [116] to be a neat geometric PDE involving γ,D and a

conformal Killing vector field (CKVF) ξ of γ (cf. Theorem 2.35), known as the Killing

initial data (KID) equation. The CKVF ξ is, a posteriori, the Killing vector field ζ of

the spacetime, restricted to I . It becomes natural to define the initial data for this case

to be (Σ, γ,D, ξ). Apart from this n = 3 case, no previous results relating continuous

local isometries to initial data at I were known in more dimensions. In this thesis

we prove a higher dimensional result (cf. Theorem 5.18), analogous to the n = 3 one,

restricted to the case of analytic metrics with zero obstruction tensor. The result is a

natural generalization of the Theorem proven by Paetz.

The conformal Killing vector fields of a manifold (Σ, γ) define a Lie algebra CKill(Σ, γ)

whose uniparametric group of diffeomorphisms are in general local conformal transfor-

mations of (Σ, γ), which we shall denote ConfLoc(Σ, γ). The fact that these conformal

transformations are local raises certain difficulties, which we analyze in more detail

in subsection 2.2.2, specially for the study of the quotient CKill(Σ, γ)/ConfLoc(Σ, γ).

The interest in the study of this quotient stems from the fact that the vector fields in

CKill(Σ, γ) which lie in the same equivalence class in CKill(Σ, γ)/ConfLoc(Σ, γ) actually

generate the same symmetry (cf. Remark 2.37).

The issues with locality mentioned above appear because ConfLoc(Σ, γ) is actually given

by the local action of an abstract Lie group G on Σ, whose algebra g induce the set of

conformal vector fields CKill(Σ, γ). Then, it should be possible to study the classes in

CKill(Σ, γ)/ConfLoc(Σ, γ) by means of the study of classes in g/G. In the case of locally

conformally flat n-manifolds (Σ, γ), the Lie group G can be identified [100] with the

orthochronous component of the Lorentz group O+(1, n+ 1), and g = o(1, n+ 1) is well-

known to admit a representation as the space of two-forms in M1,n+1, or equivalently, as

skew-symmetric endomorphisms of Minkowski, SkewEnd(M1,n+1). This reason strongly

motivates the study of SkewEnd(M1,n+1) in Chapters 3 and 4 of this thesis.

A typical way of studying quotients g/G is by obtaining a canonical form (also normal

form) which all elements in g admit such that it is invariant under the adjoint action of

the group G. In other words, a form shared by all elements in the orbits [F ] generated

by adjoint action of the group on a given element F ∈ g, i.e. F ′ ∈ [F ] if and only if

F ′ = Λ · F · Λ−1 for some Λ ∈ G. This amounts to finding a unique respresentative

for such orbits. We assume matrix representation of both g and G and “dot” denotes

usual multiplication of matrices. The most common example of a canonical form in
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this context is the well-known Jordan form, which represents the conjugacy classes of

GL(n,K) (where K is usually R,C or the quaternions H). Besides this example, the

problem of finding a canonical representative for the conjugacy classes of a Lie group has

been adressed numerous times in the literature. The reader may find a list of canonical

forms for algebras whose groups leave invariant a non-degenerate bilinear form in [39]

(this includes symmetric, skew-symmetric and simplectic algebras over R,C and H) as

well as the study of the affine orthogonal group (or Poincaré group) in [36] or [84]. Notice

that these works deal, either directly or indirectly, with our case of interest O(1, n) (and

therefore its orthochronous component).

When giving a canonical form, it is usual to base it on criteria of irreducibility rather

than uniformity (e.g. [36], [39], [84]). This is similar to what is done when the Darboux

decomposition is applied to two-forms (i.e. elements of o(1, n)), for example in [100] or

for the low dimensional case n = 3 (e.g. [74], [142]). As a consequence, all canonical

forms found for the case of o(1, n) require two different types of matrices to represent all

orbits, one and only one fitting a given element. One of the results in this thesis gives

unique matrix form which represents each element F ∈ o(1, n), depending on a minimal

number of parameters that allows one to easily determine its orbit under the adjoint

action of O+(1, n). Indeed, these orbits coincide with those generated by the whole

group O(1, n). The unification of the canonical form is obviously achieved by loosing

explicit irreducibility with respect to previous canonical forms. However, this canonical

form will be proven to be fruitful by giving several applications, which we shall mention

later in this introduction.

1.2 Aim of this thesis

The aim of this thesis is to study the asymptotic Cauchy problem of the Λ positive

vaccum Einstein equations in all dimensions. Our intent is to provide characterizations

of the Kerr-de Sitter family in terms of their asymptotic inital data, which may help

understanding in what sense is this family of spacetimes special. Our point of departure

is the characterization of the Kerr-de Sitter-like class, in the n = 3 case provided in

[99, 100] by means of their asymptotic data at I .

The asymptotic data for the Kerr-de Sitter-like class are of the form (Σ, γ, κDξ), where

(Σ, γ) is a Riemannian three-manifold, κ a real (non-zero) constant and Dξ a TT tensor

of the form

Dξ =
1

|ξ|5γ

(
ξ ⊗ ξ −

|ξ|2γ
3
γ

)
(1.1)

with ξ a CKVF of γ and ξ := γ(ξ, ·). The TT tensor Dξ has several remarkable prop-

erties. First, it is a very simple solution among all possible TT tensors. Second, it is

easy to check that it satisfies the KID equation for ξ. Thus, the tensor Dξ singles out

a CKVF of I and a particular symmetry of the spacetime. Concerning the metric γ,
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besides the condition that it must admit a non-trivial CKVF (so that (1.1) makes sense)

it is further restricted by the condition that its Cotton-York tensor is also of the form

κ̃Dξ for κ̃ ∈ R. Recall that the Cotton-York tensor is defined only in three-dimensions

and is constructed by dualization of the Cotton tensor in two of its indices. It is always a

symmetric TT tensor, so taking the form (1.1) is admissible. The constant κ̃ is directly

related to the so-called NUT charge of the spacetime and vanishes when the metric be-

longs to the Kerr-de Sitter family. κ̃ = 0 is equivalent to γ being locally conformally flat

because the Cotton-York tensor vanishes if and only if the metric is locally conformally

flat. By conformal invariance of the asymptotic Cauchy problem, the data (Σ, γ, κDξ)

happen to be uniquely determined by the conformal class [ξ] of ξ, i.e. all CKVFs ξ′

differening from ξ by a conformal diffeomorphism5 φ of (Σ, γ). Therefore the study of

conformal classes of CKVFs is indeed relevant in this thesis. We focus on the locally

conformally flat γ case, because this one contains the Kerr-de Sitter family of metrics,

but also because with the current techniques, conformal flatness of I is required for an

analysis in higher dimensions.

Our first achivement is to give a classification in the n = 3 case, also in terms of their

asymptotic data (Σ, γ,D), of all spacetimes admitting a smooth conformally flat I , with

at least two commuting symmetries (cf. Chapter 4). Our analysis assumes that one of

these symmetries is axial, but removing this asumption gives raise to only a few extra

cases, straightforwardly obtainable. The TT tensors D are obtained taking advantage

of a canonical decomposition for CKVFs ξ = ξ̃ + η, inherent to the conformal class of

ξ, where both ξ̃, η are CKVFs, with η associated to an axial symmetry. By identifying

the Kerr-de Sitter-like class (with conformally flat I ) within this set of data, we aim

to shed some light on the role played by the CKVF ξ. For instance, the structure of

the solution suggests a possible connection between the terms ξ̃ and η with “mass” and

“angular momentum” respectively.

However, our main aim is to extend this analysis to all dimensions. For that, a study

of the Fefferman-Graham formalism and its asymptotic data is required. As mentioned

above, the basic issue that we first address is how to provide a geometric definition of

the asymptotic initial data in this picture. This can be done in the conformally flat I

case, in terms of which we can calculate the initial data for the Kerr-de Sitter family of

metrics in arbitrary dimensions (cf. [70]). We find these to be a locally conformally flat

n-manifold (Σ, γ) and a TT tensor κDξ, with κ ∈ R and Dξ of the form

Dξ =
1

|ξ|n+2
γ

(
ξ ⊗ ξ −

|ξ|2γ
n
γ

)
. (1.2)

This turns out to be a natural generalization of the n = 3 case (1.1). It is remarkable

that the original metrics in [70] are constructed from heuristic arguments. Indeed, [70]

5The conformal diffeomorphism could be locally defined in an open neighbourhood U ⊂ Σ. In such
case the equivalence holds in U ∩ φ(U). A detailed discussion is given in Chapter 2.
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contains no general proof of these metrics being Λ-vacuum solutions, which was given

later in [75]. Our chacterization actually shows in which sense these metrics are a natural

extension of Kerr-de Sitter in four spacetime dimensions. The TT tensor (1.2) shares the

basic properties with (1.1), namely, it is a TT tensor for every CKVF ξ whose Cauchy

development is only determined by the conformal class of ξ (keeping γ fixed to be locally

conformally flat). This property will allow us to define the Kerr-de Sitter-like class with

conformally flat I in more dimensions by simply allowing ξ to be an arbitrary CKVF.

In order to demonstrate the expected connection between ξ and the symmetries of the

Cauchy development of (Σ, γ, κDξ), we extend the KID equation to arbitrary dimensions

in Chapter 5. We prove that this equation gives a necessary and sufficient condition for

the Cauchy development of analytic data with zero obstruction tensor (if n is even) to

admit a Killing vector field. These restrictions, however, are not a problem in our setup

because the Kerr-de Sitter-like class is indeed analytic and moreover, conformal flatness

of I implies the vanishing of the obstruction tensor for the even dimensional boundary

metrics.

From our study in terms of initial data an interesting method to generate solutions of

the Einstein equation follows. The idea is to use the well-posedness of the initial value

problem to obtain limits of spacetimes from limits if their initial data. In Chapter 6

we apply this to the Kerr-de Sitter-like class with conformally flat I . In addition, it

should be stressed that in order to tackle these questions, a considerable amount of

mathematical tools are required, some of them already discussed. We shall describe

them in more detail in the following section.

1.3 Contents

The study outlined in the previous section is organized as follows. We start in Chapter 2

by discussing in more detail the mathematical tools that we shall require in the following

chapters. The basic concepts of conformal geometry and asymptotics are given in Section

2.2, with a review in subsection 2.2.1 on the n-sphere and its conformal transformations

and its relation with the orthochronous Lorentz group. In addition, we provide a note

on local conformal flatness in subsection 2.2.2, which applies for n > 2. The n = 2 has

some particularities (cf. Remark 2.16) and it is addressed in more detail in Chapter 3.

In section 2.3 we discuss the Fefferman-Graham formalism and review its two equivalent

formulations: in terms of ambient metrics (cf. subsection 2.3.1) and of Poincaré metrics

(cf. subsection 2.3.2). Related to this, we also include an Appendix A where we derive

the fundamental equations of the Fefferman-Graham formalism for Poincaré metrics,

which play a basic role in this thesis. Finally, in Section 2.4 the initial value problems

of general relativity are reviewed, in four spacetime dimension in subsection 2.4.1 and

in higher dimension in subsection 2.4.2.
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Except for some results on the local conformal group in locally conformally flat spaces

described in Chapter 2, the original results of this thesis start in Chapter 3. Firstly, in

Section 3.1 we give a list of general useful properties of skew-symmetric endomorphisms,

which shall also be required in Chapter 4. Then, Sections 3.2, 3.3 and 3.4 are devoted to

the obtention and analysis of a canonical form for any given (non-zero) skew-symmetric

endomorphism F of M1,3. The set of all skew-symemtric endomorphisms of M1,3 is de-

noted SkewEnd(M1,3). The change of basis that yields the canonical form is not unique.

This implies the existence of an invariance group, that we derive in Section 3.3. In Sec-

tion 3.4 we analyze the generators of the invariance group and obtain a decomposition

of the element F in terms of these. We also make a connection between this decom-

position and the standard duality rotations for two-forms. In all these sections, the

three-dimensional case is obtained and discussed as a corollary of the four-dimensional

one.

The following Sections 3.5, 3.6, 3.7, 3.8 are devoted to the study of so-called global CKVs

(GCKV) defined on Euclidean space E2, and which are directly related to global CKVFs

on the sphere S2. We remark that these are a particular subset among all CKVFs of

E2 (cf. Remark 3.14). Section 3.5 defines such vectors and in Section 3.6 we revisit

the connection between them and the Lie algebra SkewEnd(M1,3), already discussed

in all dimensions in subsection 2.2.1. In Section 3.7 we apply all the results for the

SkewEnd(M1,3) algebra to the GCKVs of the sphere, namely, the obtention of a canonical

form and its invariance group. As a useful consequence of the two viewpoints, we are able

(Corollary 3.21) to obtain in a fully explicit form the change of basis that transforms any

given F into its canonical form. Finally, Section 3.8 gives a set of coordinates adapted

to an arbitrary GCKV ξ and a second orthogonal GCKV ξ⊥, readily obtainable from

ξ. The results concerning the canonical form of GCKV and the adapted coordinates are

summarized in Theorem 3.23. Our last Section 3.9 gives two interesting applications for

the previous results. First, given a GCKV ξ, Theorem 3.24 gives a list of all metrics,

conformal to the metric of a 2-sphere, for which ξ is a Killing vector. Second, Theorem

3.25 gives an elegant solution of the TT tensors satisfying the KID equations in open

sets of E2.

The analysis of Chapter 3 is extended to arbitrary dimension in Chapter 4. It is worth

to remark that the low dimensional case deserves its own chapter because of the level

of detail that it allows, hardly achievable in arbitrary dimension. In order to properly

define the canonical form, in Section 4.1 we rederive a classification result for skew-

symmetric endomorphisms (cf. Theorem 4.6), employing only elementary linear algebra

methods. The results of this section are known (see e.g. [73], [89]), but the method

is original and we believe more direct than other approaches in the literature. Section

4.1 leads to the definition of canonical form in Section 4.2. Section 4.3 deals with a

particular type of skew-symmetric endomorphisms (the so-called simple, i.e. of minimal

matrix rank), which will be useful in the analysis of CKVFs in the second part of the

chapter. In Section 4.4 we work out some applications of our canonical form: identifying
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invariants which characterize the conjugacy classes of the orthochronous Lorentz group

(cf. Theorem 4.22) and obtaining the topological structure of this quotient space (cf.

Section 4.4.1). It is remarkable that we obtain sequences, contained in open domains of

the quotient topology, whose limit points are non-unique. In other words, we prove by

working out some particular limits, that the quotient topology is non-Hausdorff. This

is not so surprising for such kind of quotients, but we will find interesting consequences

of this fact in the Cauchy problem of general relativity in Chapter 6.

In Section 4.5 we use the homomorphism between O+(1, n+1) and Conf (Sn), described

in Section 2.2.1, and apply the canonical form obtained for skew-symmetric endomor-

phisms to give a canonical form for CKVFs, together with a decomposed form (cf.

Proposition 4.33) which is analogous to the one given for skew-symmetric endomor-

phisms in Theorem 4.6. It should be remarked that the canonical form of the CKVFs

also determines their equivalence class under conformal transformations (cf. Theorem

4.35). In Section 4.6, we adapt coordinates to CKVFs in canonical form, first in the even

dimensional case, from which the odd dimensional case is obtained as a consequence.

These coordinates are analyzed in depth, obtaining the domain of definition as well as

the form of a flat metric in adapted coordinates. The analysis is summarized in Theorem

4.45. Finally, in Section 4.7 we employ the adapted coordinates to find the most general

class of data at spacelike I corresponding to spacetime dimension four, such that I is

conformally flat and the (Λ > 0)-vacuum spacetime they generate admits at least two

symmetries, one of which is axial. It is remarkable how easily these equations are solved

with all the tools developed before. The solution is worked out in adapted coordinates,

but the final form is diffeomorphism and conformally covariant (cf. Theorem 4.47).

With this solution at hand, we are able to identify the Kerr-de Sitter family within (cf.

Corollary 4.51).

In Chapter 5 we address the arbitrary dimensional asymptotic Cauchy problem in the

Fefferman-Graham picture. We begin, in Section 5.1, by deriving two useful formulas

for the Weyl tensor and its electric part (cf. Lemmas 5.2 and 5.4), which have several

applications in the remainder of the thesis. We discuss the consequences of both for-

mulas and we conclude that the electric part of the rescaled Weyl tensor is, generically,

divergent at I , while it is not if I is conformally flat, a case on which we focus next.

Some applications of Lemmas 5.2 and 5.4 are found readily in subsection 5.1.1. These

include the FG expansion of all (Λ 6= 0)-vacuum Einstein metrics with constant curvature

(i.e. locally isometric to de Sitter or anti-de Sitter if the signature is Lorentzian) obtained

in Lemma 5.8 (see also Remark 5.9), and the decomposition in Proposition 5.11 for all

metrics admitting a conformally flat I . Another consequence of the formulae for the

Weyl tensor is Theorem 5.14, also proven in subsection 5.1.1. This result establishes

that a well-defined free (TT) part g̊(n) of the n-th order coefficient of the FG expansion

coincides (up to a certain constant) with D, the electric part of the rescaled Weyl tensor

at I in the case when I is conformally flat and n > 3 (for n = 3 this is true in full
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generality). This theorem finds immediate application in the Cauchy problem of the

Einstein equations at I with positive cosmological constant (cf. Corollary 5.17). In

addition, exploring the necessary conditions for g̊(n) and D to coincide up to a constant,

we come to the conclusion that conformal flatness of I is not only sufficient, but actually

necessary as long as no purely magnetic Λ-vacuum spacetimes exists, in addition to the

trivial case of constant curvature. Remarkably, the non-existence of the latter is a

longstading and still open conjecture in general relativity (cf. Remark 5.10).

In Section 5.2 we derive the KID equation for analytic data at I for n odd or n even

provided that the obstruction tensor vanishes (we indicate that the result should also

hold when the obstruction tensor is non-zero, but this requires additional analysis).

This equation is necessary and sufficient for the Cauchy development of the data at I

to admit a Killing vector field. Our final Section 5.3 gives an interesting application of

the previous results. Namely, we calculate the initial data of the Kerr-de Sitter family

of metrics in all dimensions [70]. As discussed above, these data happen to be a natural

extension of the n = 3 case studied in [100] of the form (Σ, γ, κDξ), where (Σ, γ) is

a locally conformally flat manifold and κDξ is a TT tensor determined by a CKVF

ξ of I of the form (1.2) and a constant κ ∈ R. Like in the n = 3 case, the data

turn out to be uniquely characterized by the conformal class of ξ (cf. Lemma 5.21).

The characterization is completed by identifying the conformal class which defines the

Kerr-de Sitter family with the results in Chapter 4.

The final Chapter 6 of this thesis is a non-trivial and interesting application of the

previous results of this thesis. It turns out that the data of the form (Σ, γ, κDξ) provide

a good set of initial data no matter which CKVF ξ one chooses. By previous results,

the Cauchy development is uniquely determined by the conformal class [ξ]. The starting

point in Section 6.1 is to define the spacetime corresponding to data (Σ, γ, κDξ), with

(Σ, γ) locally conformally flat and ξ an arbitrary CKVF of γ as the Kerr-de Sitter-like

class with conformally flat I (which for short we shall simply call Kerr-de Sitter-like

class). One of the main results of this chapter (cf. Theorem 6.5) proves that the

spacetimes in the Kerr-de Sitter-like class amount to all Kerr-Schild type metrics which

solve the (Λ > 0)-vacuum field equations and which share a smooth (conformally flat)

I with its background (i.e. de Sitter) metric. These are called Kerr-Schild-de Sitter

spacetimes. It should be noted that “sharing a smooth conformally flat I with its

background metric” is, in principle, more than simply admitting a smooth conformally

flat I (cf. Remark 6.4). The other main result (cf. Theorem 6.6) constructs all the

spacetime metrics in the Kerr-de Sitter-like class.

The sections in Chapter 6 give a proof of both theorems. In Section 6.2 we prove that the

Kerr-Schild-de Sitter spacetimes are contained in the Kerr-de Sitter-like class by direct

calculation of their initial data at I . One easily finds that the initial data have the form

(Σ, γ, κDξ), where Dξ is determined by a vector field ξ. The subtle part of the proof is to

show that ξ is a CKVF of γ, which we find as a consequence of the Λ-vacuum Kerr-Schild
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spacetimes being algebraically special. The inclusion of the Kerr-de Sitter-like class in

the Kerr-Schild-de Sitter spacetimes is obtained by direct construction of the metrics in

the class. This is achieved from limits of the Kerr-de Sitter family of metrics because of

the following argument. As the data (Σ, γ, κDξ), with (Σ, γ) locally conformally flat, are

only determined by the conformal classes of CKVFs [ξ], the structure of this quotient

space is directly inherited by the space of initial data of the form (Σ, γ, κDξ). Recall that

this quotient was studied in subsection 4.4.1 in terms of skew-symmetric endomorphisms,

which is a representation of the algebra of CKVFs. From well-posedness of the Cauchy

problem, the limits of data must induce limits of spacetimes. More precisely, in the n

even case, all spacetimes in the Kerr-de Sitter-like class are limits of the Kerr-de Sitter

family with none of its rotation parameters vanishing. In the n odd case is similar,

except that there is one exceptional case obtained by analytic extensions of the Kerr-

de Sitter family. In any case, the limits and analytic extensions obtained are given in

explicit Kerr-Schild form, proving that they are Kerr-Schild-de Sitter. From this last

part, it is remarkable that the existence of such limits is neat at the level of initial data

and follows from our analysis in subsection 4.4.1. However, it would be hard to guess at

the level of spacetimes directly.



Chapter 2

Preliminaries

2.1 Conventions, definitions and identities

We start by listing the conventions, definitions and identities that we shall use in this

thesis. Unless otherwise specified, the convenion of indices in the manifolds is as follows:

1. Greek indices α, β, γ, · · · range from from 0 to n.

2. Lower case latin indices i, j, k, · · · range from 1 to n.

3. Upper case latin indices I, J,K, · · · range form 0 to n+ 1.

In some situations where several spaces arise, it will not be possible to respect this

general convention. Any exception of the above rules will be clearly indicated.

The identities below are given for an N dimensional space, for which we use lower case

latin indices a, b, c, · · · . In the main text they will be adapted to the criterion above,

depending on the case.

Our convention for the Riemann tensor is such that for any covector Xc

RcadbXc = −∇d∇bXa +∇b∇dXa.

The covariant Riemann tensor is

Rcadb := gceR
e
adb,

where the index is always lowered with its defining metric. Given a Riemann tensor, its

Ricci tensor and Ricci scalar are, respectively,

Rab := Rcacb, R := Rabg
ab.

17
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Let g(1) and g(2) be two different metrics and let ∇(1),∇(2) be their respective Levi-

Civita connections. The difference of connections S := ∇(1) − ∇(2) is the tensor given

by

Scab =
1

2
(g(1)])cd(∇(2)

a g(1)
bd +∇(2)

b g(1)
ad −∇

(2)
d g(1)

ab), (2.1)

where for any metric g, we use g] to denote its associated contravariant metric in index-

free notation. When using indices, we will omit the ] symbol and write simply (g])cd =

gcd. From this relation between the connections (2.1), a formula for the difference of

Riemann and Ricci tensors follows (e.g. [146])

R(1)c
adb −R(2)c

adb = 2∇(2)
[dS

c
b]a − 2Se[d|a|S

c
b]e, (2.2)

R(1)
ab −R(2)

ab = 2∇(2)
[cS

c
b]a − 2Se[c|a|S

c
b]e. (2.3)

Expression (2.1) and identities (2.2) and (2.3) can be also written using derivatives ∇(1)

of g(2)

Scab = −1

2
(g(2)])cd(∇(1)

a g(2)
bd +∇(1)

b g(2)
ad −∇

(1)
d g(2)

ab), (2.4)

and

R(1)c
adb −R(2)c

adb = 2∇(1)
[dS

c
b]a + 2Se[d|a|S

c
b]e, (2.5)

R(1)
ab −R(2)

ab = 2∇(1)
[cS

c
b]a + 2Se[c|a|S

c
b]e.

We will often work with conformally related metrics g = Ω2g̃, where Ω is a sufficiently

differentiable positive function. Particularizing (2.1) to g(1) = g̃ and g(2) = g and letting

∇ = ∇(2) gives

Scba = − 1

Ω
(Tbδ

c
a + Taδ

c
b − T cgba) , Tc := ∇cΩ, T c := gcdTd. (2.6)

Given its importance in this thesis, we compute explicitly the transformation of the

Riemann and Ricci tensors for conformally related metrics. On the one hand we have

∇[dS
c
b]a =

1

Ω2

(
T[dTb]δ

c
a + T[dδ

c
b]Ta − T[dgb]aT

c
)

− 1

Ω

(
∇[dTb]δ

c
a +∇[dT|a|δ

c
b] −∇[dT

cg|a|b]
)

=
1

Ω2

(
TaT[dδ

c
b] − T cT[dgb]a

)
− 1

Ω

(
∇[dT|a|δ

c
b] −∇[dT

cg|a|b]
)

hence

∇[cS
c
b]a =− 1

Ω2
(N − 2)TbTa −

TcT
c

Ω2
gba +

N − 2

Ω
∇bTa +

1

Ω
gba∇cT c.
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For the quadratic term, we get

SedaS
c
be =

1

Ω2
(Tdδ

e
a + Taδ

e
d − T egda) (Tbδ

c
e + Teδ

c
b − T cgeb)

=
1

Ω2
(TdTbδ

c
a + 2TdTaδ

c
b + TaTbδ

c
d + T cTbgda

−TdT cgab − TaT cgdb − TeT egdaδcb − T cTbgda)

so

Se[d|a|S
c
b]e =

1

Ω2

(
T[dδ

c
b]Ta − T cT[dgb]a − TeT ega[dδ

c
b]

)
and

Se[c|a|S
c
b]e =

(N − 2)

Ω2
(−TaTb + TeT

egab) .

Replacing T by ∇Ω, (2.2) and (2.3) give

R̃cadb −Rcadb =
2

Ω

(
δc[d∇b]∇aΩ− ga[d∇b]∇cΩ

)
+ 2ga[dδ

c
b]
∇eΩ∇eΩ

Ω2
, (2.7)

R̃ab −Rab =
N − 2

Ω
∇a∇bΩ + gab

∇c∇cΩ
Ω

− gab
N − 1

Ω2
∇cΩ∇cΩ, (2.8)

for two conformal metrics g = Ω2g̃. We can also calculate the relation between the Ricci

scalars, taking trace in (2.8) with g

R̃

Ω2
−R =

2(N − 1)

Ω
∇c∇cΩ−

N(N − 1)

Ω2
∇cΩ∇cΩ. (2.9)

The Weyl tensor, defined as follows,

Ccadb := Rcadb −
2

N − 2
(δc[dRb]a − ga[dR

c
|b]) +

2R

(N − 1)(N − 2)
δc[dgb]a, (2.10)

is fundamental in conformal geometry. It can be also written in terms of the Schouten

tensor,

Pab :=
1

N − 2

(
Rab −

R

2(N − 1)
gab

)
as

Ccadb = Rcadb + 2Pa[dδ
c
b] + 2ga[dP

c
b]. (2.11)

Both tensors are specially taylored for conformal geometry. The transformation law for

the Schouten tensor of conformally related metrics g and g̃ respectively is, from identities

(2.8) and (2.9),

P̃ab − Pab =
1

Ω
∇a∇bΩ−

1

2Ω2
gab∇cΩ∇cΩ (2.12)
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and the well-known invariance of the Weyl tensor also follows

C̃cadb − Ccadb = 0.

We shall also use index-free notation. For any vector fields X,Y, Z,X and field of one-

forms ω, the Riemann tensor

Riem(ω,Z,X, Y ) := RcadbωcZ
aXdY b,

or in its covariant version

Riem(W,Z,X, Y ) := RcadbW
cZaXdY b.

The Ricci tensor and Ricci scalar

Ric(X,Y ) = RabX
aY b, Scal := R.

Also, the Weyl and Schouten tensors

Weyl(ω,Z,X, Y ) := W c
adbωcZ

aXdY b, Sch(X,Y ) = PabX
aY b.

When it is necessary to specify the metric, we shall do so with parentheses, e.g. Ric(g)

denotes the Ricci tensor associated to g.

One important type of tensor that will be relevant in this thesis is the so-called traceless

and transverse (TT) tensors. These are symmetric two-covariant tensors D̃ on an N -

manifold (M̃, g̃) with zero trace (traceless) and zero divergence (transverse):

g̃abD̃ab = 0, ∇a(g̃abD̃bc) = 0.

In index free notation Trγ(D̃) indicates the trace and divg̃(D̃) the divergence. The latter,

is a well-behaved operation under conformal scalings g = Ω2g̃, with Ω a smooth positive

function of M̃. In the following lemma we recall two well-known conformal covariance

results, that will be required later. The proof is added for completeness.

Lemma 2.1. Let g̃ and g be conformally related metrics g = Ω2g̃ on a manifold M̃,

with ∇̃, ∇ their respective Levi-Civita connections. Let D̃ab be a symmetric two-covariant

traceless tensor and Ccadb a tensor with the symmetries of the Weyl tensor. Then the

following identities hold

Ω−N∇̃a(g̃abD̃bc) = ∇a(gabΩ2−ND̃bc),

Ω3−N∇̃cCcadb = ∇c(Ω3−NCcadb).
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Proof. Consider the difference of connections tensor S in (2.6). Then

∇a(gabΩ2−ND̃bc) = ∇̃a(gabΩ2−ND̃bc)− SaadgdbΩ2−ND̃bc + Sdacg
abΩ2−ND̃bd

= ∇̃a(g̃abΩ−ND̃bc)

+NΩ1−NTdg
dbD̃bd − Ω1−N (Taδ

d
c + Tcδ

d
a − T dgac)gabD̃bd

= −NΩ−N−1g̃abTaD̃bc + Ω−N∇̃a(g̃abD̃bc)

+NΩ−N−1Tdg̃
dbD̃bd − Ω1−N (T bD̃bc + Tcg

dbD̃bd − T dD̃cd)

= Ω−N∇̃a(g̃abD̃bc),

where for the last equality we have used the traceless property of D̃. For the second

equality, first expand

∇c(Ω3−NCcadb) = (3−N)Ω2−NTcC
c
adb + Ω3−N∇cCcadb (2.13)

with

∇cCcadb = ∇̃cCcadb − SccsCsadb + SscaC
c
sdb + SscdC

c
asb + SscbC

c
ads. (2.14)

Expanding the above expression and taking into account the symmetries of C and that

all its traces vanish, we get

SccsC
s
adb = − 1

Ω
(Tcδ

c
s + Tsδ

c
c − T cgcs)Csadb = −N

Ω
TsC

s
adb,

SscaC
c
sdb = − 1

Ω
(Tcδ

s
a + Taδ

s
c − T sgca)Ccsdb = − 2

Ω
TcC

c
adb,

SscdC
c
asb = − 1

Ω
(Tcδ

s
d + Tdδ

s
c − T sgcd)Ccasb = − 1

Ω
(TcC

c
adb − T sCdasb) ,

SscbC
c
ads = − 1

Ω
(Tcδ

s
b + Tbδ

s
c − T sgcb)Ccads = − 1

Ω
(TcC

c
adb − T sCbads) .

Inserting into (2.14) yields

∇cCcadb = ∇̃cCcadb +
N − 4

Ω
TsC

s
adb +

T s

Ω
(Csbda + Csdab)

= ∇̃cCcadb +
N − 3

Ω
TsC

s
adb (2.15)

where in the first equality we have rearranged indices of the four-covariant terms the

last equality is a consequence of the first Bianchi identity

Csbda + Csdab = −Csabd.

Now the second equality of the Lemma follows by inserting (2.15) into (2.13)
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2.1.1 Geometry of submanifolds

Consider an (n + 1)-dimensional manifold (M, g) and a local foliation, whose leaves

ΣΩ = {Ω = const.} are defined by a sufficiently differentiable function Ω. We denote

gΩ to the covariant projector (i.e. the projector with two low indices) onto the n-

submanifolds ΣΩ and we assume that the normal covector, given by Tα := ∇αΩ, is

nowhere null. Its normal unit is denoted uα := ∇αΩ/|∇µΩ∇µΩ|1/2 and ε := uµu
µ

determines the causal character of the foliation. All indices in M are moved with g.

From the definition of the projector, we can write de decomposition

g = −dΩ2

ν
+ gΩ, (2.16)

where −ν is the lapse function, −ν := ∇µΩ∇µΩ and clearly sign(ν) = −ε. We can

construct Gaussian-like coordinates {Ω, xi} adapted to the foliation, by taking coor-

dinates {xi} of an initial leaf {Ω = 0} and propagating them as Tα∂α(xi) = 0. Then, gΩ

has no terms in dΩ and thus coincides with the metric induced in the leaves ΣΩ. When

T is geodesic, the Gaussian-like coordinates are actually Gaussian coordinates. We shall

need the following explicit expressions in Gaussian-like coordinates.

Let us fix a leaf ΣΩ and let ∇(Ω) be the Levi-Civita connection induced by gΩ. By

(2.16), the tangent-tangent components to the leaves of the metric g satisfy gij = (gΩ)ij .

Then, it follows that for any two vector fields y, w ∈ TΣΩ, the tangent components of

the covariant derivative ∇yw satisfy

yi∇iwj = y(wj) + Γjiky
iwk.

The fully tangent components of the Christoffel symbols satisfy, by decomposition (2.16),

Γjik =
1

2
gjµ(∂igkµ + ∂kgiµ − ∂µgik)

=
1

2
gjlΩ (∂i(gΩ)kl + ∂k(gΩ)il − ∂l(gΩ)ik) = Γ(Ω)j

ik

where Γ(Ω)j
ik are the Christoffel symbols of the metric gΩ. Thus

yi∇iwj = yi∇(Ω)
i wj .

The same rule extends to all tangential derivatives of all tensors in ΣΩ. The normal

component of the ∇yw can be written

yi(∇iwµ)uµ = −yiwj∇iuj =: −yiwjKij
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The tangent components of K := ∇u define the second fundamental form of ΣΩ. It is

immediate to check that it is a symmetric tensor because

yiwj∇iuj = −uµyi∇iwµ = −uµ(wi∇iyµ + [y, w]µ) = −uµwi∇iyµ = wiyj∇iuj

where we have used that [y, w] = ∇yw −∇yw is tangential to ΣΩ, hence orthogonal to

u.

The second fundamental form can be also expressed in terms of the Lie derivative LugΩ.

It is easier to derive this in index-free notation:

Lu (g(y, w)) = Lu (gΩ(y, w)) = (LugΩ)(y, w) + gΩ(Luy, w) + gΩ(y,Luw)

= (LugΩ)(y, w) + gΩ(∇uy, w) + gΩ(y,∇uw)− gΩ(∇yu,w)− gΩ(y,∇wu)

= (LugΩ)(y, w) +∇u(gΩ(y, w))︸ ︷︷ ︸
=Lu(gΩ(y,w))

−2K(y, w),

from which it follows

Kij =
1

2
(LugΩ)ij = ∇iuj .

Summarizing, we have obtained the well-known Gauss formula (e.g. [40])

∇yw = ∇(Ω)
y w − εK(y, w)u.

From this, one can easily derive two fundamental formulas for the ambient curvature in

terms of the geometry of the submanifolds. We do not include their derivation for the

sake of brevity (see standard references, e.g. [40], [110]).

The first one is the Gauss identity, which relates the tangent components of the Riemann

tensor of g with the Riemann tensor of gΩ, denoted by R(Ω)
ijkl:

Rijkl = R(Ω)
ijkl + ε (KilKjk −KikKjl) . (2.17)

The second is the Codazzi identity and gives the one-normal, three-tangential component

of the Riemann tensor of g

Rµjkluµ = (∇(Ω)
k Klj −∇

(Ω)
l Kkj), (2.18)

where recall that ∇(Ω)
k Klj = ∇kKlj in Gaussian-like coordinates.

2.2 Basics on conformal geometry

In this section we review the basic tools on conformal geometry that we shall use in this

thesis.
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Let (M̃, g̃) be a Lorentzian (n+1)-manifold. The causal structure of a spacetime (M̃, g̃)

is the assignation of a null cone Np at the tangent space of each point p ∈ M̃. This is of

great physical relevance as it determines the causal character of curves in the manifold,

which in turn establishes which two points are physically accesible from one another.

The causal character of a submanifold is given by the signature of its first fundamental

form γ. A submanifold is timelike if γ is Lorentzian; spacelike if it is positive definite

and null if it is degenerate. For the latter we will also use degenerate submanifold.

The causal structure of a Lorentzian manifold is closely related to its conformal geometry.

We start by giving basic definitions.

Definicin 2.2. Let (M̃, g̃) be a manifold. Then:

1. A metric g of M̃ is said to be conformal to g̃ if there exists a smooth, positive

function Ω of M̃ such that g := Ω2g̃.

2. The set of all conformal metrics [g̃] in M̃ is called conformal class of g̃ and

conformal structure of (M̃, g̃).

3. A manifold M̃ equipped with a conformal structure [g̃] is called a conformal

manifold (M̃, [g̃]).

It is obvious that in the Lorentzian case a conformal structure determines a causal

structure for the manifold. The converse statement is also true (e.g. [78]), namely, a

causal structure on a spacetime (M, g̃) determines a unique conformal structure on M̃.

Analogously, one defines a conformal transformation between different manifolds equipped

with metrics as follows:

Definicin 2.3. Let (M1, g1) and (M2, g2) be two manifolds. A conformal map φ :

M1 → M2, is a smooth map satisfying φ?(g2) = Ω2g1, for a smooth positive function

Ω of M1. When M1 and M2 are of the same dimension, conformal maps are required

to define a diffeomorphism between M1 and its image. When Im(M1) = M2, φ is

called a conformal diffeomorphism. If (M1, g1) = (M2, g2), the set of conformal

diffeomorphisms, denoted Conf(M1, g1), is a group under composition called conformal

group of (M1, g1).

The next notion we introduce is the conformal infinity and conformal extensions of met-

rics. Let us consider an (n+1)-dimensional manifoldM with (n-dimensional) boundary

∂M and denote its interior M̃ := Int(M) . Let g̃ be a smooth metric defined on M̃, but

not necessarily at the boundary. We allow g̃ to be pseudo-Riemannian of any signature.

Definicin 2.4. A pseudo-Riemannian manifold g̃ in M̃ is said to be conformally

extendable if there exists a manifold with boundary M such that M̃ := Int(M) and

a smooth function Ω of M positive in M̃ such that

∂M = {Ω = 0 ∩ dΩ 6= 0}, and g := Ω2g̃,
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is (at least) C2-extendable to ∂M. Then (M, g) is said to be a conformal extension

of (M̃, g̃).

The notion of conformal extension can be equivalently formulated by means of conformal

diffeomorphisms. Namely, a manifold with boundary (M, g) is a conformal extension

of (M̃, g̃) if there exists a conformal diffeomorphism φ : Int(M) → M̃ such that Ω

extends as a C2 function toM and at ∂M it holds Ω = 0 and dΩ 6= 0. The equivalence

follows by the identification of M̃ with Int(M) by φ. We shall understand a conformal

extension as given in Definition 2.4.

The requirements of differentiability of Definition 2.4 are minimal so that curvature

tensors can be defined at ∂M. In most cases we deal with smooth extensions, but it

is useful to have a broader definition in order to accommodate the Fefferman-Graham

formalism (cf. Section 2.3).

For a given conformal extension (M, g), the boundary geometry is given by its first

fundamental form γ := g|∂M so that the manifold I := (∂M, γ) represents the asymp-

totic behaviour of (M̃, g̃) and it is called “conformal infinity” or “null infinity”. One

can always scale g with a smooth positive function of M so that g′ = ω2g induces

a different first fundamental form γ′ = ω2
∣∣
I
γ. Then, in order to define a notion of

conformal infinity independent of the particular extension, one considers the manifold

I := (∂M, [γ]), where [γ] is the class of bilinear forms obtained from γ by scaling with

any smooth positive function. Obviously, when γ is non-degenerate, γ is a metric and

[γ] a conformal class of metrics in ∂M.

So far, we have not imposed g̃ nor g to satisfy any equations. In this thesis we will be

interested in (physical) metrics g̃ which satisfy the Λ-vacuum Einstein equations,

Ric(g̃)− nλg̃ = 0, λ :=
2Λ

n− 1
, (2.19)

with particular emphasis in the case of positive cosmological constant Λ and Lorentzian

signature. However, it is also interesting to weaken this condition. In particular, we will

only impose (2.19) to be “asymptotically satisfied” to order m, for whatever sign of non-

zero λ and signature (n+, n−). We will not in general consider vanishing cosmological

constant. We say that (2.19) is asymptotically satisfied to order m if

Ric(g̃)− nλg̃ = O(Ωm), λ :=
2Λ

n− 1
, (2.20)

where O and o are Landau’s big O and little o. In particular, if m ≥ 1, the equations

and all their derivatives to order m vanish at Ω = 0.

Definicin 2.5. A conformally extendable metric g̃ is asymptotically Einstein to

order m if it satisfies (2.20).
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The weakest notion of asymptotically Einstein metrics that we shall deal with are the

so-called [96] asymptotically of constant curvature (ACC).

Definicin 2.6. A metric g̃ is asymptotically of constant curvature (ACC) if it

asymptotically Einstein with m = −1.

Before justifying the name, let us remark that this is a generalization of the class of

asymptotically hyperbolic metrics (e.g. [49, 72]), which correspond to the ACC case

with negative λ and Riemannian signature.

Obviously, for ACC metrics, the Einstein tensor diverges at I , but “relatively slowly”,

so one is still imposing interesting asymptotic conditions. From the transformation

formula (2.8) for the Ricci tensors of conformal metrics g = Ω2g̃, we have

ΩRαβ + (n− 1)∇α∇βΩ + gαβ∇µ∇µΩ = Ω
(
R̃αβ + g̃αβn∇µΩ∇µΩ

)
, (2.21)

where all indices are moved with the metric g. If g̃ is ACC, we have

ΩRαβ + (n− 1)∇α∇βΩ + gαβ∇µ∇µΩ = Ω
(
g̃αβn (λ+∇µΩ∇µΩ) +O(Ω−1)

)
=⇒ Ω (g̃αβn (λ+∇µΩ∇µΩ)) = ΩRαβ + (n− 1)∇α∇βΩ + gαβ∇µ∇µΩ +O(1).

By construction, the RHS extends to Ω = 0, hence so it does the LHS,

Ωg̃αβn (λ+∇µΩ∇µΩ) = Ω−1gαβn (λ+∇µΩ∇µΩ) ,

which implies ∇µΩ∇µΩ|I = −λ. On the other hand, if ∇µΩ∇µΩ|I = −λ holds, then

it follows immediatelly from (2.21) that g̃ must be ACC. Thus, we have proven,

Lemma 2.7. A conformally extendable metric g̃ is ACC if and only if for every con-

formal extension g = Ω2g̃ it is satisfied

gαβ∇αΩ∇βΩ
∣∣∣
I

= −λ.

Using the relation (2.7) for the Riemann tensors of two conformal metrics g = Ω2g̃ (with

S given by (2.6)), and performing a computation to leading order in Ω, one readily

obtains

R̃µανβ = −gσλ∇σΩ∇λΩ(gµνgαβ − gµβgαν)Ω−4 +O(Ω−3).

Hence, for every pair of linearly independent vectors X,Y of M spanning a non-null

plane, the sectional curvature is given by

K(X,Y ) :=
R̃iem(X,Y,X, Y )

g̃(X,X)g̃(Y, Y )− g̃(X,Y )2
= −gσλ∇σΩ∇λΩ +O(Ω).
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I −

I +I +
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ΓΓ

Figure 2.1: Conformal diagrams of de Sitter, Minkowski and Anti-de Sitter

Therefore, if g̃ is ACC, the sectional curvature tends asymptotically to the constant

value −λ. This justitifies the name “asymptotically of constant curvature” given to the

metrics.

Imposing the relatively weak condition of a metric being ACC suffices to determine the

causal character of I , because its normal vector has norm given by gαβ∇αΩ∇βΩ = −λ
(independently on the choice of conformal extension). Null infinity is therefore spacelike

when λ > 0, null when λ = 0 and timelike when λ < 0. In particular, in the cases

of positive or zero λ, I has generically two components (Figure 2.1) I = I + ∪ I −.

The (future) component I + has empty intersection with the past of every point and

the (past) component I − has empty intersection with the future of every point. This

does not happen in the case of negative λ because I is timelike (Figure 2.1). The

causal character of I is particularly relevant for the asymptotic Cauchy problem of the

Λ-vacuum Einstein metrics. Being Einstein is obviously stronger than being ACC, so all

results proven in this section for ACC metrics also hold for that case too. In a similar

manner, they also hold for intermediate notions of asymptoticity (weaker than Einstein

and stronger than ACC) to be introduced in Section 2.3.

Note that in the non-zero λ cases, the first fundamental form γ at I is a non-degenerate

bilinear form, thus a metric. From now one we restrict ourselves to λ 6= 0 and call γ the

boundary metric.

With the notion of ACC metrics, we can already introduce a useful type of conformal

extensions, called geodesic, as well as basic existence results.

Definicin 2.8. A conformal extension (M, g) of (M̃, g̃) is geodesic if T is geodesic

affinely parametrized w.r.t. g. Namely

Tµ∇µTν = 0.

The necessary and sufficient condition for a conformal extension of an ACC metric to

be geodesic is given in the next lemma.
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Lemma 2.9. Let g̃ be an ACC metric. Then, a conformal extension g = Ω2g̃ is geodesic

if and only if

∇αΩ∇αΩ = −λ.

Proof. The lemma follows from

∇βΩ∇β∇αΩ = ∇βΩ∇α∇βΩ =
1

2
∇α
(
∇βΩ∇βΩ

)
, (2.22)

because if ∇αΩ∇αΩ = −λ the RHS of (2.22) vanishes and T is geodesic. Conversely, if

T is geodesic then (2.22) is zero, so ∇αΩ∇αΩ is constant and, g being ACC, its value is

everywhere equal to −λ.

Another important result concerning geodesic conformal extensions is whether, for a

given boundary metric γ, there exists one such conformal extension. The answer is that

there always exists a unique geodesic conformal extension realizing a given γ. The proof

(see also [72] for a similar argument) relies on the method of characteristics, which we

describe briefly. For further details we refer to Chapter 3 of [47].

In a manifold M with boundary ∂M = Σ, consider a first order PDE Cauchy problem

with inital data at Σ

F (xα; f,∇αf) = 0, f |Σ= φ, (2.23)

where f is a scalar function. By the collar neighbourhood theorem [25], there exists a

neighbourhood of ∂M which can be diffeomorphically mapped into a neighbourhood of

[0,∞)×Σ. We consider coordinates {xα} = {Ω, xi} adapted to this Cartesian product,

where {xi} are coordinates on Σ, which is identified with {0} × Σ ⊂ [0,∞) × Σ. Two

functions {φ, ψ0} of Σ are a set of admissible initial data whenever they satisfy the

following compatibility condition1

F (x0 = 0, xi;φ, ψ0,
∂φ

∂x1
, · · · , ∂φ

∂xn
) = 0. (2.24)

Denote by D∇αfF the derivative of F w.r.t. ∇αf and let V (xα; f,∇αf) be the vector

of components V α = D∇αfF . Also, let T be the normal covector to Σ, i.e. Tα = ∇αΩ.

Then, for every set of admissible initial data, the Cauchy problem is said to be non-

characteristic if

T · V (x0 = 0, xi;φ, ψ0,
∂φ

∂x1
, · · · , ∂φ

∂xn
) 6= 0,

where · denotes the usual action of a covector on a vector. A non-characteristic Cauchy

problem is known to be locally well-posed (e.g. [47]), i.e. that there exists a unique

solution f of (2.23), satisfying f |Σ = φ, ∂0f |Σ = ψ0.

After this reminder, we can prove the next lemma.

1Compared to the the general setup of [47], the compatibility condition takes this simple form precisely
because of the use of coordinates {Ω, xi}.



29

Lemma 2.10. Let g̃ be an ACC metric for λ 6= 0 with conformal infinity (Σ, [γ]).

Then, for each representative γ ∈ [γ], there exist a unique geodesic conformal extension

g = Ω2g̃ which induces the metric γ at Σ.

Proof. Consider a conformally extended metric g such that g = Ω2g̃ and g |Ω=0= γ. Let

ĝ ∈ [g̃] be such that ĝ = ω2g with ω > 0 and ω |Ω=0= 1, so that ĝ realizes the same

boundary metric γ. Therefore ĝ = Ω̂2g̃, with Ω̂ = ωΩ, so by Lemma 2.9, we have to

show that there exists a function ω such that Ω̂ satisfies (2.22) for the metric ĝ

ĝαβ∇αΩ̂∇βΩ̂ =
gαβ

ω2
∇α(ωΩ)∇β(ωΩ) = −λ.

Expanding the derivatives and defining f := logω, this amounts to

gαβ (2∇αΩ∇βf + Ω∇αf∇βf) =
−λ− gαβ∇αΩ∇βΩ

Ω
. (2.25)

The LHS of (2.25) is obviously regular at Ω = 0. Also, since g is ACC

gαβ∇αΩ∇βΩ |Ω=0= −λ,

thus the RHS tends to −∂Ω

(
gαβ∇αΩ∇βΩ

)
at Ω = 0, which has finite value at I .

Hence, we can pose a Cauchy problem at {Ω = 0}, for which we must complete φ =

logω |Σ= 0 to admissible initial data for (2.25). These data must satisfy (2.24), thus

ψ0 is fixed to satisfy 2g00ψ0 = −∂Ω(gαβ∇αΩ∇βΩ) |Σ. Observe that this is the unique

possible set of admissible data once φ has been fixed. The vector field V has components

2gαβ(∇βΩ + Ω∇βu) and therefore

T · V (x0 = 0, xi;φ, ψ0,
∂φ

∂x1
, · · · , ∂φ

∂xn
) = 2gαβ∇αΩ∇βΩ |Σ= −2λ.

Hence the problem is non-characteristic if λ 6= 0. Existence and uniqueness follows the

well-posedness result mentioned above.

2.2.1 The conformal sphere (Sn, [γSn ])

We now introduce the construction of the conformal n-sphere as the projective cone in

Minkowski M1,n+1 (see e.g. [133]). This procedure allows one to construct the conformal

group of the sphere, Conf(Sn) (cf. Definition 2.3), from the isotropies of M1,n+1. The

conformal sphere, i.e. the n-sphere equipped with its conformal structure (Sn, [γSn ]), is

specially relevant because of its relation with local conformal flatness (cf. subsection

2.2.2) as well as the Fefferman-Graham formalism (cf. Section 2.3).

Let us consider M1,n+1 endowed with Minkowskian coordinates {xI}n+1
I=0 , so that the

Minkowski metric is

gL = ηIJdxIdxJ
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(f ◦ is)(S
n)

f

is(S
n)

Figure 2.2: A spherical section of the cone and a diffeomorphic arbitrary section.

where ηIJ is η00 = −1 and ηII = 1, for I = 1, · · · , n + 1, and the rest of components

are zero. Let us define the null cone N := {x ∈ M1,n+1 | gL(x, x) = 0, x 6= 0}. In N ,

we define the equivalence relation x ∼ x′ iff x = κx′ for κ a non-zero real number. The

projective cone is the quotient N/ ∼, which we canonically represent with the section

{x0 = 1}∩N . This section is identified with an n-sphere Sn via the isometric embedding

ιS : Sn ↪→ N , such that ιS(Sn) = {x0 = 1} ∩ N and γSn = ι?S(gL) is the usual spherical

metric. Now consider the scaling map f : M1,n+1 → M1,n+1, x 7→ f(x) = ω(x)x for

an arbitrary smooth positive function ω. Notice that f(ιS(Sn)) ⊂ N , so for each point

q ∈ Sn, f(xq) = ω(xq)xq, where xq = ιS(q) and we use Minkowskian coordinates in

M1,n+1. This generates an arbitrary smooth section of the cone (Figure 2.2), which is

also an n-dimensional submanifold. We may pullback now the metric by ι′S := f ◦ ιS
and compare to the original spherical metric ι?S(gL). In order to simplify the notation,

we do not specify in every step where each object is evaluated. Firstly

(f ◦ ιS)?(gL) =ι?S(f?(gL)) = ι?S(ηIJd(f(x))Id(f(x))J)

=ι?S
(
ηIJx

IxJ(dω)2

+ ω(x)ηIJ(xIdxJdω + xJdωdxI) + ω(x)2ηIJdxIdxJ
)
,

where note that the “cross terms” can be written

ηIJ(xIdxJdω + xJdωdxI) =
1

2
(d(ηIJx

IxJ)dω + dωd(ηIJx
IxJ)).

Then, since ι?S(ηIJx
IxJ)q = (ηIJx

I
qx
J
q ) = 0 and ι?S

(
d(ηIJx

IxJ)
)
q

= d(ηIJx
I
qx
J
q ) = 0

(because ηIJx
I
qx
J
q is constant equal to zero along Sn), it follows

(f ◦ ιS)?(gL)q = ι?S
(
ω2ηIJdxIdxJ

)
q

= ω2(xq)ι
?
S(gL)q.

Thus, the pullback metric at Sn is the original spherical metric scaled by ω2. That is,
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Λ

Λ(Sn)

S
n

π

ψΛ

Figure 2.3: Two spherical sections of the cone. The composition of transformations
π ◦ Λ defines a conformal tranformation of the sphere ψΛ.

by scaling points of Sn along the generators of the cone we generate new sections which

are conformal to Sn. In other words, the projectivization of the null cone amouts to the

n-sphere equipped with its conformal structure (Sn, [γSn ]).

The conformal sphere constructed as the projective cone in M1,n+1 can be used to

generate the set of all conformal diffeomorphisms of Sn. Firstly, the Lorentz group

O(1, n+1) acts by isometries on N . Thus, the action of an element Λ ∈ O(1, n+1) on Sn

generates a new section Λ(Sn) of the null cone, which must also be spherical. Therefore,

for each Λ ∈ O(1, n + 1) there corresponds one transformation ψΛ of the conformal

group of diffeomorphisms of Sn, Conf(Sn), which assigns to each x ∈ Sn the point

ψΛ(x) ∈ Sn given by ψΛ(x) := (π ◦Λ)(x), where π is the projection π : N → Sn (Figure

2.3). Conversely [133], for each ψ ∈ Conf(Sn) one can find exactly two transformations

O(1, n+1), Λ+ and Λ− such that ψ = π◦Λ±. One of these transformations Λ+ preserves

the time orientation, while Λ− reverses it. Hence, the conformal group Conf(Sn) is

in one-to-one correspondence with the orthochronous component of the Lorentz group

O+(1, n + 1). Moreover, since the action of O+(1, n + 1) is well-defined on rays on N ,

the correspondence is an homomorphism of groups, because ψΛ ◦ ψΛ′ = π ◦ Λ ◦ π ◦ Λ′ =

π ◦ Λ ◦ Λ′ = ψΛ◦Λ′ , where note that the second equality holds precisely because Λ has a

well-defined action on the rays of the cone.

For calculations, it is often useful to give a representation of Conf(Sn) in the set of

conformal transformations of the Euclidean space En. Observe that we do not use the

word “group” because, as we will see next, it is not a group globally acting on En (its

action is only local in a precise sense). This set is denoted ConfLoc(En) and we will later

give an abstract general definition in subsection 2.2.2. The n-sphere Sn, embedded as

above in M1,n+1, may be projected into an n-dimensional spacelike plane of En ⊂ {x0 =

1} ⊂ M1,n+1 via StN : Sn → En, the stereographic projection, defined w.r.t. to a pole

N ∈ Sn and at a signed distance d from Sn to En (cf. Figure 2.4). The relation between
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the metric γEn of En and γSn is well-known to be conformal (e.g. [133]). Hence, for each

conformal diffeomorphism ψΛ ∈ Conf(Sn) the maps of the form φΛ := StN ◦ψΛ◦(StN )−1

are conformal transformations of En. In the particular cases where ψΛ(N) = N , φΛ is an

affine transformation [133], thus a (global) conformal diffeomorphism of En. In any other

case, φΛ gives a conformal diffeomorphism of En\{p1, p2}, where the points p1, p2 ∈ En,

satisfy N = ψΛ(St−1
N (p1)) and N = ψ−1

Λ (St−1
N (p2)). Since the points p1, p2 depend on

the particular transformation ψΛ one must proceed carefully with the maps φΛ, because

the domain where they are well-defined changes under composition. However, one can

easily see that, away from conflictive points, it holds

φΛ ◦ φΛ′ = ψΛ ◦ ψΛ′ = ψΛ◦Λ′ = φΛ◦Λ′ ,

so the composition preserves the group law. The set of conformal transformations of En

obtained from Conf(Sn) as just described is denoted ConfLoc(En).

Notice that there is a certain freedom in the above construction, such as the choice of

section of the cone to represent the projectivization, as well as the pole N and distance

d in the definition of StN . We now see how this freedom can be absorbed in the choice

of coordinates and flat metric.

Consider Minkowskian coordinates {xI} of M1,n+1 and let us pick the section of the

cone Sn = N ∩{x0 = 1}. Any other spherical section of the future cone S′n is related to

Sn by a transformation Λ ∈ O+(1, n + 1), i.e. S′n = Λ(Sn). In the coordinates defined

by x′I = (Λ−1)IJx
J , the section S′n looks the same as Sn in coordinates {xI}, that

is S′n = N ∩ {x′0 = 1}. Hence, for any representative we can assume Minkowskian

coordinates of M1,n+1 into which Sn = N ∩{x0 = 1}. In a similar way, any two possible

poles N and N ′ in Sn are related by an SO(n) transformation. So the same idea applies

and we may by default select Minkowskian coordinates of M1,n+1 into which N is given

by x0 = −x1 = 1 and the rest of components are zero. Finally, let two Euclidean n-

planes En and E′n, both lying in the hyperplane {x0 = 1}, at respective signed distances

d and d′ of N (neither equal lo zero) and equipped with metrics (induced by gL) γEn

and γE′n respectively. It is immediate that γEn and γE′n must be homothetic to each

other (cf. Figure 2.4). Hence, for a given flat metric γEn , d fixes a scale s2γEn , s
2 ∈ R.

So if we allow γEn to be scaled by a constant2, the distance d may be set d = 2.

Summarizing, w.l.o.g. we may consider Minkowskian coordinates {xI} of M1,n+1 such

that Sn = {x0 = 1} ∩ N and N = (1,−1, 0, · · · , 0). In addition, we may also fix d = 2

by setting an adequate flat metric γEn , so we consider En = {x0 = x1 = 1, yA := xA+1},
where {yA}, for A = 1, · · · , n, are Cartesian coordinates of γEn inherited from M1,n+1.

For some applications, we may be given a flat space with a fixed flat metric (En, γEn)

and Cartesian coordinates {yA}. Then, we shall embed (En, γEn) in M1,n+1 as the n-

submanifold En = {x0 = x1 = 1, yA = xA+1} so the above conventions hold.

2This is actually innocuous in problems with conformal equivalence.
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N
dd′

Figure 2.4: Stereographic projection w.r.t. to
pole N and distance d. The arrow indicates
growing positive distance. For difference dis-
tances d and d′, the planes are homothetic when

vertically identified.

With the above choices we have con-

structed the map

φ : O+(1, n+ 1) −→ ConfLoc(En),

Λ 7−→ φΛ.

The differential of this map transforms the

respective Lie algebras of the groups. The

Lie algebra of O+(1, n+ 1) consists of the

set of two-forms of Minkowski, or equiv-

alently, the set of skew-symmetric endo-

morphisms, to which an important part

of this thesis is devoted. This set will be

denoted SkewEnd(M1,n+1). On the other

hand, the Lie algebra of ConfLoc(En) is

[133] the set of conformal Killing vector fields (CKVFs) of the metric γEn . These are

vector fields ξ satisfying

LξγEn =
2

n
(divγEn ξ)γEn ,

that we shall denote CKill(En). We next give, for later use, the explicit form of the

differential map

φ? : SkewEnd(M1,n+1) −→ CKill(En),

F 7−→ φ?(F ) =: ξ.

In order to emphasize the fact that a CKVF is the image by φ? of a skew-symmetric

endomorphism F , we write ξF . Conversely, if F is the preimage by φ? of a CKVF

ξ, we shall use the notation F (ξ). Besides, recall that φ preserves the group law, i.e.

φΛ ◦ φΛ′ = φΛ◦Λ′ , so in this sense it is a morphism of groups. As a consequence of

this (cf. Theorem 2.11), the action of O+(1, n + 1) on SkewEnd(M1,n+1), also maps to

the action of ConfLoc(En) on CKill(En). Similarly, the differential φ? is a Lie algebra

(anti)homomorphism3.

Theorem 2.11 below gives the explicit form of the differential φ?, as given in [100]. In

this reference, the Killing vector fields of Minkowski are first mapped into the Poincaré

disk model of the (n + 1)-dimensional hyperboloid of future unit timelike vectors. The

conformal infinity of the (n+ 1)-dimensional Poincaré disk Dn+1 is Sn, and the Killing

vector fields extend to CKVFs of Sn. The disk Dn+1 is then mapped to the hyperbolic

half plane model via an inversion map, in such a way that the boundary Sn maps

to the boundary En by a stereographic projection. In this way, CKVFs of En are

obtained from CKVFs of Sn. The whole procedure, with the various choices made in

[100], is equivalent to the construction described above, including the choices for the

stereographic projection and representative of the projective cone.

3Observe that by switching the sign in the CKVFs ξ′F := −ξF the antihomorphism becomes an
homomorphism [ξ′F , ξ

′
G] = [ξF , ξG] = −ξ[F,G] = ξ′[F,G]. We keep the sign which gives the usual form of a

CKVF.
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The matrix in Theorem 2.11 is an endomorphsim with entries F IJ , where the upper

index I stands for row and the lower index J stands for column. Acting on vectors

v = vIeJ of M1,n+1 gives

F (v) = F IJv
JeI .

Teorema 2.11. [[100]] Let M1,n+1 be endowed with Minkowskian coordinates
{
xI
}

and

consider any element F ∈ SkewEnd(M1,n+1) written in the basis {∂xI} in the form

F =

 0 −ν −at + bt/2

−ν 0 −at − bt/2

−a + b/2 a + b/2 −ωωω

 , (2.26)

where a, b ∈ Rn are column vectors, t stands for the transpose and ωωω is a skew-symmetric

n× n matrix (ωωω = −ωωωt). Then, in the Cartesian coordinates {yA} of En defined by the

embedding i : En ↪→ M1,n+1, i(En) = {x0 = x1 = 1, xA+1 = yA}, the image by φ? of F

is the CKVF

ξF =

(
aA + νyA + (aBy

B)yA − 1

2
(yBy

B)aA − ωAByB
)
∂yA . (2.27)

Moreover, ξAdΛ(F ) = φΛ?(ξF ), where AdΛ(F ) := Λ · F · Λ−1, for every Λ ∈ O+(1, n+ 1)

and φ? is a Lie algebra (anti)homomorphism, i.e. [ξF , ξG] = −ξ[F,G].

Observacin 2.12. For later use, we write explicitly the parameters of the vector field

ν, aA, aA, ωAB in terms of the entries F IJ of the endomorphism F :

ν = −F 0
1, aA = −1

2

(
F 0

A+1 + F 1
A+1

)
,

bA =
1

2

(
F 0

A+1 − F 1
A+1

)
, ωAB = −FA+1

B+1.

(2.28)

where capital Latin indices are lowered with the Kronnecker δAB.

2.2.2 Local conformal transformations and local conformal flatness

The conformal diffeomorphisms of a manifold (Σ, γ) need not to be globally defined, as we

have seen in the case of En (cf. subsection 2.2.2). This raises a difficulty for establishing

conformal equivalences of global objects, such as global vector fields, because if φ is only

defined in an open neighbourhood φ : U → Σ, any conformal relation between vector

fields must be restricted to U and φ(U). In the particular case of locally conformally flat

manifolds we can use the conformal sphere as a reference to make these relations global.

Following [148], we define:

Definicin 2.13. A Riemannian n-manifold (Σ, γ) is locally conformally flat if there

exists an open cover {Va} of Σ and a collection of conformal maps {χa} from Va to

the n-sphere, χa : Va → Sn. The set of pairs {Va, χa} is called a conformal cover.
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A conformal cover {Va, χa} is said to be maximal if every possible conformal map

χb : Vb → Sn of a domain Vb ⊂ Σ is contained in {Va, χa}.

Observe that a maximal conformal cover {Va, χa} of (Σ, γ) can always be constructed

as the union of every conformal cover. It is also clear that the maximal cover is unique.

We next prove that the maximal conformal cover provides a cover of the sphere:

Lemma 2.14. Given the maximal conformal cover {Va, χa} of a locally conformally flat

manifold (Σ, γ), the images {Wa := Va(χa)} are a cover of Sn.

Proof. The group of diffeomorphisms Conf(Sn) acts transitively on the sphere (note

that it contains SO(n)). As a consequence, given any (Vb, χb) ∈ {Va, χa} the set of all

neighourboods (ψ ◦ χb)(Vb) generated with every ψ ∈ Conf(Sn) covers Sn. Now, since

every χ′b := ψ◦χb is a conformal map from Vb to Sn, it must be contained in the maximal

cover and the lemma follows.

From now on, we shall assume that every locally conformally flat manifold (Σ, γ) is

endowed with its maximal conformal cover. Next, we define the local conformal trans-

formations of (Σ, γ) as follows

Definicin 2.15. A map φ : U → Σ, where U ⊂ Σ is an open set, is called a local diffeo-

morphism of Σ if φ is a diffeomorphism of U onto its image. The set ConfLoc(Σ, γ)

is the set of local diffeomorphisms such that φ?(γ|φ(U)) = ω2γ
∣∣
U , for a positive smooth

function on U .

Observacin 2.16. In the following discussion, global extendability of the conformal

transformations and CKVFs of the n-sphere will be key. This property is true for every

conformal transformation and CKVF of Sn and dimension n > 2 [20]. For n = 2,

S2 admits non-global conformal transformations, as an indirect consequence of its com-

plex structure (cf. Remark 3.14). Nevertheless, note that all the global transformations

Conf(S2) are also generated from the orthochronous Lorentz group O+(1, 3) by the pro-

cedure explained in subsection 2.2.1 (e.g. [133]).

In a locally conformally flat 2-manifold (Σ, γ), the non-global conformal transformations

of S2 as well as the global conformal transformations Conf(S2), induce transformations

of ConfLoc(Σ, γ) which are not a priori distinguishable. To avoid this difficulty, we shall

restrict ourselves to the n > 2 case in this subsection. The n = 2 case will be described

in detail in Chapter 3.

Let (Σ, γ) be a locally conformally flat manifold. We want to establish a relationship

between ConfLoc(Σ, γ) and Conf(Sn). We start by showing that to each transformation

ψ ∈ Conf(Sn) one can associate maps φ ∈ ConfLoc(Σ, γ). Choose a conformal map

χb : Vb → Sn. As a consequence of Lemma 2.14 and restricting Vb if necessary, the image



36

χb
χ−1
c

φ

ψ

Figure 2.5: Relation between elements φ ∈ ConfLoc(Σ, γ) and ψ ∈ Conf(Sn).

ψ(χb(Vb)) lies in the image of some map χc in the maximal cover. Then φ := χ−1
c ◦ψ◦χb

is clearly an element of ConfLoc(Σ, γ) (Figure 2.5). One can construct as many elements

of ConfLoc(Σ, γ) as conformal maps χc exist in the maximal cover satisfying the required

condition. Also, observe that the transitivity property of Conf(Sn) induces a transitivity

property in ConfLoc(Σ, γ) in the sense that the map φ can always be constructed so

that φ(p) = q for any two given points p, q ∈ Σ. Indeed, such φ can be constructed from

any ψ ∈ Conf(Sn) satsifying ψ(χb(p)) = χc(q).

Conversely, to each φ ∈ ConfLoc(Σ, γ) defined in a neighbourhood U ⊂ Σ, one can

locally associate a map ψ. Let (Vb, χb) and (Vc, χc) belong to the maximal conformal

cover {Va, χa} of Σ and satisfy that the intersections U ∩ Vb and φ(U) ∩ Vc are non-

empty. The map ψ := χc ◦φ ◦χ−1
b is well-defined on χb(U ∩Vb) ⊂ Sn and it is obviously

a conformal map. It is a fundamental property of the conformal group of the sphere [133],

that there always exists a unique element ψ ∈ Conf(Sn) extending the previous map to

the whole sphere. As before, the assingment of a given element φ ∈ ConfLoc(Σ, γ) to an

element of Conf(Sn) is highly non-unique. Thus, there is no one-to-one correspondence

between ConfLoc(Σ, γ) and Conf(Sn). However, as we show next this correspondence

provides a useful notion of conformal class for (local) conformal vector fields in (Σ, γ).

Before doing this, let us relate ConfLoc(En), as constructed in subsection 2.2.1, with the

abstract definition of ConfLoc. Recall that a map φ ∈ ConfLoc(En), constructed from a

ψ ∈ Conf(Sn), defines a diffeomorphism in En minus two points, which correspond with

the preimage and the image of north pole N by ψ. When ψ(N) 6= N , the map φ is a

so-called Möbius transformation [20] and takes the explicit form

φ(y) = K
R(y − p1)

|y − p1|2
+ p2, (2.29)
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where K ∈ R+, R is a rotation and p1, p2 are the points in En associated to φ as described

above. This defines a map En\{p1} → En\{p2}. When ψ(N) = N , φ is an affine

transformation of En, hence a global diffeomorphism. Given an open set U ⊂ En the

elements of ConfLoc(Σ, γEn) whose domain is U are precisely the collection of Möbius

transformations (2.29) satisfying p1, p2 ∈ En \ U , together with the set of all affine

transformations.

We have now the necessary tools to define the notion of conformal class of CKVFs. We

define:

Definicin 2.17. Let ξ be a CKVF of a Riemannian manifold (Σ, γ). The conformal

class of ξ is the set of all CKVFs ξ′ defined in some non-empty open neighbourhood

U and generated by an element φ ∈ ConfLoc(Σ, γ) whose domain is U . Specifically,

it consists of all fields φ?(ξ|U ) = ξ′|φ(U). A conformal class is said to be global if

U = φ(U) = Σ.

This definition is local, and nothing guarantees that ξ′ can be extended to a global CKVF

in Σ. However, when Σ is locally conformally flat, we can show that there is a precise

sense in which this local conformal class can be put in a one-to-one correspondance with

a global conformal class in the sphere. We do this next.

Let (Σ, γ) be a locally conformally flat manifold and a global CKVF ξ. Let ξ′ be an

element of the conformal class of ξ and let φ ∈ ConfLoc(Σ, γ) be the map relating them,

defined in a neighbourhood U ⊂ Σ. Let also (Vb, χb) and (Vc, χc) be pairs in the maximal

conformal cover of (Σ, γ) with non-empty intersections U ∩ Vb and φ(U) ∩ Vc. Denote

their images asWb = χb(U∩Vb) andWc = χc(φ(U)∩Vc). One can locally assign CKVFs

of Sn in Wb and Wc, through the maps χb and χc, i.e. ζ := χb?(ξ) and ζ ′ := χc?(ξ
′).

The sphere being simply connected, it follows easily that ζ, ζ ′ extend uniquely to global

CKVFs in the sphere (as each one of them is the generator of a unique ψ ∈ Conf(Sn)

[133]). The vector fields ζ, ζ ′ are locally related by the map ψ := χc ◦ φ ◦ χ−1
b , which

obviously satisfies ψ ∈ Conf(Sn) and we have already mentioned that ψ extends to an

element in Conf(Sn). The relation ψ?(ζ) = ζ ′ is global because ψ?(ζ) is a CKVF that

equals ζ ′ in Wc, so it must equal ζ ′ everywhere, by the uniqueness of extensions of

CKVFs on the sphere.

The vector field ζ, associated to a given global CKVF ξ of (Σ, γ), depends on the element

(Vb, χb) of the maximal cover used to define it. However, let (Vb, χb) and (Vc, χc) in the

maximal cover have domains with non-empty intersection, i.e. Vb∩Vc 6= ∅. In Sn, define

the CKVFs of ζb := χb?(ξ) and ζc := χc?(ξ). Then, the map ψ := χc ◦ χ−1
b restricted to

χb(Vb∩Vc) satisfies ψ?(ζb) = ζc. But ψ extends to a global map in Conf(Sn) and, by the

argument above, this relation also extends globally to Sn. Therefore, the vector fields

ζb, ζc associated to ξ are in the same global conformal class of Sn if Vb and Vc intersect.

Moreover, if Σ is connected, this is true even if Vb ∩ Vc = ∅, because Vb and Vc can



38

be joined through a finite sequence of neighbourhoods4 {Vk}Ki=1 in the maximal cover

{Vk, χk}Kk=1 ⊂ {Va, χa} such that Vk∩Vk+1 6= ∅ and V1 = Vb and VK = Vc. In Vk∩Vk+1,

the map ψk = χ−1
k+1 ◦ χk establishes a conformal map. All such maps, extended globally

in Sn and combined ψ := ψ1 ◦ · · · ◦ ψK−1, determine a conformal relation ζb = ψ?(ζc).

Thus, the above discussion shows that all CKVFs in the conformal class of ξ and ξ′ of

a connected, locally conformally flat manifold Σ, determine a unique global conformal

class of CKVF in Sn. The converse is also true because of the following argument. Let

(Vb, χb) belong to the maximal conformal cover and consider ζ = χb?(ξ) and ζ ′ = ψ?(ζ)

for any ψ ∈ Conf(Sn). Then, as a consequence of Lemma 2.14, there exists a pair

(Vc, χc) in the maximal conformal cover such that χc(Vc) ∩ ψ(χb(Vb)) 6= ∅. Hence, in

χc(Vc)∩ψ(χb(Vb)) the vector field ζ ′ induces, via χ−1
c , a CKVF ξ′ of γ. By construction,

the map φ := χ−1
c ◦ ψ ◦ χb belongs to ConfLoc(Σ, γ) and satisfies φ?(ξ) = ξ′ on a

non-empty domain. Thus, ξ′ is in the conformal class of ξ. Summarizing

Proposicin 2.18. Let (Σ, γ) be a Riemannian, connected and locally conformally flat

n-manifold with n > 2. Then, the conformal classes of CKVF in (Σ, γ) as given in

Definition 2.17 are in one-to-one correspondence with global conformal classes of CKVFs

of Sn.

2.3 Fefferman-Graham expansion

The results in this thesis concerning general relativity in dimensions higher than four

are based on the Fefferman and Graham formalism (see the seminal paper [48], later ex-

panded into the monograph [50]). This framework was originally intended for the obten-

tion of conformal invariant quantities (specially scalars) for a given conformal structure

(Σ, [γ]) of dimension n and signature (n+, n−). From (Σ, [γ]), two constructions emerge

which are in a precise sense equivalent. The first one, which is actually the main object

of study by Fefferman and Graham, are the ambient metrics gA. These are (n + 2)-

dimensional metrics of signature (n+ + 1, n− + 1) living in a so-called ambient space

G. The space G contains a hypersurface N , whose projectivization yields (Σ, [γ]). The

second construction are the Poincaré metrics, which are asymptotically Einstein metrics

of dimension n+ 1 and signature (n+ + 1, n−) or (n+, n− + 1), conformally extendable

with I = (Σ, [γ]).

The model example for ambient and Poincaré metrics is the conformal n-sphere (Sn, [γSn ]),

obtained as the projectivization of the null cone N in Minkowski space M1,n+1 (cf. sub-

section 2.2.1) or, as we show next, the conformal infinity of the Riemannian hyperboloid

4Connected manifolds are path connected so there exists a continuous curve α : [0, 1] → Σ joining
a point p ∈ Vb with a point q ∈ Vc. The set of points α([0, 1]) is compact, so from any cover one can
extract a finite subcover. It suffices to start with the full cover {Va} associated to the maximal conformal
cover, extract a finite subcover and, in necessary, supplement with Vb, Vc to fulfill all the properties that
we require.
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and of the Lorentzian hyperboloid (i.e. de Sitter space). The Minkowski spacetime

of dimension n + 2 is an ambient space for (Sn, [γSn ]) and each (n + 1)-dimensional

hyperboloid is a Poincaré metric for (Sn, [γSn ]).

Let us consider the hyperboloids Hλ := {x ∈ M1,n+1 | gL(x, x) = λ}, for λ a non-zero

real constant. The sign of λ determines whether Hλ is a one-sheeted hyperboloid, i.e.

de Sitter space (λ > 0), or a two-sheeted hyperboloid (λ < 0). In the later case we

restrict ourselves to the connected component with {x0 > 0}. We first focus on the

λ > 0 and the λ < 0 is indicated at the end. Parametrizing Hλ with the set of functions

{t, {αi}n+1
i=1 } satisfying,

x0 = λ1/2 sinh(λ−1/2t), xi = λ1/2 cosh(λ−1/2t)αi, with

n+1∑
i=1

α2
i = 1

the induced metric on Hλ takes the form

gL|Hλ = −dt2 + λ cosh2(λ−1/2t)γSn ,

where γSn := δijdα
idαj

∣∣∑n+1
i=1 α2

i=1
is a spherical n-metric. On the domain {t > 0} let

us introduce Ω := (cosh(λ−1/2t))−1 so that dt = −
√
λΩ−1(1−Ω2)−1/2dΩ and we obtain

the following metric conformal to gL|Hλ

Ω2 gL|Hλ = − λ

1− Ω2
dΩ2 + λγSn .

This metric is obviously extendable to {Ω = 0} and we recover the well-known fact

that I = (Sn, [γSn ]) for de Sitter spacetime. The λ < 0 case is analogous in terms of

the parametrization x0 := |λ|1/2 cosh(|λ|−1/2t), xi := |λ|1/2 sinh(|λ|−1/2t)αi where also∑n+1
i=1 α

2
i = 1.

The Fefferman and Graham construction extends the above example from the n-sphere

to general conformal manifolds. Generically, both ambient and Poincaré metrics are

solutions of certain PDEs whose initial data are determined by the conformal structure.

Namely, ambient metrics are asked to be Ricci flat at a null hypersurface N , analogue to

the null cone in the (Sn, [γSn ]) example; while Poincaré metrics are asked to be asymp-

totically Einstein with non-zero cosmological constant. Whether these PDEs propagate

away from the initial surface is not required in the Fefferman and Graham construc-

tion, so their analysis remains formal, i.e. they find formal (non-necessarily convergent)

series solving the PDEs at the initial hypersurface. It is important to stress that for

the construction of conformally invariant scalars, the formal solutions are sufficient [50].

We are, however, interested in the asymptotic initial value problem of general relativity,

which also uses the Fefferman and Graham formalism [5–7, 86, 87, 129], and it is more

focused on Poincaré metrics. Nevertheless, for the sake of completeness, we outline first

the main idea of the ambient construction, which is in the base of the Fefferman and

Graham formalism.
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2.3.1 Ambient metrics

The idea of the ambient space is to lift the conformal structure (Σ, [γ]) into an R+-

bundle N , called the metric bundle, in such a way that each section (t(x)2γ, x) ∈ N
gives a conformal representative of (Σ, [γ]). Then, one embeds N into a neighbourhood

of G = N × R identifying N with N × {0}. The ambient metric may extend from

N in a non-unique way, but this freedom can be dealt with by constructing a certain

equivalence class of metrics provided they are all Ricci flat to a certain order at N .

In more detail, the ambient construction is as follows. One starts with a conformal

manifold (Σ, [γ]) and chooses a representative γ ∈ [γ]. The manifold (Σ, γ) is the base

of the metric bundle N , which consists of all pairs (h, x) with x ∈ Σ and h = s2γ

for some s ∈ R+. The bundle N is endowed with a dilation operator δs which scales

the first term in the pair δs(h, t) = (s2h, t) for all s ∈ R+. Thus, N is an R+-bundle

. Associated to each representative γ, the exists a trivialization N ' R+ × Σ whose

points (t, x) are associated to pairs (t2γ, x) and thus, its sections (t(x)2, x) correspond

to conformal representatives (t(x)2γ, x) of (Σ, [γ]). In the remainder, we shall work

assuming a trivialization, namely, identifying N with R+ × Σ.

We consider local coordinates {xi}ni=1 of Σ which endow N with coordinates {t, xi}. In

these coordinates, the bundle projection map is π : (t, x) 7→ x, the dilations δs(t, x) 7→
(st, x), ∀s ∈ R, and the infinitesimal generator of δs is τ = t∂t. Moreover, at each point

of TN , a symmetric two-tensor g0 is defined by g0(X,Y ) := t2γ(π?X,π?Y ), ∀X,Y ∈
T(t,x)N . In coordinates {t, xi} it reads

g0 = t2γijdx
idxj .

Now consider the embedding ι : N ↪→ N × R, where ι(N ) = N × {0}, whose points we

denote by (z, ρ) ∈ N × R. The action of the dilations δs extends to N × R by leaving

the second factor invariant and acting on the first factor as already defined. The local

coordinates {t, xi} of N extend to local coordinates {t, xi, ρ} of N × R. In N × R we

define G, a neighbourhood of N × {0} which is dilation invariant. In addition G is such

that, for every z ∈ N , the set of all ρ ∈ R for which (z, ρ) ∈ G is an open interval Iz. In

G, we will define a metric gA for which ∇ρ is a geodesic vector.

We next give the conditions which make G an ambient space and gA an ambient metric.

The definition that we give corresponds, in the original work [50], to a special case called

straight ambient metric in normal form. We emphasize that assuming normal form does

not entail any loss of generality because Fefferman and Graham also show that, up to

a certain equivalence relation, every ambient metric admits a normal form and it is

straight in a sufficiently small neighbourhood of N × {0}.

Before giving the precise definition, we introduce a notion of decay for symmetric tensors

on G.
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Definicin 2.19. A symmetric two-tensor S of G is said to be O+(ρm) if it is O(ρm)

and moreover, at each point z ∈ N , ι?(ρ−mS) is of the form π?(σ), for a symmetric

two-tensor σ of N , which may depend on t and x.

Now we define:

Definicin 2.20. Let (Σ, [γ]) be a conformal n-manifold of signature (n+, n−) and fix a

representative γ ∈ [γ]. An ambient space (G, gA) for (Σ, γ) is an (n+ 2)-dimensional

manifold of signature (n+ + 1, n−+ 1) such that, in the local coordinates {t, xi, ρ}, takes

the form

gA = 2ρdt2 + 2tdtdρ+ t2gρ(x), (2.30)

where gρ(x) = gρ(x)ijdx
idxj is a 1-parameter family of n-metrics, with parameter ρ,

such that gρ=0 = g0. Moreover:

1. If n = 2 or n ≥ 3 and it is odd, Ric(gA) vanishes to infinite order at every point

of N × {0}.

2. If n ≥ 4 and it is even, Ric(gA) = O+(ρn/2−1).

Observe that (2.30) is already decomposed in a 2× 2 block with terms dρ and dt, plus

an n×n block with only terms dxi. Using this structure, it is an immediate calculation

that

∇∂ρ∂ρ = ΓIρρ∂I = 0,

∇t∂t(t∂t) = t∂t + t2ΓItt∂I = t∂t,

thus ∇ρ and τ are both geodesic with the first affinely parametrized.

The main existence result for ambient metrics is as follows.

Teorema 2.21 (Fefferman-Graham [48, 50]). Let (Σ, [γ]) be a smooth conformal man-

ifold of dimension n ≥ 2 and let γ ∈ [γ] be a representative of the conformal class of

metrics. Then

a) There exists an ambient space (G, gA) for (Σ, γ).

b) Let (G1, gA1) and (G2, gA2) be two ambient spaces for (Σ, γ). Then, if n is odd

gA1−gA2 vanishes to infinite order at N×{0}. If n is even gA1−gA2 = O+(ρn/2).

Note that statement b) of Theorem 2.21 says that, for n odd, the metric γ uniquely

determines the ambient metric gA to infinite order at N ×{0}, while for n even, it only

determines it up to order n/2. This is a consequence of the mechanism by which these

metrics are generated. This is outlined here for ambient metrics, but in Appendix A we
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will give a more precise derivation of the formulae in the equivalent setting of Poincaré

metrics.

Roughly speaking, the equation Ric(gA) = 0 at N × {0} is used to generate recursively

the terms of the formal expansion of gρ, with initial condition gρ=0 = γ. The m-th order

coefficient in the expansion satisfies the following equation, which arises from taking

derivatives of the equation Ric(gA) = 0 and evaluating at N(n
2
−m

)
∂mρ gρ

∣∣
ρ=0

= RHS(gρ, ∂
m′<m
ρ gρ)

∣∣∣
ρ=0

(2.31)

whereRHS(gρ, ∂
m′<m
ρ gρ) indicates that the RHS of (2.31) depends on gρ (and its inverse

g−1
ρ ) and derivatives in ρ of order lower than m. There also appear derivatives of them

in the variables xi up to second order. If n is odd or n = 2, one can impose Ric(gA) = 0

to infinite order at N × {0} and the generation of polynomial terms in the expansion

goes on to infinite order. The situation is more subtle if n is even and larger than two.

In this case, the equation Ric(gA) = 0 to the order ρn/2 at N ×{0}, cannot be satisfied

by a formal power series expansion, because the factor in the LHS of (2.31) vanishes

identically. One says then that the existence of the power series is obstructed by the

presence of the so-called obstruction tensor O, which is essentially given by the RHS of

(2.31) with m = n/2. If this tensor, which entirely depends on γ, is non-zero, one must

include logarithmic terms in the expansion in order to satisfy the equations (2.31) at

order ρn/2. The logarithmic terms spoil smoothness, but allow one to keep the expansion

so that Ric(gA) = 0 holds to infinite order at N × {0}. Hence, smooth solutions are

determined by the metric γ only up to order ρn/2.

The obstruction tensor has interesting properties, which we give in the next theorem.

As a tensor determined by a metric γ, we shall denote its explicit dependence by O(γ)

if necessary.

Teorema 2.22 (Fefferman-Graham [50]). Let n ≥ 4 be even. The obstruction tensor

Oij depends only on the geometry of (Σ, γ) and

1. It admits a covariant expression in terms of γ, the contravariant metric γ], Ric(γ)

and its covariant derivatives.

2. Oij is traceless and divergence-free.

3. Oij is conformally covariant of weight n − 2, i.e. O(ω2γ) = ω2−nO(γ) for every

smooth positive function of Σ.

4. If γ is conformally Einstein, then Oij = 0. In particular if γ is locally conformally

flat Oij = 0.

Coming back to the series expansion, if n ≥ 4 is even we already indicated that one can

continue generating terms in the expansion so Ric(gA) = 0 to infinite order at N × {0}
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provided smoothness is dropped and only finite differentiability up to order n/2 at ρ = 0

is required. The metric is no longer a formal power series expansion, but it is called

polyhomogeneous expansion, because of the presence of logarithmic terms. Moreover,

one can freely prescribe a TT tensor which appears multiplying a power ρn/2 without

logarithms in the expansion. This is possible precisely because the equation Ric(gA) = 0

(cf. (2.31)) does not determine this term. On the other hand, its trace and divergence

cannot be prescribed because they are determined by geometric identities, also coming

from the vanishing of Ric(gA) at N .

If is n odd, something similar happens in the non-smooth case, in the sense that an

undetermined TT tensor multiplying the half-integer power ρn/2 can also be prescribed.

The presence of such a term clearly means that the ambient metric is no longer smooth.

However, the situation is different in the case of Poincaré metrics where a corresponding

free term can be added without spoiling differentiability of the metric to all orders.

Indeed, this undertermined term plays a key role in the free data at null infinity in the

context of Poincaré metrics, as we will see in Appendix A.

Because of their different behaviour, we state the existence results for generalized am-

bient metrics into separate Theorems for n even and n odd.

Teorema 2.23 (Fefferman-Graham [50]). Let (Σ, [γ]) be a conformal n-manifold with n

odd, and let γ ∈ [γ] be a representative of the conformal class. Let also h be a symmetric

TT tensor of (Σ, [γ]). Then, there exists a generalized ambient metric gA for γ

(gA)IJ = ψ
(0)
IJ + ψ

(1)
IJ |ρ|

n/2

where ψ(0) and ψ(1) extend smoothly to ρ = 0 and ψij |ρ=0 = t2hij. These conditions

uniquely determine the coefficients of the Taylor expansions at ρ = 0 of ψ(0) and ψ(1) to

infinite order.

Teorema 2.24 (Fefferman-Graham [50]). Let (Σ, [γ]) be a conformal n-manifold with

n even, γ ∈ [γ] be a representative of the conformal class and h a symmetric two-tensor

on Σ. Then, there exist a one-form b(γ) and a scalar a(γ), both covariantly determined

by γ, such that if Trγh = a(γ) and divγh = b(γ), then there exists a generalized ambient

metric gA for γ

(gA)IJ =
∞∑
N=0

ψ
(N)
IJ (ρn/2 log |ρ|)N ,

such that every ψ(N) extend smoothly to ρ = 0 and ∂
n/2
ρ (ψ)

(0)
ij = (n/2)! t2hij at ρ = 0.

These conditions uniquely determine the Taylor expansions at ρ = 0 of ψ
(N)
IJ to infinite

order. Moreover gA is smooth if and only if the obstruction tensor vanishes. If n = 2,

then the obstruction tensor is identically zero, b(γ) = 1
2λd(Scal(γ)) and a = 1

λScal(γ).
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2.3.2 Poincaré metrics

We now review the main ideas on the Poincaré (smooth) metrics and generalized Poincaré

metrics, which as in the case of ambient metrics are not necessarily smooth if n is even.

We denote both such metrics g̃. The construction arises by imposing certain asymp-

totic behaviour which makes g̃ asymptotically Einstein to certain order with I being a

prescribed conformal manifold (Σ, [γ]).

Let (Σ, [γ]) be a conformal n-manifold of signature (n+, n−). A Poincaré metric g̃ is a

smooth (n+ 1)-metric of signature (n+ + 1, n−) or (n+, n−+ 1) defined in the interior of

a manifold M̃ := Int(M) with boundary Σ = ∂M. The manifoldM is a neighbourhood

of [0,∞) × Σ, where g̃ admits a smooth conformal extension g = Ω2g̃ with prescribed

conformal infinity I := (Σ, [γ]). InM, Ω is a defining function of {0}×Σ ⊂ [0,∞)×Σ

and we understand Σ inM as the image of the embedding i : Σ ↪→ Σ× [0,∞) such that

i(Σ) = Σ × {0}. Moreover, Poincaré metrics are asymptotically Einstein, with decay

rate depending on the parity of n. For the n even case, we adapt the Definition 2.19 of

O+ to the case of Poincaré metrics

Definicin 2.25. A symmetric 2-tensor field S of M is O+(Ωm) if S = O(Ωm) and

Trγi
?(Ω−mS|Σ) = 0.

With this notation we can give the formal definitions [48], [50]:

Definicin 2.26. Let (Σ, [γ]) be a conformal n-manifold of signature (n+, n−) and λ a

positive (resp. negative) real constant. A Poincaré metric for (Σ, [γ]), is a smooth metric

g̃ of signature (n+ +1, n−) (resp. (n+, n−+1)) admitting a smooth conformal extension

such that I = (Σ, [γ]) and

1. If n = 2 or n ≥ 3 and odd, Ric(g̃)− λng̃ vanishes to infinite order at Σ.

2. If n ≥ 4 and even, Ric(g̃)− λng̃ is O+(Ωn−2).

A Poincaré metric is by definition asymptotically Einstein, so in particular it is ACC.

Hence, by Lemma 2.10, for each boundary metric γ ∈ [γ] there exists a geodesic confor-

mal extension g = Ω2g̃. We now define

Definicin 2.27. An ACC metric is said to be in normal form w.r.t. a boundary metric

γ if

g̃ =
1

Ω2

(
−dΩ2

λ
+ gΩ

)
, g =

(
−dΩ2

λ
+ gΩ

)
, (2.32)

where gΩ is the metric induced on the leaves ΣΩ by g and gΩ |Ω=0= γ.

Associated to each geodesic extension, there exists a set of Gaussian coordinates {Ω, xi}
in which g and g̃ are in normal form. These coordinates are most adequate for working

with Poincaré metrics and will be assumed from now on unless otherwise specified.
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For a given ambient metric gA, one can asign a Poincaré metric in the region ρ < 0 and

another Poincaré metric in the region ρ > 0. They are obtained by restricting gA onto

the “hyperboloids“ Hλ := G ∩ {|τ |2 = λ−1}, for a real non-zero constant λ−1 ∈ R with

sign(λ) := sign(ρ). Writing gA as in (2.30), and changing the local coordinates {t, xi, ρ}
to {s, xi,Ω} by setting ρ =: Ω2/(2λ) and s := Ωt, with Ω > 0, we obtain |τ |2 = λ−1s2

thus Hλ = G ∩ {s = 1}. Note that the constant λ dissapears from the definition of Hλ
because the coordinates {Ω, s} do not cover both regions ρ > 0 and ρ < 0 simultaneously.

In terms of the new coordinates the ambient metric is

gA =
ds2

λ
+
s2

Ω2

(
−dΩ2

λ
+ gΩ

)
=

ds2

λ
+ s2g̃ with g̃ :=

1

Ω2

(
−dΩ2

λ
+ gΩ

)
,(2.33)

where gΩ is the one-parameter family of metrics gρ reparametrized by ρ = Ω2/(2λ). The

Ricci flatness of Ric(gA) at N × {0} translates [50] into the Einstein asymptoticity for

g̃, according to Defintion 2.26. In other words, g̃ is a Poincaré metric in normal form

for γ.

Regardless of the value of λ, the metric on each hypersurface Hλ is a Poincaré metric in

normal form, inducing the same initial data at I , which actually is the projectivization

of N , i.e. (Σ, [γ]). This is interesting from the point of view of the asymptotic Cauchy

problem of GR, to which section 2.4 is devoted. The Poincaré metric in the interior

region ρ < 0 gives an asymptotic solution of the Λ < 0 vacuum Einstein equations

with prescribed boundary data at I , while the one in the exterior region ρ > 0 gives

an asymptotic solution the Λ > 0 vacuum Einstein equations propagating the initial

data at I . Thus, both Poincaré metrics are in a certain sense analogue, but not equal

(in particular, their signatures are different). To understand this correspondence it is

useful to bear in mind the example of the conformal n-sphere in subsection 2.2.1. As

we are interested in the Λ > 0 case, we restrict ourselves to such values. Instead, the

original publication [50] concentrates on the the Λ < 0 case, so one must be careful when

comparing the corresponding expressions.

Another important observation is that it is common in the literature (e.g. [5, 6, 50]) to

fix the parameter λ to 1. From a geometrical point of view, this means choosing the hy-

persurface Hλ=1 to define the Poincaré metric. This certainly simplifies the calculations.

However, from a physical point of view it is desirable to keep track of the role that the

cosmological constant plays in the expressions. Another benefit is that it allows one to

make consistency checks on the calculations. This is because the expression obtained

by setting λ = 1 in a formula with general λ must agree with the expression obtained

by scaling the conformal factor by λ1/2 in the same formula, as follows from the next

argument. Given a Poincaré metric g̃ with constant λ it follows that g̃λ := λg̃ is a

Poincaré metric with λ = 1, as we show next. Firstly, Ric(g̃λ)−ng̃λ = Ric(g̃)−nλg̃ as a

consequence of the invariance of the Ricci tensor under scaling of the metric. Secondly,

fix a conformal extension of the original metric so that g = Ω2g̃ = λ−1Ω2g̃λ. This means

that the conformal factor Ωλ = λ−1/2Ω defines a conformal extension of g̃λ. Both things
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together show that g̃λ is a Poincaré metric with λ = 1 according to Definition 2.26. It

follows at once from the expression of g̃ in (2.33) that the expressions with λ = 1 can be

generalized to an arbitrary value of λ upon scaling the conformal factor by λ−1/2 (and

vice versa).

The Poincaré metrics are recursively generated from the asymptotic Einstein equations,

just like ambient metrics are generated from Ricci flatness at N × {0}. Indeed, the

equations for gρ obtained from Ric(gA) = 0 at N ×{0} are, after redefining ρ = Ω2/2λ,

exactly the same as those obtained for gΩ from Ric(g̃)−λg̃ = 0 at {Ω = 0}. In the n odd

or n = 2 cases, the equations for ambient metrics generate a smooth metric to infinite

order, uniquely determined at ρ = 0 by the metric γ. The corresponding Poincaré metric

is smooth and even in Ω to infinite order. For n even case, the smooth power expansion

of the ambient metrics is obstructed at the order ρn/2. Consequently, so are the Poincaré

metrics at order n. Moreover, the expansion of the smooth Poincaré metric is also even

in all orders previous to the n.

The asymptotic expansions for gρ in Theorems 2.23 and 2.24 are translated into an

asymptotic expansion for gΩ, which will be called Fefferman-Graham (FG) expansion.

Explicitly, this has the form

gΩ ∼
(n−1)/2∑
s=0

g(2s)Ω
2s +

∞∑
s=n

g(s)Ω
s, if n is odd, (2.34)

gΩ ∼
∞∑
s=0

g(2s)Ω
2s +

∞∑
s=n/2

mt∑
t=1

O(s,t)Ω
2s(log Ω)t, if n is even, (2.35)

where ms ≤ 2s− n+ 1 in an integer for each s, the coefficients g(s) are objects defined

at I and extended to Σ as independent of Ω. The first logartighmit term involves

O(n/2,1) which is precisely the obstruction tensor O in Theorem 2.22. These expansions

can be generated independently of the ambient construction and we devote Appendix

A to doing so in the particular case of vanishing obstruction tensor. In the rest of this

subsection, we describe the main properties of the FG expansions and provide existence

results analogous to Theorems 2.23 and 2.24.

The n odd case (2.34) contains even powers of Ω up to order 2s < n. They are recursively

generated only from the zero-th order, i.e. the boundary metric γ. The n-th order term

g(n) is a symmetric TT tensor and independent of previous coefficients. Terms of order

s > n may be even or odd and are generated exclusively from (γ, g(n)). Thus, a unique

FG expansion arises from any pair of tensors (γ, g(n)), with γ symmetric of signature

(n+, n−) and g(n) TT w.r.t. γ. Observe that, unlike in the case of ambient metrics,

the n-th order (which corresponds to term ρn/2 in the ambient metric) and subsequent

odd order terms, do not entail any loss of smoothness. The convergence of such series

in a neighbourhood of I or existence and uniqueness of non-analytic solutions will be

addressed in section 2.4.
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In the n even case, the expansion (2.35) is even in all powers of Ω and also contains

logarithmic terms. Up to order 2s < n, all terms are generated by the boundary metric γ.

At the order n, two coefficients appear: g(n), which multiplies solely Ωn, andO = O(n/2,1)

which multiplies the first logarithmic term Ωn log Ω. The obstruction tensor O as well

as the trace and divergence of g(n), are determined exlusively by γ. One can always

add to g(n) an arbitrary TT term g̊(n), so that the asymptotic Einstein equations are

still satisfied. Hence, in this case the boundary metric γ and the n-th order coefficient

g(n) with trace and divergence fixed by γ, determine a unique FG expansion. If the

obstruction tensor does not vanish, the logarithmic term makes the series non-smooth.

Therefore, these metrics do not fulfill all the requirements for being Poincaré metrics.

We shall call them Fefferman-Graham-Poincaré (FGP) metrics. Specifically:

Definicin 2.28. In n + 1 dimensions, with n even or odd, a Fefferman-Graham-

Poincaré (FGP) metric is a metric satisfying the Einstein equations to infinite order

at I .

In other words, a FGP is an asymptotically Einstein metric (cf. Definition 2.5) to

infinite order. The convergence of the asymptotic series of FGP metrics with n even will

be addressed in section 2.4. Unfortunately, there are no yet existence and uniqueness

results for the non-analytic case with n even.

We now summarize the above discussion in a lemma for future referrence. All the

properties in Lemma 2.29 which refer to the zero obstruction case are proven in Appendix

A.

Lemma 2.29 (Properties of the FG expansion).

1. Each coefficient g(s) with 0 < s < n depends on previous order coefficients up to

order g(s−2) and tangential derivatives of them up to second order. This is also

true for n < s if n odd or n even with O = 0. If n is even and O 6= 0, the terms

g(s) and O(s,t) with n < s depend on previous terms up to order g(s−2) and O(s−2,t).

2. Up to order n, both expansions (2.34), (2.35) are even and all terms g(s) with s < n

or s = n + 1 (but not s = n) are solely generated from γ. If n is even, O is also

generated from γ.

3. The n-th order coefficient g(n) is independent on previous terms except for

Trγg(n) = a, divγg(n) = b,

where a = 0, b = 0 for n odd and a is a scalar and b a one-form determined by γ

for n even.

So far we have not discussed existence results of FGP metrics. We emphazise that

these existence results are not of Einstein metrics, since the equations are only satisfied



48

asymptotically at infinite order. We conclude this section with an existence result due

to Fefferman and Graham.

Teorema 2.30 (Fefferman-Graham [50]). Let (Σ, γ) be a pseudo-Riemannian manifold

of signature (n+, n−) and let h be a symmetric two-tensor of Σ.

• If n = 2 and if divγh = 1
2λd(Scal(γ)) and Trγh = 1

λScal(γ), there exists an even

(i.e. with only non-zero coefficients of even order) Poincaré metric g in normal

form w.r.t γ which admits an expansion of the form (2.35) (with O(r,s) = 0) and

g(2) = h.

• If n ≥ 3 is odd and if divγh = 0 and Trγh = 0, there exists a Poincaré metric g

in normal form w.r.t γ, which admits an expansion of the form (2.34) such that

g(n) = h (in particular, trace-free).

• If n ≥ 4 is even, there exist a one-form b(γ) and a scalar a(γ), both covariantly

determined by γ, in such a way that if divγh = b(γ) and Trγ(h) = a(γ), then

there exists a FGP in normal form w.r.t. γ which admits an expansion of the form

(2.35) such that g(n) = h. The solution is smooth if and only if the obstruction

tensor of γ vanishes.

2.4 Asymptotic initial value problems in GR

In this section we review the asymptotic Cauchy problem in general relativity. In sub-

section 2.4.1 we construct the Friedrich’s conformal field equations (FCFE) [56, 57].

Although these can be formulated in any dimension, they are adequate for initial value

problems only in four spacetime dimensions. In subsection 2.4.2 we give higher dimen-

sional results which, as advanced in section 2.3, are based in the Fefferman and Graham

formalism. We focus on well-possedness results for the asymptotic initial value problem.

As already mentioned, we make special emphasis in the case of Lorentzian metrics solving

Λ > 0 vacuum Einstein’s equations (2.19). For other values of the cosmological constant

one can pose other asymptotic problems, such as initial-boundary value problems (Λ < 0)

or characteristic initial value problems (Λ = 0). We shall not discuss them in any detail

here and will just mention some fundamental results and references.

2.4.1 Friedrich’s Conformal Field Equations

For the derivation in this section we follow [63]. Consider an (n + 1)-dimensional

Lorentzian metric g with n ≥ 2. Using the Bianchi identity ∇[σR
µ
|α|νβ] = 0, it fol-

lows from (2.11)

∇[σC
µ
|α|νβ] = 2∇[σ

(
P|α|νδ

µ
β]

)
+ 2∇[σ

(
g|α|νP

µ
β]

)
. (2.36)
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Contracting the indices σ and µ we are left with

∇µCµανβ = 2(n− 2)∇[νPβ]α − 2gαβ∇[µP
µ
ν] + 2gαν∇[µP

µ
β]. (2.37)

Since C is traceless, contraction of the indices α and β fields

0 = ∇[νP
µ
µ], (2.38)

which is just a rewriting of the divergence-free property of the Einstein tensor. Hence

∇µCµανβ = 2(n− 2)∇[νPβ]α. (2.39)

Now let (M̃, g̃) be an (n+1)-Lorentzian Einstein manifold and let (M, g) be a conformal

extension g = Ω2g̃. As usual, let ∇, ∇̃ denote their respective Levi-Civita connections.

By conformal invariance, we can replace the Weyl tensor C̃µανβ of g̃ by Cµανβ . Equation

(2.37) for g̃ is

∇̃µCµανβ = 0. (2.40)

The divergence free property of a tensor with the symmetries of the Weyl tensor is a

conformally covariant property (cf. Lemma 2.1). Specifically, the following identity

holds

∇µ(Ω2−nCµανβ) = Ω2−n∇̃µCµανβ = 0.

Hence, the rescaled Weyl tensor defined by

cµανβ := Ω2−nCµανβ (2.41)

satisfies the following Bianchi equation

∇µcµανβ = 0. (2.42)

The tensor c is in a certain sense the fundamental object in the FCFE. Equation (2.11)

can obviously be rewritten as

Ωn−2cµανβ = Rµανβ + 2Pα[νδ
µ
β] + 2gα[νP

µ
β]. (2.43)

In terms of c and after using (2.42), expression (2.39) takes the form,

Ωn−3(∇µΩ)cµανβ = 2∇[νPβ]α. (2.44)

In order to obtain equations for the conformal factor we use the transformation law

(2.12). Firstly, observe that the Einstein equations for g̃ are

P̃αβ =
λ

2
g̃αβ, (2.45)
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and its trace gives P̃ := g̃αβPαβ = (n+ 1)λ/2. Taking trace with g] in (2.12) gives

P̃ = Ω2P + Ω∇µ∇µΩ− n+ 1

2
∇µΩ∇µΩ. (2.46)

Substuting λ/2 = P̃ /(n+1) and using (2.46), the Einstein equation (2.45) can be written

in the form

P̃αβ =

(
P

n+ 1
+

1

n+ 1

∇µ∇µΩ

Ω
− ∇µΩ∇µΩ

2Ω2

)
gαβ

which has the advantage that λ is no longer explicit and it only involves geometric

quantities associated to g. Inserting this into (2.12) yields the equation for the conformal

factor in the FCFE, namely

∇β∇αΩ = −ΩPβα + sgβα, (2.47)

where

s :=
1

n+ 1
∇µ∇µΩ +

1

n+ 1
PΩ. (2.48)

Observe that this equation makes no reference to the value of λ. Taking a derivative ∇ν
in (2.47), commuting ∇ν and ∇β in the LHS and contracting with gνα one obtain

∇β∇ν∇νΩ +Rµβ∇µΩ = −(∇νΩ)P νβ − Ω∇νP νβ +∇βs. (2.49)

The Ricci tensor can be written in terms of the Schouten tensor as

Rµβ = Pδµβ + (n− 1)Pµβ. (2.50)

Using (2.48), (2.50) and (2.38) in (2.49) gives another of the FCFE, namely

∇βs = −(∇νΩ)P νβ. (2.51)

The last equation in the FCFE is for the cosmological constant. It is obtained directly

from λ = 2P̃ /(n + 1), replacing P̃ from and using the definition of s in (2.48). The

result is

λ = 2Ωs−∇µ∇µΩ. (2.52)

Observe that (2.47) and (2.51) imply that the RHS of (2.52) is constant, so this equation

only needs to hold at one point.

Definicin 2.31. The Friedrich conformal field equations (FCFE) is the sys-

tem of equations (2.42), (2.43), (2.44), (2.47), (2.51) and (2.52) for the unknowns

{gαβ,Ω, s, Pαβ, cµανβ}.

A remarkable feature of the FCFE, is that they extend regularly to I . This allows one to

pose a Cauchy problem at I . Another important property is that the conformal factor

Ω, despite being one of the variables of the FCFE, possesses a large gauge freedom. This

is obvious if one observes that the FCFE are satisfied for every metric g and conformal
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factor Ω related to an Einstein metric g̃ by g = Ω2g̃. On the one hand, this allows

one to choose the best conformal gauge in order to manipulate the equations. It also

implies that the initial data have a large residual conformal gauge freedom (cf. Theorem

2.34). Before getting deeper into these facts, we shall make an observation concerning

the dimensions in which the FCFE provides a well-posed system of equations.

As it is well-known (e.g. [63]), that from the full Bianchi identity (2.36) for the physical

metric g̃

∇̃σCµανβ + ∇̃νCµαβσ + ∇̃βCµασν = 0,

one can extract a subsystem of hyperbolic equations. Moreover [63], in the four di-

mensional case, i.e. n = 3, the full Bianchi identity is equivalent to the contracted one

(2.40). Thus, equation (2.42) implies hyperbolic equations for c for n = 3. In the higher

dimensional case this is no longer true, as the contracted Bianchi identity can no longer

provide sufficient evolution equations for the rescaled Weyl tensor. One could attempt

finding a suitable set of evolution equations using the full Bianchi identity. This, how-

ever, cannot be done in such a way that the system remains regular at I [63]. Hence,

for the higher dimensional problem one must find a different system of equations.

We now come back to the initial value problem of the FCFE at I . As discussed in

section 2.2, the causal character of I is determined by the sign of the cosmological

constant. This, in turn, determines the nature of the asymptotic PDE problem. We

start by describing very briefly the Λ = 0 and Λ < 0 cases and the concentrate on the

Λ > 0 case

In the Λ = 0 case I is degenerate and the initial value problem is characteristic. Roughly

speaking, this means that one of the natural directions of propagation of the initial data

(determined by the equations) is parallel to the initial hypersurface. In order to obtain

a well-posed problem (see [128] and also [90]), one must suplement the data at I −

with data on an outgoing null hypersurface K , which intersects I − in a 2-dimensional

spacelike surface (Figure 2.6). In the negative Λ case I is timelike, so instead of an

initial surface it defines a boundary. One can consider an initial-boundary problem,

setting data on a hypersurface Σ which intersects I (Figure 2.6), where a boundary

condition is imposed. In [59], a geometric uniqueness result is achieved for a certain

class of boundary conditions. In [64] the problem with general boundary conditions is

considered.

In the positive Λ case I is spacelike and the problem turns out to be well-posed [58].

The system admits a reduction to a symmetric hyperbolic system of evolution equations

(see [60]), which propagate the constraints. Then, the local existence and uniqueness of

a spacetime evolving (Figure 2.6) from data at I − is guaranteed by standard theorems

(e.g. [146]). Existence and uniqueness can be used for local characterization of space-

times, but we must restrict the spacetime to the patch evolving from I −. In this patch
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Figure 2.6: Asymptotic data problems from left to right: characteristic initial value
problem, initial-boundary value problem and inital value problem.

I = I − (Figure 2.6), and for this reason, we will not explicitly distinguish different

components of I in this context.

In order to give the freely specifiable data for this problem, we must first define the

electric part of the rescaled Weyl tensor (2.41) w.r.t. to the normal u:

Definicin 2.32. The electric part of the Weyl tensor C and of the rescaled Weyl

tensor c w.r.t. to a unit vector u are, respectively

(C⊥)αβ := Cµανβuµu
ν , (c⊥)αβ := cµανβuµu

ν .

If u is normal to I the I -electric part of the rescaled Weyl tensor is

Dαβ := (c⊥)αβ|I . (2.53)

Observe that D is tangent to I .

Each set of initial data is (Σ, γ,D), with (Σ, γ) a Riemannian manifold which prescribes

the geometry of I , and D a TT tensor which prescribes the I -electric part of the

rescaled Weyl tensor. Then, we define

Definicin 2.33. An asymptotic data set for n = 3 is the triad (Σ, γ,D), where (Σ, γ)

is a Riemannian 3-manifold and D is a symmetric two-tensor, TT w.r.t. γ.

As mentioned after Definition 2.31, the freely specifiable data at I possesses a large

gauge group arising from the conformal freedom in the FCFE. For every smooth positive

function ω of Σ, the following equivalence of data holds

(Σ, γ,D) ' (Σ, ω2γ, ω2−nD), (2.54)

which we write for arbitrary n for later use, even though at this point n has been fixed

to n = 3. In other words, the equivalence (2.54) defines the class ([γ], [D]) in Σ, whose

elements are given by the following conformal behaviour. If γ ∈ [γ] and D ∈ [D] are two

representatives, with D being TT w.r.t. γ, then any other pair γ′ ∈ [γ] and D′ ∈ [D]

must be

γ′ = ω2γ, D′ = ω2−nD,
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for ω a smooth, positive function of Σ. The fact that D is TT w.r.t γ if and only if D′

is TT w.r.t γ′ is a direct consequence of Lemma 2.1.

We can now summarize the above discussion in the following theorem:

Teorema 2.34 (Friedrich [58]). Let (Σ, γ,D) an asymptotic initial data set for n = 3.

Then, there exists a unique, maximal, globally hyperbolic solution (M̃, g̃) of (2.19), ad-

mitting a smooth conformal extension g = Ω2g̃, which induces the boundary metric γ and

the I -electric part of rescaled Weyl tensor (2.53) coincides with D. Each representative

in the class (Σ, [γ], [D]) determines the same physical metric g̃, but different conformal

extensions.

Since the initial data determine a unique spacetime, they must store all the information

within them. Sometimes this information can be made very explicit. One example is

determining necessary and sufficient conditions that the initial data set must satisfy in

order for the evolving spacetime to have a Killing vector field. These are the so-called

Killing Initial Data (KID) equations. Originally formulated for the Cauchy problem of

the Einstein equations (see [17] and [31]), the same idea can be applied for the asymptotic

Cauchy problem of the FCFE (see [115] for the characteristic case and [28] for the initial-

boundary problem). We are specially interested in the spacelike I case [116]. In this

case, the KID equations are particularly simple. They are given by a unique geometric

formula which depends on a CKVF ξ of γ which, a posteriori, is the restriction at I

of the Killing vector field ζ that the spacetime admits. As one could expect, the KID

equations are conformally well-behaved.

Teorema 2.35 (Paetz [116]). The spacetime corresponding to an asymptotic data set

(Σ, γ,D) for n = 3 admits a Killing vector field if and only if there exists a CKVF ξ of

γ such that

LξD +
1

3
(divγξ)D = 0. (2.55)

The same KID equation (2.55) is satisfied for any two representatives γ′, D′ of the classes

[γ], [D].

We also define

Definicin 2.36. An asymptotic Killing initial data set (asymptotic KID) for

(Σ, γ,D, ξ) is an asymptotic initial data set (Σ, γ,D) with a CKVF ξ satisfying the

KID equation.

Observacin 2.37. It is interesting to notice that the diffeomorphism equivalence of data

implies that, for any diffeomorphism φ, the asymptotic KID (Σ, φ?(γ), φ?(D), φ−1
? (ξ)) is

equivalent to (Σ, γ,D, ξ). Let now φ ∈ ConfLoc(Σ, γ) be defined in an open subset

U ⊂ Σ (cf. Definition 2.15) and assume that U ′ = φ(U) ∩ U 6= ∅. Then, in U ′, the

data (Σ, φ?(γ), φ?(D), φ−1
? (ξ)) = (Σ, ω2γ, ω2−nD,φ−1

? (ξ)) is, using the conformal gauge

freedom, equivalent to (Σ, γ,D, φ−1
? (ξ)). That is, the conformal class of CKVFs as given
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in Definition 2.17 establishes an equivalence between CKVFs (restricted to U ′) of the

data generating the same symmetry.

In order to either select the desired conformal representative (of ξ and/or for γ) we shall

often use this equivalence through local diffeomorphisms in ConfLoc(Σ, γ). For this to

make sense, we must restrict to the open subset U ′ of Σ where this equivalence holds.

When this happens, we implicitly restrict Σ = U ′.

2.4.2 Higher dimensional results

The higher dimensional asymptotic Cauchy problem of general relativity relies in the

Fefferman and Graham formalism, already introduced in Section 2.3. In this subsection

we describe the existence and uniqueness results that we shall require.

In subsection 2.3.2, we have explained how to associate a formal power or polyhomo-

geneous series to a FPG metric g̃. The metric induces data γ and g(n), from which a

unique FG series arises. In particular, this is also true for Einstein metrics. Recall that

the trace and divergence of g(n) are given by a scalar a(γ) and a one-form b(γ) deter-

mined by γ (cf. Lemma A.7). The converse is more delicate, namely, whether for data

(γ, g(n)) (equivalently, for a FG expansion), there exists a unique conformally extendable

Einstein metric g̃ realizing these data at I . The question is answered affirmatively for

arbitrary n if the initial data are analytic [48, 50, 87] and in the general case if n is odd

[6, 7, 86, 129].

If (γ, g(n)) are in the analytic class, standard convergence results for Fuchsian problems

[14] can be applied to establish convergence of the FG expansion when the obstruction

tensor vanishes [48, 50]. These results hold regardless of the signature of γ. In the case

of non-vanishing obstruction tensor, Kichenassamy [87] has established convergence in

a neighbourhood of I (see also [129]). This result is proven under the assumption of

the boundary metric γ being Riemannian.

Hence, analyticity of the data is sufficient to prove convergence of the FG series ex-

pansion, irrespectively of whether the obstruction tensor is zero or not. When the

obstruction tensor is zero, the metric g̃ defined by the (convergent) power series is ana-

lytic (in the sense that the Taylor series converges to the metric). Therefore, so are all

its derivatives and in particular, the tensor Ric(g̃)−λg̃. This tensor vanishes to infinite

order at I and analiticity implies that it vanishes in a neighbourhood of I , i.e. g̃ is

Einstein in that neighbourhood. When the obstruction tensor is non-zero, the propaga-

tion of the Einstein equations away from I is not so immediate, but can also be proven5

[87]. Observe that although the conformal metric in this case is no longer smooth at I ,

the form of FG expansion (2.35) shows that the geodesic extension g = Ω2g̃ still extends

5Reference [87] actually proves Ricci flatness of the ambient metric in a neighbourhood of N , but
this condition is known to be equivalent [50] to the associated Poincaré metric being Einstein in a
neighbourhood of I .
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as a Cn metric to I . So sufficient differentiability is always granted to define curvature

tensors at I of the conformal metric.

Therefore, in the analytic case we can bypass the difficulty of finding an equivalent

system to the Einstein equations which admits a well-posed asymptotic initial value

problem (see discussion below Definition 2.31). However, analytic data are restrictive

and it is clearly of interest to see if such equivalent system of equations can be found. In

[6] one such system is found when n is odd, thus extending the existence and uniqueness

results beyond the analytic case. Anderson proposes to use the obstruction tensor as a

replacement of the Einstein equations. The obstruction tensor is known to vanish for

metrics conformal to an Einstein metric (cf. Theorem 2.22). Thus, denoting O(g̃) the

obstruction tensor of g̃, Anderson proposed studying well-posedness of the equation

O(g̃) = 0. (2.56)

Using the conformal gauge freedom and harmonic coordinates (i.e. satisying �xα = 0)

and assuming that g̃ is Lorentzian, the author is able to reduce (2.56) to a hyperbolic

system of equations. The Cauchy problem for this equation admits many solutions

which are not conformal to an Einstein metric, but constraining appropriately the initial

data one can show that the solution is conformally Einstein. Moreover, by conformal

covariance there is no problem in setting up initial data directly at I . Recall that, as

mentioned in the introduction, the first two proofs of Andeson’s theorem in [6] and [7]

are not fully correct, and they have been recently amended in [86].

In both the analytic case and in Anderson’s approach, the final outcome is that one can

associate an Einstein metric g̃ to each FG expansions. Thus, the free data (Σ, γ, D̂) must

generate the corresponding FG expansion. Namely, the Riemannian metric γ prescribes

the geometry of I , i.e. the zero-th order coefficient g(0), while the tensor D̂ prescribes

the n-th order coefficient in the FG expansion g(n). For n > 3, the relation of the latter

with the electric part of the rescaled Weyl tensor at I is limited to few cases, as we will

see in Chapter 5. Observe that for n odd D̂ is always TT w.r.t. γ while for n even D̂ has

trace and divergence determined by γ, by the scalar a(γ) and the one-form b(γ) given

in Appendix (A) (cf. Lemma A.7). Thus, we generalize the Definition 2.33 to arbitrary

n

Definicin 2.38. An asymptotic data set is the triad (Σ, γ, D̂), where (Σ, γ) is a

Riemannian n-manifold and D̂ a symmetric two-tensor whose trace and divergence are

determined by γ through the scalar a(γ) and the one-form b(γ) in Lemma A.7. In

particular for n odd D̂ is a TT tensor w.r.t. γ.

If n is odd, the conformal equivalence of data is the same as in the n = 3 case, in the

sense that conformal class of data (Σ, [γ], [D̂]) defined by (2.54) determine the same

physical solution (cf. [6]). If n is even, this is more subtle because D̂ has generically

non-zero trace and divergence. First, we remark that the constraint equations divγD̂ =
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b(γ), TrγD̂ = a(γ) can always be locally solved6 for any metric γ (cf. [50]). In order to

determine the class of equivalent data (Σ, [γ], [D̂]), one fixes a representative of the class

of metrics γ and D̂0 a solution to the constraint equations divγD̂0 = b(γ), TrγD̂0 = a(γ).

Whenever one knows that the data (Σ, γ, D̂0) correspond to a unique Einstein metric g̃0,

a conformal change of boundary metric γ′ = ω2γ determines a unique geodesic conformal

factor Ω′ for which Ω′2g̃0 induces a new n-th order coefficient g′(n) =: D̂′0. The tensor D̂′0

satisfies the constraint equations divγ′D̂
′
0 = b(γ′), Trγ′D̂

′
0 = a(γ′) and it is computable

in terms of ω, γ and D̂0. This defines the conformal class [D̂0], although the explicit

transformation formula is hard to be given with generality. If one can select “canonical”

background data (Σ, γ, D̂0) for which the conformal class [D̂0] is computable, then one

could define a free TT part D := D̂ − D̂0 for every tensor D̂ satisfying the constraint

equations. Notice that the fact that D is TT is immediate as the trace and divergence of

D̂ and D̂0 must be equal because they are determined exclusively by γ. Also, notice that

knowning (Σ, γ, D̂) implies knowing (Σ, γ,D) and viceversa. Then, one expects that the

free part D behaves as ω2−nD under conformal scalings of the boundary metric. This

is what we achieve in the conformally flat I case, by selecting de Sitter as reference

spacetime (see Definition 5.12). Moreover, in this case we prove that the free part

coincides, up to a constant factor, with the electric part of the rescaled Weyl tensor

at I (cf. Theorem 5.14), so the conformal tranformation formula is immediate. For

this reason, our results do not require a general explicit tranformation formula for the

equivalence classes of data, although it would be interesting to study and clarify this

issue.

Teorema 2.39. Let (Σ, γ, D̂) be an asymptotic initial data set. If n is odd [6, 7, 86] or if

γ, D̂ are analytic [48, 50, 87], then there exists a unique metric g̃, which solves (2.19) and

admits a conformal extension such that the boundary metric can be identified with (Σ, γ)

and D̂ prescribes g(n), the n-th order coefficient of its FG expansion. Each representative

in the class (Σ, [γ], [D̂]) determines the same physical metric g̃, but different conformal

extensions.

In this thesis we shall discuss the extension of Theorem 2.35 to higher dimensional cases.

Namely, what are the necessary and sufficient conditions for n-dimensional asymptotic

KID to generate a symmetry. For the cases studied, the result is a natural extension of

formula (2.55) (cf. Theorem 5.18), namely

Lξg(n) +
n− 2

n
divγ(ξ)g(n) = 0.

We remark that the definition of asymptotic KID in arbitrary dimension is completely

analogous to Definition 2.36, but with n-dimensional asymptotic data (cf. Definition

2.38 below) and the n-dimensional KID equation. For asymptotic KID in higher di-

mension, the equivalence of data in Remark 2.37 under local conformal transformations

ConfLoc(Σ, γ) also holds when restricted to suitable domains.
6The existence of global solutions is a harder problem which is not always guaranteed [50].



Chapter 3

Skew-symmetric endomorphisms

of M1,2 and M1,3 & CKVFs of S2

In this Chapter we deal with skew-symmetric endomorphisms of four and three di-

mensional Lorentzian vector spaces, which shall be often identified with M1,2 and M1,3

respectively, as well as CKVFs of the 2-sphere S2. The contents of this Chapter have

been published in [94].

We start, in Section 3.1, by proving several basic properties of skew-symmetric endomor-

phisms of Lorentzian vector spaces. This Section is worked out in arbitrary dimension,

because some of the properties will be useful in Chapter 4, where we shall extend many

of the results in this Chapter to higher dimension. In Section 3.2 we obtain a canonical

form for every skew-symmetric endomorphism of M1,2 and M1,3, i.e. a unique matrix

form, depending on an optimal number of parameters, to which every single element

can be brought to. The orthogonal unit vector bases realizing this canonical form are

non-unique, which means that there exists a group of invariance, which we analyze in

depth in Section 3.3 and whose generators are obtained in Section 3.4.

The analysis of skew-symmetric endomorphisms is then carried into the set of global

CKVFs of the Riemann 2-sphere in Sections 3.6 and 3.7, for which complex coordinates

are specially suited. We remark that S2 is particular in that not all CKVFs are global,

as observed previously in subsection 2.2.2 (cf. Remark 2.16) and here in Section 3.5

(cf. Remark 3.14). A canonical form for global CKVFs, based in the canonical form

of Section 3.2, is given in Section 3.7. This canonical form is used in Section 3.8 to

obtain adapted coordinates which fit every global CKVF ξ. The adapted coordinates

finds an application in subsection 3.9.1, where we find a class of metrics for which ξ is a

Killing vector. Finally, in subsection 3.9.2 we obtain a class of TT tensors such that an

arbitrary (non-necessarily global) CKVF satisfies the KID equations in two dimensions.

We note that Chapter 4 addresses similar issues but in arbitrary dimension. It is worth

to remark that the low dimensional case deserves a separate analysis because some of the
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core results can be given with a level of detail difficult to reach in arbitrary dimension.

For example, the explicit transformation which takes any skew-symmetric endomorphism

and a CKVF to its canonical form is calculated. Similarly, the corresponding invariance

group is also explicitly calculated. These two are examples of results which would be

difficult to obtain in arbitrary dimension.

In this chapter, capital Latin indices I, J,K, take values in 0, 1, 2, 3 and lower case Latin

indices i, j, k = 0, 1, 2.

3.1 Basic properties of skew-symmetric endomorphism of

M1,d−1

Let V be a d-dimensional vector space endowed with a Lorentzian metric g of signature

{−,+, · · · ,+}. The vector space V shall often be identified with Minkowski spacetime

M1,d−1 and the scalar product with g is denoted by 〈 , 〉.

Definicin 3.1. An endomorphism F : V −→ V is skew-symmetric when it satisfies

〈x, F (y)〉 = −〈F (x), y〉 ∀x, y ∈ V.

We denote this set by SkewEnd(V ) ⊂ End (V ).

We take, by definition, that eigenvectors of an endomorphism are always non-zero. In

our convention all vectors with vanishing norm are null (in particular, the zero vector is

null). We denote kerF and Im F , respectively, to the kernel and image of F ∈ End (V ).

The first result that we state and prove is a compendium of the basic properties of

SkewEnd(V ) that we shall often use.

Lemma 3.2. [Basic facts about skew-symmetric endomorphisms] Let F be a skew-

symmetric endomorphism in a Lorentzian vector space V of dimension d. Then

1) ∀w ∈ V , F (w) is perpendicular to w, i.e. 〈F (w), w〉 = 0.

2) Im F ⊂ (kerF )⊥ and kerF ⊂ (Im F )⊥.

3) If w ∈ kerF ∩ Im F then w is null.

4) If w ∈ V is a non-null eigenvector of F , then its eigenvalue is zero.

5) If w is an eigenvector of F with zero eigenvalue, then all vectors in Im F are orthog-

onal to w, i.e. Im F ⊂ w⊥.

6) The non-zero eigenvalues of F are either real or purely imaginary.

7) If F restricts to a subspace U ⊂ V (i.e. F (U) ⊂ U), then it also restricts to U⊥.
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8) dim Im F is always even. Equivalently, dim ker F has the parity of d.

Proof. Property 1) is immediate by definition of skew-symmetry 〈w,F (w)〉 = −〈F (w), w〉.

For 2), let v ∈ kerF and w be of the form w = F (u) for some u ∈ V , then

〈w, v〉 = 〈F (u), v〉 = −〈u, F (v)〉 = 0

the last equality following because F (v) = 0. As a consequence of 2) it follows 3), because

w belongs both to kerF and to its orthogonal, so in particular it must be orthogonal to

itself, hence null.

Property 4) is immediate from

0 = 〈w,F (w)〉 = λ〈w,w〉

so if w is non-null, its eigenvalue λ must be zero. Eigenvectors with zero eigenvalue may

be both null and non-null.

Property 5) is a corollary of 2) because by hypothesis w ∈ kerF so

Im F ⊂ (kerF )⊥ ⊂ w⊥

the last inclusion being a consequence of the general fact U1 ⊂ U2 =⇒ U⊥2 ⊂ U⊥1 .

To prove 6), let λ be a non-zero (possibly complex) eigenvalue and w its associated

eigenvector in VC, the complexification of V . Since F is real, the complex conjugate

λ? ∈ C is an eigenvalue with eigenvector w? ∈ VC, so

〈F (w), w?〉 = λ 〈w,w?〉 = −λ? 〈w,w?〉 .

Thus, either λ is purely imaginary or, if not, w,w? must be orthogonal and by 4) both

must be also null. Then, denoting w = u+ iv for u, v ∈ V , the nullity condition implies

〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉 and orthogonality w? implies 〈u, u〉 = −〈v, v〉. Hence u, v

are null and proportional, i.e. u = av for some a ∈ R, in consequence w = (a + i)v.

Therefore, v ∈ V is a real null eigenvector and its corresponding eigenvalue λ must be

real.

Property 7) is true because for any u in a F -invariant subspace U and w ∈ U⊥

0 = 〈F (u), w〉 = −〈u, F (w)〉 .

Finally, for 8), consider the 2-form F assigned to every F ∈ SkewEnd(V ) by the standard

relation

F (e, e′) =
〈
e, F (e′)

〉
, ∀e, e′ ∈ V. (3.1)
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The matrix representing F is skew in the usual sense, hence the dimension of Im F ⊂ V ?

(the dual of V ) is the rank of that matrix, which is known to be even (see e.g. [65]) and

clearly dim Im F = dim Im F .

An important part of the results that we will prove rely on the existence of F -invariant

two-dimensional non-null spaces. The next two lemmas give their basic properties.

Lemma 3.3. Let F ∈ SkewEnd(V ). Then F has a F -invariant spacelike plane Πs if

and only if

F (u) = µv, F (v) = −µu, (3.2)

for Πs = span{u, v} with u, v ∈ V spacelike, orthogonal, unit and µ ∈ R. Moreover, (3.2)

is satisfied for µ 6= 0 if and only if ±iµ are eigenvalues of F with (null) eigenvectors

u± iv,

F (u+ iv) = −iµ(u+ iv), F (u− iv) = iµ(u− iv), (3.3)

for u, v ∈ V spacelike, orthogonal with the same square norm.

Proof. If (3.2) is satisfied for u, v ∈ V spacelike, orthogonal, unit, then Πs = span{u, v}
is obviously F -invariant spacelike. On the other hand, if Πs is F -invariant, then it must

hold that

F (u) = a1u+ a2v, F (v) = b1u+ b2v, a1, a2, b1, b2 ∈ R,

for a pair of orthogonal, unit, spacelike vectors u, v spanning Πs. Using skew-symmetry

and the orthogonality and unitarity of u, v, the constants are readily determined: a2 =

b2 = 0 and a2 = −b1 =: µ, which implies (3.2). This proves the first part of the lemma.

For the second part, it is immediate that if (3.2) holds with µ 6= 0, then ±iµ are

eigenvalues of F with respective eigenvectors u ± iv. The orthogonality of u, v follows

from 〈F (u), u〉 = 0 = µ 〈v, u〉 and the equality of norm from skew-symmetry 〈F (u), v〉 =

−〈u, F (v)〉 =⇒ µ 〈v, v〉 = µ 〈u, u〉. Assume now that F has an eigenvalue iµ 6= 0 with

(necessarily null) eigenvector w = u + iv, for u, v ∈ V . Since F is real, neither u nor

v can be zero. From the nullity property 〈w,w〉 = 0, it follows that 〈u, u〉 − 〈v, v〉 = 0

and 〈u, v〉 = 0. Hence, u, v are orthogonal with the same norm, so they are either null

and proportional, which can be discarded because it would imply that u (and v) is a

real eigenvector with complex eigenvalue; or otherwise u, v are spacelike, thus the lemma

follows.

There is an analogous result for F -invariant timelike planes:

Lemma 3.4. Let F ∈ SkewEnd(V ). Then F has a F -invariant timelike plane Πt if and

only if

F (e) = µv, F (v) = µe, (3.4)
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for Πt = span{e, v} with e, v ∈ V for e timelike unit orthogonal to v spacelike, unit and

µ ∈ R. Moreover, (3.2) is satisfied for µ 6= 0 if and only if ±µ are eigenvalues of F with

(null) eigenvectors e± v,

F (e+ v) = µ(e+ v), F (e− v) = −µ(e− v). (3.5)

for e, v ∈ V orthogonal, timelike and spacelike respectively with opposite square norm.

Proof. For the first claim, repeat the first part of the proof of Lemma 3.3 assuming u = e

timelike.

For the second claim, assume (3.2) is satisfied with µ 6= 0. Then it is immediate that

〈F (e), e〉 = 0 = µ 〈v, e〉, hence e, v are orthogonal and by skew-symmetry 〈F (e), v〉 =

−〈e, F (v)〉 =⇒ µ 〈v, v〉 = −µ 〈e, e〉, i.e. must have opposite square norm. Conversely,

let ±µ 6= 0 be a pair of eigenvalues with respective null eigenvectors q±, that w.l.o.g can

be chosen future directed. Then e := q+ + q− and v := q+ − q− are orthogonal, with

opposite square norm 〈e, e〉 = 2 〈q+, q−〉 = −〈v, v〉 < 0, and they satisfy (3.4).

With these results we can now define:

Definicin 3.5. An F -invariant spacelike or timelike plane is called a eigenplane and

the parameter µ in equations (3.2) and (3.4) is its associated eigenvalue.

Observacin 3.6. Notice that a simple change of order in the vectors spanning a timelike

or spacelike eigenplane switches the sign of the eigenvalue µ. Thus, unless otherwise

stated, we will consider the eigenvalues of eigenplanes (both spacelike and timelike)

non-negative by default.

3.2 Canonical form of skew-symmetric endomorphisms in

M1,3

The first step towards our canonical form for F is the following classification result,

which relies on the properties described above.

Lemma 3.7 (Classification of SkewEnd(M1,3)). Let F ∈ SkewEnd(V ) in a Lorentzian

vector space (V, g) of dimension four. If F 6= 0 then one of the following exclusive

possibilities hold:

a) F has a spacelike eigenvector orthogonal to a null eigenvector, both with vanishing

eigenvalue.

b) F has a spacelike eigenplane (as well as a timelike orthogonal eigenplane).
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Proof. Since F is not identically zero, dim kerF only can be either 2 or 0. Consider

first dim kerF = 0 and let us prove that b) must happen. We show this by proving

that equations (3.3) and (3.5) must be satisfied. Since kerF = {0}, F can only have

non-zero eigenvalues, and we already know that they are either real or purely imaginary.

The existence of a purely imaginary one leads to equations (3.3), which in turn implies

(3.5). Suppose now that all eigenvalues are real non-zero. If there exist two different real

eigenvalues µ, µ′ their respective eigenvectors w,w′ (which recall are null) must satisfy

〈
F (w), w′

〉
= µ

〈
w,w′

〉
= −µ′

〈
w,w′

〉
.

The product 〈w,w′〉 cannot be zero, as otherwise w,w′ would be proportional and the

eigenvalues µ and µ′ would be the same. Thus, µ = −µ′, and hence (3.5), and also

(3.3), hold. The remaining case is when all eigenvalues are equal, i.e. the characteristic

polynomial is pF = (F − Iµ)4. By the Cayley-Hamilton theorem 〈pF (u), v〉 = 0, ∀u, v ∈
V . In particular, 〈pF (u), v〉 = 〈pF (v), u〉 ,∀u, v ∈ V . By skew-symmetry the even powers

on each side cancel out and we are left with

−4µ
〈
F 3(u), v

〉
− 4µ3 〈F (u), v〉 = −4µ

〈
F 3(v), u

〉
− 4µ3 〈F (v), u〉

= 4µ
〈
F 3(u), v

〉
+ 4µ3 〈F (u), v〉 , ∀u, v ∈ V.

Since we are in the case µ ∈ R \ {0} we conclude that F (F 2 + µ2) = 0, and since

F is invertible (kerF = {0}) also F 2 + µ2 = 0. But this means that F admits a

complex eigenvalue, which is a contradiction, and we have exhausted all possible cases

with dim kerF = 0.

Now let dim kerF = 2. According to the causal character of kerF , either kerF is null,

and we are in case a) of the lemma or kerF is non-degenerate, and we are in case b).

The fact that cases a) and b) are mutually exclusive is obvious.

The classification in Lemma 3.7 contains two possible cases. It is common to use this

result to find simple forms for each case, for example, in case a) by including in the basis

two orthogonal vectors k, e ∈ kerF ; or in case b), by combining bases in the orthogonal

and timelike eigenplanes, so that F is explicitly a direct sum of two 2-dimensional

endomorphisms. In the following Proposition we find a canonical form which includes

cases a) and b) simultaneously, and which depends on two parameters only.

Proposicin 3.8. For every non-zero F ∈ SkewEnd(V ), with (V, g) a four-dimensional

Lorentzian vector space with a choice of time orientation , there exists an orthonormal

unit basis B := {e0, e1, e2, e3}, with e0 timelike future directed such that
F (e0)

F (e1)

F (e2)

F (e3)

 =


0 0 −1 + σ

4
τ
4

0 0 1 + σ
4

τ
4

−1 + σ
4 −1− σ

4 0 0
τ
4 − τ

4 0 0




e0

e1

e2

e3

 , σ, τ ∈ R, (3.6)
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where σ := −1
2TrF 2 and τ2 := −4 detF , with τ ≥ 0. Moreover, if τ = 0 the vector e3

can be taken to be any spacelike unit vector lying in the kernel of F .

Proof. By Lemma 3.7 there exist two possible cases. We start proving the proposition

assuming that we are in case a). Let span{k, e} = kerF , with k, e ∈ V a pair of

orthogonal null and spacelike unit vectors respectively. We can complete them to a

semi-null basis B = {k, l, w, e}, i.e. such that 〈k, l〉 = −2, 〈w,w〉 = 〈e, e〉 = 1 and the

rest of scalar products all zero. Using these orthogonality relations and skew-symmetry

of F we can calculate:

F (k) = 0, F (l) = aw, F (w) =
a

2
k, F (e) = 0,

for a constant a ∈ R \ {0}. Redefine a new basis {l′, k′, w′, e′}, with k′ := εa
2 k, l

′ :=
2ε
a l, w

′ := −εw, e′ := e, where ε2 = 1 is chosen so that k′, l′ are future directed. Then

F (k′) = 0, F (l′) = −2w′, F (w′) = −k′, F (e′) = 0,

which in the orthonormal basis B = {e0, e1, e2, e3} given by k′ = e0+e1, l
′ = e0−e1, w

′ =

e2, e
′ = e3 is

F (e0) = −e2, F (e1) = e2, F (e2) = −e0 − e1, F (e3) = 0.

This corresponds to expression (3.6) with σ = τ = 0.

It remains to prove the proposition for case b). In this case, there exist timelike and

spacelike eigenplanes, Πt = span{e′0, e′1} and Πs = span{e′2, e′3} respectively, i.e. fulfilling

equations (3.2) and (3.4) for respective eigenvalues µ0 and µ1, such that at most one of

them vanishes. We can take the bases of Πt,Πs so that that B′ := {e′0, e′1, e′2, e′3} is an

orthonormal basis of V , with e0 past directed and the eigenvalues µ0 and µ1 are positive

or (at most one) zero. Then, the following change of basis is well-defined:

e0 = −1√
µ2

0+µ2
1

[(
1 +

µ2
0+µ2

1
4

)
e′0 +

(
1− µ2

0+µ2
1

4

)
e′2

]
, e2 = 1√

µ2
0+µ2

1

(µ0e
′
1 + µ1e

′
3) ,

e1 = 1√
µ2

0+µ2
1

[(
1− µ2

0+µ2
1

4

)
e′0 +

(
1 +

µ2
0+µ2

1
4

)
e′2

]
, e3 = 1√

µ2
0+µ2

1

(−µ1e
′
1 + µ0e

′
3) .

(3.7)

One checks by explicit computation that B := {e0, e1, e2, e3} is an orthonormal basis,

with e0 timelike and future directed (because 〈e0, e
′
0〉 > 0). It is also a matter of direct

calculation to see that

F (e0) =
(
−1 + σ

4

)
e2 + τ

4e3, F (e1) =
(
1 + σ

4

)
e2 + τ

4e3,

F (e2) =
(
−1 + σ

4

)
e0 −

(
1 + σ

4

)
e1, F (e3) = τ

4 (e0 − e1) ,

where the parameters σ, τ ∈ R are σ = µ2
1−µ2

0 and τ = 2µ0µ1 ≥ 0. This corresponds to

(3.6) with at most one of the parameters σ, τ vanishing.
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To show the last statement, a simple computation shows that (when τ = 0) the kernel

of F is given by

kerF =
{
a
(

1 +
σ

4

)
e0 + a

(
1− σ

4

)
e1 + be3, a, b ∈ R

}
.

The subset of spacelike unit vectors in kerF is given by 1 +a2σ > 0 and b = ε
√

1 + a2σ,

ε = ±1. We introduce the four vectors

e′0 =

(
b+ ε

2
+

(
1 +

σ2

16

)
b− ε
σ

)
e0 +

(
1− σ2

16

)
b− ε
σ

e1 + a
(

1 +
σ

4

)
e3,

e′1 = −
(

1− σ2

16

)
b− ε
σ

e0 +

(
b+ ε

2
−
(

1 +
σ2

16

)
b− ε
σ

)
e1 + a

(
−1 +

σ

4

)
e3,

e′2 = εe2,

e′3 = a
(

1 +
σ

4

)
e0 + a

(
1− σ

4

)
e1 + be3,

and observe that they are well-defined for all values of σ, including zero. A straightfor-

ward computation shows that this is an orthonormal basis, and that (3.6) holds with

τ = 0. The last statement of the Proposition follows.

Obtaining a canonical form in the three-dimensional case is much easier, the main reason

being that any two-form in three-dimensions is simple, i.e. F ∧F = 0 or, in other words,

that F is of rank one in the sense of Darboux [141]. So, the reader may wonder why

it has not been treated before. The reason is that we can obtain the three dimensional

case as a direct corollary of the four-dimensional one. The construction is as follows.

Let F ∈ SkewEnd(V ) with V Lorentzian three-dimensional. From F we may define an

auxiliary skew-symmetric endomorphism F̂ defined on V ⊕E1 endowed with the product

metric (E1 is the one-dimensional Euclidean space). It is obvious that this space is a

Lorentzian four-dimensional vector space. We denote by E3 a unit vector in E1 and

define F̂ simply by F̂ (u + aE3) = F (u) + 0, for all u ∈ V and a ∈ R (we will identify

u ∈ V with u + 0 ∈ V ⊕ E1 from now on). It is immediate to check that F̂ is skew-

symmetric. Moreover, it has τ = 0, by construction. Then, the following Corollary is

immediate:

Corolario 3.9. For every non-zero F ∈ SkewEnd(V ), with (V, g) a Lorentzian three-

dimensional vector space with a choice of time orientation, there exists an orthonormal

basis B := {e0, e1, e2}, with e0 timelike future directed such that F (e0)

F (e1)

F (e2)

 =

 0 0 −1 + σ
4

0 0 −1− σ
4

−1 + σ
4 1 + σ

4 0


 e0

e1

e2

 , σ := −1

2
Tr
(
F 2
)
∈ R. (3.8)

Proof. By the last statement of Proposition 3.8, the canonical basis B = {e0, e1, e2, e3}
of F̂ can be taken with e3 = E3, which means that {e0, e1, e2} is a basis of V .
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We may now properly define the canonical form of an element of SkewEnd(M1,3) and

SkewEnd(M1,2)

Definicin 3.10. An element F of SkewEnd(M1,3) or SkewEnd(M1,2) is said to be in

canonical form if it takes the forms, respectively, of equations (3.6) or (3.8), in an

orthonormal basis B, called canonical basis.

From the canonical form (3.6), we can recover (cf. Remark 3.11 below) the classification

in Lemma 3.7 in terms of the parameters σ, τ . In a similar way, a classification result

for three-dimensional skew-symmetric endomorphisms (cf. Remark 3.12 below) follows

from the canonical form (3.8).

Observacin 3.11. Let F ∈ SkewEnd(M1,3) be in canonical form. Then only two exclu-

sive possibilities arise:

1. If either σ or τ do not vanish, F has a timelike eigenplane and an orthogonal

spacelike eigenplane with respective eigenvalues

µt :=
√

(−σ + ρ)/2 and µs :=
√

(σ + ρ)/2 for ρ :=
√
σ2 + τ2 ≥ 0. (3.9)

The inverse relation between µt, µs and σ, τ is σ = µ2
s − µ2

t and τ = 2µtµs.

2. Otherwise, σ = τ = 0 if and only if kerF is degenerate two-dimensional. Equiv-

alently, F has a null eigenvector orthogonal to a spacelike eigenvector both with

vanishing eigenvalue.

One can easily check that when τ = 0, the sign of σ determines the causal character of

kerF , namely σ < 0 if kerF is spacelike, σ = 0 if kerF is degenerate and σ > 0 if kerF

is timelike. Obviously, τ 6= 0 implies kerF = {0}. The characteristic polynomial of F

is directly calculated from (3.6)

PF (x) = (x2 − µ2
t )(x

2 + µ2
s).

Observacin 3.12. Let F ∈ SkewEnd(M1,2) be in canonical form. One can see by

direct calculation that q := (1 + σ/4)e0 + (1 − σ/4)e1 generates kerF and furthermore

〈q, q〉 = −σ. Hence, the sign of σ determines the causal character of kerF , namely it is

spacelike if σ < 0, degenerate if σ = 0 and timelike if σ > 0. Moreover, when σ 6= 0,

F has an eigenplane with opposite causal character than q and eigenvalue
√
|σ|. The

characteristic polynomial of F reads

PF (x) = x(x2 + σ).



66

At this point, it is convenient to comment on the relation between our results and previ-

ous canonical forms of skew-symmetric endomorphisms. It is standard in the literature

to work with two-forms of M1,3, also called bivectors, instead of skew-symmetric endo-

morphisms. The usual classification of two-forms in M1,3 (which can be found in e.g.

[73] and [142]) reduces to two cases with their respective canonical forms, namely

F = ae ∧w + bu ∧ v, F = k ∧ v, a, b ∈ R (3.10)

where w,u,v are spacelike, unit and orthogonal to each other, e is unit and orthogonal

to all of them and k is null and orthogonal to v. Our main improvement is that we

no longer need to distinguish two cases and we are able to cover every case with one

single canonical form. The first of the canonical forms in (3.10) obviously corresponds

to a skew-symmetric endomorphism which admits a timelike eigenplane with eigenvalue

a and a spacelike eigenplane with eigenvalue b. These endomorphisms correspond to a

canonical form (3.6) in which at least one of the parameters σ, τ is not zero (cf. Remark

3.11). From (3.10) it follows easily that a, b are directly related to the eigenvalues

of F , specifically it holds |a| = µt and |b| = µs. The second canonical form in (3.10)

corresponds with a skew-symmetric endomorphism that has a null eigenvector orthogonal

to a spacelike eigenvector, both with zero eigenvalue, which in our canonical form is

σ = τ = 0 (cf. Remark 3.11). We also remark that our result is valid only for real

skew-symmetric endomorphisms, because it relies on Lemma 3.7.

The three dimensional case is always simple (i.e. a bivector) and thus can be written as

product of two one-forms, whose causal character will determine the classification. Here

we have treated this case as a corollary of the four-dimensional one. This approach will

be useful in our extension of the classification results to the higher dimensional case in

Chapter 4.

3.3 Group of invariance of the canonical form

In this section F is a non-zero skew-symmetric endomorphism in a four-dimensional

vector space, and B = {e0, e1, e2, e3} is a canonical basis, i.e. one where e0 is future

directed and (3.6) holds. It is useful to introduce the semi-null basis {`, k, e2, e3} defined

by ` = e0 + e1, k = e0 − e1. In this basis the endomorphism F takes the form

F (`) =
σ

2
e2 +

τ

2
e3, F (k) = −2e2, F (e2) = −`+

σ

4
k, F (e3) =

τ

4
k. (3.11)

We are interested in finding the most general orthochronous Lorentz transformation

which transforms B into a basis B′ = {e′0, e′1, e′2, e′3} in which F takes the same form.

In terms of the corresponding semi-null basis {`′, k′, e′2, e′3} we must impose (3.11) with

primed vectors. We start with the following lemma:
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Lemma 3.13. Let F be skew-symmetric and {`, k, e2, e3} be a semi-null basis that sat-

isfies

F (k) = −2e2, F (e2) = −`+
σ

4
k (3.12)

and

〈F (`), F (`)〉 =
σ2 + τ2

4
. (3.13)

Then either the semi-null basis {`, k, e2, e3} or {`, k, e2,−e3} fulfils (3.11), and both do

whenever τ = 0.

Proof. Skew-symmetry imposes F (`) and F (e3) to satisfy

F (`) =
σ

2
e2 +

q

2
e3, F (e3) =

q

4
k′, q ∈ R.

Condition (3.13) imposes q2 = τ2. Thus q = ±τ . Since reflecting e3 replaces q by −q,
either the basis {`, k, e2, e3} or the basis {`, k, e2,−e3} satisfies (3.11) with τ ≥ 0 (and

both do in case τ = 0).

Thus, to understand the group of invariance of (3.11) it suffices to impose (3.12)-(3.13)

for {`′, k′, e′2}. Let us decompose k′ in the original basis as

k′ = Ak +B`+ c2e2 + c3e3. (3.14)

Observe that A,B ≥ 0 as a consequence of k′ being future directed. Let us introduce

two vectors e′2 and `′ so that (3.12) are satisfied, namely

e′2 := −1

2
F (k′) =

(
A− Bσ

4

)
e2 −

Bτ

4
e3 +

c2

2
`− 1

8
(σc2 + τc3) k, (3.15)

`′ :=
σ

4
k′ − F (e′2)

=
B
(
σ2 + τ2

)
16

k +A`− 1

4
(σc2 + τc3) e2 +

1

4
(σc3 − τc2) e3. (3.16)

The conditions of k′ being null, future directed and e′2 spacelike and unit are easily found

to be equivalent to

−4AB + ||c||2 = 0, A,B ≥ 0, (3.17)

A2 +
σ2 + τ2

16
B2 +

σ

8

(
c2

2 − c2
3

)
+
τ

4
c2c3 = 1, (3.18)

where we have set ||c||2 = c2
2 + c2

3. Under (3.17)-(3.18) one easily checks that the

conditions 〈e′2, k′〉 = 0, 〈e′2, `′〉 = 0, 〈`′, `′〉 = 0 and 〈`′, k′〉 = −2 are all identically

satisfied. Thus, {`′, k′, e′2} defines a timelike hyperplane and we can introduce e′3 as

one of its two unit normals. By construction, the semi-null basis {`′, k′, e′2, e′3} satisfies
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(3.12). By Lemma 3.13, this basis or the one defined with the reversed e′3 will be a

canonical basis of F if and only if (3.13) is satisfied. By skew-symmetry, this condition

is equivalent to

〈`′, F 2(`′)〉+
σ2 + τ2

4
= 0. (3.19)

Directly from (3.11) we compute

F 2(`) = −σ
2
`+

σ2 + τ2

8
k, F 2(k) = 2`− σ

2
k,

F 2(e2) = −σe2 −
τ

2
e3, F 2(e3) = −τ

2
e2,

from where it follows

F 2(`′) =
1

2

(
(σ2 + τ2)B

4
− σA

)
`+

σ2 + τ2

8

(
A− 1

4
σB

)
k

+

(
2σ2 + τ2

)
c2 + στc3

8
e2 +

τ(σc2 + τc3)

8
e3.

One easily checks that (3.19) is identically satisfied when (3.17)-(3.18) hold. Thus, it

only remains to solve this algebraic system. To that aim, it is convenient to introduce

Q ≥ 0 and an angle θ ∈ [0, π2 ] defined by

σ = Q cos(2θ), τ = Q sin(2θ). (3.20)

When σ2 + τ2 > 0, {Q, θ} are uniquely defined. When σ = τ = 0, then Q = 0 and θ can

take any value. Define also λ2, λ3 by

c2 = 2λ2 cos θ − 2λ3 sin θ, c3 = 2λ2 sin θ + 2λ3 cos θ.

In terms of the new variables, equations (3.17)-(3.18) become (with obvious meaning for

||λ||2)

AB − ||λ||2 = 0, 16A2 +Q2B2 + 8Q
(
λ2

2 − λ2
3

)
− 16 = 0, A,B ≥ 0.

When Q = 0, the solution is clearly A = 1, B = ||λ||2, with unrestricted λ2, λ3. When

Q > 0, we may multiply the first equation by Q and find the equivalent problem

(4A+QB)2 = 16(1 +Qλ2
3), (4A−QB)2 = 16(1−Qλ2

2), A,B ≥ 0.

This system is solvable if and only if

|λ2| ≤
1√
Q

(3.21)



69

and the solution is given by

A =
1

2

(√
1 +Qλ2

3 + ε
√

1−Qλ2
2

)
, B =

2

Q

(√
1 +Qλ2

3 − ε
√

1−Qλ2
2

)
, (3.22)

where ε = ±1. Observe that the branches ε = 1 and ε = −1 are connected to each other

across the set |λ2| = 1/
√
Q. Note also that the case Q = 0 is included as a limit Q→ 0

in the branch ε = 1 (and then the bound (3.21) becomes vacuous, in accordance with

the unrestricted values of {λ2, λ3} when Q = 0). We can now write down explicitly the

vectors `′, k′, e′2 defined in (3.14), (3.15) and (3.16). It is useful to introduce the two

spacelike, orthogonal and unit vectors

u2 = cos θ e2 + sin θ e3, u3 = − sin θ e2 + cos θ e3

which simplify the expression to

`′ =
Q2

16
Bk +A`+

Q

2
(−λ2u2 + λ3u3) ,

k′ =Ak +B`+ 2λ2u2 + 2λ3u3,

e′2 = (λ2 cos θ − λ3 sin θ) `− Q

4
(λ2 cos θ + λ3 sin θ) k

+ ε cos θ
√

1−Qλ2
2 u2 − sin θ

√
1 +Qλ2

3 u3,

where A,B must be understood as given by (3.22) (including the limiting case Q = 0).

The fourth vector e′3 is unit and orthogonal to all of them. The following pair of vectors

satisfy these properties (and of course there are no others),

e′3 = ε̂

(
(λ3 cos θ + λ2 sin θ) `+

Q

4
(λ3 cos θ − λ2 sin θ) k

+ε sin θ
√

1−Qλ2
2 u2 + cos θ

√
1 +Qλ2

3 u3

) (3.23)

where ε̂ = ±1. It is also straightforward to check that F (e′3) = ε̂(τ/4)k′. Thus, if τ 6= 0,

we must choose ε̂ = 1 while in the case τ = 0 both signs are possible (in accordance with

Lemma 3.13). Summarizing, the most general orthochronous Lorentz transformation

that transforms a canonical semi-null basis of F into another one is given by


`′

k′

e′2
ε̂e′3

 =



1
2

(√
1 +Qλ2

3 + ε
√

1−Qλ2
2

)
Q
8

(√
1 +Qλ2

3 − ε
√

1−Qλ2
2

)
−Qλ2/2 Qλ3/2

2
Q

(√
1 +Qλ2

3 − ε
√

1−Qλ2
2

)
1
2

(√
1 +Qλ2

3 + ε
√

1−Qλ2
2

)
2λ2 2λ3

λ2 cos θ − λ3 sin θ −Q(λ2 cos θ + λ3 sin θ)/4 ε cos θ
√

1−Qλ2
2 − sin θ

√
1 +Qλ2

3

λ3 cos θ + λ2 sin θ Q(λ3 cos θ − λ2 sin θ)/4 ε sin θ
√

1−Qλ2
2 cos θ

√
1 +Qλ2

3




1 0 0 0

0 1 0 0

0 0 cos θ sin θ

0 0 − sin θ cos θ




`

k

e2

e3

 := TF (λ2, λ3, ε)


`

k

e2

e3
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where ε̂ = 1, unless τ = 0 in which case ε̂ = ±1. Concerning the global structure of

the group, recall that λ3 takes any value in the real line, while |λ2| ≤ 1/
√
Q. We have

already mentioned that as long as Q 6= 0, the two branches ε = ±1 are connected to

each other through the values |λ2| = 1/
√
Q. The topology of the group is therefore

R×S1 (hence connected) when Q 6= 0 and τ 6= 0. When Q 6= 0, τ = 0 the group has two

connected components (one corresponding to each value of ε̂) each one with the topology

of R×S1. Finally, when Q = 0, the group has two connected components (again one for

each value of ε̂) and the topology of each component is R2. By construction all elements

of the group (in all cases) are orthochronous Lorentz transformations. Moreover, it is

immediate to check that the determinant of TF (λ2, λ3, ε) is one for all values of λ2, λ3, ε.

Thus, all elements with ε̂ = 1 preserve orientation, while the elements with ε̂ = −1

reverse orientation.

3.3.1 Invariance group in the three-dimensional case

We have found before that for any non-zero skew-symmetric endomorphism F in M1,2

there exists an orthonormal, future directed basis B3 = {e0, e1, e2} where F takes the

canonical form (3.8). As in the previous case it is natural to ask what is the group

of invariance of F , i.e. the most general orthochronous Lorentz transformation which

transforms B into a basis where F takes the same form. From F , recall the auxil-

iary skew-symmetric endomorphism F̂ defined on M1,2⊕E1 that was introduced before

Corollary 3.9, that is, the endomorphism that acts as F̂ (u + ae3) = F (u) + 0, for

all u ∈ M1,2 and a ∈ R where E1 = span{E3}, with E3 unit. Moreover, the basis

B := {e0, e1, e2, e3 = E3} is canonical for F̂ in the sense of Definition 3.10 and in ad-

dition τ = 0. It is clear that there exists a bijection between the set of orthonormal,

future directed bases B′3 = {e′0, e′1, e′2} where F takes its canonical form and the set of

future directed orthonormal bases B′ in M1,2⊕E1 where F̂ takes its canonical form and

the last element of B′ is E3. Thus, in order to determine the group of invariance of F

it suffices to study the subgroup of invariance of F̂ which preserves the vector e3. Since

τ = 0 we must impose

B = Q sin(2θ) = 2Q cos θ sin θ = 0

and three separate cases arise: (case 1) when Q 6= 0, θ = 0, (case 2) when Q = 0 and

(case 3) when Q 6= 0, θ = π/2. Equivalently, cases 1, 2 and 3 correspond respectively

to σ > 0, σ = 0 and σ < 0. Recall also that when Q = 0 we may choose any value of

θ ∈ [0, π/2] w.l.o.g. We choose θ = 0 in this case. Recall also that the case Q = 0 is

recovered as a limit Q→ 0 after setting ε = 1.
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We only need to impose the condition e′3 = e3 in each case. Directly from (3.23) one

finds (we also use that Q = |σ|)

e′3 = ε̂

(
λ3`+

|σ|
4
λ3k +

√
1 + |σ|λ2

3 e3

)
Case 1

e′3 = ε̂ (λ3`+ e3) Case 2

e′3 = ε̂

(
λ2`−

|σ|
4
λ2k + ε

√
1− |σ|λ2

2

)
e3, Case 3

Thus, cases 1 and 2 require ε̂ = 1, λ3 = 0 and in case 3 we must set ε̂ = ε, λ2 =

0. Inserting these values in the group of invariance of F̂ one finds the most general

orthochronous Lorentz transformation that preserves the form of F . We express the

result in the canonically associated semi-null bases ` = e0 + e1, k = e0 − e1, e2 = e2.

Renaming λ2, λ3 as λ, the three cases can be written in the following form

 `′

k′

e′2

 =


1
2

(
1 + ε

√
1− |σ|λ2

)
|σ|
8

(
1− ε

√
1− |σ|λ2

)
− |σ|λ2

2
|σ|

(
1− ε

√
1− |σ|λ2

)
1
2

(
1 + ε

√
1− |σ|λ2

)
2λ

λ − |σ|λ4 ε
√

1− |σ|λ2


 `

k

e2

 σ ≥ 0

 `′

k′

e′2

 =


1
2

(
ε+

√
1 + |σ|λ2

)
|σ|
8

(√
1 + |σ|λ2 − ε

)
− |σ|λ2

2
|σ|

(√
1 + |σ|λ2 − ε

)
1
2

(√
1 + |σ|λ2 + ε

)
−2λ

−λ − |σ|λ4

√
1 + |σ|λ2


 `

k

e2

 σ < 0

with the understanding that the case σ = 0 is obtained from the first expression by

setting ε = 1 and then performing the limit σ → 0.

When σ > 0, the parameter λ is restricted to |λ| ≤ 1/|σ| and the two branches ε = 1 and

ε = −1 are connected through |λ| = |σ|. The group is connected and has topology S1.

As an immediate consequence all the elements in the group are not only orthochronous

Lorentz transformations (by construction) but also orientation preserving, as they are

all connected to the identity. This can also be checked by computing the determinant

of its matrix representation, which is one irrespectively of the value of λ and ε. When

σ = 0 the parameter λ takes values in the real line and the group has R-topology. Again

all its elements are orientation preserving. In fact, in this case the group is simply the

set of null rotations preserving `. Finally, in the case σ < 0, λ also takes values in the

real line and the group has two connected components (corresponding to the two values

of ε). Each component has topology R. The determinant of the matrix representation

is now ε, so the Lorentz transformations with ε = 1 preserve orientation (and define the

connected component to the identity) while ε = −1 reverse orientation.
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3.4 Generators of the invariance group

Returning to the four dimensional case, the identity element e of the group of invariance

corresponds to λ2 = λ3 = 0 and ε = ε̂ = 1. We may compute the Lie algebra that

generates it by taking derivatives of the group transformation with respect to λ2 and λ3

respectively and evaluating at e. This defines two skew-symmetric endomorphisms

h2 :=
∂TF (λ2, λ3, ε)

∂λ2

∣∣∣∣
e

, h3 :=
∂TF (λ2, λ3, ε)

∂λ3

∣∣∣∣
e

.

It is immediate to obtain their explicit expression
h2(`)

h2(k)

h2(e2)

h2(e3)

 =


0 0 −Q

2 cos θ −Q
2 sin θ

0 0 2 cos θ 2 sin θ

cos θ −Q
4 cos θ 0 0

sin θ −Q
4 sin θ 0 0




`

k

e2

e3

 ,


h3(`)

h3(k)

h3(e2)

h3(e3)

 =


0 0 −Q

2 sin θ Q
2 cos θ

0 0 −2 sin θ 2 cos θ

− sin θ −Q
4 sin θ 0 0

cos θ Q
4 cos θ 0 0




`

k

e2

e3

 .

Note that any skew-symmetric endomorphism G that commutes with F generates a

one-parameter subgroup of Lorentz transformations that leaves the form of F invariant.

It follows that this uniparametric group is necessarily a subgroup of the full invariance

group of F . Hence G must belong to the Lie algebra generated by h2 and h3. Conversely,

h2, h3 (and any linear combination thereof) defines a skew-symmetric endomorphism

that commutes with F . In other words, CF := span{h2, h3} defines the Lie subalgebra

of so(1, 3) formed by the elements that commute with F . This Lie subalgebra is called

the centralizer of F (e.g. [89]) and, as we have just shown, it is two-dimensional for

any non-zero F . An easy computation shows that [h2, h3] = 0, so the centralizer of

F is an Abelian Lie algebra. With these properties, it is not difficult to obtain the

exponentiated form of the group elements. Define the two C1 functions tε(s), t3(s)

(prime denotes derivative with respect to s)

t′ε = ε
√

1−Qt2ε , tε(s = 0) = 0,

t′3 =
√

1 +Qt23, t3(s = 0) = 0,
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and set

Tε(s) :=


1
2 (1 + t′ε)

Q
8 (1− t′ε) −Q

2 cos θtε −Q
2 sin θtε

2
Q (1− t′ε) 1

2 (1 + t′ε) 2 cos θtε 2 sin θtε

cos θtε −Q
4 cos θtε cos2 θt′ε + sin2 θ sin θ cos θ (t′ε − 1)

sin θtε −Q
4 sin θtε sin θ cos θ (t′ε − 1) sin2 θt′ε + cos2 θ



T3(s) :=


1
2 (1 + t′3) Q

8 (t′3 − 1) −Q
2 sin θt3

Q
2 cos θt3

2
Q (t′3 − 1) 1

2 (1 + t′3) −2 sin θt3 2 cos θt3

− sin θt3 −Q
4 sin θt3 cos2 θ + t′3 sin2 θ sin θ cos θ (1− t′3)

cos θt3
Q
4 cos θt3 sin θ cos θ (1− t′3) sin2 θ + cos2 θt′3


(in the right-hand sides tε, t

′
ε etc. are to be understood evaluated at s). By direct

computation one checks that (Id stands for the 4× 4 identity matrix)

dTε
ds

= h2Tε, Tε=1(s = 0) = Id,

dT3

ds
= h3T3, T3(s = 0) = Id,

TF (λ2, λ3, ε)|λ2=tε(s1),λ3=t3(s2) = Tε(s1)T3(s2) = T3(s2)Tε(s1).

This shows in particular that Tε=1(s) = exp(sh2) and T3(s) = exp(sh3). Observe also

that (in agreement with a previous discussion), when Q 6= 0 the branch Tε=−1 is con-

nected to the branch Tε=1 because in this case

tε=1(s) =
sin(
√
Qs)√
Q

, s ∈
[
− π

2
√
Q
,

π

2
√
Q

]
,

tε=−1(s) = −sin(
√
Qs)√
Q

, s ∈
[
− π

2
√
Q
,

π

2
√
Q

]
,

so that s = ±π/(2
√
Q) in the first branch is smoothly connected to s = ∓π/(2

√
Q) in

the second branch.

From the matrix representation of h2 and h3 it is obvious (the last two columns are

linearly dependent) that det(h2) = det(h3) = 0 so both h2, h3 are simple, i.e. of matrix

rank two. Moreover,

−tr (h2 ◦ h2) = tr (h3 ◦ h3) = 2Q (3.24)

and tr (h2 ◦ h3) = 0. Given that F commutes with itself, i.e. F ∈ CF , it must be a linear

combination of h2 and h3. Indeed, it is immediate to check that

F = − cos θh2 + sin θh3. (3.25)

This expression suggests that the connection between F and the basis {h2, h3} is via a du-

ality rotation. To show that this is indeed the case, we define the one-forms {`,k, e2, e3}
metrically associated to the semi-null basis {`, k, e2, e3}. Also, for any skew-symmetric
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endomorphism F , we associate the two-form F by the standard relation (3.1). It is

straightforward to find the explicit forms of h2 and h3 to be1

h2 =

(
`− Q

4
k

)
∧ (cos θe2 + sin θe3) , (3.26)

h3 =

(
`+

Q

4
k

)
∧ (− sin θe2 + cos θe3) .

Duality rotations of a two-form are defined in terms of the Hodge-dual operator, which

in turn depends in a choice of orientation in the vector space. To keep the comparison

fully general, we let κ = +1 (κ = −1) when the orientation in M1,3 is such that the

basis {`, k, e2, e3} is positively (negatively) oriented. Equivalently, if η is the volume

form that defines the orientation, κ is given by

η(`, k, e2, e3) = 2κ. (3.27)

Let G? denote the Hodge dual2 associated to G. It is then immediate to check that

h?2 = κh3.

Defining f := −h2 and µ := −κθ, we may rewrite (3.25) as

F = cosµf + sinµf? (3.28)

which indeed shows that F is obtained from the simple form f by a duality rotation of

angle µ. Notice that fαβf
αβ = 2Q ≥ 0 (by (3.24)). For later use, we observe that the

most general linear combination f = a0h2 + b0h3 that defines a simple 2-form such that

fαβf
αβ ≥ 0 and (3.28) holds for some value of µ is:

Q = 0 : f = − cos(θ + κµ)h2 + sin(θ + κµ)h3, µ ∈ R

Q > 0 : f = − cos(nπ)h2, µ = −κθ + nπ, n ∈ N. (3.29)

This can be proved easily from the explicit expressions of h2,h3 and the fact that they

are linearly independent simple 2-forms.

One may wonder whether this connection with duality rotations could have been used

as the starting point to obtain in an easy and natural way the canonical form of F . We

will argue that this alternative approach, although possible, it is far from obvious and

cannot be regarded as natural.

We fix a skew-symmetric endomorphism F in a a four-dimensional vector space with

a Lorentzian metric, and let F be the metrically associated 2-form. Define as before

σ := −1
2trace

(
F 2
)

and τ2 = −4 det(F ), τ > 0 where the determinant is taken for any

1Our convention for the exterior product is u ∧ v := u⊗ v − v ⊗ u.
2In abstract index notation G?

αβ = 1
2
ηαβµνG

µν .
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matrix representation of F in an orthonormal basis. The invariants σ and τ are directly

related to the two algebraic invariants of F as

σ =
1

2
FαβF

αβ, τ =
1

2
abs

(
FαβF

?αβ
)
. (3.30)

The first one follows trivially from the definition of σ. The second is a well-known

algebraic identity that can be found e.g. in [92]. Given F , a duality rotation of angle

−µ defines the 2-form
µ

F as [127], [105],

µ

F := cosµF − sinµF ∗. (3.31)

A simple computation shows that
µ

F is simple (i.e.
µ

Fαβ
µ

F ?αβ = 0) and satisfies
µ

F αβ

µ

F αβ ≥
0 if and only if (cf. [105])

σ sin(2µ) + κ̂τ cos(2µ) = 0,

σ cos(2µ)− κ̂τ sin(2µ) ≥ 0, (3.32)

where κ̂ is the sign defined by 1
2FαβF

?αβ = κ̂τ (when τ = 0, κ̂ can take any value

κ̂ = ±1). Inserting (3.20) we find that whenever Q = 0 all values of µ solve (3.32)

(which reflects the fact that F is null, and so are all its duality rotated 2-forms). When

Q 6= 0, the solutions of (3.32) are µ = −κ̂θ+nπ, n ∈ N. Thus, we recover the expression

in (3.29) provided we can ensure that κ̂ = κ. Note that the sign of FαβF
?αβ only depends

on F and the choice of orientation. It is a matter of direct checking that F as given in

(3.11) with the choice of orientation where (3.27) holds satisfies FαβF
?αβ = 2κτ , so that

indeed κ̂ = κ follows (unless τ = 0, of course, in which case κ̂ = ±1).

We can now show how the canonical basis can be constructed from F using a duality

rotation approach. Fixed an orientation on the vector space (i.e. a choice of volume

form η, and its associated Hodge dual) define σ and τ as in (3.30). Let κ̂ ∈ {−1, 1}
be such that 2κ̂ = FαβF

?αβ (if τ = 0, we allow any sign for κ̂). Introduce θ so that

(3.20) holds with θ ∈ [0, π/2] (if σ = τ = 0 then θ can take any value in this interval).

Define then µ = −κ̂θ and construct
µ

F by (3.31). We let h2 := −
µ

F . Since this 2-form

is simple, there exist two linearly independent vectors a, b such that h2 = a ∧ b. These

vectors are obviously not unique, but certainly at least one of them must be spacelike.

It can also be taken unit. We let E2 := b have this property. Exploiting the freedom

a→ a+sE2, s ∈ R we may take a perpendicular to E2. By construction (h2)αβ(h2)αβ ≥
0 (recall (3.32)) which is equivalent to 〈a, a〉 ≥ 0, i.e. a is spacelike or null. Let Q ≥ 0

be defined by Q = 〈a, a〉. It is clear that there exists a timelike plane Π containing

a and orthogonal to E2 (this plane is obviously non-unique). Fixed Π, it is easy to

show that there exists a future directed a null basis {`, k} on Π satisfying 〈`, k〉 = −2

and such that a = ` − (1/4)Qk. Finally, consider the timelike hyperplane defined by

span{`, k, E2} and select the unique unit normal E3 to this hyperplane satisfying the
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orientation requirement (cf. (3.27))

η(`, k, E2, E3) = 2κ̂.

So far, from a non-zero F we have constructed a (collection of) semi-null basis {`, k, E2, E3}
in quite a natural way. Observe that when σ = τ = 0, the angle θ is arbitrary, so the

semi-null basis has extra additional freedom in this case. What appears to be hard to

guess from this construction is that instead of {E2, E3} we should introduce {e2, e3} by

means of the θ-dependent rotation (cf. (3.26))

E2 = cos θe2 + sin θe3, E3 = − sin θe2 + cos θe3. (3.33)

It is by using this transformation that the form of F in the basis {`, k, e2, e3} takes

a form that depends only on the invariants σ, τ . It is remarkable that the θ-freedom

inherent to the case σ = τ = 0 (i.e. when F is null) drops out after performing the

rotation (3.33), and we get a canonical form that covers all cases and depends only on

σ and τ , irrespectively of which values these invariants may take.

3.5 Global conformal Killing vectors on the plane

In the following sections we connect our previous results with the Lie algebra of conformal

Killing vector fields of the sphere and the group of motions they generate, i.e. the Möbius

group. In our analysis, it is useful to employ the Riemann sphere C ∪ {∞}. Although

we will rederive some of the results we need here, we refer the reader to [108] and

[135] for more details about the Möbius transformations on the Riemann sphere. Some

of the contents may also be found in other more general references such as [124] and

[133]. Regarding Lie groups and Lie algebras, most of the results we will employ can

be found in introductory level textbooks such as [73], but other references [71], [89] are

also appropriate.

Consider the Euclidean plane E2 = (R2, gE) and select Cartesian coordinates {x, y}.
Recall that the set of CKVFs on E2 is given by

ξ = U(x, y)∂x + V (x, y)∂y

where U, V satisfy the Cauchy-Riemann conditions ∂xU = ∂yV , ∂yU = −∂xU . These

vector fields satisfy

LξgE = 2 (∂xU + ∂yV ) gE . (3.34)

Observacin 3.14. The space of CKVFs is in this case infinite dimensional, as it is

obvious that every analytic complex function defines a solution of the conformal Killing
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equation (3.34). As we have discussed in Remark 2.16, the uniparametric group of dif-

feomorphisms associated to a generic CKVF of E2 induces a conformal transformation

in the sphere S2 which, in many cases, is a local conformal transformation which does

not admit a global extension in S2 (e.g. [133] and [20]). Namely, in the terminology of

Section 2.2.1, it is an element of ConfLoc(S2) and not of Conf(Sn). As seen in subsec-

tion 2.2.2, ConfLoc(S2) is not a group. We are interested here in the global conformal

diffeomorphisms Conf(S2), which as we will discuss below, correspond to Möbius trans-

formations. Thus, we shall restrict our discussion to the CKVFs of E2 whose associated

transformations are global in the sphere.

We emphasize that the case n = 2 is very special in that there exists conformal transfor-

mations of S2 which are not global. This does not happen for n > 2, where all conformal

transformations are global [20]. This can be seen as an indirect consequence of S2 ad-

mitting a complex structure, which enlarges the number of solutions of (3.34). This is a

unique feature of S2 [22].

Therefore, taking Remark 3.14 into account, we consider the one-point compactification

of E2 into the Riemann sphere S2. It is standard (e.g. [133]) that the set of conformal

Killing vectors that extend smoothly to S2 is given by the subset of CKVFs for which

U and V are polynomials of degree at most two. In what follows, we shall restrict our

discussion to this set.

Definicin 3.15. The set of conformal Killing vectors which extend globally to S2 are

called global conformal Killing vectors (GCKV).

Thus, the set of GCKV is parametrized by six real constants {bx,by, ν, ω, ax, ay} and

take the form

ξ =

(
bx + νx− ωy +

1

2
ax
(
x2 − y2

)
+ ayxy

)
∂x

+

(
by + νy + ωx+

1

2
ay
(
y2 − x2

)
+ axxy

)
∂x

= ξ(ax,bx, ν, ω, bx,by) (3.35)

It is clear that the use of complex coordinates is advantageous in this context. For

reasons that will be clear later, it is convenient for us to introduce the complex coordinate

z = 1
2(x − iy). In terms of z, the set of CKVFs is given by ξ = f∂z + f∂z (recall that

bar denotes complex conjugation) where f is a holomorphic function of z, while U, V are

defined by 2f = U − iV . The set of GCKV is parametrized by three complex constants

{µ0, µ1, µ2} as

ξ =

(
µ0 + µ1z +

1

2
µ2z

2

)
∂z +

(
µ0 + µ1z +

1

2
µ2z

2

)
∂z. (3.36)



78

The relationship between the two sets of parameters is immediately checked to be (we

emphasize that this specific form depends on our choice of complex coordinate z)

µ0 =
1

2
(bx − iby) , µ1 = ν − iω, µ2 = 2 (ax + iay) . (3.37)

We denote the GCKV with parameters µ := (µ0, µ1, µ2) as ξ{µ}. We shall need the

following lemma concerning orthogonal and commuting GCKV. The result should be

known but we did not find an appropriate reference.

Lemma 3.16. Let ξ{µ}, ξ{σ} be global conformal Killing vector fields on E2 with corre-

sponding parameters µ = {µ0, µ1, µ2}, σ = {σ0, σ1, σ2}. Assume that ξ{µ} is not the zero

vector field. Then

1. ξ{σ} is everywhere perpendicular to ξ{µ} if and only if σ = i r µ with r ∈ R.

2. ξ{σ} commutes with ξ{µ} if and only if σ = cµ with c ∈ C.

Moreover, ξcµ has Euclidean norm

gE(ξ{cµ}, ξ{cµ})|p = |c|2gE(ξ{µ}, ξ{µ})|p, ∀p ∈ E2.

Proof. Let fµ = µ0 + µ1z + 1
2µ2z

2 so that ξ{µ} = fµ∂z + fµ∂z and define fσ correspond-

ingly. The Euclidean metric is gE = 4dzdz, so

gE(ξ{µ}, ξ{µ})|p = 2
(
fµfσ + fµfσ

)
|z(p). (3.38)

The condition of orthogonality is equivalent to fµfσ + fµfσ = 0. This is a polynomial in

{z, z}, so its vanishing is equivalent to the vanishing of all its coefficients. Expanding,

we find

µ0σ0 + µ0σ0 = 0, µ1σ1 + µ1σ1 = 0, µ2σ2 + µ2σ2 = 0, (3.39)

µ1σ0 + µ0σ1 = 0, µ2σ0 + µ0σ2 = 0, µ2σ1 + µ1σ2 = 0. (3.40)

Equations (3.39) are equivalent to the existence of three real numbers {q1, q2, q3} such

that µaσa = iqa, a = 0, 1, 2. Multiplying the equations in (3.40) respectively by µ0µ1,

µ0µ2 and µ1µ2 one finds

q0|µ1|2 − q1|µ0|2 = 0, q0|µ2|2 − q2|µ0|2 = 0, q1|µ2|2 − q2|µ1|2 = 0

⇐⇒ (q0, q1, q2)×
(
|µ0|2, |µ1|2, |µ2|2

)
= (0, 0, 0),

where × stands for the standard cross product. Since (|µ0|2, |µ1|2, |µ2|2) 6= (0, 0, 0) (from

our assumption that ξ{µ} is not identically zero) there exists a real number r such that

(q0, q1, q2) = −r(|µ0|2, |µ1|2, |µ2|2). Thus µaσa = −ir|µa|2. Fix a ∈ {0, 1, 2}. If µa 6= 0,

it follows that σa = −irµa. If, instead, µa = 0 then it follows from (3.40) (since at least
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one of the µ’s is not zero) that σa = 0. In either case we have σa = irµa. This proves

point 1. in the lemma.

For point 2. we compute the Lie bracket and find

[
ξ{µ}, ξ{σ}

]
=

(
fµ
dfσ
dz
− fσ

dfµ
dz

)
∂z +

(
fµ
dfσ
dz
− fσ

dfµ
dz

)
∂z.

The two vectors commute iff

fµ
dfσ
dz
− fσ

dfµ
dz

= µ0σ1 − µ1σ0 + (µ0σ2 − µ2σ0) z +
1

2
(µ1σ2 − µ2σ2) z2 = 0

⇐⇒ (σ0, σ1, σ2) ∝ (µ0, µ1, µ2),

and point 2. is proved. The last claim of the lemma follows from (3.38) and the linearity

fcµ = cfµ.

An immediate corollary of this result is that the set of GCKV that commute with a

given GCKV ξ{µ} is two-dimensional and generated by ξ{µ} and ξ⊥{µ} := ξ{−iµ}.

Recall that a Möbius transformation is a diffeomorphism of the Riemann sphere C∪{∞}
of the form

χA : C ∪ {∞} −→ C ∪ {∞}

z −→ χA(z) =
αz + β

γz + δ
, A :=

(
α β

γ δ

)
, αδ − βγ = 1. (3.41)

The set of Möbius transformations forms a group under composition, which we denote by

Moeb, and the map χ : SL(2,C) −→ Moeb defined by χ(A) = χA is a group morphism.

The kernel of this morphism is K := {I2,−I2} and in fact χ descends to an isomor-

phism between PSL(2,C) := SL(2,C)/K and Moeb. In geometric terms, the Möbius

group corresponds to the set of orientation-preserving conformal diffeomorphisms of the

standard sphere (S2, gS2) (recall that a diffeomorphism χ := S2 −→ S2 is conformal if

χ?(gS2) = Ω2gS2 for some Ω ∈ C∞(S2,R+)). The Möbius group thus transforms confor-

mal Killing vectors of S2 into themselves, and, hence it also transforms global GCKV

of E2 into themselves. In other words, given a GCKV ξ{µ}, the vector field χA
? (ξ{µ}) is

also a GCKV3. Let µ′ := (µ′0, µ
′
1, µ
′
2) be the set of parameters of χA

? (ξ{µ}) =: ξ{µ′}. A

3Note that χA has singularities as a map from E2 into E2, but χA
?(ξ{µ}) extends smoothly to all E2,

and in fact to the whole Riemann sphere. Again this is standard and well-understood, so we will abuse
the notation and write χA? as if the map χA were well-defined everywhere on E2
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straightforward computations shows that µ′0
µ′1
µ′2

 =

 α2 −αβ 1
2β

2

−2αγ αδ + βγ −βδ
2γ2 −2γδ δ2


︸ ︷︷ ︸

:=QA

 µ0

µ1

µ2

 . (3.42)

The determinant of this matrix is one, so QA ∈ SL(3,C). As a consequence of χA1◦χA2 =

χA1·A2 (where · denotes product of matrices), it follows that the map Q : SL(2,C) −→
SL(3,C) defined by Q(A) = QA is a morphism of groups, i.e. QA1 · QA2 = QA1·A2 .

This property can also be confirmed by explicit computation. In particular Q defines a

representation of the group SL(2,C) on C3. It is easy to show that this representation

is actually isomorphic to the adjoint representation. Recall that for matrix Lie group G

(i.e. a Lie subgroup of GL(n,C)), the adjoint representation Ad takes the explicit form

(e.g. [73])

Ad : G −→ Aut(g)

g −→ Ad(g) := Adg : g → g

X → gXg−1

where g is the Lie algebra of G and Aut(g) is the set of automorphisms of g. The

isomorphism between Q and Ad is as follows. Let us choose the basis of sl(2,C) given

by

w0 :=

(
0 2

0 0

)
w1 :=

(
1 0

0 −1

)
w2 :=

(
0 0

−1 0

)

and define the vector space isomorphism h : C3 → sl(2,C) defined by h(µ0, µ1, µ2) =

µaw
a (a, b, · · · = 0, 1, 2). One then checks easily by explicit computation that h−1 ◦Adg ◦

h = Q(g), for all g ∈ SL(2,C).

Recall that the Killing form of a Lie algebra g is the symmetric bilinear map on g defined

by B(a1, a2) := Tr (ad(a1) ◦ ad(a2)) where ad(a), a ∈ g is the adjoint endomorphism

ad(a) : g → g defined by ad(a)(b) := [a, b]. The Lie algebra sl(2,C) is semi-simple, so

its Killing form is non-degenerate (e.g. [89]). The explicit form in the basis {w0, w1, w2}
is given by

B(µaw
a, σaw

a) = 8 (µ1σ1 − µ0σ2 − µ2σ0) .

A fundamental property of the Killing form is that it is invariant under automorphisms

(see e.g. [29]), so in particular under the adjoint representation B(Adg(a),Adg(b)) =

B(a, b) for all g ∈ G. Given {µ} we define two real quantities σ{µ}), τ{µ} by

σ{µ} − iτ{µ} := 2µ0µ2 − µ2
1.
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As a consequence of the discussion above, the quantities σ{µ}, τ{µ} associated to a

GCKV ξ{µ} are invariant under Möbius transformations. We have now all necessary

ingredients to determine the set of Möbius transformations that transform a GCKV

into its canonical form. Before doing so, however, we particularize some of the aspects

of the CKVFs discussed in Section 2.2.1 to the case at hand of S2.

3.6 GCKV and skew-symmetric endomorphisms

We now give the explicit form of the isomorphism between the group Conf(S2) (respre-

sented as Möbius transformations on R2) and orthochronous component of the Lorentz

group O+(1, 3). Let M1,3 be endowed an orthonormal basis {e0, e1, e2, e3} with asso-

ciated Cartesian coordinates {X0, X2, X2, X3}. Recall that in Section 2.2.1 (we par-

ticularize here to dimension n = 2), the conformal Euclidean plane was constructed

based on certain choices, in particular, fixing a representative of the conformal sphere

S2 = {X0 = 1 = (X1)2 + (X2)2 + (X3)2} and constructing the stereographic projection

StN w.r.t. to the pole N = (1,−1, 0, 0) onto the plane ΠN = {X0 = X1 = 1, x :=

X2, y := X3}, which we identify with E2. With these choices, the explicit map between

the set of skew-symmetric endomorphisms SkewEnd(M1,3) and the set of CKVF on E2

is

φ? : SkewEnd(M1,3) −→ CKill(E2)

F =


0 −ν −ax + bx

2 −ay +
by
2

−ν 0 −ax − bx
2 −ay − by

2

−ax + bx
2 ax + bx

2 0 −ω
−ay +

by
2 ay +

by
2 ω 0

 −→ ξF , (3.43)

where ξF is given by (3.35) and we shall explicitly denote the dependence of ξF on the

parameters {bx, by, ν, ω, ax, ay} by

ξF := ξ(bx,by, ν, ω, ax, ay).

Also recall, that given an (active) orthochronous Lorentz transformation Λ(eµ) = Λνµeν ,

we may consider the skew-symmetric endomorphism FΛ := Λ◦F ◦Λ−1. The construction

above guarantees that

ξFΛ
= ΞΛ

? (ξF )

where ΞΛ is the conformal diffeomorphism associated to the Lorentz transformation Λ.

Let us restrict from now on to proper (i.e. orthochronous and orientation preserving)

Lorentz transformations SO+(1, 3). Thus, ΞΛ is an orientation preserving conformal

diffeomorphism, and having fixed the coordinate system {x, y} ∈ R2, as well as z =
1
2(x − iy), ΞΛ is a Möbius transformation. Thus there exists a pair ±A ∈ SL(2,C)
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such that χ±A(Λ) = ΞΛ. We are interested in determining the explicit form of A(Λ)

(actually of its inverse map Λ(A)). Having also fixed a future directed orthonormal

basis {e0, e1, e2, e3}, we may represent a proper Lorentz transformation as an element

of SO+(1, 3) (the connected component of the identity of SO(1, 3)). The aim is, thus,

to determine the map O : SL(2,C) → SO+(1, 3) satisfying ΞO(A) = χA. Of course,

this map depends on the choices we have made concerning the pole N and plane ΠN to

perform the stereographic projection.

As discussed at length in many references, (see e.g. [124], pp. 8-24), when the position

vector of the north pole N ′ is chosen to be e3, the plane is selected to be Π′N ′ = {X0 =

1, X3 = 0} and the complex coordinate z′ in this plane is taken as z′ = X1 + iX2, the

corresponding map O′ is (we parametrize A is in (3.41))

O′(A) = 1
2


αα+ ββ + γγ + δδ αβ + βα+ γδ + δγ) i(αβ − βα+ γδ − δγ) αα− ββ + γγ − δδ
αγ + βδ + γα+ δβ αδ + βγ + γβ + δα i(αδ − βγ + γβ − δα) αγ − βδ + γα− δβ

i(−αγ − βδ + γα+ δβ) i(−αδ − βγ + γβ + δα) αδ − βγ − γβ + δα i(−αγ + βδ + γα− δβ)

αα+ ββ − γγ − δδ αβ + βα− γδ − δγ i(αβ − βα− γδ + δγ) αα− ββ − γγ + δδ



We may take advantage of this fact to determine our O(A). To do that we simply need

to relate the action of the Möbius group in the plane ΠN := {X0 = X1 = 1} (in the

coordinate z) with the corresponding action on the plane Π′N ′ := {X0 = 1, X3 = 0}
in the coordinate z′. At this point we can explain the reason why we have chosen

z = 1
2(x − iy). The reason for the factor 2 comes from the fact that the plane ΠN lies

at distance d = 2 from the point of stereographic projection, while the plane Π′N ′ lies at

distance d = 1 of its corresponding stereographic point. The sign is introduced because

the basis {−e1, e2, e3} (with respect to which the point N and the coordinates {x, y} are

defined) has opposite orientation than the basis {e3, e1, e2} with respect to which the

point N ′ and the coordinates {X1, X2} are built. By introducing a minus sign in z we

make sure that the transformation ψ of S2 defined by {z(p) = z′(χ(p))} is orientation

preserving (where z(p) and z′(p) stand for the two respective stereographic projections

of S2 onto C2 ∪ {∞}). Now, a straightforward computation shows that an orientation

preserving conformal diffeomorphism χ : S2 → S2 which in the plane ΠN takes the form

z(χ(p)) =
αz(p) + β

γz(p) + δ
, αδ − βγ = 1, p ∈ S2,

has the following form in the Π′N ′ plane

z′(χ(p)) =
α′z′(p) + β′

γ′z′(p) + δ′
,

where (
α′ β′

γ′ δ′

)
= U−1

(
α β

γ δ

)
U, U :=

1

2

(
1− i −1 + i

1 + i 1 + i

)
.
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Since the map O′ is a morphism of groups, it follows that the Lorentz transformation

O(A) is given by

O(A) = O′(A′) = O′(U)−1O′(A)O′(U)

The SO+(1, 3) Lorentz matrix O′(U) is the rotation

O′(U) =


1 0 0 0

0 0 1 0

0 0 0 −1

0 −1 0 0


and we conclude that the Lorentz transformation O(A) takes the explicit form

O(A) =
1

2


αα+ ββ + γγ + δδ −αα+ ββ − γγ + δδ αβ + βα+ γδ + δγ i(−αβ + βα − γδ + δγ)

−αα− ββ + γγ + δδ αα− ββ − γγ + δδ −αβ − βα+ γδ + δγ i(αβ − βα− γδ + δγ)

αγ + βδ + γα+ δβ −αγ + βδ − γα+ δβ αδ + βγ + γβ + δα i(−αδ + βγ − γβ + δα)

i(αγ + βδ − γα− δβ) i(−αγ + βδ + γα− δβ) i(αδ + βγ − γβ − δα) αδ − βγ − γβ + δα

 (3.44)

(to avoid ambiguities, recall that the Lorentz transformation defined by this matrix is

Λ(eI) = ΛJ IeJ with ΛJ I the row J and column I).

3.7 Canonical form of the GCKV

We start with a definition motivated by the canonical form of skew-symmetric endomor-

phisms discussed in Section 3.2.

Definicin 3.17. Let E2 be Euclidean space and {x, y} a Cartesian coordinate system.

A GCKV ξ is called canonical with respect to {x, y} if it has the form

ξ = (µ0 + z2)∂z +
(
µ0 + z2

)
∂z, z :=

1

2
(x− iy), µ0 ∈ C.

Equivalently, a GCKV is canonical with respect to {x, y} whenever its corresponding

form (3.36) has µ1 = 0 and µ2 = 2. We next characterize the class of Möbius transfor-

mations χA which send a given GCKV into its canonical form.

Proposicin 3.18. Let {x, y} be a Cartesian coordinate system in E2. Let ξ be a non-

trivial GCKV and define the complex constants {µ0, µ1, µ2} such that ξ = ξ{µ} when

expressed in the complex coordinate z = (x − iy)/2 and its complex conjugate. Then

χA ∈ Moeb has the property that χA
? (ξ) is written in canonical form with respect to
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{x, y} if and only if

A =

(
1
2 (δµ2 − γµ1) 1

2δµ1 − γµ0

γ δ

)
,

1

2
δ2µ2 − γδµ1 + γ2µ0 = 1. (3.45)

Moreover, for any such A, it holds

χA
? (ξ) =

(
1

4

(
σ{µ} − iτ{µ}

)
+ z2

)
∂z +

(
1

4

(
σ{µ} + iτ{µ}

)
+ z2

)
∂z.

Proof. From (3.42) and the fact that the canonical form has µ′1 = 0 and µ′2 = 2, we need

to find the most general α, β, γ, δ subject to αδ − βγ = 1 such that

−2αγµ0 + (αδ + βγ)µ1 − βδµ2 = 0, (3.46)

2γ2µ0 − 2γδµ1 + δ2µ2 = 2. (3.47)

The first can be written, using the determinant condition αδ − βγ = 1, as −2αγµ0 +

(1 + 2βγ)µ1 − βδµ2 = 0. Multiplying by δ yields

0 = −2αδγµ0 + δµ1 + β
(
2γδµ1 − δ2µ2

)
= −2αδγµ0 + δµ1 + β

(
2γ2µ0 − 2

)
= −2γµ0 + δµ1 − 2β =⇒ β =

1

2
δµ1 − γµ0, (3.48)

where in the second equality we used (3.47) and in the third one we inserted the deter-

minant condition. To determine α we compute

αδ = 1 + βγ = 1 +
1

2
γδµ1 − γ2µ0 =

1

2
δ (δµ2 − γµ1)

=⇒ δ

(
α+

1

2
γµ1 −

1

2
δµ2

)
= 0,

where in the third equality we used (3.47) to replace γ2µ0. If δ 6= 0 we conclude that

α = (1/2)(γµ1 − δµ2), and the form of A is necessarily as given in (3.45). If, on the

other hand, δ = 0, then the determinant condition forces γ 6= 0. Thus, equation (3.46)

gives −2αµ′0 + βµ1 = 0, which after using (3.48) implies α = −(1/2)γµ1, so (3.45) also

follows. This proves the “only if” part of the statement. For the “if” part one simply

checks that β and α obtained above indeed satisfy (3.46)-(3.47), as soon as γ, δ satisfy

the determinant condition given in (3.45).

The second part of the Proposition is immediate form the fact that 2µ0µ2−µ2
1 is invariant

under (3.42). Thus, χA
? (ξ) has µ′0 satisfying

4µ′0 = 2µ′0µ
′
2 − µ′12 = 2µ0µ2 − µ2

1 = σ{µ} − iτ{µ}. (3.49)
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Corolario 3.19. The subgroup of SL(2,C) that leaves invariant a GCKV field in canon-

ical form with parameter µ0 is given by

Aµ0 =

{(
δ −γµ0

γ δ

)
, δ2 + µ0γ

2 = 1

}
.

Proof. Insert µ1 = 0 and µ2 = 2 into (3.45).

Corolario 3.20. Given any GCKV ξ as in Proposition 3.18, the set of elements A ∈
SL(2,C) such that χA

? (ξ) takes the canonical form is

A 1
4

(σ{µ}−iτ{µ}) · A0

where A0 is any element of SL(2,C) satisfying (3.45).

Proof. Fix A0 satisfying (3.45). Any other element A1 will satisfy (3.45) if and only if

A1 · A−1
0 leaves invariant the column vector (µ′0, 0, 2), 4µ′0 := σ{µ} − iτ{µ}, i.e. if and

only if A1 · A−1
0 ∈ Aµ′0 (cf. Corollary 3.19). Thus A1 = Aµ′0 · A0 and the corollary is

immediate by Proposition 3.18.

Corolario 3.21. Let F be a non-zero skew-symmetric endomorphism in M1,3 and let

the matrix (F ) be defined by F (eI) = F J IeJ where {eI}I=0,1,2,3 is an orthonormal basis.

Define {bx, by, ν, ω, ax, ay} so that (F ) reads as in (3.43). Define µ0, µ1, µ2 by means of

(3.37) and let Λ := O(A), where A is any of the matrices defined in Proposition 3.18.

Then, in the basis e′J := ΛIJeI , the endomorphism F takes the canonical form (3.6) with

σ − iτ = 2µ0µ2 − µ2
1.

In Proposition 3.8 we showed the existence of the canonical form of F ∈ SkewEnd(M1,3),

and this motivated the Definition 3.17 of canonical form of GCKVs. However, it is only

in Corollary 3.21 that we have been able to (easily) find the explicit change of basis

that takes F to its canonical form. This is possible because we are dealing with low

dimensions and the GCKVs take a very simple expression in complex coordinates of the

Riemann sphere, but this is a much more difficult problem in higher dimensions.

We can however easily derive the three-dimensional case as a simple consequence. For

that we consider, as usual, the extension F̂ ∈ SkewEnd(M1,3) of F ∈ SkewEnd(M1,2)

described before Corollary 3.9. In the basis {e0, e1, e2, e3 := E3}, F̂ has ay = by = ω = 0,

so the quantities µ0, µ1, µ2 defined in (3.37) are real. In order to apply Corollary 3.21

to find the change of orthonormal basis {e0, e1, e2} that brings F into its canonical form

we simply need to impose that e′3 = e3, which amounts to Λ0
3 = Λ1

3 = Λ2
3 = 0 and

Λ0
3 = 1. It is easy to show (recall that α, β are expressed in terms of γ, δ in the matrix

A of Corollary 3.21) that the general solution to the first three equations is γδ̄ = γ̄δ.
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The condition Λ0
3 = 1 is then

1

2
δδ̄µ2 − γδ̄µ1 + γγ̄µ0 = 1.

Multiplying by δ and using the determinant condition in (3.45) implies δ = δ̄, while

multiplying by γ gives γ = γ̄, and then Λ0
3 = 1 is just identical to the determinant

condition so no more consequences can be extracted. Thus all parameters α, β, γ, δ are

real. Summarizing:

Corolario 3.22. Let F be a non-zero skew-symmetric endomorphism of M1,2 and the

matrix (F ) be defined by F (ei) = F j iej where {ei}i=0,1,2 is an orthonormal basis. Define

µ0 := (F 1
3 − F 2

3)/2, µ1 := −F 1
2, µ2 := −(F 1

3 + F 2
3). For any pair of real numbers

γ, δ satisfying δ2µ2 − 2γδµ1 + 2γ2µ0 = 2, let α := (δµ2 − γµ1)/2 and β := δµ1/2− γµ0.

Then, in the basis e′i := Λj iej, with

Λ :=


1
2

(
α2 + β2 + γ2 + δ2

)
1
2

(
−α2 + β2 − γ2 + δ2

)
αβ + γδ

1
2

(
−α2 − β2 + γ2 + δ2

)
1
2

(
α2 − β2 − γ2 + δ2

)
−αβ + γδ

αγ + βδ −αγ + βδ αδ + βγ

 ,

the endomorphism F takes the canonical form (3.8) with σ = 2µ0µ2 − µ2
1.

3.8 Adapted coordinates to a GKCV

So far we have explored the action of the Möbius group on a GCKV and have found that

for any such vector, there exists a set of transformations that brings it into a canonical

form. The perspective so far has been active. We now change the point of view and

exploit the previous results to find coordinate systems in (appropriate subsets of) E2

that rectify a given (and fixed) GKCV ξ.

Consider E2 and fix a non-trivial GCKV field ξ. Let us select a Cartesian coordinate

system {x, y} and define, as before z = (1/2)(x − iy) and z = (1/2)(x + iy). When

expressed in the {z, z} coordinate system ξ will be ξ = ξ{µ} for some triple of complex

numbers {µ} = {µ0, µ1, µ2}. We now view the Möbius transformation as a change of

coordinates. Specifically, given α, β, γ, δ complex constants satisfying αδ − βγ = 1, the

quantity

ω =
αz + β

γz + δ

and its complex conjugate ω define a coordinate system on R2 \ {γz + δ = 0}. The

inverse of this coordinate transformation is, obviously,

z =
δω − β
−γω + α

. (3.50)
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It is well-known that transformations of a manifold can be dually seen as coordinate

changes in suitable restricted coordinate patches. We will refer to (3.50) as a Möbius

coordinate change. With this point of view, we may express ξ in the coordinate system

{ω, ω} and the duality above implies that ξ takes the form

ξ =

(
µ′0 + µ′1ω +

1

2
µ′2ω

2

)
∂ω +

(
µ′0 + µ′1ω +

1

2
µ′2ω

2

)
∂ω

with {µ′0, µ′1, µ′2} given by (3.42) (this can also be checked by direct computation).

We may now take {α, β, γ, δ} so that corresponding matrix A satisfies (3.45). It follows

that ξ takes the canonical form

ξ :=

(
1

4

(
σ{µ} − iτ{µ}

)
+ ω2

)
∂ω +

(
1

4

(
σ{µ} + iτ{µ}

)
+ ω2

)
∂ω.

By Lemma 3.16, the vector ξ⊥ defined by ξ⊥ := ξ{i µ} is a GCKV orthogonal to ξ

everywhere, with the same pointwise norm as ξ and satisfying [ξ, ξ⊥] = 0. In particular

ξ and ξ⊥ are linearly independent except at points where both vanish identically. As a

consequence, it makes sense to tackle the problem of finding coordinates that rectify ξ

by trying to determine a coordinate system {v1, v2} (on a suitable subset of R2) such

that

ξ = ∂v1 , ξ⊥ = ∂v2 .

Assume that we have already transformed into the coordinates {ω, ω} where ξ (and also

ξ⊥) take their canonical forms

ξ =

(
1

4
Qe−2iθ + ω2

)
∂ω + c.c, ξ⊥ =

(
i

4
Qe−2iθ + iω2

)
∂ω + c.c (3.51)

where we have defined the real constants Q ≥ 0 and θ ∈ [0, π) by

σ{µ} − iτ{µ} = Qe−2iθ (3.52)

and where c.c. stands for complex conjugate of the previous term. We are seeking a

coordinate system {ζ, ζ} defined by

ζ :=
1

2
(v1 + iv2)

such that

ξ − iξ⊥ = ∂ζ
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(this is because ∂ζ = ∂v1 − i∂v2). Since ξ − iξ⊥ = 2
(

1
4Qe

−2iθ + ω2
)
∂ω the coordinate

change musty satisfy the ODE

dζ

dω
=

1

2ω2 + Q
2 e
−2iθ

.

This equation can be integrated immediately. The result is

ζ(ω) = ζ0 +
−ieiθ

2
√
Q

ln

(
ω − i

√
Q
2 e−iθ

ω + i
√
Q
2 e−iθ

)
⇐⇒

ω(ζ; ζ0) =
i
√
Qe−iθ

2

1 + e2i
√
Qe−iθ(ζ−ζ0)

1− e2i
√
Qe−iθ(ζ−ζ0)

, (3.53)

where ζ0 is an arbitrary complex constant. These expressions include the case Q = 0 as

a limit. Explicitly

ζ − ζ0 = − 1

2ω
⇐⇒ ω = − 1

2(ζ − ζ0)
. (3.54)

Since the logarithm is a multivalued complex function, one needs to be careful concerning

the domain and range of this coordinate change. In the {ω, ω} plane, the vector field ξ

vanishes at the two points (cf. (3.51)) ω = ±i
√
Q
2 e−iθ (which degenerate to the point at

the origin when Q = 0). It is clear that neither of these points will be covered by the

{ζ, ζ} coordinate system. The case Q = 0 is very simple because, from (3.54), it is clear

that the {ζ, ζ} coordinate system covers the whole {ω, ω} plane except the origin. Since

the point at infinity in the ω-plane is sent to the point ζ0 in the ζ-plane we conclude that

the {ζ, ζ} coordinate covers the whole Riemann sphere except the single point where ξ

vanishes.

When Q 6= 0, the situation is more interesting. The reason in the multivaluedness of

the logarithm. This suggests that the coordinate change may in fact define a larger

manifold that covers the original one. In order to discuss this, let is introduce the

auxiliary function

z :=
ω − i

√
Q
2 e−iθ

ω + i
√
Q
2 e−iθ

.

This is a Möbius transformation, so it maps diffeomorphically C ∪ {∞} onto itself.

The two zeroes of ξ are mapped respectively to the origin and infinity in the z vari-

able. Since (3.53) can be written as ζ − ζ0 = −ieiθ ln(z)/(2
√
Q) and ln(z) = ln |z| +

i(arg(z) + 2πm),m ∈ N, a single value of z may be mapped to an infinite number of

points depending on the branch of logarithm one takes. One may decide to restrict the

{ζ, ζ}-domain to be the band B := {ζ ∈ C : Im(2i
√
Qe−iθ(ζ − ζ0)) ∈ (0, 2π)} and then

the coordinate change ζ(z) defines a diffeomorphism between C \ {z = (r, 0), r ≥ 0} into

B. Let ∂1B be the connected component of ∂B defined by Im(2i
√
Qe−iθ(ζ − ζ0)) = 0

and ∂2B the other component ∂2B := {Im(2i
√
Qe−iθ(ζ − ζ0)) = 2π}, then the semi-line
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{z = r}, with r real and positive and arg(z) ∈ {0, 2π}, is mapped to the respective points

ζ1(r) = −ieiθ ln(r)/(2
√
Q) ∈ ∂1B and ζ2(r) = −ieiθ ln(r)/(2

√
Q) + πeiθ/

√
Q ∈ ∂2B.

This shows that these two boundaries are identified by means of the translation defined

by the shift

ζt := πeiθ/
√
Q.

The topology of the resulting manifold is R × S1. This is in agreement with the fact

that ξ vanishes at precisely two points of the Riemann sphere, and the complement of

two points on a sphere is indeed a cylinder. The alternative is to let ζ take values in all

C and consider the inverse map

z(ζ) := e2i
√
Qe−iθ(ζ−ζ0).

It is clear that this defines an infinite covering of the z-punctured complex plane C\{0}.
As described above, the fundamental domain of this covering is the (open) band B

limited by the lines (see Figure 3.1, where we have set ζ0 = 0 for definiteness)

ζ1(s) = ζ0 +
−ieiθs
2
√
Q
, s ∈ R,

ζ2(s) = ζ0 +
−ieiθs
2
√
Q

+ ζt, s ∈ R.

The ζ-complex plane therefore corresponds to the complete unwrapping of the cylinder,

i.e. to its universal covering. In the {ζ, ζ} coordinate system we have

ξ =
1

2

(
∂ζ + ∂ζ

)
, ξ⊥ =

i

2

(
∂ζ − ∂ζ

)
,

so ξ points along the real axis and ξ⊥ into the imaginary axis. The angle of the bound-

aries ∂1B (and ∂2B) with the real axis is π
2 +θ. For generic values of θ it follows that the

integral lines of ξ descend to the quotient B (with the boundaries identified as above)

as open lines that asymptote to the two points at infinity along the band (as in Figure

3.2). Observe that these two asymptotic values correspond to z = 0 or z = ∞, which

correspond to the two zeros of ξ. Thus, the integral lines of ξ start asymptotically at one

of its zeros and approaches asymptotically the other zero. Along the way, the integral

lines circle each zero an infinite number of times (because the projection to the lines

parallel to the real axis descend to the quotient in such a way that they intersect the

boundaries of B an infinite number of times). The only exception to this behaviour

is when θ = π
2 or when θ = 0 (recall that by construction θ ∈ [0, π)). In the former

case, the integral lines of ξ, never leave the fundamental domain. This means that the

curves asymptote to the two zeros of ξ and they never encircle them along the way. The

case θ = 0 corresponds to the situation when the projection of the integral lines of ξ

define closed curves on B with the boundaries identified . This is the situation when the
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B

∂1B

∂2B

2π√
Q

θ

θ

ξ

ξ⊥

v1

v2

Figure 3.1: Domain of the complex coordinate ζ = 1
2 (v1 + iv2) adapted to ξ = ∂v1 and

ξ⊥ = ∂v2 . The parameters Q and θ determine the width and tilt of the band respectively.
The factor two in the distance between the boundaries arises because ζ = 1

2 (v1 + iv2).

θ

v1

v2

Figure 3.2: Integral lines of ξ (dashed line). The points joint by arrows are identified.
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integral curves of ξ in the original {ω, ω} plane are topological circles (which degenerate

to points at the zeroes of ξ).

It is interesting to see how the limit Q = 0 is recovered in this setting. The translation

vector that identifies points in the boundary ∂1B with points in the boundary ∂2B

diverges as Q → 0. Thus, the band B becomes larger and larger until it covers the

whole ζ-plane in the limit. On other words, the ζ-coordinate is no longer a covering of

the original ω-coordinate. In the limit, ξ vanishes at only one point in the ω-plane (the

origin) which is sent to infinity in the ζ-coordinates. It is by the process of the band B

becoming wider and wider that the limits at infinity along the band, which correspond

to two points for any non-zero value of Q, merge into a single point when Q = 0. The

process also explains in which sense the parameter θ, which measures the inclination of

the band B becomes irrelevant in the limit Q = 0, in agreement with the fact that (3.52)

lets θ take any value when σ{µ} − iτ{µ} (and hence also Q) vanishes.

In all the expressions above we have maintained the additive integration constant ζ0,

instead of setting it to zero as the simplest choice. The reason is that ζ0 can be directly

connected with the freedom one has in performing the coordinate change (3.50) that

brings ξ into its canonical form. To understand this we simply note that, from (3.53)

one can check that the following identity holds

ω(ζ; ζ0) =
cos
(√
Qe−iθζ0

)
ω(ζ; 0)−

√
Q
2 e−iθ sin

(√
Qe−iθζ0

)
2√
Q
eiθ sin

(√
Qe−iθζ0

)
ω(ζ; 0) + cos

(√
Qe−iθζ0

) .
Thus, the relation between ω(ζ; 0) and ω(ζ; ζ0) is a Möbius transformation defined by

the matrix (
cos
(√
Qe−iθζ0

)
−
√
Q
2 e−iθ sin

(√
Qe−iθζ0

)
2√
Q
eiθ sin

(√
Qe−iθζ0

)
cos
(√
Qe−iθζ0

) )
.

It is immediate to check that, letting ζ0 take any value, one runs along the full subgroup

A 1
4
Qe−2iθ defined in Corollary 3.19. Thus, by Corollary 3.20, the freedom in performing

the coordinate change (3.50) that transforms ξ into its canonical form can be absorbed

into the additive constant ζ0, and vice-versa. Having understood this, we will set ζ0 = 0

from now on.

So far we have considered ξ without referring to any specific metric. We now en-

dow R2 coordinated by {x, y} (or {z, z}) with the following class of metrics. Let

u := {u0, u1, u2, u3} ∈ R4, u 6= 0, and define

gu :=
1

Ω2
u

(
dx2 + dy2

)
=

1

Ω2
u

4dzdz, (3.55)

Ωu := u0 + u1 + u2x+ u3y +
1

4
(u0 − u1)(x2 + y2)

= u0(1 + zz) + u1(1− zz) + u2(z + z) + u3i(z − z).
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The Gauss curvature of gu is κu := u2
0 − u2

1 − u2
2 − u2

3. Since g−u = gu, there is a sign

freedom in u that we must keep in mind. When κu ≥ 0, then it must be that u0 6= 0 and

the sign freedom may be fixed by the requirement u0 > 0. However, this is no longer

possible when κu < 0.

Observe that g{u0= 1
2
,u1= 1

2
,u2=0,u3=0} = gE := 4dzdz. Under a Möbius coordinate change

(3.50), the metric gu takes the form

gu =
1

Ω2
u′

4dωdω,

Ωu′ = u′0(1 + ωω) + u′1(1− ωω) + u′2(ω + ω) + u′3i(ω − ω),

where the constants u′ := {u′0, u′1, u′2, u′3} are obtained from u = {u0, u1, u2, u3} by the

transformation

ε


u′0
u′1
u′2
u′3

 =
1

2


αα+ ββ + γγ + δδ αα− ββ + γγ − δδ −αβ − βα− γδ − δγ i(αβ − βα+ γδ − δγ)

αα+ ββ − γγ − δδ αα− ββ − γγ + δδ −αβ − βα+ γδ + δγ i(αβ − βα− γδ + δγ)

−(αγ + βδ + γα+ +δβ) −αγ + βδ − γα+ δβ αδ + βγ + γβ + δα i(−αδ + βγ − γβ + δα)

i(−αγ − βδ + γα+ δβ) i(−αγ + βδ + γα− δβ) i(αδ + βγ − γβ − δα) αδ − βγ − γβ + δα


︸ ︷︷ ︸

=Λ(α,β,γ,δ)


u0

u1

u2

u3



where ε := ±1. This sign reflects the impossibility (in general) of choosing between u

and −u. One can check that Λ(α,β,γ,δ) = O(A−1)T (3.44) where A is as in (3.41) and
T denotes transpose. It follows that Λ(α, β, γ, δ) defines a morphism of groups between

SL(2,C) and SO+(1, 3) and that u transforms as the components of a covector in the

Minkowski spacetime. Also observe that when u is timelike or null (i.e. κu ≥ 0), the

choice u0, u
′
0 > 0 selects ε = 1.

In order to express the metric in the coordinates {v2, v2} we need to compute the func-

tions ωω, ω + ω and i(ω − ω) in terms of these variables. For notational simplicity we

introduce the auxiliary quantities

b1 := v1 cos θ + v2 sin θ, b2 := v2 cos θ − v1 sin θ. (3.56)

From (3.53) with ζ0 = 0, a straightforward computation that uses basic trigonometry

yields

ωω =
Q
(
cosh

(√
Qb2

)
+ cos

(√
Qb1

))
4
(
cosh

(√
Qb2

)
− cos

(√
Qb1

)) ,
ω + ω =

√
Q sin θ sinh

(√
Qb2

)
−
√
Q cos θ sin

(√
Qb1

)
cosh

(√
Qb2

)
− cos

(√
Qb1

) ,

i (ω − ω) = −
√
Q cos θ sinh

(√
Qb2

)
+
√
Q sin θ sin

(√
Qb1

)
cosh

(√
Qb2

)
− cos

(√
Qb1

) .
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Since dω = dω
dζ dζ = 2(ω2 + Q

4 e
−2iθ)dζ, determining the line-element dωdω requires

expressing |ω2 + Q/4e−2iθ|2 in terms of {v1, v2}. The result is obtained by a direct

computation,

4

(
ω2 +

Q

4
e−2iθ

)(
ω2 +

Q

4
e2iθ

)
=

Q2(
cosh(

√
Qb2)− cos(

√
Qb1)

)2 .
Let us introduce the functions

f+(v1, v2) :=
1

4

(
cosh(

√
Qb2) + cos(

√
Qb1)

)
,

f−(v1, v2) :=
1

Q

(
cosh(

√
Qb2)− cos(

√
Qb1)

)
,

f2(v1, v2) :=
1√
Q

(
sin θ sinh(

√
Qb2)− cos θ sin(

√
Qb1)

)
, (3.57)

f3(v1, v2) :=
−1√
Q

(
cos θ sinh(

√
Qb2) + sin θ sin(

√
Qb1)

)
,

so that we may express

ωω =
f+

f−
, ω + ω =

f2

f−
, i (ω − ω) =

f3

f−
.

All these function admit smooth limits at Q→ 0, with corresponding expressions

f+(v1, v2) =
1

2

f2(v1, v2) = −v1

f3(v2, v2) = −v2

f−(v1, v2) =
1

2

(
v2

1 + v2
2

)
.

ForQ 6= 0, the functions {f+, f−, f2, f3} are all periodic in the variable b1 with periodicity

2π/
√
Q. This corresponds to the fact that the ζ-plane is a covering of the ω-plane, with

the identification defined by the translation ζt.

Thus, in the adapted coordinates {v1, v2} where ξ = ∂v1 and ξ⊥ = ∂v2 , the metric

g0 := 4dωdω takes the form

g0 =
4

f2
−
dζdζ =

Q2(
cosh

(√
Qb2

)
− cos

(√
Qb1

))2 (dv2
1 + dv2

2

)
.

Hence, the metric gu becomes

gu =
1

((u′0 − u′1)f+ + (u′0 + u′1)f− + u′2f2 + u′3f3)2

(
dv2

1 + dv2
2

)
:=

1

Ω̂2(v1, v2)

(
dv2

1 + dv2
2

)
. (3.58)

We may now summarize the results obtained so far concerning GCKV.
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Teorema 3.23. Let E2 be the Euclidean plane and {x, y} be Cartesian coordinates. Let

ξ be a GCKV in this space and define the complex constants {µ0, µ1, µ2} by means of the

expression of ξ given by (3.36) in the complex coordinates z = 1
2(x− iy), z = 1

2(x− iy).

Define

α =
1

2
(δµ2 − γµ1) , β =

1

2
δµ1 − γµ0,

where γ and δ are any pair of complex constants satisfying

1

2
δ2µ2 − γδµ1 + γ2µ0 = 1.

Then ξ takes its canonical form (cf. Proposition 3.18)

ξ =
(
µ′0 + ω2

)
∂ω +

(
µ′0 + ω2

)
∂ω, 4µ′0 := 2µ0µ2 − µ2

1,

in the coordinate system {ω, ω} defined by ω = (αz+ β)/(γz+ δ). Any other coordinate

system {ω′, ω′} where ξ is in canonical form is related to {ω, ω} by (cf. Corollary 3.19)

ω′ =
δ′ω − γ′µ′0
γ′ω + δ′

, δ′2 + µ′0γ
′2 = 1.

In addition, the real coordinates {v1, v2} defined by ζ := v1 + iv2 together with (3.53)

and 4µ′0 := σ{µ} − iτ{µ} = Qe−2iθ are adapted to ξ and ξ⊥ := ξ{iµ} (cf. Lemma 3.16),

namely ξ = ∂v1 and ξ⊥ = ∂v2. Moreover, the class of metrics (3.55) is written in adapted

coordinates as (3.58).

We mentioned above that the freedom in the coordinate change that brings ξ into its

canonical form can be translated into the freedom of a constant shift in the coordinates

{v1, v2}. Given {ṽ1, ṽ2} let b̃1 and b̃2 by defined exactly by the same expression as (3.56)

but with {v1, v2} replaced by {ṽ1, ṽ2}. Similarly, we introduce four functions {f̃+(ṽ1, ṽ2),

f̃−(ṽ1, ṽ2), f̃2(ṽ1, ṽ2), f̃3(ṽ1, ṽ2)} by the same definition as (3.57), with {b1, b2} replaced

by {b̃1, b̃2}. Let us now consider the coordinate change{
v1 = ṽ1 − cos θ`1 + sin θ`2

v2 = ṽ2 − sin θ`1 − cos θ`2
(3.59)

where `1 and `2 are constants. Then b1 = b̃1 − `1 and b2 = b̃2 − `2 and we may relate

the functions {f} written in terms of {ṽ1, ṽ2} with the functions {f̃}. The result is
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2f+

2f−

f2

f3


ṽ1,ṽ2

=


1
2 (Coh + Co) Q

8 (Coh− Co) −
√
Q
2 Si

√
Q
2 Sih

2
Q (Coh− Co) 1

2 (Coh + Co) 2√
Q

Si 2√
Q

Sih
1√
Q

(cos θSi− sin θSih) −
√
Q
4 (cos θSi + sin θSih) cos θCo − sin θCoh

1√
Q

(cos θSih + sin θSi)
√
Q
4 (cos θSih− sin θSi) sin θCo cos θCoh




1 0 0 0

0 1 0 0

0 0 cos θ sin θ

0 0 − sin θ cos θ




2f̃+

2f̃−

f̃1

f̃2

 := W (`1, `2)


2f̃+

2f̃−

f̃1

f̃2

 , (3.60)

where for notational simplicity we have introduced Co = cos(
√
Q`1),Coh = cosh(

√
Q`2), Si =

sin(
√
Q`1),Sih = sinh(

√
Q`2). If we compare W (`1, `2) and T (λ2, λ3, ε) we see that the

matrices are identical after setting

λ2 =
1√
Q

sin(
√
Q`1), λ3 =

1√
Q

sinh(
√
Q`2), ε

√
1−Qλ2

2 = cos(
√
Q`1). (3.61)

Of course this does not happen by chance. We have seen before that the shift in ζ corre-

sponds to the subgroup of Möbius transformation that leaves the canonical form of ξ in-

variant. By the relationship between GCKV and skew-symmetric endomorphism in M1,3

described in Section 3.6 (se also subsection 2.2.1), this Möbius subgroup corresponds to

the set of orthochronous Lorentz transformations that leave the skew-symmetric endo-

morphism invariant, and this is precisely the group {T (λ2, λ3, ε)}. With the choice we

have made of the shift constants (3.59), the relationship between the parameters {`1, `2}
and {λ2, λ3} take the remarkably simple form given by (3.61). Note that the map

(`1, `2) → (λ2, λ3, ε) is again a covering. If we let `2 be periodic with periodicity 2π√
Q

,

the map is a bijection. Observe that, to make the comparison work, we have inserted a

factor 2 in front of f± in the column vector (3.60). The reason is easy to understand.

The constants {u′0, u′1, u′2, u′3} in the conformal factor Ω̂ in the metric gu define a Lorentz

covector of length −u′02 +u′1
2 +u′2

2 +u′3
2 = −(u′0 +u′1)(u′0−u′1)+u′2

2 +u′3
2. This means

that, viewed as vectors in a Lorentz space, the basis {f+, f−, f2, f3} is semi-null, but with

scalar product 〈f+, f−〉 = 1
2 However, the transformation law T (λ2, λ3, ε) was written

in a semi-null basis {`, k, e2, e3} with normalization 〈`, k〉 = −2, which is precisely the

normalization of the basis {2f+, 2f−, f2, f3}.

Having obtained the transformation law for {f+, f−, f2, f3} it follows immediately that

under the coordinate transformation (3.59), the metric gu becomes

gu =
1(

(ũ0 − ũ1)f̃+ + (ũ0 + ũ1)f̃− + ũ2f̃1 + ũ3f̃2

)2

(
dṽ2

1 + dṽ2
2

)
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where the constants {ũ0, ũ1, ũ2, ũ3} are given by
1
2 (ũ0 − ũ1)
1
2 (ũ0 + ũ1)

ũ2

ũ3

 = ε(W (`1, `2))T


1
2 (u′0 − u′1)
1
2 (u′0 + u′1)

u′2
u′3


(the reason for the sign ε is the same as discussed before).

3.9 Applications

3.9.1 Killing vectors of gu

Our aim is to determine under which conditions ξ is a Killing vector of the metric gu. We

will address the question by analyzing the situation in the adapted coordinates. Since

ξ = ∂v1 , ξ will be a Killing vector of gu if and only if the function Ω̂ satisfies ∂v1Ω̂ = 0.

It is straightforward to check that

∂v1f+ =
Q

4
(cos(2θ)f2 + sin(2θ)f3) ,

∂v1f− = −f2,

∂v1f2 = −2f+ +
Q

2
cos(2θ)f−,

∂v1f3 =
Q

2
sin(2θ)f−,

which imply

∂v1Ω̂ =− 2u′2f+ +
Q

2

(
cos(2θ)u′2 + sin(2θ)u′3

)
f−

+

(
Q

2
cos(2θ)u− − 2u′+

)
f2 +

Q

2
sin(2θ)u′−f3,

where we have set u′± := 1
2(u′0±u′1). The functions {f+, f−, f2, f3} are linearly indepen-

dent, so this derivative will vanish if and only if each coefficient vanishes. IfQ sin(2θ) 6= 0,

it is immediate that the only solution is u′+ = u′− = u′2 = u′3 = 0, which is not possible

for a metric gu. Thus, a necessary condition for ξ to be a Killing vector of (any) gu is

that the invariant (see (3.52)) σ{µ} − iτ{µ} be real (i.e. τ{µ} = 0). When Q 6= 0, the

condition sin(2θ) = 0 is θ ∈ {0, π2 } (recall that θ ∈ [0, π) by construction). To cover all

cases at once we set cos θ = ε̂ and sin θ = 1− ε̂, with ε̂2 = ε̂. Then cos(2θ) = 2ε̂− 1 (this

choice is also valid when Q = 0 because θ can be fixed to any value). Then

∂v1Ω̂ = 0 ⇐⇒ (u′−, u
′
+, u

′
2, u
′
3) = s1

(
1,
Q

4
(2ε̂− 1), 0, 0

)
︸ ︷︷ ︸

w1

+s2 (0, 0, 0, 1)︸ ︷︷ ︸
w2

, s1, s2 ∈ R.
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The Lorentzian norm of this vector is −4u′+u
′
−+ u′2

2 + u′3
2 = −(2ε̂− 1)Qs2

1 + s2
2. Under

the constant shift given by `1, `2, the two-dimensional vector space spanned by w1 and

w2 remains invariant, and the vector s1w1 + s2w2 transforms to s̃1w2 + s̃2w3 with

(
s̃1

s̃2

)
= ε

(
ε̂ cosh(

√
Q`2) + cos(

√
Q`1)(1− ε̂) 1√

Q

(
sinh(

√
Q`2)ε̂+ sin(

√
Q`1)(1− ε̂)

)
√
Q
(
sinh(

√
Q`2)ε̂− sin(

√
Q`1)(1− ε̂)

)
ε̂ cosh(

√
Q`2) + cos(

√
Q`1)(1− ε̂)

)(
s1

s2

)
.

This transformation leaves the norm −(2ε̂−1)Qs2
1 +s2

2 invariant (as it must) and defines

a group which is one-dimensional when Q 6= 0 and two-dimensional when Q = 0. Thus,

when transforming the vector u into the original coordinate system {z, z} we may ignore

the action of the invariance group that leaves the canonical form of ξ invariant provided

we let u take all non-zero values in the vector space span{w1, w2} . We may summarize

the result in the following theorem.

Teorema 3.24. Given a non-identically zero GCKV ξ in two-dimensional Euclidean

space and let {µ} := {µ0, µ1, µ2} be the set of parameters such that ξ = ξ{µ} in the

coordinate system {z, z}. Let U ⊂ R4 \ {0} be defined by the property that for all u ∈ U ,

ξ is a Killing vector of the metric gu (defined in (3.55)). Then

• If 2µ0µ2 − µ2
1 6∈ R then U = ∅.

• If 2µ0µ2 − µ2
1 ∈ R, let δ, γ be any pair of complex numbers satisfying

1

2
δ2µ2 − γδµ1 + γ2µ0 = 1

and set α = 1
2(δµ2 − γµ1) and β = 1

2δµ1 − γµ0. Then u ∈ U if and only if
u0

u1

u2

u3

 = O(A)T


s1

(
1
4(2µ0µ2 − µ2

1) + 1
)

s1

(
1
4(2µ0µ2 − µ2

1)− 1
)

0

s2


where (s1, s2) ∈ R2 \ {0}, A is the matrix (3.41) and O(A) was defined in (3.44).

Moreover, such gu has constant curvature κu given by

κu = s2
1(2µ0µ2 − µ2

1)− s2
2.

Proof. We only need to check that w1 = (1, 1
4(2µ0µ2 − µ2

1), 0, 0), This is an immediate

consequence of the definitions (3.52) and (3.49), which in the case cos θ = ε̂ and sin θ =

1− ε̂ imply

Q (2ε̂− 1) = 2µ0µ2 − µ2
1.
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One may wonder why this problem has no been addressed in the original coordinate

system {z, z}. The Lie derivative of a metric gΨ := 4Ψ−2dzdz along ξ{µ} (given by

(3.36)) is

Lξ{µ}gΨ =
(
−2ξ{µ}(Ψ) + Ψ (µ1 + µ1 + µ2z + µ2z)

)
gΨ.

Thus ξ{µ} is a Killing vector of gu if and only if

−2ξ{µ}(Ωu) + Ωu (µ1 + µ1 + µ2z + µ2z) = 0.

The computation gives a polynomial in {z, z} of degree two. Equating each coefficient

to zero, one finds that the conditions that need to be satisfied can be written in the form
0 −ν −ax + bx

2 −ay +
by
2

−ν 0 −ax − bx
2 −ay − by

2

−ax + bx
2 ax + bx

2 0 −ω
−ay +

by
2 ay +

by
2 ω 0



−u0

u1

u2

u3

 =


0

0

0

0

 (3.62)

where we have expressed {µ} in terms of its real and imaginary parts by means of (3.37).

Recalling the relationship between GCKV ξ and skew-symmetric endomorphisms Fξ we

conclude that ξ{µ} is a Killing vector of gu if and only if the non-zero Lorentz vector

(−u0, u1, u2, u3) lies in the kernel of Fξ (observe that this vector is obtained from the

covector u by raising indices with the Minkowski metric). Being skew-symmetric and

not identically zero, Fξ can only have rank two or four, so in order to admit a non-

trivial kernel, the rank must be two. This corresponds to the condition τ{µ} = 0 ⇐⇒
Im(2µ0µ2 − µ2

1) = 0. So, the kernel is two-dimensional, which recovers the statement in

Theorem 3.24 that the set U ∪{0} is a two-dimensional vector space. Thus, the problem

becomes geometrically very neat in the original coordinate system. However, in Theorem

3.24 we have been able to determine explicitly the vector subspace U ∪{0} (equivalently

the kernel of Fξ, after index raising) in a way that covers all cases at once. It is not

so clear how to achieve the same by a direct attempt of solving (3.62) in such a way

that the solution covers all possible values of {bx,by, ν, ω, ax, ay} under the restriction

bxay − byax + νω = 0 (namely Im(2µ0µ2 − µ2
1) = 0).

The issue addressed in Theorem 3.24 is to determine for which metrics gu a given GCKV

is Killing. A complementary problem is to fix gu and determine all GCKV which are

Killings of gu. This problem may be approached in the language of skew-symmetric

endomorphisms. A skew-symmetric endomorphism F in M1,3 of rank two is necessarily

of the form F = q1 ⊗ q2 − q2 ⊗ q1 where q1 and q2 are linearly independent Lorentz

vectors and recall that boldface denote the metrically related one-form. A vector u lies

in the kernel of F if and only if it is orthogonal to q1 and q2. Thus, the set of Killing
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vectors of gu is obtained from all skew-symmetric endomorphisms

Fu⊥ := {F = q1 ⊗ q2 − q2 ⊗ q1; span{q1, q2} = u⊥}.

where u⊥ stands for the set of vectors in the kernel of the covector (u0, u1, u2, u3). We

do not attempt to find an explicitly parametrization of all Killing vectors of gu that

covers at once all possible choices of u (this problem does not appear to be simple either

in terms of endomorphisms, or by using canonical forms of ξ).

3.9.2 Transverse and traceless and Lie constant tensors on E2

As discussed in Chapter 2, the transverse and traceless symmetric 2-covariant tensors,

namely, tensors Dαβ = Dβα satisfying (indices are raised with a metric g and ∇ is the

corresponding Levi-Civita connection)

∇αDαβ = 0 (transverse), Dα
α = 0 (traceless)

play a prominent role in General Relativity, in several circumstances. For example, they

are fundamental for the construction of initial data in spacelike slices with prescribed

regularity at spacelike infinity [37] or black hole initial data [16]. Of particular interest

for us, is the free data at null infinity for Λ-vacuum spacetimes with positive cosmological

constant (cf. Section 2.4 and references therein). In this setup, an interesting subclass

that arises when the spacetime admits Killing vectors is the subclass of TT tensors which

satisfy the KID equation [116] (cf. Theorem 2.35). In dimension n, this equation is (cf.

Section 5.2)

LξDαβ +
n− 2

n
(divgξ)Dαβ = 0

where ξ is a conformal Killing vector of g and Lξ, divgξ stand respectively for the Lie

derivative along ξ and the divergence of ξ with respect to g. In dimension n = 2 the

general solution of (local) TT tensors satisfying the KID equation can be explicitly

solved. Although this dimension is not particularly interesting from a physical point

of view, there are several motivations for presenting the result. Firstly, dimensional

reduction is a useful tool in many geometric problems, so it is not unlikely that the case

of dimension two may find applications in higher dimensions. Also, the n = 2 case may

serve as a toy model to address the (much more difficult) problem in higher dimensions.

In addition, the solution we find turns out to admit an interesting generalization in

arbitrary dimension (cf. Section 4.7). And lastly, it is remarkable, that the problem is

so simple in dimension n = 2 that its general solution can be explicitly given.

A key property of the TT conditions and of the KID equations is their conformal co-

variance (cf. Lemma 2.1). Also, if D satisfies the KID equation for g, then Ω2−nD

also satisfies the KID equation for Ω2g. In dimension n = 2 one actually has conformal
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invariance. Since all two-dimensional metrics are locally conformal to the flat metric,

and we are interested in solving the (more general) local problem, we may assume that

g = 4dzdz. As already mentioned, a vector field ξ is conformal of this metric if and only

if ξ = f(z)∂z + f(z)∂z. We expand D = Dzzdz
2 +Dzzdz

2 + 2Dzzdzdz. The condition of

being traceless is Dzz = 0 and D real requires Dzz = Dzz, With these restrictions, the

transverse equations take the following explicit and simple form

∂zDzz = 0, ∂zDzz = 0,

so Dzz is a holomorphic function of z. Imposing transverse and traceless as well as the

reality condition, the KID equations read

f
Dzz

dz
+ 2Dzz

df

dz
= 0,

which integrates to Dzz = q
f2 , q ∈ C. Writing q = q1 + iq2, with real q1, q2, we con-

clude that the most general (real) TT tensor that satisfies the KID equation is a linear

combination of (we add the factor 4 for convenience)

D1 :=
1

4

(
1

f2
dz2 +

1

f
2dz

2

)
, D2 =

i

4

(
1

f
2dz

2 − 1

f2
dz2

)
.

These expressions are valid in the coordinate system {z, z}. We are interested in co-

variant expressions that are valid in any coordinate system, and are explicitly invariant

under conformal transformations. To achieve this, we introduce the vector field

ξ⊥ := i
(
f∂z − f∂z

)
. (3.63)

This is everywhere orthogonal to ξ and has the same norm at every point. If the zeros

of ξ do not separate the manifold, these two properties define ξ⊥ in terms of ξ uniquely

except for a global sign. If the zeroes of ξ separate the manifold, ξ⊥ is still uniquely

defined (up to a sign) if one adds the condition that ξ⊥ is a conformal Killing vector

of g (which (3.63) clearly is). Thus, we may speak of ξ⊥ unambiguously (up to global

sign), once ξ has been fixed. Next we note that, in the {z, z} coordinate system and

with respect to the metric gE := 4dzdz we have

ξ = 2fdz + 2fdz, |ξ|2gE := gE(ξ, ξ) = 4ff,

ξ⊥ = 2ifdz − 2ifdz, |ξ⊥|2gE = 4ff,

and then we may write

D1 =
1

|ξ|4gE

(
ξ ⊗ ξ − 1

2
|ξ|2gEgE

)
,

D2 =
1

2|ξ|4gE

(
ξ ⊗ ξ⊥ + ξ⊥ ⊗ ξ

)
.
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These expressions are obviously coordinate independent and also conformally invariant.

Thus, D1 and D2 take this form also for the original metric g. Notice that at the fixed

points of ξ, i.e. those points where ξ vanishes, the general solution D = c1D1 + c2D2 for

c1, c2 ∈ R diverges unless c1 = c2 = 0. This follows from the fact that the square norm

of D is

DαβD
αβ =

1

2|ξ|4gE
(c2

1 + c2
2),

which is regular at the fixed points of ξ only if c1 = c2 = 0. Summarizing, we have

proved the following theorem.

Teorema 3.25. Let (M, g) be a two-dimensional Riemannian manifold and ξ a confor-

mal Killing vector of g. Let D be a (real) transverse and traceless symmetric, 2-covariant

tensor that satisfies the KID equation with respect to ξ. Then D is a linear combination

(with constants) of

Dξ :=
1

|ξ|4g

(
ξ ⊗ ξ − 1

2
|ξ|2gg

)
,

Dξ,ξ⊥ :=
1

2|ξ|2g|ξ⊥|2g

(
ξ ⊗ ξ⊥ + ξ⊥ ⊗ ξ

)
,

where ξ⊥ is defined as described above and ξ := g(ξ, ·), ξ⊥ := g(ξ⊥, ·). Moreover, the

only solution regular at any of the fixed points of ξ is the zero tensor.

We note that Theorem 3.25 has found interesting applications for gravitational radiation

at null infinity in [51].



Chapter 4

Skew-symmetric endomorphisms

of M1,n+1& CKVFs of Sn

In this Chapter we deal with skew-symmetric endomorphisms of Lorentzian vector spaces

of arbitrary dimensions, which we identify with M1,n+1, and its relation with CKVFs of

the n-sphere Sn. The contents are essentially a generalization to arbitrary dimension of

many of the results in Chapter 3. They have been published in [95].

In Section 4.1 we rederive a known classification result (e.g. [39]) for skew-symmetric

endomorphisms of d-dimensional Lorentzian vector spaces SkewEnd(M1,d−1). Based on

this and with the results of Section 3.2, we give a canonical form in Section 4.2 for

each element in SkewEnd(M1,d−1) depending on a minimal number of parameters. In

Section 4.4, we show that this canonical form is shared by every pair of elements in

SkewEnd(M1,d−1) differing by an orthochronous Lorentz transformation, i.e. it defines

the orbits of the orthochronous Lorentz group O+(1, d− 1) under the adjoint action on

its algebra. Using this form, we obtain a useful set of limits in the quotient topology of

SkewEnd(M1,d−1)/O+(1, d.1), which will find application in Chapter 6 for the analysis

of asymptotic intial data.

In the subsequent Sections, we apply the above results to the set of CKVFs of Sn (with

n > 2). From the relations between SkewEnd(M1,n+1) and the CKVFs of the sphere Sn

given in subsection 2.2.1, a canonical form for CKVFs follows immediately in Section

4.5. This form is used in Section 4.6 to find adapted coordinates to an arbitrary CKVF

that covers all cases at the same time. We do the calculation for even n and obtain

the case of odd n as a consequence. With these coordinates at hand, in Section 4.7

we obtain a wide class of TT-tensors for n = 3 solving the KID equations for two

commuting CKVFs, one of which is axial. The commuting CKVFs are obtained taking

advantage of the structure of the canonical form obtained in Section 4.5. These tensors

provide Cauchy data at conformally flat null infinity I . Specifically, this class of data

is characterized for generating Λ > 0-vacuum spacetimes with two-symmetries, one of

102



103

which axial, admitting a conformally flat I . The class of data is infinite dimensional,

depending on two arbitrary functions of one variable as well as a number of constants.

Moreover, it contains the data for the Kerr-de Sitter spacetime, which we explicitly

identify within.

4.1 Classification of skew-symmetric endomorphisms

Let V be a d dimensional Lorentzian vector space. The first step towards the definition

of canonical form of skew-symmetric endomorphisms of V in any dimension is the clas-

sification result proven in this Section. The strategy is the decomposition of an arbitray

element F ∈ SkewEnd(V ) into orthogonal sum of spacelike and timelike eigenplanes (cf.

Definition 3.5). The first question we address here is under which conditions such a

plane exists (cf. Proposition 4.5). We start with some preliminary results.

Lemma 4.1. Let V be a Lorentzian vector space and F ∈ SkewEnd(V ). Then there

exist two vectors w, v ∈ V , with w 6= 0, such that one of the three following exclusive

possibilities hold

(i) w is a null eigenvector of F .

(ii) w is a non-null eigenvector (with zero eigenvalue).

(iii) w =: u, v are orthogonal, spacelike and with the same norm, and define an eigen-

plane of F with non-zero eigenvalue, i.e.

F (u) = µv, F (v) = −µu, µ ∈ R\ {0} .

If, instead, V is Riemannian, only cases (ii) and (iii) can arise.

Proof. From the Jordan block decomposition theorem we know that there is at least

one, possibly complex, eigenvalue s1 + is2 with eigenvector w+ iv, that is, F (w+ iv) =

(s1 + is2)(w + iv), or equivalently:

F (w) = s1w − s2v, (4.1)

F (v) = s2w + s1v. (4.2)

This system is invariant under the interchange (w, v) → (−v, w), so without loss of

generality we may assume w 6= 0. The respective scalar products of (4.1) and (4.2) with

w, v yield

s1 〈w,w〉 − s2 〈w, v〉 = 0

s1 〈v, v〉+ s2 〈w, v〉 = 0

}
⇐⇒

(
〈w,w〉 − 〈w, v〉
〈v, v〉 〈w, v〉

)(
s1

s2

)
=

(
0

0

)
. (4.3)
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Observe that if s1 + is2 6= 0 the determinant of the matrix must vanish. i.e.

〈w, v〉 (〈w,w〉+ 〈v, v〉) = 0.

Hence, we can distinguish the following possibilities:

(a) s1 = s2 = 0. Then w is an eigenvector of F with vanishing eigenvalue so we fall into

cases (i) or (ii).

(b) s1 + is2 6= 0. From 〈w, v〉 (〈w,w〉+ 〈v, v〉) = 0 we distinguish two cases:

(b.1) 〈w, v〉 = 0. If s1 6= 0 then (4.3) forces w and v to be both null and, being also

orthogonal to each other, there is a ∈ R such that v = aw and we fall into case (i).

So, we can assume s1 = 0 (and then s2 6= 0). Let µ := −s2 and u := w, thus (iii)

follows from equations (4.1), (4.2) and Lemma 3.3.

(b.2) 〈w, v〉 6= 0. Then 〈w,w〉 = −〈v, v〉 and the matrix problem (4.3) reduces to

s1 〈w,w〉 − s2 〈w, v〉 = 0.

In addition, (4.1) and (4.2) imply

〈F (w), v〉 = s1 〈w, v〉 − s2 〈v, v〉 = s1 〈w, v〉+ s2 〈w,w〉 = 〈F (v), w〉 .

But skew-symmetry requires 〈F (w), v〉 = −〈F (v), w〉, so 〈F (v), w〉 = 0 and we con-

clude

s1 〈w, v〉+ s2 〈w,w〉 = 0.

Combining with (4.1) yields(
〈w,w〉 − 〈w, v〉
〈w, v〉 〈w,w〉

)(
s1

s2

)
=

(
0

0

)
.

The determinant of this matrix is non-zero which yields a contradiction with s1+is2 6=
0. So this case is empty.

To conclude the proof, we must consider the case when the vector space V is Rie-

mannian. The proof is identical except from the fact that all cases involving null

vectors are imposible from the start.

Observacin 4.2. One may wonder why the lemma includes the possibility of having

a spacelike eigenplane (case (iii)), but not a timelike eigenplane. The reason is that

invariant timelike planes, which are indeed possible, fall into case (i) by Lemma 3.4,

because e± v are null eigenvectors.
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In the case of Riemmanian signature, Lemma 4.1 can be reduced to the following single

statement:

Corolario 4.3. Let V be Riemannian of dimension d and F ∈ SkewEnd(V ). If d = 1

then F = 0 and if d ≥ 2 then there exist two orthogonal and unit vectors u, v satisfying

F (u) = µv, F (v) = −µu, µ ∈ R (4.4)

Proof. The case d = 1 is trivial, so let us assume d ≥ 2. By the last statement of

Lemma 4.1 either there exists an eigenvector w with zero eigenvalue or the pair {u, v}
claimed in the corollary exists. In the former case, we consider the vector subspace

w⊥. Its dimension is at least one and F restricts to this space so again either the pair

{u, v} exists or there is e ∈ w⊥ satisfying F (e) = 0. But then {w, e} are orthogonal and

non-zero. Normalizing we find a pair {u, v} that satisfies (4.4) with µ = 0,

Lemma 4.1 lists a set of cases, one of which must always occur. However, we now show

that, if the dimension is sufficiently high, case (i) of that lemma implies one of the other

two:

Lemma 4.4. Let F ∈ SkewEnd(V ), with V Lorentzian of dimension at least four. If

F has a null eigenvector, then it also has either a spacelike eigenvector or a spacelike

eigenplane.

Proof. Let k ∈ V be a null eigenvector of F . The space A := k⊥ ⊂ V is a null hyperplane

and F restricts to A. On this space we define the standard equivalence relation v0 ∼ v1

iff v0 − v1 = ak, a ∈ R. The quotient A/ ∼ (which has dimension at least two) inherits

a positive definite metric g and F also descends to the quotient. More precisely, if we

denote the equivalence class of any v ∈ A by v, then for any v ∈ A/ ∼ and any v ∈ v the

expression F (v) = F (v) is well-defined (i.e. independent of the choice of representative

v) and hence defines an endomorphism F of A/ ∼ which, moreover, satisfies

〈F (v1), v2〉g = −〈v1, F (v2)〉g.

In other words F is a skew-symmetric endomorphism in the Riemannian vector space

A/ ∼. By Corollary 4.3 (here we use that the dimension of A/ ∼ is at least two) there

exists a pair of orthogonal and g-unit vectors {e1, e2} satisfying

F (e1) = a e2, F (e2) = −a e1, a ∈ R.

Select representatives e1 ∈ e1 and e2 ∈ e2. In terms of F , the condition (4.1) and the

fact that k is eigenvector require the existence of constants σ, a, λ1 and λ2 such that

F (k) = σk, F (e1) = ae2 + λ1k, F (e2) = −ae1 + λ2k.
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Whenever a2 + σ2 6= 0 the vectors

u := e1 −
1

a2 + σ2
(aλ2 + σλ1) k, v := e2 +

1

a2 + σ2
(aλ1 − σλ2) k

satisfy F (u) = av and F (v) = −au. Since u and v are spacelike, unit and orthogonal to

each other the claim of the proposition follows (with µ = a). If σ = a = 0, then either

λ1 = λ2 = 0 and then {e1, e2} are directly the vectors {u, v} claimed in the proposition

(with µ = 0), or at least one of the λs (say λ2) is not zero. Then e := e1 − λ1
λ2
e2 is a

spacelike eigenvector of F .

Now we have all the ingredients to show one of the main results of this section, that

will eventually allow us to classify skew-symmetric endomorphisms of Lorentzian vector

spaces.

Proposicin 4.5. Let V be a Lorentzian vector space of dimension at least five and

F ∈ SkewEnd(V ). Then, there exists a spacelike eigenplane.

Proof. We examine each one of the three possibilities described in Lemma 4.1. Case

(iii) yields the result trivially, so we can assume that F has an eigenvector w.

If we are in case (ii), the vector w is either spacelike or timelike. If it is timelike we

consider the Riemannian space w⊥ where F restricts. We may apply Corollary 4.3 (note

that w⊥ has dimension at least four) and conclude that the vectors {u, v} exist. So it

remains to consider the case when x is spacelike and F admits no timelike eigenvectors.

We restrict to w⊥ which is Lorentzian and of dimension at least four. Applying again

Lemma 4.1, either there exists a spacelike eigenplane, or a second eigenvector y ∈ w⊥,

which can only be spacelike or null. If y is spacelike, {u := w, v := y} span a spacelike

eigenplane with µ = 0. If y is null, we may apply Lemma 4.4 to F |w⊥ to conclude that

either a spacelike eigenplane exists, or there is a spacelike eigenvector e ∈ w⊥, so the

pair {u := e, v := w} satisfies (3.2) with µ = 0. This concludes the proof of case (ii).

In case (i), i.e. when there is a null eigenvector w we can apply Lemma 4.4 and conclude

that either {u, v} exist, or there is a spacelike eigenvector e ∈ V , in which case we are

into case (ii), already solved. This completes the proof.

We have now all the necessary ingredients to give a complete classification of skew-

symmetric endomorphisms of Lorentzian vector spaces. In the next result, we identify

Lorentzian (sub)spaces of d-dimension with the Minkowski space M1,d−1. Also, for any

real number x ∈ R, [x] ∈ Z denotes its integer part.

Teorema 4.6 (Classification of skew-symmetric endomorphisms in Lorentzian spaces).

Let F ∈ SkewEnd(V ) with V Lorentzian of dimension d > 2. Then V has a set of
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[d−1
2 ]−1 mutually orthogonal spacelike eigenplanes {Πi}, i = 1, · · · , [d−1

2 ]− 1, so that V

admits one of the following decompositions into direct sum of F -invariant subspaces:

a) If d even V = M1,3 ⊕Π d−4
2
⊕ · · · ⊕Π1 and either F |M1,3= 0 or otherwise one of the

following cases holds:

a.1) F |M1,3 has a spacelike eigenvector e orthogonal to a null eigenvector with van-

ishing eigenvalue and then M1,3 = M1,2 ⊕ span{e}.

a.2) F |M1,3 has a spacelike eigenplane Π d−2
2

(as well as a timelike eigenplane M1,1

orthogonal to Π d−2
2

) and then M1,3 = M1,1 ⊕Π d−2
2

.

b) If d odd V = M1,2 ⊕ Π d−3
2
⊕ · · · ⊕ Π1 and either F |M1,2= 0 or otherwise one of the

following cases holds:

b.1) F |M1,2 has a spacelike eigenvector e and then M1,2 = M1,1 ⊕ span{e}.

b.2) F |M1,2 timelike eigenvector t and then M1,3 = span{t} ⊕Π d−1
2

.

b.3) F |M1,2 has a null eigenvector with vanishing eigenvalue.

Proof. The proof is a simple combination of the previous results. First, if d ≥ 5, we can

apply Proposition 4.5 to obtain the first spacelike eigenplane Π1. Then Π⊥1 is Lorentzian

of dimension d− 2. If d− 2 ≥ 5, we can apply again Proposition 4.5 to obtain a second

eigenplane Π2. Continuing with this process, depending on d, two things can happen:

a) If d even, we get d−4
2

(
= [d−1

2 ]− 1
)

spacelike eigenplanes, until we eventually reach

a Lorentzian vector subspace of dimension four, M1,3, where Proposition 4.5 cannot

be applied. In M1,3, either F |M1,3= 0 or otherwise cases a.1) and a.2) follow from

Remark 3.11, cases 2 and 1 respectively.

b) If d odd, we get d−3
2

(
= [d−1

2 ]− 1
)

spacelike eigenplanes, until we reach a Lorentzian

vector subspace of dimension three, M1,2. In M1,2, either F |M1,2= 0 or by Remark

3.12 there exists a unique eigenvector σ with vanishing eigenvalue. If q null, case b.3)

follows. If it is spacelike e := q, F restricts to e⊥ = M1,1 ⊂M1,2 and b.1) follows. If q

timelike, the same argument applies with t := q and t⊥ ⊂M1,2 defines the remaining

spacelike plane Π d−1
2

.

4.2 Canonical form for skew-symmetric endomorphisms

Our aim here is to extend the results in Proposition 3.8 and Corollary 3.9 to arbitrary

dimensions. To do that, we will employ the classification Theorem 4.6 derived in Sec-

tion 4.1, from which it immediately follows a decomposition of any F ∈ SkewEnd(V )
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into direct sum of skew-symmetric endomorphisms of the subspaces that F restricts to,

namely

F = F |M1,3

[ d−1
2

]−1⊕
i=1

F |Πi if d even, (4.5)

F = F |M1,2

[ d−1
2

]−1⊕
i=1

F |Πi if d odd, (4.6)

where Πi are spacelike eigenplanes. In what follows, we will denote

p := [(d− 1)/2]− 1.

Notice that the blocks F |M1,3 and F |M1,2 may also admit different subdecompositions

depending on the case, but our purpose is to remain as unified as possible, so we leave

this part unaltered. It will be convenient for the remainder to give a name to the

decompositions (4.5) and (4.6):

Definicin 4.7. Let F ∈ SkewEnd(V ) non-zero for V Lorentzian d-dimensional. Then, a

decomposition of the form (4.5) or (4.6) is called block form of F . A basis that realizes

a block form is called block form basis.

Writing F in block form form allows us to work with F as a sum of skew-symmetric

endomorphisms of riemmanian two-planes plus one skew-symmetric endomorphism of

a three or four dimensional Lorentzian vector space. For the latter we will employ the

canonical forms in Proposition 3.8 and Corollary 3.9, and for the former, it is immediate

that in every (suitably oriented) orthonormal basis of Πi

F |Πi=

(
0 −µi
µi 0

)
, 0 ≤ µi ∈ R. (4.7)

Having defined a canonical form for four, three and two dimensional endomorphisms (i.e.

matrices (3.6), (3.8) and (4.7) respectively), the idea is to extend this result to arbitrary

dimensions finding a systematic way to construct a block form (4.5), (4.6) such that

each of the blocks are in canonical form. This is not immediate, firstly, because the

block form does not require the blocks F |M1,3 or F |M1,2 to be non-zero and secondly,

because, unlike in the four and three dimensional cases, the parameters σ, τ of the four

and three dimensional blocks cannot be invariantly defined as, for example, traces of F 2

or determinant of F . The first of these concerns is easily solved by suitably choosing a

block form:

Lemma 4.8. Let F ∈ SkewEnd(V ) be non-zero for V Lorentzian of dimension d. Then

there exists a block form (4.5) and (4.6) such that F |M1,3 and F |M1,2 are non-zero and

they either contain no spacelike eigenplanes or they contain one with largest eigenvalue
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(among all spacelike eigenplanes of F ). In addition, the rest of spacelike eigenplanes Πi

are sorted by decreasing value of µ2
i , i.e. µ2

1 ≥ µ2
2 ≥ · · · ≥ µ2

p.

Proof. If kerF is degenerate, it must correspond with cases a.1) (d even) or b.3) (d odd)

of Theorem 4.6. Hence, in any block form the blocks F |M1,3 and F |M1,2 are non-zero and

they do not contain any spacelike eigenplane, as claimed in the lemma. So let us assume

that kerF is non-degenerate or zero, which discards cases a.1) and b.3) of Theorem 4.6.

In all possible cases, any block form admits the following splitting in

F |M1,3 = F |Πt ⊕ F |Πs , F |M1,2 = F |span{v} ⊕ F |v⊥ , (4.8)

with Πs,Πt spacelike and timelike eigenplanes with (possibly zero) respective eigenvalues

µs and µt, v a timelike or spacelike eigenvector (in kerF ) and v⊥ ⊂M1,2 an eigenplane

with opposite causal character than v. If v is spacelike, then either F |v⊥ is non-zero,

in which case F |M1,2 6= 0 and clearly contains no spacelike eigenplanes (which is one of

the possibilities in the lemma), or F |v⊥ = 0 and then F |M1,2 = 0, so we can rearrange

the decomposition (4.8) using some timelike vector v′ ∈ v⊥ instead of v, i.e. F |M1,2 =

F |span{v′} ⊕ F |v′⊥ . Hence, in the case of d odd, we may assume that v is timelike and

v⊥ ⊂M1,2 is a spacelike eigenplane. Let Πµ be a spacelike eigenplane of F with largest

eigenvalue µ among Πs (d even) or v⊥ (d odd) and Π1, · · · ,Πp. Then, switching F |Πs
or F |Π

v⊥
by F |Πµ we construct

F̂ |M1,3 := F |Πt ⊕ F |Πµ , F̂ |M1,2 := F |span{v} ⊕ F |Πµ .

The resulting matrix is still in block form and has non-zero blocks F̂ |M1,3 , F̂ |M1,2

containing a spacelike eigenplane with largest eigenvalue, which is the other possibility

in the lemma. The last claim follows by simply rearranging the remaining spacelike

eigenplanes Πi by decreasing order of µ2
i .

With a skew-symmetric endomorphism F in the block form given in Lemma 4.8 we can

take each one of the blocks to its respective canonical form. Let us denote Fστ := F |M1,3

(if d even), Fσ := F |M1,2 (if d odd) and Fµi := F |Πi when written in the canonical forms

(3.6), (3.8) and (4.7) respectively. Consequently

F = Fστ

p⊕
i=1

Fµi (d even), F = Fσ

p⊕
i=1

Fµi (d odd), (4.9)

where, notice, each of the blocks is written in an orthonormal basis of the corresponding

subspace, which moreover is future directed if the subspace is Lorentzian, i.e. M1,3 or

M1,2 (cf. Proposition 3.8 and Corollary 3.9). Hence, the form given in (4.9) corresponds

to a future directed, orthonormal basis of M1,d−1.

Our aim now is to give an invariant definition of σ, τ, µi. A possible way to do this is

through the eigenvalues of F 2. One may wonder why not to use directly the eigenvalues
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of F . One reason is that since we are interested in real Lorentzian vector spaces V

(although, for practical reasons, we may rely on the complexification VC for some proofs),

it is more consistent to give our canonical form in terms of real quantities, while the

eigenvalues of F may be complex. In addition, the canonical form will require to sort

them in some way, for which using real numbers is better suited.

The characteristic polynomial of F is known (e.g. [100]) to possess the following parity:

PF (x) = (−1)dPF (−x). (4.10)

Thus, a simple calculation relates the characteristic polynomials of F and F 2

PF 2(x) = det(x Idd − F 2) = det
(√
x Idd − F

)
det
(√
x Idd + F

)
= (−1)dPF (

√
x)PF (−

√
x) =

(
PF (
√
x)
)2
,

(4.11)

√
x being any of the square roots of x in C and Idd the d × d identity matrix. We can

extract some conclusions from (4.11):

Lemma 4.9. Let F ∈ SkewEnd(V ) for V Lorentzian of dimension d. Then the non-zero

eigenvalues of F 2 have even multiplicity ma and the zero eigenvalue has multilplicity m0

with the parity of d. In addition, F possesses pa (resp. exaclty one) spacelike (resp.

timelike) eigenplanes with eigenvalue µ 6= 0 if and only if F 2 has a negative (resp.

positive) non-zero eigenvalue −µ2 (resp. µ2) with multiplicity ma := 2pa (resp. exactly

two).

Proof. It is an immediate consequence of equation (4.11) that non-zero eigenvalues of

F 2 must have even multiplicity ma. Moreover, since the sum of all multiplicites adds

up to the dimension d, the multiplicity of the zero m0 has the parity of d.

Combining Lemma 3.3 and equation (4.11), F has a spacelike eigenplane Π with non-

zero eigenvalue µ if and only if F 2 has a negative double1 eigenvalue −µ2. If d ≤ 4,

there cannot be any other spacelike eigenplanes in Π⊥, so applying the same argument

to F |Π⊥ ∈ SkewEnd(Π⊥), the multiplicity ma of −µ2 must be ma = 2. If d > 4 and

ma ≥ 4, then −µ2 is an eigenvalue of (F |Π⊥)2 with multiplicity ma − 2, thus F has a

second spacelike eigenplane with eigenvalue µ in Π⊥. Repeating this argument, F 2 has

a negative eigenvalue −µ2 with multilplicity ma if and only if F has pa = ma/2 spacelike

eigenplanes with eigenvalue µ.

Finally, by Lemma 3.4 and equation (4.11), F has a timelike eigenplane Π with non-

zero eigenvalue µ if and only if F 2 has a positive double eigenvalue µ2. Obviously, the

maximum number of timelike eigenplanes that F can have is one. Thus, F |Π⊥ cannot

have timelike eigenplanes and hence (F |Π⊥)2 has no additional positive eigenvalues.

Consequently, the multiplicity of µ2 is exactly two.

1We adopt the convention that a root with multiplicity m ≥ 2 is also double
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Taking into account Lemma 4.9, we will employ the eigenvalues of −F 2 rather than

those of F 2, so we assign positive eigenvalues of F 2 with spacelike eigenplanes and

negative eigenvalues to timelike eigenplanes. This amounts to employ the roots of the

characteristic polynomial PF 2(−x).

We now discuss how to invariantly define the parameters σ, τ, µi for d even and σ, µi

for d odd. The result of the argument is formalized below in Definition 4.10. Recall

that the characteristic polynomial of a direct sum of two or more endomorphisms is the

product of their individual characteristic polynomials, in particular, the characteristic

polynomial of −F 2 equals to the product of the characteristic polynomials of −F 2
στ or

−F 2
σ times those of each −F 2

µi (cf. equation (4.9)). Let us define:

QF 2(x) := (PF 2(−x))1/2 (d even), QF 2(x) :=

(
PF 2(−x)

x

)1/2

(d odd), (4.12)

Starting with d even, from formula (4.9) it is immediate that µ2
i are double roots of

PF 2(−x2), which by Lemma 4.8 satisfy µ2
1 ≥ · · · ≥ µ2

p ≥ 0. On the other hand, let µt :=√
(−σ + ρ)/2 and iµs := i

√
(σ + ρ)/2 with ρ :=

√
σ2 + τ2 ≥ 0, that by Remark 3.11, are

roots of PFστ (x), thus roots of PF (x) . By equation (4.11), −µ2
t , µ

2
s are double roots of

PF 2(−x). The set
{
−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p

}
are in total p+2 = [(d−1)/2]+1 = d/2 elements,

each of which is a double root of PF 2(−x). In other words,
{
−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p

}
is

the set of all roots of the polynomial2 QF 2(x). If kerF is degenerate, then kerFστ is

degenerate and by Remark 3.11 it must happen µt = µs = 0. Hence µ2
1 ≥ µ2

2 ≥ · · ·µ2
p ≥

µ2
s = −µ2

t = 0. Otherwise, also by Remark 3.11, Fστ contains a spacelike eigenplane

with eigenvalue µs (which by Lemma 4.8 is the largest) as well as a timelike eigenplane

with eigenvalue µt. In this case µ2
s ≥ µ2

1 ≥ · · ·µ2
p ≥ 0 ≥ −µ2

t .

We next discuss σ, µi for d odd. Again, from (4.9) we have that µ2
i are double roots of

PF 2(−x2), which by Lemma 4.8 also satisfy µ2
1 ≥ · · · ≥ µ2

p ≥ 0. By Remark 3.12,
√
σ is a

root of PFσ(x), thus a root of PF (x), so by formula (4.11), σ is a double root of PF 2(−x).

Also, PF 2(−x) has at least one zero root and hence, PF 2(−x)/x is a polynomial with

d − 1 roots (counting multiplicity). Then, the set
{
σ, µ2

1, · · · , µ2
p

}
are all double roots

of PF 2(−x)/x, which are p + 1 = [(d − 1)/2] = (d − 1)/2 elements. Therefore QF 2 as

defined in (4.12) is also a polynomial and
{
σ, µ2

1, · · · , µ2
p

}
is the set of all its roots. If

kerF is timelike, then kerFσ is timelike, which happens if and only if σ > 0 (cf. Remark

3.12) and also Fσ has a spacelike eigenplane with eigenvalue
√
|σ|, that by Lemma 4.8

is the largest eigenvalue among spacelike eigenplanes. Thus σ ≥ µ2
1 ≥ · · · ≥ µ2

p. In the

case kerF not timelike, the inequalities become µ2
1 ≥ · · · ≥ µ2

p ≥ 0 ≥ σ.

2QF2(x) is a polynomial because all the roots of PF2(−x) are double.
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Summarizing, the paramaters σ, τ, µi correspond to the set of all roots of QF 2 sorted in

a certain order fully determined by the causal character of kerF . This allows us to put

forward the following definition:

Definicin 4.10. Let Roots (QF 2) denote the set of roots of QF 2(x) repeated as many

times as their multiplicity. Then

a) If d odd,
{
σ;µ2

1, · · · , µ2
p

}
:= Roots (QF 2) sorted by σ ≥ µ2

1 ≥ · · · ≥ µ2
p if kerF is

timelike, where in this case necessarily σ > 0, and µ2
p ≥ 0 ≥ σ otherwise.

b) If d even,
{
−µ2

t , µ
2
s;µ

2
1, · · · , µ2

p

}
:= Roots (QF 2) sorted by µ2

1 ≥ · · · ≥ µ2
p ≥ µ2

s =

−µ2
t = 0 if kerF is degenerate and µ2

s ≥ µ2
1 ≥ · · · ≥ µ2

p ≥ 0 ≥ −µ2
t otherwise,

where either µ2
s or µ2

t are non-zero. In addition, in any case, we also define σ :=

µ2
s − µ2

t , τ := 2|µtµs|.

Observacin 4.11. In the d even case the parameters σ, τ are useful because they allow

one to give a unique unambiguous canonical form for every element in SkewEnd(V ),

which naturally recovers the canonical form for d odd when τ = 0. However, observe

that the sets {σ, τ ;µ2
1, · · · , µ2

p} and {−µ2
t , µ

2
s;µ

2
1, · · · , µ2

p} are equivalent. It is useful to

keep both definitions in mind because, depending on the application, we may use one or

another.

In addition, we also summarize the results concerning the canonical form in the following

Theorem:

Teorema 4.12. Let F ∈ SkewEnd(V ) non-zero, with V Lorentzian of dimension d ≥ 3

and p := [(d−1)/2]−1. Then there exists an orthonormal, future oriented basis such that

F is given (4.9) where Fστ := F |M1,3, Fσ := F |M1,2, Fµi := F |Πi are given by (3.6),

(3.8), (4.7) respectively and σ, τ, µi are given in Definition 4.10. In particular, Fστ , Fσ

are non-zero and they either do not contain a spacelike eigenplane or they contain one

with maximal eigenvalue (among all spacelike eigenplanes of F ) and the eigenvalues µi

are sorted by µ2
1 ≥ µ2

2 ≥ · · ·µ2
p.

Definicin 4.13. For any F ∈ SkewEnd(V ), for V Lorentzian d-dimensional, the form

of F given in Theorem 4.12 is called canonical form and the basis realizing it is called

canonical basis.

The first and obvious reason why the canonical form is useful is that it allows one to

work with all elements F ∈ SkewEnd(V ) at once. The fact that we can give a canonical

form for every element without splitting into cases is a great strenght, since we can

perform a general analysis just in terms of the parameters that define the canonical form.

Moreover, as we will show in Section 4.4, this form is the same for all the elements in the

orbit generated by the adjoint action of the orthochronous Lorentz group O+(1, d− 1).

Thus, the canonical form is specially suited for problems with O+(1, d − 1) invariance
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(or covariance) which, as we have discussed in Chapter 2, is directly related to certain

conformally covariant problems in general relativity.

We finish this section with two corollaries that will be useful later. The first one is trivial

from the canonical form (4.9)

Corolario 4.14. The characteristic polynomial of F ∈ SkewEnd(V ) is

PF (x) = (x2 − µ2
t )(x

2 + µ2
s)

p∏
i=1

(x2 + µ2
i ) (d even),

PF (x) = x(x2 + σ)

p∏
i=1

(x2 + µ2
i ) (d odd),

(4.13)

where −2µ2
t := σ −

√
σ2 + τ2, 2µ2

s := σ +
√
σ2 + τ2 .

The second gives a formula for the rank of F . We base our proof in the canonical form

(4.9) because it is straightforward. However, we remark that this corollary can also be

regarded as a consequence of Theorem 4.6.

Corolario 4.15. Let F ∈ SkewEnd(V ), with V Lorentzian of dimension d and m0 the

multiplicity of the zero eigenvalue. Then, only of the following exclusive cases hold:

a) kerF is non-degenerate or zero if and only if rank F = d−m0.

b) kerF is degenerate if and only if m0 > 2 and rank F = d−m0 + 2.

Proof. Consider F in canonical form (4.9) and let k ∈ N be the number of parameters

µi that vanish. For d even we have dim kerF = 2k + dim kerFστ . On the one hand,

kerF degenerate implies kerFστ degenerate, which by Remark 3.11 happens if and only

if σ = τ = 0 and in addition dim kerFστ = 2. Therefore dim kerF = 2k + 2 and by

(4.13), m0 = 2k + 4 (> 2). Thus rank F = d − dim kerF = d −m0 + 2. On the other

hand, kerF non-degenerate if at most one of σ or τ vanish. If τ 6= 0 (so that µs 6= 0 and

µt 6= 0), dim kerFστ = 0 and m0 = 2k = dim kerF . Consequently rank F = d−m0. If

τ = 0 (and σ 6= 0, so that exactly one of µs, µt vanish), by Remark 3.11 dim kerFστ = 2

and by (4.13) m0 = 2k + 2. Hence dim kerF = 2k + 2 and rank F = d−m0.

For d odd, we have dim kerF = 2k + dim kerFσ = 2k + 1, because dim kerFσ = 1 (cf.

Remark 3.12). kerF is degenerate if and only if kerFσ is degenerate, which by Remark

3.12 occurs if and only if σ = 0. Hence, by equation (4.13), m0 = 2k + 3 (> 2) and

rank F = d − dim kerF = d −m0 + 2. For the kerF non-degenerate case, σ 6= 0 and

also by (4.13) m0 = 2k + 1 = dim kerF . Therefore rank F = d−m0.



114

4.3 Simple endomorphisms

In this Section we derive some results which will be useful for the analysis of CKVFs

carried out in Section 4.5.

By simple skew-symmetric endomorphism we mean aG ∈ SkewEnd(V ) satisfying rankG =

2. As usual e ≡ 〈e, ·〉 is the one-form obtained by lowering index to a vector e ∈ V .

Then, a simple skew-symmetric endomorphism can be always written as

G = e⊗ v − v ⊗ e

for two linearly independent vectors e, v ∈ V and its action on any vector w ∈ V is

G(w) = 〈v, w〉 e− 〈e, w〉 v.

Since the two-fom associated to a simple endomorphism is G = e ∧ v, it follows from

elementary algebra that two simple skew-symmetric endomorphisms G = e⊗ v − v ⊗ e
and G′ = e′ ⊗ v′ − v′ ⊗ e′ are proportional if and only if span{e, v} = span{e′, v′}. This

freedom in the pair {e, v} defining G can be used to choose them orthogonal.

Lemma 4.16. Let G ∈ SkewEnd(V ) be simple. Then there exist two non-zero orthogo-

nal vectors e, v ∈ V such that G = e⊗ v − v ⊗ e with v spacelike.

Proof. By definition G = ẽ⊗ṽ− ṽ⊗ ẽ for two linearly indepedent vectors ẽ, ṽ ∈ V . If one

of them is non-null, we set ṽ := v and decompose V = span{v} ⊕ v⊥. Thus ẽ = av + e

with a ∈ R and e ∈ v⊥ and G takes the form G = (av+e)⊗v−v⊗(av+e) = e⊗v−v⊗e,

as claimed. If ẽ and ṽ are both null, consider V = span{ẽ} ⊕̃ (ẽ)c (we use ⊕̃ because this

direct sum is not by orthogonal spaces) where (ẽ)c is a spacelike complement of span{ẽ}.
Then we can write ṽ = aẽ+v′, with a ∈ R and v′ ∈ ẽc non-null. Thus G = ẽ⊗v′−v′⊗ ẽ,

with v′ non-null and we fall into the previous case. All in all, G = e ⊗ v − v ⊗ e with

e, v orthogonal. Consequently, either one of the vectors is spacelike or both are null and

proportional which would imply G = 0, against our hypothesis rank G = 2.

The decomposition G = e⊗ v − v ⊗ e is not unique even with the restriction of v being

spacelike unit and orthogonal to e. One can easily show that the remaining freedom is

given by the transformation e′ = ae− b 〈e, e〉 v, v′ = be + av with a, b ∈ R restricted to

a2 + b2 〈e, e〉 = 1. Nevertheless, the square norm 〈e′, e′〉 is invariant under this change,

so the following definition makes sense:

Definicin 4.17. Let G ∈ SkewEnd(V ) be simple, with G = e ⊗ v − v ⊗ e, e, v ∈ V

orthogonal with v spacelike unit. Then G is said to be spacelike, timelike or null if

the vector e is spacelike, timelike or null respectively. In the non-null case, G is called

spacelike (resp. timelike) unit whenever 〈e, e〉 = +1 (resp. 〈e, e〉 = −1).
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By Lemma 4.16, it is immediate that Definition 4.17 comprises any possible simple

endomorphism (up to a multiplicative factor).

We next obtain the necessary and sufficient conditions for a simple endomorphism G to

commute with a given F ∈ SkewEnd(V ). We first make the simple observation that the

composition of a one-form e and a skew-symmetric endomorphism F satisfies (simply

apply for sides to any w ∈ V )

e ◦ F = −F (e),

where we denote F (e) := 〈F (e), ·〉. An immediate consequence is that for any pair of

vectors e, v ∈ V and F ∈ SkewEnd(V ) it holds

F ◦ (e⊗ v) = F (e)⊗ v, (e⊗ v) ◦ F = −e⊗ F (v). (4.14)

The following commutation result will be used later.

Lemma 4.18. Let F,G ∈ SkewEnd(V ) with G = e⊗ v − v ⊗ e simple and e, v ∈ V as

in Definition 4.17. Then [F,G] = 0 if and only if there exist µ ∈ R such that:

F (e) = 〈e, e〉µv, F (v) = −µe. (4.15)

Proof. The commutator is

[F,G] = F ◦G−G ◦ F = F ◦ (e⊗ v − v ⊗ e)− (e⊗ v − v ⊗ e) ◦ F

= F (e)⊗ v − F (v)⊗ e+ e⊗ F (v)− v ⊗ F (e), (4.16)

where we have used (4.14). The “if” part is obtained by direct calculation inserting

(4.15) in (4.16). To prove the “only if” part, the condition [F,G] = 0 requires the two

endomorphisms F (e) ⊗ v − v ⊗ F (e) and F (v) ⊗ e − e ⊗ F (v) to be equal. One such

endomorphism is either identically zero or simple. This implies that span{F (e), v} and

span{e, F (v)} are either both one dimensional or both two-dimensional and equal. In

the first case, F (v) = −µe and F (e) = αv for µ, α ∈ R, which are determined by skew-

symmetry to satisfy α = µ 〈e, e〉, so the lemma follows. The second case is empty, for it

is necessary that v = ae+ bF (v) with a, b ∈ R, which implies 〈v, v〉 = 〈ae+ bF (v), v〉 =

b 〈F (v), v〉 = 0, against the hypothesis of v being spacelike.

Corolario 4.19. Let G,G′ ∈ SkewEnd(V ) be simple, spacelike and linearly independent.

Let {e, v}, {e′, v′} be orthogonal spacelike vectors such that G = e ⊗ v − v ⊗ e and

G′ = e′⊗v′−v′⊗e′. Then [G,G′] = 0 if and only if {e, v, e′, v′} are mutually orthogonal.

Proof. By the previous lemma [G,G′] = 0 if and only if there exist µ ∈ R such that

G(e′) =
〈
e′, v

〉
e−

〈
e′, e

〉
v = µv′, G(v′) =

〈
v′, v

〉
e−

〈
v′, e

〉
v = −µe′. (4.17)
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If µ 6= 0, then span{e, v} = span{e′, v′} and G and G′ are proportional, against hypoth-

esis. Thus, µ = 0 and by (4.17) the set {e, v, e′, v′} is mutually orthogonal.

4.4 O+(1, d− 1)-classes

In this section we use the canonical form of Section 4.2 to characterize skew-symmetric

endomorphisms of V under the adjoint action of the orthochronous Lorentz group

O+(1, d − 1). Recall that this is the subgroup of O(1, d − 1) preserving time orien-

tation. The corresponding classes of skew-symmetric endomorphisms are also known

as the adjoint orbits or conjugacy classes and we denote them by [F ]O+ for a given

element F ∈ SkewEnd(V ). The characterization of these orbits by a set of independent

invariants is known and it can be found in [100] in terms of two-forms, or in [26] where

a decomposition into so-called indecomposable types is shown to characterize the con-

jugacy classes. What we do here is, first, to give an alternative way to characterize the

orbits [F ]O+ by a convenient set of invariants and second, to show that the canonical

form is the same for every element in a given orbit. This makes the canonical form

specially useful as a tool for problems with O(1, d− 1) invariance.

Observacin 4.20. We formulate this section in terms of the orthochronous component

O+(1, d − 1) because of its relation with conformal transformations of the sphere Sd−2

(see Section 2.2.1), but note that the orbits of the full group O(1, d− 1) are exactly the

same as those of O+(1, d− 1). Recall that the time-reversing component O−(1, d− 1) is

one-to-one with O+(1, d − 1). We can map elements Λ− ∈ O−(1, d − 1) to elements in

Λ+ ∈ O+(1, d− 1) by e.g. Λ+ := Λ−Λ0, where Λ0 = −Idd. Then

Λ+F (Λ+)−1 = Λ−Λ0FΛ0(Λ−)−1 = Λ−F (Λ−)−1,

which clearly imples that the orbits generated by the full group O(1, d− 1) coincide with

the orbits generated by the subgroup O+(1, d− 1).

A consequence of equation (4.10) is that the characteristic polynomial of F ∈ SkewEnd(V )

must have the form

PF (x) = xd +

q∑
b=1

cbx
d−2b, (4.18)

where we have introduced q := [d2 ]. The coefficients cb can be obtained using the Fadeev-

LeVerrier algorithm, summarized by the following matrix determinant [65]:

cb =
1

(2b)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

Tr F 2b− 1 0 · · · 0

Tr F 2 Tr F 2b− 2 · · · 0
...

...
...

Tr F 2b−1 Tr F 2b−2 · · · · · · 1

Tr F 2b Tr F 2b−1 · · · · · · Tr F

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Since the traces of odd powers vanish by skew-symmetry, the coefficients cb depend on

the entries of F only through the traces of the squared powers of F :

Ib :=
1

2
Tr (F 2b), b = 1, · · · , q.

The traces Ib are obviously invariant under the adjoint action (cf. Section 3.5) of

O+(1, d − 1) and so are the coefficients cb. Another invariant that plays an impor-

tant role in the classification of conjugacy classes is the rank of F . Since this is always

even, we denote it by

rank F = 2r,

and clearly r ≤ q. From now we say rank parameter to refer to r. In the following

proposition we show that this set of invariants actually identifies the canonical form.

Proposicin 4.21. Let F, F̃ ∈ SkewEnd(V ), for V Lorentzian of dimension d. Then

the invariants {cb, r} and {c̃b, r̃} of F and F̃ respectively are equal if and only if their

canonical forms given by Theorem 4.12 are the same.

Proof. The “if” part (⇐) is trivial, because the invariants cb, r are independent on the

basis, so they can be calculated in a canonical basis. Hence, same canonical form implies

same invariants. For the “only if” part (⇒), we notice that if the coefficients cb and

c̃b of PF and P
F̃

are equal, so are their characterisic polynomials, the multiplicities

of their zero eigenvalue and the polynomials QF 2 and Q
F̃ 2 (equation (4.12)). Since

rank F = rankF̃ , Corollary 4.15 implies that kerF and ker F̃ must have the same causal

character. The canonical form only depends on the roots QF 2 and the causal character

of kerF through Definition 4.10. Thus, F and F̃ must have the same canonical form.

We now characterize the classes [F ]O+ in terms of the same invariants given in Proposi-

tion 4.21. As mentioned above, this result is known [100], but we give here an alternative

and very simple proof based on our canonical form:

Teorema 4.22. [100] Let F, F̃ ∈ SkewEnd(V ), for V Lorentzian of dimension d. Then

their invariants {cb, r} and {c̃b, r̃} are the same if and only if F and F̃ are O+(1, d−1)-

related.

Proof. The if (⇐) part is immediate, since it is trivial from their definitions that the

quantities {cb, r} are Lorentz invariant. To prove the “only if” (⇒), by Proposition 4.21,

F and F̃ have the same canonical form in canonical bases B and B̃ respectively. By

definition (cf. Theorem 4.12), these bases are unit, future oriented and orthonormal.

Thus, the transformation taking B to B̃ transforms F into F̃ and both must be O+(1, d−
1)-related.
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Theorem 4.22 establishes the necessary and sufficient conditions for two endomorphisms

to be O+(1, d−1)-related. Combining this result with Proposition 4.21, we find that the

canonical form (hence the parameters σ, µ2
i or σ, τ, µ2

i ) totally define the equivalence class

of skew-symmetric endomorphisms up to O+(1, d − 1) transformations. Moreover, we

emphasize that this form is the same for every equivalence class, unlike other canonical

(or normal) forms based on the classification of SkewEnd(V ), such as the one in [39],

where they seek irreducibility of the blocks, so they must give two different forms to

cover every case.

Next, we discuss some facts about the coefficients of the characteristic polynomial, also

stated in [100], where the proof is only indicated, and which can now be easily proven

using the canonical form.

Lemma 4.23. Let F ∈ SkewEnd(V ) be non-zero and let 2r = rank F . Then cr >

0, cr = 0, cr < 0 if and only if kerF is timelike, null or spacelike (or zero) respectively.

Moreover, if r < q, cq = cq−1 = · · · = cr+1 = 0.

Proof. Taking into account that the parities of d and m0 are equal (Lemma 4.9), q −
[m0

2 ] = [d2 ]− [m0
2 ] = d−m0

2 , so equation (4.18) can be rewritten

PF (x) = xm0

(
xd−m0 +

q−[m0/2]∑
b=1

cbx
d−m0−2b

)
= xm0

(
xd−m0 +

d−m0
2∑
b=1

cbx
d−m0−2b

)
, (4.19)

where we have explicitly substituted all zero coefficients by extracting the common factor

xm0 , thus the remaining coefficients cb 6= 0 for b = 1, · · · , (d−m0)/2. By Corollary 4.15,

kerF is degenerate if and only if 2r = d − m0 + 2 and m0 > 2, so the sum in (4.19)

runs up to (d−m0)/2 = r − 1, which means cr = cr+1 = · · · = cq = 0, as stated in the

lemma. Also by Corollary 4.15, kerF non-degenerate if and only if 2r = d−m0. In this

case, the sum in (4.19) runs up to (d −m0)/2 = r, hence cr 6= 0 and if r < q, the next

coefficients vanish cr+1 = cr+2 = · · · = cq = 0. In addition cr is the independent term

in the polynomial in parentheses. Let µ1, · · · , µλ be all the non-zero parameters among

the {µi} of the canonical form of F given in (4.9). By equation (4.13), cr can be written

for d odd:

cr = σµ2
1 · · ·µ2

λ.

Then, the sign of σ determines the sign of cr and, by Remark 3.12, also the causal

character of kerFσ, hence, the causal character of kerF in accordance with the stament

of the lemma. For d even, also from (4.13) we have

cr = −τ
2

4
µ2

1 · · ·µ2
λ < 0 (τ 6= 0), cr = σµ2

1 · · ·µ2
λ (τ = 0),

where the expression for τ = 0 follows because in this case either µt or µs (or both)

vanish, hence either cr = µ2
sµ

2
1 · · ·µ2

λ or cr = −µ2
tµ

2
1 · · ·µ2

λ and σ equals µ2
s in the first

situation and−µ2
t in the second. By Remark 3.11, when τ 6= 0 we have kerFστ = {0} and
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hence ker F is always spacelike or zero and when τ = 0, the causal character of kerFστ

(and that of kerF ) is determined by the sign of σ in accordance with the statement of

the lemma.

Observacin 4.24. A converse version of Lemma 4.23 also holds, in the sense that the

number ν of last vanishing coefficients restricts the allowed rank parameters r. Let ν be

defined by ν = 0 if cq 6= 0 and, otherwise, by the largest natural number satisfying cq =

cq−1 = · · · cq−ν+1 = 0. By equation (4.19) it follows ν = [m0/2], and since the dimension

d and m0 have the same parity (cf. Lemma 4.9), d−m0 = 2[d/2]− 2[m0/2] = 2(q − ν)

which in particular shows that ν determines m0 uniquely. If m0 > 2, by Corollary

4.15 the rank parameter admits two possibilities r = {q − ν, q − ν + 1}, each of which

determined by the causal character of kerF . If m0 ≤ 2, also by Corollary 4.15 the kerF

degenerate case cannot occur and r = (q − ν) is uniquely determined. In particular, if

d = 4, r is always determined by c1, c2, because r = 2 happens if and only if ν = 0 and

otherwise r = 1 (unless F is identically zero, in which case r = 0).

4.4.1 Structure of SkewEnd(V )/O+(1, d− 1)

By Theorem 4.22, the q-tuple (c1, · · · , cq) corresponding to the coefficients of the char-

acteristic polynomial of a skew-symmetric endomorphism, does not suffice to determine

a point in the quotient space SkewEnd(V )/O+(1, d − 1), since generically two ranks

are possible (dimensions three and four are an exception). As dicussed in Remark

4.24, for a number ν of last vanishing coefficients cb, the allowed rank parameters are

r ∈ {q − ν, q − ν + 1}, and r = q − ν + 1 is only possible provided m0 > 2 (in partic-

ular, when cq 6= 0 then necessarily r = q). One says that there is a degeneracy for the

value of the rank at certain points in the space of coefficients cb. In the submanifold

{cq = · · · = cq−ν+1 = 0, cq−ν 6= 0}, the possible rank parameters are r ∈ {q−ν, q−ν+1}.
When a boundary point where the number of last vanishing coefficients increases by ex-

actly one is approached, the rank parameter may remain equal to q − ν or jump to

q − ν − 1 (note that while the coefficients ci are continuous functions of F , the rank

is only lower semicontinuous, e.g. [91]). As we shall see in this section, this behaviour

gives rise to special limit points in the space of parameters defining the canonical form

(i.e. the space of conjugacy classes).

Recall that the space of skew-symmetric endomorphism SkewEnd(M1,d−1) (being a

finite dimensional vector space) carries a canonical topology (see e.g. [35]). The quotient

space inherits a natural topology, called “quotient topology” which is the finest one that

makes the projection a continuous map. In this topology it is sufficient for a sequence of

points si to have a limit s that there is a sequence of endomorphisms Fi converging to

F with Fi belonging to the class si and F belonging to the class s. Therefore, the limits

below constructed with explicit endomorphisms F ∈ SkewEnd(V ), also provide limits
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of SkewEnd(V )/O+(1, d − 1) in the quotient topology. This allows to single out some

special limits (cf. Remark 4.25 below) which will be useful for the analysis of initial data

in Chapter 6.

Let us start by locating these special limit points using the canonical form. Degeneracies

can only occur in dimensions d = 5 or larger because in dimension three the rank is two

for any non-trivial F and in dimension four the rank is uniquely determined by the

invariants (cf. Remark 4.24). We thus consider first the case d = 5 and then extend

to all values d ≥ 5. In d = 5 the space of parameters A defining the [F ]O+ classes is

(Figure 4.1 )

A :=
{

(σ, µ2) ∈ R× R+ | σ ≥ µ2 if σ > 0
}
.

Consider a [F ]O+ in the region

R+ :=
{
σ ≥ µ2 > 0

}
and let F be a representative of [F ]O+ in a canonical basis B = {eI}I=0,··· ,4, that is

F =

 0 0 −1 + σ
4

0 0 −1− σ
4

−1 + σ
4 1 + σ

4 0

⊕( 0 −µ
µ 0

)
. (4.20)

Let us define the functions C±(x) := 1
x ±

x
4 . Then, the following change of basis to

B′ = {e′I} is well defined in R+:

e′0 = C+(µ) (C+(
√
σ)e0 + C−(

√
σ)e1)− C−(µ)e4, e′2 = −e3,

e′1 = −C−(µ) (C+(
√
σ)e0 + C−(

√
σ)e1) + C+(µ)e4, e′3 = −e2.

e′4 = C−(
√
σ)e0 + C+(

√
σ)e1

(4.21)

By direct calculation, F is written in basis B′ as

F =

 0 0 −1 + µ2

4

0 0 −1− µ2

4

−1 + µ2

4 1 + µ2

4 0

⊕( 0 −
√
σ

√
σ 0

)
. (4.22)

The basis B′ is non-canonical because µ2 < σ. However, if we vary the parameters so

that µ → 0 (keeping σ unchanged), the matrix (4.22) becomes canonical (i.e. of the

form (4.9)) in the limit and the class [limµ→0 F ]O+ is given by l1 = (0, σ). On the other

hand, F in canonical form (4.20) also admits a limit µ → 0, which is also canonical

and whose representative [limµ→0 F ]O+ is given by l2 = (σ, 0). Both limits are defined

by the same sequence of points, because the transformation (4.21) is invertible in R+.

However this sequence has two different limit points. As a consequence, the space of

canonical matrices, and therefore the quotient space SkewEnd(V )/O+(1, d−1), inherits

a non-Hausdorff topology.
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Something similar happens in the region

R− := {σ < 0, µ > 0} .

Let F be a representative in canonical form of a point [F ]O+ in this region. Then, F has

a timelike eigenplane Πt with eigenvalue
√
|σ| (cf. Remark 3.12), a spacelike eigenvector

e as well as a spacelike eigenplane Πs with eigenvalue µ. Thus V = Πt ⊕ span{e} ⊕ Πs

and there exist a (non-canonical) basis B′ adapted to this decomposition, into which F

takes the form

F =

 0
√
|σ| 0√

|σ| 0 0

0 0 0

⊕( 0 −µ
µ 0

)
. (4.23)

Keeping µ unchanged, expression (4.23) has a limit σ → 0, which has a spacelike eigen-

plane Πs of eigenvalue µ and it is identically zero on Π⊥ . Hence, kerF is timelike and

using Definition 4.10, the canonical form of this limit limσ→0 F is given by σ′ = µ2 and

µ′ = 0. Thus [limσ→0 F ]O+ is represented by the point l2 = (µ2, 0). On the other hand,

in a canonical basis (4.20), F also admits a limit σ → 0, whose class [limσ→0 F ]O+ is

obviously represented by the point l1 = (0, µ2).

R− R+

l2

l1

µ2

σ

Figure 4.1: Representation of SkewEnd(V )/O+(1, 4) in the subspace A ⊂ R2. The
shadowed region is not included.

The same reasoning can be carried out to arbitrary odd dimension. First, define the

regions

R(d,0)
+ :=

{
σ ≥ µ2

1 ≥ · · · ≥ µ2
p > 0

}
and R(d,0)

− :=
{
σ < 0, µ2

1 ≥ · · · ≥ µ2
p > 0

}
and also the limit regions

R(d,0)
0 :=

{
σ = 0, µ2

1 ≥ · · · ≥ µ2
p > 0

}
and R(d,1)

+ :=
{
σ ≥ µ2

1 ≥ · · · ≥ µ2
p−1 > µ2

p = 0
}
.

Consider representatives F+ and F− (in canonical form) of points (σ+, (µ+
1 )2, · · · , (µ+

p )2)

and (σ−, (µ−1 )2, · · · , (µ−p )2) in the regions R(d,0)
+ and R(d,0)

− respectively. Then F+

has a spacelike eigenplane Π+
s with eigenvalue µ+

p as well as a timelike eigenvector

e+ and spacelike eigenplane Π+
t with eigenvalue

√
σ+. Restricting to the subspace
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W+ = span{e+} ⊕ Π+
t ⊕ Π+

s we can repeat the procedure followed for the five di-

mensional case and conclude that [limµ+
p→0 F+] has simultaneously limits at the points

(σ+, (µ+
1 )2, · · · , (µ+

p−1)2, 0) ∈ R(d,1)
+ and (0, (µ+

1 )2, · · · , (µ+
p )2) ∈ R(d,0)

0 . Analogously

F− has a spacelike eigenplane Π−s with eigenvalue µ−p as well as spacelike eigenvector

e− and timelike eigenplane Π′−s with eigenvalue
√
|σ−|. Restricting to the subspace

W− = Π−s ⊕ span{e−} ⊕ Π′−s , the above arguments for the five dimensional case show

that [limσ−→0 F−] has simultaneous limits on the points ((µ−p )2, (µ−1 )2, · · · , (µ−p−1)2, 0) ∈
R(d,1)

+ and (0, (µ−1 )2, · · · , (µ−p )2) ∈ R(d,0)
0 . Thus the regions R(d,0)

+ and R(d,0)
− limit simul-

taneously with R(d,1)
+ and R(d,0)

0 as µp and σ tend to zero respectively. Indeed, the same

ideas can be applied again to R(d,1)
+ and

R(d,1)
− :=

{
σ < 0, µ2

1 ≥ · · · ≥ µ2
p−1 > µ2

p = 0
}
,

so that they also limit simultaneously, as µp−1 and σ go to zero respectively, with

R(d,1)
0 :=

{
σ = 0, µ2

1 ≥ · · · ≥ µ2
p−1 > µ2

p = 0
}

and

R(d,2)
+ :=

{
σ > 0, µ2

1 ≥ · · · ≥ µ2
p−1 > µ2

p−1 = µ2
p = 0

}
.

This same stucture generalizes to any number of last-vanishing µ2
i parameters. Namely,

the regions with m last-vanishing parameters µp = · · · = µp−m+1 = 0 and non-zero

σ, limit simultaneous the region with m last-vanishing parameters and σ = 0 and the

region m last-vanishing parameters and σ > 0 (cf. Remark 4.25 below).

For the even dimensional case (with d ≥ 6), notice that as long as dim kerF ≥ 2,

which happens if τ = 0 or µ2
p = 0, the restriction F |e⊥ , where e is any spacelike vector

e ∈ ker F , is equivalent to the odd dimensional case. Hence, the previous reasoning for

odd dimensions also applies for even dimensions if τ = 0 or µ2
p = 0. For later use, it is

convenient to discuss the d even case using parameters {−µ2
t , µ

2
s;µ

2
1, · · · , µ2

p}. To start

with, assume d = 6, where there are only three parameters {−µ2
t , µ

2
s, µ

2}. The region

R(d,0)
+ :=

{
−µ2

t = 0, µ2
s ≥ µ2 > 0

}
contains sequences assuming simultaneously limits in

R(d,0)
0 :=

{
−µ2

t = µ2
s = 0, µ2 > 0

}
and R(d,1)

+ :=
{
−µ2

t = 0, µ2
s > µ2 = 0

}
.

These sequences can be constructed as limits µ2 → 0, analogous to the n odd case above.

In a similar way

R(d,1)
− :=

{
−µ2

t < 0, µ2
s > µ2 = 0

}
contains sequences with limits in R(d,0)

0 and R(d,1)
+ simultaneously. These sequences can

be constructed as limits −µ2
t → 0, analogous to the limits σ → 0 for the n odd case

above.
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On the other hand in the region

R(d,0)
− :=

{
−µ2

t < 0, µ2
s ≥ µ2 > 0

}
,

one can trivially construct a sequence limiting R(d,0)
+ (as −µ2

t → 0) as well as a sequence

limiting R(d,1)
− (as µ2 → 0). Therefore all the above are also limits3 of R(d,0)

− . Moreover,

R(d,0)
− does not assume degenerate limits beyond those above described. This is because

it is fact that detF = −µ2
tµ

2
sµ

2, so if −µ2
t , µ

2
s, µ 6= 0, then rank F = 6. Thus, taking only

one of these parameters to zero must lead necessarily to a region in which rank F = 4,

which can only be either R(d,1)
+ or R(d,1)

− , whose limits have already been discussed. Also

observe that there cannot be a degenerate limit within two regions with same rank, as

the coefficients and the rank determine uniquely the equivalence class.

The generalization to higher even dimensions is straightforward from the d = 6 case by

an argument similar to the d odd case. Let d > 6 be even and define

R(d,0)
− := {−µ2

t < 0, µ2
s ≥ µ2

1 ≥ · · · ≥ µ2
p > 0}.

An endomorphism F ∈ SkewEnd(V ) such that [F ]O+ ∈ R(d,0)
− admits one timelike

eigenplane Πt and two spacelike eigenplanes Πs,Πp of eigenvalues µt and µs and µp

respectively. Then, W = Πt ⊕ Πs ⊕ Πp is a Lorentzian vector space of dimension 6, so

the restriction F |W admits the same structure of limits than in the d = 6 case above.

Namely, in the total space V , the region R(d,0)
− limits trivially with

R(d,0)
+ := {−µ2

t = 0, µ2
s ≥ µ2

1 ≥ · · · ≥ µ2
p > 0}

and this assumes simultaneous limits at

R(d,1)
+ := {−µ2

t = 0, µ2
s ≥ µ2

1 ≥ · · · ≥ µp−1 > µ2
p = 0},

R(d,0)
0 := {−µ2

t = µ2
s = 0, µ2

1 ≥ · · · ≥ µ2
p > 0}.

Combining all the above arguments, a similar structure of limits extends to the regions

with any number m of last-vanishing parameters µ2
p = · · · = µ2

p−m+1 = 0 and {−µ2
t , µ

2
s}

(cf. Remark 4.25 below).

The following remark summarizes the above discussion.

Observacin 4.25. For d odd, consider the space

A(odd) :={
(
σ, µ2

1, · · · , µ2
p

)
∈ Rp+1 | σ ≥ µ2

1 ≥ · · · ≥ µ2
p, with σ > 0}⋃

{
(
σ, µ2

1, · · · , µ2
p

)
∈ Rp+1 | µ2

1 ≥ · · · ≥ µ2
p ≥ 0 ≥ σ}

3The regions R(d,0)
+ and R(d,1)

− are clearly in the closure of R(d,0)
− , as both can be attained from

sequences in R(d,0)
− . Thus the sequences in R(d,0)

+ and R(d,1)
− have limits in the closure of R(d,0)

− .
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and for d even

A(even) :=
{(
−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p

)
∈ Rp+2 |

µ2
s ≥ µ2

1 ≥ · · · ≥ µ2
p ≥ 0 ≥ −µ2

t , with µ2
s or µ2

t 6= 0
}⋃

{
(
−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p

)
∈ Rp+2 | µ2

1 ≥ · · · ≥ µ2
p ≥ 0 = µ2

s = −µ2
t },

where {σ, µ2
1, · · · , µ2

p} and {−µ2
s, µ

2
s, µ

2
1, · · ·µ2

p} are the parameters in Definition 4.10. As

a consequence of Proposition 4.21, these parameters are unique for every orbit [F ]O+ ∈
SkewEnd(V )/O+(1, d − 1). Thus A(odd) and A(even) give a good parametrization of

SkewEnd(V )/O+(1, d− 1).

Define the subsets of A(odd)

R(d,m)
+ :=

{
(σ, µ2

1, · · · , µ2
p) ∈ A(odd) | σ ≥ µ2

1 ≥ · · · > µ2
p−m+1 = · · · = µ2

p = 0
}
,

R(d,m)
− :=

{
(σ, µ2

1, · · · , µ2
p) ∈ A(odd) | σ < 0, µ2

1 ≥ · · · > µ2
p−m+1 = · · · = µ2

p = 0
}
,

R(d,m)
0 :=

{
(σ, µ2

1, · · · , µ2
p) ∈ A(odd) | σ = 0, µ2

1 ≥ · · · > µ2
p−m+1 = · · · = µ2

p = 0
}
,

and of A(even)

R(d,m)
+ :=

{
−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p) ∈ A(even) |

− µ2
t = 0, µ2

s ≥ µ2
1 ≥ · · · > µ2

p−m+1 = · · · = µ2
p = 0

}
,

R(d,m)
− :=

{
(−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p) ∈ A(even) |

− µ2
t < 0, µ2

s ≥ µ2
1 ≥ · · · > µ2

p−m+1 = · · · = µ2
p = 0

}
,

R(d,m)
0 :=

{
(−µ2

t , µ
2
s, µ

2
1, · · · , µ2

p) ∈ A(even) |

−µ2
t = µ2

s = 0, µ2
1 ≥ · · · > µ2

p−m+1 = · · · = µ2
p = 0

}
.

The notation R(d,m)
ε generalizes to any dimension as follows: d is the dimension of V , m

is the number of last-vanishing parameters {µ2
i } and ε ∈ {0,±} gives the causal character

of kerF : 0 if degenerate, + if timelike and − if spacelike or zero. We note that ε is also

given by the sign of σ in the odd case and closely related to the sign structure of the first

two entries {−µ2
t , µ

2
s} of the point s ∈ A(even) when d is even.

In A(odd), every sequence in R(d,m)
+ and every sequence in R(d,m)

− which has limit at

R(d,m+1)
+ it also has a limit at R(d,m)

0 and viceversa. Similarly, in A(even), every sequence

in R(d,m)
+ and every sequence in R(d,m)

− which has limit at R(d,m+1)
+ it also has a limit

at R(d,m)
0 and viceversa.

We conclude this subsection with the following result, stated it in a separate proposition

because it will be explicitly required for the analysis in Chapter 6.

Proposicin 4.26. For d odd, R(d,0)
+ and R(d,0)

− are open in the quotient topology. More-

over there exists sequences in R(d,0)
− taking limit at every point A(odd)\R(d,0)

+ .
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For d even, R(d,0)
− is open in the quotient topology. Moreover there exists sequences in

R(d,0)
− taking limit at every point A(even) (i.e. R(d,0)

− is dense in the quotient topology).

Proof. We first prove openness of R(d,0)
+ and R(d,0)

− for d odd and R(d,0)
− for d even. Let

F ∈ SkewEnd(M1,d−1), [F ]O+ ∈ SkewEnd(M1,d−1)/O+(1, d− 1) its class in the quotient

and π the canonical projection map π : F 7→ [F ]O+ . The independent term of the

characteristic polynomial is an invariant of the class [F ]O+ . Let cq−ν be the function

that maps F into the independent term of its characteristic polynomial cq−ν(F ). This

map is clearly continuous. Let also [cq−ν ] be the induced map in the quotient, i.e. the

map satisfying cq−ν = [cq−ν ] ◦ π. Then [cq−ν ] is also continuous (e.g. [147]). Moreover

from (4.13), if d even, cq−ν(F ) = −µ2
tµ

2
sµ

2
1 · · ·µ2

p and, if d odd, cq−ν(F ) = σµ2
1 · · ·µ2

p.

Thus when n is odd R(n,0)
+ and R(n,0)

− are open in SkewEnd(M1,d−1)/O+(1, d−1) as they

are the preimage by [cq−ν ] of the open intervals (0,∞) and (−∞, 0) respectively. When

n is even R(n,0)
+ is also open because it is the preimage of the open interval (0,∞).

On the other hand, for d odd, by the discussion above, one can construct sequences

in R(d,0)
− assuming limit any point in R(d,1)

+ and R(d,0)
0 . Moreover, it is immediate to

construct sequences in R(d,1)
+ and R(d,0)

0 with limits into any point in any of the regions

R(d,m+1)
+ and R(d,m)

0 respectively. Similarly, there is a trivial sequence in R(d,0)
− with

limit into any point in any of the regions R(d,m)
− . In addition, R(d,0)

+ is open and has

empty intersection with R(d,0)
− . Thus, all regions except R(d,0)

+ are accessible as limits of

R(d,0)
− .

Similarly, for d even, by the discussion above, one can construct sequences in R(d,0)
− with

limit at R(d,0)
+ and R(d,0)

0 . The rest of the argument is analogous to the d odd case.

4.5 Conformal Killing vector fields

One interesting application of our previous results is based on the relation between skew-

symmetric endomorphisms and the set of conformal CKVFs of the n-sphere, CKill(Sn),

and its local representation in En, CKill(En), discussed in subsection 2.2.1. Our aim in

this section is to provide a canonical form for all elements in CKill(En). Therefore, all

the previous results will be applied for dimension d = n+ 2 with n > 2. Restricting to

the set of global CKVFs, some of the following results also apply for n = 2 (cf. Remarks

2.16 and 3.14). However, this case has been already addressed in detail in Chapter 3, so

we shall restrict here to n > 2, and only make some remarks on the n = 2 case.

We start by making an observation on the construction in subsection 2.2.1, which will

allow us to choose suitable Minkowskian coordinates in M1,n+1 in exchange of keeping

conformal freedom in the metric of En.

Observacin 4.27. The freedom of choosing a representative for Sn as well as the point N

and the projection stereographic plane (discussed in subsection 2.2.1), can be also seen in
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a more “passive” picture. Consider two different sets of Minkowskian coordinates {xI}
and {x′I} related by a O+(1, n + 1) transformation Λ, x′I = ΛIJx

J . Using Theorem

2.11, we obtain two different embeddings i, i′ : En ↪→ M1,n+1 associated to {xI} and

{x′I} respectively, for which i(En) = {x0 = x1 = 1, xA+1 =: yA} and i′(En) = {x′0 =

x′1 = 1, x′A+1 =: y′A}, as well as two associated maps ξ, ξ′. Let F ∈ SkewEnd(M1,n+1),

defined by (2.26) with parameters {ν, aA,bA, ωAB} and {ν ′, a′A, b′A, ω′AB} in the bases

{∂xI} and {∂x′I} respectively. Then, F can be associated to two vector fields

ξF =
(
bA + νyA + (aBy

B)yA − 1

2
(yBy

B)aA − ωAByB
)
∂yA ,

ξ′F =
(
b′
A

+ ν ′y′A + (a′By
′B)y′A − 1

2
(y′By

′B)a′
A − ω′ABy′

B)
∂y′A ,

which are equal in the following sense. If we transform the representative S′n = {x′0 =

1} ∩ {x′Ix′I = 0} with Λ, we obtain a new representative of the projective cone which in

coordinates xI is precisely Sn = {x0 = 1} ∩ {xIxI = 0}. Abusing the notation, the map

φΛ := StN ◦ Λ ◦ St−1
N ′ is such that φΛ?(ξ

′
F ) = ξF . Then, considering i(En) and i′(En) as

respresentations of the same space in two different global charts (yA,Rn) and (y′A,Rn),

φΛ can be seen as a change of coordinates yA = (φΛ(y′))A, with the property that the

Euclidean metric in coordinates {y′A} transforms as

gE = δABdy′Ady′B = Ω2(y)δABdyAdyB

for a locally smooth (recall that the conformal transformations have generalically two

singularities, cf. subsection 2.2.1) positive function Ω. In other words, changing to

different Minkowskian coordinates in M1,n+1 induces a change of coordinates in En in

such a way that the form (2.27) of the map ξ is preserved. Notice that a similar result

holds if we change the point w.r.t. which we take the stereographic projection, because

any two N,N ′ ∈ Sn must be related by a SO(n) ⊂ O+(1, n+ 1) transformation.

Therefore, for the rest of this section, we will often adapt our choice of Minkowskian

coordinates
{
xI
}

of M1,n+1 to simplify the problem at hand. With this choice, it comes a

corresponding set of Cartesian coordinates
{
yA
}

of En such that ξF is given by equation

(2.27) and the Euclidean metric is gE = Ω(y)2δABdyAdyB. Which coordinates are

adequate obviously depends on the problem. For example, from the block form (4.5)

and (4.6) of skew-symmetric endomorphisms, consider each of the blocks F |M1,3 F |M1,2 as

endomorphisms of M1,n+1, extended as the zero map in (M1,3)⊥ and (M1,2)⊥ respectively,

and similarly for each F |Πi . If we denote by ξF |M1,3
, ξF |M1,2

and ξF |Πi
the corresponding

images by ξ, one readily gets following decomposition:

ξF = ξF |M1,3
+

p∑
i=1

ξF |Πi
(n even), ξF = ξF |M1,2

+

p∑
i=1

ξF |Πi
(n odd), (4.24)
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where in terms of n, p is given by

p =

[
n+ 1

2

]
− 1 (4.25)

(recall that the dimension of the Minkowski space where F is defined is d = n + 2, cf.

Theorem 2.11). The explicit form of each of the terms in (4.24) is direct from (2.28).

Namely, the terms ξF |M1,3
and ξF |M1,2

are given by (2.27) with vanishing parameters

aA,bA, ωAB for A,B ≥ 3 and A,B ≥ 2 respectively, and each ξF |Πi
is proportional to a

vector field of the form

η := yA0∂yB0 − yB0∂yA0 (4.26)

with A0, B0 ∈ {1, · · · , n} such that A0 6= B0. More specifically, ξF |Πi
= µiηi, where ηi is

given by equation (4.26) with B0 = A0 + 1 and A0 = 2i if n even while A0 = 2i+ 1 if n

odd. Vector fields of the form (4.26) will play an important role in the following analysis.

They have the form of axial Killing vector fields, although in general they are CKVFs

because of the conformal factor in gE = Ω(y)2δABdyAdyB. From the discussion in

Remark 4.27, it follows that there exists a conformal transformation φΛ ∈ ConfLoc(En)

such that g′E := φ?Λ(gE) = δABdyAdyB. Then by the properties of the Lie derivative it

is immediate

0 = Lηφ?Λ(gE) = LφΛ?(η)gE .

In other words, η is an axial Killing vector of g′E and φΛ?(η) is an axial Killing vector

of gE . Thus, we define:

Definicin 4.28. A CKVF of an Euclidean metric gE , η, is said to be a conformally

axial Killing vector field (CAKVF) if and only if the exist a φΛ ∈ ConfLoc(En) such

that φΛ?(η) is an axial Killing vector field of gE . Equivalently, η is a CAKVF if and

only if it is an axial Killing vector field of φ?Λ(gE).

Observacin 4.29. Using Theorem 2.11, it is immediate to verify that a CKVF is a

CAKVF if and only if it is the image under ξ of a simple unit spacelike endomorphism

G.

Notice that the terms in (4.24) form a commutative subset of CKill (En). This is an

immediate consequence of the fact that ξ is a Lie algebra antihomomorphism (cf. The-

orem 2.11) and the blocks F |M1,2 (resp. F |M1,3) and F |Πi are pairwise commuting. In

addition, a straightforward calculation shows that they form an orthogonal set

gE(ξ̃, ηi) = 0, gE(ηi, ηj) = 0 (i 6= j)

where ξ̃ := ξF |M1,3
for n even and ξ̃ := ξF |M1,2

for n odd. In fact, as we show next,

orthogonality of two CKVFs implies commutativity provided one of them is a CAKVF.

If both are CAKVF, then orthogonality turns out to be equivalent to commutativity.

Lemma 4.30. Let η, η′ be non-proportional CAKVFs and ξF a CKVF. Then [η, η′] = 0

if and only if there exist Cartesian coordinates such that η = yn−2∂yn−3−yn−3∂yn−2 and
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η′ = yn−1∂yn−yn∂yn−1. Equivalently [η, η′] = 0 if and only if gE(η, η′) = 0. In addition,

[ξF , η] = 0 if gE(ξF , η) = 0.

Proof. Let G,G′ ∈ SkewEnd(M1,n+1) be such that ξ(G) = η, ξ(G′) = η′. Since G and

G′ are simple, spacelike and unit (cf. Remark 4.29), we can write G = e⊗v− v⊗e and

G′ = e′⊗v′−v′⊗e′ for spacelike, unit vectors {e, e′, v, v′}, such that 0 = 〈e, v〉 = 〈e′, v′〉.
By Corollary 4.19, it follows that [G,G′] = 0 if and only if {e, e′, v, v′} are mutually

orthogonal. Let us take Cartesian coordinates of M1,n+1 such that e = ∂xn−2 , v =

∂xn−1 , e′ = ∂xn , v
′ = ∂xn+1 . Then, in the associated coordinates

{
yA
}

of En it follows

η = yn−2∂yn−3 − yn−3∂yn−2 and η′ = yn−1∂yn − yn∂yn−1 . This proves the first part of

the lemma. From this result, it is trivial that [η, η′] = 0 implies gE(η, η′) = 0.

To prove that gE(η, ξF ) = 0 implies [η, ξF ] = 0 (which in particular establishes the

converse gE(η, η′) = 0 =⇒ [η, η′] = 0 for CAKVFs), let us take coordinates
{
yA
}

such

that η = yn−1∂yn − yn∂yn−1 . Then, writing ξF as a general CKVF (2.27), we obtain by

direct calculation:

gE(η, ξF ) = Ω2
(
ynbn−1 − yn−1bn − yBy

B

2
(anyn−1 − an−1yn)

+ ωn−1
By

Byn − ωnByByn−1
)

= 0.

Therefore an, an−1,bn, bn−1, ωnB, ω
n−1

B must vanish. This implies that the associated

endomorphisms G and F to η and ξF adopt a block structure from which it easily follows

that [G,F ] = 0 and hence [η, ξF ] = 0.

Definicin 4.31. Let ξF ∈ CKill (En). Then a decomposed form of ξF is ξF = ξ̃ +∑p
i=1 µiηi for an orthogonal subset {ξ̃, ηi}, where ηi are CAKVFs, µi ∈ R for i = 1, · · · , p.

A set of Cartesian coordinates
{
yA
}

such that ηi = yAi∂yAi+1 − yAi+1∂yAi , for Ai = 2i

for n odd and Ai = 2i+ 1 for n even, is called a set of decomposed coordinates.

Observacin 4.32. Observe that the ξ̃ is a CKVF. By Lemma 4.30 and its proof, the

parameters {ν, a,b,ω} defining ξ̃ in a set of decomposed coordinates must all vanish

except possibly {ν, a1, a2, b1,b2, ω1
2 = −ω2

1} when n is even or {ν, a1,b1} when n is

odd. This means that there is a skew-symmetric endomorphism F̃ which restricts to

M1,3 ⊂M1,n (n even) or M1,2 ⊂M1,n (n odd) and vanishes identically on their respective

orthogonal complements such that ξ̃ = ξ
F̃

. We will exploit this fact in an essential way

below.

With the definition of decomposed form of CKVFs, we can reformulate Theorem 4.6 in

terms of CKVFs.

Proposicin 4.33. Let ξF ∈ CKill (En). Then there exist an orthogonal set {ηi}pi=1

of CAKVFs such that [ξF , ηi] = 0. For every such a set {ηj}pj=1 and i ∈ {1, · · · , p}
there exist µi ∈ R such that gE(ηi, ηi)µi = gE(ξF , ηi). In addition, with the definition

ξ̃ := ξF −
∑
µiηi the expression ξF = ξ̃ +

∑
µiηi provides a decomposed form of ξF .
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Proof. The existence of p commuting CAKVFs is a direct consequence of decompositions

(4.5) and (4.6) of the associated skew-symmetric endomorphism F , for n even and odd

respectively. Indeed, for each such decomposition of F , it follows a set of p CAKVFs

commuting with ξF . Let us denote {ηi} any such set. Each ηi is associated to a simple,

spacelike unit endomorphism Gi that commutes with F . By Lemma 4.18, Gi defines

a spacelike eigenplane Πi of F . The orthogonality of any two such eigenplanes Πi,Πj ,

i 6= j is a consequence of Corollary 4.19 because [Gi, Gj ] = 0. In other words, given

a set of p CAKVFs commuting with ξF , we have a block form of F , thus, defining

ξ̃ := ξF −
∑
µiηi, it is immediate that ξF = ξ̃ +

∑
µiηi is a decomposed form with

gE(ηi, ηi)µi = gE(ξF , ηi).

The next step now is to give a definition of canonical form for CKVFs, which we induce

from the canonical form of the associated skew-symmetric endomorphism.

Definicin 4.34. A CKVF ξF is in canonical form if it is the image of a skew-symmetric

endomorphism F in canonical form, i.e. ξF = ξ̃ +
∑
µiηi such that ξ̃ is given, in a

Cartesian set of coordinates {yA} denoted canonical coordinates, by the parameters

a1 = 1, b1 = σ/2, a2 = 0, b2 = τ/2 if n even and a1 = 1, b1 = σ/2 if n odd (the

non-specified parameters all vanish) and ηi are CAKVFs ηi = yAi∂yAi+1−yAi+1∂yAi , for

Ai = 2i for n odd and Ai = 2i+ 1 for n even, and where σ, τ, µi are given by Definition

4.10.

Given a CKVF ξF , the existence of a canonical form and canonical coordinates is guar-

anteed by Theorem 4.12. By Theorem 2.11, the conformal class [ξF ] of a CKVF ξF is

equivalent to the equivalence class [F ]O+ of F under the adjoint action of O+(1, n+ 1),

and this is determined by the canonical form of F (cf. Theorem 4.22). Therefore the

parameters {σ, τ, µ2
i } (equivalently {−µ2

t , µ
2
s, µ

2
i }) for n even and {σ, µ2

i } for n odd de-

termine a unique conformal class of CKVFs of En.

In the following Theorem, we summarize the algorithm to determine the conformal class

of CKVFs in locally conformally flat manifolds. This will be applied in the forthcoming

Chapters 5 and 6

Teorema 4.35. Let ξF ∈ CKill (En), with En endowed with a flat metric γE and Carte-

sian coordinates {yA}nA=1. Contruct the skew-symmetric endomorphism F correspond-

ing to ξF according to Theorem 2.11 and consider the parameters {σ, τ, µ2
i } (equivalently

{−µ2
t , µ

2
s, µ

2
i }) if n even and {σ, µ2

i } if n odd in Definition 4.10. Then the conformal

class [ξF ] is uniquely determined by these parameters. Moreover, the structure of limits

in Remark 4.25 applies for CKill(En)/ConfLoc(En).

Observacin 4.36. Obviously, although this quotient is naturally constructed for con-

formal classes of CKVFs of En, i.e. CKill(E)n/ConfLoc(En), by Proposition 2.18, this

has a one-to-one correspondence with the global conformal classes in the sphere, namely

CKill(Sn)/Conf(Sn).
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Observacin 4.37. Theorem 4.35 also applies to the n = 2 case for equivalence classes

generated by global CKVFs up to conformal transformations of E2 globally extendable

in the sphere (see Remark 2.16), namely, the Möbius and affine transformations. It is

interesting to stress this because no analogous result has been given in Chapter 3.

Given a canonical form ξF = ξ̃+
∑
µiηi the set of vectors {ξ̃, ηi} are pairwise commuting

and linearly independent. As we will next prove, in the case of odd dimension this set is

a maximal (linearly independent) pairwise commuting set of CKVFs commuting with ξ

(i.e. it is not contained in a larger set of linearly independent vectors commuting one to

another and with ξ). In the case of even dimension it is not maximal. By Remark 4.32, ξ̃

equals ξ̃(ν, a1, a2,b1, b2, ω), where the right-hand side denotes a CKVF of the form (4.26)

whose parameters vanish, except possibly {ν, a1, a2,b1, b2, ω := ω1
2}. As also mentioned

in the Remark, the corresponding skew-symmetric endomorphism F̃ satisfying ξ
F̃

= ξ̃

can be understood as an element F̃ ∈ SkewEnd(M1,3), with M1,3 = span{e0, e1, e2, e3},
that is identically zero in

(
M1,3

)⊥
. Then, we may apply the results in Chapter 3 to this

block. Namely, fix the orientation in M1,3 so that the basis {e0, e1, e2, e3} is positively

oriented. The Hodge star maps two-forms into two-forms. This defines a natural map

? : SkewEnd(M1,3) −→ SkewEnd(M1,3),

F̃ 7−→ F̃ ?.

From standard properties of two-forms, (see Section 3.4) it follows that F̃ ? commutes

with F̃ . We may extend F̃ ? to an endomorphism on M1,n+1 that vanishes identically

on (M1,3)⊥, just as F̃ . It is clear that the commutation property is preserved by this

extension. The image of F̃ ? under ξ is the vector field

ξ̃? :=
(
ξ̃(ν, a1, a2, b1,b2, ω)

)?
= ξ̃(−ω, a2,−a1,−b2, b1, ν),

which by construction commutes with ξ̃. In the case that ξ̃ is the first element in a

decomposed form ξF = ξ̃+
∑
µiηi, it is immediately true that ξ̃? also commutes with all

of the CAKVFs ηi. Hence, {ξ̃, ξ̃?, ηi} is a pairwise commuting set, all of them commuting

with ξ. This set can be proven to be maximal:

Proposicin 4.38. Let ξF = ξ̃+
∑
µiηi be a CKVF in canonical form. If n is odd, {ξ̃, ηi}

is a maximal linearly independent pairwise commuting set of elements that commute with

ξF . If n is even, {ξ̃, ξ̃?, ηi} is a maximal linearly independent pairwise commuting set of

elements that commute with ξF .

Proof. Suppose that there is an additional CKVF ξ′ commuting with each element in

{ξ̃, ηi} if n odd or {ξ̃, ξ̃?, ηi} if n even (in either case ξ′ clearly commutes with ξF also).

Since it commutes with each ηi, by Proposition 4.33, it admits a decomposed form

ξ′ = ξ̃′ +
∑p

i=1 µ
′
iηi, where ξ̃′ is a CKVF orthogonal to each ηi and which must verify

[ξ̃′, ξ̃] = 0. Equivalently, their associated endomorphisms satisfy F̃ ′ ∈ C(F̃ ), where C(F̃ )
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denotes the centralizer of F , i.e. the set of all skew-symmetric endomorphisms that

commute with F . From the results in Section 3.4, C(F̃ |M1,2) = span{F̃ |M1,2} when

n is odd and C(F̃ |M1,3) = span{F̃ |M1,3 , F̃ ? |M1,3} when n is even. Here, F̃ ? is the

skew-symmetric endomorphim associated with ξ̃? and we restrict to M1,3 because the

action of the endomorphisms is identically zero in (M1,3)⊥. Thus ξ̃′ = aξ̃, a ∈ R, if n

odd and ξ̃′ = bξ̃ + cξ̃?, b, c ∈ R if n even.

4.6 Adapted coordinates

In the previous Section we obtained a canonical form for each CKVF of the Euclidean

space based on the canonical form of skew-symmetric endomorphisms in Section 4.2. As

an application, we consider in this section the problem of adapting coordinates in En to

a given CKVF ξF . The use of the canonical form will allow us to solve the problem for

every possible ξF essentially in one go. Actually it will suffice to consider the case of even

dimension n and assume that at least one of the parameters σ, τ in the canonical form of

ξF is non-zero. The case where both σ and τ vanish will be obtained as a limit (and we

will check that this limit does solve the required equations). The case of odd dimension

n wil be obtained from the even dimensional one by exploiting the property that E2m+1

can be viewed as a hyperplane of E2m+2 in such a way that the given CKVF ξF in E2m+1

extends conveniently to E2m+2. Restricting the adapted coordinates already obtained

in the even dimensional case to the appropriate hyperplane we will be able to infer the

odd dimensional case. Recall that we are restricting to n > 2, so here we shall assume

n ≥ 4.

4.6.1 Calculation of the adapted coordinates

We start by integrating the PDEs which yield adapted coordinates to an arbitrary CKVF

in the case of even n. Consider En endowed with a CKVF ξF . First of all, we adapt the

Cartesian coordinates of En so that ξF takes its canonical form and we fix the metric

of En to take the explictly flat form in these coordinates. We further assume (for the

moment) that n is even. For notational reasons it is convenient to rename the canonical

coordinates4 as z1 := y1, z2 := y2 and xi := y2i+1, yi := y2i+2 for i = 1, · · · , p, where in

the even case case p = n/2− 1 (see (4.25)). By Proposition 4.33, ξF can be decomposed

as a sum of CKVFs ξ̃ and ηi and, additionally one can construct canonically yet another

CKVF ξ̃?. This collection of CKVFs defines a maximal commutative set. Moreover, {ηi}
are all mutually orthogonal and perpendicular to ξ̃ and ξ̃?. It is therefore most natural

to try and find coordinates adapted simultaneously to the whole family {ξ̃, ξ̃?, ηi}. This

4The fact that we tag the coordinates {z1, z2, xi, yi} with lower indices has no particular meaning. It
is simply to avoid a notational clash of upper indices and powers that will appear later
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will lead a (collection of) coordinate systems where the components of ξF are simply

constants. From here one can immediately find coordinates that rectify ξF , if necessary.

It is important to emphasize that selecting the whole set {ξ̃, ξ̃?, ηi} to adapt coordinates

provides enough restrictions so that the coordinate change(s) can be fully determined.

Imposing the much weaker condition that the system of coordinates rectifies only ξF is

just a too poor condition to solve the problem. This is an interesting example where the

structure of the canonical decomposition of ξF (or of F ) is exploited in full.

By Theorem 2.11, the explicit form of {ξ̃, ξ̃?, ηi} in the canonical coordinates is

ξ̃ =

(
σ

2
+

1

2

(
z2

1 − z2
2 −

p∑
i=1

(x2
i + y2

i )

))
∂z1 +

(τ
2

+ z1z2

)
∂z2 + z1

p∑
i=1

(xi∂xi + yi∂yi)

(4.27)

ξ̃? = −
(τ

2
+ z1z2

)
∂z1 +

(
σ

2
− 1

2

(
z2

2 − z2
1 −

p∑
i=1

(x2
i + y2

i )

))
∂z2 − z2

p∑
i=1

(xi∂xi + yi∂yi)

ηi = xi∂yi − yi∂xi .

We are seeking coordinates {t1, t2, φi, vi} adapted to these vector fields, i.e. such that

∂t1 = ξ̃, ∂t2 = ξ̃?, ∂φi = ηi. It is clear that if {t1, t2, φi, vi} is an adapted coordinate

system, so it is {t1 − t0,1(v), t2 − t0,2(v), φi − φ0,i(v), vi} for arbitrary functions t0,1(v),

t0,2(v) and φ0,i(v), where v = (v1, · · · , vp). This will be used to simplify the process of

integration. This freedom, may be restored at the end if so desired. Hence from ξ̃ = ∂t1

∂z1

∂t1
=
σ

2
+

1

2

(
z2

1 − z2
2 −

p∑
i=1

(x2
i + y2

i )

)
,

∂z2

∂t1
=
τ

2
+ z1z2, (4.28)

∂xi
∂t1

= z1xi,
∂yi
∂t1

= z1yi, (4.29)

from ξ̃? = ∂t2 ,

∂z2

∂t2
=
σ

2
− 1

2

(
z2

2 − z2
1 −

p∑
i=1

(x2
i + y2

i )

)
,

∂z1

∂t2
= −τ

2
− z1z2, (4.30)

∂xi
∂t2

= −z2xi,
∂yi
∂t2

= −z2yi, (4.31)

and from ηi = ∂φi

∂z1

∂φi
= 0

∂z2

∂φi
= 0

∂xi
∂φi

= −yi
∂yi
∂φi

= xi. (4.32)

The additional p coordinates vi, will appear through functions of integration. It is

interesting to observe that, had we allowed n to be n = 2, and restricting oneself to

global CKVFs, it is clear that the structure of the equations would have been different.

This is because there are no {xi, yi}, which implies that the process of integration in this
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case would require a different route. In any case, as we have already seen in Chapter 3,

for the case n = 2 the complex structure of S2 can be exploited to simplify the problem.

We may start by integrating (4.32). The first pair gives z1 = z1(t1, t2, v), z2 = z2(t1, t2, v),

so that the second pair becomes a harmonic oscillator in xi, yi, whose solution is

xi = ρi(t1, t2, v) cos(φi − φ0,i(t1, t2, v)), yi = ρi(t1, t2, v) sin(φi − φ0,i(t1, t2, v)),

(4.33)

where ρi and φ0,i are arbitrary functions (depending only on the variables indicated)

and ρi is not identically zero.

Inserting (4.33) in any of equations (4.29) and (4.31) and equating terms multiplying

sin(φi + φ0,i) and cos(φi + φ0,i) yields:

z1 =
1

ρi

∂ρi
∂t1

, z2 = − 1

ρi

∂ρi
∂t2

,
∂φ0,i

∂t1
= 0,

∂φ0,i

∂t2
= 0.

Thus, φ0,i is a function only of v, which may be absorbed on the coordinate φi as

discussed above. The two first equations imply

1

ρi

∂ρi
∂t1

=
1

ρj

∂ρj
∂t1

,
1

ρi

∂ρi
∂t2

=
1

ρj

∂ρj
∂t2

⇐⇒ ρi = α̂i(v)ρ̂(t1, t2, v),

for arbitrary (non-zero) functions α̂i and ρ̂. Defining ρ2 :=
p∑
i=1

ρ2
i =

(
p∑
i=1

α̂2
i

)
ρ̂2 we can

write

ρi = α̂iρ̂ =
α̂iε√∑p
j=1 α̂

2
j

ρ = αiρ,

where αi := α̂iε/
√∑p

j=1 α̂
2
j , with ε2 = 1, form a set of arbitrary (non-zero) functions of

v such that
p∑
i=1

α2
i = 1. The function ρ satisfies

z1 =
1

ρ

∂ρ

∂t1
, z2 = −1

ρ

∂ρ

∂t2
. (4.34)

Inserting (4.34) in equations (4.28) and (4.30), with the change of variable U = ρ−1,

we obtain after some algebra the following covariant system of PDEs (indices a, b = 1, 2

refer to {t1, t2})
∇a∇bU = UAab +

1

2U
(1 +∇cU∇cU)gab (4.35)

with

A :=
1

2
(−σdt21 + σdt22 + 2τdt1dt2), g := dt21 + dt22,

and where ∇ is the Levi-Civita covariant derivative of g.
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Lemma 4.39. Up to shifts t1 → t1 − t0,1(v) and t1 → t1 − t0,1(v), the general solution

of (4.35) with either σ or τ non-zero is given by

U =
ε

µ2
t + µ2

s

(β cosh(t+)− α cos(t−)) with β =
√
α2 + µ2

t + µ2
s (4.36)

where α is a function of integration (depending on v), ε2 = 1 and t+ := µtt1 + µst2,

t− := µtt2−µst1, with µs, µt given by (3.9). The solution (4.36) admits a limit σ = τ = 0

(i.e. µt = µs = 0) provided α > 0, which is

lim
µsµt→0

U = ε
α

2
(t21 + t22) +

ε

2α
. (4.37)

Up to shifts t1 → t1 − t0,1(v) and t2 → t2 − t0,2(v), this function is the general solution

of (4.35) for σ = τ = 0.

Proof. The coordinates t+, t− defined in the lemma diagonalize A and g simultaneously

and yield

A =
1

2
(dt2+ − dt2−), g =

1

µ2
s + µ2

t

(dt2+ + dt2−).

From this and equation (4.35) it follows that ∂2U/∂t+∂t− = 0 or, equivalently, U(t+, t−) =

U+(t+) + U−(t−). Substracting the {t+, t+} and {t−, t−} components of (4.35) one ob-

tains

d2U+

dt2+
− d2U−

dt2−
= U = U+ + U− =⇒ d2U+

dt2+
− U+ =

d2U−
dt2−

+ U− = â

for an arbitrary separation function â(v). The general solution is clearly

U+ = −â+ a cosh(t+) + b sinh(t−) U− = â+ c cos(t− − δ), (4.38)

where a, b, c, δ are also functions of v. Since â drops out in U = U+ + U− we may set

â = 0 w.l.o.g. Inserting (4.38) in (any of) the diagonal terms of (4.35) and one simply

gets

a2 − b2 =
1

µ2
s + µ2

t

+ c2.

Hence |a| > |b| and we may use the freedom of translating t+ by a function of v to write

U+ = a cosh(t+) (i.e. b = 0). A similar translation in t− sets δ = 0. Rescaling the

functions a, c as a = (µ2
s + µ2

t )
−1β and c = −(µ2

s + µ2
t )
−1α we get

U = U− + U− =
β

µ2
s + µ2

t

cosh(t+)− α

µ2
s + µ2

t

cos(t−), β2 = µ2
s + µ2

t + α2. (4.39)

It is obvious that sign(U) = sign(β). Thus taking β as the positive root β =
√
α2 + µ2

s + µ2
s
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and adding a multiplicative sign ε in (4.39), we obtain (4.36). To evaluate the conver-

gence as both σ, τ tend to zero, or equivalently µs, µt → 0, consider the series expansion

β cosh(t+) =

(
|α|+ µ2

s + µ2
t

2|α|
+ o(4)

µt,µs

)(
1 +

(µst2 + µtt1)2

2
+ o(4)

µt,µs

)
,

α cos(t−) = α− α(µtt2 − µst1)2

2
+ o(4)

µt,µs ,

where o
(4)
µt,µs denotes a sum of homogeneous polynomials in µt, µs starting at order four,

whose coeficients may depend on t1, t2 and α. Then, the expansion of U is

U =
ε

µ2
s + µ2

t

(
(|α| − α)(1 + µsµtt1t2) +

|α|µ2
s + αµ2

t

2
t22

+
|α|µ2

t + αµ2
s

2
t21 +

µ2
s + µ2

t

2|α|
+ o(4)

µt,µs

)
.

It is clear that limµs,µt→0 o
(4)
µt,µs/(µ

2
s + µ2

t ) = 0 and the rest of the equation converges if

and only if α > 0 in which case the limit is (4.37). An easy calculation shows that this

limit is (up to shifts in t1, t2) is the general solution of (4.35) when σ, τ = 0.

Having the general general solution (4.36) of (4.35) we can give the expression of the

adapted coordinates

z1 = − 1

U

∂U

∂t1
=

∣∣∣∣ 1

U

∣∣∣∣ αµs sin(t−)− βµt sinh(t+)

µ2
s + µ2

t

, (4.40)

z2 =
1

U

∂U

∂t2
=

∣∣∣∣ 1

U

∣∣∣∣ αµt sin(t−) + βµs sinh(t+)

µ2
s + µ2

t

, (4.41)

xi =
αi
U

cos(φi), yi =
αi
U

sin(φi), (4.42)

where no sign of α is in principle assumed5, except for the case µs = µt = 0, where U must

be understood as the limit (with α > 0) (4.37) and z1 = −U−1∂U/∂t1, z2 = U−1∂U/∂t2.

This coincides with the limit of the RHS expressions (4.40), (4.41), which is

z1 =
−2α2t1

1 + α2(t21 + t22)
, z2 =

2α2t2
1 + α2(t21 + t22)

. (4.43)

From equations (4.40), (4.41) and (4.42) it is obvious that the sign ε is not relevant in the

definition of the adapted coordinates. This is because the two branches ε = 1 and ε = −1

correspond to U > 0 and U < 0 respectively, which in terms of the adapted coordinates,

is equivalent to a rotation of π in the φi angles. Hence, w.l.o.g. we consider ε = 1,

i.e. U > 0. Also notice that the dependence on the variables vi appears through the

functions αi and α, with
∑p

i=1 α
2
i = 1. The set {αi, α} define p independent arbitrary

5The domain of definition of α will be later restricted under the condition that the adapted coordinates
define a one to one map.
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functions of the variables vi, so it is natural to use as coordinates {αi, α} themselves,

provided they are restricted to satisfy
∑p

i=1 α
2
i = 1.

4.6.2 Region covered by the adapted coordinates

We now calculate the region of En covered by the adapted coordinates. It is clear that

in no case this region can include neither the zeros of the vector fields ξ̃ and ξ̃? and ηi

nor the points where these p + 2 vectors are linearly dependent. We therefore start by

locating those points. Denoting the loci of the zeros of ξ̃ and ξ̃? and ηi by Z(ξ̃), Z(ξ̃)?

and Z(ηi) respectively, a simple calculation gives

Z(ξ̃) =
(
{
p⋂
j=1

{xj = yj = 0}} ∩ {z1 = ±µt, z2 = ∓µs}
)

∪
(
{z1 = 0} ∩ {z2

2 +

p∑
j=1

(x2
j + y2

j ) = µ2
s − µ2

t } if µsµt = 0
)
, (4.44)

Z(ξ̃?) =
(
{
p⋂
j=1

{xj = yj = 0}} ∩ {z1 = ±µt, z2 = ∓µs}
)

∪
(
{z2 = 0} ∩ {z2

1 +

p∑
j=1

(x2
j + y2

j ) = µ2
t − µ2

s} if µsµt = 0
)
, (4.45)

Z(ηi) = {xi = yi = 0} .

These expressions are valid for every value of µs, µt and imply that in the case µs =

µt = 0, Z(ξ̃) = Z(ξ̃?) =
{⋂p

j=1 {xj = yj = 0}
}
∩ {z1 = z2 = 0}, which is contained in

each Z(ηi) = {xi = yi = 0}.

On the other hand, since {ξ̃, ηi} is an orthogonal set of CKVFs (cf. Lemma 4.30), they

are pointwise linearly independent at all points where they do not vanish. Similarly,

{ξ̃?, ηi} is also an orthogonal set, so linear independence is guaranteed away from the

zero set. Away from this set, the set of vectors {ξ̃, ξ̃?, ηi} is linearly dependent only at

points where ξ̃ and ξ̃? are proportional to each other with a non-zero proportionality

factor, ξ̃ = aξ̃?, a 6= 0. One easily checks that, away from Z(ξ̃) and Z(ξ̃?), the set of

point where ξ̃ − aξ̃? vanishes is empty except when µs 6= 0, µt 6= 0 and a = µt
µs

. It turns

out to be useful to determine the set of points where µsξ̃ − µtξ̃? = 0 when at least one

of {µs, µt} is non-zero. We call this set Z(µsξ̃ − µtξ̃?), and a straightforward analysis

gives

Z(µsξ̃ − µtξ̃?) =



{µsz1 = −µtz2}

∩{(µ2
s + µ2

t )z
2
2 + µ2

s

p∑
i=1

(x2
i + y2

i ) = (µ2
s + µ2

t )µ
2
s} if µs 6= 0,

{µsz1 = −µtz2}

∩{(µ2
s + µ2

t )z
2
1 + µ2

t

p∑
i=1

(x2
i + y2

i ) = (µ2
s + µ2

t )µ
2
t } if µt 6= 0.

(4.46)
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Obviously, the two expressions are equivalent when both µs and µt are non-zero. The

interest of this set is that it happens to always contain Z(ξ̃) and Z(ξ̃?). This, together

with the fact that when µs = µt = 0 these sets are contained in the axes Z(ηi) will allow

us to ignore them altogether.

Lemma 4.40. Assume that at least one of {µs, µt} is non-zero. Then Z(ξ̃),Z(ξ̃?) ⊂
Z(µsξ̃ − µtξ̃?).

Proof. Consider first µs, µt 6= 0. Then at Z(µsξ̃−µtξ̃?)∩
{⋂p

j=1 {xj = yj = 0}
}

we have

that z1 = ±µt and z2 = ∓µs which establishes Z(ξ̃),Z(ξ̃?) ⊂ Z(µsξ̃−µtξ̃?) in this case.

When µt = 0, µs 6= 0, by definition of the respective sets we have Z(ξ̃) = Z(µsξ̃−µtξ̃?).
Moreover, directly from (4.45) one finds

Z(ξ̃?) =

p⋂
j=1

{xj = yj = 0} ∩ {z1 = 0, z2 = ±µs} ,

which (cf. the first expression in (4.46)) is clearly contained in Z(µsξ̃ − µtξ̃
?). An

analogous argument applies in the case µt 6= 0, µs = 0.

Let us define the following auxiliary coordinates

ẑ+ :=
µsz1 + µtz2√∑p
i=1(x2

i + y2
i )
, ẑ− :=

µsz2 − µtz1√∑p
i=1(x2

i + y2
i )
, x̂i := xi, ŷi := yi.

Except for the case µs = µt = 0 (which will be analyzed later) the coordinates {ẑ+, ẑ−, x̂i, ŷi}
obviously cover Rn\

{⋂p
j=1{xj = yj = 0}

}
. In terms of the adapted coordinates, they

read

ẑ+ = α sin(t−), ẑ− = β sinh(t+) x̂i =
αi
U

cos(φi), ŷi =
αi
U

sin(φi). (4.47)

Let us analyze the points where (4.47) fails to be a change of coordinates and hence

restrict the domain of definition of {α, t−, t+, αi, φi}. The first thing to notice is that a

change of sign in the coordinate αi is equivalent to a rotation of angle π in the coordinate

φi. Moreover, at points where αi = 0, i.e. the axis of ηi, the coordinate φi is completely

degenerate, which obviously excludes
⋃p
j=1 {xj = yj = 0} from the region covered by the

adapted coordinates. To avoid duplications, we must restrict αi ∈ (0, 1) and φ ∈ [−π, π)

or alternatively αi ∈ (−1, 1)\{0} and φi ∈ [0, π). We choose the former for definiteness.

The hypersurface {α = const, t− = const, t+ = const} is an n− 3 dimensional sphere of

radius U−1, namely {ẑ− = const, ẑ+ = const} ∩ {
∑p

i=1(x2
i + y2

i ) = U−2 = const}. This

gives a straightforward splitting of Rn\{0n−2}, with 0n−2 := {
⋂p
j=1{xj = yj = 0}

}
, into

R2 × (Rn−2\{0n−2}), where Rn−2\{0n−2} is foliated by n− 3 dimensional spheres. The

set Z(µsξ̃ − µtξ̃?) respects this foliation, so it descends to R2 × R+ (the last factor is

the radius of the n − 3 sphere). To avoid extra notation we also use Z(µsξ̃ − µtξ̃?) to
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denote this quotient set. We next show that the adapted coordinates actually cover the

largest possible domain, namely Rn \ {Z(µsξ̃ − µtξ̃?) ∪
⋃p
j=1 {xj = yj = 0}}. From the

previous discussion, this is a consequence of the following result.

Lemma 4.41. Assume that at least one of {µs, µt} is not zero. Then. the transforma-

tion

(ẑ+, ẑ−, U) : R× [−π, π)× R+ −→
(
R2 × R+

)
\Z(µsξ̃ − µtξ̃?)

(t+, t−, α) 7−→ (ẑ+, ẑ−, U).
(4.48)

is a diffeomorphism.

Proof. The determinant of the jacobian of (4.48) reads∣∣∣∣∂(ẑ+, ẑ−, U)

∂(t+, t−, α)

∣∣∣∣ = αU.

Since U is strictly positive (cf. (4.36) and recall that we chose ε = 1 w.l.o.g.), the

conflictive points are α = 0. To calculate the locus {α = 0} we obtain the inverse

transformation of α in terms of U, ẑ+, ẑ− by solving (4.36) and the first two in (4.47).

The result is, after a straightforward computation,

α = ±
(
ẑ2

+ +
1

4U2(µ2
s + µ2

t )
2
(ẑ2

+ + ẑ2
− − U2(µ2

s + µ2
t )

2 + (µ2
s + µ2

t ))
2

)1/2

. (4.49)

It follows that α = 0 is equivalent to ẑ+ = 0 and ẑ2
− + µ2

s + µ2
t = U2(µ2

s + µ2
t )

2. When

translated into the original coordinates{z1, z2, xi, yi} this set is precisely Z(µsξ̃ − µtξ̃?).
Also, from (4.49) it is obvious that α is multivalued, which also implies that t− is

multivalued after substituting α as a function of ẑ+, ẑ−, U in the first equation in (4.47)6.

We solve this issue by restricting α to be strictly positive and let t− take values in

[−π, π).

We have shown that the adapted coordinates cover all Rn except
⋃p
j=1Z(ηj)∪Z(µsξ̃−

µtξ̃
?) . The domain of definition of the coordinates t1, t2 depends on µt and µs, because

−π ≤ t− = µtt2 − µst1 < π. This defines a band B(µs, µt) := {−π ≤ t− = µtt2 −
µst1 < π}, whose width and tilt is determined by σ, τ through µs, µt (see Figure 4.2).

Nevertheless, the coordinate change is well defined for all values of t1 and t2 and involves

only periodic functions of t−. Thus, we can extend the domain of definition of t1, t2 to

all of R2. This defines a covering of the original space Rn\(
⋃p
j=1Z(ηj)∪Z(µsξ̃−µtξ̃?))

which unwraps completely the orbits of ξ̃ and ξ̃?. It is not the universal covering because

it does not unwrap the orbits of the axial vectors. This result is a generalization to higher

dimensions of the covering dicussed in detail in Chapter 3.

6This was already evident by observing that a change of sing in α is cancelled by a rotation of π in
t−
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The limit case µs = µt = 0 (that is σ = τ = 0) corresponds with a band of infinite

width, i.e. B(µs, µt) = R2. In this case, the adapted coordinates also cover the largest

possible set Rn\(
⋃p
j=1Z(ηj)). Recall that in this case the only points where {ξ̃, ξ̃?, ηi}

is not a linearly independent set is the union of Z(ξ̃),Z(ξ̃?), and Z(ηi) and we have

already seen that in this case Z(ξ̃) = Z(ξ̃?) ⊂ Z(ηi), for i = 1, · · · , p. This limit case is

the same result that we would have obtained, had we performed a direct analysis using

U as given by (4.37).

θ

w

t1

t2

Figure 4.2: Band B(µs, µt) where the coordinates t1, t2 are defined. The tilt is given

by θ = arctan
(
µs
µt

)
and the width w is 2π/µt if µt 6= 0, 2π/µs if µt = 0, µs 6= 0 and

w →∞ if µs = µt = 0.

4.6.3 Conformally flat metrics in adapted coordinates

Once we have determined the adapted coordinates and the region they cover, we may

proceed to calculate the expression of the Euclidean metric

gE = dz2
1 + dz2

2 +

p∑
i=1

(
dx2

i + dy2
i

)
. (4.50)

in adapted coordinates. We start with the term
p∑
i=1

(
dx2

i + dy2
i

)
, which is straightforward

p∑
i=1

(
dx2

i + dy2
i

)
=

dU2

U4
+

1

U2

p∑
i=1

(
dα2

i + α2
i dφ

2
i

)∣∣∑p
i=1 α

2
i=1
− 2dU

U2

(
p∑
i=1

αidαi

)

=
dU

U4
+

1

U2
γSn−3 , (4.51)
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where in the last equality we used
∑p

i=1 αidαi = 0, which follows from
∑p

i=1 α
2
i = 1 and

we have defined

γSn−3 :=

p∑
i=1

(
dα2

i + α2
i dφ

2
i

)∣∣∑p
i=1 α

2
i=1

. (4.52)

The notation is justified because the right-hand side corresponds to the standard unit

metric on Sn−3. This follows because
∑p

i=1

(
dα2

i + α2
i dφ

2
i

)
is obviously flat and the re-

striction
∑p

i=1 α
2
i = 1 defines a unit sphere. We emphasize, however that the notation

γSn−3 refers to the quadratic form above, not to the spherical metric in any other coor-

dinate system. Observe also that dU in (4.51) should be understood as a short name for

the explicit differential of U in terms of dt1,dt2, dα. Using (4.50) and (4.51), we have

gt1t1 =

(
∂z1

∂t1

)2

+

(
∂z2

∂t1

)2

+
1

U4

(
∂U

∂t1

)2

,

which after an explicit calculation reduces to

gt1t1 =
α2 + µ2

t

U2
.

Notice that gt1t1 = gE(ξ̃, ξ̃), gt2t2 = gE(ξ̃?, ξ̃?) and gt1,t2 = gE(ξ̃, ξ̃?). From the expres-

sions in Cartesian coordinates it is straightforward to show

gE(ξ̃, ξ̃) = gE(ξ̃?, ξ̃?)− σ
p∑
i=1

(x2
i + y2

i ) = gE(ξ̃?, ξ̃?)− σ

U2
,

gE(ξ̃, ξ̃?) =
τ

2

p∑
i=1

(x2
i + y2

i ) =
τ

2U2

where we have used U−2 =
p∑
i=1

(x2
i + y2

i ) (see (4.42)). Thus

gt2t2 = gt1t1 +
σ

U2
=
α2 + µ2

s

U2
, gt1t2 =

τ

2U2
=
µsµt
U2

.

The remaining terms are rather long to calculate. With the aid of a computer algebra

system one gets

gαα =

(
∂z1

∂α

)2

+

(
∂z2

∂α

)2

+
1

U4

(
∂U

∂α

)2

=
1

β2U2

gαt1 =
∂z1

∂α

∂z1

∂t1
+
∂z2

∂α

∂z2

∂t1
+

1

U4

∂U

∂α

∂U

∂t1
= 0,

gαt2 =
∂z1

∂α

∂z1

∂t2
+
∂z2

∂α

∂z2

∂t2
+

1

U4

∂U

∂α

∂U

∂t2
= 0.

Notice that no terms in dαi, dφi appear but those in γSn−3 , since neither U nor z1, z2

depend on αi, φi. Putting all these results together we obtain the following expression:
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Lemma 4.42. In adapted coordinates {t1, t2, α, αi, φi}, the Euclidean metric gE takes

the form

gE =
1

U2

(
(α2 + µ2

t )dt
2
1 + (α2 + µ2

s)dt
2
2 + 2µsµtdt1dt2 +

dα2

α2 + µ2
s + µ2

t

+ γSn−3

)
.

(4.53)

We would like to stress the simplicity of this result. Except in the conformal factor, the

metric does not depend in t1 and t2 (so, both ξ̃ and ξ̃? are Killing vectors of U2gE).

The dependence in the coordinate α and the conformal class constants {µs, µt} is also

extremely simple. Even more, the fact that all dependence in {αi, φi} arises only in

γSn−3 allows us to use any other coordinate system on the unit sphere Sn−3. Any

such coordinate system is still adapted to ξ̃ and ξ̃? but (in general) no longer to {ηi}.
This enlargement to partially adapted coordinates is an interesting consequence of the

foliation of Rn by (n− 3)-spheres described above.

4.6.4 Odd dimensional case and Adapted Coordinates Theorem

We now work out the odd n case. As already discussed, we will base the analysis on the

even dimensional case by restricting to a suitable a hyperplane. The underlying reason

why this is possible is given in the following lemma.

Lemma 4.43. Fix n ≥ 3 odd. Let ξF be a CKVF of En in canonical form and let

{z1, xi, yi} be canonical coordinates. Consider the embedding En ↪→ En+1 where En is

identified with the hyperplane {z2 = 0}, for a Cartesian coordinate z2 of En+1. Then ξF

extends to a CKVF of En+1 with the same values of σ, µi and τ = 0.

Proof. By Remark 4.32 and Theorem 2.11, the expression of ξF in the canonical coor-

dinates {z1, xi, yi} is

ξF =

(
σ

2
+

1

2

(
z2

1 −
p∑
i=1

(x2
i + y2

i )

))
∂z1 + z1

p∑
i=1

(xi∂xi + yi∂yi) +

p∑
i=1

µi (xi∂yi − yi∂xi)

= ξ̃ +

p∑
i=1

µiηi.

Define ξ′F on En+1 in Cartesian coordinates {z1, z2, xi, yi} by ξ′F = ξ̃′+
p∑
i=1

µi (xi∂yi − yi∂xi)

where ξ̃′ is given by (4.27) with τ = 0. It is clear that this vector is a CKVF of En+1

written in canonical form, that it is tangent to the hyperplane z2 = 0 and that it agrees

with ξF on this submanifold.

Consequently, introducing adapted coordinates for the extended CKVF and restricting

to {z2 = 0} will provide adapted coordinates for ξF . The restriction will obviously reduce
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the domain of definition of the adapted coordinates {t1, t2, α, αi, φi} to a hypersurface.

It is straightforward from equation (4.41) and the second equation in (4.43) that for the

three cases σ > 0, σ = 0 or σ < 0, the hyperplane {z2 = 0} corresponds to {t2 = 0}. It

follows that the remaining coordinates {t1, α, αi, φi} are adapted to ξ̃ and all ηi. Their

domain of definition is t1 ∈ R, α ∈ R+, αi ∈ (0, 1), φi ∈ [−π, π) and the coordinate

change is given by (4.40) (or the first in (4.43)) together with (4.42) after setting τ = 0

and t2 = 0. Depending on the sign of σ one gets for z1

z1 =


−1
|U+|

α sin(
√
σt1)√
σ

, σ > 0

−1
|U−|

√
α2+|σ| sinh(

√
|σ|t1)√

|σ|
, σ < 0

−1
|U0|αt1, σ = 0

, (4.54)

where

U+ :=
1

σ
(
√
α2 + σ − α cos(

√
σt1)), U− :=

1

−σ
(
√
α2 − σ cosh(

√
−σt1)− α),

U0 :=
1

2
(αt21 +

1

α
),

and for all three cases

xi =
αi
U ε

cos(φi), yi =
αi
U ε

sin(φi), (4.55)

where we write U ε for the function U+, U− or U0 according with sign of σ.

The range of variation of {t1, α, αi, φi} was inferred before from the corresponding range

of variation of {t1, t2, α, αi, φi} in En+1. It may happen, however, that when we restrict

to the hyperplane {z2 = 0}, the range gets enlarged and additional points get covered

by the adapted coordinate system. The underlying reason is that, in effect, we are no

longer adapting coordinates to ξ̃′?, so the points on z2 = 0 where this vector is linearly

dependent to ξ̃′ (or zero) are no longer problematic. When τ = 0, one has

(µs =
√
σ, µt = 0) if σ ≥ 0, (µs = 0, µt =

√
|σ|) if σ ≤ 0.

We may ignore the case σ = 0 because Z(ξ̃′) = Z(ξ̃′?). It follows from (4.44) and (4.46)

that

Z(ξ̃′)
∣∣∣
z2=0

=


{z1 = 0} ∩

{
p∑
i=1

(x2
i + y2

i ) = σ

}
if σ > 0⋂p

j=1 {xj = yj = 0} ∩
{
z1 = ±

√
|σ|
}

if σ < 0

Z(µsξ̃
′ − µtξ̃′?)

∣∣∣
z2=0

=


{z1 = 0} ∩

{
p∑
i=1

(x2
i + y2

i ) = σ

}
if σ > 0

{z2
1 +

p∑
i=1

(x2
i + y2

i ) = |σ|} if σ < 0.
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When σ > 0, the two sets are the same and no extension of the coordinates {t1, α, αi, φi}
is possible. However, when σ < 0, the set Z(µsξ̃

′ − µtξ̃′?)|z2=0 is strictly larger than

Z(ξ̃′)|z2=0. From expressions (4.54) and (4.55) one checks that Z(µsξ̃
′ − µtξ̃′?)|z2=0 \

Z(ξ̃′)|z2=0 corresponds exactly to the value α = 0 and that Z(ξ̃) = Z(ξ̃′)|z2=0 is at the

limit t1 → ±∞. Thus, a priori there is the possibility that the adapted coordinates

{t1, α, αi, φi} can be extended regularly to α = 0 when σ < 0. It follows directly from

(4.54) that this is indeed the case (observe that, to the contrary, the limit α → 0 in

(4.54) is singular when σ ≥ 0, in agreement with the previous discussion). Thus, the

range of definition of α is [0,∞) when σ < 0. The conclusion is that, irrespectively of

the value of σ, the adapted coordinates {t1, α, αi, φi} cover the largest possible domain

of En, namely all points where ξ̃ is non-zero away from the axes of {ηi}.

To obtain the Euclidean metric in En for n odd in adapted coordinates we simply restrict

(4.53) (with n→ n+ 1) to the hypersurface t2 = 0, and get

gεE =
1

(U ε)2

((
α2 +

(1− ε)|σ|
2

)
dt21 +

dα2

α2 + |σ|
+ γSn−2

)
, (4.56)

where ε = −1, 0, 1 respectively if σ < 0, σ = 0, σ > 0.

Observacin 4.44. The three odd dimensional cases can be unified into one. The func-

tion U0 coincides with the limits of U+ and U− when σ → 0. However, the analytical

continuation of U+ to negative values of σ does not directly yield U−. To solve this we

introduce the function

W1(y) =
1

σ

(√
y2 + σ − y cos

(√
σt1
))
,

which is analytic in σ and takes real values for real σ. We observe that U+(α = y) =

W1(y) for σ > 0, U0(α = y) = W1(y) (σ = 0) and U−(α = +
√
y2 + σ) = W1(y) (σ <

0). This suggests introducing the coordinate change α = y for σ ≥ 0 and α = +
√
y2 + σ

for σ < 0. From the domain of α, it follows that y takes values in y > 0 when σ ≥ 0

and y ≥
√
−σ when σ < 0. In terms of y, the three metrics metric gε take the unified

form

gεE =
1

W1(y)2

(
y2dt21 +

dy2

y2 + σ
+ γSn−2

)
.

The function W1 is the analytic continuation of U+ to negative values of σ. We could

have started with U− and continued analytically to positive values of σ. Instead of

repeating the argument, we simply introduce a new variable z defined by y =
√
z2 − σ

with range of variation z >
√
σ for σ ≥ 0 and z ≥ 0 for σ < 0. The metric takes the

(also unified and even more symmetric) form

gεE =
1

W2(z)2

(
(z2 − σ)dt21 +

dz2

z2 − σ
+ γSn−2

)
, W2(z) :=

1

σ

(
z −

√
z2 − σ cos

(√
σt1
))
.
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The function W2(z) is again analytic in σ, takes real values on the real line, and now

it extends U−. More specifically, U−(α = z) = W2(z) (σ < 0), U0(α = z) = W2(z)

(σ = 0) and U+(α =
√
z2 − σ) = W2(z) (σ > 0).

Remark 4.44 allows us to work with all the odd dimensional cases at once, which will

be useful for Section 4.7. However, this unified form does not arise naturally when the

odd dimensional case is viewed as a consequence of the n+ 1 even dimensional case. So,

leaving aside this remark for Section 4.7, we summarize the results of this section in the

following Theorem.

Teorema 4.45. Given a CKVF ξF of En, with n ≥ 4 even, in canonical form ξF =

ξ̃ +
∑p

i=1 µiηi, the coordinates t1, t2, φi, α, αi, for i = 1, · · · p and
∑p

i=1 α
2
i = 1, defined

by

z1 = − 1

U

∂U

∂t1
, z2 =

1

U

∂U

∂t2
xi =

αi
U

cos(φi), yi =
αi
U

sin(φi)

with

U =

√
α2 + µ2

t + µ2
s cosh(µtt1 + µst2)− α cos(µtt2 − µst1)

µ2
t + µ2

s

,

which admits a limit limµsµt→0 U = α
2 (t21+t22)+ 1

2α , furnish adapted coordinates to ξ̃ = ∂t1

ξ̃? = ∂t2 ηi = ∂φi, which cover the maximal possible domain, namely En\
(⋃p

j=1Z(ηj)∪

Z(µsξ̃ − µtξ̃?)
)

for t1, t2 ∈ B(µs, µt), φi ∈ [−π, π), αi ∈ (0, 1) and α ∈ R+. Moreover,

the metric gE, which is flat in canonical Cartesian coordinates, is given by

gE =
1

U2

(
(α2 + µ2

t )dt
2
1 + (α2 + µ2

s)dt
2
2 + 2µsµtdt1dt2

+
dα2

α2 + µ2
s + µ2

t

+

p∑
i=1

(
dα2

i + α2
i dφ

2
i

)∣∣∑p
i=1 α

2
i=1

)
. (4.57)

If n ≥ 3 is odd and ξF is in canonical form, ξF = ξ̃ +
∑p

i=1 µiηi, the coordinates

{t1, φi, α, αi} adapted to ξ̃ = ∂t1 ηi = ∂φi are given by the case of n+1 (even) dimensions,

for τ = 0 restricted to t2 = 0 (which defines the embedding En = {z2 = 0} ⊂ En+1) and

cover again the maximal possible domain, given by En\
(⋃p

j=1Z(ηj) ∪ Z(ξ̃)
)

for t1 ∈ R,

φi ∈ [−π, π), αi ∈ (0, 1) and α ∈ R+ when σ ≥ 0 and α ∈ R+ ∪ {0} when σ < 0.

Moreover, the metric gE, which is flat in canonical Cartesian coordinates, is given by

the pull-back of (4.57) at t2 = 0 after setting τ = 0. Explicitly gE is, depending on the

sign of σ, given by (4.56) with γSn−2 as in (4.52).

4.7 TT-Tensors

The adapted coordinates derived in Section 4.6 provide a useful tool to solve geometric

equations involving CKVFs. In this section we give an example of this in the context

of Λ-vacuum spacetimes admitting a smooth null conformal infinity in the n = 3 case.
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Our aim is to give a simple yet interesting application of the formalism developed in the

previous sections. We stress that the methods that we employ here can also be used in

the higher dimensional case (with a considerable amount of extra work).

Consider a Riemannian 3-manifold endowed with a conformally flat metric g and let ξ

be an arbitrary CKVF of g with its canonical form ξ = ξ̃ + η. We shall use the KID

equation (cf. Theorem 2.35) to obtain the most general TT tensor D satisfying (2.55)

for both ξ̃ and η, so we obtain the asymptotic data which generates a spacetime with

two commuting symmetries, one of which is axial. As we shall also justify (cf. Remark

4.50) the requirement of one of these symmetries being axial is not very restrictive and

the data corresponding of all spacetimes with two commuting symmetries (with none of

them necessarily axial) can be obtained straightforwardly.

A CKVF satisfying (2.55) will be called KID vector for short. An important property of

KID vectors is that they form a Lie subalgebra of CKVFs, i.e. if ξ, ξ′ are KIDs for a given

TT tensor D, then [ξ, ξ′] is also a KID for D. The problem of obtaining all TT-tensors

with generality for a given conformal structure is hard, even in the conformally flat case

(see e.g. [16], [145]). Our approach is not completely general as we impose additional

equations but is relevant to study spacetimes with symmetries. Also, n = 3 corresponds

to the physical case of four spacetime dimensions and the class of solutions we obtain

necessarily contains the Kerr-de Sitter family of spacetimes, which is one of our main

interests in this thesis. Our strategy is to take an arbitrary CKVF ξ, derive its canonical

form ξF = ξ̃ + µη, adapt coordinates to ξ̃ and η and impose the KID equations7 to ξ̃

and η.

The problem simplifies notably in the conformal gauge to g := (U ε)2gεE because both

ξ̃ and η become Killing vector fields. From Remark 4.44, we may treat all cases σ <

0, σ = 0, σ > 0 at the same time by using the form of the metric

g =
dz2

z2 − σ
+ (z2 − σ)dt2 + dφ2, ξ̃ = ∂t, η = ∂φ. (4.58)

We remark that even though we solve the problem by fixing the coordinates and con-

formal gauge, we shall write the final result in fully covariant form (cf. Theorem 4.47

below). Also notice that, assuming that we have coordinates adapted to two orthogo-

nal CKVFs ∂t, ∂φ, and knowing that these vectors are orthogonal, the vanishing of the

Cotton tensor reduces to an ODE in z (in the conformal gauge where ∂t, ∂φ are Killing

vectors and gφφ = 1) which yields a metric of the form of (4.58).

In the conformal gauge of g, the condition that a TT-tensor D satisfies KID equations

for both ξ̃ and η (which is equivalent to imposing that ξ and η are KID vectors) is trivial

7In higher dimensions one could impose the KID equations, for ξ̃ and each ηi still yielding a tractable
problem. One can also enlarge the class by supressing some of the KIDs. Obviously, the less KID
equations one imposes the more difficult the problem becomes.
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in the adapted coordinates obtained in the previous section:

L
ξ̃
DAB = ∂tD

AB = 0, LηDAB = ∂φD
AB = 0.

Thus, DAB are only functions of z. The transversality condition is also quite simple in

adapted coordinates:

dDzz

dz
− z

(
Dzz

z2 − σ
+ (z2 − σ)Dtt

)
= 0, (4.59)

dDzt

dz
+

2z

z2 − σ
Dzt = 0 (4.60)

dDzφ

dz
= 0, (4.61)

while the traceless condition imposes

gABD
AB =

Dzz

z2 − σ
+ (z2 − σ)Dtt +Dφφ = 0. (4.62)

There are no equations for Dtφ so Dtφ = h(z) with h(z) an arbitrary function. The

general solution of equations (4.60) and (4.61) is obtained at once and reads

Dzt =
K1

z2 − σ
, Dzφ = K2, K1,K2 ∈ R.

For equations (4.59) and (4.62), we let Dzz =: f(z) be an arbitrary function and obtain

the remaining components

Dφφ = −1

z

df

dy
, Dtt =

1

z(z2 − σ)

df

dz
− f

(z2 − σ)2
.

Summarizing

Lemma 4.46. In the three-dimensional conformally flat class [g], let ξF be a CKVF.

Decompose ξ in canonical form ξ = ξ̃ + µη and fix the conformal gauge so that g is

given by (4.58). Then the most general symmetric TT-tensor D satifying the KID equa-

tions for ξ and η simultaneously is, in adapted coordinates {z, t, φ}, a combination (with

constants) of the following tensors

Df := f∂z ⊗ ∂z +

(
1

z(z2 − σ)

df

dz
− f

(z2 − σ)2

)
∂t ⊗ ∂t −

1

z

df

dz
∂φ ⊗ ∂φ,

Dh := h(∂t ⊗ ∂φ + ∂φ ⊗ ∂t),

D
ξ̃,χ

:=
1

z2 − σ
(∂z ⊗ ∂t + ∂t ⊗ ∂z),

Dη,χ := ∂z ⊗ ∂φ + ∂φ ⊗ ∂z,

where f and h are arbitrary functions of z.
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Having obtained the general solution in a particular gauge, our next aim is to give a

(diffeomorphism and conformal) covariant form of the generators in Lemma 4.46. From

[99, 100], we know that, for any CKV ξ of any n-dimensional metric g (not necessarily

conformally flat) the following tensors are TT w.r.t. to g and satisfy the KID equation

with respect to ξ.

Dξ =
1

|ξ|n+2
g

(
ξ ⊗ ξ −

|ξ|2g
n
g]

)
,

where | · |g denotes the norm w.r.t. g. Thus, we can rewrite Df as

Df =

(
−2(z2 − σ)1/2f +

(z2 − σ)3/2

z

df

dz

)
D
ξ̃
−
(

f

z2 − σ
+

1

z

df

dz

)
Dη.

We now restore the conformal gauge freedom by considering the metric ĝ = Ω2g and

D̂f = Df/Ω
5 (cf. Lemma 2.1), for any (positive) conformal factor Ω. Since the tensors

D
ξ̃
, Dη are already conformal and diffeomorphism covariant, we must impose their mul-

tiplicative factors in D̂f to be conformal and diffeomorphism invariant. With the gauge

freedom restored, the norms of the CKVFs now are

|ξ̃|ĝ = Ω
√
z2 − σ, |η|ĝ = Ω.

Then, considering f =:
√

Xf̂(X) as function of the conformal invariant quantity X =

|ξ̃|ĝ/|η|ĝ =
√
z2 − σ, one can directly cast D̂f in the following form:

D̂f = X4 d

dX

(
f̂(X)

X3/2

)
D
ξ̃
− 1

X2

d

dX

(
X3/2f̂(X)

)
Dη,

which is a conformal and diffeomorphism covariant expression. Notice that the expres-

sion is symmetric under the interchange ξ̃ ↔ η because the coefficient of Dη expressed

in the variable Y = X−1 is identical in form to the coefficient of D
ξ̃
.

For the tensor D̂h := Dh/Ω
5, redifining h =: ĥ|ξ̃|−5/2, it is immediate to write

D̂h = D̂
ĥ

:=
ĥ

|η|5/2ĝ |ξ̃|
5/2
ĝ

(ξ̃ ⊗ η + η ⊗ ξ̃), (4.63)

which is obviously conformal and diffeomorphism covariant if and only if ĥ is conformal

invariant, e.g. considering ĥ ≡ ĥ(X). Observe that the form (4.63) already appeared in

Theorem 3.25 for TT tensors in dimension two satisfying the KID equation.

For the remaining tensors D̂
ξ̃,χ

:= D
ξ̃,χ
/Ω5 and D̂η,χ := Dη,χ/Ω

5, we define a conformal

class of vector fields χ, which in the original gauge coincides with χ := ∂z. This vector

is divergence-free ∇AχA = 0, and this equation is conformally invariant provided the

conformal weight of χ is −3 (i.e. for ĝ = Ω2g, the corresponding vector is χ̂ = Ω−3χ).
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We therefore impose this conformal behaviour8 of χ. The direction of χ is fixed by

orthogonality to ξ̃ and η. The combination of norms that has this conformal weight and

recovers the appropriate expression in the gauge of Lemma 4.46 is |χ|ĝ := |ξ̃|−1
ĝ |η|

−2
ĝ

(note that the orthogonality and norm conditions fix χ uniquely up to an irrelevant sign

in any gauge). Thus, we may write

D
ξ̃,χ

=
1

|ξ̃|2ĝ
(χ⊗ ξ̃ + ξ̃ ⊗ χ), Dη,χ =

1

|η|2ĝ
(χ⊗ η + η ⊗ χ),

which are conformally covariant expressions (this explains the notation we have used for

D
ξ̃,χ

and Dη,χ, which up to now may have seemed awkward). Therefore, we get to the

final result:

Teorema 4.47. Let ξ be a CKVF of the class of three dimensional conformally flat

metrics and let ξ = ξ̃ + µη a canonical form. For each conformal gauge, let us define a

vector field χ with norm |χ|ĝ := |ξ̃|−1
ĝ |η|

−2
ĝ , orthogonal to ξ̃ and η. Then, any TT-tensor

satisfying the KID equations (2.55) for ξ̃ and η is a combination (with constants) of the

following tensors:

D̂
f̂

= X4 d

dX

(
f̂(X)

X3/2

)
D
ξ̃
− 1

X2

d

dX

(
X3/2f̂(X)

)
Dη, D̂

ĥ
=

ĥ

|η|5/2ĝ |ξ̃|
5/2
ĝ

(ξ̃ ⊗ η + η ⊗ ξ̃),

D
ξ̃,χ

=
1

|ξ̃|2ĝ
(χ⊗ ξ̃ + ξ̃ ⊗ χ), Dη,χ =

1

|η|2ĝ
(χ⊗ η + η ⊗ χ),

for arbitrary functions f̂ and ĥ of X = |ξ̃|ĝ/|η|ĝ.

Observacin 4.48. The vector field χ defined in this Theorem is divergence-free. This

property would have been difficult to guess (and even to prove) in the original Cartesian

coordinate system.

Observacin 4.49. A corollary of this theorem is that the general solution of the Λ-

vacuum Einstein field equation in four dimensions with a smooth conformally flat null

infinity and admitting an axial symmetric and a second commuting Killing vector can

be parametrized by two functions of one variable and two constants. Recall that in the

Λ = 0 case, the general asympotically flat stationary and axially symmetric solution of

the Einstein field equations can be parametrized (in a neighbourhood of spacelike infinity,

by two numerable sets of mass and angular multipole moments (satisfying appropriate

convergence properties), see [2], [18], [27] for details. There is an intriguing parallelism

between the two situations, at least at the level of crude counting of degrees of freedom.

This suggests that maybe in the Λ > 0 case it is possible to define a set of multipole-

type moments that characterizes de data at null infinity (and hence the spacetime), at

8This choice may appear somewhat ad hoc at this point. However, the condition of vanishing di-
vergence appears naturaly when studying (for more general metrics) under which conditions a tensor
ξ ⊗W + W ⊗ ξ is a TT tensor satisfying the KID equation for ξ. We leave this general analysis for a
future work.
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least in the case of a conformally flat null infinity. For example, the contraction of an

arbitrary TT tensor D with of any CKVF gives a conserved current [9, 10]. In particular

Dα
β ξ̃
β and Dα

βη
β integrated over the surface St = {t = const.} give finite conserved

charges (under suitable assumptions on f̂ and ĥ), which one could attempt relate to

energy and/or angular momenta. We shall comment on this again in Chapter 5. This

is an interesting problem, but beyond the scope of this thesis.

Observacin 4.50. It is natural to ask whether Theorem 4.47 is general for TT-tensors

admitting two commuting KIDs, ξ̃, η, without the condition of η being conformally axial.

In Appendix C of [100] one can explicitly find, for an arbitrary CKVF ξ, the set C(ξ) of

elements that commute with ξ. Then, from a case by case analysis, one concludes that

except in one special situation, for any linearly independent pair ξ, ξ′, with ξ′ ∈ C(ξ) it

is the case that there is a CAKVF η ∈ C(ξ) such that span{ξ, η} = span{ξ, ξ′}. Thus,

all these cases are covered by Theorem 4.47. The exceptional case is when ξ, ξ′ are

conformal to translations. It is immediate to solve the TT and KID equations for such

a case directly in Cartesian coordinates.

The solution given in Theorem 4.47 provides a large class of initial data, which we know

must contain the so-called Kerr-de Sitter-like class with conformally flat I (cf. [100]

and Chapter 6 for precise definition and properties of this class), which in turn contains

the Kerr-de Sitter family of spacetimes. It is interesting to identify this class within

the general solution given in Theorem 4.47. The characterizing property of the Kerr-

de Sitter-like class in the conformally flat case is D = D(ξ) for some CKVF ξ, where

moreover, only the conformal class of ξ matters to determine the family associated to

the data. Decomposing canonically ξ = ξ̃ + µη, a straightforward computation yields

Dξ =
X5

(X2 + µ2)5/2
D
ξ̃

+
µ2

(X2 + µ2)5/2
Dη +

µX5/2

(X2 + µ2)5/2
D̂
ĥ=1

,

which comparing with Theorem 4.47 yields the following corollary:

Corolario 4.51. The Kerr-de Sitter-like class with conformally flat I is determined by

the TT-tensor DKdS = D̂f + D̂
ĥ

with

f̂ = −1

3

X3/2

(X2 + µ2)3/2
, ĥ = µ

X5/2

(X2 + µ2)5/2
.

It is also of interest to identify the the Kerr-de Sitter family. To that aim we combine

the results in [100] to those in the present chapter to show that this family corresponds

to σ < 0. The classification of conformal classes of ξ in [100] is done in terms of the

invariants ĉ = −c1 and k̂ = −c2 together with the rank parameter r, where c1 and c2 are

the coefficients of the characteristic polynomial of the skew-symmetric endomorphism

F associated to ξ. In terms of these objects, it is shown in [100] that the Kerr-de Sitter

family corresponds to either S1 = {k̂ > 0, ĉ ∈ R and r = 2}, or S2 = {k̂ = 0, ĉ > 0 and
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r = 1}, the latter defining the Schwarzschild-de Sitter family. It is immediate to verify

that, since (cf. Corollary 4.14) k̂ = −σµ2 < 0 and ĉ = −σ−µ2, then S1 = {σ < 0, µ 6= 0}
and S2 = {σ < 0, µ = 0} (the condition µ 6= 0 implies r = 2 and µ = 0 implies r = 1).

Thus, in terms of the classification developed in this chapter, the Kerr-de Sitter family

corresponds to σ < 0. It is interesting that in the present scheme we no longer need

to specify the rank parameter to identify the Kerr-de Sitter family (unlike in [100]) and

that the whole family is represented by an open domain. These results will be recovered

and extended to arbitrary dimensions in Chapter 5. We emphazise that the dependence

in σ in the solutions given in Theorem 4.47 and Corollary 4.51 is implicit through the

norm of ξ̃.



Chapter 5

Free data at I and

characterization of Kerr-de Sitter

in all dimensions

In this chapter we deal with higher dimensional asymptotic initial value problems of

general relativity with non-zero cosmological constant. The contents of this chapter are

in the preprint [96] which has been submitted for publication and is currently under

referee assessment.

In Section 5.1 we study the relation between the Weyl tensor and the n-th order coeffi-

cient of the FG expansion in the conformally flat I case. In order to remain as general

as possible, some of our results are derived for Poincaré and FPG metrics (cf. subsection

2.3.2). We start, by giving two identities for the Weyl tensor, which are specially useful

here and in Chapter 6. We believe that they may be of independent interest in general

relativity. Then in subsection 5.1.1, in the conformally flat I case, from the n-th order

coefficient, we extract a TT term g̊(n) which coincides, up to a constant, with the electric

part of the rescaled Weyl tensor at I , D. We do this in such a way that a boundary

metric γ and g̊(n) are equivalent to γ and the full coefficient g(n), thus providing a geo-

metric characterization of the initial data. In the case Λ < 0 and Lorentzian signature, it

was known [82] that conformal flatness at I is sufficient for D and g̊(n) to agree up to a

universal constant. We recover and extend this result to general signature and any sign

of non-zero Λ. Moreover, we explore whether conformal flatness of I is also necessary

and link this to the validity of long-standing open conjecture that no non-trivial purely

magnetic Λ-vacuum spacetimes exist. In addition we study the non-conformally flat I

case. In this situation, the electric part of rescaled Weyl tensor is in general divergent

at I , so we determine a quantity constructed from an auxiliary metric which can be

used to retrieve g̊(n) from the electric part of the rescaled Weyl tensor.

151
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In Sections 5.2 and 5.3 we concentrate in the Λ > 0 case and Lorentzian signature. In

Section 5.2 we obtain a KID equation, analogous to the one in Theorem 2.35, which is

a necessary and sufficient condition for analytic data at I to generate spacetimes with

symmetries in all dimensions. In addition, the analysis on the data of the FG expansion

is used in Section 5.3 to find a geometric characterization of the Kerr-de Sitter metrics

in all dimensions in terms of its geometric data at null infinity. The validity of this

characterization in even dimension relies on the fact that the data obtained are analytic,

so that existence and uniqueness is guaranteed (cf. Theorem 2.39).

5.1 Formulae for the Weyl tensor

Before starting our analysis on the initial data in the FG expansion, we begin by stating

and proving some useful results which help to calculating the electric part of the rescaled

Weyl tensor. Recall that for a conformal extension g = Ω2g̃, we denote ∇µΩ = Tµ

and Tµ = gµνTµ. In the first part of this chapter, we shall work with the following

components of the Weyl tensor, for which calculations are more natural.

Definicin 5.1. For every metric g̃ and conformal extension g = Ω2g̃, the T -electric

part of the Weyl tensor is given by the following contraction of the Weyl tensor

(CT )ij := CµανβTµT
ν .

Note that this definition is only slighlty different from the standard definition of the

electric part of the Weyl tensor (cf. Definition 2.32). For our purposes, it is more

convenient to use the definition above, which of course only differs from the standard

one by a factor. Moreover, for geodesic conformal extensions, the proportionality is just

a constant, namely C⊥ = λ−1CT provided T and u point into the same direction. If, in

addition, the metric is ACC (cf. Section 2.2) the rescaled Weyl tensors always satisfy

(Ω2−nC⊥) |I = λ−1(Ω2−nCT ) |I , (5.1)

whenever these quantities are finite. Hence, by adding the constant factor λ we can use

interchangeably the electric and T -electric parts of the Weyl tensors at I .

Lemma 5.2. Let g̃ be a conformally extendable Einstein metric with Λ 6= 0 and g = Ω2g̃

a geodesic conformal extension. Then, in Gaussian coordinates {Ω, xi}, the T -electric

part of the Weyl tensor reads

(CT )ij =
λ2

2

(
1

2
∂Ωgikg

kl∂Ωglj +
1

Ω
∂Ωgij − ∂2

Ωgij

)
, (5.2)

where gΩ is the metric induced by g on the leaves {Ω = const.}.
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Proof. Inserting (A.2) and (A.5) in equation (A.3) of Appendix A yields

Ω2(R̃T )αβ = λ∂ΩAαβ +A2
αβ −

λ

Ω
Aαβ −

λ

Ω2
(TαTβ + λgαβ) . (5.3)

Since g̃ is Einstein with cosmological constant Λ 6= 0

R̃µανβ = C̃µανβ + 2λg̃µ[ν g̃β]α,

we can relate R̃T and the T -electric part of the Weyl tensors,

(CT )αβ := CµανβT
µT ν = Ω2C̃µανβT

µT ν ,

by

(R̃T )αβ =
(CT )αβ

Ω2
− λ

(
λgαβ + TαTβ

Ω4

)
. (5.4)

Combining (5.3) and (5.4) gives

(CT )αβ = λ∂ΩAαβ +A2
αβ −

λ

Ω
Aαβ,

which yields (5.2) after writting Aαβ in terms of the metric by means of expression

(A.4).

Observacin 5.3. Note that equation (5.2) implies that CT is always O(Ω). In particular,

in dimension n = 3 it is always the case that

(Ω−1CT ) |I = −3λ2

2
g(3)

which recovers the well-known result by Friedrich [58] that for positive Λ the electric part

of the rescaled Weyl tensor corresponds to the free data specifiable at I .

Assume that ĝ satisfies the hypothesis of Lemma 5.2 and that its FG expansion is of the

form

ĝ ∼
(n−1)/2∑
s=0

g(2s)Ω
2s + Ωn+1l

with n odd and l at least C2 up to an including {Ω = 0}. Equation (5.2) implies that its

T -electric Weyl tensor ĈT only has even powers of Ω up to and including Ωn−1 (higher

order terms may be even and odd). As a consequence, the tensor Ω2−nĈT splits as a

sum of divergent terms at Ω = 0 plus a regular part which vanishes at Ω = 0.

We now present a general result concerning the Weyl tensors of two general metrics

related by

g = ĝ + Ωmq (5.5)
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for a natural number m ≥ 2, where q is a symmetric tensor and all three tensors g, ĝ

and q are at least C2 in a neighbourhood including {Ω = 0}. No further assumptions

besides minimal regularity conditions are imposed on g or ĝ, such as being Einstein or

FPG. The result holds therefore in full generality and has potentially a wide range of

applications.

Lemma 5.4. Let n ≥ 3 and g, ĝ be (n + 1)-dimensional metrics related by (5.5), for

m ≥ 2, with g, ĝ, q and Ω at least C2 in a neighbourhood of {Ω = 0}. Assume that ∇Ω

is nowhere null at Ω = 0. Then their Weyl tensors satisfy the following equation

Cµναβ = Ĉµ ναβ −Km(Ω)
n− 2

n− 1
(uµu[αt̊β]ν + t̊µ [αuβ]uν)

+
εKm(Ω)

n− 1
(hµ[αt̊β]ν + t̊µ [αhβ]ν) + o(Ωm−2) (5.6)

with

Km(Ω) = m(m− 1)Ωm−2F 2,

and where ∇Ω = Fu, for g(u, u) = ε = ±1, hαβ is the projector orthogonal to u, all

indices are raised and lowered with g, tαβ := qµνh
µ
αh

ν
β while t and t̊αβ are its trace and

traceless part respectively.

Proof. First notice that the covariant metrics g] and ĝ] (associated to g and ĝ respec-

tively) must be related by a similar formula

g] = ĝ] + Ωml,

for a contravariant two-tensor l (also C2 near {Ω = 0}, just as g], ĝ]), because the

presence of any term of order Ωm′ , m′ < m, would imply terms of order Ωm′ in g]g

which could not be cancelled. As mentioned in Chapter 2, when using indices, we will

omit the ] in the metrics and write upper indices. Also, indices in objects with hats are

moved with the metric ĝ and its inverse and indices of unhatted tensors are moved with

g.

Recall the definition of the Weyl tensor (2.10) and define

Aµναβ := − 2

n− 1
(δµ[αRβ]ν − gν[αR

µ
|β) +

2R

n(n− 1)
δµ[αgβ]ν .

Using the relation of Riemann tensors (2.5) for g(1) = g and g(2) = ĝ and (2.10) we find

Cµναβ = Ĉµ ναβ+Bµ
ναβ+Aµναβ−Âµ ναβ with Bµ

ναβ := 2∇[αS
µ
β]ν+Sσ [α|ν|S

µ
β]σ

where S is the difference of connections tensor (2.4). We also define Bαβ = Bµ
αµβ and

B = gαβBαβ so that

Rαβ − R̂αβ = Bαβ, Rµβ − R̂µβ = Bµ
β + ΩmlµαR̂αβ, R− R̂ = B + ΩmlµβR̂µβ.
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With these definitions we expand Aµναβ

Aµναβ = − 2

n− 1

(
δµ[αR̂β]ν − ĝν[αR̂

µ
β]

)
+

2

n(n− 1)
R̂δµ[αĝβ]ν −

2

n− 1

(
δµ[αBβ]ν

− ĝν[αB
µ
β] − Ωm

(
ĝν[αR̂β]σl

µσ + qν[αR̂
µ
β] + qν[αB

µ
β]

)
− Ω2mqν[αR̂β]σl

σµ
)

+
2B

n(n− 1)
δµ[αĝβ]ν +

2Ωm

n(n− 1)

(
lλσR̂λσδ

µ
[αĝβ]ν + (R̂+B)δµ[αqβ]ν

)
+

2Ω2m

n(n− 1)
lλσR̂λσδ

µ
[αqβ]ν ,

so defining

Gµναβ := − 2

n− 1

(
δµ[αBβ]ν − ĝν[αB

µ
β] − Ωm

(
ĝν[αR̂β]σl

µσ + qν[αR̂
µ
β] + qν[αB

µ
β]

)
− Ω2mqν[αR̂β]σl

σµ
)

+
2B

n(n− 1)
δµ[αĝβ]ν +

2Ωm

n(n− 1)

(
lλσR̂λσδ

µ
[αĝβ]ν

+ (R̂+B)δµ[αqβ]ν

)
+

2Ω2m

n(n− 1)
lλσR̂λσδ

µ
[αqβ]ν .

gives

Aµναβ = Âµ ναβ +Gµναβ ,

from which

Cµναβ = Ĉµ ναβ +Bµ
ναβ +Gµναβ . (5.7)

We now analyze the behaviour near {Ω = 0} of the tensors B and G. Using formula

(2.4) (with g(2) = ĝ = g − Ωmq ) we have

Ŝναβ := ĝµνS
µ
αβ = −F m

2
Ωm−1 (uνqαβ − uαqβν − uβqαν)

− Ωm

2
(∇νqαβ −∇αqβν −∇βqαν)

= −F m
2

Ωm−1 (uνqαβ − uαqβν − uβqαν) +O(Ωm) = O(Ωm−1).

On the other hand

∇µŜναβ = −F 2m(m− 1)

2
Ωm−2uµ (uνqαβ − uαqβν − uβqαν)− Ωm

2
∇µ(∇νqαβ

−∇αqβν −∇βqαν)−mΩm−1

2

(
∇µ
(
F (uνqαβ − uαqβν − uβqαν)

)
+ Fuµ (∇νqαβ −∇αqβν −∇βqαν)

)
= −F 2m(m− 1)

2
Ωm−2uµ (uνqαβ − uαqβν − uβqαν) +O(Ωm−1)
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thus

∇µSναβ = ∇µ(ĝσν Ŝσαβ) = ∇µ
(
(gσν − Ωmlσν)Q̂σαβ

)
= gσν∇µQ̂σαβ +O(Ωm−1)

= −F 2m(m− 1)

2
Ωm−2uµ

(
uνqαβ − uαqνβ − uβqνα

)
+O(Ωm−1).

Therefore, the leading order terms of B are

Bµ
ναβ = 2∇[αS

µ
β]ν +O(Ω2m−2)

= −m(m− 1)F 2Ωm−2
(
uµu[αqβ]ν + qµ[αuβ]uν

)
+O(Ωm−1) = O(Ωm−2).

Next, we calculate the leading order terms of D. Notice that since ĝ is C2 at {Ω = 0},
its Ricci tensor is well-defined. Moreover B and all its traces are O(Ωm−2). Thus

Gµναβ = − 2

n− 1

(
δµ[αBβ]ν − ĝν[αB

µ
β]

)
+

2B

n(n− 1)
δµ[αĝβ]ν +O(Ωm).

If u is non-null, i.e. ε 6= 0, it is useful to decompose q in terms parallel and orthogonal

to u, i.e.

qαβ = Uuαuβ + 2u(αVβ) + tαβ, with uµVµ = 0, uµtµν = 0.

Similarly, the following decomposition of the metric holds

gαβ = εuαuβ + hαβ, (5.8)

which defines hαβ as the projector orthogonal to u. In terms of these quantities

Bµ
ναβ = −m(m− 1)Ωm−2F 2

(
uµu[αtβ]ν + tµ[αuβ]uν

)
+O(Ωm−1) (5.9)

and

Bβν = Bµ
βµν = −1

2
m(m− 1)Ωm−2F 2(εtβν + tuβuν) +O(Ωm−1)

B = Bµ
µ = −1

2
m(m− 1)Ωm−2F 2(2εt) +O(Ωm−1)

where t = gαβtαβ = hαβtαβ. In consequence,

Gµναβ = −m(m− 1)Ωm−2F 2 ×
( −1

n− 1

(
εδµ[αtβ]ν + tδµ[αuβ]uν − εĝν[αt

µ
β] − tuµĝν[αuβ]

)

+
2εt

n(n− 1)
δµ[αĝβ]ν

)
+O(Ωm−1) (5.10)
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From (5.8) one has

ĝαβ = εuαuβ + hαβ +O(Ωm), δαβ = εuαuβ + hαβ,

so that (5.10) reads

Gµναβ = −m(m− 1)Ωm−2F 2×( −1

n− 1

(
uµu[αtβ]ν + εhµ[αtβ]ν + thµ[αuβ]uν + tµ[αuβ]uν + εtµ[αhβ]ν

+ tuµu[αhβ]ν

)
+

2t

n(n− 1)

(
uµu[αhβ]ν + hµ[αuβ]uν + εhµ[αhβ]ν

) )
+O(Ωm−1)

= −m(m− 1)Ωm−2F 2×( −1

n− 1

(
uµu[αtβ]ν + tµ[αuβ]uν

)
− t n− 2

n(n− 1)

(
uµu[αhβ]ν + hµ[αuβ]uν

)
− ε

n− 1

(
hµ[αtβ]ν −

t

n
hµ[αhβ]ν + tµ[αhβ]ν −

t

n
hµ[αhβ]ν

))
+O(Ωm−1). (5.11)

Denote the traceless part of tαβ by

t̊αβ = tαβ −
t

n
hαβ.

Also, notice that the lower order terms of all expression are O(Ωm−1) = o(Ωm−2) for

m ≥ 2. Hence, combining (5.7), (5.9) and (5.11) gives equation (5.6).

Lemma 5.4 has an interesting application in the context of data at I . Consider a FGP

metric g̃ and a geodesic conformal extension g = Ω2g̃ and assume that either n is odd

or that the obstruction tensor is identically zero if n is even. The FG expansion of this

metric allows one to decompose g = ĝ+Ωnq where ĝ is a metric containing all the terms

of the expansion of order strictly lower than n (and possibly also higher order terms,

but not the term at order n). The rest of terms are collected in Ωnq. By construction

all these objects are C∞ up to and including Ω = 0 (here we use the assumption that

the obstruction tensor vanishes in the even case). Hence all the hypothesis of Lemma

5.4 holds with m = n. From equation (5.6), the T -electric part of the Weyl tensors of g

and of ĝ are related by

(CT )ij = (ĈT )ij − Ωn−2λ2n(n− 2)̊tij + o(Ωn−2), (5.12)

It follows immediately from the FG expansion and the definition of t̊ in Lemma 5.4 that

t̊ij |Ω=0 = tf(g(n)), where tf denotes the trace-free part. Note that taking the trace-free

part is unnecessary when n is odd because g(n) is always trace-free in that case. The

tensor (ĈT )ij is in general O(1) in Ω, so Ω2−n(ĈT )ij will generically contain [(n− 1)/2]

divergent terms, and the same divergent terms must appear in Ω2−n(CT )ij because of
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(5.12). Substracting the divergent terms we get(
Ω2−n(CT )ij − Ω2−n(ĈT )ij

)
|I = −λ2n(n− 2)tf(g(n)), (5.13)

which provides a general formula for the free data in terms of the electric parts of the

Weyl tensors of g and ĝ at I . In the case of n odd more can be said because, as justified

below Lemma 5.2, the regular part of (ĈT )ij vanishes at I and (5.13) establishes that

g(n) arises as the value of (CT )ij at I once all its divergent terms have been substracted.

This last statement is not true in the n even case with zero obstruction tensor, since

Ω2−n(ĈT )ij may contain regular non-zero terms.

In the next subsection we will prove that in arbitrary dimension and for conformally flat

I , (ĈT )ij vanishes so the T -electric part of the rescaled Weyl tensor of g actually encodes

the trace-free part tf(g(n)). In the non-conformally flat case Ω2−nCT is generically

divergent and (5.13) gives a prescription to remove the divergent terms to retrieve the

trace-free part. In the context of AdS/CFT correspondence a useful method to remove

divergent terms is by means of the so-called renormalization techniques. One method

[117, 118, 139] involves decomposing objects in terms of a basis of eigenfunctions of

a dilation operator. It would be interesting to analyze whether this method has any

relationship with (5.13), or whether it can be used to be make the removal of divergent

quantities more explicit.

5.1.1 Free data and the Weyl tensor

The aim of this subsection is to determine the role that the electric part of the rescaled

Weyl tensor plays in the FG expansion coefficients, with particular interest in the con-

formally flat I case. We will use formula (5.2) to relate the electric part of the rescaled

Weyl tensor to the n-th order coefficient g(n) of the FG expansion. We start with some

preliminary results about umbilical submanifolds (also called totally umbilic). Recall

that a nowhere null submanifold Σ ⊂M is umbilical if its second fundamental form is

Kij = f(xk)γij

for a smooth function f of Σ and γ the induced metric. This property is well-known to

be invariant under conformal scalings of total space metric.

Lemma 5.5. Let n ≥ 2. Every nowhere null umbilical hypersurface (Σ, γ) of a confor-

mally flat (n+ 1)-manifold (M, ĝ), where γ is induced by ĝ, is conformally flat.

Proof. For n = 2 the result is immediate as every 2-surface is locally conformally flat, so

let us assume n ≥ 3. Since umbilical submanifolds remain umbilical w.r.t. to the whole

conformal class of the metrics and ĝ is conformally flat, then (Σ, γ) is umbilical w.r.t.
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the flat metric gE = ω2ĝ. In this gauge, the Gauss equation (2.17) and its trace by γ

yield

R(γ)ijkl = −ε(KilKjk −KikKjl) = −ε(γilγjk − γikγjl)κ2,

R(γ)jl = −ε(K2
jl −KKjl) = −ε(1− n)κ2γjl,

where Kij = κγij is the second fundamental form, for κ ∈ R constant as a consequence

of the Codazzi equation and the fact that the ambient metric gE is flat, and K2
ij :=

γklKikKjl, K := γijKij , ε = ĝ(u, u) with u the unit normal to Σ. The Schouten tensor

of γ is

P (γ)ij =
1

n− 2

(
R(γ)ij −

R(γ)

2(n− 1)
γij

)
= ε

κ2

2
γij .

Thus for n = 3 we can calculate the Cotton tensor

Y (γ)ijk = ∇kP (γ)ij −∇jP (γ)ik = 0,

and for n ≥ 4 the Weyl tensor (cf. (2.11)) is

C(γ)ijkl = R(γ)ijkl − γikP (γ)jl + γjkP (γ)il + γilP (γ)jk − γjlP (γ)ik = 0.

By the standard characterization of locally conformally flat metrics by the vanishing of

the Cotton (n = 3) or Weyl (n ≥ 4) tensors, the result follows.

The following results are stated imposing the minimal conditions of differentiability

required near I . We remark that for the cases of our interest, namely FGP metrics,

these conditions are always satisfied.

Lemma 5.6. Let g and ĝ be metrics related by g = ĝ + Ωmq, where Ω is a defining

function of Σ = {Ω = 0} and g, ĝ and q are C1 in a neighbourhood of Σ. Then if m ≥ 2,

Σ is umbilical w.r.t. g if and only if it is umbilical w.r.t. ĝ.

Proof. The metrics induced by g and ĝ at Σ are the same. Assume that Σ is nowhere

null. Thus, the property of being umbilical is preserved if the covariant derivatives ∇u
and ∇̂u w.r.t. the Levi Civita connections of g and ĝ respectively of the normal unit

(which is the same for g and ĝ) covector u ∈ (TΣ)⊥ coincide at Σ. The covariant

associated metric g] is g] = ĝ] + Ωml for l a contravariant tensor O(1) in Ω (cf. proof of

Lemma 5.4). Then, the Christoffel symbols are

Γµαβ = (ĝ]+Ωml)µν(∂α(ĝ+Ωmq)βν+∂β(ĝ+Ωmq)αν−∂ν(ĝ+Ωmq)αβ) = Γ̂µαβ+O(Ωm−1),

from which it follows ∇u |Σ= ∇̂u |Σ if m ≥ 2.

Our interest in umbilical submanifolds is because of the (well-known) fact that I is um-

bilical for Poincaré or FGP metrics. This results follows immediately from the Einstein
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equations at I , and will be the base for an interesting decompostion that we will derive

later in this section (cf. Proposition 5.11).

Lemma 5.7. Let g̃ be a Poincaré or FGP metric for I = (Σ, [γ]). Then I is umbilical.

Proof. For a geodesic conformal extension g = Ω2g̃, the relation between the Ricci

tensors of g and g̃ is given by (2.8) with ∇µΩ∇µΩ = −λ (cf. Lemma 2.9). This

expression is not defined at Ω = 0, but it is when multiplied by Ω. Rearranging terms

this gives

ΩRαβ + (n− 1)∇α∇βΩ + gαβ∇µ∇µΩ = Ω(R̃αβ − λng̃αβ), (5.14)

where we have used g = Ω2g̃ in the RHS. Since g̃ is a Poincaré or FGP metric, the RHS

vanishes at I . This also implies that gαβ is at least C2 at I , so Rαβ is defined at

I . In addition writing ∇αΩ = |λ|1/2uα, where u is the unit normal of the hypesurfaces

ΣΩ = {Ω = const.}, then ∇i∇jΩ |I = |λ|1/2Kij , where Kij is the second fundamental

form of I . Thus, equation (5.14) gives at I

(n− 1)|λ|1/2Kij + fγij = 0, with f := ∇µ∇µΩ |I .

For concreteness, in the remainder of this Section, we state and prove our results in

the case of positive cosmological constant and Lorentzian signature. However, they also

hold with slight modifications for arbitrary signature and non-vanishing cosmological

constant (see Remark 5.9 for the specific correspondence).

We start by giving the general form of the FG expansion of the de Sitter spacetime. We

refer the reader to [140] for a similar proof in the case of λ < 0. Also, see a discussion

of general case in [43] (in terms of Fefferman-Graham ambient metrics).

Lemma 5.8. For every Riemmanian conformally flat boundary metric γ of dimension

n ≥ 3 and positive cosmological constant λ, let g be the spacetime metric defined by

g := −dΩ2

λ
+ gΩ, gΩ := γ +

P

λ
Ω2 +

1

4

P 2

λ2
Ω4 (5.15)

where P is the Schouten tensor of γ and (P 2)ij := Pilγ
klPlj . Then g̃dS := Ω−2g is locally

isometric to the de Sitter metric.

Proof. De Sitter spacetime is ACC and its boundary metric γ is (by Lemmas 5.7 and

5.5) necessarily conformally flat. Moreover, given the freedom in scaling any conformal

extension by an arbitrary positive function, any conformally flat metric is (locally) a

boundary metric for the de Sitter space. In addition, as a consequence of this fact

and Lemma 2.10 we have that for any conformally flat metric γ, there exists a local

coordinate system of de Sitter near null infinity such that the metric is in normal form
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with respect to γ. The core of the proof is to verify that this ACC metric in normal

form w.r.t any such conformally flat γ takes the explicit form (5.15).

Therefore, consider a conformally flat boundary metric γ for a geodesic conformal ex-

tension of de Sitter g. Since de Sitter metric is also conformally flat, it follows that the

T -electric part of the Weyl tensor CT = 0. Using formula (5.2) we obtain the coefficients

of the FG expansion, which give the normal form of g w.r.t. γ. Let us put (5.2) in matrix

notation

CT =
λ2

2

(
1

2
ġΩg

−1
Ω ġΩ +

1

Ω
ġΩ − g̈Ω

)
= 0 =⇒ g̈Ω =

1

2
ġΩg

−1
Ω ġΩ +

1

Ω
ġΩ (5.16)

where a dot denotes derivative w.r.t. Ω. First we calculate

∂Ω(ġΩg
−1
Ω ġΩ) = g̈Ωg

−1
Ω ġΩ − ġΩg

−1
Ω ġΩg

−1
Ω ġΩ + ġΩg

−1
Ω g̈Ω =

2

Ω
ġΩg

−1
Ω ġΩ (5.17)

where we have used ∂Ω(g−1
Ω ) = −g−1

Ω ġΩg
−1
Ω for the first equality and expression of g̈Ω in

(5.16) for the second equality. Then, taking two derivatives in Ω of (5.16) gives

∂
(4)
Ω gΩ =

3

2Ω2
ġΩg

−1
Ω ġΩ. (5.18)

Thus, taking one more derivative in Ω of (5.18) and combining with (5.17) gives ∂
(5)
Ω gΩ =

0 and hence all higher derivates also vanish. Expression (5.18) evaluated at Ω = 0 gives

the expressions for the coefficients (note ∂
(k)
Ω gΩ |Ω=0= k!g(k))

g(4) =
1

4
g(2)γ

−1g(2).

The coefficient g(2) can be directly calculated from the recursive relations for the FG

expansion and it always coincides, up to a constant, with the Schouten tensor of the

boundary metric (cf. Corollary A.5)

g(2) =
λ−1

n− 2

(
Ric(γ)− R(γ)

2(n− 1)
γ

)
=
P

λ
.

Having calculated the only non-zero coefficients g(2) and g(4), it is straightforward to

verify that the FG expansion of de Sitter takes the form (5.15).

We have shown that for any choice of conformally flat γ, there exists a de Sitter metric

g̃dS and a choice of conformal factor Ω with associated Gaussian coordinates such that,

defining g as in (5.15), we have Ω−2g = g̃dS . Moreover, the metric (5.15) satisfies all

the properties stated in Theorem 2.30 with the choice h = 0 if n 6= 4 and h = P 2/(2λ)2

if n = 4 (the latter can be straightforwardly verified from the expressions for a and b

in Appendix A). Recall that we are assuming n ≥ 3 and that the obstruction tensor

vanishes identically when γ is conformally flat. Now the lemma follows as a consequence

of the uniqueness part of the FG expansion stated in Theorem 2.30.
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Observacin 5.9. The result generalizes to arbitrary signature and arbitrary sign of λ

(see [5, 139] for a discussion on the relation between λ positive and negative cases), by

changing γ to a conformally flat metric of signature (n+, n−) and g to conformal to a

metric of constant curvature (instead of conformal to de Sitter) and signature (n+ +

1, n−) if λ > 0 or (n+, n− + 1) if λ < 0. Taking this into account, Proposition 5.11 and

Theorem 5.14 below easily extend to arbitrary signature and arbitrary sign of λ.

Observacin 5.10. The proof of Lemma 5.8 shows that the condition CT = 0 suffices

to obtain a metric of the form (5.15) with γ in an arbitrary conformal class. The

spacetimes satisfying this condition are the so-called “purely magnetic” and they have

a long tradition in general relativity (e.g. [15] and references therein). The purely

magnetic condition implies restrictive integrability conditions which lead to a conjecture

[103] that no Einstein spacetimes exist in the n = 3 case, besides the spaces of constant

curvature. Although no general proof has been found so far, the conjecture has been

established in restricted cases such as Petrov type D, and this not only in dimension

four, but in arbitrary dimensions [79]. The explicit form (5.15) that the metric must

take whenever CT = 0 gives an avenue to analyze the conjecture in the case of metrics

admitting a conformal compactification.

Before proving Theorem 5.14, we state and prove an auxiliary result (Proposition 5.11)

which is of independent interest since it provides (when combined with Lemma 5.4)

a useful decomposition for calculating leading order terms of the Weyl tensor. This

will be exploited in the calculation of initial data of spacetimes which admit a smooth

conformally flat I (cf. Corollary 5.17).

Proposicin 5.11. Assume n ≥ 3. Let g̃ be a FGP metric with λ positive for a Rieman-

nian conformal manifold I = (Σ, [γ]). Then I is locally conformally flat if and only if

any geodesic conformal extension g = Ω2g̃, admits the following decomposition

g = ĝ + Ωnq (5.19)

where ĝ is conformally isometric to de Sitter and ĝ, q and Ω are at least C1 in a

neighbourhood of {Ω = 0}.

Proof. I is umbilical w.r.t. g and if g admits the decomposition (5.19), by Lemma 5.6

I is also umbilical w.r.t. ĝ. Since ĝ is conformally flat, Lemma 5.5 implies that I is

also conformally flat. This proves the proposition in one direction.

The converse follows by considering the FGP metric in normal form constructed from a

representative γ in the conformal structure of I . By assumption, γ is conformally flat.

The terms up to order n are uniquely generated by γ (cf. 2.29). Thus, by Lemma 5.8

g = −dΩ2

λ
+ γ +

P

λ
Ω2 +

1

4

P 2

λ2
Ω4 + Ωnq := ĝ + Ωnq,
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where ĝ is locally conformally isometric to de Sitter and ĝ, q and Ω are smooth at Ω = 0

by construction.

Now observe that for any set of initial data (γ, g(n)), one can always add a TT term

g̊(n) to g(n) so that (γ, g(n) + g̊(n)) gives a new set of initial data. On the other hand,

decomposition (5.19) in the conformally flat I case reads

g = −dΩ2

λ
+ γ +

P

λ
Ω2 +

1

4

P 2

λ2
Ω4 + Ωn(̊g(n) + · · · ).

Therefore, if n 6= 4 and n ≥ 3, then g(n) = g̊(n) and if n = 4, then g(4) = g(4) + g̊(4),

where g(4) is the term of order four in (5.15). This forces g̊(n) to be TT, because it is

immediate from Lemma 5.8 that de Sitter is given by data (γ, 0) for n 6= 4 and n ≥ 3

and by (γ, g(4)) if n = 4. Therefore, in the conformally flat I case we can always extract

the TT term g̊(n).

Definicin 5.12. For a FGP metric admitting a conformally flat I , the term g̊(n) is

called free part of g(n).

Observacin 5.13. Note that a pair (γ, g̊(n)) is equivalent to (γ, g(n)).

We stress that it would be interesting to give a definition of free part in the general case.

This may facilitate a geometric definition of the n-th order coefficient, but also it would

help to clearly establish a conformal equivalence of the asymptotic data in the n even

case (see the discussion previous to Theorem 2.39).

We may now extend to the case of arbitrary λ the relation between the electric part

of the rescalled Weyl tensor and the coefficient g(n) obtained in [82] for the negative

λ case. We observe that this extension could be inferred from the general results in

[139]. However, our argument is fully conformally covariant and follows directly from

the general identity in Lemma 5.4.

Teorema 5.14. Assume n ≥ 3 and let g̃ be a FGP metric with λ positive for a Rie-

mannian conformal manifold I = (Σ, [γ]). Then, if I is conformally flat, g̊(n), the free

part of the n-th order coefficient of the FG expansion, coincides, up to a constant, with

the T -electric part of the rescaled Weyl tensor at I

−λ
2

2
n(n− 2)̊g(n) = Ω2−nCT |I .

Proof. By Proposition 5.11, admitting a smooth conformally flat I amounts to ad-

mitting a decomposition of the form (5.19). Then, by Lemma 5.8, the associated FG

expansion has the form

g = −dΩ2

λ
+ gΩ = −dΩ2

λ
+ γ +

P

λ
Ω2 +

1

4

P 2

λ2
Ω4 + Ωng̊(n) + · · · = ĝ + Ωnq,
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where q |I = g̊(n) and ĝ is conformal to de Sitter. Using the formula (5.6) of Lemma 5.4

with m = n and putting T = |λ|1/2u, with u unit normal, one obtains

(CT )αβ = −λ
2

2
n(n− 2)̊tαβΩn−2 + o(Ωn−2)

and the Theorem follows.

Observacin 5.15. Although this theorem concentrates on the electric part of the Weyl

tensor, its proof (which is based on Lemma 5.4) actually establishes that the full Weyl

tensor decays at I as Ωn−2. In [112], the authors analyze the asymptotic behaviour along

null godesics of vacuum solutions with non-zero cosmological constant. Letting r be an

affine parameter along the geodesics and assuming a priori that suitable components of

the Weyl tensor decay at infinity faster than r−2 the authors prove a certain peeling

behaviour of the Weyl tensor, with the fastest components decaying like r−(n+2) and the

slowest as r2−n. It is clear that there is a connection between the two results. It would

be interesting to establish and analyze this connection, which hopefully would lead to a

weakening of the a priori decay rate assumed in [112].

Observacin 5.16. It is also interesting to comment on the necessary and sufficient

conditions for g̊(n) and Ω2−nCT |I to be the same in the case of Einstein metrics. Just

like in the proof of Lemma 5.8, if CT has a zero of order m > 3, we can apply formula

(5.2) and find

∂
(5)
Ω gΩ = O(Ωm−3) (5.20)

and all coefficients of the FG expansion vanish up to order g(m+2). If, like in the con-

formally flat case, CT has a zero of order n− 2 , its leading order term determines g̊(n).

If n is odd, we can construct (cf. Theorem 2.39) two solutions of the Λ > 0 Einstein

field equations ĝ and g in a neighbourhood of {Ω = 0}, the first one corresponding to

the data (Σ, γ, 0) and the second to the data (Σ, γ, g(n)) where γ belongs to an arbitrary

conformal class. By the FG expansion we also have g = ĝ+Ωnq with q = g(n)+O(Ω). As

a consequence of (5.20), the metric ĝ is of the form (5.15) with γ in the given conformal

class. Then, from equation (5.2) it follows that ĝ is purely magnetic. The converse is

also true, namely, if g = ĝ+ Ωnq, with ĝ a purely magnetic Einstein spacetime and both

ĝ, q and Ω are C2 near {Ω = 0}, the electric part of the rescaled Weyl tensor at I and

g̊(n) coincide (up to a constant) provided n > 2. The proof involves simply taking the

T -electric part in (5.6).

This proves that, for Einstein metrics with positive Λ, of dimension n + 1 ≥ 4 and

admitting a conformal compactification, g̊(n) and CT |I coincide up to a constant if and

only if g = ĝ + Ωnq, where ĝ is a purely magnetic spacetime Einstein with non-zero

cosmological constant. However, as mentioned in Remark 5.10, it is not clear (and not

an easy question) whether purely magnetic Einstein spacetimes are locally isometric to

de Sitter or anti-de Sitter spacetimes.
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Note that Theorem 5.14 has been proven for metrics of all dimensions n ≥ 3 and arbitrary

signature. An interesting Corollary arises when applying this to the case of Λ > 0

Einstein metrics of Lorentzian signature and odd n, because the coefficients of the FG

expansion γ and g(n) determine initial data at I which characterize the spacetime metric

(cf. Theorem 2.39). In a similar manner, notice that if n is even and the data (γ, g(n))

are analytic with γ Riemannian (see also Theorem 2.39), the convergence of the FG

expansion holds in general for any sign of Λ. Thus, we obtain a characterization result

also for this case.

Corolario 5.17. Let n ≥ 3 be odd. Then for every asymptotic data (Σ, γ, g(n)) of

Einstein’s vacuum equations with Λ > 0 and γ conformally flat, the free part g̊(n) is up

to a constant, the electric part of the rescaled Weyl tensor at I of the corresponding

spacetime. Similarly, if n ≥ 4 is even, the same statement holds for every analytic data

(Σ, γ, g(n)), with γ Riemannian and for any sign of non-zero Λ.

5.2 KID for analytic metrics

In this section we prove a result (cf. Theorem 5.18) that determines, in the analytic

case, the necessary and sufficient conditions for initial data at I so that the correspond-

ing spacetime metric it generates admits a local isometry. The proof relies in the FG

expansion of FGP metrics. Theorem 5.18 below is a generalization to higher dimensions

(but restricted to the analytic case) of a known result [116] (cf. Theorem 2.35) in di-

mension n = 3. We focus in the analytic data case, as we shall require convergence of

the FG expansion (cf. subsection 2.4.2) in the proof of the theorem. Also, we impose

the obstruction tensor to vanish for simplicity and because all cases we shall later deal

with satisfy this condition. However, we discuss at the end of this Section the non-zero

obstruction case.

Teorema 5.18. Let Σ be n dimensional with n ≥ 3 and let (Σ, γ, g(n)) be asymptotic data

in the analytic class, with γ Riemannian and if n even O = 0. Then, the corresponding

spacetime admits a Killing vector field if and only if there exist a CKVF ξ of I satisfying

the following Killing initial data (KID) equation

Lξg(n) +
n− 2

n
divγ(ξ)g(n) = 0. (5.21)

Proof. Showing that (5.21) is necessary is proved by direct calculation as follows. Let

X be a Killing vector field of g̃ so that

0 = LX g̃ = LX(Ω−2g) = −2
X(Ω)

Ω3
g +

1

Ω2
LXg.
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It follows that on Int(M), X is a conformal Killing vector of g with a specific right-hand

side, namely

LXgαβ = ∇αXβ +∇βXα = 2
divgX

n+ 1
gαβ, X(Ω) =

Ω

n+ 1
divgX. (5.22)

The following argument [58] shows that X must be extendable to I . The terms LXg0β

of (5.22) imply a linear, homogeneous symmetric hyperbolic system of propagation equa-

tions for X. Thus, putting initial data corresponding to X sufficiently close to I gen-

erates a solution whose domain of dependence must reach I (and possibly beyond if

the manifold is extendable across I ). Hence X must admit a smooth extension on I ,

which vanishes near I only if X |I = 0. The rest of equations LXgij are also satisfied

at I by continuity so the extension is a CKVF.

Then, from the second of equations (5.22), it follows that X(Ω) = 0 when Ω = 0, thus

X is tangent to I , so we denote ξ := X |I . Putting g in normal form g = −dΩ2

λ + gΩ

it easily follows that Γααj = Γiij . In consequence, expanding divgX and evaluating at I

yields

divgX |I = ∂Ω(X(Ω)) |I +∂jξ
j + Γiij |I ξj

=
1

n+ 1
divgX |I + divγξ =⇒ divgX |I =

n+ 1

n
divγξ (5.23)

where we have used the second equation in (5.22). In addition, the normal form gives

the following tangent components of the first equation in (5.22):

LXgΩ =
2

n+ 1
divgXgΩ.

Evaluating this expression at I and taking into account (5.23) shows that ξ is a CKVF

of γ. Also, using the FG expansion of gΩ we have the following expansion of LXgΩ:

LXgΩ = X(Ω)∂ΩgΩ + LXγ + Ω2LXg(2) + · · ·+ ΩnLXg(n) + · · ·

=
Ω

n+ 1
(divgX)∂ΩgΩ + LXγ + Ω2LXg(2) + · · ·+ ΩnLXg(n) + · · · . (5.24)

Therefore

LXγ + Ω2LXg(2) + · · ·+ ΩnLXg(n) + · · · = 1

n+ 1
(divgX)(2gΩ − Ω∂ΩgΩ). (5.25)

Equating n-th order terms and evaluating at I yields (5.21) after substituting divgX |I
as in (5.23).

To prove sufficiency, let us first choose the conformal gauge where ξ is a Killing vector

field of γ′ = ω2γ. Thus, the corresponding KID equation for g′(n) becomes:

Lξg′(n) = 0. (5.26)
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The remainder of the proof in this gauge, so we drop all the primes. By Lemma 2.10

there exist a geodesic extension which recovers the representative γ at I . In addition,

there exists a unique vector field X, extended from ξ at I , which satisfies [T,X] = 0.

This is obvious in geodesic Gaussian coordinates {Ω, xi}, because

[T,X]α = −λ∂ΩX
α = 0,

with initial conditions XΩ |Ω=0= 0 and Xi |Ω=0= ξi has a unique solution XΩ = 0 and

Xi = ξi. We now prove that X is a Killing vector field of the physical metric g̃ provided

that (5.26) holds.

Consider the normal form metric g = −dΩ2

λ +gΩ. Since LXdΩ = d(X(Ω)) = 0, it follows

that LXg = LX(gΩ). Using the FG expansion of gΩ we have

LXgΩ = LXγ + Ω2LXg(2) + · · ·+ ΩnLXg(n) + · · · .

If g is analytic, the value of the coefficients LXg(r) determine LXg in a neighbourhood

of I . These are

∂
(r)
Ω (LXgΩ) |Ω=0= Lξ

(
∂

(r)
Ω gΩ |Ω=0

)
= r!Lξg(r).

We want to show that all these quantities are identically zero, for which we exploit the

Feffeman-Graham recursive construction (cf. Appendix A). The fundamental equation

that determines recursively the coefficients of the FG expansion takes the form (cf.

Lemma A.3)

(n− r − 1)g(r+1) +
(
Trγg(r+1)

)
γ = F (r−1) (5.27)

where we denote

F (r−1) :=
r

(r + 1)!
L(r−1) − 1

r + 1
P(r−1)

which by Lemma A.3 is a sum of terms containing products of coefficients up to order

r− 1 and tangential derivatives thereof, up to second order. We now prove by induction

that the Lie derivative of all cofficients vanish provided equation (5.26) is satisfied.

First, the Lie derivative of (5.27), given that ξ is a Killing of γ, yields

(n− r − 1)Lξg(r+1) +
(
TrγLξg(r+1)

)
γ = LξF (r−1).

Assume by hypothesis that the Lie derivative Lξ of all the coefficients up to a certain

order r is zero (for the moment we do not assume neither r < n nor r > n). The Lie

derivative LξF (r−1) is a sum where each terms is multiplied by either Lξg(s), Lξ∂ig(s)

or Lξ∂i∂jg(s) , with s ≤ r − 1. Since ξ commutes with T = −λ∂Ω, we can locally

adapt coordinates to both vector fields, namely ξ = ∂j , so that in these coordinates

Lξ∂ig(s) = ∂iLξg(s) and Lξ∂i∂jg(s) = ∂i∂jLξg(s). Thus each term in LξF (r−1) contains a
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Lie derivative Lξg(s) with s < r−1, or a tangential derivative thereof up to second order.

Thus by the induction hypothesis LξF (r−1) = 0. Therefore, it follows that Lξg(r+1) = 0

The induction hypothesis can be assumed for r < n − 1 because it is true for the first

term Lξγ = 0 and we have equations for the succesive terms. For r = n − 1 the

fundamental equation does not determine the term g(n) any longer (this is the reason

why this terms is free-data in the FG expansion), so the induction hypothesis cannot go

further in principle. But since we are imposing the condition Lξg(n) = 0, the induction

hypothesis can be extended to any value of r. Therefore, all the derivatives Lξg(r+1)

vanish, so if g is analytic Lξg = 0.

In short, the argument behind the proof of Theorem 5.18 relies on the well-known fact

that the recursive relations that determine the coefficients of the FG expansion can be

cast in a covariant form, so that ultimately all terms can be expressed in terms of γ,

its curvature tensor, g(n) and covariant derivatives thereof. Then the Lie derivative of

any coefficient must be zero provided that Lξγ = Lξg(n) = 0. The case with non-zero

obstruction tensor, and hence involving logarithmic terms is likely to admit an analogous

proof. However, the recursive equations equivalent to (5.27) are not so explicit, because

taking derivatives of order higher than n yields an expression which mixes up coefficients

of the regular part g(r) and logarithmic terms O(r,s) of the expansion. These expressions

are notably more involved (see e.g. [129]). If one showed that every coefficient O(r,s)

admits a covariant form which only involves geometric objects constructed from γ, g(n)

and its covariant derivatives, a similar argument as in the proof above would establish

that equation (5.21) is also sufficient for the spacetime to admit a Killing vector field

in the case of analytic data with non-vanishing O. It is hard to imagine that this is

not the case, and in fact the result should follow from the expressions in [129], but the

details need to be worked out. On the other hand, the necessity of (5.21) is true in

general and the argument is totally analogous to the one presented above except that

equations (5.24) and (5.25) contain also logarithmic terms. We will not discuss this case

any further since for the rest of this thesis we shall focus on conformally flat I (hence

O = 0). We plan to come back to this issue in a future work.

5.3 Characterization of generalized Kerr-de Sitter metrics

In this section, we will apply the results obtained in the previous sections to find a

characterization of the higher dimensional Kerr-de Sitter metrics. These were firstly

formulated in five dimensions in [77] and latter extended to arbitrary dimensions in

[70]. Recall that, as mentioned in the introduction of this thesis, the higher dimensional

Kerr-de Sitter metrics in [70] were constructed using heuristical arguments. Our char-

acterization here proves that it is indeed a natural extension of Kerr-de Sitter in four

spacetime dimensions. We first prove that these metrics admit a smooth conformally flat
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I . Then we combine with Theorem 5.14 to determine their initial data at I , which is

straightforwardly computable from equation (5.6). The data corresponding to Kerr-de

Sitter in all dimensions are analytic. Therefore, by Theorem 2.39, the identification of

their data provide a characterization of the metric also in the case of n even. Hence, we

perform the analysis simultaneously for n even and odd.

Like in the four dimensional case, the generalized Kerr-de Sitter metrics are (n + 1)-

dimensional Kerr-Schild type metrics. Namely, they admit the following form

g̃ = g̃dS + H̃ k̃ ⊗ k̃

with g̃dS the de Sitter metric, k is a null (w.r.t. to both g̃ and g̃dS) field of 1-forms

and H̃ is a smooth function. In order to unify the n odd and n even cases in one single

expression, we define the following parameters

p :=

[
n+ 1

2

]
− 1, q :=

[n
2

]
,

where note, p = q if n odd and p+1 = q if n even. The explicit expression of the Kerr-de

Sitter metrics will be given using the so-called “spheroidal coordinates” {r, αi}p+1
i=1 (see

[70] for their detailed construction), with the redefinition ρ := r−1. Strictly speaking,

they do not quite define a coordinate system because the αi functions are constrainted

to satisfy
p+1∑
i=1

α2
i = 1.

However, it is safe to abuse the language and still call {αi} coordinates. To complete

{ρ, αi} to full spacetime coordinates we include {ρ, t, {αi}p+1
i=1 , {φi}

q
i=1}. The αis and φis

are related to polar and azimuthal angles of the sphere respectively and they take values

in 0 ≤ αi ≤ 1 and 0 ≤ φi < 2π for i = 1, · · · , q and (only when n odd) −1 ≤ αp+1 ≤ 1.

Associated to each φi there is one rotation parameter ai ∈ R. For notational reasons,

it is useful to define a trivial parameter ap+1 = 0 in the case of n odd. The remaining

ρ and t lie in 0 ≤ ρ < λ1/2 and t ∈ R. The domain of definition of ρ can be extended

(across the Killing horizon) to ρ > λ1/2, but this is unnecessary in this work since we

are interested in regions near ρ = 0.

In addition, as we will work with the conformally extended metric g = ρ2g̃, we directly

write down the expresions of the following quantities, which admit a smooth extension

to ρ = 0,

ĝ = ρ2g̃dS , H = ρ2H̃, kα = k̃α (5.28)

and

g = ĝ +H k ⊗ k. (5.29)

We provide below the expression of kα (as opposed to kα) because the metrically asso-

ciated vector field kα = gαβkβ is no longer the same as k̃α = g̃αβ k̃β. In order for the
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reader to compare with the original publication [70], we remark that the expressions

given there are for the “physical” objects g̃dS , H̃, k̃, using the coordinates r := ρ−1 and

denoting µi := αi instead.

Let us now introduce the functions

W :=

p+1∑
i=1

α2
i

1 + λa2
i

Ξ :=

p+1∑
i=1

α2
i

1 + ρ2a2
i

, Π :=

p+1∏
j=1

(1 + ρ2a2
j ). (5.30)

Note that it is thanks to having introduced the spurious quantity ap+1 ≡ 0 that these

expressions take a unified form in the n odd and n even cases. The explicit form of the

objects in (5.28) in the case of generalized Kerr-de Sitter are

ĝ = −W (ρ2 − λ)dt2 +
Ξ

ρ2 − λ
dρ2 + δp,qdα

2
p+1 +

q∑
i=1

1 + ρ2a2
i

1 + λa2
i

(
dα2

i + α2
i dφ

2
i

)
+

λ

W (ρ2 − λ)

(
p+1∑
i=1

(
1 + ρ2a2

i

)
αidαi

1 + λa2
i

)2

, (5.31)

k = Wdt− Ξ

ρ2 − λ
dρ−

q∑
i=1

aiα
2
i

1 + λa2
i

dφi, (5.32)

H =
2Mρn

ΠΞ
, M ∈ R. (5.33)

The term δp,q only appears when q = p, i.e. when n is odd. In the case of even n, all

terms multiplying δp,q simply go away.

The function H = O(ρn) and k ⊗ k = O(1). Therefore g decomposes as

g = ĝ + ρnq, with q =
H
ρn
k ⊗ k = O(1).

Let γ be the metric induced at Σ = {ρ = 0} by g. By Lemma 2.10, we can define

a geodesic conformal factor Ω such that {Ω = 0} = Σ and which induces the same

metric γ at Σ. Hence Ω = O(ρ) and therefore H = O(Ωn) and q = O(1) (in Ω). So by

Proposition 5.11 it follows that the generalized Kerr-de Sitter metrics in all dimensions

admit a conformally flat I . This can be also verified by explicit calculation. From

(5.31), the induced metric at {ρ = 0} has the following expression

γ = λWdt2 + δp,qdα
2
p+1 +

q∑
i=1

dα2
i + α2

i dφ
2
i

1 + λa2
i

− 1

W

(
p+1∑
i=1

αidαi
1 + λa2

i

)2

. (5.34)

It is useful to define new coordinates

α̃2
i :=

1

W

α2
i

1 + λa2
i

,
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which from (5.30) are restricted to satisfy
∑p+1

i=1 α̃
2
i = 1. Since also

∑p+1
i=1 α

2
i = 1, this

allows us to express W (given in (5.30)) in terms of the tilde coordinates

W =
1

1 +
∑p+1

i=1 λα̃
2
i a

2
i

. (5.35)

A direct calculation shows that the metric (5.34) expressed with α̃is takes the form

γ = W
(
λdt2 + δp,qdα̃

2
p+1 +

q∑
i=1

(
dα̃2

i + α̃2
i dφ

2
i

))
|∑p+1

i=1 α̃
2
i=1

. (5.36)

A explicilty flat representative of the conformal class of γ can be obtained using the

coordinates

xi := e
√
λtα̃i cosφi yi := e

√
λtα̃i sinφi, i = 1, · · · , q (5.37)

together with z := e
√
λtα̃p+1 if n odd, which are Cartesian for the following flat metric

γE :=
e2
√
λt

W
γ = δp,qdz

2 +

q∑
i=1

(
dx2

i + dy2
i

)
. (5.38)

This form will be used below to determine the conformal class of a conformal Killing

vector ξ which we introduce next. Let us denote the projection of k onto I by

ξα =
(
kα + (kβu

β)uα
)
|I

with uα = ∇αρ/|∇ρ|g the unit timelike normal to I . Explicitly

ξ = Wdt−
q∑
i=1

aiα
2
i

1 + λa2
i

dφi = W
(

dt−
q∑
i=1

α̃2
i aidφi

)
, (5.39)

where (as already used in Chapter 3) in index-free notation we use boldface to distinguish

the metrically associated one-form ξ = γ(ξ, ·) from the CKVF ξ of I . The latter is,

using (5.36),

ξ =
1

λ
∂t −

q∑
i=1

ai∂φi , (5.40)

and in Cartesian coordinates (5.37) of γ takes the form

ξ =
1√
λ
ξ̃ −

q∑
i=1

aiηi (5.41)

where we have introduced

ξ̃ := δp,q∂z +

q∑
i=1

xi∂xi + yi∂yi , ηi := xi∂yi − yi∂xi . (5.42)
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The vector ξ̃ is a homothety of γE and each ηi is a rotation of this metric. Consequently,

ξ is a CKVF of γ.

The T -electric part of the rescaled Weyl tensor can be obtained at once from Lemma 5.4

using Ω = ρ and m = n, because by definition (t |I )αβ = (H/ρn) |I ξαξβ and t̊ |I is its

trace-free part. Note also that H/ρn |I = 2M . Moreover, by formula (5.1), the electric

part at I , D, differs by a constant factor λ−1 from the T -electric part at I . Thus

Dαβ = λ−1(ρ2−nCµανβ∇µρ∇νρ) |I = −1

2
λn(n− 2)̊tαβ |I

= −Mλn(n− 2)

(
ξαξβ −

|ξ|2γ
n
γαβ

)
.

Since, by equation (5.35) above,

|ξ|2γ = W

(
1

λ
+

q∑
i=1

a2
i α̃

2
i

)
=

1

λ
,

D can be cast as

D = κDξ, with κ := −Mn(n− 2)

λ
n
2

and

Dξ :=
1

|ξ|n+2
γ

(
ξ ⊗ ξ −

|ξ|2γ
n
γ

)
. (5.43)

Observacin 5.19. Following the notation in [100], observe that the primary object

defining Dξ is actually a vector field ξ, while in the RHS of (5.43) there appears the

one-form ξ = γ(ξ, ·), obtained by lowering the index of ξ with the metric γ w.r.t. which

Dξ is TT. This notation generalizes to any CKVF ξ′ and metric γ′ w.r.t. which Dξ′ is

TT. This will be useful in order to prove conformal properties of Dξ which depend only

on ξ (cf. Lemma 5.21).

Summarizing, we have proven the following result.

Proposicin 5.20. The asymptotic data corresponding to the (n + 1)-dimensional gen-

eralized Kerr-de Sitter metrics is given by the class of conformally flat metrics and the

class of TT tensors determined by (5.43), where ξ is the vector field by (5.40) when the

metric γ is written in the coordinates where (5.36) holds.

Now suppose that we let ξ to be any CKVF of γ. By direct calculation one shows

that the corresponding Dξ is still TT w.r.t.γ (see the proof in [99] for n = 3, which

readily generalizes to arbitrary n). The spacetimes corresponding to the class of data

obtained in this way constitute a natural extension to arbitrary dimensions of the so-

called Kerr-de Sitter-like class with conformally flat I , first defined for n = 3 in [100]

and [99]. The details of this class of spacetimes is precisely the main subject of Chapter

6. What is remarkable from the class of data of the form (Σ, γ, κDξ) with γ locally
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conformally flat is that, by conformal invariance of data, suitably restricting to a subset

of Σ (cf. Remark 2.37), it turns out that the corresponding spacetime depends only

on the conformal class of ξ. Thus, by identifying the conformal class of (5.40) we will

obtain a complete geometrical characterization of Kerr-de Sitter in all dimensions.

Lemma 5.21. For asymptotic data (Σ, γ, κDξ) and any trasformation φ ∈ ConfLoc(Σ, γ),

the following equivalence of data holds

(Σ, γ, κDφ?ξ) ' (Σ, φ?γ, φ?(κDφ?ξ)) = (Σ, ω2γ, ω2−nκDξ) ' (Σ, γ, κDξ), (5.44)

where the tensor Dφ?ξ is given by (5.43) with the notation of Remark 5.19.

Proof. The first equivalence in (5.44) is a consequence of the diffeomorphism equivalence

of data and the last one a consequence of the conformal equivalence of data (cf. [100]),

so we must verify the equality in the expression. Denote the one-form φ?(ξ) := γ(φ?ξ, ·).
Then, on the one hand we have for every vector field X ∈ TΣ

(φ?φ?(ξ))(X) = (φ?(ξ))(φ?X) = γ(φ?ξ, φ?X) = ω2γ(ξ,X) = ω2ξ(X)

that is φ?(φ?(ξ)) = ω2ξ. Moreover |φ?(ξ)|γ =
√
γ(φ?ξ, φ?ξ) = ω|ξ|γ . Thus

φ?
(
Dφ?(ξ)

)
=

1

|φ?(ξ)|n+2
γ

(
φ?(φ?(ξ)⊗ φ?(ξ))−

|φ?(ξ)|2γ
n

φ?γ

)

= ω−n+2 1

|ξ|n+2
γ

(
ξ ⊗ ξ −

|ξ|2γ
n
γ

)
= ω2−nDξ.

We now come back to Kerr-de Sitter and identify the conformal class of (5.40). Following

the results in Chapter 4, a direct way to do that is to write ξ in any Cartesian coordinate

system for any flat representative γE in the conformal class of metrics. One then finds

its associated skew-symmetric endomorphism (cf. Theorem 2.11 and Remark 2.12) in

M1,n+1. By calculating the parameters {−µ2
t , µ

2
s, µ

2
i } if n even or {σ, µ2

i } if n odd,

according to Definition 4.10, the conformal class of ξ is directly obtained (cf. Theorem

4.35).

We have already obtained a flat representative γE and have introduced corresponding

Cartesian coordinates (5.38) . We have also obtained the explicit form of ξ in these

coordinates, namely (5.41) and (5.42). Denote the Cartesian coordinates in (5.37) by

{X}nA=1 = {z, {xi, yi}qi=1} if n odd and {X}nA=1 = {xi, yi}qi=1 if n even. From equations

(5.41), (5.42) the parameters of ξ written as in (2.27) are ν = λ−1/2, aA = bA = 0 and

ωAB = 2aiδ
2i

[Aδ
2i+1

B] for n odd and ωAB = 2aiδ
2i−1

[Aδ
2i
B] for n even. Thus, from
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equation (2.26) it is immediate

F (ξ) =

(
0 −λ−1/2

−λ−1/2 0

)
⊕ (0)

p⊕
i=1

(
0 −ai
ai 0

)
, if n is odd

F (ξ) =

(
0 −λ−1/2

−λ−1/2 0

)
p+1⊕
i=1

(
0 −ai
ai 0

)
, if n is even,

where recall, this block form is adapted to the following orthogonal decomposition of

M1,n+1 as a sum of F -invariant subspaces

M1,n+1 = Πt ⊕ span{e2}
p⊕
i=1

Πi, (n odd), M1,n+1 = Πt

p+1⊕
i=1

Πi, (n even),

where Πt = span{e0, e1} for both cases and Πi = span{e2i+1, e2i+2} for n odd and

Πi = span{e2i, e2i+1} for n even. Any timelike or null vector v ∈ M1,n+1 must have

non-zero projection onto Πt, so it may be written v = vt + vs, with 0 6= vt ∈ Πt, vs ∈
(Πt)

⊥. Hence F (ξ)(v) = F (ξ)(vt) + F (ξ)(vs), where from the block form it follows that

0 6= F (ξ)(vt) ∈ Πt and F (ξ)(vs) ∈ (Πt)
⊥, thus F (ξ)(v) = F (ξ)(vt) + F (ξ)(vs) 6= 0.

Therefore, kerF (ξ) is always spacelike or cero. It is straightforward to compute the

polynomial QF 2(x) in (4.12)

QF 2(x) = (x+ λ)

q∏
i=1

(x− a2
i )

where we may order the indices i, so that the rotation parameters ai appear in decreasing

order a2
1 ≥ · · · ≥ a2

q . Hence, by Definition 4.10 we identify the parameters σ := −λ−1

and µ2
i := a2

i for n odd and −µ2
t := −λ−1, µ2

s := a2
1 and µ2

i := a2
i+1 for n even. Therefore:

Teorema 5.22. Let g̃KdS be a metric of the generalized Kerr-de Sitter family of metrics

in all dimensions, namely given by (5.29) and (5.31), (5.32), (5.33), with cosmological

constant λ and q rotation parameters ai sorted by a2
1 ≥ · · · ≥ a2

q. Then g̃KdS is uniquely

characterized by the class of initial data (Σ, γ,Dξ), where γ is conformally flat and Dξ

is a TT tensor of γ of the form (5.43), where ξ is a CKVF of γ whose conformal class

is uniquely determined by the parameters {σ = −λ−1, µ2
1 = a2

1, · · · , µ2
p = a2

p} if n odd

and {−µ2
t = −λ−1, µ2

s = a2
1;µ2

1 = a2
2, · · · , µ2

p = a2
p+1} if n is even.

We conclude this chapter by comparing our results with previous literature in the λ < 0

case. The metrics in [70] admit both signs of λ, so one also has the family of Kerr-anti de

Sitter metrics in all dimensions. The boundary metric γ for this case is given by (6.43),

which is now Lorentzian. The electric part of the rescaled Weyl tensor is D = κ|λ|Dξ,

where κ|λ| is obtained from κ above by simply replacing λ→ |λ|, and Dξ is (5.43), with

ξ given by (5.40). These data characterize the spacetime asymptotically.

One of the main focus on the Kerr-anti de Sitter metrics has been to study conserved

quantities at infinity. There are various notions of conserved charges (see the references
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in [82], where the different definitions are compared), but all of them depend on a CKVF

ξ of I . Thus, associated to each ξ one defines a conserved charge Q(ξ). This provides

a useful method to defined mass in this context. There is no complete agreement as to

which CKVF at infinity should be used to define mass. See for instance the n = 4 cases

in [119] and [69] or higher dimensional cases in [38]. From our analysis, in the Kerr-anti

de Sitter case the boundary data itself singles out a privileged CKVF, and it is most

natural to use this CKVF to define the mass. It turns out that this CKVF agrees with

the choice made in [119] for completely different reasons. It would be worth to investigate

whether there is a deeper reason for this, perhaps in the context of holography.



Chapter 6

Classification of Kerr-de

Sitter-like class with conformally

flat I in all dimensions

The present is the final chapter of this thesis before the conclusions. Here, we shall

employ many of the results derived in the thesis so far. The contents of this chapter

have been sent to the ArXiv [97] and will be submitted for publication soon.

Firstly, we shall extend the definition of the Kerr-de Sitter-like class (given in [100]

in four spacetime dimensions) to arbitrary (n + 1)-dimensions. We do this in Section

6.1 through a generalization of the Kerr-de Sitter family data in Section 5.3 (note the

difference between class a family, specified in Remark 6.2). In Section 6.1 we also define

the Kerr-Schild-de Sitter spacetimes as “almost all” (cf. Remark 6.4 below) Kerr-Schild

type spacetimes which solve the Λ > 0 vacuum field equations and admit a smooth

conformally flat I . Our main result proves that the Kerr-de Sitter-like class is the

same as the Kerr-Schild-de Sitter spacetimes. For that, in Section 6.2 we prove, via

direct calculation of the asymptotic data, the inclusion of the Kerr-Schild-de Sitter

spacetimes in the Kerr-de Sitter-like class. Section 6.3 establishes the inverse inclusion

by resconstructing all metrics which realize data in the Kerr-de Sitter-like class and

explicitly proving that they are Kerr-Schild-de Sitter.

As already mentioned, this chapter employs many of the previous results in this thesis.

First, the analysis of data in the FG formalism in Chapter 5 is essential to give a defini-

tion of the Kerr-de Sitter-like class, because the geometric definition of the asymptotic

data is required. Moreover, the results on conformal classes of CKVFs in Chapter 4,

which in turn are an extension of the results in Chapter 3, are of fundamental impor-

tance for the characterization of each one of the spacetimes inside the Kerr-de Sitter-like

class. Moreover, the structure of limits of the conformal classes of CKVFs in Remark

176
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4.25 of subsection 4.4.1 is the core of the structure of limits of spacetimes within the

Kerr-de Sitter-like class.

6.1 Kerr-de Sitter-like class & Kerr-Schild-de Sitter space-

times in all dimensions

In Chapter 5 we derived a geometric characterization of the initial data at I of the Kerr-

de Sitter family of metrics in all dimensions (see Theorem 5.22). Recall, that all data of

the form (Σ, γ, κDξ), with (Σ, γ) conformally flat and Dξ given by (5.43) with ξ a CKVF

of γ and κ a real constant, were proven to be uniquely determined by the conformal class

of ξ (cf. Lemma 5.21). As mentioned in Chapter 5, this allows one to define a whole

class of spacetimes in all dimensions. Actually, this was first described for the n = 3

case in [100] and named Kerr-de Sitter-like class of spacetimes with conformally flat

I . In [100], the class is defined as the set of spacetimes solving the vacuum Einstein

equations with positive cosmological constant, admitting a smooth conformally flat1 I

as well as a Killing vector field ζ, whose associated Mars-Simon tensor vanishes. This

definition implies initial data at I of the form (Σ, γ, κDξ), whith ξ is the restriction to

I of the Killing vector field ζ. As no analogous to the Mars-Simon tensor is known in

higher dimension, the extension of the definition of the Kerr-de Sitter-like class requires a

different approach, and by the above discussion (and also mentioned in the introduction

of this thesis), an obvious possibility is to give the definition directly in terms of its

initial data (Σ, γ, κDξ).

Definicin 6.1. The Kerr-de Sitter-like class of spacetimes with conformally flat

I are conformally extendable metrics solving the Einstein vacuum field equations with

positive cosmological constant, characterized by data (Σ, γ, κDξ), with γ conformally

flat and where Dξ is given by (5.43) with ξ a CKVF of γ and κ a real constant.

Observacin 6.2. In order to clarify the terminology, the word class is used to denote

a collection of families of spacetimes, a family being a set of metrics, depending on a

number of parameters and sharing certain properties. For example, the Kerr-de Sitter-

like class with conformally flat I and n = 3 contains [100]: the Kerr-de Sitter family,

the Kottler families, a limit case of Kerr-de Sitter with infinite rotation parameter [101]

and the Wick-rotated-Kerr-de Sitter spacetime [88]. In this Chapter we shall extend the

definition of these families to higher dimensions.

The main purpose of this chapter, is to prove that the Kerr-de Sitter-like class with

conformally flat I contains exactly all Kerr-Schild type spacetimes, solution of the Λ > 0

vacuum Einstein equations and sharing I with its background metric. In particular this

requires that, as the background metric is de Sitter, I is conformally flat. Since we shall

1The non-conformally flat n = 3 case is defined in [99]
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not deal with non-conformally flat cases, we shall simply refer to the ”Kerr-de Sitter-like

class“. Recall that the Kerr-Schild spacetimes (with positive Λ) are of the form

g̃ = g̃dS + H̃ k̃ ⊗ k̃ (6.1)

where g̃dS is de Sitter, k is a field of lightlike one-forms (both w.r.t. g̃dS and g̃) and H̃
is a smooth function. It is convenient to give a name to the set of spacetimes we shall

be dealing with.

Definicin 6.3. The Kerr-Schild-de Sitter spacetimes are of the form (6.1), solve the

Λ > 0 vacuum Einstein equations and admit a smooth conformally flat I such that for

some conformal extension g = Ω2g̃, the tensor Ω2H̃k̃ ⊗ k̃ vanishes at I .

Observacin 6.4. Notice that asking the metric g̃ to share I with g̃dS, implies more than

simply g̃ to have a conformally flat I . In particular, consider a conformal extension such

that γ = Ω2g̃|I is conformally flat and assume that γdS := Ω2g̃dS |I and (Ω2H̃k̃ ⊗ k̃)|I
are well-defined. Since γdS is conformally flat, one could naively think that γ = γdS +

(Ω2H̃k̃ ⊗ k̃)|I implies (Ω2H̃k̃ ⊗ k̃)|I = 0, which would then imply the condition on

Ω2H̃k̃ ⊗ k̃ assumed in Definition 6.3. However, there is still room, in principle, for

conformally flat metrics of the form γdS+H0y⊗y with H0 6= 0, y 6= 0. A simple example

is any conformally flat graph in a flat n-dimensional space endowed with Cartesian

coordinates {xi}, i.e. a hypersurface defined by xn = f(xi), such that the induced metric

happens to be conformally flat. The induced metric takes precisely the form γS = γEn−1 +

y ⊗ y, for a flat (n − 1)-dimensional metric γEn−1 and y := df (as an explicit example

one can take a hemisphere).

Thus, it may be possible that a Kerr-Schild metric, solving the Λ > 0 vaccum Einstein

equations and admitting a smooth conformally flat I has a term Ω2H̃k̃⊗ k̃ surviving at

I . It would be interesting to settle whether any Λ > 0-vacuum solution of this type can

exist.

With the above definitions 6.1 and 6.3 we can now state the main result of this chapter:

Teorema 6.5. A spacetime belongs to the Kerr-de Sitter-like class if and only if it is

Kerr-Schild-de Sitter.

The proof of Theorem 6.5 involves two steps, which respectively we address in sections

6.2 and 6.3 of this chapter. In Section 6.2 we consider Kerr-Schild-de Sitter metrics

and compute their initial data, which by Corollary 5.17, correspond to the conformal

geometry of (conformally flat) I and the electric part of the rescaled Weyl tensor D.

The tensor D is easily seen to have the form D = κDξ, with κ ∈ R and Dξ given by

(6.3) with ξ the projection of k onto I . The main task of this section is to prove that

ξ is a CKVF of I . This is a consequence of the Kerr-Schild-de Sitter spacetimes being

algebraically special (cf. Proposition 6.9). This proves that every Kerr-Schild-de Sitter

spacetime is contained in the Kerr-de Sitter-like class.
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The reverse inclusion is proven in Section 6.3. To do that we generate every spacetime in

the Kerr-de Sitter-like class by taking advantage of the topological structure of the space

of conformal classes of CKVFs. By Lemma 5.21, one conformal class corresponds exactly

to one spacetime in the class. Moreover, from the well-posedness of the Cauchy problem,

limiting classes in the quotient space of CKVFs will generate limiting spacetimes. All

the metrics one obtains are summarized in the next theorem. In order to simplify the

statement, we modify slightly the notation with respect to Section 6.3: all primes and

hats are dropped and all rotation parameters are denoted by ai.

Teorema 6.6. Let be (M, g̃) be an (n+1)-dimensional manifold and set p :=
[
n+1

2

]
−1,

and q :=
[
n
2

]
. Consider the functions W and Ξ of table 6.1 and αp+1 obtained from the

implicit equation in table 6.1, for a collection of real parameters {ai}p+1
i=1 with ap+1 = 0

if n odd or in case b). Then, in the coordinates {ρ, t, {αi}p+1
i=1 , {φi}

q
i=1} taking values in

φi ∈ [0, 2π) and the maximal domain where W and Ξ are positive and αp+1 is real, every

Kerr-Schild-de Sitter metric

g̃ = g̃dS + H̃k̃ ⊗ k̃, must have H̃ =
2Mρn−2

Ξ
∏q
i=1(1 + ρ2a2

i )
, M ∈ R,

k as given in table 6.1 and the de Sitter metric g̃dS in the corresponding following form:

a) Kerr-de Sitter family,

g̃dS = −W (ρ2 − λ)

ρ2
dt2 +

Ξ

ρ2 − λ
dρ2

ρ2
+ δp,q

dα2
p+1

ρ2

+

q∑
i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
+

(ρ2 − λ)

λWρ2

dW 2

4
.

b) {ai →∞}-limit-Kerr-de Sitter,

g̃dS =
λα2

p+1

ρ2
dt2 − Ξ

λ

dρ2

ρ2
+ δp+1,q

α2
p+1dφ2

q

ρ2
+

p∑
i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
+

(
1

λ
+

∑p
i=1 β

2
i

ρ2α̂2
p+1

)
dα2

p+1 −
2dαp+1

ρ2αp+1

(
p∑
i=1

αidαi

)
.

c.1) Wick-rotated-Kerr-de Sitter for n even,

g̃dS =
λW

ρ2
dt2 − Ξ

λ

dρ2

ρ2
+

q∑
i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
− 1

Wρ2

dW 2

4
.

c.2) Wick-rotated-Kerr-de Sitter for n odd,

g̃dS = W
(ρ2 + λ)

ρ2
dt2 − Ξ

ρ2 + λ

dρ2

ρ2
−

dα2
p+1

ρ2
+

p∑
i=1

1 + ρ2a2
i

ρ2

(
dα2

i + α2
i dφ

2
i

)
.
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Case Constraint on {αi} W Ξ k̃

a)
∑p+1

i=1 (1 + λa2
i )α

2
i = 1

∑p+1
i=1 α

2
i

p+1∑
i=1

1+λa2
i

1+ρ2a2
i
α2
i Wdt− Ξ

ρ2−λdρ−
q∑
i=1

aiα
2
i dφi

b) α2
p+1 +

∑p
i=1 λa

2
iα

2
i = 1 α2

p+1 α2
p+1 +

p∑
i=1

λa2
i

1+ρ2a2
i
α2
i Wdt+ Ξ

λdρ−
p∑
i=1

aiα
2
i dφi

c.1)
∑p+1

i=1 λa
2
iα

2
i = 1

∑p+1
i=1 α

2
i

p+1∑
i=1

λa2
i

1+ρ2a2
i
α2
i

Ξ
λdρ−

q∑
i=1

biα
2
i dφi

c.2) α2
p+1 −

∑p
i=1(1− λa2

i )α
2
i = 1 α2

p+1 −
∑p

i=1 α
2
i α2

p+1 −
p∑
i=1

1−λa2
i

1+ρ2a2
i
α2
i Wdt+ Ξ

ρ2+λ
dρ+

q∑
i=1

aiα
2
i dφi

Table 6.1: Functions defining the Kerr-Schild-de Sitter families.

Before starting with the proof of Theorem 6.5 we shall give a refinement of Proposition

5.11 of Chapter 5. This refinement (given below in Proposition 6.7) is relevant here

because the Kerr-Schild structure of the metrics entails a decomposition very similar,

but not quite the same, as the one given in Proposition 5.11. For the sake of simplicity,

we restrict ourselves to conformally extendable Einstein metrics g̃ for Λ positive and a

geodesic conformal extension g = Ω2g̃.

First, we give a refinement of the decomposition in Proposition 5.11 for FGP metrics

with conformally flat I , which follows from the next discussion. Lemma 5.8 gives the

FG expansion of metrics conformally isometric to de Sitter, but from property 2 of

Lemma 2.29, it also determines the terms up to order n of the FG expansion of any

metric admitting a smooth conformally flat I . Consequently, for any such metric, the

terms generated exclusively by the boundary metric γ stop at fourth order. This implies

that for n = 3, a conformally flat γ generates a term of order n + 1 = 4 , which is

not only independent on the n-th (i.e. third) order one by property 1 of Lemma 2.29,

but actually must take the form g(4) = P 2/(4λ2) by Lemma 5.8. On the other hand,

for n > 3, the n + 1 > 4 order term only depends on γ by property 2 of Lemma 2.29.

Hence, by Lemma 5.8 it must be zero. That is, if g̃ is an Einstein metric admitting a

smooth conformally flat I , then for every geodesic conformal extension g = Ω2g̃, the

FG expansion yields the following decomposition

g = g +Q, (6.2)

where g is of the form (5.15) (thus conformally isometric to de Sitter) and Q is both

O(Ωn) and has no term of order Ωn+1 (when n = 3 this term exists in g but it is included

in g).

On the other hand, by Proposition 5.11 for conformally extendable metrics admitting a

decomposition of the form

g = ĝ + Q̂, (6.3)

with ĝ conformally isometric to de Sitter and Q̂ = O(Ωn), then I is conformally flat.

One must be careful with the fact that ĝ being conformally isometric to de Sitter does
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not mean that it takes the form (5.15) for the conformal factor Ω which is geodesic

for g. Indeed, ĝ does admit an expansion of the form (5.15) for some conformal fac-

tor Ω̂ geodesic w.r.t. ĝ, but in general this conformal factor is different to Ω. Thus,

decomposition (6.2) is a very particular decomposition for metrics admitting a smooth

conformally flat I , while decomposition (6.3) is a sufficient condition for g to admit a

conformally flat I . Obviously, a metric which can be decomposed as in (6.3) can also

be decomposed as in (6.2), but these decompositions do not in general coincide. Indeed,

in general ĝ 6= g.

Both decompositions (6.2) and (6.3) will be used in this section, so we summarize the

above discussion in the following Proposition:

Proposicin 6.7. Let g̃ be an n ≥ 3 dimensional conformally extendable Λ-vacuum

Einstein, with Λ > 0 and let g = Ω2g̃ be a geodesic conformal extension. Then

a) If I is conformally flat, then g admits a decomposition of the form (6.2) with g

of the form (5.15) and Q = O(Ωn) with no terms in Ωn+1.

b) If g admits a decomposition of the form (6.3), with ĝ conformally isometric to de

Sitter and Q̂ = O(Ωn), then I is conformally flat.

Observacin 6.8. As mentioned in subsection 5.1.1, note that by construction, the lead-

ing order term of Q in decomposition (6.2) is precisely g̊(n), the free part of the n-th

order coefficient. Recall that this equals g(n) if n odd or if n > 4 even. For n = 4

g(4) = g(4) + g̊(4), with g(4) = P 2/4 (cf. equation (5.15)).

6.2 Kerr-Schild-de Sitter ⊂ Kerr-de Sitter-like class

In this section we prove the inclusion of the Kerr-Schild-de Sitter spacetimes in the

Kerr-de Sitter-like class. This is done by direct calculation of the data at spacelike I of

the Kerr-Schild-de Sitter spacetimes and by showing that the vector field ξ at I that

arises in the expression of Dξ is in fact a CKVF of γ.

A key ingredient for this result is that all vacuum Kerr-Schild spacetimes are alge-

braically special in the Petrov classification. This was proven with Minkowski back-

ground in [113] and with (Anti-)de Sitter background in [107]. Recall that the Petrov

classification is an algebraic classification of the Weyl tensor based on the vanishing of

the components with certain boost weight, as we summarize next. In the case of arbi-

trary dimension this classification was developed in [33, 34, 104, 111] to which we refer

for further details (see also the review [114]). Consider a null frame of vectors {k̃, l̃, m̃(i)}
for i = 1, · · · , n− 1 (whose indices are raised/lowered with g̃), i.e. a frame satisfying

k̃αk̃α = l̃α l̃α = k̃αm̃(i)α = 0, k̃α l̃α = −1, m̃α
(i)m̃(j)α = δij . (6.4)
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This frame maintains its properties (6.4) under the following set of boost transformations

k̃′ = bk̃, l̃′ = b−1 l̃, m̃′(i) = m̃(i),

for every real non-zero parameter b. Thus, the components of the Weyl tensor C ex-

pressed in this frame have “boost weight” depending on the number of contractions with

k̃, l̃ and m̃(i). Namely, +1 for each contraction with k̃; −1 for each one with l̃; and 0

for each one with m̃(i). From the symmetries of the Weyl tensor, the maximum boost

weight of a component is +2 and the minimum is −2. The classification proceeds by

looking for vectors k̃ such that the highest boost weight components vanish. One such k̃

(when it exists) is called a Weyl aligned null direction (WAND) and if the components

of boost weight 1 or lower also vanish, k̃ is called a multiple WAND. A spacetime which

admits a multiple WAND is said to be algebraically special.

It turns out [107] that all Λ > 0-vacuum Kerr-Schild spacetimes are algebraically special.

Hence, for this section, the following result will be key:

Proposicin 6.9 ([107]). Kerr-Schild-de Sitter spacetimes (6.1) are algebraically special,

with k̃ a multiple WAND satisfying

C̃µανβ k̃
µk̃νm̃α

(i)m̃
β
(j) = C̃µανβ k̃

µk̃ν l̃αm̃β
(i) = Cµανβ k̃

µm̃α
(i)m̃

ν
(j)m̃

β
(k) = 0,

for a suitable null frame {k̃, l̃, m̃(i)}. Moreover, k̃ is geodesic, so after rescaling if neces-

sary, it satisfies

k̃α∇̃αk̃β = 0. (6.5)

We shall assume for now on that k̃ has been scaled so that (6.5) holds.

Let g̃ be a Kerr-Schild-de Sitter spacetime and consider a geodesic conformal extension

g = Ω2g̃. Then, the conformal metric and its associated contravariant metric g] are

gαβ = Ω2g̃ = ĝαβ +Hkα kβ, gαβ = Ω−2g̃αβ = ĝαβ −Hkαkβ, (6.6)

where ĝ := Ω2g̃dS , H := Ω2H̃ and kα = k̃α is a field of one-forms whose metrically

associated vector field kα by g has components kα = gαβkβ = Ω−2g̃αβ k̃β = Ω−2k̃α,

where k̃α is the vector field metrically associated to k̃α by g̃. Moreover, remind the

notation Tµ = ∇µΩ, Tµ = gµνTν and u denotes the unit normal along T . We also recall

the well-known property that kα is geodesic w.r.t. g if and only if k̃α is geodesic w.r.t.

g̃. Indeed (see the change of connections tensor (2.6))

kα∇αkβ = kα∇̃αkβ −Qµαβkαkµ = kα∇̃αkβ = Ω−2k̃α∇̃αk̃β. (6.7)

Thus combining equation (6.7) with Proposition 6.9, k must be geodesic w.r.t. g. In

addition, the conformal invariance of the Weyl tensor implies that k is a multiple WAND

for the Weyl tensor of g̃ if and only if it is a WAND for the Weyl tensor of g. That is,
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by Proposition 6.9 and the above discussion, kα is also a geodesic multiple WAND for

g. In what follows, it will be useful to decompose k in tangent and normal components

to a timelike unit vector u. Specifically, given one such u, we write

kα = s(uα + yα), (6.8)

which defines both the scalar s and the spacelike unit vector y perpendicular to u. Except

in the trivial case that the Kerr-Schild metric is identical to the backgroud metric, it

is clear that Hk ⊗ k cannot be identically zero. We let U be a domain of the physical

spacetime M̃ where this quantity is not zero. We are only interested in the case where U

intersects I as otherwise the free-data g̊n is identically zero, and the Kerr-Schild metric

would be identical to the background metric in some neighbourhood of I . Since k is

geodesic, affinely parametrized and nowhere zero in (U, g), it must extend smoothly and

nowhere zero to I ∩ ∂U . This is because g-null geodesics starting sufficiently close to

I with non-zero tangent reach I (smoothly). Since the tangent vector to the geodesic

cannot vanish anywhere along the curve, we conclude that the covector k is nowhere

zero in I ∩ ∂U . From now on we shall work on the manifold with boundary U so that

its infinity (still called I ) is such that k is nowhere vanishing there.

In the next lemma, we summarize the important properties of k w.r.t. to the conformal

metric g

Lemma 6.10. Let g̃ be a Kerr-Schild-de Sitter metric and let g = Ω2g̃ be a conformal

extension. Assume that g̃ is not identically equal to the background metric in some

neighbourhood of I . Then, after restricting M̃ if necessary, k extends smoothly and

nowhere zero to I and it is both geodesic affinely parametrized w.r.t. to g

kα∇αkβ = 0

and a multiple WAND with

Cµανβk
µkνmα

(i)m
β
(j) = Cµανβk

µkν lαmβ
(i) = Cµανβk

µmα
i m

ν
(j)m

β
(k) = 0,

for a suitable null frame {k, l,m(i)} for g.

The Kerr-Schild ansatz gives a decomposition for the metrics (6.6) similar to the one

in (6.3), where, however, Q̂ = Hk ⊗ k is in principle not necessarily O(Ωn). We now

prove that Definition 6.3 forces that necessarily H = O(Ωn). In the following, we use

the same name for a geometric object and its restriction to I (we let the context clarify

the meaning). This applies in particular to the vector y.

Lemma 6.11. Let g̃ be a Kerr-Schild de Sitter spacetime and consider a geodesic con-

formal extension g = Ω2g̃ as in (6.6), inducing a (conformally flat) metric γ at I .
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Then, H = O(Ωn) and the electric part of the rescaled Weyl tensor at I is

Dαβ = F
(
yαyβ −

1

n
γαβ

)
, (6.9)

where the function F at I is given by (Ω−nHs2)|I = − 2F
λn(n−2) .

Proof. By definition 6.3, H = Ω2H̃ must be O(Ωm) with m ≥ 1. Assume first that

m = 1. By property 2 of Lemma 2.29 the FG expansion of g = −dΩ2/λ + gΩ is

even up to order n, where gΩ is given by (2.34) if n odd or (2.35) if n even (with

vanishing logarithmic terms because γ is conformally flat, cf. Theorem 2.22). Then,

using the Kerr-Schild form g = ĝ + Hk ⊗ k and expanding ĝ and Hk ⊗ k in Ω, the

non-zero terms of order Ω of the tangent-tangent (i.e. tangent to ΣΩ = {Ω = const.})
components of ĝ must cancel out those of Hk⊗ k. To expand ĝ in powers of Ω, consider

a geodesic conformal factor2 Ω̂ for ĝ, which induces the same boundary metric γ at

I = {Ω = 0} = {Ω̂ = 0}. The existence of such conformal factor follows by Lemma

2.10 and it must satisfy Ω = Ω̂ω, with ω|I = 1. By Lemma 5.8, the FG expansion of

ĝ, in Gaussian coordinates {Ω̂, x̂i} adapted to the foliation Σ
Ω̂

= {Ω̂ = const.}, is given

by (5.15)

ĝ = −dΩ̂2

λ
+ ĝ

Ω̂
, ĝ

Ω̂
= γ +

P

λ
Ω̂2 +

1

4

P 2

λ2
Ω̂4 (6.10)

where P is the Schouten tensor of γ. In order to compare with the expansion of gΩ,

one has to relate the conformal factors, but also the tangent directions. First, as g|I =

ĝ|I = γ we can choose tangent coordinates satisfying x̂i = xi + Ωzi, for a collection of

functions {zi} (still depending on Ω). We use now, as shown before, that the vectors ∂Ω

and ∂
Ω̂

are proportional at I

∂Ω|Ω=0 =
(
∂Ωx̂

i∂x̂i + ∂ΩΩ̂
)
∂

Ω̂

∣∣
Ω=0

=
(
zi + Ω∂Ωz

i
)
∂x̂j |Ω=0 +

(
ω + Ω∂

Ω̂
ω
)
∂

Ω̂

∣∣
Ω=0

= ∂
Ω̂

∣∣
Ω=0

.

Thus zi|
Ω̂=0

= 0 so zi = O(Ω) and x̂i = xi + O(Ω2). This implies that when γ (which

recall is extended off I as independent of Ω̂ in the Gaussian coordinates {Ω̂, x̂i}) is

written in coordinates xi, it does not add tangent-tangent terms (dxidxj) of order Ω

and obviously neither they do the rest of terms in ĝ
Ω̂

in (6.10), because Ω̂ = Ωω. On

the other hand, dΩ̂2 is

dΩ̂2 = (ωdΩ + Ωdω)2 = ω2dΩ + Ω2dω2 + 2ΩdΩdω

and the only tangent-tangent terms can only appear in Ω2dω2, thus starting (at least)

at order Ω2. Therefore the expansion of ĝ in the conformal factor Ω does not have first

2Notice that ĝ = Ω̂2g̃′dS , where g̃′dS is locally de Sitter, isometric to the original one g̃dS , but not
equal.



185

order terms, so neither it does Hk⊗k because the FG expansion of g does not have such

a term. This implies that m ≥ 2.

Let us expand H as

H = − 2F
λn(n− 2)

(s−2|I )Ωm + o(Ωm),

and note that s that does not vanish anywhere (because k has this property). By Lemma

5.4, the electric part of the Weyl tensor is straightforwardly calculated

C⊥ = F
(
y ⊗ y − |y|

2

n
gΩ

)
Ωm−2 + o(Ωm−2) (6.11)

where we have used that ĝ is conformally flat, so that Ĉ = 0, and ∇Ω is geodesic, thus

F 2 = λ, and ε = −1 (cf. Lemma 2.9). Now applying Theorem 5.14, scaling (6.11) by

Ω2−n and evaluating at Ω = 0 must give the free part of the n-th order coefficient of

the FG expansion, so m ≥ n. But m > n gives g̊(n) = 0, which by uniqueness of the

FG expansion would imply that g̃ is equal to its background metric, against hypothesis.

Thus m = n and the lemma follows after scaling (6.11) by Ω2−n and evaluating at

I .

In conclusion, the initial data for Kerr-Schild-de Sitter spacetimes are a conformally flat

class of metrics [γ] and a TT tensor of the form (6.9). The function F cannot be identi-

cally zero at I (as otherwise g̃ would equal its background metric in a neighbourhood

of I ). After restricting M further we may therefore assume that F is nowhere zero at

I and we may reparametrize it as F =: κ/fn, with f everywhere positive and κ ∈ R is

a constant that carries the sign of F . For later convenience we do not normalize κ to be

±1, which means that we keep an arbitrary (positive) scaling freedom in f . Then, the

TT tensor D of Lemma 6.11 can be written as

D = κDξ, (Dξ)αβ :=
1

fn+2

(
ξαξβ −

f2

n
γαβ

)
, (6.12)

with ξα := fyα. Our next aim is to prove that ξ it must be a CKVF of I . The strategy

is to rewrite the conditions of being CKVF in terms of equations for f and y and then

show that they are satisfied as a consequence of k being a WAND.

Recall the following standard decomposition of the covariant derivative of a unit vector

field yα in terms parallel and orthogonal to itself

∇(γ)
α yβ = yαaβ + Παβ +

hαβ
n− 1

L+ wαβ, L := ∇(γ)
α yα (6.13)

where ∇(γ) the Levi-civita connection of γ, aβ is a covector, hαβ = γαβ − yαyβ (the

“projector” onto (span{y})⊥) and Παβ symmetric traceless and wαβ skew-symmetric,

i.e.

Π(αβ) = Παβ, Πα
α = 0, w[αβ] = wαβ,
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satisfying

yαΠαβ = yαhαβ = yαwαβ = 0, yαaα = 0.

In what follows, it will be useful to express the metric γ as

γαβ = yαyβ + hαβ.

Lemma 6.12. Let ξα = fyα, with yα unit, be a vector field of a Riemannian n-manifold

(Σ, γ) and consider the decomposition of ∇(γ)
α yβ as in (6.13). Then ξ is a CKVF of γ if

and only if the following equations are satisfied

∇(γ)
α f =

fL

n− 1
yα − faα, Παβ = 0. (6.14)

Proof. We rewrite the conformal Killing equation

∇(γ)
α ξβ +∇(γ)

β ξα =
2

n
∇(γ)
µ ξµγαβ

in terms of the kinematical quantities above. Since

∇(γ)
α ξβ +∇(γ)

α ξβ = (∇(γ)
α f)yβ + (∇(γ)

β f)yα + f(∇(γ)
α yβ +∇(γ)

β yα)

= (∇(γ)
α f)yβ + (∇(γ)

β f)yα + f

(
yαaβ + yβaα + 2Παβ +

2hαβ
n− 1

L

)
and

2

n
∇(γ)
µ ξµγαβ =

2

n
(yµ∇(γ)

µ f + fL)(yαyβ + hαβ),

ξ is a CKVF if and only if

(∇(γ)
α f)yβ + (∇(γ)

β f)yα + f

(
yαaβ + yβaα + 2Παβ +

2hαβ
n− 1

L

)
=

2

n
(yµ∇(γ)

µ f + fL)(yαyβ + hαβ). (6.15)

One contraction with yα gives

(yα∇(γ)
α f)yβ +∇(γ)

β f + faβ =
2

n
(yµ∇(γ)

µ f + fL)yβ (6.16)

and a second contraction with yβ

yα∇(γ)
α f + yβ∇(γ)

β f =
2

n
(yµ∇(γ)

µ f + fL) ⇐⇒ yα∇(γ)
α f =

fL

n− 1
. (6.17)

Inserting (6.17) in (6.16) gives the first of equation (6.14). Projecting (6.15) with hαµh
β
ν

gives

2f

(
Πµν +

hµν
n− 1

L

)
=

2

n
(yµ∇(γ)

µ f + fL)hµν
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which is equivalent to Π = 0 after using (6.17). This proves the result in one direction.

The converse follows immediately because (6.16) is identically satisfied when (6.14) hold.

Coming back to the data corresponding to Kerr-Schild de Sitter metrics, we prove that

the first equation in (6.14) is satisfied just by imposing D to be TT. The argument for

the second equation is more subtle and will be addressed right after.

Lemma 6.13. Let g̃ be a Kerr-Schild de Sitter metric and g = Ω2g̃ a geodesic conformal

extension. Then

∇(γ)
α f =

fL

n− 1
yα − faα. (6.18)

Proof. Consider Dξ = f−n (y ⊗ y − (1/n)γ), which by Lemma 6.11 is, up to a constant,

the electric part of the rescaled Weyl tensor of g̃. Since g̃ is Einstein and γ locally

conformally flat, then Dξ must be TT (because it coincides with the n-th order coefficient

of the FG expansion, cf. Theorem 5.14) and the vanishing of its divergence gives by (6.13)

∇(γ)
α (Dξ)

α
β = − n

fn+1

yα∇(γ)
α fyβ −

∇(γ)
β f

n

+
1

fn
(Lyβ + aβ) = 0. (6.19)

Contracting with yβ one has

yα∇(γ)
α f =

fL

n− 1

and inserting back into (6.19) we get (6.18). This condition, which is precisely the first

in (6.14), is not only necessary for (6.19) but also sufficient.

We next show that Παβ = 0. First notice that KΩ, the second fundamental form of the

leaves ΣΩ = {Ω = const.}, can be written

KΩ =
1

2
(LugΩ) = −λ

1/2

2
(2Ωg(2) + · · ·+ nΩn−1g(n) + · · · ),

where Lu denotes the Lie derivative w.r.t. the unit vector uα∂α = λ−1/2∇αΩ∂α =

−λ1/2∂Ω. This tensor appears in the Codazzi equation (2.18)

(∇k(KΩ)ij −∇i(KΩ)kj) = Rµjikuµ, (6.20)

where i, j, k denote tangent directions to ΣΩ. The strategy consists in analyzing the

Ωn−1 order terms of the following components of the Codazzi equation

(∇ν(KΩ)βα −∇β(KΩ)να)hα(λh
β
σ)y

ν = Rµανβuµh
α

(λh
β
σ)y

ν , (6.21)

where we extend h away from I as the projector orthogonal to y and u, i.e. h :=

g+ u⊗ u− y⊗ y. The proof that Παβ = 0 consists in two main steps. Firstly, we prove
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that the Ωn−1 order term of the LHS of (6.21) only involves the free part g̊(n). This,

by Theorem 5.14, coincides up to a constant with the electric part of the rescaled by

tensor, which in turn, by Lemma 6.11, is given by equation (6.12). From these facts it

follows that the LHS of (6.21) is (up to a non-zero factor) Παβ. The second step consist

in analyzing the RHS of (6.21). From the algebraically special condition, it follows that

the symmetric part of its Ωn−1 order term is pure trace. Since Παβ is traceless,it follows

Παβ = 0.

Before carrying out this program, we derive some identities that will be required for the

rest of this section. Consider a conformally extendable Einstein metric g̃ and let g = Ω2g̃

be a geodesic conformal extension. As before let u be unit normal along ∇Ω and i, j, k

denote orthogonal directions to span{u} (in Gaussian coordinates {Ω, xi}). Then, from

the definition of (2.10), a straightforward calculation gives

Rµjikuµ = Cµjikuµ −
2

n− 1
gj[kRi]µu

µ.

On the other hand, since g̃ is Einstein and Ω geodesic, from (2.8) follows

Rαβ = −n− 1

Ω
∇α∇βΩ− gαβ

∇µ∇µΩ

Ω
. (6.22)

Hence

Riµu
µ = −λ−1/2n− 1

Ω
(∇i∇µΩ)∇µΩ = −λ−1/2n− 1

2Ω
∇i(∇µΩ∇µΩ) = 0

and

Rµjikuµ = Cµjikuµ. (6.23)

In particular

Rµανβuµy
νhαλh

β
σ = Cµανβuµy

νhαλh
β
σ. (6.24)

Lemma 6.14. Let g̃dS be the metric of de Sitter, g = Ω2g̃dS a geodesic conformal

extension and KΩ the second fundamental form on the leaves ΣΩ = {Ω = const.}.
Then, the Codazzi equation (6.20) is

∇k(KΩ)ij −∇i(KΩ)kj = 0,

Proof. The lemma follows by simply applying the Codazzi equation (6.20) to g together

with identity (6.23), where the Weyl tensor vanishes because g is conformally flat.

Proposicin 6.15. Let g̃ be an Einstein metric admitting a smooth conformally flat I ,

g = Ω2g̃ a geodesic conformal extension and KΩ the second fundamental form on the

leaves ΣΩ = {Ω = const.}. Then the leading order term of the LHS of the Codazzi

equation (6.20) is

−λ
1/2

2
(n− 1)Ωn−1

(
∇(γ)
k (̊g(n))ij −∇

(γ)
i (̊g(n))kj

)
,
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where γ is extended off I as independent of Ω and ∇(γ) denotes its Levi-Civita connec-

tion.

Proof. Consider the decomposition a) of Proposition 6.7, g = g+Q with g = −dΩ2/λ+

gΩ conformal to de Sitter. Since gαβ∇αΩ∇βΩ = −λ, the conformal factor Ω is geodesic

for both g and g. On the other hand, the second fundamental forms KΩ and KΩ,

respectively induced by g and g on ΣΩ, are related by

KΩ =
−λ1/2

2
∂ΩgΩ =

−λ1/2

2
∂Ω(gΩ +Q) = KΩ −

λ1/2

2
(n− 1)Ωn−1g̊(n) +O(Ωn+1),

where we have used that by construction Q = Ωng̊(n) + O(Ωn+2). For every tensor Tij ,
tangent to ΣΩ, it follows that its covariant derivatives w.r.t. ∇ and ∇ satisfy (we use

that the coordinates are Gaussian with respect to g)

∇kTij = ∇kTij − SlkiTlj − SlkjTil

where the tangent components of S, given by (2.1) for g(1) = g and g(2) = g, satisfy

Slki =
1

2
glm

(
∇kgim +∇igkm −∇mgki

)
=

1

2
glm

(
∇kQim +∇iQkm −∇mQki

)
= O(Ωn).

Thus ∇kTij = ∇kTij +O(Ωn). In particular, for KΩ

∇k(KΩ)ij = ∇k(KΩ)ij −
λ1/2

2
(n− 1)Ωn−1∇k (̊g(n))ij +O(Ωn+1)

= ∇k(KΩ)ij −
λ1/2

2
(n− 1)Ωn−1∇k (̊g(n))ij +O(Ωn),

and the LHS of the Codazzi equation (6.20) for KΩ is

∇k(KΩ)ij −∇i(KΩ)kj = ∇k(KΩ)ij −∇i(KΩ)kj

− λ1/2

2
(n− 1)Ωn−1

(
∇k (̊g(n))ij −∇i(̊g(n))kj

)
+O(Ωn)

= −λ
1/2

2
(n− 1)Ωn−1

(
∇k (̊g(n))ij −∇i(̊g(n))kj

)
+O(Ωn),

where the second equality is a consequence of Lemma 6.14. Now, since gΩ = γ+O(Ω2),

the covariant derivatives ∇k (̊g(n))ij and ∇i(̊g(n))kj are, to lowest order in Ω, ∇(γ)
k (̊g(n))ij

and ∇(γ)
i(̊g(n))kj .

Therefore, for the particular case of Kerr-Schild-de Sitter metrics and the components

of the Codazzi equation in (6.21) we obtain:
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Corolario 6.16. The Ωn−1 order term of the LHS of (6.21) is, up to a non-zero constant,

equal to the following tensor

(LHS)λσ := − 1

fn
Πλσ.

Proof. From Proposition 6.15, the term of order Ωn−1 of (6.21) only involves derivatives

of g̊(n). By Theorem 5.14, g̊(n) is up to a constant the electric part of the rescaled

Weyl tensor, which by Lemma 6.11, is given by expression (6.12). Hence, substituting

γαβ = yαyβ+hαβ, the (n−1)-th order of the LHS of (6.21) is (up to a non-zero constant)

yν(∇(γ)
ν (Dξ)βα −∇

(γ)
β (Dξ)να) = − n

fn+1
yν∇(γ)

ν f

(
yβyα −

yβyα
n
−
hβα
n

)
+

1

fn
(aβyα + aαyβ) +

n

fn+1
∇(γ)
β f

n− 1

n
yα −

1

fn
∇(γ)
β yα.

Inserting the decomposition (6.13) and using the first equation in (6.14)

yν(∇(γ)
ν (Dξ)βα −∇

(γ)
β (Dξ)να) = − n

fn+1

fL

n− 1

(
n− 1

n
yβyα −

hβα
n

)
+

1

fn
(aβyα + aαyβ)

+
n

fn+1
(
fL

n− 1
yβ − faβ)

n− 1

n
yα −

1

fn
(yβaα + Πβα +

L

n− 1
hβα + wβα)

= − 1

fn
((n− 2)aβyα + Πβα + wβα) .

Contracting both indices with h and symmetrizing yields the following tensor

(LHS)λσ := yν(∇(γ)
ν (Dξ)βα −∇

(γ)
β (Dξ)να)hα(λh

β
σ) = − 1

fn
Πλσ.

In the remainder of this section, we ellaborate the RHS of (6.21). Applying identity

(6.24) it follows

(RHS)σλ := Rµανβu
νyµh

α
(λh

β
σ) = Cνβµαuνy

µhα(λh
β
σ). (6.25)

Now we use the algebraic special condition to prove that the Ωn−1 order components

of the Weyl tensor in (6.25) are pure trace. Recall the decomposition (6.8) of k. One

can then define l = 2s−1(u − y) such that lαk
α = −1 and complete to a null frame

{k, l,m(i)}. Then, h is the projector onto span{m(i)}. Thus, contracting Cµανβ with
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kµk
νhα(λh

β
σ) gives by Proposition 6.9

0 = Cµανβkµk
νhα(λh

β
σ)

⇐⇒ 0 =
(
Cµανβuµu

ν + Cµανβyµy
ν + 2Cµ(α|ν|β)uµy

ν
)
hα(λh

β
σ)

⇐⇒ 2Cµ(α|ν|β)u
νyµh

α
(λh

β
σ) = −Cµανβuµuνhαλhβσ − Cµανβyµyνhαλhβσ.

In addition

gαβ = −uαuβ + yαyβ + hαβ,

and the traceless property of the Weyl tensor gives

0 = Cµαµβ = −Cµανβuµuν + Cµανβyµy
ν + Cµανβh

ν
µ

=⇒ Cµανβyµy
ν = Cµανβuµu

ν − Cµανβhνµ.

Therefore

2Cµ(α|ν|β)u
νyµh

α
(λh

β
σ) = −2Cµανβuµu

νhαλh
β
σ + Cµανβh

ν
µh

α
λh

β
σ. (6.26)

The first term in the RHS of (6.26) only involves the electric part of the Weyl tensor.

Using the previous results we next prove that, at order Ωn−1, it can only contain trace

terms.

Lemma 6.17. Let g̃ be a conformally extendable metric admitting a smooth conformally

flat I . Then, for every geodesic conformal extension g = Ω2g̃, the electric part of Weyl

tensor w.r.t. the normal vector C⊥ has no terms in Ωn−1. Moreover, if g̃ is Kerr-

Schild-de Sitter, the possible terms of order Ωn−1 added by contracting twice with h, i.e.

(C⊥)αβh
α
λh

σ
β, are pure trace.

Proof. First consider g = −dΩ2 + gΩ in normal form w.r.t. a boundary metric γ. Since

γ is conformally flat, we can decompose gΩ as in statement a) of Proposition 6.7

gΩ = gΩ +Q

where g = −dΩ2 + gΩ is conformally isometric to de Sitter, gΩ is given by (5.15) and

Q = O(Ωn) contains no terms of order Ωn+1. We now insert this decomposition into

formula (5.2), which we write in terms of the electric part of the Weyl tensor C⊥ (cf.

equation 5.1), which for simplicity we write using matrix notation as

(C⊥) =
λ

2

(
1

2
ġΩg

−1
Ω ġΩ +

1

Ω
ġΩ − g̈Ω

)
. (6.27)

where ˙ stands for derivative in Ω and note, g−1
Ω must decompose as

g−1
Ω = g−1

Ω + V
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with V = O(Ωn), because g−1
Ω gΩ equals the identity and terms of order m < n in V

could not be cancelled out. We compute the terms in (6.27). Firstly

ġΩg
−1ġΩ = ġΩg

−1
Ω ġΩ + ġΩg

−1
Ω Q̇+ Q̇g−1

Ω ġΩ + Q̇g−1
Ω Q̇

= ġΩg
−1
Ω ġΩ + ġΩg

−1
Ω Q̇+ Q̇g−1

Ω ġΩ + Q̇g−1
Ω Q̇

+ ġΩV ġΩ + ġΩV Q̇+ Q̇V ġΩ + Q̇V Q̇,

and second
1

Ω
ġΩ − g̈Ω =

1

Ω
ġΩ − g̈Ω +

1

Ω
Q̇− Q̈.

Adding them and taking into account that

λ

2

(
1

2
ġΩg

−1
Ω ġΩ +

1

Ω
ġΩ − g̈Ω

)
= C⊥ = 0

where (C⊥) is the electric part of the Weyl tensor of g, we are left with

2

λ
(C⊥) =

1

2

(
ġΩg

−1
Ω Q̇+ Q̇g−1

Ω ġΩ + Q̇g−1
Ω Q̇+ ġΩV ġΩ + ġΩV Q̇+ Q̇V ġΩ + Q̇V Q̇

)
+

1

Ω
Q̇− Q̈ =

1

Ω
Q̇− Q̈+O(Ωn). (6.28)

Since Q does not contain terms of order Ωn+1, then (6.28) does not contain terms of

order Ωn−1. This proves the first part of the lemma.

Combining this fact with equation (6.12), we can write the leading order of C⊥ and its

tail order terms as

(C⊥)αβ = Ωn−2 κ

fn+2

(
ξαξβ −

f2

n
γαβ

)
+O(Ωn),

where γ must be understood as the leading order term of gΩ, i.e. the extension of γ|I
to the spacetime as a tensor independent of Ω and similarly with ξ. Contracting this

expression twice with h gives

(C⊥)αβh
α
µh

β
ν = −Ωn−2κ

n

1

fn
hµν +O(Ωn).

We cannot exclude that the presence of hαβ in this expression introduces terms of order

Ωn−1, but if present, they are clearly trace terms, as claimed in the Lemma.
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We next look for a similar result for the components of the Weyl tensor Cµβναh
ν
µh

α
(λh

β
σ)

which arise in (6.26). From the definition (2.10) one has

Cµανβh
ν
µh

α
λh

β
σ = Rµανβh

ν
µh

α
λh

β
σ

+

(
− 2

n− 1
(δµ[νRβ]α − gα[νR

µ
|β]) +

2R

n(n− 1)
δµ[νgβ]α

)
hνµh

α
λh

β
σ

= Rµανβh
ν
µh

α
λh

β
σ

− n− 3

n− 1
Rαβh

α
λh

β
σ +

(
−R

µ
νh

ν
µ

n− 1
+

n− 2

n(n− 1)
R

)
hλσ,

which using (6.22) gives

Cµανβh
ν
µh

α
λh

β
σ = Rµανβh

ν
µh

α
λh

β
σ + (n− 3)

∇α∇βΩ

Ω
hαλh

β
σ

+

(
n− 3

n− 1

∇µ∇µΩ

Ω
− Rµνh

ν
µ

n− 1
+

n− 2

n(n− 1)
R

)
hλσ. (6.29)

The term containing hαλh
β
σ∇α∇βΩ will be left unaltered as it will cancel out after

expanding the rest of terms. Our next aim is to analyze the components of the Riemann

tensor Rµανβh
ν
µh

α
(λh

α
σ), and relate them to the same components of the Riemann

tensor of ĝ:

Lemma 6.18. The Riemann tensors of g and ĝ satisfy

R̂µ ανβh
δ
µh

ν
γh

α
λh

β
σ = Rµανβh

δ
µh

ν
γh

α
λh

β
σ

− 2Hhδτhνγhαλhβσ
(
∇[ν|k[τ∇α]k|β] +∇[νkβ]∇[αkτ ]

)
.

Proof. We apply the formula for the difference of Riemann tensors (2.2) with g(1) = ĝ

and g(2) = g. Setting g = ĝ +Hk ⊗ k, the tensor S reads

Sµαβ = −1

2
ĝµν (∇α(Hkβkν) +∇β(Hkαkν)−∇ν(Hkαkβ)) . (6.30)

Hence,

Sκναh
ν
γh

α
λ = −1

2
Hkκhνγhαλ(∇νkα +∇αkν)

and since (recall that k is null geodesic kκ∇κkβ = kκ∇βkκ = 0)

kκhβσS
µ
βκ = −1

2
kκhβσ ĝ

µτ (∇β(Hkκkτ ) +∇κ(Hkβkτ )−∇τ (Hkκkβ)) = 0,

it follows

2Sκ[ν|α|S
µ
β]κh

ν
γh

α
λh

β
σ = 0.
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On the other hand

∇νSµαβ =− 1

2
∇ν ĝµτ (∇α(Hkβkτ ) +∇β(Hkαkτ )−∇τ (Hkαkβ)) ,

− 1

2
ĝµτ∇ν (∇α(Hkβkτ ) +∇β(Hkαkτ )−∇τ (Hkαkβ)) . (6.31)

The first three terms in (6.31) vanish when contracted with hαλh
β
σ because, taking into

account (6.6) and that k is null geodesic,

1

2
∇ν ĝµτ (∇α(Hkβkτ ) +∇β(Hkαkτ )−∇τ (Hkαkβ))hαλh

β
σ

=
1

2
∇ν(Hkµkτ )kτ (∇αkβ +∇βkα)hαλh

β
σ =

1

2
H2kµ(∇νkτ )kτ (∇αkβ +∇βkα)hαλh

β
σ = 0.

We calculate the contraction of the last three terms in (6.31) with h four times. The

expansion of each term gives

hδµh
ν
γh

α
λh

β
σ ĝ

µτ∇ν∇α(Hkβkτ ) = hδτhνγh
α
λh

β
σH (∇νkτ∇αkβ +∇νkβ∇αkτ ) ,

hδµh
ν
γh

α
λh

β
σ ĝ

µτ∇ν∇β(Hkαkτ ) = hδτhνγh
α
λh

β
σH (∇νkτ∇βkα +∇νkα∇βkτ ) ,

hδµh
ν
γh

α
λh

β
σ ĝ

µτ∇ν∇τ (Hkαkβ) = hδτhνγh
α
λh

β
σH (∇νkα∇τkβ +∇νkβ∇τkα) .

Then, rearraging terms,

2hδµh
ν
γh

α
λh

β
σ∇[νS

µ
β]α = −2Hhδτhνγhαλhβσ

(
∇[ν|k[τ∇α]k|β] +∇[νkβ]∇[αkτ ]

)
,

and the Lemma follows from the identity (2.2).

Specifically for our purposes, Lemma 6.18 yields

Rµανβh
ν
µh

α
λh

β
σ = R̂µ ανβh

ν
µh

α
λh

β
σ +O(Ωn), (6.32)

so we do not have to take into account the tail order terms. To calculate R̂µ ανβh
ν
µh

α
λh

β
σ,

we use the definition of the Weyl tensor (2.10), which for ĝ vanishes, and contractions

with h give:

R̂µ ανβh
ν
µh

α
λh

β
σ =

n− 3

n− 1
R̂αβh

α
λh

β
σ −

(
−R̂

µ
νhνµ

n− 1
+

n− 2

n(n− 1)
R̂

)
hλσ. (6.33)

We finally relate the term R̂αβh
α
λh

β
σ with the same components of the Ricci tensor of

de Sitter. To do that, we use equation (2.8), substituting g by ĝ and g̃ by g̃dS

R̂αβ − R̃dSαβ = −n− 1

Ω
∇̂α∇̂βΩ− ĝαβ

∇̂µ∇̂µΩ

Ω
+ ĝαβ

n

Ω2
∇̂µΩ∇̂µΩ. (6.34)
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We may now use that g̃dS is Einstein to cancel out terms, but Ω is geodesic w.r.t. to g,

which means

ĝαβ
n

Ω2
∇̂µΩ∇̂µΩ = ĝαβ

n

Ω2
(gµν +Hkµkν) ∇̂µΩ∇̂νΩ

= −λnĝαβ
n

Ω2
+ ĝαβ

n

Ω2
Hkµkν∇µΩ∇νΩ

= −λng̃dSαβ + ĝαβ
ns2

λΩ2
H (6.35)

where we have used that gµν∇µΩ∇νΩ = −λ and s = −λ−1/2kµ∇µΩ. Now, since the de

Sitter metric is Einstein, equation (6.34) with (6.35) gives

R̂αβh
α
λh

β
σ = −n− 1

Ω
(∇̂α∇̂βΩ)hαλh

β
σ +

(
−∇̂µ∇̂

µΩ

Ω
+
ns2

λΩ2
H

)
hλσ.

The tensor ∇̂α∇̂βΩ can be related with ∇α∇βΩ using the difference of connections

∇̂α∇̂βΩ = ∇α∇βΩ− Sµαβ∇µΩ

with the tensor S given in (6.30) and

Sµαβh
α
σh

β
σ =

1

2
Hkν ĝµν(∇αkβ +∇βkα)hαλh

β
σ = O(Ωn).

Thus

R̂αβh
α
λh

β
σ = −n− 1

Ω
(∇α∇βΩ)hαλh

β
σ +

(
−∇̂µ∇̂

µΩ

Ω
+
ns2

λΩ2
H

)
hλσ +O(Ωn)

so that from equation (6.33) it follows

R̂µ ανβh
ν
µh

α
(λh

α
σ) = −n− 3

Ω
(∇α∇βΩ)hαλh

β
σ

+

(
−n− 3

n− 1

∇̂µ∇̂µΩ

Ω
+
n− 3

n− 1

ns2

λΩ2
H+

R̂µνhνµ
n− 1

− n− 2

n(n− 1)
R̂

)
hλσ

+O(Ωn). (6.36)

Combining equation (6.36) and (6.32) and putting the result back in (6.29) , we have

proven

Cµανβh
ν
µh

α
λh

α
σ =

(
n− 3

n− 1

∇µ∇µΩ

Ω
− Rµνh

ν
µ

n− 1
+

n− 2

n(n− 1)
R

− n− 3

n− 1

∇̂µ∇̂µΩ

Ω
+
R̂µνhνµ
n− 1

− n− 2

n(n− 1)
R̂+

n− 3

n− 1

ns2

λΩ2
H

)
hλσ

+O(Ωn) (6.37)

which is pure trace plus terms of order n. Now the following result is straightforward
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Proposicin 6.19. Let g̃ be a Kerr-Schild-de Sitter metric and g = Ω2g̃ a geodesic

conformal extension, with γ = g|I conformally flat by definition. Then the electric part

of the rescaled Weyl tensor is

Dαβ =
κ

fn+2

(
ξαξβ −

|ξ|2γ
n
γαβ

)

where f is a function of I defined by (Ω−nH)|I = 2f−n

λn(n−2) and ξ = fy is a CKVF of

γ. Thus, the Kerr-Schild-de Sitter metrics are in the Kerr-de Sitter-like class.

Proof. By Lemma 6.11, we only have to prove that ξ is a CKVF of γ. The RHS of

the Codazzi equation (6.21) is given by (6.25). Combining equation (6.26), Lemma 6.17

and equation (6.37), the non-zero terms of order Ωn−1 of Cµ(α|ν|β)u
νyµ are pure trace.

Thus, the traceless part of (6.25) is identically zero. By Corollary 6.16 this is precisely

0 = Παβ up to a multiplicative constant. Now the Proposition follows from Lemma 6.12

and Lemma 6.13.

Observacin 6.20. Throughout this section we restricted I to the set of points where

H (and k) are not zero, because we assumed that κ/fn = F 6= 0 to write down (6.12)

(i.e. we assume that f does not diverge). Now, we know that the vector ξ is a CKVF

of I , hence this vector is smooth everywhere. The set of points where it vanishes (i.e.

where f = 0) must be removed from I as soon as the constant κ in the data D = κDξ

is not zero because the tensor Dξ is certainly singular at points where ξ vanishes.

6.3 Kerr-Schild-de Sitter ⊃ Kerr-de Sitter-like class

In this section we will prove the converse inclusion than in Section 6.2, namely, that

every spacetime in the Kerr-de Sitter-like class is Kerr-Schild-de Sitter. Our strategy is

to explicitly construct every Kerr-de Sitter-like spacetime in Kerr-Schild form. To do

that, we take advantage of the property that the data in the Kerr-de Sitter-like class

depends solely on the conformal class of the CKVF ξ (Lemma 5.21) and a mutiplicative

constant. Since the initial value problem is well-posed and each spacetime with data

(Σ, γ, κDξ) is uniquely determined by κ and the conformal class of ξ, we can infer all

limits of spacetimes from the limits of data, which in turn are consequence of limits of

conformal classes of CKVFs. The quotient space of conformal classes of CKVFs was

studied in detail in Chapter 4.

6.3.1 Kerr-de Sitter and its limits at I

The explicit form of the metrics in the full Kerr-de Sitter-like class will be obtained

via either limits or analytic extensions of the Kerr-de Sitter family of metrics in all
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dimensions in [70]. The conformally extendable version of this family of metrics was

given Section 5.3, i.e. the metrics g = Ω2g̃ were given, where g̃ solves the Λ-vacuum

field equations and g is smoothly extendable to {Ω = 0}. Recall that in Section 5.3

some modifications w.r.t. to the original publication [70] were introduced which we keep

here because they make our analysis more direct. Namely, as the limits will be inferred

from its data at I , it is convenient to give the metrics in coordinates such that, in

the conformally extended space, the conformal factor vanishes at a finite value of the

coordinates. Here, as we are interested in the calculation of limits of physical metrics,

we shall use the physical version of the metrics g̃ = Ω−2g. We will also absorb some

constants depending on the rotation parameters into the coordinates. This will allow us

to perform several limits at once. Moreover, we give the metric already in Kerr-Schild

form (6.1). This will be useful to show that the limits also belong to the Kerr-Schild-de

Sitter class.

We remark, just like in Section 5.3, that in the following, when using index-free notation,

the boldface font shall be used to distinguish a the metrically associated one-form ξ =

γ(ξ, ·) to a CKVF ξ of I .

Recall that the conformally extendable Kerr-de Sitter metric in Kerr-Schild form is given

by

g̃ = g̃dS + H̃ k̃ ⊗ k̃

where g̃dS , k̃ and H̃ are the physical version of (5.31), (5.32) and (5.33) respectively,

directly obtainable by (5.28). In the following, it will be convenient to rewrite these

terms using the coordinates

α̂i :=
αi

(1 + λa2
i )

1/2
=⇒

p+1∑
i=1

α2
i =

p+1∑
i=1

(1 + λa2
i )α̂

2
i = 1 (6.38)

so that the functions W,Ξ and Π in (5.30) are

W =

p+1∑
i=1

α̂2
i , Ξ =

p+1∑
i=1

1 + λa2
i

1 + ρ2a2
i

α̂2
i Π =

p+1∏
j=1

(1 + ρ2a2
j ), (6.39)

and

g̃dS = −W (ρ2 − λ)

ρ2
dt2 +

Ξ

ρ2 − λ
dρ2

ρ2
+ δp,q

dα̂2
p+1

ρ2

+

q∑
i=1

1 + ρ2a2
i

ρ2

(
dα̂2

i + α̂2
i dφ

2
i

)
+

(ρ2 − λ)

λWρ2

dW 2

4
, (6.40)

k̃ = Wdt− Ξ

ρ2 − λ
dρ−

q∑
i=1

aiα̂
2
i dφi, (6.41)

H̃ =
2Mρn

ΠΞ
, M ∈ R. (6.42)
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where for (6.40) we have used the differential of (6.38)

p+1∑
i=1

(1 + λa2
i )α̂idα̂i = 0 =⇒

p+1∑
i=1

λa2
i α̂idα̂i = −

p+1∑
i=1

α̂idα̂i = −dW

2

=⇒

(
p+1∑
i=1

(
1 + ρ2a2

i

)
αidαi

1 + λa2
i

)2

=

(
p+1∑
i=1

(
1 + ρ2a2

i

)
α̂idα̂i

)2

=

(
ρ2 − λ
λ

)2
dW 2

4
.

Recall the initial data (Σ, γ, κDξ) of the Kerr-de Sitter family calculated in Chapter 5,

which in hatted {α̂i} coordinates, γ is

γ = g̃dS |I = λWdt2 + δp,qdα̂
2
p+1 +

q∑
i=1

(
dα̂2

i + α̂2
i dφ

2
i

)
− 1

W

dW 2

4
,

and the conformal Killing vector ξ is exactly the same

ξ =
1

λ
∂t −

q∑
i=1

ai∂φi . (6.43)

Recall also that, after a suitable reordering of the rotational parameters {ai}, the con-

formal class of ξ is determined by the parameters {σ = −λ−1, µ2
i = a2

i } for n odd and

{−µ2
t = −λ−1, µ2

s = a2
1, µ

2
i = a2

i+1} for n even (cf. Theorem 4.35). Observe that λ

is one of the parameters which determines the conformal class of ξ. This is a priori

fixed by the Einstein equations, so it is not a freely specifiable parameter of the metric.

However, under scalings of ξ, σ is also scaled with the same factor. From the structure

of Dξ in (6.12), we have the freedom of scaling ξ and leave the data κDξ unaltered if we

absorb the inverse (squared) scaling factor in κ, which is essentially the mass parameter

of Kerr-de Sitter, therefore freely specifiable. In this way, we may cover the full domain

defining the family R(n+2,0)
− . Obviously any point in any region R(n+2,m)

− is also covered

by considering the cases with m vanishing rotation parameters.

From Lemma 5.21, each metric in the Kerr-de Sitter-like class is determined by the pa-

rameter κ and the conformal class of ξ. Thus, for a fixed value of κ, one can associate ex-

actly one metric in the Kerr-de Sitter-like class to each point in CKill(En)/ConfLoc(En).

Moreover, the limits of regions in CKill(En)/ConfLoc(En), must induce limits of data

(Σ, γ, κDξ) which in turn, from the well-posedness of the Cauchy problem, also induce

limit of spacetimes corresponding to such data. In this way, we can endow the space

of metrics in the Kerr-de Sitter-like class with the topology of CKill(En)/ConfLoc(En).

Now, from the above discussion and Proposition 4.26, it follows

Proposicin 6.21. The conformal class of the Kerr-de Sitter family with m vanishing

rotation parameters belongs to the region R(n+2,m)
− with σ := −λ−1 and µ2

i := a2
i for n

odd and −µ2
t := −λ−1, µ2

s := a2
1 and µ2

i := a2
i+1 for n even. Thus, the Kerr-de Sitter
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family of metrics with all non-zero rotation parameters covers the whole R(n+2,0)
− . For

n even, Kerr-de Sitter family data and its limits cover all data in the Kerr-de Sitter-like

class.

In the rest of this section, we will construct all spacetime metrics in the Kerr-de Sitter-

like class taking advantage of the topological structure given in subsection 4.4.1, in

particular in Proposition 4.26 and Remark 4.25. By these results all points in all regions

{R(n+2,m)
− ,R(n+2,m)

+ ,R(n+2,m)
0 } (recall that d = n + 2 now) are attainable as limits of

sequences in R(n+2,0)
− , except the region R(n+2,0)

+ when n is odd. Thus, the metrics

corresponding to such data cannot be obtained as a limit of the Kerr-de Sitter family.

This family will be obtained by analytic extension of Kerr-de Sitter.

Observacin 6.22. For data (Σ, γ, κDξ) in the Kerr-de Sitter-like class the conformal

class of ξ will be obtained always following the procedure of Theorem 4.35, as we did

in Section 5.3 for the Kerr-de Sitter family. For the n even cases we shall give the

conformal class of ξ in terms of the parameters {−µ2
t , µ

2
s, µ

2
i } because they are directly

related with the “rotation parameters” of Kerr-de Sitter and its limit metrics.

The spacetime limits will be inferred from limits of data as follows. Start with data

corresponding to Kerr-de Sitter (Σ, γ, κDξ) in R(n+2,m)
− , and consider the uniparametric

set of equivalent data (Σ, γζ := ζ−2γ, ζn−2κDξ) for a constant parameter ζ ∈ R. Scaling

the following quantities as

Mζ := Mζn, ξζ := ζξ ξζ := γζ(ξζ , ·) = ζ−1ξ

we have

ζn−2κDξ = −λ
−n
2
n(n− 2)

|ξ|n+2
γ

Mζn−2

(
ξ ⊗ ξ − |ξ|γ

n
γ

)
= −λ

−n
2
n(n− 2)

|ξζ |n+2
γζ

Mζ

(
ξζ ⊗ ξζ −

|ξζ |2γζ
n

γζ

)
.

Thus, we obtain the uniparametric family of data (Σ, γζ , κζDξζ ), where κζ is given by

κζ := −
Mζn(n− 2)

λ
n
2

.

As we shall describe, after a suitable rescaling of the coordinates and the rotation pa-

rameters, the data (Σ, γζ , κζDξζ ) admits regular limits as ζ → 0, which are no longer

equivalent to the original family, but are still in the Kerr-de Sitter-like class.

By Lemma 5.21, the limit data are uniquely determined by the limit mass M ′ :=

limζ→0Mζ and the conformal class of ξ′ := limζ→0 ξζ . In all cases, the scaling of the

rotation parameters will be of the form

ai = ζ−1bi,
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where we still allow bi to smoothly depend on ζ. For the CKVF itself, in the following

subsections we distinguish the limits of the vector field

ξζ = ζ

(
1

λ
∂t −

q∑
i=1

ζ−1bi∂φi

)

as ζ → 0 into two types, depending on whether or not the parameter ζ is absorbed in the

t coordinate by means of the change t = ζt′. The limits performed with the coordinate

t′ will be proven to correspond to the region R(n+2,m)
0 . The limits with the t coordinate

unchanged will only be calculated in the n even case and will be proven to lie in the

region R(n+2,m)
+ , where m is given by the number of vanishing bi. The reason why we

calculate them only for n even is because only in this case we may attain every point

in every region R(n+2,m)
+ from R(n+2,0)

− (cf. Proposition 4.26). For the n odd case we

need to perform an analytic extension to obtain the spacetimes with data in R(n+2,m)
+ .

For any limit data at I , there is one corresponding spacetime, which from the well-

possedness of the Cauchy problem, must be a limit of Kerr-de Sitter. In general, these

limit spacetimes are obtained with the same changes than those performed at I plus

the redefinition ρ′ = ζρ, as we shall also explicitly demonstrate.

Observacin 6.23. In all the situations, the term g̃dS takes a well-defined limit inde-

pendently of the term H̃ k̃ ⊗ k̃. Morever, we will show that, in all cases, g̃dS and its

derivatives up to second order depend continuously on ζ. Consequently, the Riemann

tensor of the limit metric g̃′dS = limζ→0 g̃dS is the limit of the Riemann tensor of g̃, i.e.

R′αβµν = lim
ζ→0

Rαβµν = λ lim
ζ→0

((g̃dS)αµ(g̃dS)βν − (g̃dS)αν(g̃dS)βµ) (6.44)

= λ
(
(g̃′dS)αµ(g̃′dS)βν − (g̃′dS)αν(g̃′dS)βµ

)
.

Thus background limit metric is still Einstein of constant curvature, therefore locally

isometric to de Sitter.

As already mentioned, in the n even case all spacetimes in the Kerr-de Sitter-like class

are limits of the Kerr-de Sitter family. In the n odd case, the spacetimes corresponding

to the set R(n+2,0)
+ will be constructed by analytic continuation, and the rest of them as

limits of Kerr-de Sitter. For given data, the corresponding spacetimes will be assigned

to a family depending on the region R(n+2,m)
ε to which the defining CKVF at I belongs.

In analogy with the n = 3 case [100], these families will be called generalized {ai →∞}-
limit Kerr-de Sitter if ξ lies in R(n+2,m)

0 (extending the definition [101]), or generalized

Wick-rotated Kerr-de Sitter if ξ lies in R(n+2,m+1)
+ (also by analogy with [100]).

6.3.2 Limits n-even

We start by determining all limits of Kerr-de Sitter family in the n even case. In

principle the limits can be performed in multiple ways. However, by the classification of
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conformal classes of CKVF described above it suffices to exhibit one limit for each case.

To obtain the spacetimes whose CKVF class at I lies in R(n+2,m)
+ , we will assume that

the starting family has all its rotation parameters different from zero, i.e. that it belongs

to the region R(n+2,0)
− . Similarly, to obtain those whose CKVF class lies in R(n+2,m)

0 we

shall start from Kerr-de Sitter with exactly one rotation parameter equal to zero, i.e.

whose CKVF is in R(n+2,1)
− . Obviously, all spacetimes in R(n+2,m)

− are simply obtained

by setting m rotation parameters ai to zero, so there is no need to explicitly calculate

any limit.

6.3.2.1 Generalized Wick-rotated

In this subsection we shall not absorb ζ in the coordinate t. As mentioned in subsection

6.3.1, we will obtain in this way all spacetimes whose corresponding CKVF at I lies in

R(n+2,m)
+ . We will call these Wick-rotated-Kerr-de Sitter family of spacetimes because in

the n odd case (cf. subsection 6.3.3.1) they will actually be obtained by a Wick-rotation

of Kerr-de Sitter.

We start with a metric in the Kerr-de Sitter family, with every rotation parameter being

non-zero and apply the redefinitions

ρ = ζρ′, α̂i = ζβi ai = ζ−1bi, M = M ′ζn.

Observe that if any of the rotation parameters were zero, say ai = 0, then the scaling

of α̂i = ζβi would not be allowed because (6.38) would imply that βi is divergent in the

limit ζ → 0. The parameters bi are still allowed to depend smoothly3 on ζ, so that their

limit at ζ may take the value zero. For notational simplicity we shall not include the

dependence on ζ. In particular, the limit at ζ → 0 will still be called bi. The context

will make clear the intended meaning.

In the limit ζ → 0, by (6.38) the coordinates {βi} satisfy

p+1∑
i=1

λb2iβ
2
i = 1,

thus, at least one bi must be non-zero. Note that if all were zero, the limit vector field

ξ′ = limζ→0 ξζ would be identically zero, and we would at best fall outside the Kerr-de

Sitter-like class.

3Sufficient differentiability is necessary in order to make sure that the background metric is de Sitter
in the limit. W.l.o.g. we can assumme smooth dependence on ζ as we only want to allow vanishing
values in the limit.
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The function W goes to zero as ζ2 while Ξ and Π take finite and smooth limits (cf.

(6.39)). We therefore introduce the following limit quantities

W ′ := lim
ζ→0

ζ−2W =

p+1∑
i=1

β2
i , Ξ′ := lim

ζ→0
Ξ =

p+1∑
i=1

λb2iβ
2
i

1 + ρ′2b2i
, Π′ = lim

ζ→0
Π =

q∏
j=1

(1+ρ′2b2j ).

On the other hand, by (6.41), the terms of k̃ in dρ and dφi tend to zero with ζ, while

the term in dt goes with ζ2. Hence we set

k̃′ := lim
ζ→0

ζ−1k̃ =
Ξ′

λ
dρ′ −

q∑
i=1

biβ
2
i dφi,

and the redefinition of mass M ′ = ζnM absorbs the zero of k̃ ⊗ k̃ and that of ρn−2 =

ζn−2ρ′ in H̃ k̃ ⊗ k̃ (cf. (6.42)). Thus, the limit metric has the Kerr-Schild form

g̃′ = g̃′dS + H̃′k̃′ ⊗ k̃′, H̃′ = 2M ′ρ′n−2

Π′Ξ′
, M ′ ∈ R (6.45)

with

g̃′dS =
λW ′

ρ′2
dt2 − Ξ′

λ

dρ′2

ρ′2
+

q∑
i=1

1 + ρ′2b2i
ρ′2

(
dβ2

i + β2
i dφ2

i

)
− 1

W ′ρ′2
dW ′2

4
. (6.46)

One can easily check that the original de Sitter metric g̃dS in (6.40), written in primed

coordinates is C2 in ζ. Hence, by the above argument g̃′dS (cf. (6.44)), the limit metric

(6.46), is (locally) isometric to de Sitter.

Consider the conformal extension g′ = ρ′2g̃′. The boundary metric induced by g′ coin-

cides with the one induced by g̃′dS , which is

γ′ = ρ′2g̃′dS |I = λW ′dt2 +

q∑
i=1

(
dβ2

i + β2
i dφ2

i

)
− 1

W ′
dW ′2

4
.

As g̃dS is locally isometric to de Sitter, γ′ must be locally conformally flat.

To calculate the electric part of the rescaled Weyl tensor, we use formula (5.6), after

which it follows

D = ρ′n−2C⊥|I = −λn(n− 2)M ′

(
ξ′ ⊗ ξ′ −

|ξ′|2γ′
n

γ′

)
,

where ξ′ is the projection of k̃′ onto I

ξ′ = −
q∑
i=1

biβ
2
i dφi =⇒ ξ′ = −

q∑
i=1

bi∂φi .
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This is obviously a (conformal) Killing vector field of γ′. Therefore, the metric (6.45)

is in the Kerr-de Sitter-like class. To calculate the conformal class of ξ, we find an

explicitly flat representative in [γ′]. It is a matter of direct computation to check that

the coordinate change4

xi =
e
√
λt

√
W ′

βi cosφi, yi =
e
√
λt

√
W ′

βi sinφi,

brings the metric γ′ into the form

γ′ =
W ′

e2
√
λt

q∑
i=1

(
dx2

i + dy2
i

)
.

Hence γE := e2
√
λtW−1γ is flat and ξ′ is in Cartesian coordinates {xi, yi}:

ξ′ = −
q∑
i=1

bi(xi∂yi − yi∂xi).

Thus, ξ is the sum of generators of rotations within q different orthogonal planes. Its

corresponding skew-symmetric endomorphism of M1,n+1, with respect to an orthogonal

unit basis {eα}n+1
α=0 with e0 timelike, can be directly calculated from (2.26):

F (ξ) =

(
0 0

0 0

)
q⊕
i=1

(
0 −bi
bi 0

)
. (6.47)

The orthogonal sum of two-dimensional blocks is adapted to the decomposition

M1,n+1 = Π0

q⊕
i=1

Πi

where Π0 = span{e0, e1} and Πi = span{e2i, e2i+1} are F -invariant planes. The causal

character of kerF (ξ) is evidently timelike because e0 ∈ kerF (ξ) and the polynomial QF 2

in Definition 4.12 is also straightforwardly computable from the block form (6.47)

QF 2(x) =

q∏
i=1

(x− b2i ).

Then, permuting the indices i so that the rotation parameters b2i appear in decreasing

order b21 ≥ · · · ≥ b2q , and applying Theorem 4.35, the conformal class of ξ is defined by

the parameters

{−µ2
t = 0, µ2

s = b21;µ2
1 = b22, · · · , µ2

p = b2q}.

In consequence, for bis taking arbitrary values, this family covers every point in every

region R(n+2,m)
+ of the quotient CKill(En)/ConfLoc(En), where m is the number of

4This and the following Cartesian coordinates in this section are inspired from the Kerr-de Sitter
case in equation (5.37).
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vanishing bis.

6.3.2.2 Generalized {ai →∞}-limit Kerr-de Sitter.

In this subsection we perform the limits that cover the regions R(n+2,m)
0 of the quotient

CKill(En)/ConfLoc(En). In this case, the limits are achieved by absorbing ζ in the t

coordinate, i.e. defining t′ = ζ−1t, so that the limit vector field ξ′ = limζ→0 ξζ has a

non-zero term in ∂t′ . It turns out that these limits lie in the Kerr-de Sitter-like class

provided that the Kerr-de Sitter metric from which they are calculated have one rotation

parameter vanishing. Otherwise the limit of the boundary metric is degenerate. Thus we

will assume that aq = 0. We name the limit spacetimes obtained in this way {ai →∞}-
limit-Kerr-de Sitter because the conformal class that characterizes them is similar to the

n = 3 case [101].

Consider the de Sitter metric (6.40) with the change of coordinates

ρ = ζρ′, t = ζt′, φq = ζΦ, α̂i = ζβi (i = 1, · · · , p),

where note that the coordinate α̂q and the angles φi (i = 1, ..., p) remain unaltered. In

addition, let us redefine the parameters

M = M ′ζn, ai = ζ−1bi (i = 1, · · · , p).

By (6.38), the coordinates {βi, α̂q} satisfy in the limit ζ → 0:

α̂2
q +

p∑
i=1

λb2iβ
2
i = 1. (6.48)

The limits of W , Ξ and Π are obtained immediately from (6.39) respectively. They are

Π′ = lim
ζ→0

Π =

p∏
j=1

(1+ρ′2b2j ), W ′ = lim
ζ→0

W = α̂2
q , Ξ′ = lim

ζ→0
Ξ = α̂2

q+

p∑
i=1

λb2i
1 + ρ′2b2i

β2
i .

In addition from (6.42) and (6.41) and the redefinitions above it follows

H̃′k̃′ ⊗ k̃′ := lim
ζ→0
Hk̃ ⊗ k̃ =

2M ′

Π′Ξ′
ρ′n−2︸ ︷︷ ︸

=:H̃′

(
W ′dt′ +

Ξ′

λ
dρ′ −

p∑
i=1

biβ
2
i dφi︸ ︷︷ ︸

=:k̃′

)2
.
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Before taking the limit, we rewrite the de Sitter metric (6.40) in the new coordinates

and separate the terms multiplying dα̂q

g̃dS = −W (ζ2ρ′2 − λ)

ρ′2
dt′2 +

Ξ

ζ2ρ′2 − λ
dρ′2

ρ′2
+

1

ζ2ρ′2
(
dα̂2

q + α̂2
qζ

2dΦ2
)

+

p∑
i=1

1 + ρ′2b2i
ρ′2

(
dβ2

i + β2
i dφ2

i

)
+

(ζ2ρ′2 − λ)

λWζ2ρ′2

(
α̂qdα̂q + ζ2

p∑
i=1

βidβi

)2

, (6.49)

with

W = α̂2
q + ζ2

p∑
i=1

β2
i , Ξ = α̂2

q +

p∑
i=1

ζ2 + λb2i
1 + ρ′2b2i

β2
i .

Only the terms involving dα̂q are troublesome in the limit ζ → 0. Let us gather them

to get

g(αq) :=
1

ρ′2ζ2
dα̂2

q +
(ζ2ρ′2 − λ)

λWζ2ρ′2

(
α̂qdα̂q + ζ2

p∑
i=1

βidβi

)2

=
1

ζ2ρ′2

(
1 +

(ζ2ρ′2 − λ)α̂2
q

λW

)
dα̂2

q

+
(ζ2ρ′2 − λ)

λWζ2ρ′2

ζ4

(
p∑
i=1

βidβi

)2

+ 2ζ2α̂qdα̂q

(
p∑
i=1

βidβi

) .

Writting W in coordinates {βi, α̂q}, the term in dα̂2
q takes the limit

lim
ζ→0

1

ζ2ρ′2

(
1 +

(ζ2ρ′2 − λ)α̂2
q

λW

)
dα̂2

q = lim
ζ→0

λζ2
(∑p

i=1 β
2
i

)
+ ζ2ρ′2α̂2

q

ζ2ρ′2λ(α̂2
q + ζ2

∑p
i=1 β

2
i )

dα̂2
q

=
1

λ
+

∑p
i=1 β

2
i

ρ′2α̂2
q

,

while the limit of the last two terms is direct

lim
ζ→0

(ζ2ρ′2 − λ)

λWζ2ρ′2

ζ4

(
p∑
i=1

βidβi

)2

+ 2ζ2α̂qdα̂q

(
p∑
i=1

βidβi

)
=− 2dα̂q

ρ′2α̂q

(
p∑
i=1

βidβi

)
.

Thus, the limit ζ → 0 of (6.49) is

g̃′dS =
λα̂2

q

ρ′2
dt′2 − Ξ′

λ

dρ′2

ρ′2
+
α̂2
qdΦ2

ρ′2
+

p∑
i=1

1 + ρ′2b2i
ρ′2

(
dβ2

i + β2
i dφ2

i

)
+

(
1

λ
+

∑p
i=1 β

2
i

ρ′2α̂2
q

)
dα̂2

q −
2dα̂q
ρ′2α̂q

(
p∑
i=1

βidβi

)
,



206

where we have already substituted W ′ = α̂2
q . From the argument above (cf. (6.44)) g̃′dS

is locally isometric to de Sitter. Thus, we have all the ingredients to build up the limit

Kerr-Schild metric, namely

g̃′ = g̃′dS + H̃′k̃′ ⊗ k̃′, H̃′ = 2M ′ρ′n−2

Π′Ξ′
, M ′ ∈ R.

We now calculate the asymptotic structure and verify that indeed, these spacetimes

correspond to the regions R(n+2,m)
0 in the space of orbits. The boundary metric is

γ′ = ρ′2g̃′|I = λα̂2
qdt
′2 + α̂2

qdΦ2 +

p∑
i=1

(
dβ2

i + β2
i dφ2

i

)
+

(
p∑
i=1

β2
i

)
dα̂2

q

α̂2
q

− 2dα̂q
α̂q

(
p∑
i=1

βidβi

)
. (6.50)

As usual, the TT tensor Dξ′ is directly calculated with equation (5.6)

D = ρ′n−2C⊥|I = −λn(n− 2)M ′

(
ξ′ ⊗ ξ′ −

|ξ′|2γ′
n

γ′

)
,

where ξ′ is the projection of k̃′ onto I

ξ′ = α̂2
qdt
′ −

p∑
i=1

biβ
2
i dφi =⇒ ξ′ =

1

λ
∂t′ −

p∑
i=1

bi∂φi .

To calculate the conformal class of ξ′, we look for a flat representative in [γ′] written in

Cartesian cordinates. It turns out to be useful to scale the coordinates {βi}pi=1 as

β̃i =
βi
α̂q
.

Replacing βi = β̃iα̂q and dβi = α̂qdβ̃i+ β̃idα̂q in equation (6.50), all terms in dα̂q cancel

out and we are left with the expression

γ′ = α̂2
q

(
λdt′2 + dΦ2 +

p∑
i=1

(
dβ̃2

i + β̃2
i dφ2

i

))
.

This determines a flat representative γE := α̂−2
q γ′, where by (6.48), α̂q is written explictly

in terms of {β̃i} as α̂2
q = (1+λ

∑p
i=1 b

2
i β̃

2
i )−1. The set {τ := λ1/2t′,Φ, xi := β̃i cosφi, yi :=

β̃i sinφi} define Cartesian coordinates for γ′, into which vector field ξ′ reads

ξ′ =
1

λ1/2
∂τ −

p∑
i=1

bi(xi∂yi − yi∂xi),

i.e. is the sum of translation along the coordinate τ plus the sum of p independent

orthogonal rotations. Its correspoding skew-symmetric endomorphism of M1,n+1 is by
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(2.26)

F (ξ) =


0 0 λ−1/2

2 0

0 0 −λ−1/2

2 0
λ−1/2

2
λ−1/2

2 0 0

0 0 0 0


p⊕
i=1

(
0 −bi
bi 0

)
(6.51)

in an orthogonal unit basis {eα}n+1
α=0 with e0 timelike. Similar to subsection 6.3.2.1, the

direct sum (6.51) is adapted to the decomposition

M1,n+1 = M1,3
p⊕
i=1

Πi,

where M1,3 = span{e0, e1, e2, e3} and Πi = span{e2(i+1), e2(i+1)+1} are F -invariant sub-

spaces. The causal character of kerF (ξ′) is determined by the causal character of

kerF (ξ′)|M1,3 , because every non-spacelike vector v ∈ kerF (ξ′) must have non-zero pro-

jection v0 ∈ M1,3 with v0 ∈ kerF (ξ′)|M1,3 . It is immediate to calculate kerF (ξ′)|M1,3 =

span{e0− e1, e3}, where e0− e1 is a null vector in kerF (ξ′), thus kerF (ξ′) is degenerate.

The polynomial QF 2 in Definition 4.12 is by direct calculation

QF 2 = x2
p∏
i=1

(x− b2i ).

This, by Theorem 4.35, gives the parameters for the conformal class of ξ′

{−µ2
t = 0, µ2

s = 0;µ2
1 = b21, · · · , µ2

p = b2p}.

This collection of conformal classes covers every point in every region R(n+2,m)
0 , where

m is the number of zero bi parameters.

6.3.3 Limits n-odd

One major difference between the n odd and even cases is that, only when n is even the

region R(n+2,0)
− (namely the portion corresponding to Kerr-de Sitter with none of the

rotation parameters vanishing) admits limit in the whole of CKill(En)/ConfLoc(En) (cf.

Proposition 4.26). This is what allowed us to construct all spacetimes in the Kerr-de

Sitter-like class directly as limits of Kerr-de Sitter in subsection 6.3.2. In the n odd case,

no sequence in R(n+2,0)
− takes limit at R(n+2,0)

+ and viceversa, because they are disjoint

and open subspaces by Proposition 4.26. In subsection 6.3.3.1 we deal with this issue

by constructing, using analytic continuation of Kerr-de Sitter, the set spacetimes whose

CKVF class corresponds to R(n+2,0)
+ . To do this, we define a Wick rotation in arbitrary

n+ 1 even dimensions (generalizing the transformation in [88]). We name the resulting

family Wick-rotated-Kerr-de Sitter, in analogy with the n = 3 case in [100]. From
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these, all spacetimes in R(n+2,m)
+ can be obtained easily. Subection 6.3.3.2 is devoted to

finding the spacetimes whose CKVF class corresponds to R(n+2,m)
0 . These are obtained

by performing limits to Kerr-de Sitter, similar to those in subsection 6.3.2.2.

6.3.3.1 Generalized Wick-rotated

Let now n be odd and let us consider the Kerr-de Sitter metric with none of the rotation

parameters ai equal to zero. The generalization of the Wick rotation is given by the

following complex coordinate transformation

t = it′, ρ = iρ′, α̂i = iβi, i = 1, · · · , p, (6.52)

with t′, ρ′, βi ∈ R, and the redefinition of parameters

ai = −ibi, M = (−1)
n+1

2 iM ′, M ′ ∈ R.

Note that the only the first p α̂i coordinates have been “rotated”. Introducing βp+1 :=

α̂p+1, (6.38) gives:

β2
p+1 −

p∑
i=1

(1− λb2i )β2
i = 1.

By performing the Wick rotation (6.52), the functions W , Ξ in and Π in (6.39) are now

redefined

W ′ := β2
p+1 −

p∑
i=1

β2
i , Ξ′ := β2

p+1 −
p∑
i=1

1− λb2i
1 + ρ′2b2i

β2
i , Π′ =

p∏
j=1

(1 + ρ′2b2j ). (6.53)

The spacetime metric is given by

g̃′ = g̃′dS + H̃′k̃′ ⊗ k̃, H̃′ = 2M ′ρ′n−2

Π′Ξ′
M ′ ∈ R

with

g̃′dS = W ′
(ρ′2 + λ)

ρ′2
dt′2 − Ξ′

ρ′2 + λ

dρ′2

ρ′2
−

dβ2
p+1

ρ′2

+

p∑
i=1

1 + ρ′2b2i
ρ′2

(
dβ2

i + β2
i dφ2

i

)
+

(ρ′2 + λ)

λW ′ρ′2
dW ′2

4
, (6.54)

k̃ :=

(
W ′dt̃′ +

Ξ′

ρ′2 + λ
dρ′ −

p∑
i=1

biβ
2
i dφi

)
.

The domain of definition of the coordinates is t′, ρ′ ∈ R, and the φi ∈ [0, 2π) are still

angles. Moreover, β2
p+1 > 0, and {βi}pi=1 are restricted to a sufficiently small neighbour-

hood of {βi = 0}pi=1 so that W ′,Ξ′ are positive (see (6.53)). With this restriction of the

coordinates, vanishing values of the bi parameters are allowed.
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The signature is not necessarily preserved after a Wick rotation, so we still need to prove

that the Wick-rotated Kerr-de Sitter metrics are Lorentzian. They are obviously Λ > 0-

vacuum Einstein because we have only performed a (complex) change of coordinates.

From the Einstein equations and positivity of the cosmological constant, it follows that

the boundary metric is positive definite if and only if the spacetime metric is Lorentzian

in a neighbourhood of I . In addition, note that the boundary metric induced by g̃′

is the same as the one induced by g̃′dS . Moreover, g̃′dS is clearly Einstein of constant

curvature. Thus, proving that γ′ is positive definite, in turn, also proves that g̃′dS is

Lorentzian and therefore locally isometric to de Sitter.

The metric induced at I is, directly from (6.54),

γ′ = W ′λdt′2 − dβ2
p+1 +

p∑
i=1

(
dβ2

i + β2
i dφ2

i

)
+

1

W ′
dW ′2

4
. (6.55)

The explicitly conformally flat form is obtained under the change of coordinates

β̃i =
βi

W ′1/2
, i = 1, · · · , p+ 1. (6.56)

Observe that by redefining all the p+ 1 coordinates we now have

W ′ = β2
p+1 −

p∑
i=1

β2
i = W ′(β̃2

p+1 −
p∑
i=1

β̃2
i ) =⇒ β̃2

p+1 −
p∑
i=1

β̃2
i = 1 (6.57)

and

W ′β̃2
p+1 = β2

p+1 = 1 +

p∑
i=1

(1− λb2i )β2
i = 1 +W ′

p∑
i=1

(1− λb2i )β̃2
i

=⇒ W ′ =
1

1 +
∑p

i=1 λb
2
i β̃

2
i

.

Inserting the coordinate change (6.56) into (6.55) gives

γ′ = W ′

(
λdt′2 − dβ̃2

p+1 +

p∑
i=1

(
dβ̃2

i + β̃2
i dφ2

i

))
.

From this expression it already follows that γ′ is Riemannian, because the restriction of

γ′ to the hypersurfaces {t′ = const.} is clearly the standard metric of the hyperboloid

(cf. (6.57)). More specifically, let us introduce the parametrization

β̃p+1 = coshχ, β̃i = νi sinhχ, i = 1, · · · , p, with

p∑
i=1

ν2
i = 1,

so that

γ′ = W ′
(
λdt′2 + dχ2 + sinh2 χ γSn−2

)
,
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where

γSn−2 :=

p∑
i=1

(
dν2

i + ν2
i dφ2

i

)
|∑p

i=1 ν
2
i =1

is an (n− 2)-dimensional spherical metric. Finally, defining the coordinates

z :=
sin
√
λt′

cos
√
λt′ + coshχ

, xi :=
νi cosφi sinhχ

cos
√
λt′ + coshχ

, yi :=
νi sinφi sinhχ

cos
√
λt′ + coshχ

for i = 1, · · · , p, one has

γE :=
1

W ′(cos
√
λt′ + coshχ)2

γ′ = dz2 +

p∑
i=1

(
dx2

i + dy2
i

)
.

Thus γE is a flat representative γE ∈ [γ′] and {z, xi, yi} are Cartesian coordinates of γE .

We continue by calculating the electric part of the rescaled Weyl tensor at I . As usual,

the expression follows from formula (5.6). We give it first in coordinates {t′, ρ′, βi, φi} :

Dξ′ = ρ′n−2C⊥|I = −λn(n− 2)M ′

(
ξ′ ⊗ ξ′ −

|ξ′|2γ′
n

γ′

)
,

where ξ′ is the projection of k̃′ onto I

ξ′ = W ′dt′ −
p∑
i=1

biβ
2
i dφi =⇒ ξ′ =

1

λ
∂t′ −

q∑
i=1

bi∂φi .

To express ξ′ in Cartesian coordinates {z, {xi, yi}pi=1}, firstly observe

∂z

∂t′
=
√
λ

cos
√
λt′(cos

√
λt′ + coshχ) + sin2

√
λt′

(cos
√
λt′ + coshχ)2

=
√
λ

(
1

2
− 1

2
+

1 + cos
√
λt′ coshχ

(cos
√
λt′ + coshχ)2

)

=

√
λ

2
+

√
λ

2

(
z2 −

p∑
i=1

(x2
i + y2

i )

)
,

and it is also straightforward that

∂xi
∂t′

=
√
λzxi,

∂yi
∂t′

=
√
λzyi.

Then

∂t =
∂z

∂t
∂z +

p∑
i=1

(
∂xi
∂t

∂xi +
∂yi
∂t
∂yi

)

=

√
λ

2

(
1 + z2 −

p∑
i=1

(x2
i + y2

i )

)
∂z +

√
λz

p∑
i=1

(xi∂xi + yi∂yi)
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and on the other hand

∂φi =
∂xi
∂φi

∂xi +
∂yi
∂φi

∂yi = xi∂yi − yi∂xi .

Therefore

ξ =
1

2
√
λ

(
1 + z2 −

p∑
i=1

(x2
i + y2

i )

)
∂z +

z√
λ

p∑
i=1

(xi∂xi + yi∂yi)−
p∑
i=1

bi(xi∂yi − yi∂xi).

(6.58)

Denoting the coordinates as {XA}nA=1 := {z, {xi, yi}pi=1}, ξ′ is a CKVF with aA =

δA1λ
−1/2, bA = aA/2, plus a sum of orthogonal rotations with parameters bi. The asso-

ciated skew-symmetric endomorphism of M1,n+1 is directly computable from expression

(6.58) and (2.26)

F (ξ) =

 0 0 −3λ−1/2

4

0 0 −5λ−1/2

4

−3λ−1/2

4
5λ−1/2

4 0

 p⊕
i=1

(
0 −bi
bi 0

)
. (6.59)

F (ξ) is referred to an orthogonal unit basis {eα}n+1
α=0 with e0 timelike and as in the

previous sections the direct sum (6.59) is adapted to the decomposition

M1,n+1 = M1,2
p⊕
i=1

Πi

where M1,2 = span{e0, e1, e2} and Πi = span{e2i+1, e2(i+1)} are F -invariant subspaces.

The causal character of kerF (ξ) is straightforwardly determined by checking that v :=

5e0 + 3e1 is timelike and that it belongs to kerF (ξ). Thus kerF (ξ) is timelike.

On the other hand, the polynomial QF 2 in Definition 4.12 is

QF 2(x) = (x− 1

λ
)

p∏
i=1

(x− b2i ) =

p∏
i=0

(x− b2i )

where for the last equality we have set b20 := 1/λ. Now let {b̃i}pi=0 the parameters bi

sorted in decreasing order b̃20 ≥ · · · ≥ b̃2p. Then by Theorem 4.35, the conformal class of ξ

is given by {σ = b̃20;µ2
1 = b̃21, · · · , µ2

p = b̃2p}. Note that the value of one of the parameters

is 1/
√
λ, so it is a priori fixed. To cover the whole space of parameters R(n+2,m)

+ , we

must consider the scaling freedom of ξ, just like we explained in the case of Kerr-de

Sitter. Taking this into account, this family of metrics covers every point in all the

regions R(n+2,m)
+ in the space of conformal classes.
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6.3.3.2 Generalized {ai →∞}-limit Kerr-de Sitter.

In this subsection we calculate the remaining family of metrics which completes the

Kerr-de Sitter-like class for n odd, i.e. those corresponding to the regions R(n+2,m)
0 in

the space of conformal classes. Analogously to the case of n even (cf. subsection 6.3.2.2),

these are called generalized {ai →∞}-limit Kerr-de Sitter, also extending the definition

in [101].

Contrary to the n even case, if n is odd we obtain a good limit from Kerr-de Sitter with

none of the rotation parameters initially vanishing. The reason is that having only p non-

vanishing rotation parameters ai = ζ−1bi (i = 1, · · · , p) (recall that ap+1 = 0 was defined

for notational reasons) the function W remains finite in the limit limζ→0W = α2
p+1 if

we scale the first p coordinates α̂i = ζβi. Thus, γζ = ζ−2γ and ξζ both admit a finite

limit ζ → 0, as soon as the coordinate t is rescaled to t = ζt′ (see subsection 6.3.2.2 for

comparison).

Consider the de Sitter metric (6.40) with the change of coordinates

ρ = ζρ′, t = ζt′, α̂i = ζβi (i = 1, · · · , p), (6.60)

where notice that α̂p+1 has not been scaled. Also consider the redefinition of parameters

M = M ′ζn, ai = ζ−1bi (i = 1, · · · , p). (6.61)

Unlike in the n even case, no φ angle is associated to α̂p+1, so there is no need the rescale

any of the φi coordinates. All calculations are analogous to those in subsection 6.3.2.2,

so we provide here less detail.

First, the scaled coordinates {βi}pi=1 and α̂p+1 satisfy when ζ → 0

α̂2
p+1 +

p∑
i=1

λb2iβ
2
i = 1.

The functions W , Ξ and Π (cf. (6.39)) take the limit

W ′ := lim
ζ→0

W = α̂2
p+1, Ξ′ := lim

ζ→0
Ξ := α̂2

p+1+

p∑
i=1

λb2iβ
2
i

1 + ρ′2b2i
, Π′ =

p∏
j=1

(1+ρ′2b2j ).

The limit of the term H̃ k̃ ⊗ k̃ present no difficulties since the scalings defined in (6.60)

and (6.61) compensate each other so that no divergences appear. Then

H̃′k̃′ ⊗ k̃′ := lim
ζ→0
Hk̃ ⊗ k̃ =

2M ′

Π′Ξ′
ρ′n−2︸ ︷︷ ︸

=:H̃′

(
W ′dt′ +

Ξ′

λ
dρ′ −

p∑
i=1

biβ
2
i dφi︸ ︷︷ ︸

=:k̃′

)2
.
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For the de Sitter background (6.40) a computation analogous to the case of n even shows

that the terms in dα̂p+1 do not diverge. In fact, the limit of de Sitter as ζ → 0 is

g̃′dS =
λα̂2

p+1

ρ′2
dt′2 − Ξ′

λ

dρ′2

ρ′2
+

p∑
i=1

1 + ρ′2b2i
ρ′2

(
dβ2

i + β2
i dφ2

i

)
+

(
1

λ
+

∑p
i=1 β

2
i

ρ′2α̂2
p+1

)
dα̂2

p+1 −
2

ρ′2
dα̂p+1

α̂p+1

(
p∑
i=1

βidβi

)
.

The limit metric is thus

g̃′ = g̃′dS + H̃′k̃′ ⊗ k̃′, H̃′ = 2M ′ρ′n−2

Π′Ξ′
, M ′ ∈ R.

In addition, g̃′dS must be locally isometric to de Sitter, because the metric g̃dS is C2 in

ζ (up to and including ζ = 0) when written in the primed coordinates.

We next analyze the asymptotic structure. First, the boundary metric

γ′ = λα̂2
p+1dt′2 +

p∑
i=1

(
dβ2

i + β2
i dφ2

i

)
+

(
p∑
i=1

β2
i

)
dα̂2

p+1

α̂2
p+1

− 2
dα̂p+1

α̂p+1

(
p∑
i=1

βidβi

)
,

which is explicitly conformally flat in coordinates

β̃i =
βi
α̂p+1

, i = 1, · · · , p

because

γ′ = α̂2
p+1

(
λdt′2 +

p∑
i=1

(
dβ̃2

i + β̃2
i dφ2

i

))
.

This also determines a flat representative γE := α̂−2
p+1γ

′ with Cartesian coordinates

{τ :=
√
λt′, xi := β̃i cosφi, yi := β̃i sinφi}.

The electric part of the rescaled Weyl tensor D follows from equation (5.6)

Dξ′ = ρn−2C⊥|I = −λn(n− 2)M ′

(
ξ′ ⊗ ξ′ −

|ξ′|2γ′
n

γ′

)
,

where

ξ′ = α̂2
p+1dt′ −

p∑
i=1

biβ
2
i dφi =⇒ ξ′ =

1

λ
∂t′ −

p∑
i=1

bi∂φi ,

which in Cartesian coordinates is simply

ξ′ =
1

λ1/2
∂τ −

p∑
i=1

bi(xi∂yi − yi∂xi).
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Letting {XA}nA=1 := {τ, {xi, yi}pi=1}, the skew-symmetric endomorphism of M1,n+1 as-

sociated to ξ′ is by (2.26)

F (ξ) =

 0 0 λ−1/2

2

0 0 −λ−1/2

2
λ−1/2

2
λ−1/2

2 0

 p⊕
i=1

(
0 −bi
bi 0

)
(6.62)

referred to an orthogonal unit basis {eα}n+1
α=0 with e0 timelike. The direct sum (6.62) is

adapted to the decomposition

M1,n+1 = M1,2
p⊕
i=1

Πi

where M1,2 = span{e0, e1, e2} and Πi = span{e2i+1, e2(i+1)} are F -invariant subspaces.

For analogous reasons than in the n even case, kerF (ξ′) is degenerate. The polynomial

QF 2 in Definition 4.12 is

QF 2 = x

p∏
i=1

(x− b2i ),

and by Theorem 4.35, the parameters determining the conformal class of ξ′ are

{σ = 0;µ2
1 = b21, · · · , µ2

p = b2p}.

Hence, this set of conformal classes covers every point in every region R(n+2,m)
0 .



Chapter 7

Conclusions and outlook

In this thesis I have studied the asymptotic initial value problem of general relativity

in all dimensions with positive cosmological constant. To do that, several tools related

to conformal geometry have been developed. Highlights among them are the study of

CKVFs of locally conformally flat metrics and their classes up to conformal transforma-

tions, as well as the initial data in the Fefferman-Graham formalism. These tools have

been applied to obtain characterizations of Kerr-de Sitter and related spacetimes. We

now discuss the main conclusions of the this work and also the points which are left

open for a future study.

In Chapter 3 we have studied the skew-symmetric endomorphisms of M1,3 and M1,2

as well as the global CKVFs of S2. Firstly we have derived a unified canonical form

for every skew-symmetric endomorphisms in M1,3 depending on just two parameters

σ, τ (cf. Proposition 3.8). As a corollary, simply by setting τ = 0 a canonical form

for SkewEnd(M1,2) is obtained (cf. Corollary 3.9). Both canonical forms posses an

invariance group, which has been calculated and analyzed along with its generators. As

mentioned in Chapter 3, another notion of ”canonical form” in the context of two-forms

is also commonly found in the literature. This, however, requires a separation into two

different cases, namely

F1 = ae ∧w + bu ∧ v, F2 = k ∧ v, a, b ∈ R, (7.1)

were {e,w,u,v} are orthogonal one-forms unit with e timelike, and k null orthogonal

to v. A remarkable feature of the unified canonical form that we obtain is that, when

translated to two-forms and by taking an adequate limit σ, τ → 0 a two-form of the

type F1 (with a, b 6= 0) in (7.1) may take as limit a two-form of the type F2. This,

which in the canonical form (3.6) is obvious, is not apparent the form (7.1). Besides

the applications that we have given and shall be discussed next, this unified form has

potential interest in other areas, such as the study of the electromagnetic field tensor in

special or general theory of relativity.

215



216

The second part of Chapter 3 is devoted to the study of CKVFs of S2. It is worth

highlighting that we distinguish the global CKVFS of the 2-sphere from the rest. Most

of our results hold specifically for global CKVFs, which are the generators of the global

diffeomorphisms of S2, although the results in subsection 3.9.2 apply for a general CK-

VFs. We have first discussed some generalities on global CKVFs and global conformal

transformations. Then, in Section 3.7 we have obtained a canonical form for the global

CKVFs of S2, induced from the one for SkewEnd(M1,3). In the first place, this allowed

us to explicitly obtain adapted coordinates which fit every global CKVF ξ of the sphere.

With these coordinates, we have calculated a class of metrics of constant curvature for

which ξ is a Killing vector field. In addition, in Theorem 3.25 we have found the class

of all Lie-constant TT tensors w.r.t to a general CKVF (i.e. non necessarily global) ξ.

The solution has been given in covariant form in using second CKVF ξ⊥, canonically

obtainable from ξ. This has found interesting applications in radiation at null infinity

[51].

In Chapter 4 we have extended the main points analyzed in Chapter 3 to arbitrary

d dimension. Firstly, we have given a new and very direct proof of a known clas-

sification result for SkewEnd(M1,d−1) in Theorem 4.6, using only elementary algebra

methods. Then we have generalized the canonical form of skew-symmetric endomor-

phisms to arbitrary dimension d (cf. Theorem 4.12). Using this canonical form, we

have studied the structure of the quotient space SkewEnd(M1,d−1)/O+(1, d − 1). It is

remarkable that the canonical form gives a good representation of this quotient. In

SkewEnd(M1,d−1)/O+(1, d − 1), we have constructed sequences which have two simul-

taneous limit points in the quotient topology. In other words, we have shown that the

quotient topology is non-Hausdorff. In addition, we have proven that, for even d dimen-

sion the region R(d,0)
− ⊂ SkewEnd(M1,d−1)/O+(1, d−1) (see Remark 4.25) is open in the

quotient topology and moreover its closure exhausts SkewEnd(M1,d−1)/O+(1, d− 1) (as

proven in Proposition 4.26). On the contrary, for d odd dimension both R(d,0)
− and R(d,0)

+

are open, and the closure of R(d,0)
− exhausts

(
SkewEnd(M1,d−1)/O+(1, d − 1)

)
\R(d,0)

+ .

This structure finds an important application in the last Chapter of this thesis. We will

come back to this later.

In the second part of Chapter 4, we apply the results obtained for skew-symmetric

endomorphisms to the set of CKVFs of Sn. Firstly, we have obtained a classification

result in Theorem 4.33, analogous to that for SkewEnd(M1,n+1). We have derived a

canonical form for every CKVF ξ (cf. Definition 4.34), which moreover, determines the

conformal class [ξ] (cf. Theorem 4.35). An interesting property of the canonical form is

that it always gives a maximal set of pairwise commuting linearly independent CKVFs

{ξ̃, ξ̃?, ηi} for n even and {ξ̃, ηi} for n odd, where ηi are in the conformal class of the

generators of rotations, which we have defined as conformally axial Killing vector fields

(CAKVFs).
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In order to obtain the canonical form ξ, one calculates first a flat representative γE of the

class of locally conformally flat metrics and Cartesian coordinates for it. Then, it is easy

to associate a skew-symmetric endomorphism in M1,n+1, whose canonical parameters

{−µ2
t , µ

2
s, µ

2
i } for n even and {−σ, µ2

i } for n odd in Definition 4.10 are straighforwardly

obtainable. However, finding explicitly a flat representative and corresponding Cartesian

coordinates may not be an easy problem in many cases. It would therefore be of interest

to have a completely covariant method to determine the conformal class of ξ. This

turns out to be possible. The underlying idea is, roughly speaking, that the CKVF is

determined by its value and certain derivatives at a unique point. This method has not

been included in this thesis because it is very recent and not yet written up. We expect

to make it available very soon.

In Section 4.6 we obtain and study a set of coordinates adapted to an arbitary CKVF ξ,

for which the canonical form of CKVFs is essential. It is remarkable that all calculations

in this section are carried for n even in just one go and the n odd case is obtained

by a suitable particularization. The results are summarized in Theorem 4.45. As an

application of the adapted coordinates, we have calculated all TT tensors in n = 3

which solve the KID equation for two commuting CKVFs {ξ̃, η}, with η conformally

axial. Both vector fields {ξ̃, η} arise from the canonical form ξ = ξ̃ + η. We emphasize

that the final form of this class of TT tensors is given in diffeomorphism and conformal

covariant form in Theorem 4.47.

Several things should be stressed about the class of TT tensors above. Firstly, it is an

infinite dimensional class containing the data of Kerr-de Sitter, which have explicitly

identified. As we mentioned in the main text, by comparison with results for stationary

axi-symmetric spacetimes in the Λ = 0 case [2, 18, 27], one could conjecture that a

set of momenta, related to mass and angular momentum, could be derived from these

data. Several proposals of conserved quantities can be found in the high energy physics

literature, with focus in Λ < 0 case (see e.g. [9, 10] and also [82] and references therein),

which perhaps could be applicable to this setting. In addition, the two KID vectors

{ξ̃, η} generate two commuting symmetries, with η being associated to an axial symme-

try. We have justified that the class of TT tensors we get contains all data corresponding

to spacetimes with (at least) two commuting symmetries, except for one case. The re-

maining case is the class of TT tensors with two independent KID vectors {ξ1, ξ2} that

are conformal to translations. This class can be readily calculated in Cartesian coor-

dinates adapted to both translations, so that we may easily obtain the complete set of

initial data at spacelike conformal flat infinity, for spacetimes admitting two commut-

ing symmetries. We note that although the integration of the remaining case is direct

in Cartesian coordinates, giving a covariant form is not so straighforward and requires

further analysis.

In Chapter 5 we have addressed the higher dimensional Cauchy problem of general

relativity. We recall that the spacetime dimension is n+ 1 so the dimension of I is n.
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In this and the next Chapter, the Fefferman-Graham formalism plays an important role.

In Section 5.1, we have derived two useful formulas for the Weyl tensor. The first one

gives a formula for the T -electric part of the Weyl tensor of an Einstein metric, with T

the gradient of a geodesic conformal factor. The second one relates, to leading order,

the Weyl tensors of two conformally extendable metrics g = ĝ + Ωmq, with m ≥ 2 and

Ω positive at least C2. Both formulas are very useful in the Fefferman-Graham setting,

and we have given several applications of them in this thesis. One is the calculation

of the FG expansion of the de Sitter metrics for n ≥ 3, which easily generalizes to all

Einstein metrics of constant curvature of any signature and any sign of Λ. This extends

previous results [140] in the Λ < 0 case of Lorentzian signature. Another application,

in Proposition 5.11, is a decomposition of FGP metrics admitting a smooth conformally

flat I . This decomposition allows us to extract a well-defined free TT part g̊(n) from

the n-th order coefficient of the FG expansion g(n) of every FGP metric admitting a

smooth conformally flat I . By an straighforward combination of the above results,

we have proven in Theorem 5.14 that g̊(n) agrees, up to an explicit constant, with the

electric part of the rescaled Weyl tensor at I . Our analysis extends previous results

[82], restricted to negative Λ and Lorentzian signature, to any non-zero Λ and arbitrary

signature.

It is worth at this point to discuss in a general setting the problem of how to extract the

free (TT) part g̊(n) from the n-th order coefficient g(n) and relate this to the conformal

equivalence of data (see discussion above Theorem 2.39). For n odd g(n) is always TT

so we can set in general g(n) = g̊(n). In this case, under conformal scalings of the metric

γ′ = ω2γ, the corresponding TT tensor is g′(n) = ω2−ng(n). For n even one should find

a way to extract the trace and divergence terms from g(n). For a fixed, but arbitrary,

conformal class of the boundary metric γ, this could be achieved by canonically selecting

“background” data (γ, g(n)), in such a way that for any other set of initial data (γ, g(n)),

we define the free part by g̊(n) := g(n) − g(n). Observe that the trace and divergence of

g(n) and g(n) only depend on γ, thus g̊(n) is TT. Once the background data are selected,

all data are (γ, g(n) + g̊(n)) so they are equivalent to the pair (γ, g̊(n)). For the free

part, the expected conformal equivalence of data is given by the class (ω2γ, ω2−ng̊(n))

for every smooth positive function ω of Σ. In the conformally flat γ case, the obvious

choice for background data are those corresponding to de Sitter spacetime, and this is

what we have used throughout. Observe that in this case, the conformal transformation

of the free part g̊(n) follows directly from Theorem 5.14 and confirms the expectation

above that g̊(n) is conformally covariant of weight 2 − n. However, it is not clear how

this same idea could be extended when γ belongs to an arbitrary conformal class. This

is an interesting problem that would deserve further investigation.

We have also discussed in the n odd case, where existence and uniqueness is guaranteed,

under which conditions the conformal flatness of I is sufficient for g̊(n) to coincide,

up to a constant, with the electric part of the rescaled Weyl tensor at I . We have
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linked this to a conjecture [103] (see also [15, 79]) which asserts that purely magnetic

spacetimes, i.e. with zero electric part C⊥ = 0, do not exist beyond the conformally

flat case. We have found that provided that the conjecture is true, the electric part of

the rescaled Weyl tensor at I and g̊(n) coincide if and only if I is conformally flat.

Another reason to believe that this relation between electric part of the rescaled and g̊(n)

is very exceptional is that the former is generally divergent at I , as we have justified

in Chapter 5.

In connection with the behaviour at infinity of the electric part of the Weyl tensor, we

have already mentioned the results in [112] where the peeling of the Weyl tensor in ar-

bitrary dimensions is established under the assumption that certain Weyl components,

namely those of highest boost weight, decay faster than r−2. It is an interesting prob-

lem to establish a connection between the two results. The idea is to determine the

minimal decay rate under which one can guaranteee that a smooth conformal compact-

ification with conformally flat I exists. This may lead to an interesting weakening of

the hypothesis in [112] that imply the peeling behaviour.

A core result of Chapter 5 is the KID equation that we have derived in Theorem 5.18.

This is a natural generalization to higher dimensions of the KID equation of the four

spacetime dimensional case by Paetz [116]. We have proven that this equation gives a

sufficient condition for the Cauchy development of analytic asymptotic data with zero

obstruction tensor to admit a Killing vector field. Nevertheless, we have argued that the

proof extends in the non-zero obstruction tensor and analytic data case, provided that

the logarithmic coefficients O(r,s) in the FG expansion can be generated by a recursive

formula dependending only on γ, g(n) and covariant derivatives of them. This should

follow from the FG equations, but requires further analysis. In addition, we have also

proven that our KID equation is necessary also in the non-analytic case. Sufficiency, is

much more difficult to establish in the general case and is left open for a future work.

We can, however, conjecture that the KID equation in Theorem 5.18 extends to the

general case.

Chapter 5 concludes with Theorem 5.22, which gives a geometric characterization of

the Kerr-de Sitter family of spacetimes in all dimension by direct calculation of their

asymptotic initial data. These data have been proven to be a conformally flat manifold

(Σ, γ) and a free term g̊(n) of the form κDξ, where

Dξ =
1

|ξ|n+2
γ

(
ξ ⊗ ξ −

|ξ|2γ
n
γ

)
(7.2)

is TT tensor with ξ a CKVF of γ. We stress the simplicity of this TT tensor. We have

proven that for any data of the form (Σ, γ, κDξ), with (Σ, γ) locally conformally flat and

ξ a CKVF of γ, the conformal class of ξ and the constant κ characterize the resulting

spacetime. Hence, the results of Chapter 4 on conformal clases of CKVFs are key in

this characterization theorem.
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The final chapter of this thesis, Chapter 6, is devoted to the definition and character-

ization of the so-called Kerr-de Sitter-like class with conformally flat I . This class is

defined via extension of the asymptotic data obtained in Chapter 5 for Kerr-de Sitter.

Namely, fixing the initial manifold (Σ, γ) to be conformally flat, the CKVF ξ tensor κDξ

is allowed to belong to an arbitrary conformal class. As already mentioned, only the

conformal class of ξ matters to determine the evolving spacetime. This is an extension

of the Kerr-de Sitter-like class with conformally flat I in [100] for n = 3, which in turn

is a particular case of the Kerr-de Sitter-like class in [99], where the conformal flatness

of I is not required. Since our extension only applies for the conformally flat I , this

will be implicit in the remainder when referring to the Kerr-de Sitter-like class.

We have defined the Kerr-Schild-de Sitter spacetimes as conformally extendable, Λ-

positive-vacuum Kerr-Schild type spacetimes, such that for every conformal factor Ω

the term Ω2H̃ k̃ ⊗ k̃ vanishes at I . Note that in particular they admit a smooth

conformally flat I . We have also observed that being Kerr-Schild and admitting a

smooth conformally flat I may not be sufficient for being Kerr-Schild-de Sitter, but we

expect few exceptions, if any at all. It would be interesting to answer this question.

We have proven that, in all dimensions, every Kerr-Schild-de Sitter spacetime belongs

to the Kerr-de Sitter-like class and viceversa. Moreover, we have explicitly constructed

all these metrics (see Theorem 6.6 for the full list). The proof involves two steps. First,

in Section 6.2 we have proven that the asymptotic data of the Kerr-Schild-de Sitter

spacetimes belongs to the Kerr-de Sitter-like class. By direct calculation of the initial

data of a generic Kerr-Schild-de Sitter spacetime in the Fefferman-Graham picture, we

obtain data (Σ, γ, κDξ) with (Σ, γ) conformally flat and Dξ of the form (7.2), and we

prove that ξ is a CKVF of γ, for which the fact [107] that all Λ-vacuum Kerr-Schild

spacetimes are algebraically special is of great relevance.

For the converse inclusion we exploit the structure of SkewEnd(M1,n+1)/O+(1, n + 1)

developed in Chapter 4. Recall that this space is equivalent to the space of conformal

classes of CKVFs (for locally conformally flat n-manifolds). From limits of conformal

classes of CKVFs, we obtain limits of data of the form (Σ, γ, κDξ), which in turn, must

correspond to limiting spacetimes because of the well-posedness of the Cauchy problem.

As a consequence, in the n even case, all spacetimes in the Kerr-de Sitter-like class

are limits of the Kerr-de Sitter family. This is because the data for the latter families

cover the region R(n+2,0)
− of SkewEnd(M1,n+1)/O+(1, n + 1), which we have proven in

Proposition 4.26 to be dense in the quotient topology (only if n is even). The n odd

case is similar, with the exception of the so-called Wick-rotated-Kerr-de Sitter family

with none of the rotation parameters vanishing. These correspond to data in the region

R(n+2,0)
+ of conformal classes and therefore cannot be obtained as limits of the Kerr-de

Sitter family (cf. Proposition 4.26). They have been obtained by analytic extension (i.e.

through a Wick rotation) of Kerr-de Sitter.
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It is worth here to make a link with the results in [19]. In this paper, the authors

characterize all algebraically special spacetimes, with non-degenerate optical matrix,

in dimesion five (i.e. n = 4) as the Kerr-de Sitter family or a limit of it. We have

obtained a proof, to be presented in a future work, that the spacetimes they obtain

exhaust the Kerr-de Sitter-like class. To do that, we use the covariant characterization

of conformal classes mentioned above in this chapter, because from the expressions in [19]

it is hard to obtain an explicitly flat conformal representative at I written in Cartesian

coordinates. Our results endow the Kerr-de Sitter-like class with conformally flat I

with a structure of limits which helps to understand why the limits performed in [19]

were of relevance. Moreover, our methods extend to arbitrary dimension, although the

n even and n odd cases have remarkable differences. It would be interesting to study

whether the characterization in [19] extends to higher even dimensions, namely, if the

algebraic type and the non-degeneracy of the optical matrix characterize the Kerr-de

Sitter-like class. In addition, one interesting difference between both approaches is that

in [19] the conformal extendability is not imposed.

We notice that the Kerr-de Sitter-like class has other interesting properties which, for the

sake of brevity, have not been included in this thesis. Let us conclude this chapter with

a brief description of them. The spacetimes in the Kerr-de Sitter-like class whose (non-

trivial) data lie in the regions with maximal number of vanishing rotation parameters,

namelyRn+1,p−1
−ε with ε ∈ {±, 0}, can be shown to correspond to the so-called generalized

Kottler spacetimes in all dimensions. This is the class of metrics

g = −
(
ε− λr2 − 2M

rn−2

)
dt2 +

dr2

ε− λr2 − 2M
rn−2

+
r2

λ
gε,

where gε is a n−1 dimensional metric of constant curvature ε. What is remarkable is that

they are limits of Kerr-de Sitter in every dimension. In particular, this implies that in

the physical n = 3 case, Kerr-de Sitter has three limits which, despite its similar form,

are qualitatively different. For instance, for positive M only Schwarzschild-de Sitter

(ε = 1) includes a static region. The ε = −1 case corresponds, in the space of conformal

classes, to a point with (σ > 0, µ2 = 0). This is one of the degenerate limits studied

in subsection 4.4.1, i.e. the sequences in the region (σ < 0, µ2 > 0) (corresponding to

Kerr-de Sitter) with limit at (σ > 0, µ2 = 0) have also limit at (σ′ = 0, µ2 = σ). The

latter corresponds to a metric in the a → ∞-limit-Kerr-de Sitter, given first in [101],

and also here in Chapter 6. In other words, there exists a sequence of metrics in the

Kerr-de Sitter family which limits simultaneously with a Kottler metric with ε = −1

and a metric in the a→∞-limit-Kerr-de Sitter.

Another interesting property follows by an straighforward application of the KID equa-

tion in Theorem 5.18 to the set of data in the Kerr-de Sitter-like class. As proven in

[99] for n = 3 and data in the Kerr-de Sitter-like class (Σ, γ, κDξ), any other CKVF ξ′

satisfies the KID equation if and only if it commutes with ξ. This fact easily extends to

arbitrary n with the KID equation in Theorem 5.18. In other words, C(ξ), the centralizer
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of the CKVF ξ, gives the number of independent symmetries of the corresponding space-

time in the Kerr-de Sitter-like class. The centralizer can in turn be obtained through

the centralizer of the corresponding skew-symmetric endomorphism C(F (ξ)).

All the above properties of the Kerr-de Sitter-like class and their consequences, e.g.

concerning the number and properties of Killing vectors for spacetimes in the class

depending on the defining conformal class, are under current investigation and will be

subject of a future work.



Appendix A

Fefferman-Graham Equations

In order to derive the Fefferman-Graham (FG) recursive equations, we need to set some

identities first. Let g̃ be a FGP metric λ > 0 and g = Ω2g̃ a geodesic conformal

extension. Recall that we defined Tα = ∇αΩ and its g-metrically associated vector field

Tα = gαβTβ. In this Appendix we derive all expressions assuming λ > 0. The λ < 0

case is slightly different, but the procedure is analogous. The FG equations in this case

can be found in e.g. [5].

Let us introduce the contraction of the Riemann tensors of g and g̃ with Tα twice

(RT )αβ := RµανβT
µT ν ,

(
R̃T
)
αβ

:= R̃µανβT
µT ν (A.1)

and define

(A)αβ := ∇αTβ,
(
A2
)
αβ

:= ∇αTµ∇µTβ.

Firstly, observe that A is symmetric. Since T is geodesic,

(RT )αβ = T ν(−∇ν∇βTα +∇β∇νTα)

= −∇T∇βTα +∇β∇TTα −∇βT ν∇νTα = −∇TAαβ −A2
αβ. (A.2)

The difference of tensors RT and R̃T in (A.1) is straightforward from expression (2.7).

Notice that the first index in R̃µανβ is lowered with g̃µσ and that TµT
µ = −λ since T is

geodesic for g. Hence, formula (2.7) when contracted with TµT ν is

(RT )αβ − Ω2(R̃T )αβ =
λ

Ω
Aαβ +

λ

Ω2
(TαTβ + λgαβ) . (A.3)

Now, from (2.32), in Gaussian coordinates {Ω, xi} we have

T = −λ∂Ω.

223
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Also, denoting ġΩ = ∂ΩgΩ, A is in these coordinates,

Aαβ = ∇αTβ = −Γ0
αβ =

g00

2
∂Ωgαβ = −λ

2
∂Ωgαβ = −λ

2
ġΩ (A.4)

and its covariant derivative w.r.t. T

∇TAαβ = −λ∂ΩAαβ + λ
(

Γµ0αAµβ + Γµ0βAαµ

)
,

with

Γµ0α =
1

2
gµν (∂Ωgαν + ∂αg0ν − ∂νg0α) =

1

2
gµν∂Ωgαν = − 1

λ
Aµα,

so in consequence

∇TA = −λ∂ΩA− 2A2. (A.5)

The tensor A is related to the second fundamental form of the leaves ΣΩ by a constant

factor A = λ1/2K. Then, the Gauss identity (2.17) gives

Rijkl = R
(Ω)
ijkl +

1

λ
(AikAjl −AilAjl) = R

(Ω)
ijkl +

λ

4
(ġikġjl − ġilġjk), (A.6)

where Rijkl are the space components of the Riemann tensor of g and R
(Ω)
ijkl the Riemann

tensor of gΩ. The Ricci tensor of g is

Rαβ = gµνRαµβν = − 1

λ
(RT )αβ + gijRαiβj ,

so that the contraction of (A.6) with gik reads

Rjl +
1

λ
(RT )jl = R

(Ω)
jl −

λ

2
Hġjl −

λ

4
ġ2
jl,

where H := gijAij/λ = −1
2g
ij ġij , ġ

2
jl = gikġilġkj and R

(Ω)
ij is the Ricci tensor of g(Ω).

From (A.2), (A.4) and (A.5) one gets

(RT )ij = −(∇TAij +A2
ij) = λȦij + 2A2

ij −A2
ij = −λ

2

2
g̈ij +

λ2

4
ġ2
ij .

Therefore

Rjl −
λ

2
g̈jl = R

(Ω)
jl −

λ

2
Hġjl −

λ

2
ġ2
jl. (A.7)

Finally, we relate the tangent components of the Ricci tensors of g and g̃ in terms of the

above quantities. First

∇α∇αΩ = gαβ∇αTβ = gij∇iTj = λH

and from (2.8) it follows (recall that g, g̃ are metrics in an (n+1)-dimensional manifold)

Rij =
n− 1

2Ω
λġij −

1

Ω
λHgij + R̃ij − λng̃ij .
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Inserting this into (A.7) and multiplying by 2Ω
λ yields

−Ωg̈Ω + (n− 1)ġΩ − 2HgΩ = Ω

(
2

λ
Ric(gΩ)−HġΩ − ġ2

Ω −
2

λ
G̃‖

)
,

where G̃‖ denotes the tangent components of

G̃αβ := R̃αβ − λng̃αβ.

In addition, we shall need the trace of equation (A.2)

gαβ(RT )αβ = −∇T (gαβAαβ)− gαβA2
αβ.

Since T is geodesic, Aαβ has only tangent components and

∇T (gαβAαβ) = −λ∂Ω(gijAij) = −λ2Ḣ.

The term (RT )αβg
αβ can be obtained from (A.3)

gαβ(RT )αβ =
λ

Ω
gαβAαβ +

λ2

Ω2
n+ R̃TT =

λ2

Ω
H + G̃T ,

where R̃TT = Ω2gαβ(R̃T )αβ = g̃αβ(R̃T )αβ is the normal-normal component of the Ricci

tensor, G̃T := G̃αβT
αT β is the normal-normal component of the tensor G̃, and we have

used that −λ/Ω2 = g̃αβT
αT β. Hence, writing gαβA2

αβ =: |A|2, the trace of (A.2) gives

the following expression

λ2(ΩḢ −H) = Ω|A|2 + ΩG̃T .

The last equation that we require is the trace of the Codazzi identity (2.18), namely

TµRµijkg
ik = gik(∇(Ω)

j Aik −∇
(Ω)
k Aij) = λ∇(Ω)

j H −∇(Ω)
k Akj .

The LHS of this equation is

TµRµijkg
ik = TµRµαjβg

αβ +
1

λ
TµRµαjβT

αT β = RµjT
µ = G̃µjT

µ

where the last equality follows form (2.8). In index-free notation the term in the RHS

will be denoted G̃T‖. Therefore

divgΩA− λdH = −G̃T‖

Summarizing,

Definicin A.1. The Fefferman-Graham equations are

−Ωg̈Ω + (n− 1)ġΩ − 2HgΩ = ΩL, (A.8)
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where

L :=
2

λ
Ric(gΩ)−HġΩ − (ġΩ)2 − 2

λ
G̃‖,

and

λ2(ΩḢ −H) = Ω|A|2 + ΩG̃T , divgΩA− λdH = −G̃T‖. (A.9)

Next, we use expressions (A.8) and (A.9) to obtain the recursive relations that generate

the coefficients in (2.34) and (2.35). For simplicity, we will assume that for the n even

case O = 0, although some remarks will be made concerning the O 6= 0 case. By

definition of Poincaré metric, the tensor G̃ vanishes to all orders at I , therefore we

simply omit it during the calculations, since in the end everything will be evaluated at

I .

To calculate the coefficients of the expansion, we take derivatives in Ω of (A.8) and

evaluate at {Ω = 0}. First, evaluating (A.9) and (A.8) at Ω = 0 it follows

H |Ω=0= 0 ġΩ = g(1) = 0.

For rth order derivatives we use the generalized Leibniz rule, namely, for every two

smooth functions f1, f2

∂rΩ(f1f2) =

r∑
s=0

(
r

s

)
∂r−sΩ f1 ∂

s
Ωf2.

Recall that g(r) denote the coefficients in the FG expansions (cf. (2.34) and (2.35)). In a

similar manner, we denote g](r) the rth order coefficient of the corresponding expansion

for the inverse metric g]Ω. Also, observe that the coefficients and the derivatives of gΩ

at Ω = 0 are related by

∂rΩgΩ|Ω=0 = r!g(r).

Lemma A.2. The coefficients g](r) can be written in terms of the coefficients g(s) up to

order s = r with s 6= r − 1. In particular g](1) = 0.

Proof. Taking the rth order derivative in Ω of gijgik = δjk and evaluating at Ω = 0

∂rΩ
(
gijgik

)∣∣
Ω=0

=

r∑
s=0

r!
(
g](r−s)

)ij
g(s)ik = 0, (A.10)

shows that the rth order coefficient g](r) can be obtained as a combination of coefficients

g(s) up to order r and g](s) up to order r − 2. The term g](r−1) does not appear because

it is multiplied by g(1), which is zero. Inductively, this implies that g](r) can be written

in terms of coefficients g(s) up to order r. In addition, for r = 1 it follows that g](1) = 0,

so g](r) does not depend on g(r−1).
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It follows easily from the generalized Leibniz rule that

∂rΩ(Ωf) = Ω∂
(r)
Ω f + r∂r−1

Ω f.

Using this, the r-th order derivative of (A.8) at Ω = 0 is

(r + 1)!(n− r − 1)g(r+1) − 2

r∑
s=0

r!

(r − s)!
H(r−s)g(s) = rL(r−1) (A.11)

with H(s) := ∂sΩH |Ω=0 and L(s) := ∂sΩL |Ω=0. Since H = −1
2g
ij ġij , we may apply the

Leibniz rule again to compute H(r−s)

H(r−s) = −1

2

r−s∑
t=0

(r − s)!(t+ 1)g]
ij
(r−s−t)g(t+1)ij

. (A.12)

Isolating the term involving the highest order coefficient g(r+1) we have

r∑
s=0

r!

(r − s)!
H(r−s)g(s) = −(r + 1)!

2
g]ij(0)g(r+1)ijg(0) −

r!

2
P(r−1),

where

P(r−1) :=

r−1∑
t=0

(t+ 1)g]
ij
(r−t)g(t+1)ij

g(0) +
r∑
s=1

r−s∑
t=0

(t+ 1)g]
ij
(r−s−t)g(t+1)ij

g(s). (A.13)

Then, writing g(0) = γ and g](0) = γ], expression (A.11) is easily arranged to

(n− r − 1)g(r+1) +
(
Trγg(r+1)

)
γ +

1

r + 1
P(r−1) =

r

(r + 1)!
L(r−1).

Since every term in (A.13) containing either g(r) or g](r) is multiplied by either g(1) or

g](1), it follows by Lemma A.2 that P(r−1) can be written in terms of coefficients g(s) up

to order s ≤ r − 1.

On the other hand, consider

L(r−1) = ∂r−1
Ω

(
2

λ
Ric(gΩ)−HġΩ − (ġΩ)2

)∣∣∣∣
Ω=0

.

The term ∂r−1
Ω Ric(gΩ)

∣∣
Ω=0

obviously contains only coefficients g(s) up to order s ≤ r−1

and tangential derivatives of them. The term ∂r−1
Ω (HġΩ)|Ω=0 can be cast as

∂r−1
Ω (HġΩ)|Ω=0 =

r−1∑
s=0

(r − 1)!

(r − 1− s)!
(s+ 1)H(r−1−s)g(s+1)

= −(r − 1)!

2

r−1∑
s=0

r−1−s∑
t=0

(t+ 1)(s+ 1)g]
ij
(r−1−s−t)g(t+1)ij

g(s+1).

(A.14)



228

Terms involving g(r) or g](r) arise only for the values s = 0, t = r−1 and s = r−1, t = 0.

In each case, the product also involves g(1) or g](1). So, no such terms survive and by

Lemma A.2, (A.14) only depends on coefficients g(s) up to order s ≤ r − 1. The same

holds for ∂r−1
Ω ġ2

Ω

∣∣
Ω=0

, because

∂r−1
Ω ġ2

ij

∣∣
Ω=0

= ∂r−1
Ω (ġikg

klġlj)
∣∣∣
Ω=0

and applying the Leibniz rule yields a similar expression to (A.14) with the indices

contracted in a different way. Thus:

Lemma A.3. For n odd and n even with zero obstruction tensor, the r-th order deriva-

tive of equation (A.8) at Ω = 0 has the form

(n− r − 1)g(r+1) +
(
Trγg(r+1)

)
γ +

1

r + 1
P(r−1) =

r

(r + 1)!
L(r−1) (A.15)

where P(r−1) and L(r−1) depend on previous coefficients g(s) and their tangential deriva-

tives up to second order with s ≤ r − 1.

Observacin A.4. In the n even case with non-zero obstruction tensor, the same analysis

shows that Lemma A.3 holds for r + 1 < n, because all logarithmic terms are multiplied

by a factor Ωn+s. Thus, the presence of logarithmic terms do not affect the derivatives

of (A.8) of order r ≤ n− 1.

In the main text we shall need the explicit form of (A.15) when r = 1. We write the

result as a Corollary.

Corolario A.5. For any boundary metric γ of dimension n > 2, the second order

coefficient of the FG expansion is, up to a constant, the Schouten tensor of γ:

g(2) =
λ−1

n− 2

(
Ric(γ)− Scal(γ)

2(n− 1)
γ

)
= λ−1Sch(γ). (A.16)

Proof. We set r = 1 in (A.15) and use that L(0) = (2/λ)Ric(γ) and P(0) = 0. Thus

(n− 2)g(2) +
(
Trγg(2)

)
γ =

1

λ
Ric(γ).

Taking trace with γ, expression (A.16) follows at once.

We now use the formula derived in Lemma A.3 to show that the expansion is even up

to order n.

Proposicin A.6. To all orders strictly smaller than n, the expansions (2.34) and (2.35)

are even. For n odd, there may be odd and even terms of order r ≥ n, while for n even,

if O = 0, the expansion remains even to infinite order. Moreover, all terms of even

order r < n are solely generated from γ.
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Proof. We proceed by induction. Assume that up to an odd order r − 1, all previous

odd order terms vanish, including r − 1. We show that this induction hypothesis and

(A.15) implies g(r+1) = 0.

First note that r is even. The first sum in (A.13) vanishes because g(t+1) = 0 unless t

odd, but then g(r−t) = 0. For a similar reason, the second sum in (A.13) also vanishes

and therefore P(r−1) = 0. The same kind of argument applies to ∂r−1
Ω (HġΩ) |Ω=0= 0

(cf. (A.14)). Also, ∂r−1
Ω (ġ2

Ω) |Ω=0= 0, because as already noted above, its expression is

just (A.14) with the indices contracted in a different way.

For the derivative of the Ricci tensor, first note that this tensor involves quadratic terms

in the Christoffel symbols ΓlmqΓ
i
jk and tangential derivatives of them ∂lΓ

i
jk. The latter

yield, when taking the derivative ∂r−1
Ω Ric(gΩ) |Ω=0,

∂r−1
Ω

(
∂lΓ

i
jk

)∣∣
Ω=0

= ∂l
(
∂r−1

Ω Γijk
)∣∣

Ω=0

and the former

∂r−1
Ω

(
ΓlmqΓ

i
jk

)∣∣∣
Ω=0

=

r−1∑
s=0

(
r − s− 1

s

) (
∂r−s−1

Ω Γlmq∂
s
ΩΓijk

)∣∣∣
Ω=0

.

Observe that both expressions have a derivative of odd order (lower or equal to r − 1)

in Ω of a Christoffel symbol. Thus, we evaluate
(
∂r
′

Ω Γijk

)∣∣∣
Ω=0

for r′ ≤ r − 1 odd. The

Christoffel symbols are a combination of contractions of gij∂kglm. Hence

∂r
′

Ω (gij∂kglm) |Ω=0=
r′∑
s=0

r′!g]ij(r′−s)∂kg(s)lm, (A.17)

which vanishes because g]ij(r′−s) = 0 unless s is odd, but then ∂kg(s)lm = 0. Thus

∂r−1
Ω Ric(gΩ) |Ω=0= 0 and the induction hypothesis implies g(r+1) = 0. Since g(1) = 0,

the induction hypothesis holds as long as (A.15) provides an equation for the term g(r+1).

Namely, if n is odd, they hold to any order strictly smaller than n. If n is even and

O = 0, it goes on for all values of r.

By Lemma A.3, the coefficient g(r) is generated by previous ones up to order r−2. Since

all orders strictly smaller than n are even, it follows that all coefficients g(r) with r < n

are exclusively generated by g(0). i.e. γ.

Summarizing, the main argument in the proof of Proposition A.6 is to inductively apply

equation (A.15) to, first, establish the vanishing of odd order coefficients up to a certain

order, and then, establish the dependence only on γ of the even (lower than n) order

coefficients. The inductive argument applies to a coefficient as long as (A.15) provides

a recursive expression for it, and this fails at the level r = n irrespectively of the parity

of n. This is the reason why evenness does not extend beyond g(n) for n odd. For the
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same reason, the dependence only on on γ of the non-zero even coefficients g(r) does

no longer apply for r ≥ n when n is even. The absence of an equation (A.15) for g(n)

implies an indeterminacy for this term. However, this term is not totally independent

of γ. As we show in the next lemma, its trace and divergence are constrainted by γ as

a consequence of equations (A.9).

Lemma A.7. The trace and divergence of g(n) satisfy

Trγg(n) = a, divγg(n) = b,

where a = 0, b = 0 for n odd and a is a scalar and b a one-form determined by γ for n

even.

Proof.

Trace of g(n)

Taking the rth order derivative in the first of equations (A.9) and evaluating at Ω = 0

yields

λ2(r − 1)H(r) − r
(
|A|2

)(r−1)
= 0

where (|A|2)(r−1) = ∂r−1
Ω |A|2

∣∣
Ω=0

. Expanding the terms, we have on the one hand that

by (A.12)

H(r) = −(r + 1)!

2
Trγ

(
g(r+1)

)
− r!

2

r−1∑
s=0

(s+ 1)g]ij(r−s)g(s+1)ij . (A.18)

In order to calculate |A|2 note

Aij = gikgjlAkl = −λ
2
gikgjl∂Ωgjk =

λ

2
∂Ωg

ij =
λ

2
ġij

hence |A|2 = −(λ2/4)ġij ġij and

(|A|2)(r−1) = −λ
2

4
(r − 1)!

r−1∑
s=0

(r − s)(s+ 1)g]ij(r−s)g(s+1)ij .

Then

λ2(r − 1)H(r) − r
(
|A|2

)(r−1)
= −λ2 r − 1

2
(r + 1)!Trγ

(
g(r+1)

)
− λ2 r − 1

2
r!

r−1∑
s=0

(s+ 1)g]ij(r−s)g(s+1)ij

+ λ2 r!

4

r−1∑
s=0

(r − s)(s+ 1)g]ij(r−s)g(s+1)ij

= −λ2 r − 1

2
(r + 1)!Trγ

(
g(r+1)

)
+ λ2 r!

2

r−1∑
s=0

Krsg
]ij
(r−s)g(s+1)ij = 0
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where

Krs :=
(r − s)(s+ 1)

2
− (r − 1)(s+ 1) =

(s+ 1)(2− r − s)
2

.

Rearranging terms, we obtain

(r2 − 1)Trγ
(
g(r+1)

)
=

r−1∑
s=0

Krsg
]ij
(r−s)g(s+1)ij . (A.19)

Equation (A.19) for r + 1 = n(> 2) becomes

Trγ
(
g(n)

)
=

1

n(n− 2)

n−2∑
s=0

K(n−1)sg
]ij
(n−1−s)g(s+1)ij =: a. (A.20)

For n odd, all coefficients of odd order lower than n vanish. Since r = n − 1 is even,

g]ij(r−s) vanishes unless s even, but this makes s+ 1 odd and g(s+1)ij = 0. Thus for n odd

we conclude from (A.20) that Trγg(n) = 0. For n even this does no longer holds, because

the non-zero terms g]ij(r−s) (r = n− 1 odd and s odd) multiply terms g(s+1)ij that do not

necessarily vanish. In this case a is generated by γ, because (A.19) contains terms up to

order n−2 (those with of order n−1 are zero), which only depend on γ (cf. Proposition

A.6).

Divergence of g(n)

For this proof we use the second of equations (A.9)

divgΩA− λdH = 0.

We write the divergence of A with indices (recall that, in the Gaussian coordinates we

are using, ∇(Ω)
i Aij = ∇iAij)

divgΩA
j = ∇iAij = ∂iA

ij + ΓiikA
kj + ΓjikA

ik.

Taking the rth order derivative at Ω = 0 we obtain, for the first term

∂
(r)
Ω ∂iA

ij
∣∣
Ω=0

=
λ

2
(r + 1)!∂ig

]ij
(r+1),

and for the second and the third

∂rΩ

(
ΓiikA

kj
)∣∣∣

Ω=0
=
λ

2

r∑
s=0

(
r

s

)
(s+ 1)! ∂r−sΩ

(
Γiik
)∣∣

Ω=0
g]kj(s+1)

=
λ

2
(r + 1)! Γiik

∣∣
Ω=0

g]kj(r+1) + λS1,

∂rΩ

(
ΓjikA

ik
)∣∣∣

Ω=0
=
λ

2

r∑
s=0

(
r

s

)
(s+ 1)!

(
∂r−sΩ Γjik

)∣∣∣
Ω=0

g]ik(s+1)

=
λ

2
(r + 1)! Γiik

∣∣
Ω=0

g]kj(r+1) + λS2,
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where

S1 :=
1

2

r−1∑
s=0

(
r

s

)
(s+ 1)! ∂r−sΩ

(
Γiik
)∣∣

Ω=0
g]kj(s+1), (A.21)

S2 :=
1

2

r−1∑
s=0

(
r

s

)
(s+ 1)! ∂r−sΩ

(
Γjik

)∣∣∣
Ω=0

g]ik(s+1). (A.22)

Hence

∂rΩ (divgΩA)|Ω=0 =
λ

2
(r + 1)!divγg

]
(r+1) + λS1 + λS2.

On the other hand, the rth order derivative of dH at Ω = 0 is simply dH(r) because the

diferential is taken in the submanifold ΣΩ. Therefore

(r + 1)!

2
divγg

]
(r+1) = −S1 − S2 + dH(r). (A.23)

For n odd, set r = n − 1 (thus r even). The terms g]ik(s+1) in (A.21) and (A.22) are

zero unless s is odd, hence r − s is odd and lower or equal than n − 2. Thus, all

the derivatives ∂r
′

Ω

(
Γjik

)∣∣∣
Ω=0

in (A.21) and (A.22) have r′ odd. As noted above, the

Christoffel symbols are a combination of contractions of gij∂kglm, hence formula (A.17)

gives ∂r
′

Ω

(
Γjik

)∣∣∣
Ω=0

= 0 and therefore S1 = S2 = 0. For dH(n−1), we look at equation

(A.18). We have already proven that the trace of g(n) vanishes. The remaining terms in

(A.18) also vanish: the terms with s even because g(s+1)ij is zero, the terms with s odd,

because g]ij(r−s) = 0 as r − s is odd. Therefore

divγg
]
(n) = 0.

Now, to relate g](n) and g(n) we use formula (A.10) with r = n. Since n is odd, the only

term survivings in the sum are the first and the last ones,

g]ij(n)γik + γijg(n)ik = 0 ⇐⇒ g]ij(n) = −γikg(n)klγ
lk

and therefore divγg
]
(n) = 0 if and only if divγg(n) = 0.

For n even, the above argument does not apply because r = n−1 is odd. Thus the RHS

of (A.23) does not vanish in general. Looking at (A.21), (A.22) and (A.18) it follows

that b := divγg
]
(n) depends on coefficients of order up to n − 2 and tangent derivatives

thereof. Hence, divγg
]
(n) is generated by γ. The same conclusion follows for divγg(n) by

an immediate application of Lemma A.2.

Combining the results in this appendix, we may now show how the FG expansions are

generated, under the assumption that O = 0 if n even. The zero-th order coefficient

γ must be prescribed. This generates all coefficients g(r) with r < n. If n is even, γ

also generates restrictions to the order n, so that given any g(n) satisfying them, one
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can always add freely a TT term g̊(n), so that g(n) = g(n) + g̊(n) keeps satisfying all

the equations. The generation of coefficients keeps going on recursively from g(n), so

only even terms arise. For n odd, the recursive relations only restrict the term of order

n to be TT. Thus the n-th order term is a freely prescribable TT tensor g(n) = g̊(n).

Similarly, the generation of coefficients keeps going on recursively from g(n), but it is no

longer even. This is obvious at order n because of the presence of g(n) itself, and also

true at higher order where further odd terms will generically appear. This is because

the argument above proving evenness to a certain order relies on the vanishing of all

previous odd order coefficients. In the case g(n) = 0, the expansion is even to infinite

order also for n odd.
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mensional spacetimes based on null alignment. Classical and Quantum Gravity,

30:013001, 2012. DOI: 10.1088/0264-9381/30/1/013001.

[115] T. T. Paetz. KIDs prefer special cones. Classical and Quantum Gravity, 31:

085007, 2014. DOI: 10.1088/0264-9381/31/8/085007.

[116] T. T. Paetz. Killing Initial Data on spacelike conformal boundaries. Journal of

Geometry and Physics, 106:51 – 69, 2016. DOI: https://doi.org/10.1016/j.

geomphys.2016.03.005.

[117] I. Papadimitriou and K. Skenderis. Correlation functions in holographic RG flows.

Journal of High Energy Physics, 2004:075–075, 2004. DOI: 10.1088/1126-6708/

2004/10/075.

[118] I. Papadimitriou and K. Skenderis. AdS / CFT correspondence and geometry.

Lectures in Mathematics and Theoretical Physics, 8:73–101, 2005. DOI: 10.

4171/013-1/4.

[119] I. Papadimitriou and K. Skenderis. Thermodynamics of asymptotically locally

AdS spacetimes. Journal of High Energy Physics, 2005:004–004, 2005. DOI: 10.

1088/1126-6708/2005/08/004.

[120] R. Penrose. Asymptotic properties of fields and space-times. Physical Review

Letters, 10:66–68, 1963. DOI: 10.1103/PhysRevLett.10.66.

[121] R. Penrose. Gravitational collapse and space-time singularities. Physical Review

Letters, 14:57–59, 1965. DOI: 10.1103/PhysRevLett.14.57.

[122] R. Penrose. Zero rest mass fields including gravitation: asymptotic behavior.

Proceedings of the Royal Society of London A, 284:159, 1965. DOI: 10.1098/

rspa.1965.0058.

[123] R. Penrose. Conformal treatment of infinity (reprint). General Relativity and

Gravitation, 43:901–922, 2011. DOI: 10.1007/s10714-010-1110-5.

[124] R. Penrose and R. Rindler. Spinors and Space-Time: Volume 1, Two-Spinor Cal-

culus and Relativistic Fields. Cambridge Monographs on Mathematical Physics.

Cambridge University Press, Cambridge, 1984.

[125] S. Perlmutter et al. Discovery of a supernova explosion at half the age of the

Universe. Nature, 391:51–54, 1998. DOI: 10.1038/34124.

[126] D. M. Popper. Red Shift in the Spectrum of 40 Eridani B. The Astrophysical

Journal, 120:316, 1954. DOI: 10.1086/145916.

[127] G. Y. Rainich. Electrodynamics in the general relativity theory. Proceedings of the

National Academy of Sciences, 10:124–127, 1924. DOI: 10.1073/pnas.10.4.124.

http://dx.doi.org/10.1088/0264-9381/30/1/013001
http://dx.doi.org/10.1088/0264-9381/31/8/085007
http://dx.doi.org/https://doi.org/10.1016/j.geomphys.2016.03.005
http://dx.doi.org/https://doi.org/10.1016/j.geomphys.2016.03.005
http://dx.doi.org/10.1088/1126-6708/2004/10/075
http://dx.doi.org/10.1088/1126-6708/2004/10/075
http://dx.doi.org/10.4171/013-1/4
http://dx.doi.org/10.4171/013-1/4
http://dx.doi.org/10.1088/1126-6708/2005/08/004
http://dx.doi.org/10.1088/1126-6708/2005/08/004
http://dx.doi.org/10.1103/PhysRevLett.10.66
http://dx.doi.org/10.1103/PhysRevLett.14.57
http://dx.doi.org/10.1098/rspa.1965.0058
http://dx.doi.org/10.1098/rspa.1965.0058
http://dx.doi.org/10.1007/s10714-010-1110-5
http://dx.doi.org/10.1038/34124
http://dx.doi.org/10.1086/145916
http://dx.doi.org/10.1073/pnas.10.4.124


Bibliography 244

[128] A. D. Rendall. Reduction of the characteristic initial value problem to the Cauchy

problem and its applications to the Einstein equations. Proceedings of the Royal

Society of London A, 427:221–239, 1990. DOI: 10.1098/rspa.1990.0009.

[129] A. D. Rendall. Asymptotics of solutions of the Einstein equations with positive

cosmological constant. Annales Henri Poincaré, 5:1041–1064, 2004. DOI: 10.
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