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badawczego Harmonia nr UMO-2014/14/M/HS2/00631 przyznanego przez Naro-

dowe Centrum Nauki.





Dla Mamy





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 13

2.1 Speech Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Deep Neural Models of Speech . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 23

2.2.2 Neurobiological Foundations . . . . . . . . . . . . . . . . . . 25

2.2.3 Deep Temporal Convolutional Neural Model of Speech . . . . 31

2.2.4 Deep Neural Network Explainability . . . . . . . . . . . . . . 35

2.3 Intonation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 European School . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 American School . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Research in Polish Intonation . . . . . . . . . . . . . . . . . . 46

3 Methodology 51

3.1 Aim of the Current Work . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Unificationist Approach to Intonation Modeling . . . . . . . . 51

3.2.2 Interfacing Phonetics and Phonology . . . . . . . . . . . . . . 54

3.2.3 Explainable Deep Neural Network-Based Model of Intonation 55

3.3 Deep Temporal Convolutional Neural Network as a Scientific Model . 58

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3 Model Implementation . . . . . . . . . . . . . . . . . . . . . . 73

3.4.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



3.4.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.6 Feature Relevance Analysis . . . . . . . . . . . . . . . . . . . 78

3.4.7 Neural Source-Filter Resynthesis . . . . . . . . . . . . . . . . 78

3.4.8 Perceptual Evaluation . . . . . . . . . . . . . . . . . . . . . . 81

4 Results 87

4.1 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Subjective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Feature Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Discussion and Conclusions 117

6 Future Plans and Challenges 133

Bibliography 139

A Listing of Features 169

B Listing of Feature Groups 207



Introduction 1
„Language disguises thought.

— Ludwig Wittgenstein

Tractatus Logico-Philosophicus

This dissertation should begin with a definition of its research subject. However, the

term intonation is easily understood intuitively but becomes rather problematic when

one tries to formulate a proper scientific definition. The problem arises from the

very nature of intonation itself. Elusive and indefinable, a steady flow of change in

perceived pitch, neither does it fit entirely into the standard symbolic and categorical

framework of linguistics, nor into the experimental and physicalist phonetics. At

the same time, intonation determines the meanings of utterances and carries a

whole range of other information critical to successful speech communication. The

meaning conveyed can be both categorical and gradual. It does not seem to be

tied to any specific segment of the carrier utterance, hence the popular name –

suprasegmentals. The fact that a single intonation contour might express a whole

range of meanings on all possible levels of language and beyond, makes it that much

more challenging to study. Syntactic and discourse information are mixed with

cues to the internal states of the speaker, such as their emotion, health or even sex

and social background. All this information is passed through this single channel,

encoded in the perceived height of the fundamental frequency of speech. Despite

the complexity, humans extract all that information effortlessly. Human brain and

cochlea have evolved for millions of years to do just that, interpret the internal

mental states of other members of the population, even from very brief exchanges

of vocalizations. For the early humans (as for most other vertebrates) this ability to

momentarily assess sounds produced by others often meant life or death (or which

way to run). When humans started developing language communication, intonation

also started adjusting and taking on new roles and passing on new information

through conventional categorical signals. On the other hand, it also never really

ceased to fulfil some of its primary functions; like to convey the emotional state of the

speaker, for example, through the (much less intentional) amount of fundamental

frequency variation. Even the most influential proponents of excluding intonation

from the language altogether, deeming it part of the performance (or parole),
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eventually admit that at least some of its parts might be of interest to linguistics

(therefore, moving it closer to the actual langue in the saussurean sense) [48]. Some

other lines of thought, like cognitive linguistics, move intonation to a more central

position by assigning meanings to various intonation signs and treating those as

metaphors1. These conceptual metaphors themselves are also often argued to be

embodied in the humans themselves and resulting from the human composure and

the environment in which they are immersed in [189].

Moreover, intonation is usually considered from just a single perspective within the

traiditional dualistic view of language, which by itself, is underlying many linguistic

paradigms, not excluding some of the most contemporary ones. Intonation is either

studied as an acoustic phenomenon by phonetics or as a symbolic grammar by

phonology. This dichotomous approach and the epistemological gap it created has

become one of the main obstacles in building comprehensive scientific theories and

models of the phenomenon. The missing interface between the physicalist measure-

ments of phonetics and the discrete grammars of cognitive categories formulated

within phonology becomes very evident in the context of speech technology where

all theory of language is put to a pragmatic functional test. The only models that

have proven to be useful for application in real-world speech processing systems

are the probabilistic models delivered by the rapidly developing field of Artificial

Intelligence (or more specifcally Machine Learning). This comes in hand with what

some of the contemporary linguists suggest; that the mapping from mental con-

structs, whatever they are in terms of intonation, to the physical realization is of

probabilistic nature and that it is embodied in the human brain itself.

The current work leans towards a unificationist and a non-reductive physicalist

(emergentist) approach. This is in line with some of the “new developments in

physics, biology, psychology, and crossdisciplinary fields such as cognitive science,

artificial life, and the study of non-linear dynamical systems [that] have focused

strongly on the high level collective behaviour of complex systems, which is often

said to be truly emergent [...]” [89]. In this work, the author also assumes that

intonation is crucial to language communication and although some parts of it might

exist as part of the paralanguage it is merely the lack of proper methodologies in

linguistics (and communicology) that render intonation problematic and in some

cases even result in banishing it from the field altogether. Intonation being an aspect

of language spanning all of its possible levels from phonetics, through phonology,

syntax, semantics and discourse, should be studied accordingly, within frameworks

1A downward movement is often a metaphor for the definite and an upward movement for the
unknown.
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that provide a unified view, focusing not only on the physical (phonetic) or psycho-

logical (phonological, grammatical) aspects of the problem in question, but also (or

mainly) on the mappings between the realization and the mental construct. This

work also assumes that these mappings are of probabilistic nature and that they

are embodied in the human brain where this subjective experience emerges from a

combination of numerous processes.

1.1 Motivation

A number of intonation models that fit the above description already exist in the field

of speech technology, which extensively employs probabilistic methods in the form

of various Machine Learning (ML) models. These models, especially recently, have

proven to yield very good results both for the analysis and synthesis of speech and

all of its components. This fact provides some positive evidence for the soundness

and effectiveness of the probabilistic approach. Some of the best models to date

are based on Deep Neural Networks (DNNs). Interestingly, a number of these

state-of-the-art deep neural architectures are at least loosely founded on the design

principles of the human brain. Examples include the Long Short-Term Memory

(LSTM) networks and attention-based models that, as their names suggest, use some

simplistic approximations of the human short-term memory and attention. Deep

Convolutional Neural Networks (CNNs), where probably the first to be founded

on the principles of information processing in the human brain [105]. CNNs use

building blocks that approximate the actual computations that specific layers of

cells in the visual cortex conduct when processing visual data. These architectures

have outperformed humans in a recent image classification challenge, setting a

new state-of-the-art. The first notable application of CNNs in the domain of speech

modeling (aside from Automatic Speech Recognition) was the Wavenet synthesizer

[239]. It demonstrated a surprising naturalness of synthesized speech and was even

able to spontaneously reproduce a range of non-speech sounds like filled pauses,

labial clicks and breathing sounds. Although the choice of Wavenet’s architecture,

the Deep Temporal Convolutional Neural Network, was based on purely practical

premises (the solution was adopted from the visual domain [312]), some recent

neurobiological studies show that the general nature of processing information in

all of human’s sensory cortices might be based on the same principles, which might

in turn provide some neurobiological support for the unintentional architecture of

that model.

1.1 Motivation 3



The main problem with such pragmatic models lies in their evident lack of explana-

tory and exploratory power. Most of these models still act as black-boxes and provide

only mere reflections of the quantitative nature of the modeled phenomena. In this

way, they do not present much value to science2.

However, this situation has recently started changing. The huge implementational

potential of DNNs in a number of different domains caused a strong demand for

methods that are able to explain the outputs of these model. A model trained to

recognize pictures of polar bears might be cheating by using the dominating color

of the background, as polar bears usually appear on snowy pictures. Similarily, a

model designed to detect subclinical breast cancer from screening mammography

could learn to assign positive diagnosis due to some bias in the training data, and

a deep learning model trained on historical recruitment data of some huge global

corporation in which 70% of the employees had been white men, could, and if not

constrained surely would, consider the sex and race a significant feature for future

predictions of candidate fit. Such cases provided the necessary stimulation for the

development of AI explainability algorithms. The first step in that direction was

made with the visualization of the internal filters of image classifying CNNs and the

outputs of the model’s intermediate layers. The domain of visual data was ideal for

early experimentation as the output was easily interpretable by a naked eye. The

first results were very surprising as they revealed the ability of the CNNs to extract

latent features from images in a similar manner a human brain would be expected

to. From simple detection of edges, through more complex shapes and patterns,

towards meaningful parts of the classified objects, like bird feathers and dogs ears,

noses, human faces and even whole complex situations. The huge potential of these

methods stimulated further work in that direction and the development of many new

explainability algorithms. These algorithms immediately started being adopted for

scientific experimentation, especially in computational neuroscience and medicine.

Examples in domains other than that of visual data are still quite sparse. The field

of language and speech still remains relatively unexplored, with only a number of

studies in machine translation [265] and a probably only a single study regarding

speech recognition [29].

AI explainability methods could provide a foundation for a methodology to be

applied for studying these (if not all) concepts of language that resist being framed

within highly categorical, symbolic grammars and other similar systems. This

opportunity seems especially appealing in case of intonation which up to this day

remains relatively unstudied through systematic experimental studies. Depending

2Especially in its traiditional positivist understanding.
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on the choice of the information that comprise the model input, whether these are

phonological categories or some semantic features, these methods might present a

completely new look on how certain information are relevant and add up to give

rise to the final output of systems based on the same principles that underlie the

human brain3.

This study, except for its undeniable relevance for explaining intonation, would

benefit the overall speech synthesis technology as it could potentially help determine

what kind of information is required for effective prediction of intonation contours

for any given utterance, which are optional and which are completely redundant.

This would allow better design of datasets used for training speech synthesis models

and could help significantly reduce the time, complexity and effort of the training

itself as less features might be used instead of the traditionally sparse feature vector

that contains all of the possible information that could be extracted or engineered.

Despite the rapid progress being made in technology, especially in the recent decades,

the problem of the human-machine communication through speech is far from being

solved, with intonation processing being one of the main problem areas, both in

synthesis and analysis.

The undeniable potential of the deep convolutional neural architectures, their

neurobiological foundations, the unprecedented look into the internal workings

of these networks that the explainability algorithms offer in connection with the

timeliness and significance of the problem they could help solve when combined

comprise the main motivation behind the current work. Also to the best of the

author’s knowledge, no similiar attempt to apply these methods in a scientific study

of speech production has been made so far.

1.2 Objective

The current work, therefore, aims to:

• Build a robust biologically-inspired neural model of the probabilistic mapping

between discrete low-level linguistic features of an utterance and its intonation

contours (F0 values).

• Build a state-of-the-art neural source-filter resynthesis framework for Polish

read speech.

3Or rather some very idealistic generalizations of very small parts of the human brain, and that is if
we are at least remotely close to understanding how the brain actually works.
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• Deploy the intonation model within the resynthesis framework and measure

the perceived naturalness of the output intonation contours, and to

• operationalize the results of these measurements as an indicator of the model’s

robustness.

• Develop a method to explain the relevance of the individual input linguistic

features for the produced intonation contour.

• Analyze how specific linguistic features contribute to the F0 contours of an

utterance.

The objectives and steps outlined above are designed to test the following hypothe-

ses:

Hypothesis 1. The continous F0 contours of an utterance emerge from its discrete
linguistic features through a series of successive probabilistic mappings into intermediate
latent represenentations.

Hypothesis 2. The biologically-inspired Deep Temporal Convolutional Network can be
an effective model of these mappings and hence of Polish neutral read speech intonation
in the context of statistical-parametric speech synthesis.

Hypothesis 3. The set of shallow linguistic features used in this thesis provides infor-
mation which is sufficient for synthesis of natural sounding intonation in the context of
statistical-parametric speech synthesis.

Hypothesis 4 (contributory methodological). A Deep Temporal Convolutional Net-
work can become an explanatory scientific model of mappings between linguistics
features and the intonation of an utterance.

1.3 Methodology

In order to test the above hypotheses, this work uses a mixture of quantitative

inductive methods. A neural model of intonation is built and evaluated through a

series of psychoacoustic experiments, whose results are necessarily operationalized

as an indicator of the performance and adequacy of the constructed model. Then a

method for revealing the relations between the input categories and the output F0

values based on the constructed model and with the use of explainability algorithms
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is proposed. This method is later applied to a set of test samples isolated from the

original speech dataset. In this way, extensive results are produced reflecting the

positive and negative evidence for the predicted F0 values provided by individual

linguistic features of an utterance and its parts. The results are aggregated within

various feature groups to provide a number of different perspectives of the gathered

data.

For this purpose, this work implements a Deep Temporal Convolutional Neural

Network as a model of intonation in neutral Polish read speech. The limitations

imposed on the domain, although very idealistic, were introduced to necessarily

constrain the number of processes that might influence the realization of intonation

contours, and as a consequence also help reduce the necessary complexity of the

model to an achievable level. A speech corpus originally built for the purpose of

building a Polish BOSS unit selection synthesizer [69], and designed with special

emphasis on suprasegmental coverage of the Polish language was used as the

training, test and validation data set for the current study.

As the first step, an inventory of 1297 various quantitative, qualitative and positional

features were extracted. The corpus consisting of a total of 1908 variable length

utterances was split in an 8:1:1 ratio into training, validation and test sets. Using a

Python/Keras programming stack the model architecture along with a training and

evaluation framework were implemented and deployed onto a special computational

cloud infrastructure where a number of experiments were run.

The resulting model was evaluated both objectively through calculation of various

Mean Squared Error metrics, as well as in an extensive perceptual evaluation study

conducted with a specially designed web application and with the use of a neural

source-filter speech resynthesizer, that was also specially trained for this purpose.

The model was finally applied to infer the F0 values for all samples in the holdout

test set. Additionally, for each of the predictions, feature relevance analysis was

performed with help of a specially adjusted implementation of the Layer-wise

Relevance Propagation algorithm. The individual results were aggregated using a

number of calculation methods both for individual features and using a number of

high-level feature groupings as an attempt to capture more general trends in the

data. Feature relevance rankings were calculated both for individual features and

for feature groups using various abstraction levels.

1.3 Methodology 7



1.4 Contribution

The current work contributes to the study of intonation in a number of ways. First

and foremost, the traditional dualistic approach is criticized and a unificationist

approach based on a physicalist (emergentist) view of the phenomenon is proposed

in Section 3.2.1 instead. The espitemological gap between phonetics and phonology

is addressed by placing the main focus, not on the acoustic measurements of the

fundamental frequency, or the development of formal grammars of intonation but

on the mappings between these two levels.

As a result, a fully functional pragmatic intonation model ready to be applied in a

statistical-parametric speech synthesis system is built and evaluated in the context of

a state-of-the-art Neural Source-Filter synthesizer [319], which was also imlemented

for the purpose of this study and is the first implementation of this synthesis method

for the Polish language. The intonation model was developed along with a special

method for generating prediction explanations in a form of input feature relevance

w.r.t. model’s output [17, 264, 234]. This explanation method, to the best of

author’s knowledge, has never been applied in a scientific study of intonation or

language production, especially as part of a scientific explanatory model.

The source code for model training, inference and evaluation and for running

the explainability algorithms is made openly available in a public repostiory at

https://github.com/mrslacklines/intonation_synthesis along with the nec-

essary documentation for replicating the results. The repository includes tools that

allow building and running it on any platform, including the Amazon Web Services

computational cloud, with a single command, without the necessity to manually

install any additional libraries.

The repository also contains a full set of results in the form of data plots and comma-

separated data files. These include relevance-analysis results for individual files and

test set aggregate rankings, both for individual features, as well as for a number of

different abstraction levels and feature groupings. The results also include all of the

resynthesized and natural speech samples used in the perceptual evaluation of the

intonation model. The results can be obtained at the code repository in the results

folder4.

In the process of developing the model a modest contribution was also made to

the code of the currently most developed Python library for Deep Neural Network

4https://github.com/mrslacklines/intonation_synthesis/tree/master/intonation_
synthesis/results

8 Chapter 1 Introduction

https://github.com/mrslacklines/intonation_synthesis
https://github.com/mrslacklines/intonation_synthesis/tree/master/intonation_synthesis/results
https://github.com/mrslacklines/intonation_synthesis/tree/master/intonation_synthesis/results


explainability – Innvestigate [6]. A pull request was staged to the official repository

with a number of changes that allow to use the library with the most recent ver-

sions of the industry standard tensor and Deep Learning libraries – Tensorflow [1]

and Keras [47, 123]. The contributed code changes can be viewed in the official

repository at https://github.com/albermax/innvestigate/pull/229.

A fully functional working application was also developed for the purpose of

conducting perceptual evaluation of the model. The source code is published

in another public repository at https://github.com/mrslacklines/listening_

experiments. With slight modification the code can be easily reused to perform

professional ABX discrimination and mean opinion score (MOS) experiments. The

evaluation experiment application is deployed onto a professional high-availability

web infrastructure and can still be accessed and taken part in at http://fonetyka.

cudaniewidy.org/experiment.

Last but not the least, this work includes an exhausting argumentation for the

adoption of Deep Neural Networks, and more specifically the Deep Temporal Convo-

lutional Neural Network in connection with the Layer-wise Relevance Propagation

explainability method as scientific models. This argumentation, further supported

with the results of the current study, provide an important methodological contribu-

tion to the proposed approach to the study of intonation.

1.5 Outline

The current chapter, provides only a very short introduction to the general problem

of intonation. It touches upon the potential incompatibility of the traditional toolbox

of linguistics and the actual nature of intonation as its controversial subject. Section

1.1 looks at this problem as a source of inspiration for choosing Convolutional Neural

Networks and Artificial Intelligence Explainability as the modeling framework for

the current work. The actual scientific objectives are listed and translated into four

main research hypotheses, which this work will attempt to test, in Section 1.2. The

methology selected for this purpose is also briefly outlined in Section (1.3). The last

Section of this chapter (Section 1.4) lists the main contributions of this work.

The next chapter (Chapter 2), aims at providing a more detailed view of the general

problem of linguistic inquiry into intonation modeling. It starts with a brief summary

of the history from the perspective of the many different methods used to approach

this specific problem, and tries to emphasize the impracticability of the dualistic
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tradition. In Section 2.1, the concept of speech synthesis is introduced. It gives

another short historical summary aiming to demonstrate the importance of speech

synthesis in building scientific models of speech production. The main milestones

and different technologies are listed as a path that led to the current state-of-the-art,

recently set by the Deep Convolutional Neural Network-based models. Next, an

extensive summary of this modeling method is provided in Section 2.2. Starting

with the original implementation of this idea in the visual domain, this chapter gives

an in-depth description of the neurobiological inspiration and design principles of

these networks in Section 2.2.2. It then lists results of recent neurobiological studies

suggesting that similar biological analogies may be helpful in the domain of speech.

In Section 2.2.4, the high potential of these networks is further explored through an

introduction to AI Explainability, and especially to the current leading-edge method

– the Layer-wise Relevance Propagation algorithm. The next part of this chapter

(Section 2.3), finally takes a closer look at intonation as a research problem. Because

many exhausting reviews of this topic can be found, this work gives only a short

overview of the different schools (in Section 2.3.1 and 2.3.2) of thought and how

they formed in the relatively short history of this scientific domain. A separate

Section 2.3.3 was devoted to a summary of research considering the intonation of

Polish, which is the language of interest of this work.

Chapter 3 introduces the reasoning behind the current methodology. The current

framework is supported from a few different viewpoints in Sections 3.2.1, 3.2.2 and

3.2.3. The controversy around adopting a neural network as a linguistic model is

addressed from many perspectives, based on the various notions of a scientific model

itself in Section 3.3. Additionaly, Layer-wise Relevance Propagation explainability

algorithm is proposed there as means for addressing the apparent lack of explanatory

and exploratory power of such models. Section 3.4 of this chapter, provides a detailed

description of the specific methods used in this work. It starts with the specification

of the initial dataset in Section 3.4.1. Then, in Section 3.4.2, the specific set of

linguistic features is described along with methods used for extracting them from

the original data. Next, the technicalities of model implementation, training and

testing are reported. Finally, the methods used for perceptual evaluation of the

resulting model are presented. These include the adoption of Neural Source-Filter

vocoder (in Section 3.4.7) as a resynthesizer for generating stimuli for the perceptual

experiment, whose design is described in Section 3.4.8.

The results are presented in Chapter 4. The chapter starts with an overview of

the general quality of F0 predictions as compared to the ground truth values. The

results of objective (Section 4.1) and subjective (Section 4.2) evaluation are covered
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next. Section 4.3 provides a comprehensive look at the results of feature relevance

analysis, both for individual predictions, as well as from a number of more general

perspectives and abstraction levels.

Chapter 5 provides a discussion of the advantages and disadvantages of the current

approach. It identifies the necessary compromises and the effects they had on the

final results, but also the accuracy of the method in general. It also includes an

attempt to analyze and interpret the results.

The main body of the dissertation ends with Chapter 6, where a number of ideas for

future work, given the high potential of the current method, is presented.

Two appendices are additionally included at the end of this dissertation. Appendix

A contains a listing and description of all linguistic features used for intonation

modeling in this work. These are included in the form of a raw machine code along

with the regular expression-like matching masks that were used as one of the steps

to extract them. Appendix B, in turn, contains raw Python code and description of

feature groups that were used for the analysis of feature relevance for the F0 contour

output by the model. These are important additions to the current work and the

reader might want to refer to that data at various points. Because of their length,

however, they were moved to the back matter in order to avoid distraction from the

main argument in the text.
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Background 2
„If I have seen further it is by standing on the

shoulders of Giants.

— Isaac Newton

1675

At the 6th International Congress of Phonetic Sciences (ICPhS) in Prague in 1967,

Dennis Fry in his keynote speech [102, 260] argued that it is the study of prosody

features in speech that should become one of the main present-day tasks of phonetic

sciences. His exact words were:

“We do not have enough direct measurements and observations in the area of

prosodic features and a good proportion of the data we have are not particularly

well organised. To take as an example tone and intonation and their relation to

fundamental frequency, we need a more systematic approach to observations in

this area and in particular a much sharper awareness of the different functions of

affective and grammatical intonation” [102, 260].

This appeal must have been indeed heard by the scientific community as the number

of prosodic research started growing exponentially from that moment. Language

pedagogy was probably the first domain of language study that openly recognized

the essential role of prosody in speech communication. This first wave of prosody

research was purely descriptivist and Soviet researchers were undeniably leading it.

They were later joined by a number of researchers from other parts of the world.

First those interested in the tonal languages, that by their very own nature require a

deeper inquiry into the tonal patterns and their relation to meaning [43, 3, 130, 42].

Numerous descriptions of English intonation were soon to follow [242, 36, 35, 157,

268, 172, 15, 93, 61, 327, 127]. This, in turn, opened the door for research into

other European languages [98, 97, 259].

At the same time, a number of linguists were making first attempts at describing

intonation from a more theoretic viewpoint, in relation to pragmatics [165, 216,

120, 64, 326] or syntax [30]. In the early 40s of the 20th century, when in Europe
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linguistic study of prosody was mostly seen as superfluous and insignificant, Amer-

ican structuralists built the first fully-fledged linguistic (phonological) models of

intonation [323, 33, 246, 282]

With the development of electric devices that provided tools for sophisticated mea-

surements and experimentation, prosody research started gaining momentum and

recognition as a proper science. As Rossi [260] points out, it was mainly speech

synthesis that drove prosody research. It served both as a model of, as Fry [102]

described it, “how the features which appear in the data are used by the people

who employ the particular language”, and as an immediate goal – a system that

can automatically produce human like speech1. Fry’s programmatic contribution

was further supported by Jones [162]. This approach started dominating Europe

as it was corresponding with the, then popular, russelian empiricism and the re-

alism of William James [273]. It did not assume the superiority of experimental

phonetics, but rather saw phonological models as theories that needed validation

through experimentation. Work by Denes [79], Uldall [309], Hadding-Koch [126],

Delattre et al. [68], Lieberman and Michaels [206], Isacenko and Schädlich [151],

Mettas [222], Cohen, Hart, et al. [54] and Öhman [238] constitute the theoretical

background of present prosody research where models are validated mainly with

the use of speech technology and listening experiments. This new instrumentalist

approach, however, was still widely seen as non-lingusitic, especially among the

traditional grammarians. Although there were many notable voices for the inclusion

of phonetics as part of linguistics [101], the dualistic gap became cemented in the

domain of speech research for years to come and to this day it is a significant burden

carried even by some of the contemporary research. As described by Cutler and Ladd

[63], intonation research at that time was either concerned with measuring and

describing the concrete physical acoustic shapes or with building theoretical models

and grammars at some abstract level of representation. The origin of these epistemo-

logical differences lies in the definition of the research subject itself. Intonation was

either seen as a system of some abstract cognitive units [323, 246, 245], or as their

concrete physical realization through the contours of fundamental frequency.

However, as the fast growing domain of speech technology has proven, linking

one to the other is at the heart of the problem of understanding intonation. An

implementation of a system that can translate an abstract phonological or cognitive

description of intonation into an acoustic signal (or the other way around) allows

for experimental evaluation of the linguistic theory behind the model. This is, in

1Speech synthesis is further introduced in Section 2.1.
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fact, compliant with how D. Fry [101] thought a truly scientific approach to the

study of intonation should look like:

i “A science must deal with data that obstruct thought: these data appear in the

form of empirical facts.”

ii “A science does not speak of observables in terms of objects, but rather in

terms of relations existing between those objects: science seeks to uncover a

structure, a Reality, beneath empirical facts, using a model whose results must

feed the theory, which need revision in order to send back new questions to

the model.”

He notes further that if we want “to discover the regularities of symbolic representa-

tion and to identify the structuring system underlying pre-systematic phenomena”,

intonational research should focus on studying “a noise that manifests mental rep-

resentations” and accepting that the “independence [of these two levels] is the

source of variability and the lack of a one-to-one correlation” [260]. The scope of

a comprehensive theory of language remains enormous, ranging from philosophy,

through cognitive science to information theory, mathematics and experimental

physics [296]. Efforts at integrating some of these fields within some single shared

metatheory result in building stronger and more adequate models of language and

intonation. Even Chomsky [48], as cited by Tatham [296], saw that a model charac-

terising language and speech production would eventually consist of descriptions

of how thought could be mapped to sound. Such mappings at various levels of

language, including the prosodic level, constitute the core problem for contemporary

linguistics as well as speech and language technology.

2.1 Speech Synthesis

The deep human need for understanding the mystery of speech and testing that

understanding through implementation of the principles into various kinds of inan-

imate calculatory systems has a history far longer than that of linguistics, speech

technology and artificial intelligence altogether. The first mentions of such devices

start with the mythical brazzen heads2. Many historic and mythical figures like Ger-

bert of Aurillac, Boethius, Faust, Arnaldus de Villa Nova, Enrique de Villena, Virgil,

Rob Grosseteste, Saint Albertus Magnus and even the Norse God Odin were believed

2A legendary automaton – a male head made of brass or bronze, variously mechanical or magical.
It was said to be able to correctly answer any questions, although sometimes restricted to simple
"yes" or "no" answers
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to had been in possession of a such a mechanical talking head [201]. The first

well-documented scientific examples of modeling speech production were, however,

much simpler and date back to only 250 years ago.

The flute-like resonator models of the human vocal tract constructed by Kratzenstein

[152, 95, 267, 201] could produce sounds imitating the five basic vowels (/a/,

/e/, /i/, /o/, and /u/) and provided some initial insight into their articulatory

origin. A more complete and, more importantly, fully dynamic model was built

soon after by Wolfgang von Kempelen in 1791. His bellows-based machine could

produce combinations of sounds and the author used it in a number of articulatory

experiments. As reported by Lemmetty [201] in his review of the history of speech

synthesis:

“[..] the essential parts of the machine were a pressure chamber for the lungs, a

vibrating reed to act as vocal cords, and a leather tube for the vocal tract action.

By manipulating the shape of the leather tube he could produce different vowel

sounds. Consonants were simulated by four separate constricted passages and

controlled by the fingers. For plosive sounds he also employed a model of a vocal

tract that included a hinged tongue and movable lips. His studies led to the theory

that the vocal tract, a cavity between the vocal cords and the lips, is the main

site of acoustic articulation. Before von Kempelen’s demonstrations the larynx was

generally considered as a center of speech production.”

This is a great example of how a simple mechanistic model can help support a

theory of the much more complicated process of speech production or even help

shift the dominating paradigm. The success of Kemepelen’s machine triggered the

development of a number of improved versions, including the works of Charles

Wheatsone and Alexander Graham Bell [152, 267].

The developments in electrical devices at the beginning of the 20th century brought

completely new possibilities to the domain of speech synthesis. Mechanical source

modulation and resonance control were first replaced by electrical circuits in 1922

by Stewart [176] and Wagner [152] and the idea was improved upon by Obata and

Teshima [267]. Although these devices could only synthesize simple vowels, they

demonstrated the importance of the first three formants in vowel production and

perception. The idea of an electrical circuit-based model of speech production, as

implemented in the notable VODER, designates a turning point for speech synthesis

research. It demonstrated that it is possible to produce fully intelligible speech with

completely artificial means. The device had to be played like a musical instrument

by a specially trained operator who simultaneously controlled the type of source
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excitation, fundamental frequency and the configurations of ten bandpass filters

comprising the spectral filter. Apart from stimulating further research into speech

synthesis, the source-filter model became a standard, which is used to this day even in

the most advanced parametric systems [304, 166, 333, 239]. The idea of parametric

synthesis was further explored by Lawrence [192], Fant and Martony [92], Carlson,

R. [41], Holmes W. [144] and Barber S. [22], amongst others. In the process, many

important findings were made, especially regarding the acoustic phonetic features

of the signal and its relation to the naturalness and intelligibility of the produced

speech. At the same time, assessing the validity of the implemented models of

speech production operationalized through synthesizer’s performance and measured

with perceptual testing became a standard [142, 143, 177]. The development of

speech parameterization techniques also resulted in the development of a number

of important algorithms, like Linear Predictive Coding (LPC) [267] which became a

core method in a number of domains including modern telecommunication.

Electric speech synthesizers based on a completely different idea were also developed

around the same time [258, 176, 201]. They implemented a model of speech articu-

lation through sets of recorded control signals. The work by Teranishi and Umeda

[300] is one of the successful implementations of this technique and also the first

ever full end-to-end Text-To-Speech (TTS) system. It included a sophisticated text

analysis module implementing complicated heuristics [201, 177]. That work set an

important milestone, as speech synthesis was now ready for commercial applications

and this single fact became the main driving factor behind the development of the

many systems to follow. The quality of speech started improving fast from this point.

The development of systems such as the MITalk and its successor Klattalk [176, 7]

started a fast paced arms race which gave birth to such industry standards as Festival

[297, 31] or BOSS [175]. Concatenative systems that rely on reorganization of

previously recorded speech samples, despite their apparent simplicity, also helped

validate a number of notions. For example diphone synthesis demonstrated the need

for explicit modeling of intersegmental transitions rather than static states only and

unit selection algorithms demonstrate the influence of context on the realization of

a speech segment.

With numerous practical applications and as a new and very attractive research

topic, TTS has revealed a significant problem in the field of speech research - the

impracticability of the dualistic gap between the phonological and phonetic views

of the intonation. Intonation in itself was one of the biggest challenges for speech

synthesis research and the current phonological models were found to translate

rather poorly to the naturalness of fundamental frequency contours, especially in
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implementations that were based on sets of discrete rules or those that employed

databases of speech recordings as inventories of acoustic exemplars for constructing

new unseen utterances. This was the moment that speech synthesis research faced a

challenge of bridging the phonetic-phonological gap in order to move forward with

improving the quality and naturalness of synthetic speech, which at that time was

still rather poor. In traditional TTS synthesis it was a matter of finding an adequate

phonological representation of input intonation and devising a method for mapping

these to the output contours of fundamental frequency. It soon became clear that

such a straightforward approach is far from ideal. As Hirschberg [136] notes:

“Research on prosody, as on many linguistic phenomena which rely upon context for

their interpretation, is more a matter of finding likelihoods — not simple mappings

from syntax or semantics or even from an underlying meaning representation to a

clear set of prosodic features.”

Although the formal tools for implementing models based on such probabilistic

mappings were readily available at that time, it was only with the recent advent of

high performance computing that they had a chance to become a real alternative for

the simple rule- or data-based models [201].

Fig. 2.1.: An overview of the basic HMM-based speech synthesis system. Adopted from the
HTS Slides [121] (released under the Creative Commons Attribution 3.0 license)

The last couple of decades became dominated by various probabilistic and statistical

models including Hidden Markov Models [198, 252, 336, 183] and their numerous

derivatives such as the HSMM, GMM [336, 167] and more recently the Deep Neural

18 Chapter 2 Background



Networks [333, 334]. Based on purely statistical methods they turned out to be

much more effective at the task of modeling the complex phenomenon of speech.

They have proven to produce much more natural and smooth intonation as compared

with systems built based on the more traditional data-based methods. The Hidden

Markov Model-Based Speech Synthesis System (HTS) set a new standard for the

domain for years to come [328]. A Hidden Markov Model (HMM) is a collection of

states connected by transitions with two sets of probabilities in each: a transition

probability which provides the probability for taking this transition, and an output

probability density function (PDF) which defines the conditional probability of

emitting each output symbol from a finite alphabet, given that that the transition

is taken [198, 201]. Thanks to its statistical but also deeply parametric nature,

and hence a small footprint, this synthesis method allowed the use of quintphones
as the base segment and included an unprecedented number of quantitative and

positional information about speech segments at various levels of the utterance

unavailable to concatenative systems. Similar ideas can also be found in some of

the last unit selection systems that aimed at selecting the best fitting segments for

a given context from their vast databases of segmented speech recordings. The

size of the databases used in such systems was, however, the single biggest limiting

factor and the eventual cause of abandoning of this technology. With the source

openly available and an active online community of users3 the base idea in HTS

was soon improved even further. The progress was made mainly in the formulation

of the probabilistic models underlying the whole system and the machine learning

pipeline in general [334]. An overview of the HTS speech synthesis method is

presented in Figure 2.1. “In the training part, spectrum and excitation parameters

are extracted from speech database and modeled by context dependent HMMs. In

the synthesis part, context dependent HMMs are concatenated according to the text

to be synthesized. Then spectrum and excitation parameters are generated from the

HMMs by using a speech parameter generation algorithm. Finally, the excitation

generation module and synthesis filter module synthesize speech waveform using

the generated excitation and spectrum parameters” [304].

For many years, the quality of HMM-based systems was unequalled. It was only the

original authors of HTS that pushed the bar even further and set a new state of the

art by substituting the central model with a Deep Neural Network (DNN) [333]. This

concept is also not a new one. Neural networks were used successfully for modeling

speech before [267] and DNNs have been around since the 80s. However, it was the

combination of the growing availability of cheap and fast large-scale computations,

dedicated processing chips, developments in the neural architectures and the fact

3http://hts.sp.nitech.ac.jp
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that it was implemented in a version of an already popular system, that all made up

the recent success of the method.

Fig. 2.2.: General DNN-based speech synthesis system. Adopted from Zen et al. [333].

The DNNs were first implemented as an alternative to HMMs. The latter were known

to produce very natural sounding speech but were also suffering from a rather low

quality of the audio signal itself. This was attributed partly to the method being

based on vocoding, partly to the accuracy of acoustic models, as well as some issues

connected with over-smoothing of the parameters [335]. The DNNs were largely

introduced to solve the accuracy problem [333]. Figure 2.2 illustrates the original

architecture of the DNN-based speech synthesis framework. The input text is first

converted to a sequence of features {xtn}, where xtn denotes the n-th input feature at

time frame t. The input features are comprised of binary answers to questions about

linguistic contexts, including both questions about the identity of the linguistic unit

and the relative and absolute position and length of the current linguistic unit. The

input features are mapped to output features {ytm} by a trained DNN using forward

propagation, where ytm denotes the m-th output feature at frame t. The output

features include spectral and excitation parameters and their first and second time
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derivatives – velocity and acceleration. Similarily to the HMM-based synthesizer,

speech parameters are then generated by setting the predicted output features from

the DNN as mean vectors and pre-computed variances of output features from all

training data as covariance matrices, the speech parameter generation algorithm

can generate smooth trajectories of speech parameter features which satistify both

the statistic and dynamic features. Finally, a waveform synthesis module outputs a

synthesized waveform given the speech parameters [303, 333].

Initial evaluation has shown that the quality and naturalness of speech generated

with the DNN-based system had greatly surpassed that of the traditional HMM-based

one. Importantly, as one of the main motivations for the implementation of DNNs in

place of HMMs, the authors cite the fact that “the human speech production system is

believed to have layered hierarchical structures in transforming the information from

the linguistic level to the waveform level” [333]. The success of this work started a

yet another revolution in the field with a number of systems being released every

year based on new deep neural architectures and producing results that sometimes

exceed even the most optimistic anticipations of the authors themselves.

2.2 Deep Neural Models of Speech

The last few decades had been an undeniable renaissance of deep learning in general.

The first deep architecture that was successfully employed for modeling speech was

the deep perceptron, a network consisting of a number of fully interconnected deep

layers. Its authors motivated their architectural decision by the fact that “multiple

hidden layers can represent some functions more efficiently than those with one

hidden layer” [333].

The classical feed-forward multi-layered perceptrons (MLPs) were quickly replaced

by the more sophisticated Recurrent Neural Networks (RNNs) [262] and especially

the Long Short-Term Memory networks (LSTMs) [141].

“Recurrent networks [...] have an internal state that can represent context informa-

tion. [...] [they] keep information about past inputs for an amount of time that

is not fixed a priori, but rather depends on its weights and on the input data.” “A

recurrent network whose inputs are not fixed but rather constitute an input sequence

can be used to transform an input sequence into an output sequence while taking

into account contextual information in a flexible way” [26].
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These were the advantages that made the recurrent architecture ideal for modeling

speech and language along many other problems connected with modeling of time

series. However, RNNs have been found to frequently suffer from the vanishing

gradient problem. LSTMs introduced a refined architecture that solved this issue

improving the performance even further.

“Hence standard RNNs fail to learn in the presence of time lags greater than 5–10

discrete time steps between relevant input events and target signals. The vanishing

error problem casts doubt on whether standard RNNs can indeed exhibit significant

practical advantages over time window-based feedforward networks. A recent

model, Long Short-Term Memory (LSTM), is not affected by this problem. LSTM can

learn to bridge minimal time lags in excess of 1000 discrete time steps by enforcing

constant error flow through constant error carrousels (CECs) within special units,

called cells” [109].

The technical idea behind these networks is best expressed through the following

analogy by Graves and Schmidhuber [117]. “The Long Short Term Memory architec-

ture was motivated by an analysis of error flow in existing RNNs which found that

long time lags were inaccessible to existing architectures, because back-propagated

error either blows up or decays exponentially.” As illustrated in Figure 2.3: “an

LSTM layer consists of a set of recurrently connected blocks, known as memory

blocks. These blocks can be thought of as a differentiable version of the memory

chips in a digital computer. Each one contains one or more recurrently connected

memory cells and three multiplicative units – the input, output and forget gates –

that provide continuous analogues of write, read and reset operations for the cells.

[...] The net can only interact with the cells via the gates.”

Fig. 2.3.: Long Short Term Memory gate scheme. Adopted from Hochreiter and Schmidhu-
ber [141].
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In many domains connected with processing sequential data, LSTMs along and their

multiple different flavors like the Gated Recurrent Unit (GRU) networks [46] became

the de facto standard for many years. It was only the recent successful adaptation of

Deep Convolutional Neural Networks to the temporal data domain that allowed to

redefine the state of the art once again.

2.2.1 Convolutional Neural Networks

As with most Deep Neural Network architectures, Convolutional Neural Networks

(CNNs) are not a new concept [105, 52, 180]. They have been around for decades

and except for a narrow range of applications remained dormant until the recent

rapid developments in computing power and availability of large training datasets.

The key to grasping the idea behind a CNN is understanding the convolution oper-

ation itself. It is best visualized in the domain of image processing where a small

matrix - the filter kernel - is used for adding each consecutive pixel of the image to

the neighbouring ones, weighted by the values in that kernel as shown in Figure

2.4.

Fig. 2.4.: Example of a 2-dimensional matrix convolution.

This very simple operation allows for performing a range of useful filtering tasks,

such as blurring, enhancing, edge detection, correlation filtering, etc. Some of the

possible effects are demonstrated in Figure 2.5.

Convolutional Neural Networks exercise this simple idea by making the kernel itself

a set of trainable hyperparameters of the network. As shown in Figure 2.6, on the

example of LeNet-5 architecture [196], CNNs usually contain many consecutive

convolutional layers, each of which contains a number of such convolutional filters,

followed by a few fully connected layers. Each convolutional layer may be followed

by some additional pooling or dropout layers [52, 180].
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Fig. 2.5.: Examples of convoluting and image with different convolution kernels. Adopted
from the Wikipedia [169].

Fig. 2.6.: Convolutional Neural Network (LeNet-5). Adopted from LeCun et al. [196].

The pooling (also: sub- or down-sampling) operation reduces the dimensions of the

data by combining the outputs of neuron clusters at one layer, also called feature

maps, into a single neuron in the next layer computing a maximum (or an average)

output value either globally or locally. This operation also helps simplify the complex

and resource-consuming computations. Dropout layers simply forget some part

of the data in order to help the network generalize and prevent overfitting [286],

which is one the typical problems plaguing neural architectures with higher numbers

of trainable parameters.

With such a setup, the network can discover and learn the most significant features

of the image for a given problem and class. With the use of such consecutive

convolutions and multiple processing channels, the network can detect very complex

features. For example, it may learn to consecutively detect edges, shapes, patterns

and eventually whole complex objects like legs and wings. This idea was a huge

step forward as feature extraction now became a fully integrated automatic step
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performed by the network itself instead of an arduous manual task preceding the

actual training. Automatically extracted features are usually also much more relevant

for a given problem and contain less inherent bias than a manually devised feature

set. Image CNNs can also detect useful spatial relations in the data that would

normally be inaccessible to the human eye.

2.2.2 Neurobiological Foundations

The first working description and implementation of a Convolutional Neural Network

was the Neocognitron [105]. The original idea was based on one of the most

important findings in neuroscience made by Hubel and Wiesel [146, 147], for which

they have won the Noble Prize. In a famous experiment on cats they have shown

that neural processing of information in the visual cortex occurs in two successive

stages with the participation of simple and complex cells. These cells were defined

based on the differring construction of their receptive fields. This discovery laid

foundations for a new theory of how humans process visual information.

“The receptive field is a portion of sensory space that can elicit neuronal responses

when stimulated. The sensory space can be defined in a single dimension (e.g.

carbon chain length of an odorant), two dimensions (e.g. skin surface) or multiple

dimensions (e.g. space, time and tuning properties of a visual receptive field). The

neuronal response can be defined as firing rate (i.e. number of action potentials

generated by a neuron) or include also subthreshold activity (i.e. depolarizations and

hyperpolarizations in membrane potential that do not generate action potentials)”

[8].

Although, there is an ongoing debate between the advocates of hierarchical, parallel

and recurrent models of neural processing in the primary visual cortex, most of

the underlying circuitry, and the idea that the receptive field structures become

increasingly complex at successive stages of the visual pathway, remains the same

[215]. According to Hubel and Wiesel [146, 147], simple cells have separate on- and

off-subregions that can be mapped with small spots of light. Examples are presented

in Figure 2.7 with red crosses representing on-subregions and blue triangles off-

subregions. Hubel and Wiesel [146, 147] classified these cells based on the following

criteria:

i “they were subdivided into distinct excitatory and inhibitory regions”

ii “there was summation within the separate excitatory and inhibitory parts”
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iii “there was antagonism between excitatory and inhibitory regions”

iv “it was possible to predict responses to stationary or moving spots of various

shapes from a map of the excitatory and inhibitory areas”

Fig. 2.7.: Simple receptive fields. Adopted from Hubel and Wiesel [147].

On the other hand, the complex cell is an umbrella term for many different cortical

cells that are not simple, i.e.: any cortical neuron that does not have a simple

receptive field. These were found to form a very diverse population. Three different

examples of such cells are presented in Figure 2.8. Cell A generates on-off responses

throughout the entire receptive field. Cell B responds exclusively to a black horizontal

bar. Cell C has partially separated on- and off-regions but the receptive field cannot

be mapped with small spots of light. The green icons on the left represent the

complex receptive field with the stimuli (flashed bars or borders) overlaid [215].

According to most thalamocortical models (i.e. parallel and hierarchical), as shown

in Figure 2.9, stimuli are processed in a series of visual areas. V1 neurons are most

sensitive to low-level features, such as edges and lines [209, 146, 147]. In higher

visual areas, like V4 and IT, receptive fields are larger, and neurons are sensitive

to complex features, such as shapes and objects. Responses of high-level neurons

are fully determined by the neural firing of lower-level neurons. For example, the

neural firing to a square is determined by the neural firing for two vertical and

two horizontal lines. Although the recently proposed recurrent model suggests

that simple and complex cells originate from the same cortical circuit operating at

different amplification gains, the main computational assumption that simple cells

have segregated subregions within their receptive fields that respond to either the
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Fig. 2.8.: Three different types of complex receptive fields. Adopted from Hubel and Wiesel
[147].

on- or offset of a light bar and by spatial summation within each of these regions

and complex cells had on- and off-regions that were coextensive in space.

It can be observed that the simple and complex receptive fields and the layered

processing of visual information altogether can be very effectively approximated

with convolution and pooling operations implemented within deep multi-layered

neural network architectures as seen in most of the state-of-the-art CNNs nowadays.

Although the first implementation went by rather unnoticed, it was revisited several

years later with a more practical approach by LeCun et al. [196], and it is this work

that is now considered the starting point of Deep Convolutional Neural Network

research.

Fig. 2.9.: Hierarchical, feedforward visual processing in human brain. Adopted from Man-
assi et al. [208].
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Although the mathematical formulations of these networks have existed for almost

half of a century and first proof-of-concept implementations have been available for

quite some time – their potential remained dormant because of their extremely high

computational needs, at least for that time. As in most cases with deep learning,

it was only the recent deep learning renaissance that brought the CNNs back into

attention [135, 135, 179, 80, 280, 332, 44, 253]. They not only prove to outperform

any other known technology in the domain of image classification and many other

visual tasks but also comprise a perfect framework for computational neuroscience

experimentation [207] because of their deep neurobiological foundations.

Speech and Intonation

As shown in recent electrocorticographic study on neurosurgical patients [295], into-

national pitch is represented by a highly specialized and dedicated neural population

in the human auditory cortex. The phonetically invariant representation of speaker-

normalized relative intonation contours suggests that intonation is encoded as an

isolated pitch contour, irrespective of any lexical information or phonetic content

[305]. At the same time, these auditory cortical areas of the superior temporal lobe

are important for the formation and maintenance of motor commands and auditory

targets for speech production [168]. As reported by Guenther [122]:

“Using a combination of neural network modeling, neuroimaging, and auditory

perturbation experiments, we have characterized the network of brain regions

involved in auditory feedback control of segmental aspects of speech. This network

involves auditory error cells in bilateral posterior superior temporal cortex which

become active when the current auditory feedback mismatches the auditory target

for the current speech sound. Projections from these auditory cortical areas to

the right hemisphere ventral premotor areas, then on to primary motor cortex,

transform perceived auditory errors into corrective movement commands for the

speech articulators.”

This findings fit well within the theory of the phonetic-phonology interface central to

some of the currently dominating models of intonation, such as the Autosegmental

Metrical model [24, 124, 187, 245] as well as within the general model of speech

production (model of speech production is presented symbolically in Figure 2.10

with boxes representing processing components and circles and ellipses representing

knowledge stores). They all share a common general assumption of some finite lexi-

con of discrete building blocks for the linguistic component of intonational contours

which constitute abstract targets for the eventual concrete phonetic implementation.
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Fig. 2.10.: A blueprint for the speaker - model of speech production. Adopted from Levelt
[202] and A. Meyer et al. [223].

The categorical nature of these intonation phonemes is further supported by numer-

ous neuroscientific studies showing that the human brain separates the paralinguistic

and linguistic components of intonation and processes them in terms of gradience

or discrete categories through separate streams and even demonstrating varying

activations onsets [91, 224, 225, 257, 324, 249].

Although the location of specific brain areas responsible for speech and intonation

production and comprehension at different stages, from conceptual semantic and

syntactic to the eventual articulatory, has been studied pretty well, it is the actual

underlying computation and encoding of these linguistic intonational categories that

pose a much bigger problem and are much more interesting from the perspective of

lingusitics. Most of the cognitive categories assumed by the currently dominating

phonological models are usually rather ambiguous and necessarily biased by their

author’s intuitions. These categories are often plausible from the philosophical

point of view and within a specific grammatical system within which they were

devised but providing hard experimental evidence to support their existence often

proves more challenging, even though triangulation is becoming a widely accepted

2.2 Deep Neural Models of Speech 29



approach nowadays and more and more scientists employ experimental methods

to phonology [237] or propose hybrid approaches such as the cognitive phonetics

manifesto by Tatham [296]. As an example, it is still unclear whether the H and L

tones, as proposed in the AM model, are identical with the actual mental categories

of linguistic intonation. Even if they do exist in the mind, as might be suggested

by psychological experimentation, they might as well reside at some completely

different cognitive level. And even if they do exist as part of the phonetic-phonology

interface it is still uncertain if they do not inhabit some intermediate level instead,

such as (iii) in the following idea of abstraction levels by Shaumyan [272]:

i constructs or phonemes, at the semiotic level, which are “free from any physical

substance”,

ii observation of sounds at the physical level,

iii in between, a third level of relational physical elements, also called phonemoids

and differentoids, which come into play as an interface: phonemoids and dif-

ferentoids are defined by physical elements from the level of observation and

“stand in the relation of differentiation to signs”.

The growing list of new experimental techniques in neuroscience allows a much

deeper look into how the brain might implement these phonetic–phonology map-

pings, i.e. how the brain can infer the target intonational contour based on some

features of the planned utterance, or how it might decompose and map the perceived

intonational contour into cues to linguistic structure of the perceived utterance.

Numerous studies show that, similarly to the visual cortex, “speech comprehension

involves hierarchical representations starting in primary auditory areas and moving

laterally on the temporal lobe” [65]. Moreover, Tian et al. [301] have shown that

analogues of visual simple and complex cells can also be found in the auditory cortex.

This study used the original classification criterion as proposed by Hubel and Wiesel

[147]:

“Simple cells were originally defined by the existence of segregated subregions

within their RF that respond to either the on- or offset of a light bar and by spatial

summation within each of these regions, whereas complex cells had on- and off-

regions that were coextensive in space. [...] Here we report that response profiles

of neurons in primary auditory cortex of monkeys show a similar distinction: one

group of cells has segregated on- and off-subregions in frequency space; and another

group shows on- and off-responses within largely overlapping response profiles.”
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As they report, these findings support the existence of a common canonical pro-

cessing algorithm within cortical columns. If both mechanisms seem to share the

same hierarchical nature, with both convergent and divergent information flow in

successive, nested processing layers [180, 196, 256, 270] it is reasonable to suspect

that these hierarchically organized simple- and complex-type cells in the auditory

cortex might be capable of extracting levels of gradually complex latent features from

the input signal similarly to the CNN models of visual processing introduced above.

The obvious differences are in the nature of the input signal itself. Although they

are not as different as one might initially assume. Linearized neurocomputational

models have demonstrated the existence of strong spectrotemporal and phonetic

feature representations in superior temporal gyrus (STG) [65, 83, 148, 221] and

motor cortex [45]. The Spectro-temporal receptive field and the 2-dimensional

representation of the sound signal as inherited from the cochlea makes it much more

similar to its visual counterpart. As defined by Shamma [271]:

“The spectrotemporal response field (STRF) of an auditory neuron is a time-frequency

measure of the dynamic responses of an auditory neuron to impulsive energy

delivered at various frequencies. As such, it gives simultaneously two types of

information about the neuron. The first is its frequency tuning, or more specifically

which frequencies excite the cell best and which inhibit it. The other is the nature

of its temporal response, i.e., whether it is sustained in time or is rapidly adapting.

This measure is linear and takes the stimulus spectrogram as its input and hence is

often found to be useful in predicting responses of a neuron to unseen stimuli.”

2.2.3 Deep Temporal Convolutional Neural Model of Speech

Unprecedented performance of CNNs in visual tasks triggered a number of attempts

to apply them to different problem domains. With first notable examples by H. Lee

et al. [197] and Hau and K. Chen [129] CNNs started becoming popular also in

the context of modeling speech, especially in Automatic Speech Recognition (ASR)

systems [2, 145, 241, 203, 254].

In a 2016 paper [239], a Google-owned company Deepmind4 presented a fully

autoregressive probabilistic end-to-end speech synthesizer with a CNN at its core –

the WaveNet. The idea was based on Google’s PixelCNN [312] – an image generation

network. WaveNet is using a technique called dilated causal convolutions. The

causality is expressed through the joint probability of the modeled waveform ~x =
4https://deepmind.com
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{x1, . . . , xT } being factorized as a product of conditional probabilities of all previous

timesteps [239], i.e.:

p (~x) =
T∏
t=1

p (xt | x1, . . . , xt−1) (2.1)

Dilated convolutions are a concept borrowed from a wavelet transform algorithm

called à trous (French for with holes). It was primarily designed to overcome

the lack of translation-invariance of the discrete wavelet transform (DWT) which

was achieved by removing the downsamplers and upsamplers in the DWT and

upsampling the filter coefficients by a factor of 2(j−1) in the j-th level of the algorithm

[5, 275, 298, 299]. In WaveNet this concept was applied in order to increase the

receptive fields of the network. Figure 2.11 illustrates how a stack of dilated causal

convolutions with dilation factors [1, 2, 4, 8] allow for a receptive field of 16 time

steps for the generation of a single output.

Fig. 2.11.: Dilated causal convolutions. Adopted from the original WaveNet paper [239].

Another key concept used in the PixelCNN network that was also applied to WaveNet

was the introduction of gated convolutional layers, defined as:

~z = tanh (Wf,k ∗ ~x)� σ (Wg,k ∗ ~x) , (2.2)

where ∗ denotes a convolution operator, � denotes an element-wise multiplication

operator, σ(·) is a sigmoid function, k is the layer index, f and g denote filter and

gate, respectively, and W is a learnable convolution filter.

They have been introduced mainly to account for the single advantage that gener-

ative LSTMs had over the PixelCNN architecture, which allows every layer in the

network to access the entire neighbourhood of previous pixels, while the region
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of the neighbourhood available to pixelCNN grows linearly with the depth of the

convolutional stack [312]. Gated activation units control what information will be

propagated throughout the remaining layers and thus establish a kind of selective

long term memory. These gated activation units are additionally implemented with

residual [132, 239] and skip connections as demonstrated in Figure 2.12. These in

turn help avoid the vanishing gradient problem which typically affects very deep net-

works and has been shown to improve the performance of modeling long sequences

with complex spatial relations.

Fig. 2.12.: Residual and skip connections from a stack of k gated convolutional layers.
Adopted from the original WaveNet paper [239].

The original WaveNet paper reports a Mean Opinion Score-based perceptual eval-

uation of the synthetic speech output by the network compared to Google’s other

top speech synthesizers built on that same corpora. As shown in Figure 2.13, the

network was achieving unprecedented results. Also the speech (and music) samples

published online demonstrate previously unthinkable quality and naturalness, with

previously unheard details such as breathing and mouth clicks in a number of online

samples5.

Since then a number of speech synthesizers based upon the general idea of a Tempo-

ral Convolutional Network (TCN) [194, 20, 19] have been built, each improving the

results attained by its predecessors even further. TCN became an umbrella term for

the many different flavours of the same base idea.

5https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
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Fig. 2.13.: Google WaveNet evaluation results as compared with Google’s best concatenative
and parametric systems. Adopted from Oord et al. [239].

Tacotron 1 & 2 [320, 274] introduced the first of the notable improvements. As

illustrated in Figure 2.14, they imlemented a sophisticated neural architecture that

used the WaveNet as one of the central building blocks along with a number of other

state-of-the-art methods like transforming the input text into character embeddings,

attention mechanisms and additional LSTM blocks.

Fig. 2.14.: Tacotron 2 architecture. Adopted from Shen et al. [274] (©2018 IEEE).

The network was not only able to synthesize speech directly from text input, which

demonstrated its outstanding ability to discover, extract and model complex relations,
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but also raised the bar in terms of the quality of the synthesized speech even further6.

The results were soon matched by a number of Baidu’s7 DeepVoice synthesizers [14,

111, 248]. The DeepVoice systems demonstrated how well the underlying networks

can mimic speaker characteristics by conditioning them on small samples of speech

from a specific speaker while being trained on big multispeaker datasets beforehand.

The improvements from that point were made mostly by applying optimizations to

the training algorithms and using even bigger datasets for training.

This very recent leap forward in the quality of the TTS systems brought the TCNs

into attention of other fields of science, also those studying human speech and

language from a different perspective. Although the examples are still few, some

noticeable work can be found in computational neuroscience. Angrick et al. [10, 11]

have demonstrated good results in an attempt to directly synthesize continuously

spoken speech from neural activity using electrocorticography in patients suffering

from intractable epilepsy. Tamm et al. [294] have used a novel EEG-based method to

recognize imagined vowels using a CNN and Cooney et al. [56] have done a similar

study for the recognition of word-pairs.

The growing body of evidence suggesting that auditory processing of speech percep-

tion and production can resemble that in the visual cortex and the undeniable appeal

of TCNs as models of neural computations occurring during these processes brought

about a need to have a deeper look into the internal workings and representations

of the networks, which to this point have been a traditional black box.

2.2.4 Deep Neural Network Explainability

Although the DNNs are popularly used as part of a scientific methodology in compu-

tational neuroscience and a number of heuristics have been used to infer the internal

states of the network, they were long considered a typical black box. The visual

CNNs provided an easy peek into how the network is processing the input through

the highly interpretable convolutional filters. The learned parameters of the filters

can be simply visualized in themselves as images or can be manually applied to any

image and the output can be simply inspected by eye, revealing the visual effect of

the operation. However, the convolutions in the deeper layers are sometimes less

intuitive as they are applied on the output of the preceding layers’ filters. Figure

2.15 illustrates the visualization of convolutional filters learned on a typical image

classification dataset. Filters’ kernels in lower layers are similar to the receptive

6https://rayhane-mamah.github.io/Tacotron-2_audio_samples/
7http://research.baidu.com/Blog/index-view?id=91
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fields of simple cells in the human visual cortex, responding to simple lines and

edges. The filters in higher layers are shown to respond to increasingly complex

patterns and shapes with actual objects like dogs noses and human faces in the final

layers of the network.

Fig. 2.15.: Learned convolutional filter visualization example. Adopted from Zeiler and
Fergus [332].

In order to provide an even deeper insight into how parts of the input information

are used by the network, a method based on the principle of backpropagation [262],
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which is also the core method used in the training of the deep learning models, was

proposed. It allowed to calculate feature saliency by computing the influence of a

tensor w.r.t. another tensor on the final loss. The influence of the input on any given

filter is this filter’s saliency map [18, 279]. Since then, many different variations of

this method including both improvements in the formal mechanism as well as the

implementation details themselves were introduced.

Comparison of Sensitivity-based and Relevance-based Methods

We can relate to any of these methods as sensitivity analysis as they are all based on

the effect of infinitesimal perturbations of the input values on the function value itself,

e.g. (∂f/∂xp)2. The main drawback of this approach was very clearly explained by

Samek et al. [264] with an analogy to a linear classifier, i.e. f(x) =
∑
p xpwp, for

which sensitivity would be calculated as Rp = w2
p (or Rp = |wp| depending on the

variant). Since it does not include the actual input activations (so the actual presence

of some feature) and only the information about the inputs the classifier reacts to

(wp > 0, meaning which inputs if modified make the input data more or less belong

to some class), it does not provide an optimal explanation. As shown in Figure 2.16,

“regions consisting of pure background, e.g., the empty street, have large sensitivity,

although these pixels are not really indicative for this image category. However,

if we put motorbike-like structures at these particular locations, then this change

would certainly increase the classification score.”

Another method called Layer-wise Relevance Propagation (LRP) was proposed [17,

264, 234] to address this issue. Figure 2.16 shows how the quality of the explanation

provided by 3 different variants of this new method compares with the explanation

provided by classical sensitivity-based methods in a perturbation study, where a

number of image pixel values are ablated or randomized. The results are calculated

as the Area Over Perturbation Curve (AOPC) relative to random output. For more

information on this study please see the original paper by Samek et al. [264].

Details of the Layer-wise Relevance Propagation Method

The relevance in this framework can be defined as:

Rj =
∑
k

ajwjk∑
0,j ajwjk

Rk (2.3)
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Fig. 2.16.: Results of sensitivity-based and relevance-based explainability methods. Based
on Samek et al. [264]

With j and k being the indexes of neurons on two consecutive layers, a symbolizing

the activation of a neuron, and w denoting the weights. This is the simplest form

of LRP (LRP-0) and although many different flavors have been developed the main

idea stays the same. The numerator in Equation 2.3 denotes the amount of influence

of neuron j on neuron k in case of an active Rectified Linear Unit (ReLU) activation

when it becomes linear. It is divided by the sum of contributions of all neurons of the

preceding layer. This enforces the conservation principle of LRP which states that

the magnitude of any output y is conserved through the backpropagation process

and is equal to the sum of the relevance R of the input layer. This property holds

for any consecutive layers j and k, and by transitivity for the input and output

layer. The procedure of calculating relevance employs a method called Deep Taylor

Decomposition [17, 233]. Figure 2.17 illustrates the computational flow of this

method. A prediction for the class “cat” is obtained by forward-propagation of

the pixel values, and is encoded by the output neuron xf . The output neuron is

assigned a relevance score Rf = xf representing the total evidence for the class

“cat”. Relevance is then backpropagated from the top layer down to the input, where

Rp denotes the pixel-wise relevance scores, that can be visualized as a heatmap.
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Fig. 2.17.: Computational flow of deep Taylor decomposition. Adopted from Montavon
(2017) [233].

In case of ReLU activations, the first step consists of a typical forward pass with

a small constant added to the whole expression to prevent later division errors.

The weight can be also passed as an argument to an optional p function which

differentiates all the different flavors of the LRP method. Next the relevance of

the preceding layer is divided by the results of the forward-pass in order to apply

the conservation principle. The third step implements a backward pass calculating

the amount of relevance that trickles down to neuron j from the succeeding layer.

Finally the relevance coming from above is multiplied with the activation of the

neuron to calculate its own final relevance. In this way the component missing in

the sensitivity based methods is introduced as we include both the activation of a

neuron, and how much it contributes to the output (or the relevant neurons in the

succeeding layer). In this way the method is able to produce much more relevant

explanations as shown in Figure 2.16.

Explainability Methods for Temporal Data

Currently, a whole range of different methods for visualizing and explaining the

internal states of the network are available, e.g.: SmoothGrad [281], Integrated-
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Gradients [290], DeconvNet [332], Guided Backpropagation [284], PatternNet and

PatternAttribution [171], the discussed LRP [17, 190, 234] and Deep Taylor Decom-

position [233, 6], and Deconvolution Network [329]. Image classification became

the go-to problem domain for the development, evaluation and implementation

of these explainability algorithms, as the visual modality ensures easy manual in-

spection and interpretation of the results. LRP has been also successfully applied to

some other problems and models as listed by Samek et al. [264], i.e. bag-of-words

models [17], Fisher Vector and SVM classifiers [190], identification of relevant

words in text documents [16], visualizing facial features related to age, happiness

and attractivity [13] and identifying relevant spatio-temporal EEG features in the

context of brain-computer interfacing [289].

These methods can usually be extended for time series data too but the domain

has remained relatively unexplored [276]. Some notable examples include the

works of Kumar et al. [184] and Siddiqui et al. [277]. The latter work provided a

fully functional implementation of a range of explainability methods aimed at the

analysis of time-series models – the TSViz Python library. The examples covered

in the original paper are mostly considered with time series forecasting problems,

where a number of following outputs are predicted given a number of preceding

samples, or with time series anomaly detection, which is mainly a classification

problem.

“TSViz provides possibilities to explore and analyze the network from different

dimensions at different levels of abstraction which includes identification of the

parts of the input that were responsible for a particular prediction (including per

filter saliency), importance of the different filters present in the network, notion

of diversity present in the network through filter clustering, understanding of the

main sources of variation learnt by the network through inverse optimization, and

analysis of the network’s robustness against adversarial noise. As a sanity check for

the computed influence values, we demonstrate our results on pruning of neural

networks based on the computed influence information” [277].

Another notable example can be found in Lauritsen et al. [191], where the potential

of explaining networks build for temporal data was demonstrated in a study, in

which the authors predicted acute critical illness from electronic health records and

then analyzed the cues to these predictions as extracted from the network itself

using the explainability algorithms. This work employs another implementation of

explainability methods from Alber et al. [6]8, which supports relevance calculation

for time-series data out-of-the-box.
8https://github.com/albermax/innvestigate
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The availability of such interpretability techniques will surely trigger many more

studies focused on exploring processing patterns in biologically-inspired neural

networks acting as models of human cognition for different modalities. Until now,

to the best of the author’s knowledge, no such study considering the perception or

production of speech and intonation has been made.

2.3 Intonation Modeling

As defined by Féry [94], intonation is:

“The tonal structure of speech expressed by the melody produced by our larynx. It

has a phonetic aspect, the fundamental frequency (F0), and a grammatical (phono-

logical) aspect.”

However, in the current work we will understand the melody in the above definition

as only these features that pertain directly to the variations in the perceived pitch

and not to the duration, intensity, voice quality or any other features, which will be

here considered as part of the broader category of speech prosody. The term prosody

is often used interchangeably with intonation but here we adopt the understanding

proposed by Trubetzkoy [307], where it is defined as all rhythmic-melodic aspects

of speech. So by prosody we will understand all suprasegmental features of speech

including the intonation itself, duration, intensity and voice quality.

The second part of the definition given by Féry [94] is a good example for what Rossi

[260] emphasized extensively – all definitions of intonation “are epistemological

definitions, i.e., not a priori programmatic definitions, but a posteriori statements of

a practice and methodology.”

These differences in attitudes, in turn, can usually be somehow traced back to the

scientific tradition, or school, that influenced the scholars working on the problem.

So in order to fully understand this extreme epistemological polarity it is necessary

to understand the history of the western intonation research. Many fine reviews of

past (and present) intonation models can be found in the literature, e.g. in works by

Pierre and Martin [244], Di Cristo [82, 81], Gibbon [110], Bertinetto [28], Rossi

et al. [261] and Rossi [260], Selkirk [269], Cruttenden [59], Ladd [186], Cutler

et al. [62], Lacheret-Dujour [185] and Botinis et al. [38], and hence this work does

not aim at providing yet another one. However, it is worth mentioning at least a

few of the ideas that constitute the preliminaries to modern intonational studies,

including this one.
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Most of the current linguistic models of intonation are eventually phonological in

nature [260] and deeply rooted in one of the main schools of phonology, American

or European9. Moreover, they can be also divided into those that attempt to model

only a single level of abstraction of the phenomenon, and those that try to approach

it more holistically covering all of its aspects, from the abstract and cognitive to the

ultimate concrete and physical. However, they are all mostly founded on that same

assumption that intonation is a dualistic phenomenon that can be seen as a mapping

from a system of discrete cognitive units to contours of fundamental frequency and

the other way round. This perspective surprisingly puts little emphasis on modeling

the mapping itself which, as already mentioned, seems to be at the very heart of the

problem.

2.3.1 European School

In Europe, intonation was, and still is, studied mainly in relation to its function

and meaning, following the main tenets of the Prague School of phonology and de

Saussure’s structuralism [67]:

i Saussure argued for a distinction between langue (an idealized abstraction of

language) and parole (language as actually used in daily life). He argued that

a sign is composed of a signified (signifié, i.e. an abstract concept or idea) and

a signifier (signifiant, i.e. the perceived sound or visual image).

ii Because different languages have different words to refer to the same objects

or concepts, there is no intrinsic reason why a specific signifier is used to

express a given concept or idea. It is thus arbitrary.

iii Signs gain their meaning from their relationships and contrasts with other

signs. As he wrote, in language, there are only differences without positive
terms.

De Saussure in his Course in General Linguistics, prescribes that linguists should

focus not on the use of language (parole), but rather on that underlying system

(langue). The Prague linguistic circle followed these ideas and consequently saw

that the analysis of language should be a study of contrastive features. In phonology

that was most evident in the consideration of minimal pairs – two different words

9The author was not able to find any comprehensive reviews or mentions of historical intonation
research in other parts of the world. Although they might have existed as part of the rich
philosophical traditions of China or India the current scene is dominated by the aforementioned
lines of thought.
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that contrast only in terms of a single speech sound, as the necessary requisite for

distinguishing different phonemes in the inventory of speech sounds of a language.

An intonational phoneme, a small meaningless unit that can be used to produce a

large number of meaningful elements (morphemes), was therefore highly needed

to fit in the programmatic assumptions [308]. Initially, some saw intonation as

lacking the double articulation and simply considered it as an acoustic substance

that links directly to meaning. The resulting models were pertaining directly to the

intonational contour. Others attempted to devise systems of intonational phonemes

and morphemes. The latter was also the more convenient angle as the substance

was much more difficult to tackle than the content. It was always, however, in direct

relation to their function.

The substance-based approach is also very noticeable in the Leningrad School of

linguistics, based upon the work of Baudouin de Courtenay, where the prerequisite

for a phoneme was the language speakers’ awareness of it as a distinguishable

category of sounds. This view required the phonological analysis to start from the

actual acoustic substance. Some followers of this trend even argued that morpho-

phonology does not require any further levels of abstraction below, except for the

necessary concrete phonetic level. Prague School was focused more on content. Their

mostly theoretical approach to intonation assumed its strong link to other linguistic

constituents of a sentence as in the theme-rheme theory developed by Mathesius

[216], Karcevskij [165], Groot [120], Daneš [64] and others. This idea was later

revisited and improved upon by Ladd [186], as it gained additional momentum with

Selkirk’s [269] cognitive levels hierarchy and the related interpretability condition

by Hirst, Di Cristo and Espesser [138, 260] stating that:

“Representations at all intermediate levels must be interpretable at both adjacent

levels: the more abstract and the more concrete". Hence ”functional representations

which encode the information necessary for the syntactic and semantic interpretation

of the prosody.”

A number of superpositional models were also defined based mainly on the work of

Öhman [238] and Fujisaki [103], like those by Möbius et al. [229] and Möbius [228],

Mixdorff [227] and J. Van Santen et al. [316]. These models assume that sentence

and word intonations can be modeled with separate components superimposed over

some baseline and have strong articulatory and physiological foundations.

On the other hand, Gårding et al. [107] and Gårding [106], Botinis [37], Bannert

[21], Grønnum [119] and Hjelmslev and Whitfield [140] argued that intonation

should be first approached independently of other levels of language to account

2.3 Intonation Modeling 43



for its concrete physical realization first and only then for the underlying content.

This view was also shared by some followers of Pierrehumbert’s model [245] and

the proponents of the IPO model [292] whose theoretical foundations resemble the

behavioral views of Bloomfield [34] in the American School.

Most contemporary European work on intonation in the European School is founded

on some of the above principles, whether these are the works by descriptivists like

Jassem, Crystal, Cruttenden, Fonagy, Kratochvil, Potapova, Svetozarova [137], or by

intonational morphologists like Brazil, Gussenhoven, Couper-Kuhlen, Kohler, Martin

or Rossi [260].

2.3.2 American School

The aforementioned behavioral model by Bloomfield, which treated words as stimuli

and meaning as the speaker’s reaction to that stimuli, gave rise to what we now

refer to as the American School of Phonology as these assumptions had evident

epistemological consequences. It suggested that the phonological study of language

should be concerned only with the actual speech [34]. As Rossi [260] notes, Harris

[128] claimed that the distributional features are sufficient for a definition of a

phonological system. Phonetic features were used widely used as in the work by

[306]. Under this bottom-up concrete-to-abstract view, prosodic features were also

seen as part of linguistic features and were usually included in the same same

manner as phonemes. Rossi [260] enlists the resulting principles that finally led

Pierrehumbert [245] to publish her intonational model that, with slight improve-

ments and additions, became a standard for all the current works in intonation. The

principles include:

i the requirement of treating intonational data as an autonomous level of

analysis,

ii the attempt “to deduce a system of phonological representation for intonation

from observed features of F0 contours”,

iii a relatively direct link between F0 contours and the abstract phonological

level, but an indirect link between the acoustic signal and functions,

iv a method of discovery akin to the distributional model, and

v the compositional conception of contour meaning similar to Harris’s definition

of meaning [128]
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The work of Pierrehumbert is often referred to as the foundation of the Autosegmental-

Metrical model [186]. The non-linear autosegmental principle, as proposed by

Leben [195] and Goldsmith [113], stated that intonation is a level parallel to that

of syllables, to which it is only loosely related and not determined by in terms of

segmentation. That resembles the early suprasegmental assumptions by R. S. Wells

[323], Trager and H. L. Smith [306] and others. The autosegmental theory, in turn,

provided the necessary foundation for the Metrical Theory [205, 204] that used the

fundamental frequency feature to express the relations between accents and phrases.

Selkirk [269], in turn, combined it further with the increasingly popular generative

phonology as it was the time when the chomskyan perspective on linguistics was

rapidly gaining interest and provided yet another critical view of the traditional

European structuralism [50]. But also the work of Pierrehumbert, with intonational

level autonomy and phonetic analysis as a necessary part of modeling, contrasted

the traditional programmatic assumptions of the European School. Not all of the

European structuralists opposed these views, most notably the British School [60,

15] described intonation in terms of a single, unilinear representation, either as a set

of holistic tunes or as linear successions of auditory categories, but also saw phonetic
as referring to the auditory impression of a specific contour when analysed by a

trained phonetician, and not to the acoustic realization as Pierrehumbert saw it. Her

model is based on the direct analysis of the F0 curves and has only two axiomatic

assumptions:

i the phonemes (H/L tones)

ii the domain of selection of categories, that is the intonational phrase of the

prosodic hierarchy proposed by Selkirk [269], and by Nespor and Vogel [251]

The resulting model does not only attempt to model intonation from bottom up,

starting with the concrete F0 contours and reaching abstract morphemes (the pitch

accent) through an intermediate level of sequences of tones. She also assigns

meaning to some of these morphemes. This reflects the earlier works by Bolinger

[36, 35] and Trager and Smith [306, 282]. The intonational phrase is defined as:

x >= 0 pitch accents + 1 nuclear accent + 1 phrase tone + 1 boundary tone (2.4)

This work became very influential both within the United States [24, 136, 240, 250],

and outside, where it provided the much needed rehabilitation of a field traditionally

frowned upon by the practitioners of the European structuralism. As a consequence
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a number of similar models were developed and include notable works by Mertens

[220], Collier et al. [55], and Rossi et al. [261]. The differences are usually formal

and lay mostly in the definition of the primitives inventories or the procedures of

tone identification from the F0 curves. Hirst and Di Cristo [138] created a model

called MOMEL that includes an additional, third level of abstraction – a phonetic

representation of the F0 curves as a sequence of target points.

2.3.3 Research in Polish Intonation

Inquiry into the intonational system of the Polish language does not have a long

history. First notable works include the handbook by Moneta [232] published in

the 1720 and the following works by Nowaczyński [236], Golański [112], Elsner

[88], Królikowski [181]. The purpose of prosodic study in that era was mainly to

teach Polish rhetorics to Polish intelligentsia and to somehow "adjust" Polish for the

needs of antique poetry and its rhythmic scheme, the dactylic hexameter. The first

theoretical works should be however attributed to W. Mańczak [211, 212, 210] and

M. Dłuska [85]. Both theories were formulated based on auditory judgedgments of

their authors. There were notable differences between the key concepts and none of

them specified what speech material was used in the analysis. Their work, however,

helped reform the method of inquiry in the area. M. Steffen-Batogowa conducted the

first systematic work on Polish intonational structure [288, 287]. A proper speech

corpora was used in the study and the work included a detailed description of the

methodology. It included both instrumental and perceptual analyses and the theory

was based on the earlier work by Dłuska [84]. The study identified an inventory

of 26 Polish intonemes. However, some key concepts used in that work, e.g. the

phonological word, were still lacking acoustic definitions.

Demenko [70], on the other hand, based her work on the principles of the British

tradition and the earlier works by Jassem [154, 156], which allowed to easily

correlate some acoustic parameters with parts of the intonational phrase, defined

as:

[anacrusis*][pre-nuclear intonation*[nuclear intonation]] (2.5)

Here, anacrusis is a sequence of the lead-in unstressed syllables, the optional (marked

with ∗) pre-nuclear intonation is composed of one or more pre-nuclear accents,

and the ictal (nuclear) intonation consists of one and only one ictus – primary

intonational accent and optional post-ictal accents (non-intonational).
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Tab. 2.1.: Pre-ictal accent types

High H
Low L

Tab. 2.2.: Ictal accent types

Full falling HL
Low falling ML
High falling HM
Extra low falling xL
Low rising LM
High rising MH
Full rising LH
Rising-falling LHL or MHL
Even MM

Demenko [70] listed the distinctive acoustic features of ictal (and pre-ictal) accents

and identified that they are realized within the vowel. She also reported that vowels

in nuclear syllables can show significant F0 changes, as opposed to vowels in pre-ictal

unaccented syllables. All of the possible pre-ictal and ictal accent types reported in

that work are listed in Tables 2.1 and 2.2.

Examples of the 9 different Polish accents that were identified are illustrated in

Figure 2.18. Top three examples of rising accents, followed by three examples of

different falling accents in the middle can be characterized by the difference in the

height of the final tone. According to Demenko [70], these accents can be realized

both as a difference between the accented and post-accented syllables as well as

an F0 change on the accented syllable alone. The bottom row contains examples

of level and rise-fall accents, which can be realized with an F0 interval between

the accented and post-accented syllables and a near-zero slope of fundamental

frequency, or with a difference in duration between these syllables, and with a

rise and fall realized on the accented vowel, respectively. Phrase boundary tones

were identified as significant prosodic events realized through syllable duration, F0

contours, intensity and pauses.

Additionally, the cited work describes some preliminary attempts at applying a

number of physicalist models, including ANNs and the Fujisaki model [103], with

the latter being reattempted several years later also by Demenko and Kuczmarski

[74].

A number of studies concerned with modeling of Polish intonation were soon to

follow. Francuzik et al. [99] and Jarmołowicz et al. [153] are two notable examples
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Fig. 2.18.: Acoustic realizations of the 9 different accents. Adopted from Demenko [70].

but a first attempt at formulating a full end-to-end bi-directional model of Polish

intonation can be found in the work by Wagner [317], where the mappings between

phonetic representations and surface phonological categories are founded on a

specially developed F0 contour stylization method and an inventory of pitch accents

and boundary tones identified using statistical algorithms and a specially designed

speech corpus. The model was specifically designed to be implemented in a speech

synthesis system. The problem of intonation modeling in other domains of speech

technology, i.e. Automatic Speech Recognition (ASR) and Computer-Aided Language

Learning (CALL), was later addressed by Demenko et al. [75, 77]. The problem

of intonation was also addressed in a number of works by Gonet, mainly from

the perspective of glottodidactics and Polish-English comparative phonetics and

phonology [114, 115, 116].
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An extensive overview of the whole problem domain of Polish intonation processing

in speech technology can be found in works by Demenko [71] and Wagner et al.

[318].
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Methodology 3
„Why repeat the old errors, if there are so many

new errors to commit?

— Bertrand Russell

3.1 Aim of the Current Work

The main aim of the current work was to develop a model of how the continous F0

contours of an utterance emerge from the shallow discrete linguistic features of that

utterance through a series of successive probabilistic mappings into intermediate

latent represenentations, and to evaluate this model’s performance operationalized

through the naturalness of its output in the context of a statistical parametric speech

synthesizer. Although speech synthesis and speech technology in general are usually

associated with practical applications, they also make up an important scientific

tool that allows to study the language from many different perspectives. The model

built within this work is aimed at providing a valuable contribution not only to the

practical side of speech synthesis, but also to its scientific role in modeling speech

production by including explanation methods and applying them to identify which

of the many linguistic features used in this work demonstrate highest relevance for

the synthesis of F0 contours.

3.2 Motivation

3.2.1 Unificationist Approach to Intonation Modeling

More and more methods from other fields of science are adopted in linguistics

to account for the interdisciplinary requirements of the modern research topics.

The more theory is provided by the foundational fields of linguistics the more

comprehensive models we build and the further we step beyond the traditional
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frontiers of the discipline to accommodate for various processes that collectively

constitute the act of language communication. Prosody research is a prominent

example here, as its subject can be placed somewhere at the edge of language inquiry

and does not easily obey the traditional frameworks of linguistics which are mostly

designed to deal with grammars of easily separable segments.

Many of the meaningful components of intonation are expressed in terms of gradi-

ence instead of discrete categories. Although continuity can be easily handled with

the tools of phonetics, it has always been problematic for phonology and has been

traditionally assigned to the non- or para-linguistic level of speech communication. A

number of phonological models have proven great for separating these components

for the needs of traditional linguistic systems. As Wagner [317] points out:

“Phonetic models are regarded as quantitative. In phonetic models intonational fea-

tures are described in terms of vectors of acoustic features or continuous parameters

(e.g. duration, amplitude, slope, F0 peak position) which interact with one another.

In F0 contour generation the values of the parameters are estimated from symbolic

input by a regression model (e.g. Hunt and A. W. Black [149], Dusterhoff and

A. W. Black [86], Mixdorff [227]). Depending on whether the model is sequential or

superpositional the F0 contour of an utterance results from interpolation between

the estimated pitch targets (e.g. Momel [139], PaIntE [231], Tilt [297]) or super-

position of the components of different temporal scopes (e.g. Fujisaki model [103]

and its adaptations to different languages).”

Whereas:

“Phonological models are qualitative and sequential. In phonological models intona-

tional tunes are considered as sequences of distinctive discrete tonal categories. As a

result of detailed acoustic analyses an inventory of tonal categories and intonational

grammar are defined which provide framework for transcription of intonation. As

opposed to phonetic models which account for melodic aspects of intonation in the

first place, phonological models represent the analytical approach: in the first place

they account for functional aspects of intonation which are related to higher-level

linguistic information. In F0 contour generation the alignment and scaling of tonal

targets is determined from rules devised by a human expert (Anderson et al. [9],

Jilka [159], Jilka et al. [160]).”

However, “the whole variety of F0 values available in the acoustics [...] [is reduced]

to a mere binary opposition Low vs. High, and to some few additional, diacritic

distinctions” [230, 23]. Moreover, more and more evidence, coming mainly from

the neurobiological studies (as discussed in section 2.2.2), show that intonation
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is processed by different parts of the human brain simultaneously, and that it

is subjected to both continuous and categorical perception and undergoes both

linguistic and non-linguistic processing at the same time. Many various multi-

levelled heterogeneous cues combine to make up the final contour (impression)

of the fundamental frequency. As an example, consider the biomechanics of the

glottis and how it can impose natural non-cognitive limitations on the grammar of

intonation units. It is not hard to imagine how a temporary physical state of the body,

such as some violent exertion, for example, can affect the suprasegmental features

of one’s speech. Or how the brain’s biophysical features affect the emergence of

the cognitive constructs of tone and their perception. After all “We cannot think

just anything — only what our embodied brains permit” [161]. Examples like

these prove the dualistic perspective elusive at best. All these individual aspects

can be addressed by their respective fields of science separately. Each of them can,

and indeed does, provide important points of view of intonation on their own, but

prosody research should benefit from methods that allow to study the phenomenon

as a whole, and to allow patterns where two or more traditionally separate levels of

language communication interact.

In the current work, the modeling framework is built under the aristotelian assump-

tion that “The whole is greater than the sum of its parts” and that the synergy of

these parts needs to be included in a model of intonation in order to allow scientific

access to the very nature of the phenomenon. Leaning towards the lakoffian concept

of embodied language, the author agrees that intonation cannot be understood

without reference to the underlying “implementation details”. The neurobiological

part of these physical constraints of the body on mind can be expressed through

models based on neural architectures that somehow resemble that of the human

brain. Of course, even the most advanced artificial neural architectures are far from

modeling even the simpliest of brains. They can, however, still help us see general

patterns. And with the accelerating advances in computing power and resources

we will keep progressing towards more and more complete models. This of course

converges with the problem of creating the Artificial General Intelligence. One of

the prerequisites for AGI is the immersion in the environment as it is only through

the embodied interaction with the environment that ideas and emotions can arise.

Only with the knowledge of all external factors affecting the human body and mind

can we attempt to model the complex internal states and their immediate expression

through intonational features. This perspective, very appealing from the standpoint

of the philosophy of language, is rather impractical in the current context as building

such complex models is, of course, still virtually impossible.
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Even a much more basic model that simply integrates all of the linguistic levels of

intonation is still out of reach due to the numerous gaps in foundational research

that still need filling, as well as the vast complexity of the integration task itself.

However, each small step towards the unification of theories brings us closer to

gaining a more complete perspective on the phenomenon.

3.2.2 Interfacing Phonetics and Phonology

The model built here concentrates mainly on addressing the aging gap between

phonetic and phonological theories. This gap originates from the traditional dualistic

perspective on language and linguistic methodology. As reviewed in the previous

chapters, most of the current intonation models fall into this traditional dichotomous

approach being either purely phonetic or phonological.

When addressed from the phonological perspective, intonation is often constrained

to a discrete lexicon of cognitive units like tones or phrase breaks. This point of

view necessarily ignores or oversimplifies a whole range of other aspects of intona-

tion whose role and place in the eventual contour of the fundamental frequency

is undeniable. Dealing with discrete minimal features, it neglects the gradient

features completely, although they are as cognitively significant as their discrete

counterparts. Theoretical phonological models are rarely validated through practical

implementation despite the evident value of triangulation in theory building. This is

probably mainly due to the fact that the physical correlate of the cognitive features

and categories is very difficult to pinpoint and extract from the singular continuous

flow of the fundamental frequency. Even if phonological research attempts to find

such empirical evidence, it is more often a matter of creative interpretation that

discounts all non-matching examples as anomalies related to the non-systematic

nature of human language performance.

Phonetics, in turn, is focused on the quantitative study of these very real examples

of intonation implementation in the speech signal and its fundamental frequency

and the mechanics of their production. This approach, on the other hand, is

exclusively descriptional and provides little explanation of the linguistic aspects of

these physicalist measurements or how they relate to the meanings and ideas behind

them. Phonetics basically ends where the dualistic mind begins. Although they

both serve their purpose perfectly, they also both fail at explaining how these ideas

are interpreted into sound, which is the core interest of linguistics with all of its

subfields. However, being very problematic to approach with any of the currently

available frameworks it is often treated as an unwanted child.
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Since it is difficult to build a single cognitive or phonological system that translates

to some easily separable characteristics or component of the fundamental frequency,

and since many neurobiological studies provide evidence that the neural source of

intonation is heterogenous, the author believes that intonation should be perceived

not exclusively as a cognitive construct, a biological process or as its physical

realization through fundamental frequency but as the relations between them, and

that it is these relations that should be at the center of prosody research. This is also

the main idea behind building the current model and developing methods that are

able to reveal the complex structure of the possible underlying relations.

3.2.3 Explainable Deep Neural Network-Based Model of Intonation

A number of models, showing a tendency towards unification through the hetero-

geneity of considered features and emphasis on the mapping of phonological entities

to phonetic realization, can be already found in speech technology. All machine

learning-based models that learn to predict continuous sound output from discrete

linguistic categories are in fact such models to some extent (see Section 2.1). The

high quality of the output of such models, which are usually quite simple statistical

predictors trained on large-scale domain-specific datasets, serves as a pragmatic

evidence that models including a wide spectrum of features from many different

levels and their sophisticated relations can successfully model the contours of the

fundamental frequency.

However, until recently such models were of little value to science by itself as they

did not provide any explanations and could not be used as tools to explore the

phenomenon more profoundly than previously possible. Visual CNNs were the first

to show outstanding potential for explainability. Popularized by the psychedelic

images generated by Google’s Deep Dream1 the field of the so-called explainable

AI is rapidly gaining momentum. Figure 3.1 shows an example of the effects of

the Deep Dream algorithm, where a CNN was turned to enhance an input image,

a photograph of the author in the Malaysian jungle, in such a way as to gradually

elicit a particular interpretation (animals).

These recent developments prove that neural networks are not necessarily complete

black boxes and that it is possible to explain their output through a variety of

formal methods. Filter visualization and feature saliency in image classification

Deep Convolutional Neural Networks are the most prominent example of how well

1https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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the predictions can be explained. As Deep Dream has demonstrated, it is possible to

visualize how the input image is gradually filtered through a number of channels and

how complex features emerge within the neural network, starting with primitives

like edges, through more complex shapes and patterns, up to recognizable features

of the target classes like ears, wheels and feathers and how they eventually affect the

final output (see Section 2.2.4). This work presents efforts to extend this techniques

for the needs of the current model as they should offer a new and valuable scientific

view on how the emergence of the complex contours of intonation may take place

somewhere between the discrete cognitive concepts, i.e. the linguistic input features,

and their very physical continuous realization – the output values of fundamental

frequency.

The above example of how CNNs process visual information closely resembles the

neural processing of information in the human visual cortex (see Section 2.2.2).

Simple and complex neurons in that area of the brain were shown to perform similar

computations as the basic layers of the artificial network, i.e. linear filtering and

maximal pooling. Eventually that information triggers activations in various areas

of the brain responsible for recognition of patterns. Recent neurobiological studies

show that this resemblance can also be found in the auditory cortex (see Section

2.2.2) which provides additional arguments for the use of these networks for the

needs of the current problem. CNNs are becoming more and more popular as

actual models of human visual and auditory processing in the field of computational

neuroscience.

Therefore, a Deep Temporal Convolutional Network (TCN) was chosen as the model

architecture for the current study. Although it is the Recurrent Neural Networks

that became the de facto standard for modeling speech and language in the recent

years, TCNs have already proven to outperform them in a variety of tasks, especially

with the recent TTS systems based on TCNs demonstrating unprecedented quality

of output [320, 274, 239, 14, 111, 248]. As already reviewed in Section 2.2.3,

TCNs also demonstrate a number of purely technical advantages over their recurrent

counterparts. They exhibit longer memory and provide a flexible receptive field

size with the same capacity. Moreover, TCNs do not suffer from the vanishing

gradient problem, allow for effective computational parallelism, have comparably

low memory requirements for training, allow variable input lengths and provide

numerous output explanation methods.
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Fig. 3.1.: Google’s Deep Dream example.
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3.3 Deep Temporal Convolutional Neural Network as a
Scientific Model

The motivation behind the choice of the TCNs for the current work should be

evident by this point. However, adopting it for the purpose of scientific explanation

is controversial, especially in linguistics. The application of DNNs for scientific

purposes can be argued from many different perspectives, as listed and supported

with multiple examples by Cichy and Kaiser [51]:

Notion 1 (Deductive-nomological [134]). An explanation consists of an explanans
and an explanandum. The explanandum must follow logically from the explanans (the
deductive part).

Notion 2 (Inductive-statistical [133]). The explanandum follows probabilistically
rather than logically from the explanans (the inductive part), and the explanans
contains a statistical regularity (the statistical part).

Notion 3 (Causal mechanistic [263]). The explanation enumerates the causal pro-
cesses and how they interact up and lead to the phenomenon.

Notion 4 (Unificationist [100, 174]). Explanation amounts to unify different phenom-
ena in a common account, showing connections and relationships between phenomena
whose relation was previously unclear.

Notion 5 (Pragmatic [4, 314]). Pragmatists stress that whether an explanation is
successful, depends irreducibly on facts about the interests, goals, and beliefs of those
providing or receiving explanation.

Although the inherent nature of the current model is deeply probabilistic and

purposefully does not easily fit within (1) which relies on the deterministic viewpoint

and is the backbone of the classical phonological inquiry, it does present strong

arguments from all other perspectives.

The emphasized outstanding results produced by DNN-based speech synthesis sys-

tems, provide uncontested pragmatic (5) arguments. These networks have been

shown to generate human-like speech, learning even how to imitate additional non-

speech sounds, like breathing, mouth movements and filled pauses. Moreover, some

of them are even able to generate raw waveforms of the audio signal one sample at
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a time and straight from an unprocessed textual input (see Section 2.2.3). The lack

of a synthesizer frontend, where traditionally the text had to be first converted into a

number of linguistic units and relations, removes the attachment to and bias of any

phonological theory that the conversion rules were always necessarily based upon.

Additionally, this provides further evidence of the capabilities of the network for

making out very complex implicit patterns in the input data. These abilities surpass

even that of human expert linguists. With these models defining the new state of the

art in the practical domain of synthetic speech, the pragmatic argument (5) behind

the adoption of TCNs for the current work was very strong.

Moreover, very few of the categories in language are actually of the well-defined

type amenable to analysis in terms of necessary and sufficient conditions, and

are more rather probabilistic fuzzy concepts. This is also supported by numerous

neurobiological studies on speech as discussed in Section 2.2.2. Therefore, the

models of language should also be implemented in frameworks that allow modeling

of fuzzy probabilistic relations, as is the case with neural networks. From yet

another point of view, TCNs rely on methods that allow generalization of some

statistical trends found within some population based on a large representative

number of samples of that population. The generalizations are encoded in the model

parameters which are later employed in algorithmic predictions made for unseen

data. This description suggests TCNs can be seen as statistical models and hence fit

within the inductive-statistical notion (2). However, whether a particular model can

be treated as a proper statistical model depends on its mathematical formulation and

can be controversial in some cases. The currently accepted definition of a statistical

model as given by Cox and Hinkley [58], Cox and Barndorff-Nielsen [57], Lehmann

and Casella [199], Bernardo and A. F. M. Smith [27], and McCullagh et al. [218],

states that:

“[...] A statistical model is a set of probability distributions on the sample space

S. A parameterized statistical model is a parameter set together with a function

P : θ → P (S), which assigns to each parameter point θ ∈ Θ a probability distribution

Pθ on S.”

Now consider how the formulation of the TCN used in the current work as cited by

the original WaveNet paper fits in that definition [239]:

“The joint probability of a waveform ~x = {x1, . . . , xT } is factorised as a product of

conditional probabilities as follows:

3.3 Deep Temporal Convolutional Neural Network as a Scientific
Model
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p (~x) =
T∏
t=1

p (xt | x1, . . . , xt−1) (3.1)

Each audio sample xt is therefore conditioned on the samples at all previous

timesteps.

Similarly to PixelCNNs [312], the conditional probability distribution is modeled

by a stack of convolutional layers. There are no pooling layers in the network, and

the output of the model has the same time dimensionality as the input. The model

outputs a categorical distribution over the next value xt with a softmax layer and it is

optimized to maximize the log-likelihood of the data w.r.t. the parameters. Because

log-likelihoods are tractable, we tune hyper-parameters on a validation set and can

easily measure if the model is overfitting or underfitting.”

Additionally, a special method was developed to allow for meaningful introspection

of the model parameters. For this purpose, a feature relevance calculation algorithm

was applied. Feature relevance is the measure of how particular parts of the input,

and the intermediate latent features on every layer of the network, influence the final

prediction at every time step. This information is considered a viable explanation

in many scenarios including domains like self-driving cars [170], finance [184]

and medical imaging [337]. In this work, it makes it possible to produce rich

information about the importance of the input linguistic dimensions of the sentence

and their intermediate latent generalizations made by the network, over the output

fundamental frequency values, and thus enables the current model to be used for

meaningful inductive-statistical (2) exploration of the mappings between linguistic

entities and the contours of the fundamental frequency which can not only help prove

the main hypothesis (Hypothesis 1), but also provides a valueable methodological

contributions (see Hypothesis 4).

The current neural architecture of the model was also based on strong neurobiologi-

cal evidence of how intonation is processed in the human brain and should support

the same mechanisms that allow gradual emergence of the intonation contour from

discrete linguistic categories. In this way, it allows to provide a causal mechanistic (3)

explanation of the phenomenon. Because the model attempts to provide means for

explaining the nature of the mappings between the phonological and phonetic levels

of intonation in a neural-based modeling framework, which was additionally placed

within a neural source-filter speech synthesizer, which acts as a model of speech

production, it also fulfills the unificationist notion (4; also see Section 3.2.1).
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Thereby the three levels of success required for a theory to be a scientific model [49]

are achieved, although by different means, in the current model, i.e.: observational

adequacy, descriptive adequacy and explanatory adequacy.

3.4 Methods

3.4.1 Dataset

Even the state-of-the-art neural network architecture is only as good as the data it

has been trained on. In order to build a robust general predictive model of intonation

of any language one needs to cover all possible contexts in which some specific

distinguishable intonation contours appear, or at least the majority of these, so that

the model can effectively generalize that information and use it to infer intonational

contours of unseen examples. In practice, this is of course impossible. Even the

relatively narrow subproblem of expressive intonation modeling is still unsolved

due to the vast range of possible emotional states which are resistant to partitioning

and defining. In this work, through the choice of the dataset, the model is limited

to a relatively simple problem of neutrally read sentences, where any significant

emotional, discourse and social contexts, as well as any other factors that can impact

intonational contours, was significantly minimized.

The dataset used in the current work came into existence as a speech corpus built

primarily for the purpose of the Polish BOSS unit selection synthesizer [72, 69, 73,

76]. The quality of this strictly data-based speech synthesis technology depends

mainly on the phonetic coverage of the underlying database rather than on the

number of examples included in it. A comprehensive set of acoustically relevant

speech segments needs to be included in the inventory that the synthesis engine

later draws from to construct new utterances. Although it is possible to contrive a

single sentence that would cover all possible phonemes of that language (e.g.: That
quick beige fox jumped in the air over each thin dog. Look out, I shout, for he’s foiled
you again, creating chaos. contains all English phonemes), building a synthesizer

based exclusively on such an example would yield poor results at best due to the

underrepresentation of the phonetic contexts a speech segment might appear in a

language and that would influence its articulatory properties and hence acoustic

realization. The bigger the speech corpus, and the better the resulting coverage of

phonetic contexts, the better the quality of the resulting synthetic speech. However,

unit selection databases traditionally attempt to cover the highest number of such
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Tab. 3.1.: Stress and accent labels used in the original Polish BOSS speech corpus

Stress and accent type labels

%
rising accent realized by F0 rise on post accented syllable/syllables or F0
interval between accented and post accented vowels

’
rising accent realized by F0 change
(rise on accented syllable)

"
falling accent realized by F0 fall on post accented syllable/syllables or F0
interval between accented and post accented vowels

&
falling accent realized by F0 change
(fall on accented syllable)

|
rising-falling accents with rise-fall shape of F0 movement on accented
vowel

*
level accent realized by F0 interval between preaccented and accented
vowels; near zero slope of fundamental frequency

<
level accent realized only by differences in duration between preaccented,
accented and postraccented vowels

contexts with the lowest possible number of recorded utterances minimizing the

physical size of the database. The database becomes an integral part of the resulting

synthesis engine and in most cases its large size is the single most significant factor

limiting the implementational potential of the whole synthesis system.

To attain the best possible results with the least amount of data, the current corpus

is following the ECESS guidelines for building speech corpora for neutral speech [72,

310, 87]. As recommended, the recording prompts include not only specially selected

and frequent phrases, but also triphone coverage sentences to cover most contextual

variations of segments in Polish, and some short excerpts from literary novels. To

specially address prosody, which has always been one of the biggest challenges in

unit selection synthesis, the design principles additionally put significant focus on

the prosodic coverage including a specially planned set of distinctive intonation

events discussed in more detail in the original work by Demenko et al. [72].

On this basis, 4 hours of speech read by a professional radio speaker in studio

conditions and supervised by an expert phonetician were recorded. After an initial

quality assessment, some 115 minutes of recordings were eventually hand selected

to comprise the final database used in the current work.

The whole corpus can be divided into 6 parts, each addressing some different aspect,

i.e.:

(A) Phrases with 367 most frequent consonant structures addressing the conso-

nantal nature of Polish,
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Tab. 3.2.: Prosodic phrase boundary labels used in the original Polish BOSS speech corpus

Stress and accent type labels

-5,.
Intonation on the first word in a sentence with falling accent F (or
level accent L). In most cases it is used for declarative sentences or
wh-questions. Mark on the first phoneme of the first word in the sentence

-5,?
Intonation on the first word in a sentence with rising accent R. It can be
used in different complex sentences. Mark on the first phoneme of the
first word in the sentence

5,.
Intonation on the last word in sentence with falling accent F (or level ac-
cent L). In most cases it is used for declarative sentences or wh-questions.
Mark on the first phoneme of the last word in the sentence

5,?
Intonation on the last word in a sentence with rising accent R. In most
cases it is used for yes-no questions. Mark on the first phoneme of the
last word in the sentence

5.!
Intonation on the last word in a sentence with falling accent F. In most
cases it is used for exclamatory sentences. Mark on the first phoneme of
the last word in the sentence.

2,?
Intonation on the last word in the phrase with rising accent R. In most
cases it is used for continuation phrases. Mark on the first phoneme of
the last word in the phrase.

2,.
Intonation on the last word in the phrase with falling accent F (or level
accent L). In most cases it is used in declarative phrases in complex
sentences. Mark on the first phoneme of the last word in the sentence.
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(B) All Polish diphones realized in 114 grammatically correct but semantically

nonsense phrases.

(C) 676 phrases with CVC triphones realized in non-sonorant voiced context and

in various intonation patterns.

(D) 1923 6-14 syllable-long phrases with CVC triphones realized in sonorant

context and various intonation patterns.

(E) 2320 utterances with 6000 most frequent Polish vocabulary items.

(T) 15 minutes of prose and newspaper articles.

The database was segmented and labelled using the BOSS blf format [175, 40].

Labels contain information about segment, syllable, intonational word and phrase

boundaries as well as prosodic labels for different accents and phrase boundary

types, based on the British models of intonation [60, 15, 245, 157, 155, 154, 156].

The stress and accent labels used in the database are presented in Table 3.1 and

the phrase boundary type labels are listed in Table 3.2. The phoneme inventory

was based upon the modified Polish SAMPA alphabet [158, 78, 90, 188, 321, 322].

Prosodic word and syllable boundaries are marked with # (or #_ for ortographic

boundaries) and . . Additionally, $p is used to denote a pause. A special symbol

$j was also used to mark unintelligible segments. An example BLF label file for the

sentence "Smutek malował się na jej twarzy" (Sadness was showing on her face) is

presented in Listing 3.1.

1 0 #$p
2 3360 #s -5,.
3 5502 m
4 6331 |u
5 7892 .t
6 8772 e
7 9769 k
8 11200 #m
9 12061 a

10 13021 .l
11 13715 *o
12 14720 .v
13 15459 a
14 16211 w
15 17119 #s’ 2,.
16 18909 e
17 19680 #n
18 20724 a
19 21684 #j

64 Chapter 3 Methodology



20 22436 e
21 23040 j
22 24000 #t 5,.
23 25600 f
24 26573 *a
25 28713 .Z
26 30080 y
27 32811 #$p

Listing 3.1: An example BLF label file for the sentence "Smutek malował się na jej twarzy"
(Sadness was showing on her face) taken from the original Polish BOSS corpus.

3.4.2 Feature Extraction

In order to serve as an input for training the neural network the dataset labels had

to be first normalized to an acceptable format. Using a set of tools developed by the

author as part of one of the previous works [182], the labels were automatically

converted into a notation that explicitly reflects the structural relations between the

various levels of speech segments and prosodic events.

For this purpose, separate labels were first extracted for phones, syllables, words,

phrases and intonational events and saved in the Festival label format [31, 297, 32]

as shown in Table 3.3. The original segmental labels needed to be converted in

some cases as they contained special characters which are used internally by the

HTK toolkit [331, 330] which is used in this research extensively.

The intonational labels were converted into a different system based on ToBI [278]

as shown in Table 3.4. Although the corresponding ToBI labels might be controversial

in some cases, their choice is actually insignificant for the training process. What

matters the most is labelling consistency. Even if the actual ToBI mark for a given

class of intonational events is incorrect, the neural network does not assign any

meaning to the label itself as it only serves as a category distinction and could as

well be represented with ordinal numbers or letters.

Using a set of Festvox synthetic voice building scripts [12] and some HMM-based

Speech Synthesis System (HTS) tools [335], the labels were then converted into the

HTK full-context label format [330] which allows for easy data normalization and

feature extraction. The HTK full context label file is an explicit declarative transcript

of all the structural information in the utterance (see Table 3.5).

Each row represents a phone in its quintphone context followed by a series of special

expressions that encode all positional, quantitative and qualitative features that
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Tab. 3.3.: An example of the intermediate Festvox-based label structure for "Smutek mal-
ował się na jej twarzy" (Sadness was showing on her face).

End time Segment Syllable Word Phrase Int. Event
Label Stress

0.21 pau pau 0 pau
0.343875 s
0.3956875 m
0.49325 u s.m.u 1
0.54825 t
0.6105625 e
0.7 k t.e.k 0 smutek 1
0.7538125 m
0.8138125 a m.a 0
0.8571875 l
0.92 o l.o 1
0.9661875 v
1.0131875 a
1.0699375 w v.a.w 0 malovaw 1
1.1818125 si
1.23 e si.e 1 sie 3 L-
1.29525 n
1.35525 a n.a 1 na 1
1.40225 j
1.44 e
1.5 j j.e.j 1 jej 1
1.6 t
1.6608125 f
1.7945625 a t.f.a 0
1.88 rz
2.0506875 y rz.y 1 tfarzy 4 L-L%
2.2506875 pau pau 0 pau
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Tab. 3.4.: Tone accent and phrase boundary labels conversion scheme.

Original Polish BOSS label ToBI

" H*
& L*
% L*+H
‘ L+H*
* -
< -
5,. or 5.! and last accent is not ‘ and not & L-L%
5,. or 5.! and last accent is ‘ or & H-L%
5,? and last accent is not ‘ and not & L-H%
5,? And last accent is ‘ or & H-H%
2,. L-
2,? H-

were extracted during the conversion. This record type is understood by HTK HED

[330] questions, which are special regular expression-like matching masks that,

when applied to a record in an HTK label, return a boolean value. For example, the

following row outputs True if the immediate left context of a given segment is a

voiced fricative:

QS "L-Voiced_Fricative" {*^v-,*^z-,*^zi-,*^rz-}

This question, in turn, checks if the current syllable is not farther than on the 13th

position from the beginning:

QS "Pos_C-Syl_in_C-Phrase(Fw)<=13" {*&?-*,*&10-*,*&11-*,*&12-*,*&13-*}

Another example checks if the current syllable is 3 syllables away from the previous

accented syllable:

QS "Num-Syl_from_prev-AccentedSyl==3" {*;3-*}

A list of such questions can be input to the HTK HED script and allows to convert the

HTK labels into one-hot encoded feature vectors whose length is equal to the length

of the question list. An overview of the types of questions that were formulated for

the current work are listed in Table 3.6 and 3.7.

Table 3.6 contains the segmental part of the questions. They were added to account

for their impact on microprosody and for any possible articulatory constraints that

segmental articulation contexts might have on the production of intonation. These
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Tab. 3.5.: An example fragment of the HTK label file for the sentence "Smutek malował się
na jej twarzy".

Segment start Segment end Full-context label
. . . . . . . . .
2100000 3438750 xx^pau-s+m=u@1_3

A:xx_xx_xx

B:1-0-3@1-2&2-2#0-0$0-0!xx-3;xx-5|u
C:0+0+3
D:content_1
E:content+2@2+1&1+0#1+xx
F:content_3
G:xx_xx

H:3=2^1=6|NONE
I:4=2
J:12+8-6

3438750 3956870 pau^s-m+u=t@2_2
A:xx_xx_xx

B:1-0-3@1-2&2-2#0-0$0-0!xx-3;xx-5|u
C:0+0+3
D:content_1
E:content+2@2+1&1+0#1+xx
F:content_3
G:xx_xx

H:3=2^1=6|NONE
I:4=2
J:12+8-6

3956870 4932500 s^m-u+t=e@3_1
A:xx_xx_xx

B:1-0-3@1-2&2-2#0-0$0-0!xx-3;xx-5|u
C:0+0+3
D:content_1
E:content+2@2+1&1+0#1+xx
F:content_3
G:xx_xx

H:3=2^1=6|NONE
I:4=2
J:12+8-6

. . . . . . . . .
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are mostly phonological and phonetic categories and features of a given segment

and its 4 nearest neighbours - the quintphone.

Tab. 3.6.: List of segmental HTK HED question types used for feature extraction

Question type Segments

Vowel {i, y, e, a, o, u, schwa}

Consonant {gs, p, b, t, d, k, g, ki, gi,

f, v, s, si, z, zi, sz, rz, x,

c, dz, cz, drz, ci, dzi, m, n,

ni, ng, l, r, w, ww, j, jj}

Stop {gs, p, b, t, d, k, g}

Nasal {ww, jj, m, n, ni, ng}

Fricative {f, v, s, si, z, zi, sz, rz, x}

Front {e, i, y, f, v, p, b, m, w, ww}

Central {schwa, a, t, d, s, si, z, zi,

n, r, l, t, d, sz, rz, cz, drz,

c, dz, ci, dzi}

Back {o, u, k, g, ki, gi, ng, x, gs}

Front Vowel {e, i, y}

Central Vowel {a, schwa}

Back Vowel {o, u}

High Vowel {i, y, u}

Medium Vowel {e, o}

Low Vowel {a}

Rounded Vowel {o, u}

Unrounded Vowel {a, e, i, y}

XVowel (e.g. AVowel) {i, y, e, a, o, u, schwa}

Unvoiced Consonant {gs, p, t, k, ki, f, v, s, sz,

x, c, cz, ci}

Voiced Consonant {b, d, g, gi, v, z, zi, rz, dz,

drz, dzi, m, n, ni, ng, l, r, w, ww, j, jj}

Front Consonant {f, v, f, p, b, m, w, ww}

Central Consonant {t, d, s, si, z, zi, n, r, l,

t, d, sz,

rz, cz, drz, c, dz, ci, dzi}

Back Consonant {gs, k, g, ki, gi, ng, x}

Fortis Consonant {gs, cz, f, k, p, s, sz, t, ci,

c, ki}
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Lenis Consonant {drz, v, g, b, rz, z, d, dzi,

dz, gi, zi}

Neigther F or L {m, n, ni, ng, l, r, w, ww,

j, jj}

Voiced Stop {b, d, g}

Unvoiced Stop {p, t, k, gs}

Front Stop {b, p}

Central Stop {d, t}

Back Stop {g, k, gs}

Voiced Fricative {v, z, zi, rz}

Unvoiced Fricative {f, s, si, sz, x}

Front Fricative {f, v}

Affricate Consonant {dz, drz, dzi, c, cz, ci}

silences {pau}

Phone X identity (e.g. a) {a}

The non segmental features, in turn, are mostly related to the relative position and

length of segments at various levels. The types of non segmental features are listed

in Table (3.7).

The resulting feature set covers phonetic and articulatory qualities of the central

phone and its 4 most immediate neighbours, accent placement and type as well as

information about the objective and relative position of a given segment, syllable,

word and phrase in their enclosing units of various levels and in relation to its

beginning or end or some other intonationally prominent event or unit within the

utterance. That yields a total of 1296 binary features for each segment. For the full

list of features see Appendix A.

Next, logF0 values were extracted from all recordings using the the SPTK toolkit

[283] implementation of the Robust Algorithm for Pitch Tracking (RAPT) [293].

The F0 detection range was limited to 55-200 Hz based on a brief inspection of the

speaker’s voice range in order to prevent pitch doubling and pitch halving errors

as much as possible. The voice is naturally low but is also characterised by abrupt

inclines phrase-finally, especially in questions. Pitch extraction was conducted using

a 240-point frameshift and a 0.005s frame length with a 48Hz sampling frequency of

the recordings. The extracted information was converted to the log scale and saved

as the target label for training the neural network. Given the resulting logF0 values

for voiced sections and null elsewhere, a single additional binary voiced/unvoiced

indicator was added to the feature set.
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Tab. 3.7.: List of non-segmental HTK HED question types used for feature extraction.

Number of preceding/succeeding segments in the previous/current/next syllable is
equal to/less than or equal to 0-7
Previous/current/next syllable is stressed
Previous/current/next syllable is accented
Previous/current/next syllable has accent X
(where X is one of the ToBI accents described above)
Number of preceding/succeeding segments in the next syllable is equal to/less than
equal to 0-7
Forward/backward position of the current syllable in current word is equal to/less
than or equal to 0-7
Forward/backward position of the current syllable in current phrase is equal to/less
than or equal to 0-20
Number of stressed syllables before/after the current syllable in current phrase is
equal to/less than or equal to 0-12
Number of accented syllables before/after the current syllable in current phrase is
equal to/less than or equal to 0-12
Number of accented syllables before/after the current syllable in current phrase is
equal to/less than or equal to 0-7
Number of syllables from previous/next stressed syllable is equal to/less than or
equal to 0-5
Number of syllables from previous/next accented syllable is equal to/less than or
equal to 0-16
Current syllable nucleus is a non-vowel, vowel, front vowel, central vowel, back
vowel, high vowel, medium vowel, low vowel, rounded vowel, unrounded vowel,
[i], [e], [a], [o], [u], [y], [schwa]
Number of syllables in the previous/current/next word is equal to/less than or equal
to 0-7
Forward/backward position of the current word in the current phrase is equal to/less
than or equal to 0-13
Number of content words before/after the current word in the current phrase is
equal to/less than or equal to 0-9
Number of words from previous/next content word is equal to/less than or equal to
0-5
Number of syllables in the previous/current/next phrase is equal to/less than or
equal to 0-20
Number of words in the previous/current/next phrase is equal to/less than or equal
to 0-15
Forward/backward position of the current phrase in the utterance is equal to/less
than or equal to 0-4
Number of syllables in the utterance is equal to/less than or equal to 0-28
Number of words in the utterance is equal to less than or equal to 0-13
Number of phrases in the utterance is equal to/less than or equal to 0-4
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Fig. 3.2.: Extracted F0 values for "Słyszałam odgłos zbliżającego się pociągu" (I heard the
sound of an approaching train).

In deep neural network research, the data is often customarily normalized to a

[0, 1] or a [−1, 1] range. However, the extracted features are one-hot-encoded so

they are naturally expressed in the [0, 1] range and need no further normalization.

Target normalization was not performed as initial experiments showed no particular

improvements.

Phone feature vectors were naively reproduced for each time point within the time

boundaries of that phoneme to match the length of the target vector. As TCNs cannot

deal with variable length input, all of the data samples were extended to match the

maximum length within the database using zero-padding to account for the missing

values.

The resulting 2-dimensional vectors whose length and width represent the number

of samples in the data and number of features respectively were served to the

training algorithm in batches of 64 resulting in a 3-dimensional input vector, i.e.

batch size× number of features× number of samples.
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Although a number of extra features were also engineered as part of the current

work, they were eventually not used but are still available in the code repository2

and can be used in future work. These include phoneme, syllable, word and phrase

forward and backward durations, mel-generalized cepstral coefficients and logF0

backward window features that represent n-previous logF0 values at each sample.

The duration features, F0 backward window and MGCC [302] were abandoned

as the author suspects that the information they convey can be implicitly modeled

by the network. Although all of these feature classes are quite appealing in their

very own way, the single most important reason for abandoning them were the

computational memory and time constraints of the current work. The current

feature vector size is 64 × 1900 × 1297 of 8-byte Python booleans, which results

in 1.2617216 gigabytes of memory required for just a single input vector. The

consequential memory requirements of training a deep network with such input

are much higher. Additionally, as described later in more detail, the currently

implemented training process makes extensive use of parallel processing. This

results in even higher memory requirements as each parallel thread operates on

their own input vector significantly extending memory consumption.

3.4.3 Model Implementation

The current model as well as the data loading, training, testing and evaluation

were implemented using the Python [315] API for Keras [47, 123] and Google

TensorFlow [1], which are free and open-source software libraries for differentiable

programming and neural networks. Additionally, since these libraries provide no

out-of-the-box support for TCNs, an external general implementation [255] of

Temporary Convolutional Networks [194, 20, 19] was employed for this purpose.

This implementation is based on the recent convolutional architectures for sequential

data [239, 164, 108], but is also distinct from all of them and, as the authors point

out, it was designed from first principles to combine simplicity, autoregressive

prediction, and very long memory. It differs from the original WaveNet architecture

as it introduces no skip connections across layers, no conditioning, and no context

stacking, or gated activations. It has, however, significantly longer memory.

With the help of the above libraries a model was built combining classical densely

connected layers and a special TCN block. The TCN block itself is, in turn, composed

of smaller blocks of 6 residual layers each. Figure 3.3 illustrates the detailed

architecture of the residual block used in the current work. The residual blocks
2https://github.com/mrslacklines/intonation_synthesis
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Fig. 3.3.: Architecture of the Residual Block used in the current network architecture.

are additionally stacked on top of each other to achieve a large receptive field with

just a few layers, while preserving the input resolution throughout the network as

well as computational efficiency (as cited in the original WaveNet paper [239]).

Each residual block contains a chain of a dilated causal convolutional layer, a batch

normalization layer, a Rectified Linear unit activation layer and a dropout layer, all

repeated twice in that order. The convolution layers contain 64 convolution filters of

length 2 and apply the standard 2n dilations setup known from the original WaveNet

implementation (i.e. [1, 2, 4, 8, 16, 32]).

The data output by the convolutional block undergoes batch normalization in order

to further improve the speed, performance, and stability of the network. After that,
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the normalized data is passed through the Rectified Linear Unit (ReLU) [235, 285]

which was chosen as the main activation function for the network. Finally, in order

to prevent overfitting, 0.2 of the values output by the previous operations is removed

in the dropout block [285]. This whole sequence is repeated twice in each residual

block. The data is also passed in parallel through a simple identity convolution block

whose output makes up the actual residue in the output data. The results of both

computational paths are summarized and in that form comprise the final output of

the whole block.

Additionally, a single 1× 1 convolutional layer was prepended to the whole pipeline

as an optimization technique that reduces the dimensionality of the input vector to

64× 1 before the costly convolutions take place.

Two fully connected dense layers with ReLU activation functions and sizes 64 and 1

were used for the final regression and dimensionality reduction of the TCN output.

This setup closely mimics the aforementioned arrangements and functions of the

simple and complex cells in the human brain (see Section 2.2.2). The detailed

implementation of the network architecture is available as in the public project

repository at https://github.com/mrslacklines/intonation_synthesis.

3.4.4 Model Training

The code was packaged in a Docker [219] container and deployed to the Amazon

Web Services (AWS) Sagemaker [163] computational cloud service. The training

data was deployed onto AWS S3 servers [217]. This setup allowed the training

experiments to run on 64 CPUs and 8 NVIDIA Tesla V100 GPUs with 488 and 128

gigabytes of memory. At the time of implementation of this work, NVIDIA Tesla

V100 Tensor Core was the most advanced data center GPU ever built to accelerate

AI [213, 214]. Such a powerful hardware setup was required not only to account for

the complexity of the network itself but also for the large dimensions of the input

vector. A single batch of data, which is a 64× 1900× 1297 vector of 8-byte boolean

values, occupies 1.2617216 gigabytes of memory, and the model comprises of a total

of 449,409 parameters (446,337 trainable and 3,072 non-trainable).

An average training session took between 2 and 10 hours. Although a multi-GPU

model was implemented and is available in the attached repository it showed no

significant speed improvements since it was the data loading and preprocessing that

became the bottleneck of the whole process. In order to speed up the underlying

input/output operations they were implemented to run in parallel on multiple CPUs
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where each worker was reading and preprocessing a single file from a batch. This

improved the overall performance greatly but not to an extent that would allow

the benefits of a multi-GPU training as it was still the I/O operations that were the

slowest.

The network was first randomly initialized using the He initializer technique [131]

which draws samples from a truncated normal distribution centered on 0 with

σ =
√

2
Fan-in

where Fan-in is the number of input units in the weight vector.

Adam [173] optimization algorithm was used to train the network instead of the

classical Stochastic Gradient Descent procedure (SGD) [39]. Adam has become

the de facto standard in training Deep Neural Networks as it is computationally

efficient and has little memory requirements. It is also invariant to diagonal rescale

of the gradients and well suited for problems that are large in terms of data or

parameters. Additionally, the authors of the method show that it is appropriate

for non-stationary objectives and for problems with very noisy or sparse gradients.

Another advantage is that the hyper-parameters have intuitive interpretation and

typically require little tuning. The method computes individual adaptive learning

rates for different parameters from estimates of first and second moments of the

gradients instead of keeping a fixed value throughout the whole training, as was the

case with SGD. Specifically, the algorithm calculates an exponential moving average

of the gradient and the squared gradient. The parameters β1 and β2 control the

decay rates of these moving averages.

In the current work, an initial learning rate of 0.1 and β1 = 0.9, β2 = 0.999 were

used. The ε parameter was set to 1e − 07. This is the small constant added to all

values for numerical stability as it prevents the division by zero. Mean Squared Error

(MSE) was used as the loss function. This is the most popular method for evaluating

the synthetic F0 values against the original values and although the initial plan was

to experiment with other loss functions that might be able to better capture the

dynamics of the contours, the primary choice has proven to perform well enough for

the current needs and was therefore kept.

In each training instance the dataset was randomly divided into a training, testing

and validation subsets using an 8:1:1 ratio. Network optimization was set to run

for 200 epochs. During each epoch, the whole training data subset was fed to the

optimization algorithm in batches of 64. Loss was calculated both for the training

batch and for the unseen validation data subset with the aim to optimize the latter
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and using the former only as an additional performance metric. The training was

also set to stop automatically if after 20 consecutive epochs the validation loss did

not improve by at least 0.001. The model parameters configuration that performed

best on the validation set was kept. The parameters were saved in a HDF5 [96] file

which is also published in the attached repository.

3.4.5 Inference

An additional Docker container was prepared to be run as a SageMaker job on the

AWS cloud for the purpose of results generation and evaluation of the trained model.

This inference job initialized a new instance of the model with the parameters

serialized by the training process to a HDF5 file and iterated over the whole holdout

set of 191 sentences generating prediction for each of them.

Given the predicted logF0 values and the ground truth, objective errors were calcu-

lated including the Mean Squared Error, Mean Absolute Error, Root Mean Squared

Error and the Normalized Root Mean Squared Error.

The predictions themselves were saved to binary files after being trimmed to match

the length of the ground truth array and get rid of the zero-padding. Each logF0

prediction was also converted to the frequency scale and plotted against the ground

truth. As an extra post-processing step, mainly for the sake of the subjective evalu-

ation of model performance (described in the next sections) the predicted values

were time-aligned with the ground truth arrays and any non-zero values output

by the F0 model, appearing at intervals where no F0 values were found in the

ground truth arrays3, were deleted. In cases, where the model failed to predict a

non-zero value where the ground truth array rendered non-zero values, the last

value predicted by the model was forward-filled, except for the onset where it was

back-filled. This procedure was expected to minimize any glitches appearing at

voiced/unvoiced boundaries during resynthesis and help improve the overall quality

of the synthesized output. The predictions were also plotted against the ground

truth values and the plots were saved for further visual inspection.

3Actually, this were not the original ground truth F0 values from the original dataset but the F0
values extracted by the NSF tools, described in the next section.
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3.4.6 Feature Relevance Analysis

In addition to simple inference, a feature relevance analysis was performed for each

of the test sentences. In order to extract a representation of the relations between the

input features and the output, the Layer-wise Relevance Propagation (LRP) algorithm

was used. Although this technique has already become a standard in the domain

of image recognition, only a few studies have applied it to time-series data. To

the best of the author’s knowledge no such attempt has been made to explain

the relevance of linguistic features in the process of generating any aspect of

speech. For this purpose, an implementation of the LRP-Z (LRP Zero) method from

the Innvestigate [6] Python library was employed. Innvestigate was chosen as it sup-

ports time-series data almost out-of-the-box through the neuron_selection_mode

parameter which can be set to all and can hence generate relevance maps w.r.t.

all output neurons as opposed to only the maximally activated one as is the case

in most classification problems (and the competitng Python library TSViz [277]).

However, the original code had to be adjusted by the author in order to support

Tensorflow 2.0 and eager execution mode for which some of the operations used in

the original Innvestigate library are not yet supported4.

3.4.7 Neural Source-Filter Resynthesis

Subjective evaluation of the model predictions was performed alongside the objective

evaluation. Although the corpus used in the current study is supposed to contain

only neutral read speech it is impossible to ensure that each individual sentence is

read by the speaker with a prototypical intonation contour. Each sentence can be

read in a number of different ways varying not only by scale of how specific contours

are realized, so for example how far does the speaker raise their voice when realising

an L*+H tone on the accented syllable, but also by the choice of tonal accents used

for that same accented syllable without change in meaning or expressiveness of the

whole sentence. The actual interpretation of a sentence is a whole another area

susceptible to different realizations. The neural model used in this study does not

consider any information regarding these and although they should be conveyed in

the actual annotations of the corpus it is also impossible to ensure that all labels are

always correct as they are also a subject to perceptual analysis of the annotator.

4These changes were staged as a pull request to the original Innvestigate repository and the author
was pleased to note that it has been used by some other users in the community. See https:
//github.com/albermax/innvestigate/network/members.
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Therefore, only a subjective perceptual evaluation of the predicted contours can help

gain a full insight into the actual performance of the model. However, the design

of such a perceptual evaluation was also non-trivial. Although a number of well

known methods for the evaluation of audio and, more specifically, speech exists, the

main challenge was to design such a procedure that would enable an evaluation of

the generated intonation by itself, without any influence of the quality of the carrier

speech. Usually in such experiments speech is resynthesized using one of the well

known algorithms PSOLATM [311], TD-PSOLATM [291], LPC or any of the more

contemporary source-filter resynthesis methods like STRAIGHT [166]. However,

most of these generate a number of auditive spectral artifacts that can easily serve as

unwanted cues for discrimination of synthetic samples during testing. One method

to handle this issue is to resynthesize both the natural benchmark speech samples

and the evaluated synthetic ones to ensure similar artifacts are present in both

subsets. This is also not ideal as it may lower the perceived quality of the actual

benchmark and in an experiment that relies mostly on a comparative evaluation,

this becomes a significant problem.

In order to mitigate the listed issues, the newest state of the art vocoding technique

was employed. After the WaveNet synthesizer demonstrated the capabilities of

neural vocoders this technique became very popular as the results it produces easily

approach the naturalness of human speech [239]. However, as noted by Xin Wang

[319]:

“As an autoregressive (AR) model, WaveNet is limited by a slow sequential waveform

generation process. Some new models that use the inverse-autoregressive flow (IAF)

can generate a whole waveform in a one-shot manner. However, these IAF-based

models require sequential transformation during training, which severely slows down

the training speed. Other models such as Parallel WaveNet [313] and ClariNet [247]

bring together the benefits of AR and IAF-based models and train an IAF model by

transferring the knowledge from a pre-trained AR teacher to an IAF student without

any sequential transformation. However, both models require additional training

criteria, and their implementation is prohibitively complicated.”

The cited paper introduces a new technique based on a much simpler assumption.

The Neural Source-Filter (NSF) requires three components only; “a source module

that generates a sine-based signal as excitation, a non-AR dilated-convolution-based

filter module that transforms the excitation into a waveform, and a conditional

module that pre-processes the acoustic features for the source and filter modules.”

Despite its simplicity it was shown to match or even outperform WaveNet while

generating the waveforms 100 times faster. An additional advantage of this technique
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Fig. 3.4.: Three types of neural waveform models in training stage. Adopted from X. Wang
et al. [319] (©[2019] IEEE).

is the fact that the component of this method can be easily divided into source and

filter providing a better linguistic abstraction than some of the end-to-end neural

models that model both aspects within an integrated framework.

Figure 3.4 provides a comparison of the training process of all three of the mentioned

approaches to neural vocoders, the autoregressive model (e.g. WaveNet), the model

based on the inverse autoregressive flow and the NSF as the last one. ô1:T and o1:T

denote generated and natural waveforms, respectively. c1:B denotes input acoustic

features. Red arrows denote gradients for back propagation.

What is characteristic of NSF is that during training it uses spectral-domain distances

for loss calculation instead of the more traditional metrics like MSE or the likelihood.

The NSF was implemented in three main variants, i.e.:

b with the network structure similar to ClariNet [247] and Parallel WaveNet

[313]

s which is the b-NSF with simplified neural filter modules

hn an extension of the s-NSF implementing an explicit generation of the harmonic

(periodic) and noise components.

The current study is using the latter as it seems best suited for the purpose of

evaluation of an F0 prediction model that disregards the unvoiced regions. The

hn-NSF was also found to perform best in terms of modeling unvoiced segments as

compared to its two other variants. The harmonic/noise module merges the two
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components in different ratios for the voiced/unvoiced sections of the generated

speech using two pairs of low- and high-pass filters.
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Fig. 3.5.: Diagram of harmonic-plus-noise NSF (hn-NSF) model. Adopted from [319]
(©[2019] IEEE).

For the purpose of subjective evaluation of the F0 model built in the current work

NSF was trained on the whole training subset of the current corpora. First, mel

cepstral features were extracted using a 16000 sampling rate , 400-point frame

length and 80-point frame shift. The FFT was performed using 1024 points. The

mel bands were constrained to 80 and the minimum and maximum were set to 0

and 8000 Hertz respectively. Although the test set already contains extracted F0

values, the extraction was rerun using the tools included in the NSF framework

to ensure data consistency. The extraction algorithm was configured to run with

minimum and maximum set to 60 and 400 Hertz, and a 35-point frame length and

a 10-point frameshift were used. The dataset and the training script were deployed

in the Amazon Web Services cloud and the hn-NSF model was trained using a single

Tesla V100 GPU, 8 vCPUs and 32GB of ram. The training took 4.8 hours without

the inference. The trained model was used to resynthesize all recordings in the test

set, once with their natural F0, and once with F0 values predicted by the model

built in this work resulting in total of 191 recording pairs. These were then used

for subjective evaluation of F0 model performance using two testing procedures as

described below.

3.4.8 Perceptual Evaluation

In the current work, two traditional testing procedures were used for the purpose

of subjective evaluation of the intonation generated by the implemented F0 model,

ABX discrimination test and a simple MOS test. The experiment was implemented

as a web application using a lightweight Python backend framework Flask [118]

for building the REST API and the JSPsych [66] Javascript library as both the
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frontend and the experimental engine. The JSPsych is a state-of-the-art library for

running a wide range of laboratory-like behavioral experiments in a web browser. It

enables an easy modular design for a range of experiments and provides a number of

out-of-the-box functionalities like reaction timing and low latency audio playback.

The backend REST API exposed 5 endpoints, i.e.:

• simple healthcheck endpoint returning one of Wittgenstein’s famous quotes:

“Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.” [325],

• the main endpoint used for rendering the experiment through a template

HTML in which the main JSPsych script was included,

• a save endpoint, that was called at the end of each experiment and was used

for saving the results, cleaned by some additional controller methods, into a

MongoDB-compatible database [125],

• a static URL serving a brief, light description of the whole study serving as a

departure screen for participants,

• an additional endpoint for getting a JSON-serialized [243] list of all current

results in the database.

In order to provide high availability, reliability and accessibility of both, the applica-

tion and the data itself, especially under some increased traffic and use, the whole

application was deployed to an Amazon Web Services-powered cloud infrastructure.

The application was packaged as a single Docker container and deployed as an AWS

Elastic Beanstalk application. This solution provided an auto-scaling mechanism

(AWS Elastic Load Balancer) [25] that was spawning new EC2 instances of the ap-

plication when an increased traffic was experienced, and scaling their number down

when the traffic was decreasing. The database was also implemented as an AWS

cloud solution using their MongoDB-compatible DocumentDB5 service. Similarly

to the application itself, the database was replicated according to the experienced

load. Another advantage of this solution was that the state of the database was

automatically stored during a daily snapshot occurring at midnight when the lowest

traffic was anticipated. The application and the database as well as all intermediate

solutions described upto this point were communicating via a Virtual Private Cloud

that is inaccessible from the external networks. The only entrypoint was through

the actual HTTP port of the API exposed via the AWS ELB infrastructure.

5https://aws.amazon.com/documentdb/
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In order to provide high accessibility to the audio recordings used as the stimuli

in the experiment, they were deployed as a public data bucket on the AWS Simple

Storage Service (S3)6. The experiment was, in turn, designed to preload all the

audio files as the initial step to provide the lowest latency possible.

Additionally, the application was registered under the following public domain:

http://fonetyka.cudaniewidy.org, which helped increase user trust and resulted

in an increased number of participants. The application is maintained and can be

still accessed at the given url for reference.

The whole infrastructure is presented in Figure 3.6.

Fig. 3.6.: Infrastructure of the web experiment framework.

The experiment was first tested using a staging instance residing at a different URL

than the production instance. Only after a series of corrections and validations under

different user scenarios the application was deployed to the production instance

that was sent out to a group of IT-professionals as well as some people not working

with technology. Only a few of the included subjects can be considered trained

phoneticians, linguists or audio-specialists (< 5). The subjects were instructed not

to open the link on mobile devices as this was not supported since a hardware

keyboard is required for input. This also limited the number of users participating

in the experiment in outdoor environments under bad background noise and with

numerous distractions.

Over a 100 responses were collected during a week-long trial. After that period

a database snapshot was taken and saved and the application was left running

6https://aws.amazon.com/s3/
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collecting further results. The flow of a single experiment trial is presented on 3.7

below.

Fig. 3.7.: Perceptual evaluation experiment trial scheme.

When a subject accessed the provided link, first an animated progress bar was

displayed (1). During that time 20 filenames from the test set were randomly

selected from the list, 10 for a MOS evaluation and the other 10 for an ABX test.

This stage ensures the trial to be a double-blind and by preloading the audio to

memory it enables low latency playback. Once all images were successfully loaded

an introductory screen was displayed (2). Here, the subjects were informed that the

experiment consists of two parts; a rating of naturalness of a series of 10 recordings

and a discrimination procedure of another 10 triplets of recordings. The screen also

emphasizes that all recordings will be played automatically, each only once, and that

the playback cannot be stopped.

After clicking the button the user was taken into the introductory screen of the first

part of the experiment, the MOS test. Here, another introduction is displayed (3),

this time addressing the MOS-part of the experiment, introducing the rating scale

and instructing the subject to use the numerical keys on the keyboard after each

recording to rate it accordingly. Additionally, a hint was provided that in some of
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the stimuli the natural “melody of speech” was replaced with a synthetic one. When

the subject clicked the Next button the MOS procedure was started. Each stimulus

was preceded by a 1000ms pause during which a ... (4a) was displayed on the

screen. After the pause a single recording was played chosen from the shuffled set

of 10 natural and synthetic (5/5) stimuli. The subject could rate the stimuli from

the immediate start of playback with a 1 - 5 keypress, which ended the playback

if attempted mid-stimulus. During playback a small call to action was displayed

with the available keys listed once again (4). After 10 iterations of the above

procedure an introductory screen for the ABX trial was displayed (5). Similarily

to the previous part, simple instructions along with available keys a and b were

listed here followed by a Next button that started the ABX part of the experiment.

Each of the 10 iterations (6) of the ABX part consisted of two version of the same

sentence, one with the synthetic F0 predicted by the model and one with natural

unchanged F0, played one after another in random order (6a, 6c) and each preceded

by a 1000-ms pause (6b, 6d). The A and B templates were immediately followed

by the X stimulus which was one of the previous recordings chosen randomly by

the script. At that time a call to action was displayed (6e) for the subject listing the

available keys a and b . After this part a typical thank you screen was displayed

(7). This final screen included a hyperlink to a short description of the current work7

(7a).

7Available at http://fonetyka.cudaniewidy.org/departure
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Results 4
„If the facts conflict with a theory,

either the theory must be changed or the facts.

— Baruch Spinoza

The results of F0 inference conducted for each of the 191 utterances in the test set

randomly selected from the original database and not included in the training data,

were plotted against the ground truth values as shown in Figure 4.1.

Fig. 4.1.: Result of F0 prediction for "Lokatorzy znaleźli się w podbramkowej sytuacji i
musieli się wyprowadzić" (The tenants found themselves in a difficult situation and
had to move out).

As can be seen, the model seems to demonstrate very good performance on average

with some occasional differences in contours from the ground truth contour. The

plots show the interpolated results where missing values were back- or forward-filled

depending on their location as described in the previous chapter of this work. Some

parts of the predicted contour can also be seen as detached from the original one

but still preserving its general characteristics and dynamics. Such displacements can
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be seen as errors when using objective evaluation metrics but might turn out to be

rather insignificant under subjective perceptual evaluation.

Given the small size of the training data, incomparable to the size used for training

speech models nowadays, which usually include hundreds of hours of recorded

speech, and given the fact that the values were inferred only from a narrow choice

of very high-level linguistic features such as phoneme and syllable identity, position

and context, the model seems to perform outstandingly well and seems rather stable

across the whole test set as can be seen in Figure 4.2.

Fig. 4.2.: Result of F0 prediction for "Powodzenie nie jest gwarantowane" (Success is not
guaranteed).

In some of the best examples in the test set the results seem truly impressive, e.g. in

Figures 4.3, 4.4, 4.5, 4.6 and 4.7.

Both good and bad examples can also be found for the results of the technique

used to fill missing values in the inferred F0 to match the ground truth, e.g. at the

phrase onset in Figure 4.7. The values for the short initial fragment around t = 50
were copied and filled from the first predicted value around t = 80 resulting in a

single flat bar. The interpolated regions can also be quite easily identified on the

first example in this chapter (Figure 4.1), around t = 275 and t = 500. Another such

example is seen in Figure 4.8:

The last example (Figure 4.8) also shows that the model was unable to predict the

phrase final frequency raise realising the phrase boundary tone typical for most
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Fig. 4.3.: Result of F0 prediction for "Gaduła była bardzo nieznośna" (Gabby was very
annoying.).

Fig. 4.4.: Result of F0 prediction for "Może przyniosą też gorzałę" (Maybe they will bring
booze too.).

questions in Polish. After an analysis of the other questions in the test set it turned

out that this was a systematic problem.
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Fig. 4.5.: Result of F0 prediction for "To jest ważna godzina dla nas wszystkich" (This is an
important hour for all of us).

Fig. 4.6.: Result of F0 prediction for "Myślę, że chleb razowy będzie najlepszy" (I think that
a wholemeal bread will be the best).

Some examples, although these are rather rare, show improper ground truth F0

values, mainly due to errors in the extraction algorithm as can be seen in Figure

4.9. Because no F0 smoothing and no F0 stylization was applied as a preprocessing

step, these errors include mainly pitch halving and pitch doubling. These appear
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Fig. 4.7.: Result of F0 prediction for "Słyszałam odgłos zbliżającego się pociągu" (I heard
the sound of an approaching train).

Fig. 4.8.: Result of F0 prediction for "Czy to był łatwy dobór?" (Was it an easy choice?).

mainly in parts containing some inadequately expressive realizations by the speaker,

as visible phrase-finally in Figure 4.10, or regions characterized by vocal fry, also

phrase-finally.
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Fig. 4.9.: Result of F0 prediction for "To Majka" (This is Majka).

Fig. 4.10.: Result of F0 prediction for "Na czym polega kandyzacja?" (How does candying
work?).
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4.1 Objective Evaluation

Although preliminary inspection of the predicted F0 values shows some tendencies,

a formal method for calculating the errors was also applied. Table 4.1 lists the mean

values of each of the calculated errors for the whole test set.

Tab. 4.1.: Mean MOS scores in the test dataset for logF0 predictions.

MAE 0.015382
MSE 0.002495
NRMSE 0.009534
RMSE 0.048128

A number of more sophisticated metrics do exist for objective evaluation of synthe-

sized speech, including the Peak Signal-to-Noise Ratio (PSNR) [150] and various

spectral distortion measures (see for example Samuelsson et al. [266], for a compar-

ison of the base methods), but this study is focused on intonation and such metrics

can only be applied to a complete speech signal. In the current case, applying them

to resynthesized speech would yield results overshadowed by the influence of the

quality of the resynthesis method itself. They were, therefore, ignored here and the

industry standard Mean Squared Error and Mean Absolute Error were calculated

instead [200].

4.2 Subjective Evaluation

Prediction results were also used in two types of perceptual evaluation, as described

in the previous chapter. The whole trial included responses from 90 different partici-

pants. Each response included MOS ratings for 10 randomly picked sentences from

the test set and 10 results of ABX discrimination tests for pairs of synthetic/neutral

variants of other randomly picked test sentences. The random sampling for both

experiments was performed independently with repetitions – two variants of that

same sentence, synthetic and natural might have been picked for the MOS trial and

then also reappear in the ABX trial for that same subject. Although the probability

for such a case was rather low given the 191 sentences in the test set. The MOS

scores for all results are presented in Figure 4.11.

Resynthesized speech samples containing synthetic F0 values received a lower overall

mean score than the resynthesized samples with natural F0. The mean score for the
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synthetic F0 was 2.9 and the mean for the natural F0 reached 3.7. The synthetic

stimuli were also characterized by a slightly bigger standard deviation 2.44 as

compared to 2.31 for the natural ones. As shown in Figure 4.12, mean response

time was also slightly longer for synthetic stimuli than for the natural ones with

5725.7ms and 5283.9ms respectively.

Fig. 4.11.: Mean Opinion Score-based evaluation results.

Fig. 4.12.: Mean Opinion Score-based evaluation mean response times for synthetic and
natural stimuli.
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Fig. 4.13.: Mean Opinion Score-based evaluation total numbers of specific scores for natural
stimuli.

Fig. 4.14.: Mean Opinion Score-based evaluation total numbers of specific scores for syn-
thetic stimuli.

Total numbers of specific scores for both types of stimuli are presented in Figures

4.13 and 4.14. It clearly shows that the score distribution for natural stimuli is

leaning towards the higher values. However, the distribution of synthetic stimuli

scores is closer to symmetric normal distribution without a strong trend towards the

lower scores.
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A correlation matrix of all MOS parameters is presented in Figure 4.15. It clearly

shows a positive correlation between the type of stimulus and the answer. The

value is small but significant. A negative correlation can also be seen between the

amount of time elapsed from the beginning of the experiment and the given answer,

which is to be expected as the subjects naturally gain experience towards the end

of the experiment and become more critical. No strong correlation, however, exists

between the other parameter pairs; stimulus type and response time, time elapsed

and response time and answer and response time, which is coherent with some of

the data in the other figures.

Fig. 4.15.: Mean Opinion Score-based evaluation parameters correlation matrix.

The results of the second part of the perceptual experiments consisted of an ABX

discrimination procedure between pairs of resynthesized utterances with synthetic

and natural F0 contours. Even with a relatively low confidence of 95% assumed

(p = 0.05), it was not possible to reject the following null hypothesis with a χ̃2

test:

Null Hypothesis (H0). There are no perceptually significant differences between
resynthesized recordings with synthetic and natural F0.

Hypothesis (Ha). There are perceptually significant differences between resynthesized
recordings with synthetic and natural F0.
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Figure 4.16 shows the mean ABX test score per listener and its standard deviation

plotted against the assumed 95% confidence level, which lays at the level of 80%

mean ABX text score.

Fig. 4.16.: ABX experiment results. Mean score per listener (%).

A histogram representing numbers of individuals with n correct answers is presented

in Figure 4.17 for reference.

Fig. 4.17.: ABX experiment results. Number of individuals with n-correct answers out of
10.
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Also in case of the discrimination experiment the were no significant differences

between the mean response times in case of the main (X) stimuli being synthetic or

natural as shown in Figure 4.18.

Fig. 4.18.: ABX experiment mean response times for synthetic and natural stimuli.

Similarily, the number of correct and incorrect answers was almost identical in both

cases as illustrated in Figure 4.19.

Fig. 4.19.: ABX experiment number of correct and incorrect answers in case of natural and
synthetic stimuli.
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These same observations can be made for the correlation matrix for the experiment

parameters presented in Figure 4.20. No strong correlation was found between

the stimulus type, response time and whether the answer was correct. Some weak

negative correlation exists for the response time and the correctness of the answer

as well as for the amount of time elapsed since the start of the experiment and the

corectness of the answer.

Fig. 4.20.: ABX experiment parameters correlation matrix.

Raw unprocessed results containing detailed answers, response times and other

metrics are available at the experiment code repository at https://github.com/

mrslacklines/listening_experiments/blob/master/results/results.json.

4.3 Feature Relevance

Each of the generated relevance maps was plotted as a heatmap with the x-axis

corresponding to the sample number (discrete time) and the y-axis representing

a feature on a given numerical index ranging from 0 to 1297 as shown in Figure

4.21.
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Fig. 4.21.: Fundamental frequency predictions for "Słyszałam odgłos zbliżającego się
pociągu" (I heard the sound of an approaching train) aligned with feature rele-
vance heatmap.
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The relevance, represented on a continuous colormap scale, was additionally log-

normalized symmetrically around the 0-value, with linearity threshold set to 3, and

the linear part scaled using a 0.001 factor for better readability. Additionally, both

the predicted and the ground truth logF0 values were plotted above the relevance

maps with time-axes aligned for better representation and reference.

The mapping of the numerical indexes to actual feature names is available in

Appendix A and all of the relevance plots are available in the original project

repository in the results folder1.

As described in Section 2.2.4 the algorithm calculates a value that considers not only

which parts of the input can account for the outputs but also the actual activations

representing the relevance of a given feature value at a given point to an actual

prediction. Positive relevance indicates positive evidence for the predicted F0 values

and negative relevance indicates evidence against the predicted values.

Because the large number of low-level features makes identifying general trends

difficult, mean relevance was also calculated for a number of different higher-

level feature groups. The definitions of these groups along with a comprehensive

description of the rationale behing each of them is available as Appendix B of this

work. Figure 4.22, for instance, shows the relevance of features grouped by the

general information type they convey.

As can be seen in Figure 4.23 and 4.24 the highest positive relevance values were

invariably reported for the Voiced/Unvoiced feature and are marked by a band of the

most intense dark green on the heatmap. Additionally, the features corresponding to

the position of the phrase in the utterance usually show mostly negative relevance.

The other most relevant features groups are the relative word position, segment

position in the syllable (i.e. current position or t), presence of syllable accent

and the syllable accent type, as well as syllable length measured in segments,

syllable position, word length measured in syllables, word position and word context.

Some lesser positive relevance can be also observed quite regularly for phrase

and utterance length, syllable neighbourhood, relative position of the syllable and

all segment-related features. Information about the nucleus type of the syllable

usually renders as irrelevant with only some occasional negative relevance appearing

at boundary regions, which are generally characterized by very high variance of

relevance values.

1https://github.com/mrslacklines/intonation_synthesis/tree/master/intonation_
synthesis/results
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Fig. 4.22.: Fundamental frequency predictions for "Waluta jeny - w języku greckim - jest
cenna" (The currency yen, in Greek, is valuable) aligned with relevance heatmap
for general feature groups.

In Figure 4.25 the features were in turn grouped according to the level of utterance

organization to which they pertain (disregarding the V/UV from now on). Similarily,

the word and syllabic features turned out to exhibit the highest relevance. However,

all the other feature groups, the phrasal, segmental and utterance levels, are also

showing positive mean relevance.

When the features are grouped into categories regarding the various kinds of relation

they convey, as in Figure 4.26, some other strong trends can be observed. The central

visible darker band suggests that it is mostly the features that express various kinds

of positional relations between linguistic units in the utterance that provide the most

positive evidence for the F0 contour prediciton. Also the features related to both,

the composition of a linguistic unit itself, and the composition of its parent unit

were found to be highly relevant, although to a slightly lesser extent. Composition
is used here as an umbrella term for all information about the number and kind

of subordinate units, e.g. number of accented syllables in the including phrase
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Fig. 4.23.: Fundamental frequency predictions for "Słyszałam odgłos zbliżającego się
pociągu" (I heard the sound of an approaching train) aligned with relevance
heatmap for general feature groups.

or length of syllable measured in number of segments. The relevance of relative

position also shows regions with greater values. The least pronounced relevance was

observed in case of qualitative features such as the phonetic identity of a segment or

the type of syllable nucleus.

In Figure 4.27 the two previous perspectives were combined and the mean relevance

was plotted for features grouped by both, the relation type and the level of utterance

structure they relate to. Here, the greatest relevance was reported for the segment

position in the utterance, length of syllable measured in number of segments,

position of word in relation to their immediate accented neighbours and length of

the parent unit in measured in number of words. The position of the syllable, word

composition and absolute position were also rendered as comparatively significant

but to a much lesser extent. The only feature group that provided evidently negative

evidence was again the information about phrase position in the utterance.
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Fig. 4.24.: Fundamental frequency predictions for "Tego z pewnością żaden nie zrobi"
(Certainly none will do that) aligned with relevance heatmap for general feature
groups.

Given the infinite number of linguistic contexts and possible F0 contour configura-

tions it is impossible to infer the general relevance of a feature only with a look at

a single relevance map for a single utterance, even when the features are grouped

into meaningful high-level categories. In order to show general trends in feature

relevance across many different contexts, a number of calculation methods were

used to aggregate the values in all 191 individual relevance matrices. Aggregation

methods included regular element-wise summation (results are illustrated in Figure

4.28), sum of absolute values and sums of only positive and only negative values, as

well as a corresponding mean matrix for each of these summation methods.

All aggregated results show a natural trend for higher values towards the beginning

of the time axis where the number of examples was naturally higher. Already at

this point, some general tendencies can be observed in some more intense red and

green bands for some of the individual features. Figure 4.29 therefore shows which

104 Chapter 4 Results



Fig. 4.25.: Fundamental frequency predictions for "Musisz dojrzeć do tego, by to zrozumieć"
(You have to grow up to understand it) aligned with relevance heatmap for
features grouped by the level of utterance.

Fig. 4.26.: Fundamental frequency predictions for "Przepłynełam na grzbiecie siedemnaście
długości basenu" (I swam seventeen pool lengths on my back.) aligned with
relevance heatmap for features grouped by the type of relation.

of the individual features provided the highest and lowest evidence for predictions

across the whole dataset on average. Figure 4.30, in turn, illustrates which of the

individual features were the most prominent across all test samples, regardless of

4.3 Feature Relevance 105



Fig. 4.27.: Fundamental frequency predictions for "Ciocia pracuje w urzędzie państwowym"
(Aunt works in a government office) aligned with relevance heatmap for features
grouped by the type of relation and the level of utterance.

whether the evidence it provided was positive or negative. Separate plots for overall

mean negative and positive prominence (absolute relevance) are shown in Figure

4.31 and Figure 4.32.

Mean relevance was then calculated across the whole x-axis (time) per feature group

using the same grouping scheme as in case of the individual relevance results (see

Appendix B). Based on the results the feature groups were ranked using a number of

different levels of data abstraction. In order to avoid excessive scaling of the y-axis

because of huge relevance of the Voiced/Unvoiced feature additional versions of all

plots excluding this single feature were also created.

The plot of the mean relevance across the whole test set (in Figure 4.33) shows

similar trends to those that could be observed in case of individual relevance plots.

After removing the V/UV feature, in order to prevent scaling of the other values, it

clearly shows (see Figure 4.34) that the single most relevant feature was the syllable

accent type (so the ToBI tone). The next five most relevant features exhibit very

similar values. These are the length of syllable in number of segments, presence of
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Fig. 4.28.: Relevance sum across the whole test set.

Fig. 4.29.: Mean relevance of features based on regular sum.
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Fig. 4.30.: Absolute mean relevance of features (based on absolute sum).

Fig. 4.31.: Mean relevance of features calculated for positive-only values.
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Fig. 4.32.: Mean relevance of features calculated for negative-only values.

syllable accent, segment position in syllable, the number of other accented (content)

words before and after the current word (word surroundings) and the distance to

these words (relative word position). Then, with slightly lower mean relevances,

syllable and word position features follow, along with length of word in number

of syllables and the information about syllable stress on the farther positions. The

other features, or feature groups, are ranked even lower and these include most of

the segmental and utterance features with phrase length having the highest mean

and the information about the type of syllable nucleus and the position of the phrase

in the utterance having visibly lower relevances.

In Figure 4.35, that same ranking based on the mean relevance is presented but

this time with a finer granularity. Here, some other tendencies can be spotted.

These also seem much more apparent as lower granularity evidently made the group

results appear much more normalized introducing a damping factor for the more

relevant members across the groups. Here, the most relevant feature group seems

to be the number of accented syllables after the current syllable in the current

phrase, immediately followed by the distance from the next accented (content) word

expressed in number of words and by the forward position of the syllable in word.

The syllable accent type reappears with an identical name as this whole feature

group is small and was not further broken down. It was included as is in the general
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Fig. 4.33.: Regular mean relevance per feature group. The y-axis scaling due to the high
relevance of V/UV renders comparatively flat plots for other features.

ranking in Figures 4.33 and 4.34), as the accent type label relevance was in some of

the most interesting features and the groups were defined arbitrarily. This rendered

the possibility that some of the most relevant features might be hidden within some

of the more general groups and to address this intuition also the relevance for a

very fine and detailed grouping was considered and the results can be seen in Figure

4.36.
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Fig. 4.34.: Regular mean relevance per feature group with the most relevant feature (V/UV)
excluded.

The tendencies are even more vivid in this case but the results, at least for some of

the groups, might appear harder to interpret later. However, the general tendencies

are kept as demonstrated by some of the most and least relevant information.

Also in case of the mean rankings, additional plots were generated for some other

aggregates of the relevance. In Fig 4.37, a feature ranking based on mean absolute

relevance is presented. In this way the features were ranked according to their total

contribution, positive or negative. Here, the mean absolute relevance of the syllable
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Fig. 4.35.: Regular mean relevance per feature group with the most relevant feature (V/UV)
excluded. Medium granularity of feature groups.

accent type is ranked second immediately after the position of the phrase which was

seen as providing strong negative evidence on most of the individual plots but also

in the mean-based rankings. The inventory of the most relevant features is kept but

the order is slightly changed as a result of the features providing mostly positive

values being favored over the ones that might have higher mean relevance but also

experiencing small ranges of negative relevance that evens out the overall absolute

mean.
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Additionally, Figures 4.38 and 4.39 present feature rankings based on the mean

calculated with only positive or only negative values. These methods were included

as a result of the tendencies observed with all of the previous aggregation functions,

and in order to account for some other interesting tendencies that might have not

been caught by the other aggregation methods. This includes the very high positive-

only mean for the feature that usually delivers all-negative evidence – the position of

the phrase, as can be seen in Figure 4.38. The following feature groups are similar

to those seen in all of the previous figures.

Fig. 4.37.: Absolute mean relevance per feature group with the most relevant feature
(V/UV) excluded.
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Fig. 4.38.: Positive relevance-only mean per feature group with the most relevant feature
(V/UV) excluded.

4.3 Feature Relevance 115



Fig. 4.39.: Negative relevance-only mean per feature group with the most relevant feature
(V/UV) excluded.
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Discussion and Conclusions 5
„Think not of what you see, but what it took to

produce what you see.

— Benoit Mandelbrot

As with most current deep neural architectures, the results produced by the into-

nation model built in this work are also expectedly good. This can be observed in

generally surprisingly adequate contours of the predicted F0 values, closely tracking

the ground truth values. A good overall quality can be generally anticipated in such

systems but the actual results depend heavily on the dataset. It is not the quality

of the data alone, but also its adequate size. Most of the current state-of-the-art

neural models of speech are trained on thousands of hours of recordings, as in the

case of Wavenet [239] or the original NSF paper [319]. This allows the model to be

trained on a large number of examples and to catch general tendencies much more

accurately. The original purpose of the current dataset was to serve as a foundation

for a unit selection synthesizer. From this perspective it can be considered quite large

as it was designed with high coverage of segmental and suprasegmental contexts

of the Polish language and manually labelled by trained phoneticians. However,

as Machine Learning dataset it is rather small when compared to the size of the

datasets typically used for deep learning. The data is also not free from labelling

errors, incorrect segmentation and even some occasional mispronunciations by the

speaker himself. The statistical nature of the model, however, allows to assume that

with most part of the data being correctly labelled, occasional errors should not

influence the performance of the trained model.

On the other hand, it is rather rare to find datasets with such detailed multi-level

hand labels, and of sizes comparable to that used in the industry by giant data

companies like Alphabet (Google). Usually, they are built using either very simple

text annotations, or some automatic labelling methods (or both). It is also becoming

increasingly popular to feed the deep neural models with raw data skipping the

once obligatory feature extraction and engineering stage altogether. This is because

these models, and especially CNNs, are very efficient at discovering and extracting

features. As mentioned before, they are able to extract increasingly complex features
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from just the raw arrays of pixels linking these to specific categories. The model

built in this study can potentially demonstrate similar performance if trained on

raw text transcription of the utterances as the features used here can in theory

all be derived from the textual input. The advantage of feeding the model raw

data is that it can decide on its own what information is actually useful for solving

the problem in question and can extract and process that information in the most

optimal way. It should be relatively easy for such a deep architecture to extract

positional features of segments, words, phrases and even syllables. Maybe it could

even come up with a more optimal notion of syllable then that used by the human

annotators. Preengineered features, like the ones used in this work, add a layer of

encoding, which in some cases might provide the model with just the information

that it needs, and in some other cases might mask that information making it harder

for the model to discover and extract.

Despite the obvious shortcomings, the current dataset contains features that are

easily interpretable and were derived based on our current linguistic theory of

language and intonation in the very general sense. This presented the opportunity to

build a model that maps from abstract linguistic (and quasilinguistic – as we cannot

really relate the number of syllables in the current phrase to any specific linguistic

theory or phenomenon) categories and features to concrete physical realizations of

the log-fundamental frequency. It was assumed that this mapping modeled within a

biologically-inspired neural architecture might be a sufficient approximation of how

intonation might be processed in different parts of the human brain and provide a

valuable perspective on the mapping between cognitive categories and their physical

realizations. Although the source of the biological inspiration is the human (or

rhesus monkey) auditory cortex and the model was built for synthesis (so for speech

production rather than perception), it was assumed that the general tendencies

shown here should be still applicable. When people read speech silently, most will

hear the words being played back in their heads and these utterances will seem to

have distinguishable intonation contours as if somebody was actually reading them

aloud1. This fact might support a number of theories but regardless of which theory

might be closer to truth, most will assume that production does somehow relate

to the perception in one way or another. Therefore, instead of building a model of

intonation production that is close to the actual biological implementation, this work

aimed at showing how specific characteristics of the human brain might support the

1The author was not able to find a proper literature reference to support this statement as it is
virtually impossible to devise a scientific experiment that could confirm this mental phenomenon.
However, the reader can quite easily observe this through a simple introspection.
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emergence of complex categorical (and of course gradual) ideas from a continuous

flow of frequency values and the other way around.

In this study, the functional performance of the model as evaluated by objective

and subjective measures, was operationalized as an indicator of its adequacy. While

this general methodological approach is rather incontrovertible in phonetics, it does

suffer from the lack of proper evaluation methods.

The objective measures that are usually used are nothing more than a calculation of

some variant of the Mean Squared Error. This method renders insufficient in most

problems as it lacks the ability to address some domain-specific degrees of freedom

and at the same time does not penalize some of the errors that are more significant

than others given the domain. In case of intonation, that same speaker intent can be

realized with a range of configurations – a gradient of variants of a single specific

contour, or even a number of some completely different contours. Additionally, even

intonation contours that seem adequate at the macro level might be perceived as

very unnatural if they contain lots of high-frequency variation. Such residual noise

is observed in the case of the current model. It might be interpreted as the network’s

attempt at modeling the microprosody.

In some cases the abrupt shifts in frequency, although rather insignificant in relation

to the total frequency range of the speaker, cause unnatural robotic glitches and

distortions that seem to have had a much greater influence on the perception of

naturalness than the low-frequency contour fit with that of the ground truth. In

some other cases they seem to have no particular negative effect of the perceived

naturalness.

New objective evaluation metrics are often proposed (e.g.: the tangental distance or

the warping method [53]), as this is a significant issue not only for the evaluation of

models, but also for the training itself where the metrics are used for the calculation

of model inference loss. However, even the state-of-the-art methods are still mostly

variants of the idea behing the original MSE. One possible alternative to consider

would be a metric based on the autocorrelation algorithm but this solution also has

its limitation. Metrics based on measuring the spectral distortion provide a good

solution in the general context of evaluating speech synthesizers, they cannot be

implemented for the current model of intonation for the obvious reasons. Evaluating

spectral distortion in the resynthesized utterances with the predicted F0 values

would mostly reflect the performance of the resynthesis method instead of the F0

predictions. Therefore, a few variants of the standard MSE metric were used here as

a standard solution.
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The subjective evaluation of the model was designed in a way that should minimize

the effect of the synthesis quality on the listeners and isolate the differences between

the predicted and ground truth F0 values. Initial experimentation with standard

resynthesis methods did not yield satisfactory results as it generated a high level

of audible spectral distortion in outputs with synthetic F0 source and an original

spectral filter, as opposed to the resynthesis results for the original F0 and original

spectral filter. These initial experiments (not described in this work) led the author

to the Neural Source-Filter resynthesis method [319]. The flexibility of the neural

vocoder offered much more stability even in case of very unnatural F0 values and

helped address the spectral distortions that could affect the listener. These were

significantly reduced, but still present in some cases. On the other hand, some of the

utterances resynthesized from all-natural inputs also showed some slight distortions

which helped even out the perceived spectral quality of the two categories of stimuli

further and eliminate any extra cues that could help the subjects identify synthetic

speech. The huge advantages of this resynthesis method are obvious but there is

also a disadvantage. The neural vocoder might render slightly different values as

compared with the input, whereas the more traditional methods always provide

a one-to-one mapping. The changes are usually small and were treated as the

necessary compromise in this study. One could also look at the vocoder as being

a part of the model corresponding with the actual process of speech production

framed within the source-filter theory. It is a rather non-controversial assumption

that the articulatory stage of speech production might impose constraints on the

realization of the planned utterance and especially its intonation. These can be easily

observed in involuntary out-of-tune singing. In the current work, these articulatory

or physiological constraints are represented implicitly by the probabilistic model.

However, the NSF vocoder introduces a more explicit representation of the influence

of the actual articulation on the dynamics of the fundamental frequency.

The problem of missing and superfluous F0 values (as compared to ground truth),

especially when appearing within vowel segments, appeared to decrease the results

both in the objective and subjective evaluations. It was decided that missing values

will be back- and forward- filled if they appear at the very beginning or end of

the utterance. Quadratic interpolation was used for missing values appearing in

all other places. Superfluous values were simply deleted. The reason for such a

mismatch of values between the ground truth and the predicted vectors output by

the model is of purely engineering nature. Different pitch extraction algorithms and

implementations were used at different stages as part of the different frameworks

used throughout this work as a necessary compromise. In many cases, it was simply
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easier to use built-in tools, then to replace them. The discrepancies were minimal

and were also treated as necessary.

Given all these distortions and areas for potential improvements, the subjective

evaluation, performed with a statistically significant number of subjects using a

professionally designed experimental framework, still showed that the null hypothe-

sis (Hypothesis 4.2 in Section 4.2) cannot be rejected with high confidence. This

suggests that the resynthesized model predictions appear to have no statistically

relevant audible differences in terms of naturalness and that the model was able to

effectively predict natural F0 values in a number of arbitrary and previously unseen

inputs given their basic phonological form. These results were operationalized as

an indicator of the model’s robustness and provided the necessary support for

proving hypotheses 3 and 2 of this thesis, namely that the set of linguistic fea-

tures used in this thesis contains information which is sufficient for synthesis

of natural sounding intonation in the context of statistical-parametric speech

synthesis (3), and that the Deep Temporal Convolutional Neural Network used

in this thesis can effectively model the mappings between these features and

the F0 contours of an utterance (2).

The evaluation results also demonstrated the high implementational potential and

high pragmatic and functional value of the model in the context of a statistical-

parametric speech synthesis of Polish read speech and renderred it potentially useful

in other related domains such as modeling of expressive speech. As already outlined

in the introductory chapters of this work, a number of such models exist as part of

the current state-of-the-art speech synthesis systems. These systems exhibit a range

of approaches to modeling intonation with DNNs. They differ both in the specific

neural architectures and paradigms used and in the placement of the intonation

model within the processing pipeline. Some implement end-to-end models which

take textual input and output raw waveforms with an integrated framework where

intonation is modeled implicitly. Some on the other hand, introduce dedicated

models that handle various levels of speech, including intonation, in separate parallel

processing pipelines. In both cases, many different deep neural architectures can also

be found, including prototypical TCN’s as well as ensemble approaches which include

non-convolutional DNN’s such as the LSTM. Regardless of the underlying solutions,

very rarely are purely linguistic information used as inputs. The architectures

are also rarely backed with neurobiological research results. This is due to the

fact that these models are built with performance and applicability in mind rather

than scientific modeling and explanation of the modeled processes. The current

model was also developed in the context of speech synthesis but here linguistic
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relevance and explanatory power were of primary interest. Although the choice of

explicit linguistic features and network architecture selected merely on the basis of

neurobiological evidence, usually yields much worse results for that same problem

than some more proven heuristics, it also produces scientific output that is potentially

much more valuable to the root discipline of the modeled phenomenon.

As previously noted, deep neural models are not always accepted as scientific

models. Although, as shown with extensive argumentation in Section 3.3, the

current model fits not only within the pragmatic and statistical-inductive notions of

a scientific model, as demonstrated with the results of the evaluation and ensured

through formal definition of the model, but also within the unificationist and causal-

mechanistic notions. The unificationist interpretation assumes that all levels of

intonation processing are relevant, from the organization of abstract psychological

concepts in our mind, through the nature of the underlying processing in the

human brain and the concrete realizations of the glottal vibrations translated to the

frequency of the fundamental frequency and its role as a source in speech production.

All of these levels, however not without some necessary idealizations, are addressed

in the current framework with a methodology that attempts to stay free of any

linguistic dogmas and adopting a physicalist approach that puts the neural aspect of

intonation at the center of the problem. Thus, the model also demonstrates strong

causal-mechanistic foundations.

Given the above argumentation for the scientificity of the current modeling

method, the positive evaluation of the models output naturalness, and with

the model architecture being strongly inspired by the computational and struc-

tural characteristics of the actual human auditory cortex as discussed in Sec-

tion 2.2.2, it is also safe to infer that the general neural processing scheme of

the human brain might similarily allow the continuous F0 contours of an ut-

terance to gradually emerge from its discrete phonological (mental) features

through a series of successive probabilistic mappings into intermediate latent

representations, thereby proving Hypothesis 1 of this work.

The explanatory power is further ensured with the application of the Layer-wise

Relevance Propagation explainability algorithm to the results of model inference. The

nature of relevance, as defined within that method, also preserves all of the model’s

formal assumptions, as it is realized within the model itself using the same methods

that are used for model training and does not introduce any new operations but

simply reverts the operations comprising the model under an additional conservation

principle. In this way, the method can be included as part of the model itself.
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The model built in this work along with the full source code and methods for

running the training, inference, evaluation and explainability analysis along

with full results in the form of relevance plots, resynthesis samples and comma-

separated data files is openly available at https://github.com/mrslacklines/

intonation_synthesis. Additionally, the perceptual evaluation experiment ap-

plication can still be accessed at http://fonetyka.cudaniewidy.org/experiment

for reference. The source code of the application is also made freely avail-

able at https://github.com/mrslacklines/listening_experiments, and with

slight changes can be used to perform arbitrary ABX/MOS experiments.

It was anticipated that the relations between the linguistic inputs and the actual

F0 values might not be straightforward enough, especially given the relatively

deep neural architecture, to produce easily interpretable results. This was partly

observed in the unprocessed individual results where relevance was generated for

the predictions for a single individual utterance sample. With a high number of

low-level features and the specificity of context, some of the most relevant features

were rather unexpected and hard to interpret, as in the case of features representing

specific lengths and positions showing much higher relevance than their counterparts

within that same feature class. The surprising aspect was that these specific values

represented by these highly relevant features showed no interpretable relation to

the actual context in which they appeared. However, the exploding relevance values

for the Voiced/Unvoiced feature provided an initial indication of the adequacy and

correctness of the applied method. The unexpected values, on the other hand might

be useful for the network, as for example, it might have randomly learned to favor a

specific positional feature more than the other. For a human, some specific values

might appear more meaningful than some others (e.g. 0 and 17, where 0 has that

special meaning of being at the beginning or end of something and 17 is just-a-
number). The network, on the other hand, learns starting from a completely random

state and is not initially conditioned in any specific way, unlike humans. Therefore,

the unexpected relevance of apparently meaningless features was not questioned.

Additionally, the relevance maps were produced with respect to the output layer

of the network only. The inherent feature of the network is to use the trained

convolutional filters at intermediate layers to extract latent features of different

abstraction levels from combinations of features from previous layers. This might

also explain some of the apparently unjustified high relevance values for unexpected

features as they might provide valuable input to some of the trained convolutional

layers. Although an introspection into these features appearing at those intermediate

layers and even visualization of the convolutional filters is possible with the current
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methods, they were not included here given the various constraints of the current

work.

Under these assumptions, it was decided to create feature groups that would not

only withhold the unnecessary, at least at the time of the initial validation of the

model, low-level feature characteristics, but also provide a more general insight

into which parts of the immediate input is relevant for the model when predicting

F0 values in specific contexts, from the perspective of more relatable higher-level

categories. Since it was impossible to assume what kind of granularity and grouping

schema would work best, the features were structured into three different groupings.

The first one, containing all feature groups, uses the most granular grouping possi-

ble. Here, only feature variants differing by quantitative measures where grouped

together, so that a feature representing the current word being one word away from

the next content word, i.e. QS Num-Words_from_next-ContWord==1{*+1/F:*}

and a feature representing the current word being two words away from the next

content word are included in a single group, but also keeping the information about

forward and backward position in separate groups. Similarily features expressing

quantitative features like position or length expressed with equality and inequality, as

well as features pertaining to the different contexts included (i.e. second neighbour

to the left, immediate left neighbour, current, immediate right neighbour, second

neighbour to the right) where kept in separate groups. This grouping was supposed

to provide some generalization and better readability but keeping the lowest possible

level of abstraction. The second grouping scheme included the different contextual

variants of the features, as well as variants expressed with different mathematical

relations (equal, greater than) in single groups but keeping the forward-backward

variants separated. This scheme was meant to provide almost the highest possible

level of abstraction given the feature in a way that still allows to reflect the influence

of the past and future utterance segments on the current articulation. The last,

most general grouping scheme groups all feature variants into the most intuitive

categories such as RELATIVE_WORD_POSITION . Specific information about group

names and their content is available as Appendix B of this work, in the form of a

Python script where the structure is defined through a nested list of lists. In this

way, a practically infinite number of quantitative analyses can be performed, even

on the small holdout set of test utterances. This contributes to building a quantita-

tive methodology that allows to study the relevance of different configurations of

linguistic features in predicting specific F0 contours.

With feature grouping, higher abstraction was achieved and the results became

easier to interpret within more familiar categories. Strong trends started appearing
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and were easier to relate to some of the known theories and assumptions regarding

the linguistic factors and relations on the intonation contour of an utterance. This

was achieved through the calculation of different aggregates for each F0 sample in

each individual utterance for all groups. These included mean, sum, positive- and

negative-only mean and sum as well as absolute sum and mean, as each of these

calculation methods was suspected to reveal different tendencies in the data. Mean,

being the most obvious choice, was used to show the regular mean relevance, just

generalized for a given group of features. Sum was also included as it was readily

available at the time of mean calculation to provide an accumulative measure but

turned out to be useless by itself with feature groups containing a non-equal number

of features causing the groups containing more features to have naturally higher

sum values. Positive- and negative-only means were supposed to provide insight

into what kind of features provide the most positive and most negative evidence

for given predictions. Because simple calculation of mean was suspected to flatten

out features that in some contexts provide strong positive evidence, and in some

other strong negative evidence resulting in relevance results similar to some other

features that provide little evidence in any context, mean based on absolute sum

was also calculated to show which of the features are the most prominent in general.

The tendencies demonstrated by the absolute mean were anticipated to be similar

to what can be achieved with some of the sensitivity-based explanation methods,

which favor features that are used for any specific prediction, regardless of their

activation level.

The relevance in individual test samples shows a number of interesting tendencies.

First of all, when the features were grouped according to the level of segmentation

they relate to, word and syllabic features clearly rendered as the classes that provide

the most positive evidence on a regular basis. Closer inspection of syllabic features

at a more granular level with additional partitioning based on the type of relation

they encode, showed that it was mostly the high relevance of compositional features

of syllables, followed by syllable qualitative features and features relating to the

absolute position of the syllable that contributed to the high overall relevance in that

group. Compositional features group, in case of syllables, include the length of the

syllable as expressed in its segmental building blocks (i.e. phonemes). Qualitative

features group all information about the presence and type of syllable accent and the

presence of stress. It is important to emphasize, that these information are always

provided not only for the current syllable but also for its most immediate right and

left neighbours, comprising a syllabic equivalent of a triphone.
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The above is true also for other segmentation levels. Each segment, regardless

of whether this is a syllable, a phoneme, or a phrase, always encodes (through

its features) various information about themselves, and additionally that same

information on their most immediate neighbours. Segments, additionally encode

information on their second most immediate neighbours extending the represented

context to a quintphone.

These facts can be interpreted as evidence for the central role of the syllable as

a metrical unit and a primary anchor for intonation on the segmental level as

usually assumed in most of the phonological models. The length of the syllable

determines how a specific F0 contour will be realized in the time domain, and its

absolute position towards the end of the word, phrase and utterance translates to

its potential role within the intonational phrase. The lexical stress in Polish is very

regular and is placed on the penultimate syllable, which is best represented with the

absolute position of the syllable in the enclosing word. Additionally, syllable position

towards the end of the phrase and utterance determines its base frequency through

its position on the usually descending base frequency line of the whole phrase or

utterance.

Interestingly, the relative positional features did not show relevance significantly

higher than the mean. Also the features encoding various qualities and quantities

of the parent segments, so the word, phrase and the utterance itself, were not

ranked very high in case of the syllable. The absolute position group lists features

representing the numerical position of the syllable, both forward and backward in

their enclosing segments, mainly the word and the phrase, whereas the relative

position group includes information about the position of the syllable in relation to

their most immediate accented and stressed neighbours.

Features related to (phonological) words also show constantly high positive relevance

across the whole utterance in all test samples. This fact also seems to confirm some

of the traditional assumptions of most phonological intonation models. Although

generally, from the perspective of the relation type, it is the absolute position that

appears to be most relevant on average given all features in the feature set, in case

of the word-related features, which appear to be the most relevant feature group

from the perspective of the linguistic level, it was the relative positional features that

appeared to show the highest relevance. Similarly high values were rendered by the

features related to the composition of the parent unit. The relative position and the

composition of the parent unit represent features that encode the distance to the

closest accented (content) words expressed in number of words and the total number

of accented words in the enclosing phrase. The absolute position of the word and
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its composition were showing significantly lower contribution for the predictions.

This might reflect the way the network is encoding the structure of the phonological

phrase as in Jassem [154], Demenko [70]) or some equivalent structure that relates

the intonational contour of the phrase to its shallow informational structure.

As expected, segmental (i.e. phonemic) features show high relevance in determining

the position in the utterance as they provide comparatively the most accurate data,

being the lowest most granular segmentation level in the current data. Another

interesting observation was made in case of the phrasal features. The information

about the composition of the phrase was regularly providing positive evidence for

the prediction but at a rather insignificant level if compared to the syllabic features

for instance. This group of features includes the number of syllables and words that

constitute the phrase. Although this information might seem intuitively important,

it is redundant in relation to some of the previously mentioned groups that already

encode this information and are much more specific.

More interestingly, the whole group of phrasal features that indicate the position

of the phrase in the utterance was shown to provide almost exclusively negative

evidence for the predictions along the whole utterance. Very short intervals of

rather high relevance may however be observed in regions relating to pauses in the

utterance, initial, final but also intermediate. Although it is difficult to interpret

that trend it might be some way the model is determining whether a current pause

marks the end of a phrase and if the next voiced segment should implement new

phrasal intonation contour or not. Mean group relevance results seem to confirm

the tendencies discussed above. The Voiced/Unvoiced feature is naturally the single

most relevant with other values residing at much lower levels. The information

about the syllable accent, length, the relative and absolute position of the word and

syllable and current position in the phrase seem to clearly stand out with noticeably

high mean relevance whereas the mean relevance of the phrase position appears to

be the only feature group with obviously negative mean relevance but also exhibiting

some of the highest standard deviations that accounts for the occasional high positive

relevance observed in the individual relevance results.

The total mean results also show that the features representing the absolute and

relative position of a linguistic unit, its composition and the composition of its

enclosing unit are the most relevant and the qualitative features which include

mostly information about phoneme identity are the least relevant.

The additional aggregation methods provide additional confirmation. For example

the mean of positive-only values shows that the position of the phrase does exhibit
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high relevance but only in some specific contexts. It also shows that the feature

groups with the highest positive-only relevance mean are also showing the highest

standard deviation which might suggest their high contextuality or unreliability.

The negative-only relevance mean shows on the other hand that, except for phrase

position, some of the feature groups scoring lowest in the mean relevance are

also among the ones providing the most negative evidence for F0 predictions, e.g

the composition of the utterance (so length), type of syllable nucleus and most

segmental (phonemic) feature groups. The negative-only mean also shows that

feature groups that can be almost universally observed as relevant are also showing

negative values in some contexts. These include, amongst other, the relative position

or length of the word and the absolute position and accent type of the syllable. In

terms of the linguistic level-related grouping, it was the syllabic features that show

highest negative-only mean, where the word-related features showing the lowest

(so closest to zero). The relations with the least negative evidence where the groups

including the compositional and relative position features, and the absolute position

was the group with the highest negative-only mean relevance. All these observations

may suggest a number of possible factors. First of all, the nature of the model is

probabilistic and it is natural that it accounts for some unreliability and variance in

evidence provided by some features. This might also be indirectly taken as a cue for

the probabilistic nature of prosody altogether. Another interpretation is, as already

mentioned, that some features are strictly contextual or categorical and that they

only provide positive evidence in some specific contexts which can be determined by

their dependence on evidence provided by other features. The absolute mean-based

analysis rendered the position of the phrase as the most prominent feature (after

V/UV). It is followed by the syllable accent type, syllable length and the absolute

position of the syllable with rapidly decreasing absolute mean relevance in each

of these categories. Most other feature groups show similar values except for the

absolute word position, length of phrase, syllable nucleus type and information

whether the segment is a vowel or a consonant, which exhibit an apparent decrease

in prominence.

The inventory of individual features used in this work is rather wide and necessarily

redundant. This results in a large number of degrees of freedom within which

model training can effectively converge. The number of potential model parameter

configurations and, hence, features that become most relevant for the many versions

of the models trained with the current framework is practically infinite. However,

the general trends presented here should hold even across many different instances

of the model trained within the current framework, especially at the higher levels of

abstraction among more general feature groups.
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Although the quantitative results present high value on their own it is necessary

to consider their theorygenic potential. The above discussion clearly shows that

it is possible to isolate a group (or rather a group of groups) of features that are

significantly more prominent in terms of relevance than the others. Of course, the

line has to be drawn arbitrarily in some cases as the differences of mean results

between neighbouring groups are often minimal. Nonetheless, the most significant

information for the contours of F0 are:

i Word

a) Position of each accented word relative to other accented words in the

current phrase

ii Syllable

a) Presence of accent

b) Accent type, if present (ToBI)

c) Length, expressed in number of segments

And to a lesser extent:

iii Word

a) Length, expressed in number of syllables

b) Absolute position in phrase

iv Syllable

a) Absolute position in the enclosing units

v Segment

a) Absolute position in the enclosing units

Many other features and feature groups demonstrate steady positive relevance and

although their mean value is much lower than that of the features enumerated above,

their actual contribution to the accuracy of the final predictions might be high. The

segmental features, like phoneme identity, are a good example. Although Polish

is traditionally said to be syllable-timed, the current data might suggest that the

syllable duration might not be that regular and might play a role in how the contour

of intonation is articulated. A syllable comprising 3 phonemes (so with length equal

3), might have a slightly different total duration, or at least might provide a shorter

interval for the realization of an intonational event, if these phonemes are a plosive,
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a fricative and a short vowel like schwa than if those phonemes are two vowels

and a nasal. This information does influence the shape of the predicted F0 contour

significantly as it changes the shape of any intonational event realized during the

articulation of that syllable. On the other hand, given the inherent characteristics of

the TCN network, this information can also be inferred just from the features listed

above, the past inputs the network has already processed and the rate of change of

the features in (i- iv), as well as any other latent features extracted as a result of

many consecutive convolutions. The memory of the network and its causal nature

as well as its ability to perform many complex transformations of the input, which

resembles the properties of the human sensory cortices, allows to assume that the

features showing constant positive, but not very prominent, relevance might be used

as a source of confirmation of some of the information the network was able to

infer on its own. These are, of course, only wishful speculations, but justified ones

nonetheless.

If the above, preliminary assumptions can be further refined and confirmed with

revised experiments, it should allow us to suspect that the phonological transcription

of any (non-expressive and neutrally read) utterance can be limited to just these

information and that it can be used to effectively reproduce a natural sounding

neutral intonation for that utterance.

It is also possible that the syllable accent type, the ToBI tone, could be omitted

and the actual type of tonal accent could be inferred by the network from context

as humans usually do when reading an unseen sentence. However, humans have

access to a much wider range of linguistic information that are not included in

the current data, such as some representation of the grammatical relations in the

sentence, including deep and shallow semantic dependencies between the words.

On the other hand, some of the CNN-based end-to-end TTS systems have recently

demonstrated that it is possible to synthesize human-like speech from just raw text.

This suggests that all these relations can be extracted and modeled implicitly by

the network. Humans, also rarely have access to all of the words that appear in

the sentence being read, and usually seem to make out the general sense of the

utterance on the fly. The resulting intonation however, always turns out natural.

The above discussion and interpretation touches only the most pronounced

of the tendencies observed in the data but the actual amount of data gener-

ated in the current study is much greater and should constitute a valuable

source of linguistic inquiry. This fact along with the additional argumentation

for adopting the current Deep Temporal Convolutional Neural Network as a

scientific model of intonation provided in Section 3.3 confirms that a Deep
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Temporal Convolutional Network can become an explanatory scientific model

of mappings between linguistic features and the intonation of an utterance,

also proving the contributory methodological Hypothesis 4 of this work.

All of the speculations presented here naturally require further validation through

other experiments and revisions of the current framework, as discussed in the next

chapter.
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Future Plans and Challenges 6
„Set thy heart upon thy work, but never on its

reward.

— Ved Vyasa

The Bhagavad Gita

The huge potential of the current methodology should naturally stimulate further

research and revisions of the method itself as this work contains a number of

inevitable compromises. The single most important of them is the size of the dataset

used in this study and the most important improvements can be introduced in this

area. Any following experiments should focus on implementing a specially designed

training and evaluation material. This is not an easy task and the design of linguistic

resources is a complicated problem on its own. However, given that these networks

can learn to generate perfectly sounding speech from just the raw text and that

most of the relevant linguistic features identified in this study can be extracted

straight from the textual input with some simple text processing, it might be actually

easy to obtain a much bigger, representative dataset. It could for instance be semi-

automatically downloaded from the numerous internet services that provide millions

of hours of audio and video streams with time-aligned subtitles. These services allow

to search and retrieve specific content that can be easily limited for the needs of

any domain of research, with neutral read speech included. In this way, a dataset

comprising hundreds or even thousands of hours of speech can be obtained almost

effortlessly as compared to the costly and time-consuming procedure of professional

audio recording sessions and labelling. Including multiple speakers in the dataset

would also introduce an important improvement and a yet another level of the

needed generalization for the model.

On the other hand, the current dataset proved effective but was used as-is and the

results could probably be further improved with some basic data work. That could

include hand inspection of some of the labels, especially the ToBI tones that were

converted automatically from the original transcriptions. Also the feature set should

be checked for correlations between specific features to identify any redundant

information that might distort the final interpretation of the results.
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In the current study the model is a result of a single training session. Training

multiple instances of the same model architecture within many training sessions

could also provide some valuable insight into the variability of the most relevant

features. In the current work, some of the most relevant among the individual

features seemed as very unintuitive choices, e.g. if there is 13 syllables towards the
end of the phrase. With multiple training sessions, it could be validated if the network

randomly converged to use that specific feature in just that single session or if it

always converges in a similar manner. The latter could suggest that there might

be something special about that particular distance of 13 syllables that might need

further investigation. The additional training sessions should also include at least

some form of hyperparameter optimization. The number of layers in the network,

as well as other parameters, such as the number and size of the convolutional filters,

and the number of dilations were all chosen arbitrarily in this work. It would be

beneficial to determine the most optimal configurations for these parameters that

allow the network to reach its highest potential for the presented problem. A number

of methods exist for performing such hyperparameter optimizations, e.g. Amazon

Web Services SageMaker which was used as the cloud infrastructure provider for

training the network provides such capabilities out-of-the-box. A number of Python

libraries also exist, with TPOT1 [193] being the most notable one. The mentioned

library allows to easily plug virtually any modeling pipeline into an evolutionary

optimization framework. On the other hand, this work focuses mainly on the

linguistic aspect of the model, and although any improvements in the accuracy

would improve the overall power of the model, it is only necessary to ensure model

parameters are not overly constrictive. The pruning of model parameters that aims

at improving the size of the model in memory and its computational complexity is

much more of an engineering problem.

Any improvements to the training process, however, would be of little effect if the

actual loss function is less than ideal. The current work uses the Mean Squared

Error as the metric used for evaluating model predictions in relation to the expected

values. This mathematical function is the de facto standard in most research related

to the prediction or approximation of the fundamental frequency contour in speech.

However, even the results of the current work alone, indicate a number of areas in

which this specific metric fails to represent the actual target quality for the model.

The ideal function should be able to mathematically encode all aspects that make

the predicted intonation natural for a given input. Such a metric obviously does

not exist as defining naturalness itself lies at the very heart of the whole problem

of intonation modeling. Nonetheless, many improvements can be introduced even

1https://github.com/EpistasisLab/tpot
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to the MSE-based loss metrics. The current results show lots of high frequency

variability in the predicted contours which is associated with some glitches in the

resynthesized speech. Although that residual noise could be flattened out with some

smoothing algorithms, it would probably also remove some of the much needed

microprosody. A better method would include a compound loss metric that separates

error calculation for the high and low frequency components of the signal. Such a

decomposition would make the model aim to better represent each component on

its own. Similarly the number of components to extract and how they are used in

the calculation of the final loss could be a subject to optimization. In some works

on intonation [226], the signal is separated into a phrasal component and accent

component with different speaker-specific bandpass filters. Such an approach could

also provide a valuable look at some of the superpositional theories of intonation

(see Section 2.3). Some of the superpositional models, like the Fujisaki model

[104], could even be included in the model itself as a separate processing stage that

accounts for the influence of the biomechanics of the articulatory tract on the final

contour of the intonation, whereas the neural network could be used to account

only for the processing that takes place in the brain. The network could learn to

generate such F0 values that best serve as targets for approximating them with the

Fujisaki model (with the Mixdorff [226] method for instance). In this case the loss

would be calculated for the approximated contour. That would be a step towards

better or more appropriate encoding of the articulatory or motoric information in

the neural structures of the model.

The objective evaluation results were initially planned to be factored in as additional

weights to the final relevance results of features. It was assumed that it is not

sufficient to measure the relevance of a feature for any given prediction but it is

important to measure its relevance given the accuracy of the prediction. However,

the scope and limitations of this work caused a number of these ideas to be regretfully

postponed.

Many improvements can also be made in terms of better representation of the actual

neural processing of intonation during production in the model architecture. The

current work is based only on some very general ideas of how the auditory cortex

might process information. Although many neurobiological research papers are

referenced in the introductory chapters, it would be beneficial to construct the model

based on a single coherent neural theory and provide a better justification of each

architectural feaures of the neural network as in the current work they are rather

loosely and selectively interpreted. Instead of dealing with production, a recognition

model could be built using a similar TCN architecture. Such a model could be used
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to study the acoustic cues that the model learns to detect when recognizing Chinese

lexical tones, for instance. This work was focused on building a single general model

that allows to study the mapping between a wide range of linguistic categories and

the resulting F0 values through analysis by synthesis, but many other approaches

are viable. Even the exact same modeling framework could be used to conduct a

number of various experiments with the inclusion of linguistic features from other

levels of language such as semantics, syntax, pragmatics or specific social contexts

(so emotions), as these must also be computed in when reading sentences, but are

much harder to represent as data labels. Möbius [228], for example, has shown that

“nouns require higher amplitudes than other classes”.

Although the explanation methods are a relatively new problem domain that ap-

peared only a few years ago with Layer-wise Relevance Propagation being one of the

most recent algorithms, a number of improvements and good practices has already

been introduced in [178]. The Zero-variant of the LRP algorithm used here is a

default go-to that should demonstrate good results in most cases. After initial valida-

tion, which this work hopefully provides, the algorithm should be fine-tuned and a

best fitting variant of the method should be selected as the potential improvements

in the results are huge as demonstrated in Kohlbrenner et al. [178].

The verification of relevance results is also needed. One interesting way, that could

present a lot of potential engineering value, would be to perform an ablation study

given the relevance of features. The least relevant features could be systematically

removed from the training data and after retraining the model on that pruned

dataset the naturalness of the resynthesized speech could be again evaluated to

confirm if the model was able to converge to a similar quality without the features

that were identified as insignificant for the predictions. This would provide a method

of validating the results of relevance analysis but could also help drastically limit

the footprint and computational complexity of the model. In practical applications,

that would translate to much shorter training time and much lower hardware

requirements (so lower costs). It would also help reduce the time and effort needed

for composing training datasets if it was confirmed which features constitute the

minimum inventory required for training a high-quality model. Optimizations can

also be introduced in the implementation itself. The current solution was rapidly

prototyped and should definitely be refactored before new functionalities are added

on top of it.

The subjective evaluation of the end results also shows many areas for potential

improvements. It is rather hard to devise such a method that allows to only evaluate

the naturalness of the intonation, without the influence of the spectral filter, in the
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context of speech synthesis. The current method could probably use some noise

or cocktail-party effect masking of the stimulus to further reduce the influence

of the resynthesis itself on the perceived naturalness. The effect of the spectral

distortion introduced by the resynthesis method could also be measured using one

of the spectral distortion metrics and factored into the final results. Another way

would be to abandon the resynthesis altogether and perform a purely psychoacoustic

experiment with a synthesized fundamental frequency tone alone although this

would not address the problem of intonation perception in speech, but would move

the problem into the more general domain of pitch processing which could provide

more insight into some processes but also considerably limit it for some other.

The last but probably the most significant piece of work that is planned for future

is the analysis of the latent features and the actual filters that the network learned.

The current work presents only the relevance of the input feature vector with respect

to the final output of the network. Although the current results demonstrate which

input features are relevant for specific predictions of the fundamental frequency

they do not explain how they are relevant. The multiple hidden layers perform the

convolution operation on the output of the preceding layers. The analysis of the

actual convolutional filters and an insight into the emergence of the intermediate

latent features would help understand how that input data is processed to convert

high-level discrete categories into a flow of continuous values of F0. A number of

methods could be used for this purpose including the original LRP used here. LRP

can be applied to any of the network’s layers but the amount of data that would

be generated in case of analysing all of the hidden layers would greatly exceed the

limits of this work. Nonetheless, it is a very promising direction of future research

that the author wishes to undertake sometime in the near future.
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will bring booze too.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Result of F0 prediction for "To jest ważna godzina dla nas wszystkich"
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Listing of Features A
This section contains a raw listing (Listing A.1) of the features used for training the

intonation model, F0 inference and input feature analysis. Each numbered line in

the listing starts with a numeric index of the feature. The same indexes appear in

some of the figures throughout this work and in the project repository, where the

individual relevance of all input features is presented. The index is followed by a

comma after which a HTK keyword QS appears. The keywork is used internally by

some of the feature extraction scripts employed in this work and denotes a question –

a special regular expression-like mask used for pattern matching on the full-context

HTK labels. After that a feature name follows. The names of features start with a

code that denotes the quintphone context to which the feature pertains. LL stands

for the leftmost context, L for the direct left context, C for the central (current)

segment, R for the direct right context and RR for the rightmost context of the

quintphone. The code is followed by a dash after which a symbolic feature name

appears. After the name a list of matching masks used to extract the current feature

is given in curly braces. The masks are used to match parts of the full-context HTK

labels and if any of the expressions returns True than a 1 is returned for the whole

feature, and 0 otherwise. In this way it is easy to obtain a vector of one-hot encoded

features ready for use in neural network training, as most neural nets expect the

input feature vector to contain values in the 0–1 or -1–1 range.

The lines 0–82 contain features related to the phonetic and phonological identity

of the leftmost segment in the quintphone. This includes the vowel/consonant

distinction, segment type, place of articulation, voicing, and specific phoneme

identity.

Lines 83–164, 165–246, 247–326 and 327–405 contain that same set of features

but for the remaining quintphone contexts; the direct left, central, direct right and

rightmost contexts.

The features in lines 406–436 represent the number of segments found in the current

syllable to the right ( Fw ) and to the left ( Bw ) of the current segment. Both the

equality ( == ) and inequality ( <= ) variants of the quantitative features are included

in this and all other similar cases where length or distance is measured.
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Lines 437–462 contain features related to various information the most immediate

left neighbour of the current syllable. In additional to simple binary information

about the presence or absence of stress and accent, also features representing

the presence of specific ToBI tones and syllable length measured in segments are

included.

Lines 463–490 contain that same information but for the current syllable.

Additionaly, in lines 491–602 features representing the forward and backward

position of the current syllable in the current word and phrase are given.

Features that represent the number of stressed and accented syllables before and

after the current syllable in the current phrase are listed in lines 603–680.

Lines 681–776, in turn, are related to the distance from the previous and next

stressed and accented syllables.

Lines 777–792 contain additional information about the phonetic/phonological

identity of the syllable nucleus.

Features included in lines 794–819 contain information similar to these provided

for the immediate left neighbour of the current syllable, but for the immediate right

neighbour, i.e.: presence or absence of stress and accent, information about the

specific ToBI tone and syllable length measured in segments.

Starting from line 820, word-level features are listed.

Lines 820–834 contain features that express the length of the immmediate left

neighbour of the current word, expressed in number of syllables.

The lengths of the current word are included in lines 835–849.

Additionally, information about the forward and backward position of the current

word in the current phrase are covered by features in lines 850–904.

Similarly to some features included for the current syllable, lines 905–942 contain

features related to the number of content (accented) words before and after the

current word in the current phrase.

Features in lines 943–968 encode the number of words from the current word to the

previous and next content word.

Lines 969–983 contain features related to the length of the right neighbour of the

current word expressed in number of syllables.

170 Appendix A Listing of Features



Starting from line 984, phrase-related features are listed.

Lines 984–1209, contain features related to the length of the immediate right and

left neighbours, as well as, the current phrase, expressed in number of syllables and

words. Additionaly, the forward and backward position in the current utterance was

included for the current phrase.

Finally, lines 1210–1296 contain features related to the length of the whole utterance

expressed in number of syllables, words and phrases.

The last feature in line 1297 represents the presence of voicing (voiced/unvoiced)

at the current position. This feature was appended manually for reference as it is

not included in the HTK question script but extracted separately.

1 0,QS LL -Vowel{i^*,y^*,e^*,a^*,o^*,u^*, schwa ^*}
2 1,QS LL - Consonant {gs^*,p^*,b^*,t^*,d^*,k^*,g^*,ki^*,gi^*,f^*,v^*,s

^*,si^*,z^*,zi^*,sz^*,rz^*,x^*,c^*,dz^*,cz^*, drz ^*,ci^*, dzi ^*,m
^*,n^*,ni^*,ng^*,l^*,r^*,w^*,ww^*,j^*,jj ^*}

3 2,QS LL -Stop{gs^*,p^*,b^*,t^*,d^*,k^*,g^*}
4 3,QS LL -Nasal{ww^*,jj^*,m^*,n^*,ni^*,ng ^*}
5 4,QS LL - Fricative {f^*,v^*,s^*,si^*,z^*,zi^*,sz^*,rz^*,x^*}
6 5,QS LL -Front{e^*,i^*,y^*,f^*,v^*,p^*,b^*,m^*,w^*,ww ^*}
7 6,QS LL - Central {schwa ^*,a^*,t^*,d^*,s^*,si^*,z^*,zi^*,n^*,r^*,l^*,t

^*,d^*,sz^*,rz^*,cz^*, drz ^*,c^*,dz^*,ci^*, dzi ^*}
8 7,QS LL -Back{o^*,u^*,k^*,g^*,ki^*,gi^*,ng^*,x^*,gs ^*}
9 8,QS LL - Front_Vowel {e^*,i^*,y^*}

10 9,QS LL - Central_Vowel {a^*, schwa ^*}
11 10,QS LL - Back_Vowel {o^*,u^*}
12 11,QS LL - High_Vowel {i^*,y^*,u^*}
13 12,QS LL - Medium_Vowel {e^*,o^*}
14 13,QS LL - Low_Vowel {a^*}
15 14,QS LL - Rounded_Vowel {o^*,u^*}
16 15,QS LL - Unrounded_Vowel {a^*,e^*,i^*,y^*}
17 16,QS LL - IVowel {i^*}
18 17,QS LL - EVowel {e^*}
19 18,QS LL - AVowel {a^*}
20 19,QS LL - OVowel {o^*}
21 20,QS LL - UVowel {u^*}
22 21,QS LL - YVowel {y^*}
23 22,QS LL - SCHWAVowel {schwa ^*}
24 23,QS LL - Unvoiced_Consonant {gs^*,p^*,t^*,k^*,ki^*,f^*,v^*,s^*,sz^*,

x^*,c^*,cz^*,ci ^*}
25 24,QS LL - Voiced_Consonant {b^*,d^*,g^*,gi^*,v^*,z^*,zi^*,rz^*,dz^*,

drz ^*, dzi ^*,m^*,n^*,ni^*,ng^*,l^*,r^*,w^*,ww^*,j^*,jj ^*}
26 25,QS LL - Front_Consonant {f^*,v^*,f^*,p^*,b^*,m^*,w^*,ww ^*}
27 26,QS LL - Central_Consonant {t^*,d^*,s^*,si^*,z^*,zi^*,n^*,r^*,l^*,t

^*,d^*,sz^*,rz^*,cz^*, drz ^*,c^*,dz^*,ci^*, dzi ^*}
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28 27,QS LL - Back_Consonant {gs^*,k^*,g^*,ki^*,gi^*,ng^*,x^*}
29 28,QS LL - Fortis_Consonant {gs^*,cz^*,f^*,k^*,p^*,s^*,sz^*,t^*,ci^*,c

^*,ki ^*}
30 29,QS LL - Lenis_Consonant {drz ^*,v^*,g^*,b^*,rz^*,z^*,d^*, dzi ^*,dz^*,

gi^*,zi ^*}
31 30,QS LL - Neigther_F_or_L {m^*,n^*,ni^*,ng^*,l^*,r^*,w^*,ww^*,j^*,jj

^*}
32 31,QS LL - Voiced_Stop {b^*,d^*,g^*}
33 32,QS LL - Unvoiced_Stop {p^*,t^*,k^*,gs ^*}
34 33,QS LL - Front_Stop {b^*,p^*}
35 34,QS LL - Central_Stop {d^*,t^*}
36 35,QS LL - Back_Stop {g^*,k^*,gs ^*}
37 36,QS LL - Voiced_Fricative {v^*,z^*,zi^*,rz ^*}
38 37,QS LL - Unvoiced_Fricative {f^*,s^*,si^*,sz^*,x^*}
39 38,QS LL - Front_Fricative {f^*,v^*}
40 39,QS LL - Affricate_Consonant {dz^*, drz ^*, dzi ^*,c^*,cz^*,ci ^*}
41 40,QS LL - silences {pau ^*}
42 41,QS LL -schwa{schwa ^*}
43 42,QS LL -a{a^*}
44 43,QS LL -e{e^*}
45 44,QS LL -i{i^*}
46 45,QS LL -y{y^*}
47 46,QS LL -o{o^*}
48 47,QS LL -u{u^*}
49 48,QS LL -p{p^*}
50 49,QS LL -b{b^*}
51 50,QS LL -t{t^*}
52 51,QS LL -d{d^*}
53 52,QS LL -k{k^*}
54 53,QS LL -ki{ki ^*}
55 54,QS LL -g{g^*}
56 55,QS LL -gi{gi ^*}
57 56,QS LL -f{f^*}
58 57,QS LL -v{v^*}
59 58,QS LL -s{s^*}
60 59,QS LL -si{si ^*}
61 60,QS LL -z{z^*}
62 61,QS LL -zi{zi ^*}
63 62,QS LL -sz{sz ^*}
64 63,QS LL -rz{rz ^*}
65 64,QS LL -x{x^*}
66 65,QS LL -c{c^*}
67 66,QS LL -dz{dz ^*}
68 67,QS LL -cz{cz ^*}
69 68,QS LL -drz{drz ^*}
70 69,QS LL -ci{ci ^*}
71 70,QS LL -dzi{dzi ^*}
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72 71,QS LL -m{m^*}
73 72,QS LL -n{n^*}
74 73,QS LL -ni{ni ^*}
75 74,QS LL -ng{ng ^*}
76 75,QS LL -l{l^*}
77 76,QS LL -r{r^*}
78 77,QS LL -w{w^*}
79 78,QS LL -ww{ww ^*}
80 79,QS LL -j{j^*}
81 80,QS LL -jj{jj ^*}
82 81,QS LL -gs{gs ^*}
83 82,QS L-Vowel {*^ schwa -,*^i-,*^y-,*^e-,*^a-,*^o-,*^u-}
84 83,QS L- Consonant {*^gs -,*^p-,*^b-,*^t-,*^d-,*^k-,*^g-,*^ki -,*^gi

-,*^f-,*^v-,*^s-,*^si -,*^z-,*^zi -,*^sz -,*^rz -,*^x-,*^c-,*^dz -,*^
cz -,*^drz -,*^ci -,*^dzi -,*^m-,*^n-,*^ni -,*^ng -,*^l-,*^r-,*^w-,*^
ww -,*^j-,*^jj -}

85 84,QS L-Stop {*^p-,*^b-,*^t-,*^d-,*^k-,*^g-,*^gs -}
86 85,QS L-Nasal {*^ww -,*^jj -,*^m-,*^n-,*^ni -,*^ng -}
87 86,QS L- Fricative {*^f-,*^v-,*^s-,*^si -,*^z-,*^zi -,*^sz -,*^rz -,*^x-}
88 87,QS L-Front {*^e-,*^i-,*^y-,*^f-,*^v-,*^p-,*^b-,*^m-,*^w-,*^ww -}
89 88,QS L- Central {*^ schwa -,*^a-,*^t-,*^d-,*^s-,*^si -,*^z-,*^zi -,*^n

-,*^r-,*^l-,*^t-,*^d-,*^sz -,*^rz -,*^cz -,*^drz -,*^c-,*^dz -,*^ci
-,*^dzi -}

90 89,QS L-Back {*^o-,*^u-,*^k-,*^g-,*^ki -,*^gi -,*^ng -,*^x-,*^gs -}
91 90,QS L- Front_Vowel {*^e-,*^i-,*^y-}
92 91,QS L- Central_Vowel {*^a-,*^ schwa -}
93 92,QS L- Back_Vowel {*^o-,*^u-}
94 93,QS L- High_Vowel {*^i-,*^y-,*^u-}
95 94,QS L- Medium_Vowel {*^e-,*^o-}
96 95,QS L- Low_Vowel {*^a-}
97 96,QS L- Rounded_Vowel {*^o-,*^u-}
98 97,QS L- Unrounded_Vowel {*^a-,*^e-,*^i-,*^y-}
99 98,QS L- IVowel {*^i-}

100 99,QS L- EVowel {*^e-}
101 100,QS L- AVowel {*^a-}
102 101,QS L- OVowel {*^o-}
103 102,QS L- UVowel {*^u-}
104 103,QS L- YVowel {*^y-}
105 104,QS LL - SCHWAvowel {*^ schwa -}
106 105,QS L- Unvoiced_Consonant {*^gs -,*^p-,*^t-,*^k-,*^ki -,*^f-,*^v-,*^

s-,*^sz -,*^x-,*^c-,*^cz -,*^ci -}
107 106,QS L- Voiced_Consonant {*^b-,*^d-,*^g-,*^gi -,*^v-,*^z-,*^zi -,*^rz

-,*^dz -,*^drz -,*^dzi -,*^m-,*^n-,*^ni -,*^ng -,*^l-,*^r-,*^w-,*^ww
-,*^j-,*^jj -}

108 107,QS L- Front_Consonant {*^f-,*^v-,*^f-,*^p-,*^b-,*^m-,*^w-,*^ww -}
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109 108,QS L- Central_Consonant {*^t-,*^d-,*^s-,*^si -,*^z-,*^zi -,*^n-,*^r
-,*^l-,*^t-,*^d-,*^sz -,*^rz -,*^cz -,*^drz -,*^c-,*^dz -,*^ci -,*^dzi
-}

110 109,QS L- Back_Consonant {*^gs -,*^k-,*^g-,*^ki -,*^gi -,*^ng -,*^x-}
111 110,QS L- Fortis_Consonant {*^gs -,*^cz -,*^f-,*^k-,*^p-,*^s-,*^sz -,*^t

-,*^ci -,*^c-,*^ki -}
112 111,QS L- Lenis_Consonant {*^ drz -,*^v-,*^g-,*^b-,*^rz -,*^z-,*^d-,*^

dzi -,*^dz -,*^gi -,*^zi -}
113 112,QS L- Neigther_F_or_L {*^m-,*^n-,*^ni -,*^ng -,*^l-,*^r-,*^w-,*^ww

-,*^j-,*^jj -}
114 113,QS L- Voiced_Stop {*^b-,*^d-,*^g-}
115 114,QS L- Unvoiced_Stop {*^gs -,*^p-,*^t-,*^k-}
116 115,QS L- Front_Stop {*^b-,*^p-}
117 116,QS L- Central_Stop {*^d-,*^t-}
118 117,QS L- Back_Stop {*^gs -,*^g-,*^k-}
119 118,QS L- Voiced_Fricative {*^v-,*^z-,*^zi -,*^rz -}
120 119,QS L- Unvoiced_Fricative {*^f-,*^s-,*^si -,*^sz -,*^x-}
121 120,QS L- Front_Fricative {*^f-,*^v-}
122 121,QS L- Affricate_Consonant {*^dz -,*^drz -,*^dzi -,*^c-,*^cz -,*^ci -}
123 122,QS L- silences {*^ pau -}
124 123,QS L-schwa {*^ schwa -}
125 124,QS L-a{*^a-}
126 125,QS L-e{*^e-}
127 126,QS L-i{*^i-}
128 127,QS L-y{*^y-}
129 128,QS L-o{*^o-}
130 129,QS L-u{*^u-}
131 130,QS L-p{*^p-}
132 131,QS L-b{*^b-}
133 132,QS L-t{*^t-}
134 133,QS L-d{*^d-}
135 134,QS L-k{*^k-}
136 135,QS L-ki {*^ki -}
137 136,QS L-g{*^g-}
138 137,QS L-gi {*^gi -}
139 138,QS L-f{*^f-}
140 139,QS L-v{*^v-}
141 140,QS L-s{*^s-}
142 141,QS L-si {*^si -}
143 142,QS L-z{*^z-}
144 143,QS L-zi {*^zi -}
145 144,QS L-sz {*^sz -}
146 145,QS L-rz {*^rz -}
147 146,QS L-x{*^x-}
148 147,QS L-c{*^c-}
149 148,QS L-dz {*^dz -}
150 149,QS L-cz {*^cz -}
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151 150,QS L-drz {*^ drz -}
152 151,QS L-ci {*^ci -}
153 152,QS L-dzi {*^ dzi -}
154 153,QS L-m{*^m-}
155 154,QS L-n{*^n-}
156 155,QS L-ni {*^ni -}
157 156,QS L-ng {*^ng -}
158 157,QS L-l{*^l-}
159 158,QS L-r{*^r-}
160 159,QS L-w{*^w-}
161 160,QS L-ww {*^ww -}
162 161,QS L-j{*^j-}
163 162,QS L-jj {*^jj -}
164 163,QS L-gs {*^gs -}
165 164,QS C-Vowel {*- schwa +*,*-i+*,*-y+*,*-e+*,*-a+*,*-o+*,*-u+*}
166 165,QS C- Consonant {*-gs+*,*-p+*,*-b+*,*-t+*,*-d+*,*-k+*,*-g+*,*-ki

+*,*-gi+*,*-f+*,*-v+*,*-s+*,*-si+*,*-z+*,*-zi+*,*-sz+*,*-rz+*,*-
x+*,*-c+*,*-dz+*,*-cz+*,*- drz +*,*-ci+*,*- dzi +*,*-m+*,*-n+*,*-ni
+*,*-ng+*,*-l+*,*-r+*,*-w+*,*-ww+*,*-j+*,*-jj +*}

167 166,QS C-Stop {*-p+*,*-b+*,*-t+*,*-d+*,*-k+*,*-g+*,*-gs +*}
168 167,QS C-Nasal {*-ww+*,*-jj+*,*-m+*,*-n+*,*-ni+*,*-ng +*}
169 168,QS C- Fricative {*-f+*,*-v+*,*-s+*,*-si+*,*-z+*,*-zi+*,*-sz+*,*-

rz+*,*-x+*}
170 169,QS C-Front {*-e+*,*-i+*,*-y+*,*-f+*,*-v+*,*-p+*,*-b+*,*-m+*,*-w

+*,*-ww +*}
171 170,QS C- Central {*- schwa +*,*-a+*,*-t+*,*-d+*,*-s+*,*-si+*,*-z+*,*-

zi+*,*-n+*,*-r+*,*-l+*,*-t+*,*-d+*,*-sz+*,*-rz+*,*-cz+*,*- drz
+*,*-c+*,*-dz+*,*-ci+*,*- dzi +*}

172 171,QS C-Back {*-o+*,*-u+*,*-k+*,*-g+*,*-ki+*,*-gi+*,*-ng+*,*-x+*,*-
gs +*}

173 172,QS C- Front_Vowel {*-e+*,*-i+*,*-y+*}
174 173,QS C- Central_Vowel {*-a+*,*- schwa +*}
175 174,QS C- Back_Vowel {*-o+*,*-u+*}
176 175,QS C- High_Vowel {*-i+*,*-y+*,*-u+*}
177 176,QS C- Medium_Vowel {*-e+*,*-o+*}
178 177,QS C- Low_Vowel {*-a+*}
179 178,QS C- Rounded_Vowel {*-o+*,*-u+*}
180 179,QS C- Unrounded_Vowel {*-a+*,*-e+*,*-i+*,*-y+*}
181 180,QS C- IVowel {*-i+*}
182 181,QS C- EVowel {*-e+*}
183 182,QS C- AVowel {*-a+*}
184 183,QS C- OVowel {*-o+*}
185 184,QS C- UVowel {*-u+*}
186 185,QS C- YVowel {*-y+*}
187 186,QS C- SCHWAVowel {*- schwa +*}
188 187,QS C- Unvoiced_Consonant {*-p+*,*-t+*,*-k+*,*-ki+*,*-f+*,*-v+*,*-

s+*,*-sz+*,*-x+*,*-c+*,*-cz+*,*-ci+*,*-gs +*}
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189 188,QS C- Voiced_Consonant {*-b+*,*-d+*,*-g+*,*-gi+*,*-v+*,*-z+*,*-zi
+*,*-rz+*,*-dz+*,*- drz +*,*- dzi +*,*-m+*,*-n+*,*-ni+*,*-ng+*,*-l
+*,*-r+*,*-w+*,*-ww+*,*-j+*,*-jj +*}

190 189,QS C- Front_Consonant {*-f+*,*-v+*,*-f+*,*-p+*,*-b+*,*-m+*,*-w
+*,*-ww +*}

191 190,QS C- Central_Consonant {*-t+*,*-d+*,*-s+*,*-si+*,*-z+*,*-zi+*,*-
n+*,*-r+*,*-l+*,*-t+*,*-d+*,*-sz+*,*-rz+*,*-cz+*,*- drz +*,*-c
+*,*-dz+*,*-ci+*,*- dzi +*}

192 191,QS C- Back_Consonant {*-k+*,*-g+*,*-ki+*,*-gi+*,*-ng+*,*-x+*,*-gs
+*}

193 192,QS C- Fortis_Consonant {*-cz+*,*-f+*,*-k+*,*-p+*,*-s+*,*-sz+*,*-t
+*,*-ci+*,*-c+*,*-ki+*,*-gs +*}

194 193,QS C- Lenis_Consonant {*- drz +*,*-v+*,*-g+*,*-b+*,*-rz+*,*-z+*,*-d
+*,*- dzi +*,*-dz+*,*-gi+*,*-zi +*}

195 194,QS C- Neigther_F_or_L {*-m+*,*-n+*,*-ni+*,*-ng+*,*-l+*,*-r+*,*-w
+*,*-ww+*,*-j+*,*-jj +*}

196 195,QS C- Voiced_Stop {*-b+*,*-d+*,*-g+*}
197 196,QS C- Unvoiced_Stop {*-p+*,*-t+*,*-k+*,*-gs +*}
198 197,QS C- Front_Stop {*-b+*,*-p+*}
199 198,QS C- Central_Stop {*-d+*,*-t+*}
200 199,QS C- Back_Stop {*-g+*,*-k+*,*-gs +*}
201 200,QS C- Voiced_Fricative {*-v+*,*-z+*,*-zi+*,*-rz +*}
202 201,QS C- Unvoiced_Fricative {*-f+*,*-s+*,*-si+*,*-sz+*,*-x+*}
203 202,QS C- Front_Fricative {*-f+*,*-v+*}
204 203,QS C- Affricate_Consonant {*-dz+*,*- drz +*,*- dzi +*,*-c+*,*-cz+*,*-

ci +*}
205 204,QS C- silences {*- pau +*}
206 205,QS C-schwa {*- schwa +*}
207 206,QS C-a{*-a+*}
208 207,QS C-e{*-e+*}
209 208,QS C-i{*-i+*}
210 209,QS C-y{*-y+*}
211 210,QS C-o{*-o+*}
212 211,QS C-u{*-u+*}
213 212,QS C-p{*-p+*}
214 213,QS C-b{*-b+*}
215 214,QS C-t{*-t+*}
216 215,QS C-d{*-d+*}
217 216,QS C-k{*-k+*}
218 217,QS C-ki{*-ki +*}
219 218,QS C-g{*-g+*}
220 219,QS C-gi{*-gi +*}
221 220,QS C-f{*-f+*}
222 221,QS C-v{*-v+*}
223 222,QS C-s{*-s+*}
224 223,QS C-si{*-si +*}
225 224,QS C-z{*-z+*}
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226 225,QS C-zi{*-zi +*}
227 226,QS C-sz{*-sz +*}
228 227,QS C-rz{*-rz +*}
229 228,QS C-x{*-x+*}
230 229,QS C-c{*-c+*}
231 230,QS C-dz{*-dz +*}
232 231,QS C-cz{*-cz +*}
233 232,QS C-drz {*- drz +*}
234 233,QS C-ci{*-ci +*}
235 234,QS C-dzi {*- dzi +*}
236 235,QS C-m{*-m+*}
237 236,QS C-n{*-n+*}
238 237,QS C-ni{*-ni +*}
239 238,QS C-ng{*-ng +*}
240 239,QS C-l{*-l+*}
241 240,QS C-r{*-r+*}
242 241,QS C-w{*-w+*}
243 242,QS C-ww{*-ww +*}
244 243,QS C-j{*-j+*}
245 244,QS C-jj{*-jj +*}
246 245,QS C-gs{*-gs +*}
247 246,QS R-Vowel {*+i=* ,*+y=* ,*+e=* ,*+a=* ,*+o=* ,*+u=* ,*+ schwa =*}
248 247,QS R- Consonant {*+ gs =* ,*+p=* ,*+b=* ,*+t=* ,*+d=* ,*+k=* ,*+g=* ,*+ ki

=* ,*+ gi =* ,*+f=* ,*+v=* ,*+s=* ,*+ si =* ,*+z=* ,*+ zi =* ,*+ sz =* ,*+ rz =* ,*+
x=* ,*+c=* ,*+ dz =* ,*+ cz =* ,*+ drz =* ,*+ ci =* ,*+ dzi =* ,*+m=* ,*+n=* ,*+ ni
=* ,*+ ng =* ,*+l=* ,*+r=* ,*+w=* ,*+ ww =* ,*+j=* ,*+ jj =*}

249 248,QS R-Stop {*+p=* ,*+b=* ,*+t=* ,*+d=* ,*+k=* ,*+g=* ,*+ gs =*}
250 249,QS R-Nasal {*+ ww =* ,*+ jj =* ,*+m=* ,*+n=* ,*+ ni =* ,*+ ng =*}
251 250,QS R- Fricative {*+f=* ,*+v=* ,*+s=* ,*+ si =* ,*+z=* ,*+ zi =* ,*+ sz =* ,*+

rz =* ,*+x=*}
252 251,QS R-Front {*+e=* ,*+i=* ,*+y=* ,*+f=* ,*+v=* ,*+p=* ,*+b=* ,*+m=* ,*+w

=* ,*+ ww =*}
253 252,QS R- Central {*+ schwa =* ,*+a=* ,*+t=* ,*+d=* ,*+s=* ,*+ si =* ,*+z=* ,*+

zi =* ,*+n=* ,*+r=* ,*+l=* ,*+t=* ,*+d=* ,*+ sz =* ,*+ rz =* ,*+ cz =* ,*+ drz
=* ,*+c=* ,*+ dz =* ,*+ ci =* ,*+ dzi =*}

254 253,QS R-Back {*+o=* ,*+u=* ,*+k=* ,*+g=* ,*+ ki =* ,*+ gi =* ,*+ ng =* ,*+x=* ,*+
gs =*}

255 254,QS R- Front_Vowel {*+e=* ,*+i=* ,*+y=*}
256 255,QS R- Central_Vowel {*+a=* ,*+ schwa =*}
257 256,QS R- Back_Vowel {*+o=* ,*+u=*}
258 257,QS R- High_Vowel {*+i=* ,*+y=* ,*+u=*}
259 258,QS R- Medium_Vowel {*+e=* ,*+o=*}
260 259,QS R- Low_Vowel {*+a=*}
261 260,QS R- Rounded_Vowel {*+o=* ,*+u=*}
262 261,QS R- Unrounded_Vowel {*+a=* ,*+e=* ,*+i=* ,*+y=*}
263 262,QS R- IVowel {*+i=*}
264 263,QS R- OVowel {*+o=*}
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265 264,QS R- UVowel {*+u=*}
266 265,QS R- YVowel {*+y=*}
267 266,QS R- SCHWAVowel {*+ schwa =*}
268 267,QS R- Unvoiced_Consonant {*+p=* ,*+t=* ,*+k=* ,*+ ki =* ,*+f=* ,*+v=* ,*+

s=* ,*+ sz =* ,*+x=* ,*+c=* ,*+ cz =* ,*+ ci =* ,*+ gs =*}
269 268,QS R- Voiced_Consonant {*+b=* ,*+d=* ,*+g=* ,*+ gi =* ,*+v=* ,*+z=* ,*+ zi

=* ,*+ rz =* ,*+ dz =* ,*+ drz =* ,*+ dzi =* ,*+m=* ,*+n=* ,*+ ni =* ,*+ ng =* ,*+l
=* ,*+r=* ,*+w=* ,*+ ww =* ,*+j=* ,*+ jj =*}

270 269,QS R- Front_Consonant {*+f=* ,*+v=* ,*+f=* ,*+p=* ,*+b=* ,*+m=* ,*+w
=* ,*+ ww =*}

271 270,QS R- Central_Consonant {*+t=* ,*+d=* ,*+s=* ,*+ si =* ,*+z=* ,*+ zi =* ,*+
n=* ,*+r=* ,*+l=* ,*+t=* ,*+d=* ,*+ sz =* ,*+ rz =* ,*+ cz =* ,*+ drz =* ,*+c
=* ,*+ dz =* ,*+ ci =* ,*+ dzi =*}

272 271,QS R- Back_Consonant {*+k=* ,*+g=* ,*+ ki =* ,*+ gi =* ,*+ ng =* ,*+x=* ,*+ gs
=*}

273 272,QS R- Fortis_Consonant {*+ cz =* ,*+f=* ,*+k=* ,*+p=* ,*+s=* ,*+ sz =* ,*+t
=* ,*+ ci =* ,*+c=* ,*+ ki =* ,*+ gs =*}

274 273,QS R- Lenis_Consonant {*+ drz =* ,*+v=* ,*+g=* ,*+b=* ,*+ rz =* ,*+z=* ,*+d
=* ,*+ dzi =* ,*+ dz =* ,*+ gi =* ,*+ zi =*}

275 274,QS R- Neigther_F_or_L {*+m=* ,*+n=* ,*+ ni =* ,*+ ng =* ,*+l=* ,*+r=* ,*+w
=* ,*+ ww =* ,*+j=* ,*+ jj =*}

276 275,QS R- Voiced_Stop {*+b=* ,*+d=* ,*+g=*}
277 276,QS R- Unvoiced_Stop {*+p=* ,*+t=* ,*+k=* ,*+ gs =*}
278 277,QS R- Front_Stop {*+b=* ,*+p=*}
279 278,QS R- Central_Stop {*+d=* ,*+t=*}
280 279,QS R- Back_Stop {*+g=* ,*+k=* ,*+ gs =*}
281 280,QS R- Voiced_Fricative {*+v=* ,*+z=* ,*+ zi =* ,*+ rz =*}
282 281,QS R- Unvoiced_Fricative {*+f=* ,*+s=* ,*+ si =* ,*+ sz =* ,*+x=*}
283 282,QS R- Front_Fricative {*+f=* ,*+v=*}
284 283,QS R- Affricate_Consonant {*+ dz =* ,*+ drz =* ,*+ dzi =* ,*+c=* ,*+ cz =* ,*+

ci =*}
285 284,QS R- silences {*+ pau =*}
286 285,QS R-schwa {*+ schwa =*}
287 286,QS R-a{*+a=*}
288 287,QS R-e{*+e=*}
289 288,QS R-i{*+i=*}
290 289,QS R-y{*+y=*}
291 290,QS R-o{*+o=*}
292 291,QS R-u{*+u=*}
293 292,QS R-p{*+p=*}
294 293,QS R-b{*+b=*}
295 294,QS R-t{*+t=*}
296 295,QS R-d{*+d=*}
297 296,QS R-k{*+k=*}
298 297,QS R-ki {*+ ki =*}
299 298,QS R-g{*+g=*}
300 299,QS R-gi {*+ gi =*}
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301 300,QS R-f{*+f=*}
302 301,QS R-v{*+v=*}
303 302,QS R-s{*+s=*}
304 303,QS R-si {*+ si =*}
305 304,QS R-z{*+z=*}
306 305,QS R-zi {*+ zi =*}
307 306,QS R-sz {*+ sz =*}
308 307,QS R-rz {*+ rz =*}
309 308,QS R-x{*+x=*}
310 309,QS R-c{*+c=*}
311 310,QS R-dz {*+ dz =*}
312 311,QS R-cz {*+ cz =*}
313 312,QS R-drz {*+ drz =*}
314 313,QS R-ci {*+ ci =*}
315 314,QS R-dzi {*+ dzi =*}
316 315,QS R-m{*+m=*}
317 316,QS R-n{*+n=*}
318 317,QS R-ni {*+ ni =*}
319 318,QS R-ng {*+ ng =*}
320 319,QS R-l{*+l=*}
321 320,QS R-r{*+r=*}
322 321,QS R-w{*+w=*}
323 322,QS R-ww {*+ ww =*}
324 323,QS R-j{*+j=*}
325 324,QS R-jj {*+ jj =*}
326 325,QS R-gs {*+ gs =*}
327 326,QS RR -Vowel {*= i@*,*=y@*,*=e@*,*=a@*,*=o@*,*=u@*,*= schwa@ *}
328 327,QS RR - Consonant {*= gs@ *,*=p@*,*=b@*,*=t@*,*=d@*,*=k@*,*=g@*,*=

ki@ *,*= gi@ *,*=f@*,*=v@*,*=s@*,*= si@ *,*=z@*,*= zi@ *,*= sz@ *,*= rz@
*,*=x@*,*=c@*,*= dz@ *,*= cz@ *,*= drz@ *,*= ci@ *,*= dzi@ *,*=m@*,*=n@
*,*= ni@ *,*= ng@ *,*=l@*,*=r@*,*=w@*,*= ww@ *,*=j@*,*= jj@ *}

329 328,QS RR -Stop {*= gs@ *,*=p@*,*=b@*,*=t@*,*=d@*,*=k@*,*=g@*}
330 329,QS RR -Nasal {*= ww@ *,*= jj@ *,*=m@*,*=n@*,*= ni@ *,*= ng@ *}
331 330,QS RR - Fricative {*= f@*,*=v@*,*=s@*,*= si@ *,*=z@*,*= zi@ *,*= sz@ *,*=

rz@ *,*=x@*}
332 331,QS RR -Front {*= e@*,*=i@*,*=y@*,*=f@*,*=v@*,*=p@*,*=b@*,*=m@*,*=

w@*,*= ww@ *}
333 332,QS RR - Central {*= schwa@ *,*=a@*,*=t@*,*=d@*,*=s@*,*= si@ *,*=z@*,*=

zi@ *,*=n@*,*=r@*,*=l@*,*=t@*,*=d@*,*= sz@ *,*= rz@ *,*= cz@ *,*= drz@
*,*=c@*,*= dz@ *,*= ci@ *,*= dzi@ *}

334 333,QS RR -Back {*= o@*,*=u@*,*=k@*,*=g@*,*= ki@ *,*= gi@ *,*= ng@ *,*=x@
*,*= gs@ *}

335 334,QS RR - Front_Vowel {*= e@*,*=i@*,*=y@*}
336 335,QS RR - Central_Vowel {*= a@*,*= schwa@ *}
337 336,QS RR - Back_Vowel {*= o@*,*=u@*}
338 337,QS RR - High_Vowel {*= i@*,*=y@*,*=u@*}
339 338,QS RR - Medium_Vowel {*= e@*,*=o@*}
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340 339,QS RR - Low_Vowel {*= a@*}
341 340,QS RR - Rounded_Vowel {*= o@*,*=u@*}
342 341,QS RR - Unrounded_Vowel {*= a@*,*=e@*,*=i@*,*=y@*}
343 342,QS RR - IVowel {*= i@*}
344 343,QS RR - OVowel {*= o@*}
345 344,QS RR - UVowel {*= u@*}
346 345,QS RR - YVowel {*= y@*}
347 346,QS RR - SCHWAVowel {*= schwa@ *}
348 347,QS RR - Unvoiced_Consonant {*= p@*,*=t@*,*=k@*,*= ki@ *,*=f@*,*=v@

*,*=s@*,*= sz@ *,*=x@*,*=c@*,*= cz@ *,*= ci@ *,*= gs@ *}
349 348,QS RR - Voiced_Consonant {*= b@*,*=d@*,*=g@*,*= gi@ *,*=v@*,*=z@*,*=

zi@ *,*= rz@ *,*= dz@ *,*= drz@ *,*= dzi@ *,*=m@*,*=n@*,*= ni@ *,*= ng@ *,*=
l@*,*=r@*,*=w@*,*= ww@ *,*=j@*,*= jj@ *}

350 349,QS RR - Front_Consonant {*= f@*,*=v@*,*=f@*,*=p@*,*=b@*,*=m@*,*=w@
*,*= ww@ *}

351 350,QS RR - Central_Consonant {*= t@*,*=d@*,*=s@*,*= si@ *,*=z@*,*= zi@
*,*=n@*,*=r@*,*=l@*,*=t@*,*=d@*,*= sz@ *,*= rz@ *,*= cz@ *,*= drz@ *,*=
c@*,*= dz@ *,*= ci@ *,*= dzi@ *}

352 351,QS RR - Back_Consonant {*= k@*,*=g@*,*= ki@ *,*= gi@ *,*= ng@ *,*=x@*,*=
gs@ *}

353 352,QS RR - Fortis_Consonant {*= cz@ *,*=f@*,*=k@*,*=p@*,*=s@*,*= sz@ *,*=
t@*,*= ci@ *,*=c@*,*= ki@ *,*= gs@ *}

354 353,QS RR - Lenis_Consonant {*= drz@ *,*=v@*,*=g@*,*=b@*,*= rz@ *,*=z@*,*=
d@*,*= dzi@ *,*= dz@ *,*= gi@ *,*= zi@ *}

355 354,QS RR - Neigther_F_or_L {*= m@*,*=n@*,*= ni@ *,*= ng@ *,*=l@*,*=r@*,*=
w@*,*= ww@ *,*=j@*,*= jj@ *}

356 355,QS RR - Voiced_Stop {*= b@*,*=d@*,*=g@*}
357 356,QS RR - Unvoiced_Stop {*= p@*,*=t@*,*=k@*,*= gs@ *}
358 357,QS RR - Front_Stop {*= b@*,*=p@*}
359 358,QS RR - Central_Stop {*= d@*,*=t@*}
360 359,QS RR - Back_Stop {*= g@*,*=k@*,*= gs@ *}
361 360,QS RR - Voiced_Fricative {*= v@*,*=z@*,*= zi@ *,*= rz@ *}
362 361,QS RR - Unvoiced_Fricative {*= f@*,*=s@*,*= si@ *,*= sz@ *,*=x@*}
363 362,QS RR - Front_Fricative {*= f@*,*=v@*}
364 363,QS RR - Affricate_Consonant {*= dz@ *,*= drz@ *,*= dzi@ *,*=c@*,*= cz@

*,*= ci@ *}
365 364,QS RR - silences {*= pau@ *}
366 365,QS RR -a{*= a@*}
367 366,QS RR -e{*= e@*}
368 367,QS RR -i{*= i@*}
369 368,QS RR -y{*= y@*}
370 369,QS RR -o{*= o@*}
371 370,QS RR -u{*= u@*}
372 371,QS RR -p{*= p@*}
373 372,QS RR -b{*= b@*}
374 373,QS RR -t{*= t@*}
375 374,QS RR -d{*= d@*}
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376 375,QS RR -k{*= k@*}
377 376,QS RR -ki {*= ki@ *}
378 377,QS RR -g{*= g@*}
379 378,QS RR -gi {*= gi@ *}
380 379,QS RR -f{*= f@*}
381 380,QS RR -v{*= v@*}
382 381,QS RR -s{*= s@*}
383 382,QS RR -si {*= si@ *}
384 383,QS RR -z{*= z@*}
385 384,QS RR -zi {*= zi@ *}
386 385,QS RR -sz {*= sz@ *}
387 386,QS RR -rz {*= rz@ *}
388 387,QS RR -x{*= x@*}
389 388,QS RR -c{*= c@*}
390 389,QS RR -dz {*= dz@ *}
391 390,QS RR -cz {*= cz@ *}
392 391,QS RR -drz {*= drz@ *}
393 392,QS RR -ci {*= ci@ *}
394 393,QS RR -dzi {*= dzi@ *}
395 394,QS RR -m{*= m@*}
396 395,QS RR -n{*= n@*}
397 396,QS RR -ni {*= ni@ *}
398 397,QS RR -ng {*= ng@ *}
399 398,QS RR -l{*= l@*}
400 399,QS RR -r{*= r@*}
401 400,QS RR -w{*= w@*}
402 401,QS RR -ww {*= ww@ *}
403 402,QS RR -j{*= j@*}
404 403,QS RR -jj {*= jj@ *}
405 404,QS RR -gs {*= gs@ *}
406 405,QS Seg_Fw ==x{* @x_ *}
407 406,QS Seg_Fw ==1{* @1_ *}
408 407,QS Seg_Fw ==2{* @2_ *}
409 408,QS Seg_Fw ==3{* @3_ *}
410 409,QS Seg_Fw ==4{* @4_ *}
411 410,QS Seg_Fw ==5{* @5_ *}
412 411,QS Seg_Fw ==6{* @6_ *}
413 412,QS Seg_Fw ==7{* @7_ *}
414 413,QS Seg_Fw <=1{* @x_ *,* @1_ *}
415 414,QS Seg_Fw <=2{* @x_ *,* @1_ *,* @2_ *}
416 415,QS Seg_Fw <=3{* @x_ *,* @1_ *,* @2_ *,* @3_ *}
417 416,QS Seg_Fw <=4{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *}
418 417,QS Seg_Fw <=5{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *,* @5_ *}
419 418,QS Seg_Fw <=6{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *,* @5_ *,* @6_ *}
420 419,QS Seg_Fw <=7{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *,* @5_ *,* @6_ *,* @7_ *}
421 420,QS Seg_Bw ==x{*_x/A:*}
422 421,QS Seg_Bw ==1{* _1/A:*}
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423 422,QS Seg_Bw ==2{* _2/A:*}
424 423,QS Seg_Bw ==3{* _3/A:*}
425 424,QS Seg_Bw ==4{* _4/A:*}
426 425,QS Seg_Bw ==5{* _5/A:*}
427 426,QS Seg_Bw ==6{* _6/A:*}
428 427,QS Seg_Bw ==7{* _7/A:*}
429 428,QS Seg_Bw <=0{* _x/A:*,*_0/A:*}
430 429,QS Seg_Bw <=1{* _x/A:*,*_0/A:*,*_1/A:*}
431 430,QS Seg_Bw <=2{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*}
432 431,QS Seg_Bw <=3{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*}
433 432,QS Seg_Bw <=4{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*}
434 433,QS Seg_Bw <=5{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*,*

_5/A:*}
435 434,QS Seg_Bw <=6{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*,*

_5/A:*,*_6/A:*}
436 435,QS Seg_Bw <=7{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*,*

_5/A:*,*_6/A:*,*_7/A:*}
437 436,QS L- Syl_Stress ==1{*/ A:1_*}
438 437,QS L- Syl_Stress ==0{*/ A:0_*}
439 438,QS L- Syl_Accent ==1{* _1_ *}
440 439,QS L- Syl_Accent ==0{* _0_ *}
441 440,QS L- Syl_TOBI_Accent -H*{*/K:H?/L:*}
442 441,QS L- Syl_TOBI_Accent -L*{*/K:L?/L:*}
443 442,QS L- Syl_TOBI_Accent -L*+H{*/K:L?+H*}
444 443,QS L- Syl_TOBI_Accent -L+H*{*/K:L+H*}
445 444,QS L- Syl_TOBI_Accent -0{*/K:0*}
446 445,QS L- Syl_TOBI_Accent -NONE {*/K:NONE *}
447 446,QS L- Syl_TOBI_Accent -x{*/K:x*}
448 447,QS L-Syl_Num -Segs ==0{* _0/B:*}
449 448,QS L-Syl_Num -Segs ==1{* _1/B:*}
450 449,QS L-Syl_Num -Segs ==2{* _2/B:*}
451 450,QS L-Syl_Num -Segs ==3{* _3/B:*}
452 451,QS L-Syl_Num -Segs ==4{* _4/B:*}
453 452,QS L-Syl_Num -Segs ==5{* _5/B:*}
454 453,QS L-Syl_Num -Segs ==6{* _6/B:*}
455 454,QS L-Syl_Num -Segs ==7{* _7/B:*}
456 455,QS L-Syl_Num -Segs <=1{* _0/B:*,*_1/B:*}
457 456,QS L-Syl_Num -Segs <=2{* _0/B:*,*_1/B:*,*_2/B:*}
458 457,QS L-Syl_Num -Segs <=3{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*}
459 458,QS L-Syl_Num -Segs <=4{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*}
460 459,QS L-Syl_Num -Segs <=5{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*,*

_5/B:*}
461 460,QS L-Syl_Num -Segs <=6{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*,*

_5/B:*,*_6/B:*}
462 461,QS L-Syl_Num -Segs <=7{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*,*

_5/B:*,*_6/B:*,*_7/B:*}
463 462,QS C- Syl_Stress ==1{*/ B:1 -*}
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464 463,QS C- Syl_Stress ==0{*/ B:0 -*}
465 464,QS C- Syl_Stress ==x{*/B:x -*}
466 465,QS C- Syl_Accent ==1{* -1 -*}
467 466,QS C- Syl_Accent ==0{* -0 -*}
468 467,QS C- Syl_Accent ==x{*-x -*}
469 468,QS C- Syl_TOBI_Accent -H*{*/L:H?/M:*}
470 469,QS C- Syl_TOBI_Accent -L*{*/L:L?/M:*}
471 470,QS C- Syl_TOBI_Accent -L*+H{*/L:L?+H*}
472 471,QS C- Syl_TOBI_Accent -L+H*{*/L:L+H*}
473 472,QS C- Syl_TOBI_Accent -0{*/L:0*}
474 473,QS C- Syl_TOBI_Accent -NONE {*/L:NONE *}
475 474,QS C- Syl_TOBI_Accent -x{*/L:x*}
476 475,QS C-Syl_Num -Segs ==x{*-x@*}
477 476,QS C-Syl_Num -Segs ==1{* -1@*}
478 477,QS C-Syl_Num -Segs ==2{* -2@*}
479 478,QS C-Syl_Num -Segs ==3{* -3@*}
480 479,QS C-Syl_Num -Segs ==4{* -4@*}
481 480,QS C-Syl_Num -Segs ==5{* -5@*}
482 481,QS C-Syl_Num -Segs ==6{* -6@*}
483 482,QS C-Syl_Num -Segs ==7{* -7@*}
484 483,QS C-Syl_Num -Segs <=1{* - x@*,*-1@*}
485 484,QS C-Syl_Num -Segs <=2{* - x@*,*-1@*,*-2@*}
486 485,QS C-Syl_Num -Segs <=3{* - x@*,*-1@*,*-2@*,*-3@*}
487 486,QS C-Syl_Num -Segs <=4{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*}
488 487,QS C-Syl_Num -Segs <=5{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*,*-5@*}
489 488,QS C-Syl_Num -Segs <=6{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*,*-5@*,*-6@*}
490 489,QS C-Syl_Num -Segs <=7{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*,*-5@*,*-6@

*,*-7@*}
491 490,QS Pos_C -Syl_in_C -Word(Fw)==x{*@x -*}
492 491,QS Pos_C -Syl_in_C -Word(Fw)==1{*@1 -*}
493 492,QS Pos_C -Syl_in_C -Word(Fw)==2{*@2 -*}
494 493,QS Pos_C -Syl_in_C -Word(Fw)==3{*@3 -*}
495 494,QS Pos_C -Syl_in_C -Word(Fw)==4{*@4 -*}
496 495,QS Pos_C -Syl_in_C -Word(Fw)==5{*@5 -*}
497 496,QS Pos_C -Syl_in_C -Word(Fw)==6{*@6 -*}
498 497,QS Pos_C -Syl_in_C -Word(Fw)==7{*@7 -*}
499 498,QS Pos_C -Syl_in_C -Word(Fw) <=1{*@x -*,*@1 -*}
500 499,QS Pos_C -Syl_in_C -Word(Fw) <=2{*@x -*,*@1 -*,*@2 -*}
501 500,QS Pos_C -Syl_in_C -Word(Fw) <=3{*@x -*,*@1 -*,*@2 -*,*@3 -*}
502 501,QS Pos_C -Syl_in_C -Word(Fw) <=4{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*}
503 502,QS Pos_C -Syl_in_C -Word(Fw) <=5{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*,*@5

-*}
504 503,QS Pos_C -Syl_in_C -Word(Fw) <=6{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*,*@5

-*,*@6 -*}
505 504,QS Pos_C -Syl_in_C -Word(Fw) <=7{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*,*@5

-*,*@6 -*,*@7 -*}
506 505,QS Pos_C -Syl_in_C -Word(Bw)==x{*-x&*}
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507 506,QS Pos_C -Syl_in_C -Word(Bw)==1{* -1&*}
508 507,QS Pos_C -Syl_in_C -Word(Bw)==2{* -2&*}
509 508,QS Pos_C -Syl_in_C -Word(Bw)==3{* -3&*}
510 509,QS Pos_C -Syl_in_C -Word(Bw)==4{* -4&*}
511 510,QS Pos_C -Syl_in_C -Word(Bw)==5{* -5&*}
512 511,QS Pos_C -Syl_in_C -Word(Bw)==6{* -6&*}
513 512,QS Pos_C -Syl_in_C -Word(Bw)==7{* -7&*}
514 513,QS Pos_C -Syl_in_C -Word(Bw) <=1{*-x&* ,* -1&*}
515 514,QS Pos_C -Syl_in_C -Word(Bw) <=2{*-x&* ,* -1&* ,* -2&*}
516 515,QS Pos_C -Syl_in_C -Word(Bw) <=3{*-x&* ,* -1&* ,* -2&* ,* -3&*}
517 516,QS Pos_C -Syl_in_C -Word(Bw) <=4{*-x&* ,* -1&* ,* -2&* ,* -3&* ,* -4&*}
518 517,QS Pos_C -Syl_in_C -Word(Bw) <=5{*-x

&* ,* -1&* ,* -2&* ,* -3&* ,* -4&* ,* -5&*}
519 518,QS Pos_C -Syl_in_C -Word(Bw) <=6{*-x

&* ,* -1&* ,* -2&* ,* -3&* ,* -4&* ,* -5&* ,* -6&*}
520 519,QS Pos_C -Syl_in_C -Word(Bw) <=7{*-x

&* ,* -1&* ,* -2&* ,* -3&* ,* -4&* ,* -5&* ,* -6&* ,* -7&*}
521 520,QS Pos_C -Syl_in_C - Phrase (Fw)==x{*&x -*}
522 521,QS Pos_C -Syl_in_C - Phrase (Fw)==1{*&1 -*}
523 522,QS Pos_C -Syl_in_C - Phrase (Fw)==2{*&2 -*}
524 523,QS Pos_C -Syl_in_C - Phrase (Fw)==3{*&3 -*}
525 524,QS Pos_C -Syl_in_C - Phrase (Fw)==4{*&4 -*}
526 525,QS Pos_C -Syl_in_C - Phrase (Fw)==5{*&5 -*}
527 526,QS Pos_C -Syl_in_C - Phrase (Fw)==6{*&6 -*}
528 527,QS Pos_C -Syl_in_C - Phrase (Fw)==7{*&7 -*}
529 528,QS Pos_C -Syl_in_C - Phrase (Fw)==8{*&8 -*}
530 529,QS Pos_C -Syl_in_C - Phrase (Fw)==9{*&9 -*}
531 530,QS Pos_C -Syl_in_C - Phrase (Fw) ==10{*&10 -*}
532 531,QS Pos_C -Syl_in_C - Phrase (Fw) ==11{*&11 -*}
533 532,QS Pos_C -Syl_in_C - Phrase (Fw) ==12{*&12 -*}
534 533,QS Pos_C -Syl_in_C - Phrase (Fw) ==13{*&13 -*}
535 534,QS Pos_C -Syl_in_C - Phrase (Fw) ==14{*&14 -*}
536 535,QS Pos_C -Syl_in_C - Phrase (Fw) ==15{*&15 -*}
537 536,QS Pos_C -Syl_in_C - Phrase (Fw) ==16{*&16 -*}
538 537,QS Pos_C -Syl_in_C - Phrase (Fw) ==17{*&17 -*}
539 538,QS Pos_C -Syl_in_C - Phrase (Fw) ==18{*&18 -*}
540 539,QS Pos_C -Syl_in_C - Phrase (Fw) ==19{*&19 -*}
541 540,QS Pos_C -Syl_in_C - Phrase (Fw) ==20{*&20 -*}
542 541,QS Pos_C -Syl_in_C - Phrase (Fw) <=1{*&x -* ,*&0 -* ,*&1 -*}
543 542,QS Pos_C -Syl_in_C - Phrase (Fw) <=2{*&x -* ,*&0 -* ,*&1 -* ,*&2 -*}
544 543,QS Pos_C -Syl_in_C - Phrase (Fw) <=3{*&x -* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -*}
545 544,QS Pos_C -Syl_in_C - Phrase (Fw) <=4{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -*}
546 545,QS Pos_C -Syl_in_C - Phrase (Fw) <=5{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -*}
547 546,QS Pos_C -Syl_in_C - Phrase (Fw) <=6{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -* ,*&6 -*}
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548 547,QS Pos_C -Syl_in_C - Phrase (Fw) <=7{*&x
-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -* ,*&6 -* ,*&7 -*}

549 548,QS Pos_C -Syl_in_C - Phrase (Fw) <=8{*&x
-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -* ,*&6 -* ,*&7 -* ,*&8 -*}

550 549,QS Pos_C -Syl_in_C - Phrase (Fw) <=9{*&? -*}
551 550,QS Pos_C -Syl_in_C - Phrase (Fw) <=10{*&? -* ,*&10 -*}
552 551,QS Pos_C -Syl_in_C - Phrase (Fw) <=11{*&? -* ,*&10 -* ,*&11 -*}
553 552,QS Pos_C -Syl_in_C - Phrase (Fw) <=12{*&? -* ,*&10 -* ,*&11 -* ,*&12 -*}
554 553,QS Pos_C -Syl_in_C - Phrase (Fw)

<=13{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -*}
555 554,QS Pos_C -Syl_in_C - Phrase (Fw)

<=14{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -*}
556 555,QS Pos_C -Syl_in_C - Phrase (Fw)

<=15{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -*}
557 556,QS Pos_C -Syl_in_C - Phrase (Fw)

<=16{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -* ,*&16 -*}
558 557,QS Pos_C -Syl_in_C - Phrase (Fw)

<=17{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -* ,*&16 -* ,*&17 -*}

559 558,QS Pos_C -Syl_in_C - Phrase (Fw)
<=18{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -* ,*&16 -* ,*&17 -* ,*&18 -*}

560 559,QS Pos_C -Syl_in_C - Phrase (Fw) <=19{*&? -* ,*&1? -*}
561 560,QS Pos_C -Syl_in_C - Phrase (Fw) <=20{*&? -* ,*&1? -* ,*&20 -*}
562 561,QS Pos_C -Syl_in_C - Phrase (Bw)==x{*-x#*}
563 562,QS Pos_C -Syl_in_C - Phrase (Bw)==1{* -1#*}
564 563,QS Pos_C -Syl_in_C - Phrase (Bw)==2{* -2#*}
565 564,QS Pos_C -Syl_in_C - Phrase (Bw)==3{* -3#*}
566 565,QS Pos_C -Syl_in_C - Phrase (Bw)==4{* -4#*}
567 566,QS Pos_C -Syl_in_C - Phrase (Bw)==5{* -5#*}
568 567,QS Pos_C -Syl_in_C - Phrase (Bw)==6{* -6#*}
569 568,QS Pos_C -Syl_in_C - Phrase (Bw)==7{* -7#*}
570 569,QS Pos_C -Syl_in_C - Phrase (Bw)==8{* -8#*}
571 570,QS Pos_C -Syl_in_C - Phrase (Bw)==9{* -9#*}
572 571,QS Pos_C -Syl_in_C - Phrase (Bw) ==10{* -10#*}
573 572,QS Pos_C -Syl_in_C - Phrase (Bw) ==11{* -11#*}
574 573,QS Pos_C -Syl_in_C - Phrase (Bw) ==12{* -12#*}
575 574,QS Pos_C -Syl_in_C - Phrase (Bw) ==13{* -13#*}
576 575,QS Pos_C -Syl_in_C - Phrase (Bw) ==14{* -14#*}
577 576,QS Pos_C -Syl_in_C - Phrase (Bw) ==15{* -15#*}
578 577,QS Pos_C -Syl_in_C - Phrase (Bw) ==16{* -16#*}
579 578,QS Pos_C -Syl_in_C - Phrase (Bw) ==17{* -17#*}
580 579,QS Pos_C -Syl_in_C - Phrase (Bw) ==18{* -18#*}
581 580,QS Pos_C -Syl_in_C - Phrase (Bw) ==19{* -19#*}
582 581,QS Pos_C -Syl_in_C - Phrase (Bw) ==20{* -20#*}
583 582,QS Pos_C -Syl_in_C - Phrase (Bw) <=1{*-x#* ,* -1#*}
584 583,QS Pos_C -Syl_in_C - Phrase (Bw) <=2{*-x#* ,* -1#* ,* -2#*}
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585 584,QS Pos_C -Syl_in_C - Phrase (Bw) <=3{*-x#* ,* -1#* ,* -2#* ,* -3#*}
586 585,QS Pos_C -Syl_in_C - Phrase (Bw) <=4{*-x#* ,* -1#* ,* -2#* ,* -3#* ,* -4#*}
587 586,QS Pos_C -Syl_in_C - Phrase (Bw) <=5{*-x

#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#*}
588 587,QS Pos_C -Syl_in_C - Phrase (Bw) <=6{*-x

#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#* ,* -6#*}
589 588,QS Pos_C -Syl_in_C - Phrase (Bw) <=7{*-x

#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#* ,* -6#* ,* -7#*}
590 589,QS Pos_C -Syl_in_C - Phrase (Bw) <=8{*-x

#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#* ,* -6#* ,* -7#* ,* -8#*}
591 590,QS Pos_C -Syl_in_C - Phrase (Bw) <=9{* -?#*}
592 591,QS Pos_C -Syl_in_C - Phrase (Bw) <=10{* -?#* ,* -10#*}
593 592,QS Pos_C -Syl_in_C - Phrase (Bw) <=11{* -?#* ,* -10#* ,* -11#*}
594 593,QS Pos_C -Syl_in_C - Phrase (Bw) <=12{* -?#* ,* -10#* ,* -11#* ,* -12#*}
595 594,QS Pos_C -Syl_in_C - Phrase (Bw)

<=13{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#*}
596 595,QS Pos_C -Syl_in_C - Phrase (Bw)

<=14{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#*}
597 596,QS Pos_C -Syl_in_C - Phrase (Bw)

<=15{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#*}
598 597,QS Pos_C -Syl_in_C - Phrase (Bw)

<=16{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#* ,* -16#*}
599 598,QS Pos_C -Syl_in_C - Phrase (Bw)

<=17{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#* ,* -16#* ,* -17#*}

600 599,QS Pos_C -Syl_in_C - Phrase (Bw)
<=18{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#* ,* -16#* ,* -17#* ,* -18#*}

601 600,QS Pos_C -Syl_in_C - Phrase (Bw) <=19{* -?#* ,* -1?#*}
602 601,QS Pos_C -Syl_in_C - Phrase (Bw) <=20{* -?#* ,* -1?#* ,* -20#*}
603 602,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==x{*#x -*}
604 603,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==1{*#1 -*}
605 604,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==2{*#2 -*}
606 605,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==3{*#3 -*}
607 606,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==4{*#4 -*}
608 607,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==5{*#5 -*}
609 608,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==6{*#6 -*}
610 609,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==7{*#7 -*}
611 610,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==8{*#8 -*}
612 611,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==9{*#9 -*}
613 612,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==10{*#10 -*}
614 613,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==11{*#11 -*}
615 614,QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==12{*#12 -*}
616 615,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=1{*#x -* ,*#1 -*}
617 616,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=2{*#x

-* ,*#1 -* ,*#2 -*}
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618 617,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=3{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -*}

619 618,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=4{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -*}

620 619,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=5{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -*}

621 620,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=6{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -* ,*#6 -*}

622 621,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=7{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -* ,*#6 -* ,*#7 -*}

623 622,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=8{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -* ,*#6 -* ,*#7 -* ,*#8 -*}

624 623,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=9{*#? -*}
625 624,QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=10{*#? -* ,*#10 -*}
626 625,QS Num - StressedSyl_before_C -Syl_in_C -Phrase

<=11{*#? -* ,*#10 -* ,*#11 -*}
627 626,QS Num - StressedSyl_before_C -Syl_in_C -Phrase

<=12{*#? -* ,*#10 -* ,*#11 -* ,*#12 -*}
628 627,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==x{*-x$*}
629 628,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==1{* -1$*}
630 629,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==2{* -2$*}
631 630,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==3{* -3$*}
632 631,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==4{* -4$*}
633 632,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==5{* -5$*}
634 633,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==6{* -6$*}
635 634,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==7{* -7$*}
636 635,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==8{* -8$*}
637 636,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==9{* -9$*}
638 637,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==10{* -10$*}
639 638,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==11{* -11$*}
640 639,QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==12{* -12$*}
641 640,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=1{* - x$*,*-1$*}
642 641,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=2{* - x$*,*-1$*,*-2$

*}
643 642,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=3{* - x$*,*-1$*,*-2$

*,*-3$*}
644 643,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=4{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*}
645 644,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=5{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*,*-5$*}
646 645,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=6{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*,*-5$*,*-6$*}
647 646,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=7{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*,*-5$*,*-6$*,*-7$*}
648 647,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=8{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*,*-5$*,*-6$*,*-7$*,*-8$*}
649 648,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=9{* -?$*}
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650 649,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=10{* -?$*,*-10$*}
651 650,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=11{* -?$*,*-10$

*,*-11$*}
652 651,QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=12{* -?$*,*-10$

*,*-11$*,*-12$*}
653 652,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==x{*$x -*}
654 653,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==1{*$1 -*}
655 654,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==2{*$2 -*}
656 655,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==3{*$3 -*}
657 656,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==4{*$4 -*}
658 657,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==5{*$5 -*}
659 658,QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==6{*$6 -*}
660 659,QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=1{*$x -*,*$1 -*}
661 660,QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=2{*$x -*,*$1 -*,*$2

-*}
662 661,QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=3{*$x -*,*$1 -*,*$2

-*,*$3 -*}
663 662,QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=4{*$x -*,*$1 -*,*$2

-*,*$3 -*,*$4 -*}
664 663,QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=5{*$x -*,*$1 -*,*$2

-*,*$3 -*,*$4 -*,*$5 -*}
665 664,QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=6{*$x -*,*$1 -*,*$2

-*,*$3 -*,*$4 -*,*$5 -*,*$6 -*}
666 665,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==x{*-x!*}
667 666,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==1{* -1!*}
668 667,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==2{* -2!*}
669 668,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==3{* -3!*}
670 669,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==4{* -4!*}
671 670,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==5{* -5!*}
672 671,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==6{* -6!*}
673 672,QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==7{* -7!*}
674 673,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=1{* -x!* ,* -1!*}
675 674,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=2{* -x

!* ,* -1!* ,* -2!*}
676 675,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=3{* -x

!* ,* -1!* ,* -2!* ,* -3!*}
677 676,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=4{* -x

!* ,* -1!* ,* -2!* ,* -3!* ,* -4!*}
678 677,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=5{* -x

!* ,* -1!* ,* -2!* ,* -3!* ,* -4!* ,* -5!*}
679 678,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=6{* -x

!* ,* -1!* ,* -2!* ,* -3!* ,* -4!* ,* -5!* ,* -6!*}
680 679,QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=7{* -x

!* ,* -1!* ,* -2!* ,* -3!* ,* -4!* ,* -5!* ,* -6!* ,* -7!*}
681 680,QS Num - Syl_from_prev - StressedSyl ==x{*!x -*}
682 681,QS Num - Syl_from_prev - StressedSyl ==0{*!0 -*}
683 682,QS Num - Syl_from_prev - StressedSyl ==1{*!1 -*}
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684 683,QS Num - Syl_from_prev - StressedSyl ==2{*!2 -*}
685 684,QS Num - Syl_from_prev - StressedSyl ==3{*!3 -*}
686 685,QS Num - Syl_from_prev - StressedSyl ==4{*!4 -*}
687 686,QS Num - Syl_from_prev - StressedSyl ==5{*!5 -*}
688 687,QS Num - Syl_from_prev - StressedSyl <=0{*!x -* ,*!0 -*}
689 688,QS Num - Syl_from_prev - StressedSyl <=1{*!x -* ,*!0 -* ,*!1 -*}
690 689,QS Num - Syl_from_prev - StressedSyl <=2{*!x -* ,*!0 -* ,*!1 -* ,*!2 -*}
691 690,QS Num - Syl_from_prev - StressedSyl <=3{*!x

-* ,*!0 -* ,*!1 -* ,*!2 -* ,*!3 -*}
692 691,QS Num - Syl_from_prev - StressedSyl <=4{*!x

-* ,*!0 -* ,*!1 -* ,*!2 -* ,*!3 -* ,*!4 -*}
693 692,QS Num - Syl_from_prev - StressedSyl <=5{*!x

-* ,*!0 -* ,*!1 -* ,*!2 -* ,*!3 -* ,*!4 -* ,*!5 -*}
694 693,QS Num - Syl_from_next - StressedSyl ==x{*-x;*}
695 694,QS Num - Syl_from_next - StressedSyl ==0{* -0;*}
696 695,QS Num - Syl_from_next - StressedSyl ==1{* -1;*}
697 696,QS Num - Syl_from_next - StressedSyl ==2{* -2;*}
698 697,QS Num - Syl_from_next - StressedSyl ==3{* -3;*}
699 698,QS Num - Syl_from_next - StressedSyl ==4{* -4;*}
700 699,QS Num - Syl_from_next - StressedSyl ==5{* -5;*}
701 700,QS Num - Syl_from_next - StressedSyl <=0{* -x;* ,* -0;*}
702 701,QS Num - Syl_from_next - StressedSyl <=1{* -x;* ,* -0;* ,* -1;*}
703 702,QS Num - Syl_from_next - StressedSyl <=2{* -x;* ,* -0;* ,* -1;* ,* -2;*}
704 703,QS Num - Syl_from_next - StressedSyl <=3{* -x

;* ,* -0;* ,* -1;* ,* -2;* ,* -3;*}
705 704,QS Num - Syl_from_next - StressedSyl <=4{* -x

;* ,* -0;* ,* -1;* ,* -2;* ,* -3;* ,* -4;*}
706 705,QS Num - Syl_from_next - StressedSyl <=5{* -x

;* ,* -0;* ,* -1;* ,* -2;* ,* -3;* ,* -4;* ,* -5;*}
707 706,QS Num - Syl_from_prev - AccentedSyl ==x{*;x -*}
708 707,QS Num - Syl_from_prev - AccentedSyl ==0{*;0 -*}
709 708,QS Num - Syl_from_prev - AccentedSyl ==1{*;1 -*}
710 709,QS Num - Syl_from_prev - AccentedSyl ==2{*;2 -*}
711 710,QS Num - Syl_from_prev - AccentedSyl ==3{*;3 -*}
712 711,QS Num - Syl_from_prev - AccentedSyl ==4{*;4 -*}
713 712,QS Num - Syl_from_prev - AccentedSyl ==5{*;5 -*}
714 713,QS Num - Syl_from_prev - AccentedSyl ==6{*;6 -*}
715 714,QS Num - Syl_from_prev - AccentedSyl ==7{*;7 -*}
716 715,QS Num - Syl_from_prev - AccentedSyl ==8{*;8 -*}
717 716,QS Num - Syl_from_prev - AccentedSyl ==9{*;9 -*}
718 717,QS Num - Syl_from_prev - AccentedSyl ==10{*;10 -*}
719 718,QS Num - Syl_from_prev - AccentedSyl ==11{*;11 -*}
720 719,QS Num - Syl_from_prev - AccentedSyl ==12{*;12 -*}
721 720,QS Num - Syl_from_prev - AccentedSyl ==13{*;13 -*}
722 721,QS Num - Syl_from_prev - AccentedSyl ==14{*;14 -*}
723 722,QS Num - Syl_from_prev - AccentedSyl ==15{*;15 -*}
724 723,QS Num - Syl_from_prev - AccentedSyl ==16{*;16 -*}
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725 724,QS Num - Syl_from_prev - AccentedSyl <=0{*;x -* ,*;0 -*}
726 725,QS Num - Syl_from_prev - AccentedSyl <=1{*;x -* ,*;0 -* ,*;1 -*}
727 726,QS Num - Syl_from_prev - AccentedSyl <=2{*;x -* ,*;0 -* ,*;1 -* ,*;2 -*}
728 727,QS Num - Syl_from_prev - AccentedSyl <=3{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -*}
729 728,QS Num - Syl_from_prev - AccentedSyl <=4{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -*}
730 729,QS Num - Syl_from_prev - AccentedSyl <=5{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -*}
731 730,QS Num - Syl_from_prev - AccentedSyl <=6{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -* ,*;6 -*}
732 731,QS Num - Syl_from_prev - AccentedSyl <=7{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -* ,*;6 -* ,*;7 -*}
733 732,QS Num - Syl_from_prev - AccentedSyl <=8{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -* ,*;6 -* ,*;7 -* ,*;8 -*}
734 733,QS Num - Syl_from_prev - AccentedSyl <=9{*;? -*}
735 734,QS Num - Syl_from_prev - AccentedSyl <=10{*;? -* ,*;10 -*}
736 735,QS Num - Syl_from_prev - AccentedSyl <=11{*;? -* ,*;10 -* ,*;11 -*}
737 736,QS Num - Syl_from_prev - AccentedSyl

<=12{*;? -* ,*;10 -* ,*;11 -* ,*;12 -*}
738 737,QS Num - Syl_from_prev - AccentedSyl

<=13{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -*}
739 738,QS Num - Syl_from_prev - AccentedSyl

<=14{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -* ,*;14 -*}
740 739,QS Num - Syl_from_prev - AccentedSyl

<=15{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -* ,*;14 -* ,*;15 -*}
741 740,QS Num - Syl_from_prev - AccentedSyl

<=16{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -* ,*;14 -* ,*;15 -* ,*;16 -*}
742 741,QS Num - Syl_from_next - AccentedSyl ==x{*-x|*}
743 742,QS Num - Syl_from_next - AccentedSyl ==0{* -0|*}
744 743,QS Num - Syl_from_next - AccentedSyl ==1{* -1|*}
745 744,QS Num - Syl_from_next - AccentedSyl ==2{* -2|*}
746 745,QS Num - Syl_from_next - AccentedSyl ==3{* -3|*}
747 746,QS Num - Syl_from_next - AccentedSyl ==4{* -4|*}
748 747,QS Num - Syl_from_next - AccentedSyl ==5{* -5|*}
749 748,QS Num - Syl_from_next - AccentedSyl ==6{* -6|*}
750 749,QS Num - Syl_from_next - AccentedSyl ==7{* -7|*}
751 750,QS Num - Syl_from_next - AccentedSyl ==8{* -8|*}
752 751,QS Num - Syl_from_next - AccentedSyl ==9{* -9|*}
753 752,QS Num - Syl_from_next - AccentedSyl ==10{* -10|*}
754 753,QS Num - Syl_from_next - AccentedSyl ==11{* -11|*}
755 754,QS Num - Syl_from_next - AccentedSyl ==12{* -12|*}
756 755,QS Num - Syl_from_next - AccentedSyl ==13{* -13|*}
757 756,QS Num - Syl_from_next - AccentedSyl ==14{* -14|*}
758 757,QS Num - Syl_from_next - AccentedSyl ==15{* -15|*}
759 758,QS Num - Syl_from_next - AccentedSyl ==16{* -16|*}
760 759,QS Num - Syl_from_next - AccentedSyl <=0{* -x|* ,* -0|*}
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761 760,QS Num - Syl_from_next - AccentedSyl <=1{* -x|* ,* -0|* ,* -1|*}
762 761,QS Num - Syl_from_next - AccentedSyl <=2{* -x|* ,* -0|* ,* -1|* ,* -2|*}
763 762,QS Num - Syl_from_next - AccentedSyl <=3{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|*}
764 763,QS Num - Syl_from_next - AccentedSyl <=4{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|*}
765 764,QS Num - Syl_from_next - AccentedSyl <=5{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|*}
766 765,QS Num - Syl_from_next - AccentedSyl <=6{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|* ,* -6|*}
767 766,QS Num - Syl_from_next - AccentedSyl <=7{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|* ,* -6|* ,* -7|*}
768 767,QS Num - Syl_from_next - AccentedSyl <=8{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|* ,* -6|* ,* -7|* ,* -8|*}
769 768,QS Num - Syl_from_next - AccentedSyl <=9{* -?|*}
770 769,QS Num - Syl_from_next - AccentedSyl <=10{* -?|* ,* -10|*}
771 770,QS Num - Syl_from_next - AccentedSyl <=11{* -?|* ,* -10|* ,* -11|*}
772 771,QS Num - Syl_from_next - AccentedSyl

<=12{* -?|* ,* -10|* ,* -11|* ,* -12|*}
773 772,QS Num - Syl_from_next - AccentedSyl

<=13{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|*}
774 773,QS Num - Syl_from_next - AccentedSyl

<=14{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|* ,* -14|*}
775 774,QS Num - Syl_from_next - AccentedSyl

<=15{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|* ,* -14|* ,* -15|*}
776 775,QS Num - Syl_from_next - AccentedSyl

<=16{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|* ,* -14|* ,* -15|* ,* -16|*}
777 776,QS C- Syl_Vowel ==x{*|x/C:*}
778 777,QS C- Syl_Vowel {*|i/C:* ,*|y/C:* ,*|e/C:* ,*|a/C:* ,*|o/C:* ,*|u/C

:* ,*| schwa/C:*}
779 778,QS C- Syl_Front_Vowel {*|e/C:* ,*|i/C:* ,*|y/C:*}
780 779,QS C- Syl_Central_Vowel {*|a/C:* ,*| schwa/C:*}
781 780,QS C- Syl_Back_Vowel {*|o/C:* ,*|u/C:*}
782 781,QS C- Syl_High_Vowel {*|i/C:* ,*|y/C:* ,*|u/C:*}
783 782,QS C- Syl_Medium_Vowel {*|e/C:* ,*|o/C:* ,*| schwa/C:*}
784 783,QS C- Syl_Low_Vowel {*|a/C:*}
785 784,QS C- Syl_Rounded_Vowel {*|o/C:* ,*|u/C:*}
786 785,QS C- Syl_Unrounded_Vowel {*|a/C:* ,*|e/C:* ,*|i/C:* ,*|y/C:*}
787 786,QS C- Syl_IVowel {*|i/C:*}
788 787,QS C- Syl_EVowel {*|e/C:*}
789 788,QS C- Syl_AVowel {*|a/C:*}
790 789,QS C- Syl_OVowel {*|o/C:*}
791 790,QS C- Syl_UVowel {*|u/C:*}
792 791,QS C- Syl_YVowel {*|y/C:*}
793 792,QS C- Syl_SCHWAVowel {*| schwa/C:*}
794 793,QS R- Syl_Stress ==1{*/ C:1+*}
795 794,QS R- Syl_Stress ==0{*/ C:0+*}
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796 795,QS R- Syl_Accent ==1{*+1+*}
797 796,QS R- Syl_Accent ==0{*+0+*}
798 797,QS R- Syl_TOBI_Accent -H*{*/M:H?}
799 798,QS R- Syl_TOBI_Accent -L*{*/M:L?}
800 799,QS R- Syl_TOBI_Accent -L*+H{*/M:L?+H}
801 800,QS R- Syl_TOBI_Accent -L+H*{*/M:L+H?}
802 801,QS R- Syl_TOBI_Accent -0{*/M:0}
803 802,QS R- Syl_TOBI_Accent -NONE {*/M:NONE}
804 803,QS R- Syl_TOBI_Accent -x{*/M:x}
805 804,QS R-Syl_Num -Segs ==0{*+0/ D:*}
806 805,QS R-Syl_Num -Segs ==1{*+1/ D:*}
807 806,QS R-Syl_Num -Segs ==2{*+2/ D:*}
808 807,QS R-Syl_Num -Segs ==3{*+3/ D:*}
809 808,QS R-Syl_Num -Segs ==4{*+4/ D:*}
810 809,QS R-Syl_Num -Segs ==5{*+5/ D:*}
811 810,QS R-Syl_Num -Segs ==6{*+6/ D:*}
812 811,QS R-Syl_Num -Segs ==7{*+7/ D:*}
813 812,QS R-Syl_Num -Segs <=1{*+0/ D:* ,*+1/D:*}
814 813,QS R-Syl_Num -Segs <=2{*+0/ D:* ,*+1/D:* ,*+2/D:*}
815 814,QS R-Syl_Num -Segs <=3{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:*}
816 815,QS R-Syl_Num -Segs <=4{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D:*}
817 816,QS R-Syl_Num -Segs <=5{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:* ,*+5/D:*}
818 817,QS R-Syl_Num -Segs <=6{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:* ,*+5/D:* ,*+6/D:*}
819 818,QS R-Syl_Num -Segs <=7{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:* ,*+5/D:* ,*+6/D:* ,*+7/D:*}
820 819,QS L-Word_Num -Syls ==0{* _0/E:*}
821 820,QS L-Word_Num -Syls ==1{* _1/E:*}
822 821,QS L-Word_Num -Syls ==2{* _2/E:*}
823 822,QS L-Word_Num -Syls ==3{* _3/E:*}
824 823,QS L-Word_Num -Syls ==4{* _4/E:*}
825 824,QS L-Word_Num -Syls ==5{* _5/E:*}
826 825,QS L-Word_Num -Syls ==6{* _6/E:*}
827 826,QS L-Word_Num -Syls ==7{* _7/E:*}
828 827,QS L-Word_Num -Syls <=1{* _0/E:*,*_1/E:*}
829 828,QS L-Word_Num -Syls <=2{* _0/E:*,*_1/E:*,*_2/E:*}
830 829,QS L-Word_Num -Syls <=3{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*}
831 830,QS L-Word_Num -Syls <=4{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E:*}
832 831,QS L-Word_Num -Syls <=5{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E:*,*

_5/E:*}
833 832,QS L-Word_Num -Syls <=6{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E:*,*

_5/E:*,*_6/E:*}
834 833,QS L-Word_Num -Syls <=7{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E:*,*

_5/E:*,*_6/E:*,*_7/E:*}
835 834,QS C-Word_Num -Syls ==x{*+ x@*}
836 835,QS C-Word_Num -Syls ==1{*+1 @*}
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837 836,QS C-Word_Num -Syls ==2{*+2 @*}
838 837,QS C-Word_Num -Syls ==3{*+3 @*}
839 838,QS C-Word_Num -Syls ==4{*+4 @*}
840 839,QS C-Word_Num -Syls ==5{*+5 @*}
841 840,QS C-Word_Num -Syls ==6{*+6 @*}
842 841,QS C-Word_Num -Syls ==7{*+7 @*}
843 842,QS C-Word_Num -Syls <=1{*+ x@ * ,*+1@*}
844 843,QS C-Word_Num -Syls <=2{*+ x@ * ,*+1@* ,*+2@*}
845 844,QS C-Word_Num -Syls <=3{*+ x@ * ,*+1@* ,*+2@* ,*+3@*}
846 845,QS C-Word_Num -Syls <=4{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@*}
847 846,QS C-Word_Num -Syls <=5{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@* ,*+5@*}
848 847,QS C-Word_Num -Syls <=6{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@* ,*+5@* ,*+6@

*}
849 848,QS C-Word_Num -Syls <=7{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@* ,*+5@* ,*+6@

* ,*+7@*}
850 849,QS Pos_C -Word_in_C - Phrase (Fw)==x{*@x +*}
851 850,QS Pos_C -Word_in_C - Phrase (Fw)==1{* @1 +*}
852 851,QS Pos_C -Word_in_C - Phrase (Fw)==2{* @2 +*}
853 852,QS Pos_C -Word_in_C - Phrase (Fw)==3{* @3 +*}
854 853,QS Pos_C -Word_in_C - Phrase (Fw)==4{* @4 +*}
855 854,QS Pos_C -Word_in_C - Phrase (Fw)==5{* @5 +*}
856 855,QS Pos_C -Word_in_C - Phrase (Fw)==6{* @6 +*}
857 856,QS Pos_C -Word_in_C - Phrase (Fw)==7{* @7 +*}
858 857,QS Pos_C -Word_in_C - Phrase (Fw)==8{* @8 +*}
859 858,QS Pos_C -Word_in_C - Phrase (Fw)==9{* @9 +*}
860 859,QS Pos_C -Word_in_C - Phrase (Fw) ==10{* @10 +*}
861 860,QS Pos_C -Word_in_C - Phrase (Fw) ==11{* @11 +*}
862 861,QS Pos_C -Word_in_C - Phrase (Fw) ==12{* @12 +*}
863 862,QS Pos_C -Word_in_C - Phrase (Fw) ==13{* @13 +*}
864 863,QS Pos_C -Word_in_C - Phrase (Fw) <=1{* @x+*,*@1 +*}
865 864,QS Pos_C -Word_in_C - Phrase (Fw) <=2{* @x+*,*@1+*,*@2 +*}
866 865,QS Pos_C -Word_in_C - Phrase (Fw) <=3{* @x+*,*@1+*,*@2+*,*@3 +*}
867 866,QS Pos_C -Word_in_C - Phrase (Fw) <=4{* @x+*,*@1+*,*@2+*,*@3+*,*@4 +*}
868 867,QS Pos_C -Word_in_C - Phrase (Fw) <=5{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5 +*}
869 868,QS Pos_C -Word_in_C - Phrase (Fw) <=6{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5+*,*@6 +*}
870 869,QS Pos_C -Word_in_C - Phrase (Fw) <=7{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5+*,*@6+*,*@7 +*}
871 870,QS Pos_C -Word_in_C - Phrase (Fw) <=8{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5+*,*@6+*,*@7+*,*@8 +*}
872 871,QS Pos_C -Word_in_C - Phrase (Fw) <=9{*@?+*}
873 872,QS Pos_C -Word_in_C - Phrase (Fw) <=10{*@?+* ,* @10 +*}
874 873,QS Pos_C -Word_in_C - Phrase (Fw) <=11{*@?+* ,* @10 +*,* @11 +*}
875 874,QS Pos_C -Word_in_C - Phrase (Fw) <=12{*@?+* ,* @10 +*,* @11 +*,* @12 +*}
876 875,QS Pos_C -Word_in_C - Phrase (Fw) <=13{*@?+* ,* @10 +*,* @11 +*,* @12 +*,*

@13 +*}
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877 876,QS Pos_C -Word_in_C - Phrase (Bw)==x{*+x&*}
878 877,QS Pos_C -Word_in_C - Phrase (Bw) ==0{*+0&*}
879 878,QS Pos_C -Word_in_C - Phrase (Bw) ==1{*+1&*}
880 879,QS Pos_C -Word_in_C - Phrase (Bw) ==2{*+2&*}
881 880,QS Pos_C -Word_in_C - Phrase (Bw) ==3{*+3&*}
882 881,QS Pos_C -Word_in_C - Phrase (Bw) ==4{*+4&*}
883 882,QS Pos_C -Word_in_C - Phrase (Bw) ==5{*+5&*}
884 883,QS Pos_C -Word_in_C - Phrase (Bw) ==6{*+6&*}
885 884,QS Pos_C -Word_in_C - Phrase (Bw) ==7{*+7&*}
886 885,QS Pos_C -Word_in_C - Phrase (Bw) ==8{*+8&*}
887 886,QS Pos_C -Word_in_C - Phrase (Bw) ==9{*+9&*}
888 887,QS Pos_C -Word_in_C - Phrase (Bw) ==10{*+10&*}
889 888,QS Pos_C -Word_in_C - Phrase (Bw) ==11{*+11&*}
890 889,QS Pos_C -Word_in_C - Phrase (Bw) ==12{*+12&*}
891 890,QS Pos_C -Word_in_C - Phrase (Bw) ==13{*+13&*}
892 891,QS Pos_C -Word_in_C - Phrase (Bw) <=1{*+x&* ,*+0&* ,*+1&*}
893 892,QS Pos_C -Word_in_C - Phrase (Bw) <=2{*+x&* ,*+0&* ,*+1&* ,*+2&*}
894 893,QS Pos_C -Word_in_C - Phrase (Bw) <=3{*+x &* ,*+0&* ,*+1&* ,*+2&* ,*+3&*}
895 894,QS Pos_C -Word_in_C - Phrase (Bw) <=4{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&*}
896 895,QS Pos_C -Word_in_C - Phrase (Bw) <=5{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&*}
897 896,QS Pos_C -Word_in_C - Phrase (Bw) <=6{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&* ,*+6&*}
898 897,QS Pos_C -Word_in_C - Phrase (Bw) <=7{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&* ,*+6&* ,*+7&*}
899 898,QS Pos_C -Word_in_C - Phrase (Bw) <=8{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&* ,*+6&* ,*+7&* ,*+8&*}
900 899,QS Pos_C -Word_in_C - Phrase (Bw) <=9{*+?&*}
901 900,QS Pos_C -Word_in_C - Phrase (Bw) <=10{*+?&* ,*+10&*}
902 901,QS Pos_C -Word_in_C - Phrase (Bw) <=11{*+?&* ,*+10&* ,*+11&*}
903 902,QS Pos_C -Word_in_C - Phrase (Bw) <=12{*+?&* ,*+10&* ,*+11&* ,*+12&*}
904 903,QS Pos_C -Word_in_C - Phrase (Bw)

<=13{*+?&* ,*+10&* ,*+11&* ,*+12&* ,*+13&*}
905 904,QS Num - ContWord_before_C -Word_in_C - Phrase ==x{*&x+*}
906 905,QS Num - ContWord_before_C -Word_in_C - Phrase ==1{*&1+*}
907 906,QS Num - ContWord_before_C -Word_in_C - Phrase ==2{*&2+*}
908 907,QS Num - ContWord_before_C -Word_in_C - Phrase ==3{*&3+*}
909 908,QS Num - ContWord_before_C -Word_in_C - Phrase ==4{*&4+*}
910 909,QS Num - ContWord_before_C -Word_in_C - Phrase ==5{*&5+*}
911 910,QS Num - ContWord_before_C -Word_in_C - Phrase ==6{*&6+*}
912 911,QS Num - ContWord_before_C -Word_in_C - Phrase ==7{*&7+*}
913 912,QS Num - ContWord_before_C -Word_in_C - Phrase ==8{*&8+*}
914 913,QS Num - ContWord_before_C -Word_in_C - Phrase ==9{*&9+*}
915 914,QS Num - ContWord_before_C -Word_in_C -Phrase <=1{*& x+* ,*&1+*}
916 915,QS Num - ContWord_before_C -Word_in_C -Phrase <=2{*& x+* ,*&1+* ,*&2+*}
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917 916,QS Num - ContWord_before_C -Word_in_C -Phrase <=3{*& x
+* ,*&1+* ,*&2+* ,*&3+*}

918 917,QS Num - ContWord_before_C -Word_in_C -Phrase <=4{*& x
+* ,*&1+* ,*&2+* ,*&3+* ,*&4+*}

919 918,QS Num - ContWord_before_C -Word_in_C -Phrase <=5{*& x
+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+*}

920 919,QS Num - ContWord_before_C -Word_in_C -Phrase <=6{*& x
+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+* ,*&6+*}

921 920,QS Num - ContWord_before_C -Word_in_C -Phrase <=7{*& x
+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+* ,*&6+* ,*&7+*}

922 921,QS Num - ContWord_before_C -Word_in_C -Phrase <=8{*& x
+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+* ,*&6+* ,*&7+* ,*&8+*}

923 922,QS Num - ContWord_before_C -Word_in_C -Phrase <=9{*&?+*}
924 923,QS Num - ContWord_after_C -Word_in_C - Phrase ==x{*+x#*}
925 924,QS Num - ContWord_after_C -Word_in_C - Phrase ==0{*+0#*}
926 925,QS Num - ContWord_after_C -Word_in_C - Phrase ==1{*+1#*}
927 926,QS Num - ContWord_after_C -Word_in_C - Phrase ==2{*+2#*}
928 927,QS Num - ContWord_after_C -Word_in_C - Phrase ==3{*+3#*}
929 928,QS Num - ContWord_after_C -Word_in_C - Phrase ==4{*+4#*}
930 929,QS Num - ContWord_after_C -Word_in_C - Phrase ==5{*+5#*}
931 930,QS Num - ContWord_after_C -Word_in_C - Phrase ==6{*+6#*}
932 931,QS Num - ContWord_after_C -Word_in_C - Phrase ==7{*+7#*}
933 932,QS Num - ContWord_after_C -Word_in_C - Phrase ==8{*+8#*}
934 933,QS Num - ContWord_after_C -Word_in_C -Phrase <=0{*+ x#* ,*+0#*}
935 934,QS Num - ContWord_after_C -Word_in_C -Phrase <=1{*+ x#* ,*+0#* ,*+1#*}
936 935,QS Num - ContWord_after_C -Word_in_C -Phrase <=2{*+ x

#* ,*+0#* ,*+1#* ,*+2#*}
937 936,QS Num - ContWord_after_C -Word_in_C -Phrase <=3{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#*}
938 937,QS Num - ContWord_after_C -Word_in_C -Phrase <=4{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#*}
939 938,QS Num - ContWord_after_C -Word_in_C -Phrase <=5{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#*}
940 939,QS Num - ContWord_after_C -Word_in_C -Phrase <=6{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#* ,*+6#*}
941 940,QS Num - ContWord_after_C -Word_in_C -Phrase <=7{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#* ,*+6#* ,*+7#*}
942 941,QS Num - ContWord_after_C -Word_in_C -Phrase <=8{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#* ,*+6#* ,*+7#* ,*+8#*}
943 942,QS Num - Words_from_prev - ContWord ==x{*#x+*}
944 943,QS Num - Words_from_prev - ContWord ==0{*#0+*}
945 944,QS Num - Words_from_prev - ContWord ==1{*#1+*}
946 945,QS Num - Words_from_prev - ContWord ==2{*#2+*}
947 946,QS Num - Words_from_prev - ContWord ==3{*#3+*}
948 947,QS Num - Words_from_prev - ContWord ==4{*#4+*}
949 948,QS Num - Words_from_prev - ContWord ==5{*#5+*}
950 949,QS Num - Words_from_prev -ContWord <=0{*# x+* ,*#0+*}
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951 950,QS Num - Words_from_prev -ContWord <=1{*# x+* ,*#0+* ,*#1+*}
952 951,QS Num - Words_from_prev -ContWord <=2{*# x+* ,*#0+* ,*#1+* ,*#2+*}
953 952,QS Num - Words_from_prev -ContWord <=3{*# x

+* ,*#0+* ,*#1+* ,*#2+* ,*#3+*}
954 953,QS Num - Words_from_prev -ContWord <=4{*# x

+* ,*#0+* ,*#1+* ,*#2+* ,*#3+* ,*#4+*}
955 954,QS Num - Words_from_prev -ContWord <=5{*# x

+* ,*#0+* ,*#1+* ,*#2+* ,*#3+* ,*#4+* ,*#5+*}
956 955,QS Num - Words_from_next - ContWord ==x{*+x/F:*}
957 956,QS Num - Words_from_next - ContWord ==0{*+0/ F:*}
958 957,QS Num - Words_from_next - ContWord ==1{*+1/ F:*}
959 958,QS Num - Words_from_next - ContWord ==2{*+2/ F:*}
960 959,QS Num - Words_from_next - ContWord ==3{*+3/ F:*}
961 960,QS Num - Words_from_next - ContWord ==4{*+4/ F:*}
962 961,QS Num - Words_from_next - ContWord ==5{*+5/ F:*}
963 962,QS Num - Words_from_next -ContWord <=0{*+ x/F:* ,*+0/F:*}
964 963,QS Num - Words_from_next -ContWord <=1{*+ x/F:* ,*+0/F:* ,*+1/F:*}
965 964,QS Num - Words_from_next -ContWord <=2{*+ x/F:* ,*+0/F:* ,*+1/F:* ,*+2/

F:*}
966 965,QS Num - Words_from_next -ContWord <=3{*+ x/F:* ,*+0/F:* ,*+1/F:* ,*+2/

F:* ,*+3/F:*}
967 966,QS Num - Words_from_next -ContWord <=4{*+ x/F:* ,*+0/F:* ,*+1/F:* ,*+2/

F:* ,*+3/F:* ,*+4/F:*}
968 967,QS Num - Words_from_next -ContWord <=5{*+ x/F:* ,*+0/F:* ,*+1/F:* ,*+2/

F:* ,*+3/F:* ,*+4/F:* ,*+5/F:*}
969 968,QS R-Word_Num -Syls ==0{* _0/G:*}
970 969,QS R-Word_Num -Syls ==1{* _1/G:*}
971 970,QS R-Word_Num -Syls ==2{* _2/G:*}
972 971,QS R-Word_Num -Syls ==3{* _3/G:*}
973 972,QS R-Word_Num -Syls ==4{* _4/G:*}
974 973,QS R-Word_Num -Syls ==5{* _5/G:*}
975 974,QS R-Word_Num -Syls ==6{* _6/G:*}
976 975,QS R-Word_Num -Syls ==7{* _7/G:*}
977 976,QS R-Word_Num -Syls <=1{* _0/G:*,*_1/G:*}
978 977,QS R-Word_Num -Syls <=2{* _0/G:*,*_1/G:*,*_2/G:*}
979 978,QS R-Word_Num -Syls <=3{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*}
980 979,QS R-Word_Num -Syls <=4{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G:*}
981 980,QS R-Word_Num -Syls <=5{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G:*,*

_5/G:*}
982 981,QS R-Word_Num -Syls <=6{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G:*,*

_5/G:*,*_6/G:*}
983 982,QS R-Word_Num -Syls <=7{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G:*,*

_5/G:*,*_6/G:*,*_7/G:*}
984 983,QS L-Phrase_Num -Syls ==0{*/ G:0_*}
985 984,QS L-Phrase_Num -Syls ==1{*/ G:1_*}
986 985,QS L-Phrase_Num -Syls ==2{*/ G:2_*}
987 986,QS L-Phrase_Num -Syls ==3{*/ G:3_*}

196 Appendix A Listing of Features



988 987,QS L-Phrase_Num -Syls ==4{*/ G:4_*}
989 988,QS L-Phrase_Num -Syls ==5{*/ G:5_*}
990 989,QS L-Phrase_Num -Syls ==6{*/ G:6_*}
991 990,QS L-Phrase_Num -Syls ==7{*/ G:7_*}
992 991,QS L-Phrase_Num -Syls ==8{*/ G:8_*}
993 992,QS L-Phrase_Num -Syls ==9{*/ G:9_*}
994 993,QS L-Phrase_Num -Syls ==10{*/ G:10_*}
995 994,QS L-Phrase_Num -Syls ==11{*/ G:11_*}
996 995,QS L-Phrase_Num -Syls ==12{*/ G:12_*}
997 996,QS L-Phrase_Num -Syls ==13{*/ G:13_*}
998 997,QS L-Phrase_Num -Syls ==14{*/ G:14_*}
999 998,QS L-Phrase_Num -Syls ==15{*/ G:15_*}

1000 999,QS L-Phrase_Num -Syls ==16{*/ G:16_*}
1001 1000 , QS L-Phrase_Num -Syls ==17{*/ G:17_*}
1002 1001 , QS L-Phrase_Num -Syls ==18{*/ G:18_*}
1003 1002 , QS L-Phrase_Num -Syls ==19{*/ G:19_*}
1004 1003 , QS L-Phrase_Num -Syls ==20{*/ G:20_*}
1005 1004 , QS L-Phrase_Num -Syls <=1{*/ G:0_*,*/G:1_*}
1006 1005 , QS L-Phrase_Num -Syls <=2{*/ G:0_*,*/G:1_*,*/G:2_*}
1007 1006 , QS L-Phrase_Num -Syls <=3{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*}
1008 1007 , QS L-Phrase_Num -Syls <=4{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*}
1009 1008 , QS L-Phrase_Num -Syls <=5{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*}
1010 1009 , QS L-Phrase_Num -Syls <=6{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*,*/G:6_*}
1011 1010 , QS L-Phrase_Num -Syls <=7{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*,*/G:6_*,*/G:7_*}
1012 1011 , QS L-Phrase_Num -Syls <=8{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*,*/G:6_*,*/G:7_*,*/G:8_*}
1013 1012 , QS L-Phrase_Num -Syls <=9{*/ G:?_*}
1014 1013 , QS L-Phrase_Num -Syls <=10{*/ G:?_*,*/G:10_*}
1015 1014 , QS L-Phrase_Num -Syls <=11{*/ G:?_*,*/G:10_*,*/G:11_*}
1016 1015 , QS L-Phrase_Num -Syls <=12{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*}
1017 1016 , QS L-Phrase_Num -Syls <=13{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*}
1018 1017 , QS L-Phrase_Num -Syls <=14{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*,*/G:14_*}
1019 1018 , QS L-Phrase_Num -Syls <=15{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*,*/G:14_*,*/G:15_*}
1020 1019 , QS L-Phrase_Num -Syls <=16{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*,*/G:14_*,*/G:15_*,*/G:16_*}
1021 1020 , QS L-Phrase_Num -Syls <=17{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*,*/G:14_*,*/G:15_*,*/G:16_*,*/G:17_*}
1022 1021 , QS L-Phrase_Num -Syls <=18{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*,*/G:14_*,*/G:15_*,*/G:16_*,*/G:17_*,*/G:18_*}
1023 1022 , QS L-Phrase_Num -Syls <=19{*/ G:?_*,*/G:1?_*}

197



1024 1023 , QS L-Phrase_Num -Syls <=20{*/ G:?_*,*/G:1?_*,*/G:20_*}
1025 1024 , QS L-Phrase_Num -Words ==0{* _0/H:*}
1026 1025 , QS L-Phrase_Num -Words ==1{* _1/H:*}
1027 1026 , QS L-Phrase_Num -Words ==2{* _2/H:*}
1028 1027 , QS L-Phrase_Num -Words ==3{* _3/H:*}
1029 1028 , QS L-Phrase_Num -Words ==4{* _4/H:*}
1030 1029 , QS L-Phrase_Num -Words ==5{* _5/H:*}
1031 1030 , QS L-Phrase_Num -Words ==6{* _6/H:*}
1032 1031 , QS L-Phrase_Num -Words ==7{* _7/H:*}
1033 1032 , QS L-Phrase_Num -Words ==8{* _8/H:*}
1034 1033 , QS L-Phrase_Num -Words ==9{* _9/H:*}
1035 1034 , QS L-Phrase_Num -Words ==10{* _10/H:*}
1036 1035 , QS L-Phrase_Num -Words ==11{* _11/H:*}
1037 1036 , QS L-Phrase_Num -Words ==12{* _12/H:*}
1038 1037 , QS L-Phrase_Num -Words ==13{* _13/H:*}
1039 1038 , QS L-Phrase_Num -Words <=1{* _0/H:*,*_1/H:*}
1040 1039 , QS L-Phrase_Num -Words <=2{* _0/H:*,*_1/H:*,*_2/H:*}
1041 1040 , QS L-Phrase_Num -Words <=3{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*}
1042 1041 , QS L-Phrase_Num -Words <=4{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*}
1043 1042 , QS L-Phrase_Num -Words <=5{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*}
1044 1043 , QS L-Phrase_Num -Words <=6{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*,*_6/H:*}
1045 1044 , QS L-Phrase_Num -Words <=7{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*,*_6/H:*,*_7/H:*}
1046 1045 , QS L-Phrase_Num -Words <=8{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*,*_6/H:*,*_7/H:*,*_8/H:*}
1047 1046 , QS L-Phrase_Num -Words <=9{*_?/H:*}
1048 1047 , QS L-Phrase_Num -Words <=10{* _?/H:*,* _10/H:*}
1049 1048 , QS L-Phrase_Num -Words <=11{* _?/H:*,* _10/H:*,* _11/H:*}
1050 1049 , QS L-Phrase_Num -Words <=12{* _?/H:*,* _10/H:*,* _11/H:*,* _12/H:*}
1051 1050 , QS L-Phrase_Num -Words <=13{* _?/H:*,* _10/H:*,* _11/H:*,* _12/H:*,*

_13/H:*}
1052 1051 , QS C-Phrase_Num -Syls ==x{*/H:x=*}
1053 1052 , QS C-Phrase_Num -Syls ==0{*/ H:0=*}
1054 1053 , QS C-Phrase_Num -Syls ==1{*/ H:1=*}
1055 1054 , QS C-Phrase_Num -Syls ==2{*/ H:2=*}
1056 1055 , QS C-Phrase_Num -Syls ==3{*/ H:3=*}
1057 1056 , QS C-Phrase_Num -Syls ==4{*/ H:4=*}
1058 1057 , QS C-Phrase_Num -Syls ==5{*/ H:5=*}
1059 1058 , QS C-Phrase_Num -Syls ==6{*/ H:6=*}
1060 1059 , QS C-Phrase_Num -Syls ==7{*/ H:7=*}
1061 1060 , QS C-Phrase_Num -Syls ==8{*/ H:8=*}
1062 1061 , QS C-Phrase_Num -Syls ==9{*/ H:9=*}
1063 1062 , QS C-Phrase_Num -Syls ==10{*/ H :10=*}
1064 1063 , QS C-Phrase_Num -Syls ==11{*/ H :11=*}
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1065 1064 , QS C-Phrase_Num -Syls ==12{*/ H :12=*}
1066 1065 , QS C-Phrase_Num -Syls ==13{*/ H :13=*}
1067 1066 , QS C-Phrase_Num -Syls ==14{*/ H :14=*}
1068 1067 , QS C-Phrase_Num -Syls ==15{*/ H :15=*}
1069 1068 , QS C-Phrase_Num -Syls ==16{*/ H :16=*}
1070 1069 , QS C-Phrase_Num -Syls ==17{*/ H :17=*}
1071 1070 , QS C-Phrase_Num -Syls ==18{*/ H :18=*}
1072 1071 , QS C-Phrase_Num -Syls ==19{*/ H :19=*}
1073 1072 , QS C-Phrase_Num -Syls ==20{*/ H :20=*}
1074 1073 , QS C-Phrase_Num -Syls <=0{*/ H:x=* ,*/H:0=*}
1075 1074 , QS C-Phrase_Num -Syls <=1{*/ H:x=* ,*/H:0=* ,*/H:1=*}
1076 1075 , QS C-Phrase_Num -Syls <=2{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=*}
1077 1076 , QS C-Phrase_Num -Syls <=3{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=*}
1078 1077 , QS C-Phrase_Num -Syls <=4{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=*}
1079 1078 , QS C-Phrase_Num -Syls <=5{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=*}
1080 1079 , QS C-Phrase_Num -Syls <=6{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=* ,*/H:6=*}
1081 1080 , QS C-Phrase_Num -Syls <=7{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=* ,*/H:6=* ,*/H:7=*}
1082 1081 , QS C-Phrase_Num -Syls <=8{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=* ,*/H:6=* ,*/H:7=* ,*/H:8=*}
1083 1082 , QS C-Phrase_Num -Syls <=9{*/ H:?=*}
1084 1083 , QS C-Phrase_Num -Syls <=10{*/ H:?=* ,*/H :10=*}
1085 1084 , QS C-Phrase_Num -Syls <=11{*/ H:?=* ,*/H:10=* ,*/H :11=*}
1086 1085 , QS C-Phrase_Num -Syls <=12{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H :12=*}
1087 1086 , QS C-Phrase_Num -Syls <=13{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H :13=*}
1088 1087 , QS C-Phrase_Num -Syls <=14{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H :14=*}
1089 1088 , QS C-Phrase_Num -Syls <=15{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H :15=*}
1090 1089 , QS C-Phrase_Num -Syls <=16{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=* ,*/H :16=*}
1091 1090 , QS C-Phrase_Num -Syls <=17{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=* ,*/H:16=* ,*/H :17=*}
1092 1091 , QS C-Phrase_Num -Syls <=18{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=* ,*/H:16=* ,*/H:17=* ,*/H :18=*}
1093 1092 , QS C-Phrase_Num -Syls <=19{*/ H:?=* ,*/H :1?=*}
1094 1093 , QS C-Phrase_Num -Syls <=20{*/ H:?=* ,*/H:1?=* ,*/H :20=*}
1095 1094 , QS C-Phrase_Num -Words ==x{*= x@*}
1096 1095 , QS C-Phrase_Num -Words ==0{*=0 @*}
1097 1096 , QS C-Phrase_Num -Words ==1{*=1 @*}
1098 1097 , QS C-Phrase_Num -Words ==2{*=2 @*}
1099 1098 , QS C-Phrase_Num -Words ==3{*=3 @*}
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1100 1099 , QS C-Phrase_Num -Words ==4{*=4 @*}
1101 1100 , QS C-Phrase_Num -Words ==5{*=5 @*}
1102 1101 , QS C-Phrase_Num -Words ==6{*=6 @*}
1103 1102 , QS C-Phrase_Num -Words ==7{*=7 @*}
1104 1103 , QS C-Phrase_Num -Words ==8{*=8 @*}
1105 1104 , QS C-Phrase_Num -Words ==9{*=9 @*}
1106 1105 , QS C-Phrase_Num -Words ==10{*=10 @*}
1107 1106 , QS C-Phrase_Num -Words ==11{*=11 @*}
1108 1107 , QS C-Phrase_Num -Words ==12{*=12 @*}
1109 1108 , QS C-Phrase_Num -Words ==13{*=13 @*}
1110 1109 , QS C-Phrase_Num -Words <=0{*= x@ * ,*=0@*}
1111 1110 , QS C-Phrase_Num -Words <=1{*= x@ * ,*=0@* ,*=1@*}
1112 1111 , QS C-Phrase_Num -Words <=2{*= x@ * ,*=0@* ,*=1@* ,*=2@*}
1113 1112 , QS C-Phrase_Num -Words <=3{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@*}
1114 1113 , QS C-Phrase_Num -Words <=4{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@*}
1115 1114 , QS C-Phrase_Num -Words <=5{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@*}
1116 1115 , QS C-Phrase_Num -Words <=6{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@*}
1117 1116 , QS C-Phrase_Num -Words <=7{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@*}
1118 1117 , QS C-Phrase_Num -Words <=8{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@* ,*=8@*}
1119 1118 , QS C-Phrase_Num -Words <=9{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@*}
1120 1119 , QS C-Phrase_Num -Words <=10{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@*}
1121 1120 , QS C-Phrase_Num -Words <=11{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@* ,*=11@*}
1122 1121 , QS C-Phrase_Num -Words <=12{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@* ,*=11@* ,*=12@*}
1123 1122 , QS C-Phrase_Num -Words <=13{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@* ,*=11@* ,*=12@* ,*=13@*}
1124 1123 , QS Pos_C - Phrase_in_Utterance (Fw)==1{* @1 =*}
1125 1124 , QS Pos_C - Phrase_in_Utterance (Fw)==2{* @2 =*}
1126 1125 , QS Pos_C - Phrase_in_Utterance (Fw)==3{* @3 =*}
1127 1126 , QS Pos_C - Phrase_in_Utterance (Fw)==4{* @4 =*}
1128 1127 , QS Pos_C - Phrase_in_Utterance (Fw) <=2{* @1=*,*@2 =*}
1129 1128 , QS Pos_C - Phrase_in_Utterance (Fw) <=3{* @1=*,*@2=*,*@3 =*}
1130 1129 , QS Pos_C - Phrase_in_Utterance (Fw) <=4{* @1=*,*@2=*,*@3=*,*@4 =*}
1131 1130 , QS Pos_C - Phrase_in_Utterance (Bw) ==1{*=1|*}
1132 1131 , QS Pos_C - Phrase_in_Utterance (Bw) ==2{*=2|*}
1133 1132 , QS Pos_C - Phrase_in_Utterance (Bw) ==3{*=3|*}
1134 1133 , QS Pos_C - Phrase_in_Utterance (Bw) ==4{*=4|*}
1135 1134 , QS Pos_C - Phrase_in_Utterance (Bw) <=2{*=1|* ,*=2|*}
1136 1135 , QS Pos_C - Phrase_in_Utterance (Bw) <=3{*=1|* ,*=2|* ,*=3|*}
1137 1136 , QS Pos_C - Phrase_in_Utterance (Bw) <=4{*=1|* ,*=2|* ,*=3|* ,*=4|*}
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1138 1137 , QS R-Phrase_Num -Syls ==0{*/ I:0=*}
1139 1138 , QS R-Phrase_Num -Syls ==1{*/ I:1=*}
1140 1139 , QS R-Phrase_Num -Syls ==2{*/ I:2=*}
1141 1140 , QS R-Phrase_Num -Syls ==3{*/ I:3=*}
1142 1141 , QS R-Phrase_Num -Syls ==4{*/ I:4=*}
1143 1142 , QS R-Phrase_Num -Syls ==5{*/ I:5=*}
1144 1143 , QS R-Phrase_Num -Syls ==6{*/ I:6=*}
1145 1144 , QS R-Phrase_Num -Syls ==7{*/ I:7=*}
1146 1145 , QS R-Phrase_Num -Syls ==8{*/ I:8=*}
1147 1146 , QS R-Phrase_Num -Syls ==9{*/ I:9=*}
1148 1147 , QS R-Phrase_Num -Syls ==10{*/ I :10=*}
1149 1148 , QS R-Phrase_Num -Syls ==11{*/ I :11=*}
1150 1149 , QS R-Phrase_Num -Syls ==12{*/ I :12=*}
1151 1150 , QS R-Phrase_Num -Syls ==13{*/ I :13=*}
1152 1151 , QS R-Phrase_Num -Syls ==14{*/ I :14=*}
1153 1152 , QS R-Phrase_Num -Syls ==15{*/ I :15=*}
1154 1153 , QS R-Phrase_Num -Syls ==16{*/ I :16=*}
1155 1154 , QS R-Phrase_Num -Syls ==17{*/ I :17=*}
1156 1155 , QS R-Phrase_Num -Syls ==18{*/ I :18=*}
1157 1156 , QS R-Phrase_Num -Syls ==19{*/ I :19=*}
1158 1157 , QS R-Phrase_Num -Syls ==20{*/ I :20=*}
1159 1158 , QS R-Phrase_Num -Syls <=1{*/ I:0=* ,*/I:1=*}
1160 1159 , QS R-Phrase_Num -Syls <=2{*/ I:0=* ,*/I:1=* ,*/I:2=*}
1161 1160 , QS R-Phrase_Num -Syls <=3{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=*}
1162 1161 , QS R-Phrase_Num -Syls <=4{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=*}
1163 1162 , QS R-Phrase_Num -Syls <=5{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=*}
1164 1163 , QS R-Phrase_Num -Syls <=6{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=* ,*/I:6=*}
1165 1164 , QS R-Phrase_Num -Syls <=7{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=* ,*/I:6=* ,*/I:7=*}
1166 1165 , QS R-Phrase_Num -Syls <=8{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=* ,*/I:6=* ,*/I:7=* ,*/I:8=*}
1167 1166 , QS R-Phrase_Num -Syls <=9{*/ I:?=*}
1168 1167 , QS R-Phrase_Num -Syls <=10{*/ I:?=* ,*/I :10=*}
1169 1168 , QS R-Phrase_Num -Syls <=11{*/ I:?=* ,*/I:10=* ,*/I :11=*}
1170 1169 , QS R-Phrase_Num -Syls <=12{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I :12=*}
1171 1170 , QS R-Phrase_Num -Syls <=13{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I :13=*}
1172 1171 , QS R-Phrase_Num -Syls <=14{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I :14=*}
1173 1172 , QS R-Phrase_Num -Syls <=15{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=* ,*/I :15=*}
1174 1173 , QS R-Phrase_Num -Syls <=16{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=* ,*/I:15=* ,*/I :16=*}

201



1175 1174 , QS R-Phrase_Num -Syls <=17{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/
I:13=* ,*/I:14=* ,*/I:15=* ,*/I:16=* ,*/I :17=*}

1176 1175 , QS R-Phrase_Num -Syls <=18{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/
I:13=* ,*/I:14=* ,*/I:15=* ,*/I:16=* ,*/I:17=* ,*/I :18=*}

1177 1176 , QS R-Phrase_Num -Syls <=19{*/ I:?=* ,*/I :1?=*}
1178 1177 , QS R-Phrase_Num -Syls <=20{*/ I:?=* ,*/I:1?=* ,*/I :20=*}
1179 1178 , QS R-Phrase_Num -Words ==0{*=0/ J:*}
1180 1179 , QS R-Phrase_Num -Words ==1{*=1/ J:*}
1181 1180 , QS R-Phrase_Num -Words ==2{*=2/ J:*}
1182 1181 , QS R-Phrase_Num -Words ==3{*=3/ J:*}
1183 1182 , QS R-Phrase_Num -Words ==4{*=4/ J:*}
1184 1183 , QS R-Phrase_Num -Words ==5{*=5/ J:*}
1185 1184 , QS R-Phrase_Num -Words ==6{*=6/ J:*}
1186 1185 , QS R-Phrase_Num -Words ==7{*=7/ J:*}
1187 1186 , QS R-Phrase_Num -Words ==8{*=8/ J:*}
1188 1187 , QS R-Phrase_Num -Words ==9{*=9/ J:*}
1189 1188 , QS R-Phrase_Num -Words ==10{*=10/ J:*}
1190 1189 , QS R-Phrase_Num -Words ==11{*=11/ J:*}
1191 1190 , QS R-Phrase_Num -Words ==12{*=12/ J:*}
1192 1191 , QS R-Phrase_Num -Words ==13{*=13/ J:*}
1193 1192 , QS R-Phrase_Num -Words ==14{*=14/ J:*}
1194 1193 , QS R-Phrase_Num -Words ==15{*=15/ J:*}
1195 1194 , QS R-Phrase_Num -Words <=1{*=0/ J:* ,*=1/J:*}
1196 1195 , QS R-Phrase_Num -Words <=2{*=0/ J:* ,*=1/J:* ,*=2/J:*}
1197 1196 , QS R-Phrase_Num -Words <=3{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:*}
1198 1197 , QS R-Phrase_Num -Words <=4{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:*}
1199 1198 , QS R-Phrase_Num -Words <=5{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:*}
1200 1199 , QS R-Phrase_Num -Words <=6{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:* ,*=6/J:*}
1201 1200 , QS R-Phrase_Num -Words <=7{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:* ,*=6/J:* ,*=7/J:*}
1202 1201 , QS R-Phrase_Num -Words <=8{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:* ,*=6/J:* ,*=7/J:* ,*=8/J:*}
1203 1202 , QS R-Phrase_Num -Words <=9{*=?/ J:*}
1204 1203 , QS R-Phrase_Num -Words <=10{*=?/ J:* ,*=10/J:*}
1205 1204 , QS R-Phrase_Num -Words <=11{*=?/ J:* ,*=10/J:* ,*=11/J:*}
1206 1205 , QS R-Phrase_Num -Words <=12{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J:*}
1207 1206 , QS R-Phrase_Num -Words <=13{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:* ,*=13/J:*}
1208 1207 , QS R-Phrase_Num -Words <=14{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:* ,*=13/J:* ,*=14/J:*}
1209 1208 , QS R-Phrase_Num -Words <=15{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:* ,*=13/J:* ,*=14/J:* ,*=15/J:*}
1210 1209 , QS Num - Syls_in_Utterance ==1{*/ J:1+*}
1211 1210 , QS Num - Syls_in_Utterance ==2{*/ J:2+*}
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1212 1211 , QS Num - Syls_in_Utterance ==3{*/ J:3+*}
1213 1212 , QS Num - Syls_in_Utterance ==4{*/ J:4+*}
1214 1213 , QS Num - Syls_in_Utterance ==5{*/ J:5+*}
1215 1214 , QS Num - Syls_in_Utterance ==6{*/ J:6+*}
1216 1215 , QS Num - Syls_in_Utterance ==7{*/ J:7+*}
1217 1216 , QS Num - Syls_in_Utterance ==8{*/ J:8+*}
1218 1217 , QS Num - Syls_in_Utterance ==9{*/ J:9+*}
1219 1218 , QS Num - Syls_in_Utterance ==10{*/ J :10+*}
1220 1219 , QS Num - Syls_in_Utterance ==11{*/ J :11+*}
1221 1220 , QS Num - Syls_in_Utterance ==12{*/ J :12+*}
1222 1221 , QS Num - Syls_in_Utterance ==13{*/ J :13+*}
1223 1222 , QS Num - Syls_in_Utterance ==14{*/ J :14+*}
1224 1223 , QS Num - Syls_in_Utterance ==15{*/ J :15+*}
1225 1224 , QS Num - Syls_in_Utterance ==16{*/ J :16+*}
1226 1225 , QS Num - Syls_in_Utterance ==17{*/ J :17+*}
1227 1226 , QS Num - Syls_in_Utterance ==18{*/ J :18+*}
1228 1227 , QS Num - Syls_in_Utterance ==19{*/ J :19+*}
1229 1228 , QS Num - Syls_in_Utterance ==20{*/ J :20+*}
1230 1229 , QS Num - Syls_in_Utterance ==21{*/ J :21+*}
1231 1230 , QS Num - Syls_in_Utterance ==22{*/ J :22+*}
1232 1231 , QS Num - Syls_in_Utterance ==23{*/ J :23+*}
1233 1232 , QS Num - Syls_in_Utterance ==24{*/ J :24+*}
1234 1233 , QS Num - Syls_in_Utterance ==25{*/ J :25+*}
1235 1234 , QS Num - Syls_in_Utterance ==26{*/ J :26+*}
1236 1235 , QS Num - Syls_in_Utterance ==27{*/ J :27+*}
1237 1236 , QS Num - Syls_in_Utterance ==28{*/ J :28+*}
1238 1237 , QS Num - Syls_in_Utterance <=2{*/ J:1+* ,*/J:2+*}
1239 1238 , QS Num - Syls_in_Utterance <=3{*/ J:1+* ,*/J:2+* ,*/J:3+*}
1240 1239 , QS Num - Syls_in_Utterance <=4{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+*}
1241 1240 , QS Num - Syls_in_Utterance <=5{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+*}
1242 1241 , QS Num - Syls_in_Utterance <=6{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+* ,*/J:6+*}
1243 1242 , QS Num - Syls_in_Utterance <=7{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+* ,*/J:6+* ,*/J:7+*}
1244 1243 , QS Num - Syls_in_Utterance <=8{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+* ,*/J:6+* ,*/J:7+* ,*/J:8+*}
1245 1244 , QS Num - Syls_in_Utterance <=9{*/ J:?+*}
1246 1245 , QS Num - Syls_in_Utterance <=10{*/ J:?+* ,*/J :10+*}
1247 1246 , QS Num - Syls_in_Utterance <=11{*/ J:?+* ,*/J:10+* ,*/J :11+*}
1248 1247 , QS Num - Syls_in_Utterance <=12{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J

:12+*}
1249 1248 , QS Num - Syls_in_Utterance <=13{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J

:12+* ,*/J :13+*}
1250 1249 , QS Num - Syls_in_Utterance <=14{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J

:12+* ,*/J:13+* ,*/J :14+*}
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1251 1250 , QS Num - Syls_in_Utterance <=15{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J :15+*}

1252 1251 , QS Num - Syls_in_Utterance <=16{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+* ,*/J :16+*}

1253 1252 , QS Num - Syls_in_Utterance <=17{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+* ,*/J:16+* ,*/J :17+*}

1254 1253 , QS Num - Syls_in_Utterance <=18{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+* ,*/J:16+* ,*/J:17+* ,*/J :18+*}

1255 1254 , QS Num - Syls_in_Utterance <=19{*/ J:?+* ,*/J :1?+*}
1256 1255 , QS Num - Syls_in_Utterance <=20{*/ J:?+* ,*/J:1?+* ,*/J :20+*}
1257 1256 , QS Num - Syls_in_Utterance <=21{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+*}
1258 1257 , QS Num - Syls_in_Utterance <=22{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J :22+*}
1259 1258 , QS Num - Syls_in_Utterance <=23{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J :23+*}
1260 1259 , QS Num - Syls_in_Utterance <=24{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J :24+*}
1261 1260 , QS Num - Syls_in_Utterance <=25{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J :25+*}
1262 1261 , QS Num - Syls_in_Utterance <=26{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+* ,*/J :26+*}
1263 1262 , QS Num - Syls_in_Utterance <=27{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+* ,*/J:26+* ,*/J :27+*}
1264 1263 , QS Num - Syls_in_Utterance <=28{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+* ,*/J:26+* ,*/J:27+* ,*/J
:28+*}

1265 1264 , QS Num - Words_in_Utterance ==1{*+1 -*}
1266 1265 , QS Num - Words_in_Utterance ==2{*+2 -*}
1267 1266 , QS Num - Words_in_Utterance ==3{*+3 -*}
1268 1267 , QS Num - Words_in_Utterance ==4{*+4 -*}
1269 1268 , QS Num - Words_in_Utterance ==5{*+5 -*}
1270 1269 , QS Num - Words_in_Utterance ==6{*+6 -*}
1271 1270 , QS Num - Words_in_Utterance ==7{*+7 -*}
1272 1271 , QS Num - Words_in_Utterance ==8{*+8 -*}
1273 1272 , QS Num - Words_in_Utterance ==9{*+9 -*}
1274 1273 , QS Num - Words_in_Utterance ==10{*+10 -*}
1275 1274 , QS Num - Words_in_Utterance ==11{*+11 -*}
1276 1275 , QS Num - Words_in_Utterance ==12{*+12 -*}
1277 1276 , QS Num - Words_in_Utterance ==13{*+13 -*}
1278 1277 , QS Num - Words_in_Utterance <=2{*+1 -* ,*+2 -*}
1279 1278 , QS Num - Words_in_Utterance <=3{*+1 -* ,*+2 -* ,*+3 -*}
1280 1279 , QS Num - Words_in_Utterance <=4{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -*}
1281 1280 , QS Num - Words_in_Utterance <=5{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -*}
1282 1281 , QS Num - Words_in_Utterance

<=6{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -* ,*+6 -*}
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1283 1282 , QS Num - Words_in_Utterance
<=7{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -* ,*+6 -* ,*+7 -*}

1284 1283 , QS Num - Words_in_Utterance
<=8{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -* ,*+6 -* ,*+7 -* ,*+8 -*}

1285 1284 , QS Num - Words_in_Utterance <=9{*+? -*}
1286 1285 , QS Num - Words_in_Utterance <=10{*+? -* ,*+10 -*}
1287 1286 , QS Num - Words_in_Utterance <=11{*+? -* ,*+10 -* ,*+11 -*}
1288 1287 , QS Num - Words_in_Utterance <=12{*+? -* ,*+10 -* ,*+11 -* ,*+12 -*}
1289 1288 , QS Num - Words_in_Utterance

<=13{*+? -* ,*+10 -* ,*+11 -* ,*+12 -* ,*+13 -*}
1290 1289 , QS Num - Phrases_in_Utterance ==1{* -1/K:*}
1291 1290 , QS Num - Phrases_in_Utterance ==2{* -2/K:*}
1292 1291 , QS Num - Phrases_in_Utterance ==3{* -3/K:*}
1293 1292 , QS Num - Phrases_in_Utterance ==4{* -4/K:*}
1294 1293 , QS Num - Phrases_in_Utterance <=2{* -1/K:* ,* -2/K:*}
1295 1294 , QS Num - Phrases_in_Utterance <=3{* -1/K:* ,* -2/K:* ,* -3/K:*}
1296 1295 , QS Num - Phrases_in_Utterance <=4{* -1/K:* ,* -2/K:* ,* -3/K:* ,* -4/K

:*}
1297 1296 , vuv

Listing A.1: A comma-separated listing of feature indexes and their codenames including
the HTK HED matching patterns used for extraction from the full-context
labels.
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Listing of Feature Groups B
This section contains the definition of the nested feature groups in form of a raw

Python script in Listing B.1. These groups were used in this work to provide a

number of different perspectives on the relevance of the input features on the F0

contour predicted by the intonation model. The listing has a bottom-up structure

with the most concrete groups defined as simple lists of individual features at the

beginning and the more abstract feature groups towards the end where the actual

groups used in the relevance analysis are defined. The individual features are listed

and explained in Appendix A of this work.

The first group VUV defined in lines 1–3 contains a single feature that represents

the voicing information.

After that, in lines 5–24 groups that hold features that represent whether a segment

is a vowel or a consonant are defined as QUINTPHONE_SEGMENT_VC_* . The * is a

placeholder for one of the five quintphone contexts; the leftmost LL , immediate

left L , central (current) C , immediate right R and rightmost RR segments.

In a similar manner, features related to the phonetic and phonological identity

of a segment ( QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_** ) are grouped by the

quintphone context in lines 26–430.

Feature groups defined as NUM_SEG_IN_SYL_*DIRECTION*_*RELATION* in lines

432–470 contain features that encode the number of other segments in the current

syllable. The *DIRECTION* part of the group name denotes whether the previous

BW of the next FW segments are counted and *RELATION* denotes whether the

number is equal EQ or less-than-or-equal LTE to the given number.

Feature groups in lines 472–508, group features of the immediate left neighbour

of the current syllable. These include features related to stress, accent, accent type

(ToBI tone) and length of the syllable expressed in number of segments respectively.

The following groups in lines 510–548 contain the same features but related to the

current syllable.

Additionally, in lines 550–677 groups related to the forward and backward position

of the syllable in the current word and phrase are defined. Lines 679–884 contain
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definitions of feature groups related to the number of stressed and accented syllables

before and after the current syllable in the current phrase, as well as, the forward

and backward distance to the closest stressed and accented syllables, expressed in

number of syllables, respectively.

An additional group holding all features related to the phonetic and phonological

identity of the syllable nucleus is defined in lines 886-904.

Lines 906–942 contain feature groups related to the immediate right neighbour of

the current syllable defined in the same manner as groups containing features for

the immediate left neighbour defined in lines 472–508.

Groups holding features related to the length of the immediate left and current word

expressed in the number of syllables are defined in lines 944–962 and 963–981.

Groups containing features related to the forward and backward position of the

current word in the current phrase are defined in lines 983–1045.

Features that express the number of content (accented) words before and after the

current word in the current phrase and the distance to the nearest previous and next

content word are structured into groups in lines 1047–1126.

Groups defined in lines 1128–1146 contain features related to the length of the

immediate left word expressed in number of syllables.

Feature groups in lines 1148–1224 include the lengths of the immediate left phrase

expressed in number of syllables and words.

Similarly, the groups in lines 1226–1306 contain features related to the length of

the current phrase, also expressed in number of syllables and words. Addtionally,

for the current phrase, in lines 1308–1330, feature groups related to the forward

and backward position of the current phrase in the current utterance are defined.

The feature groups with syllable- and word-lengths of the immediate right phrase

are listed in lines 1332–1412.

The inventory of low level groups ends with groupings of features related to

the length of the whole utterance, expressed in number of syllables, words and

phrases.

The following groups provide an even higher abstraction level as they are defined as

lists of lower level groups.

208 Appendix B Listing of Feature Groups



The QUINTPHONE_SEGMENT_VC group in lines 1524–1530 contains all low level

groups of features encoding whether specific segments of the quintphone (i.e. the

leftmost, immediate left, central, immediate right and rightmost segments) are

a vowel or a consonant. Similarly, QUINTPHONE_SEGMENT_ARTICULATORY_TYPE

defined in 1531–1537 lists all five feature groups containing features related to the

phonetic and phonological identities and properties of the quintphone segments.

SEG_POS_IN_SYL , in turn (lines 1538–1543) groups all lower-level feature groups

related to the position of a segment in current syllable, forward and backward, and

expressed through both the equality and inequality checks.

QUINTPHONE_SEGMENTAL_FEATURES in lines 1544–1547 was defined as a list of

the high level groups related to the vowel/consonant distinction and the phonetic

and phonological properties and identities of a segment (defined just a few lines

above).

The QUINTPHONE group, in turn, contains all of the higher level groups related to

the quintphone segments.

All of the syllable-related low-level groups were structured in a similar fashion. The

groups containing features related to the information about the previous, next and

current syllable length, nucleus type, stress and accent presence and type are defined

in lines 1560–1586.

Groups containing positional features for syllables were first grouped keeping the

distinction of the parent unit type in which the position is calculated, i.e. word and

phrase, and the direction towards which the position is determined, i.e. forward and

backward (lines 1588–1603). Additional groups related to the enclosing parent unit

only, are then created in lines 1604-1611 to include the various positional groups

which are all finally grouped under SYLLABLE_POSITION in lines 1613–1616.

Groups in lines 1618–1641 include all lower-level groups related to the number of

stressed and accented syllables before and after the current syllable. These groups

are then included in a single general group SYLLABLE_NEIGHBOURHOOD in lines

1643–1650.

In the same manner, groups of features connected with the position of the current

syllable in relation to the closest accented and stressed syllables in both directions are

gradually structured in lines 1652–1675, to be finally included in a single high-level

group RELATIVE_SYLLABLE_POSITION in lines 1677–1684.
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The groups of features related to the length of the previous, current and next word

measured in number of syllables are arranged into WORD_LEN_IN_SYLS in lines

1690–1697. Feature groups related to the position of the current words are first

arranged into a number of more granular groups in lines 1698–1709, and then

included in a single group called WORD_POSITION (lines 1710–1714), similar to the

scheme used in case of the syllable.

In a very similar fashion the feature groups related to the number of content

(accented) word before and after the current word in the current phrase are gradu-

ally structured into WORD_SURROUNDINGS in lines 1715–1726, whereas the feature

groups related to the position of the current word in the current phrase in relation to

closest next and previous content word are structured into RELATIVE_WORD_POSITION

in lines 1727–1738.

All low-level phrase length groups are listed in PHRASE_LEN_IN_SYLS (lines 1744–

1751), PHRASE_LEN_IN_WORDS (lines 1752–1759) and eventually in PHRASE_LEN

in lines 1760–1763. Phrase position groups are structured in a similar fashion in the

following lines (1764–1775).

UTTERANCE_LEN is constructed in lines 1781–1797.

After that the previously defined high-level groups are further structured into groups

that provide an even higher and more intuitive level of abstraction. All groups related

to the position of a segment are listed under SEGMENTAL_POSITIONAL_ABSOLUTE in

lines 1801–1806. On the other hand, all groups related the phonetic and phonologi-

cal qualities of a segment are structured under SEGMENTAL_QUALITATIVE .

Similarly, SYLLABIC_POSITIONAL_ABSOLUTE defined in lines 1823–1832 contains

all groups related to the absolute position of a syllable in the enclosing unit, and

SYLLABIC_POSITIONAL_RELATIVE (1834–1843) contain groups related to the rela-

tive position of a syllable.

Qualitative syllable-related feature groups define the SYLLABIC_QUALITATIVE group

in lines 1845–1856.

In 1858–1865 all feature groups related to the composition (so length expressed in

number of subordinate units) are listed under SYLLABIC_COMPOSITIONAL .

SYLLABIC_PARENTAL_COMPOSITION (lines 1867–1876), in turn, contain all syllabic

feature groups related to the number of stressed and accented syllables in the current

phrase.
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WORD_POSITIONAL_ABSOLUTE and WORD_POSITIONAL_RELATIVE in lines 1880–1892

are defined with all objective and subjective word position feature groups.

WORD_COMPOSITIONAL (lines 1894–1901) and WORD_PARENTAL_COMPOSITION (1903–

1908), similarly to their syllabic counterparts, contain groups that list features related

to the length of word expressed in number of syllables, and the number of content

words in the current phrase.

Feature groups related to the absolute position of phrase and its length expressed

in subordinate units are grouped under PHRASAL_POSITIONAL_ABSOLUTE (lines

1912–1917) and UTTERANCE_COMPOSITIONAL (lines 1919–1932).

As the name suggests, UTTERANCE_COMPOSITIONAL (lines 1936–1943) contains

all feature groups related to the composition (length expressed in all classes of

subordinate units) of the utterance.

Next, all positional feature groups, regardless of the unit type are listed under

POSITIONAL_ABSOLUTE and POSITIONAL_RELATIVE in lines 1945–1955.

Feature groups containing qualitative features of segments and syllables are grouped

under QUALITATIVE in lines 1957–1960. Similarly, feature groups related to the

composition (length expressed in number of subordinate units) and to the com-

position of the parental unit (number of stressed and accented syllables and con-

tent words in the current phrase) are listed together under COMPOSITIONAL and

PARENTAL_COMPOSITION (lines 1962–1972) respectively.

After that all feature groups related to a single organisational unit type are listed

together under SEGMENTAL , SYLLABIC , WORD , PHRASAL and UTTERANCE (lines

1974–2001).

The three feature groups that follow were defined to represent the three main

abstraction levels used in the relevance analysis in the current work. First group

defined in lines 2006–2027 – FEATURE_GROUPS – represents the highest level of

abstraction as it consists of the most general high-level feature groups only. The

next group, DETAILED_GROUPS (lines 2029–2074) provides a more granular list.

The distinction between forward and backward positional and forward backward

compositional features is kept here, for example. Also the qualitative features are not

grouped under a single name but kept separate. The last abstraction level, defined

in ALL_GROUPS (lines 2076–2172) is simply a list of all of the lower level feature

groups. The quintphone segments are represented by separate items. Also the

features that are defined separately for the previous, current and next unit are kept

separate here. Additionally, separate list items are included for the different types of
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relations (equal and less-than-or-equal) used for positional and other quantitative

features.

At the end of the listing, some additional target groups were defined to provide a yet

another look at the data. The separate groups defined for different organizational

units (segment, syllable, word and phrase) are structured under a single group

LINGUISTIC_LEVEL_GROUPS in line 2228—2234. Also groups listing all positional,

qualitative, compositional, etc. features are defined separately in lines 2199–2226

and later included together under FEATURE_TYPE_GROUPS in lines 2236–2242. The

last group provides a list combined of groups related to different organizational

units and feature type (these are feature groups defined earlier in lines 1945–1972)

at the same time.

1 VUV = [
2 "vuv",
3 ]
4
5 QUINTPHONE_SEGMENT_VC_LL = [
6 "QS LL -Vowel{i^*,y^*,e^*,a^*,o^*,u^*, schwa ^*}" ,
7 "QS LL - Consonant {gs^*,p^*,b^*,t^*,d^*,k^*,g^*,ki^*,gi^*,f^*,v

^*,s^*,si^*,z^*,zi^*,sz^*,rz^*,x^*,c^*,dz^*,cz^*, drz ^*,ci^*,
dzi ^*,m^*,n^*,ni^*,ng^*,l^*,r^*,w^*,ww^*,j^*,jj ^*}" ,

8 ]
9 QUINTPHONE_SEGMENT_VC_L = [

10 "QS L-Vowel {*^ schwa -,*^i-,*^y-,*^e-,*^a-,*^o-,*^u-}",
11 "QS L- Consonant {*^gs -,*^p-,*^b-,*^t-,*^d

-,*^k-,*^g-,*^ki -,*^gi -,*^f-,*^v-,*^s-,*^si -,*^z-,*^zi -,*^sz
-,*^rz -,*^x-,*^c-,*^dz -,*^cz -,*^drz -,*^ci -,*^dzi -,*^m-,*^n
-,*^ni -,*^ng -,*^l-,*^r-,*^w-,*^ww -,*^j-,*^jj -}",

12 ]
13 QUINTPHONE_SEGMENT_VC_C = [
14 "QS C-Vowel {*- schwa +*,*-i+*,*-y+*,*-e+*,*-a+*,*-o+*,*-u+*}" ,
15 "QS C- Consonant {*-gs+*,*-p+*,*-b+*,*-t

+*,*-d+*,*-k+*,*-g+*,*-ki+*,*-gi+*,*-f+*,*-v+*,*-s+*,*-si
+*,*-z+*,*-zi+*,*-sz+*,*-rz+*,*-x+*,*-c+*,*-dz+*,*-cz+*,*-
drz +*,*-ci+*,*- dzi +*,*-m+*,*-n+*,*-ni+*,*-ng+*,*-l+*,*-r
+*,*-w+*,*-ww+*,*-j+*,*-jj +*}" ,

16 ]
17 QUINTPHONE_SEGMENT_VC_R = [
18 "QS R-Vowel {*+i=* ,*+y=* ,*+e=* ,*+a=* ,*+o=* ,*+u=* ,*+ schwa =*}" ,
19 "QS R- Consonant {*+ gs =* ,*+p=* ,*+b=* ,*+t

=* ,*+d=* ,*+k=* ,*+g=* ,*+ ki =* ,*+ gi =* ,*+f=* ,*+v=* ,*+s=* ,*+ si
=* ,*+z=* ,*+ zi =* ,*+ sz =* ,*+ rz =* ,*+x=* ,*+c=* ,*+ dz =* ,*+ cz =* ,*+
drz =* ,*+ ci =* ,*+ dzi =* ,*+m=* ,*+n=* ,*+ ni =* ,*+ ng =* ,*+l=* ,*+r
=* ,*+w=* ,*+ ww =* ,*+j=* ,*+ jj =*}" ,

20 ]
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21 QUINTPHONE_SEGMENT_VC_RR = [
22 "QS RR -Vowel {*= i@*,*=y@*,*=e@*,*=a@*,*=o@*,*=u@*,*= schwa@ *}",
23 "QS RR - Consonant {*= gs@ *,*=p@*,*=b@*,*=t@

*,*=d@*,*=k@*,*=g@*,*= ki@ *,*= gi@ *,*=f@*,*=v@*,*=s@*,*= si@
*,*=z@*,*= zi@ *,*= sz@ *,*= rz@ *,*=x@*,*=c@*,*= dz@ *,*= cz@ *,*=
drz@ *,*= ci@ *,*= dzi@ *,*=m@*,*=n@*,*= ni@ *,*= ng@ *,*=l@*,*=r@
*,*=w@*,*= ww@ *,*=j@*,*= jj@ *}",

24 ]
25
26 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_LL = [
27 "QS LL -Stop{gs^*,p^*,b^*,t^*,d^*,k^*,g^*}" ,
28 "QS LL -Nasal{ww^*,jj^*,m^*,n^*,ni^*,ng ^*}" ,
29 "QS LL - Fricative {f^*,v^*,s^*,si^*,z^*,zi^*,sz^*,rz^*,x^*}" ,
30 "QS LL -Front{e^*,i^*,y^*,f^*,v^*,p^*,b^*,m^*,w^*,ww ^*}" ,
31 "QS LL - Central {schwa ^*,a^*,t^*,d^*,s^*,si^*,z^*,zi^*,n^*,r^*,l

^*,t^*,d^*,sz^*,rz^*,cz^*, drz ^*,c^*,dz^*,ci^*, dzi ^*}" ,
32 "QS LL -Back{o^*,u^*,k^*,g^*,ki^*,gi^*,ng^*,x^*,gs ^*}" ,
33 "QS LL - Front_Vowel {e^*,i^*,y^*}" ,
34 "QS LL - Central_Vowel {a^*, schwa ^*}" ,
35 "QS LL - Back_Vowel {o^*,u^*}" ,
36 "QS LL - High_Vowel {i^*,y^*,u^*}" ,
37 "QS LL - Medium_Vowel {e^*,o^*}" ,
38 "QS LL - Low_Vowel {a^*}" ,
39 "QS LL - Rounded_Vowel {o^*,u^*}" ,
40 "QS LL - Unrounded_Vowel {a^*,e^*,i^*,y^*}" ,
41 "QS LL - IVowel {i^*}" ,
42 "QS LL - EVowel {e^*}" ,
43 "QS LL - AVowel {a^*}" ,
44 "QS LL - OVowel {o^*}" ,
45 "QS LL - UVowel {u^*}" ,
46 "QS LL - YVowel {y^*}" ,
47 "QS LL - SCHWAVowel {schwa ^*}" ,
48 "QS LL - Unvoiced_Consonant {gs^*,p^*,t^*,k^*,ki^*,f^*,v^*,s^*,sz

^*,x^*,c^*,cz^*,ci ^*}" ,
49 "QS LL - Voiced_Consonant {b^*,d^*,g^*,gi^*,v^*,z^*,zi^*,rz^*,dz

^*, drz ^*, dzi ^*,m^*,n^*,ni^*,ng^*,l^*,r^*,w^*,ww^*,j^*,jj
^*}" ,

50 "QS LL - Front_Consonant {f^*,v^*,f^*,p^*,b^*,m^*,w^*,ww ^*}" ,
51 "QS LL - Central_Consonant {t^*,d^*,s^*,si^*,z^*,zi^*,n^*,r^*,l^*,

t^*,d^*,sz^*,rz^*,cz^*, drz ^*,c^*,dz^*,ci^*, dzi ^*}" ,
52 "QS LL - Back_Consonant {gs^*,k^*,g^*,ki^*,gi^*,ng^*,x^*}" ,
53 "QS LL - Fortis_Consonant {gs^*,cz^*,f^*,k^*,p^*,s^*,sz^*,t^*,ci

^*,c^*,ki ^*}" ,
54 "QS LL - Lenis_Consonant {drz ^*,v^*,g^*,b^*,rz^*,z^*,d^*, dzi ^*,dz

^*,gi^*,zi ^*}" ,
55 "QS LL - Neigther_F_or_L {m^*,n^*,ni^*,ng^*,l^*,r^*,w^*,ww^*,j^*,

jj ^*}" ,
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56 "QS LL - Voiced_Stop {b^*,d^*,g^*}" ,
57 "QS LL - Unvoiced_Stop {p^*,t^*,k^*,gs ^*}" ,
58 "QS LL - Front_Stop {b^*,p^*}" ,
59 "QS LL - Central_Stop {d^*,t^*}" ,
60 "QS LL - Back_Stop {g^*,k^*,gs ^*}" ,
61 "QS LL - Voiced_Fricative {v^*,z^*,zi^*,rz ^*}" ,
62 "QS LL - Unvoiced_Fricative {f^*,s^*,si^*,sz^*,x^*}" ,
63 "QS LL - Front_Fricative {f^*,v^*}" ,
64 "QS LL - Affricate_Consonant {dz^*, drz ^*, dzi ^*,c^*,cz^*,ci ^*}" ,
65 "QS LL - silences {pau ^*}" ,
66 "QS LL -schwa {schwa ^*}" ,
67 "QS LL -a{a^*}" ,
68 "QS LL -e{e^*}" ,
69 "QS LL -i{i^*}" ,
70 "QS LL -y{y^*}" ,
71 "QS LL -o{o^*}" ,
72 "QS LL -u{u^*}" ,
73 "QS LL -p{p^*}" ,
74 "QS LL -b{b^*}" ,
75 "QS LL -t{t^*}" ,
76 "QS LL -d{d^*}" ,
77 "QS LL -k{k^*}" ,
78 "QS LL -ki{ki ^*}" ,
79 "QS LL -g{g^*}" ,
80 "QS LL -gi{gi ^*}" ,
81 "QS LL -f{f^*}" ,
82 "QS LL -v{v^*}" ,
83 "QS LL -s{s^*}" ,
84 "QS LL -si{si ^*}" ,
85 "QS LL -z{z^*}" ,
86 "QS LL -zi{zi ^*}" ,
87 "QS LL -sz{sz ^*}" ,
88 "QS LL -rz{rz ^*}" ,
89 "QS LL -x{x^*}" ,
90 "QS LL -c{c^*}" ,
91 "QS LL -dz{dz ^*}" ,
92 "QS LL -cz{cz ^*}" ,
93 "QS LL -drz{drz ^*}" ,
94 "QS LL -ci{ci ^*}" ,
95 "QS LL -dzi{dzi ^*}" ,
96 "QS LL -m{m^*}" ,
97 "QS LL -n{n^*}" ,
98 "QS LL -ni{ni ^*}" ,
99 "QS LL -ng{ng ^*}" ,

100 "QS LL -l{l^*}" ,
101 "QS LL -r{r^*}" ,
102 "QS LL -w{w^*}" ,
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103 "QS LL -ww{ww ^*}" ,
104 "QS LL -j{j^*}" ,
105 "QS LL -jj{jj ^*}" ,
106 "QS LL -gs {gs ^*}" ,
107 ]
108 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_L = [
109 "QS L-Stop {*^p-,*^b-,*^t-,*^d-,*^k-,*^g-,*^gs -}",
110 "QS L-Nasal {*^ww -,*^jj -,*^m-,*^n-,*^ni -,*^ng -}",
111 "QS L- Fricative {*^f-,*^v-,*^s-,*^si -,*^z-,*^zi -,*^sz -,*^rz -,*^x

-}",
112 "QS L-Front {*^e-,*^i-,*^y-,*^f-,*^v-,*^p-,*^b-,*^m-,*^w-,*^ww

-}",
113 "QS L- Central {*^ schwa -,*^a-,*^t-,*^d-,*^s-,*^si -,*^z-,*^zi -,*^n

-,*^r-,*^l-,*^t-,*^d-,*^sz -,*^rz -,*^cz -,*^drz -,*^c-,*^dz -,*^
ci -,*^dzi -}",

114 "QS L-Back {*^o-,*^u-,*^k-,*^g-,*^ki -,*^gi -,*^ng -,*^x-,*^gs -}",
115 "QS L- Front_Vowel {*^e-,*^i-,*^y-}",
116 "QS L- Central_Vowel {*^a-,*^ schwa -}",
117 "QS L- Back_Vowel {*^o-,*^u-}",
118 "QS L- High_Vowel {*^i-,*^y-,*^u-}",
119 "QS L- Medium_Vowel {*^e-,*^o-}",
120 "QS L- Low_Vowel {*^a-}",
121 "QS L- Rounded_Vowel {*^o-,*^u-}",
122 "QS L- Unrounded_Vowel {*^a-,*^e-,*^i-,*^y-}",
123 "QS L- IVowel {*^i-}",
124 "QS L- EVowel {*^e-}",
125 "QS L- AVowel {*^a-}",
126 "QS L- OVowel {*^o-}",
127 "QS L- UVowel {*^u-}",
128 "QS L- YVowel {*^y-}",
129 "QS LL - SCHWAvowel {*^ schwa -}",
130 "QS L- Unvoiced_Consonant {*^gs -,*^p-,*^t-,*^k-,*^ki -,*^f-,*^v

-,*^s-,*^sz -,*^x-,*^c-,*^cz -,*^ci -}",
131 "QS L- Voiced_Consonant {*^b-,*^d-,*^g-,*^gi -,*^v-,*^z-,*^zi -,*^

rz -,*^dz -,*^drz -,*^dzi -,*^m-,*^n-,*^ni -,*^ng -,*^l-,*^r-,*^w
-,*^ww -,*^j-,*^jj -}",

132 "QS L- Front_Consonant {*^f-,*^v-,*^f-,*^p-,*^b-,*^m-,*^w-,*^ww
-}",

133 "QS L- Central_Consonant {*^t-,*^d-,*^s-,*^si -,*^z-,*^zi -,*^n-,*^
r-,*^l-,*^t-,*^d-,*^sz -,*^rz -,*^cz -,*^drz -,*^c-,*^dz -,*^ci
-,*^dzi -}",

134 "QS L- Back_Consonant {*^gs -,*^k-,*^g-,*^ki -,*^gi -,*^ng -,*^x-}",
135 "QS L- Fortis_Consonant {*^gs -,*^cz -,*^f-,*^k-,*^p-,*^s-,*^sz -,*^

t-,*^ci -,*^c-,*^ki -}",
136 "QS L- Lenis_Consonant {*^ drz -,*^v-,*^g-,*^b-,*^rz -,*^z-,*^d-,*^

dzi -,*^dz -,*^gi -,*^zi -}",
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137 "QS L- Neigther_F_or_L {*^m-,*^n-,*^ni -,*^ng -,*^l-,*^r-,*^w-,*^ww
-,*^j-,*^jj -}",

138 "QS L- Voiced_Stop {*^b-,*^d-,*^g-}",
139 "QS L- Unvoiced_Stop {*^gs -,*^p-,*^t-,*^k-}",
140 "QS L- Front_Stop {*^b-,*^p-}",
141 "QS L- Central_Stop {*^d-,*^t-}",
142 "QS L- Back_Stop {*^gs -,*^g-,*^k-}",
143 "QS L- Voiced_Fricative {*^v-,*^z-,*^zi -,*^rz -}",
144 "QS L- Unvoiced_Fricative {*^f-,*^s-,*^si -,*^sz -,*^x-}",
145 "QS L- Front_Fricative {*^f-,*^v-}",
146 "QS L- Affricate_Consonant {*^dz -,*^drz -,*^dzi -,*^c-,*^cz -,*^ci

-}",
147 "QS L- silences {*^ pau -}",
148 "QS L-schwa {*^ schwa -}",
149 "QS L-a{*^a-}",
150 "QS L-e{*^e-}",
151 "QS L-i{*^i-}",
152 "QS L-y{*^y-}",
153 "QS L-o{*^o-}",
154 "QS L-u{*^u-}",
155 "QS L-p{*^p-}",
156 "QS L-b{*^b-}",
157 "QS L-t{*^t-}",
158 "QS L-d{*^d-}",
159 "QS L-k{*^k-}",
160 "QS L-ki {*^ki -}",
161 "QS L-g{*^g-}",
162 "QS L-gi {*^gi -}",
163 "QS L-f{*^f-}",
164 "QS L-v{*^v-}",
165 "QS L-s{*^s-}",
166 "QS L-si {*^si -}",
167 "QS L-z{*^z-}",
168 "QS L-zi {*^zi -}",
169 "QS L-sz {*^sz -}",
170 "QS L-rz {*^rz -}",
171 "QS L-x{*^x-}",
172 "QS L-c{*^c-}",
173 "QS L-dz {*^dz -}",
174 "QS L-cz {*^cz -}",
175 "QS L-drz {*^ drz -}",
176 "QS L-ci {*^ci -}",
177 "QS L-dzi {*^ dzi -}",
178 "QS L-m{*^m-}",
179 "QS L-n{*^n-}",
180 "QS L-ni {*^ni -}",
181 "QS L-ng {*^ng -}",
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182 "QS L-l{*^l-}",
183 "QS L-r{*^r-}",
184 "QS L-w{*^w-}",
185 "QS L-ww {*^ww -}",
186 "QS L-j{*^j-}",
187 "QS L-jj {*^jj -}",
188 "QS L-gs {*^gs -}",
189 ]
190 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_C = [
191 "QS C-Stop {*-p+*,*-b+*,*-t+*,*-d+*,*-k+*,*-g+*,*-gs +*}" ,
192 "QS C-Nasal {*-ww+*,*-jj+*,*-m+*,*-n+*,*-ni+*,*-ng +*}" ,
193 "QS C- Fricative {*-f+*,*-v+*,*-s+*,*-si+*,*-z+*,*-zi+*,*-sz+*,*-

rz+*,*-x+*}" ,
194 "QS C-Front {*-e+*,*-i+*,*-y+*,*-f+*,*-v+*,*-p+*,*-b+*,*-m+*,*-w

+*,*-ww +*}" ,
195 "QS C- Central {*- schwa +*,*-a+*,*-t+*,*-d+*,*-s+*,*-si+*,*-z+*,*-

zi+*,*-n+*,*-r+*,*-l+*,*-t+*,*-d+*,*-sz+*,*-rz+*,*-cz+*,*-
drz +*,*-c+*,*-dz+*,*-ci+*,*- dzi +*}" ,

196 "QS C-Back {*-o+*,*-u+*,*-k+*,*-g+*,*-ki+*,*-gi+*,*-ng+*,*-x
+*,*-gs +*}" ,

197 "QS C- Front_Vowel {*-e+*,*-i+*,*-y+*}" ,
198 "QS C- Central_Vowel {*-a+*,*- schwa +*}" ,
199 "QS C- Back_Vowel {*-o+*,*-u+*}" ,
200 "QS C- High_Vowel {*-i+*,*-y+*,*-u+*}" ,
201 "QS C- Medium_Vowel {*-e+*,*-o+*}" ,
202 "QS C- Low_Vowel {*-a+*}" ,
203 "QS C- Rounded_Vowel {*-o+*,*-u+*}" ,
204 "QS C- Unrounded_Vowel {*-a+*,*-e+*,*-i+*,*-y+*}" ,
205 "QS C- IVowel {*-i+*}" ,
206 "QS C- EVowel {*-e+*}" ,
207 "QS C- AVowel {*-a+*}" ,
208 "QS C- OVowel {*-o+*}" ,
209 "QS C- UVowel {*-u+*}" ,
210 "QS C- YVowel {*-y+*}" ,
211 "QS C- SCHWAVowel {*- schwa +*}" ,
212 "QS C- Unvoiced_Consonant {*-p+*,*-t+*,*-k+*,*-ki+*,*-f+*,*-v

+*,*-s+*,*-sz+*,*-x+*,*-c+*,*-cz+*,*-ci+*,*-gs +*}" ,
213 "QS C- Voiced_Consonant {*-b+*,*-d+*,*-g+*,*-gi+*,*-v+*,*-z+*,*-

zi+*,*-rz+*,*-dz+*,*- drz +*,*- dzi +*,*-m+*,*-n+*,*-ni+*,*-ng
+*,*-l+*,*-r+*,*-w+*,*-ww+*,*-j+*,*-jj +*}" ,

214 "QS C- Front_Consonant {*-f+*,*-v+*,*-f+*,*-p+*,*-b+*,*-m+*,*-w
+*,*-ww +*}" ,

215 "QS C- Central_Consonant {*-t+*,*-d+*,*-s+*,*-si+*,*-z+*,*-zi
+*,*-n+*,*-r+*,*-l+*,*-t+*,*-d+*,*-sz+*,*-rz+*,*-cz+*,*- drz
+*,*-c+*,*-dz+*,*-ci+*,*- dzi +*}" ,

216 "QS C- Back_Consonant {*-k+*,*-g+*,*-ki+*,*-gi+*,*-ng+*,*-x+*,*-
gs +*}" ,
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217 "QS C- Fortis_Consonant {*-cz+*,*-f+*,*-k+*,*-p+*,*-s+*,*-sz+*,*-
t+*,*-ci+*,*-c+*,*-ki+*,*-gs +*}" ,

218 "QS C- Lenis_Consonant {*- drz +*,*-v+*,*-g+*,*-b+*,*-rz+*,*-z+*,*-
d+*,*- dzi +*,*-dz+*,*-gi+*,*-zi +*}" ,

219 "QS C- Neigther_F_or_L {*-m+*,*-n+*,*-ni+*,*-ng+*,*-l+*,*-r+*,*-w
+*,*-ww+*,*-j+*,*-jj +*}" ,

220 "QS C- Voiced_Stop {*-b+*,*-d+*,*-g+*}" ,
221 "QS C- Unvoiced_Stop {*-p+*,*-t+*,*-k+*,*-gs +*}" ,
222 "QS C- Front_Stop {*-b+*,*-p+*}" ,
223 "QS C- Central_Stop {*-d+*,*-t+*}" ,
224 "QS C- Back_Stop {*-g+*,*-k+*,*-gs +*}" ,
225 "QS C- Voiced_Fricative {*-v+*,*-z+*,*-zi+*,*-rz +*}" ,
226 "QS C- Unvoiced_Fricative {*-f+*,*-s+*,*-si+*,*-sz+*,*-x+*}" ,
227 "QS C- Front_Fricative {*-f+*,*-v+*}" ,
228 "QS C- Affricate_Consonant {*-dz+*,*- drz +*,*- dzi +*,*-c+*,*-cz

+*,*-ci +*}" ,
229 "QS C- silences {*- pau +*}" ,
230 "QS C-schwa {*- schwa +*}" ,
231 "QS C-a{*-a+*}" ,
232 "QS C-e{*-e+*}" ,
233 "QS C-i{*-i+*}" ,
234 "QS C-y{*-y+*}" ,
235 "QS C-o{*-o+*}" ,
236 "QS C-u{*-u+*}" ,
237 "QS C-p{*-p+*}" ,
238 "QS C-b{*-b+*}" ,
239 "QS C-t{*-t+*}" ,
240 "QS C-d{*-d+*}" ,
241 "QS C-k{*-k+*}" ,
242 "QS C-ki{*-ki +*}" ,
243 "QS C-g{*-g+*}" ,
244 "QS C-gi{*-gi +*}" ,
245 "QS C-f{*-f+*}" ,
246 "QS C-v{*-v+*}" ,
247 "QS C-s{*-s+*}" ,
248 "QS C-si{*-si +*}" ,
249 "QS C-z{*-z+*}" ,
250 "QS C-zi{*-zi +*}" ,
251 "QS C-sz{*-sz +*}" ,
252 "QS C-rz{*-rz +*}" ,
253 "QS C-x{*-x+*}" ,
254 "QS C-c{*-c+*}" ,
255 "QS C-dz{*-dz +*}" ,
256 "QS C-cz{*-cz +*}" ,
257 "QS C-drz {*- drz +*}" ,
258 "QS C-ci{*-ci +*}" ,
259 "QS C-dzi {*- dzi +*}" ,
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260 "QS C-m{*-m+*}" ,
261 "QS C-n{*-n+*}" ,
262 "QS C-ni{*-ni +*}" ,
263 "QS C-ng{*-ng +*}" ,
264 "QS C-l{*-l+*}" ,
265 "QS C-r{*-r+*}" ,
266 "QS C-w{*-w+*}" ,
267 "QS C-ww{*-ww +*}" ,
268 "QS C-j{*-j+*}" ,
269 "QS C-jj{*-jj +*}" ,
270 "QS C-gs {*-gs +*}" ,
271 ]
272 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_R = [
273 "QS R-Stop {*+p=* ,*+b=* ,*+t=* ,*+d=* ,*+k=* ,*+g=* ,*+ gs =*}" ,
274 "QS R-Nasal {*+ ww =* ,*+ jj =* ,*+m=* ,*+n=* ,*+ ni =* ,*+ ng =*}" ,
275 "QS R- Fricative {*+f=* ,*+v=* ,*+s=* ,*+ si =* ,*+z=* ,*+ zi =* ,*+ sz =* ,*+

rz =* ,*+x=*}" ,
276 "QS R-Front {*+e=* ,*+i=* ,*+y=* ,*+f=* ,*+v=* ,*+p=* ,*+b=* ,*+m=* ,*+w

=* ,*+ ww =*}" ,
277 "QS R- Central {*+ schwa =* ,*+a=* ,*+t=* ,*+d=* ,*+s=* ,*+ si =* ,*+z=* ,*+

zi =* ,*+n=* ,*+r=* ,*+l=* ,*+t=* ,*+d=* ,*+ sz =* ,*+ rz =* ,*+ cz =* ,*+
drz =* ,*+c=* ,*+ dz =* ,*+ ci =* ,*+ dzi =*}" ,

278 "QS R-Back {*+o=* ,*+u=* ,*+k=* ,*+g=* ,*+ ki =* ,*+ gi =* ,*+ ng =* ,*+x
=* ,*+ gs =*}" ,

279 "QS R- Front_Vowel {*+e=* ,*+i=* ,*+y=*}" ,
280 "QS R- Central_Vowel {*+a=* ,*+ schwa =*}" ,
281 "QS R- Back_Vowel {*+o=* ,*+u=*}" ,
282 "QS R- High_Vowel {*+i=* ,*+y=* ,*+u=*}" ,
283 "QS R- Medium_Vowel {*+e=* ,*+o=*}" ,
284 "QS R- Low_Vowel {*+a=*}" ,
285 "QS R- Rounded_Vowel {*+o=* ,*+u=*}" ,
286 "QS R- Unrounded_Vowel {*+a=* ,*+e=* ,*+i=* ,*+y=*}" ,
287 "QS R- IVowel {*+i=*}" ,
288 "QS R- OVowel {*+o=*}" ,
289 "QS R- UVowel {*+u=*}" ,
290 "QS R- YVowel {*+y=*}" ,
291 "QS R- SCHWAVowel {*+ schwa =*}" ,
292 "QS R- Unvoiced_Consonant {*+p=* ,*+t=* ,*+k=* ,*+ ki =* ,*+f=* ,*+v

=* ,*+s=* ,*+ sz =* ,*+x=* ,*+c=* ,*+ cz =* ,*+ ci =* ,*+ gs =*}" ,
293 "QS R- Voiced_Consonant {*+b=* ,*+d=* ,*+g=* ,*+ gi =* ,*+v=* ,*+z=* ,*+

zi =* ,*+ rz =* ,*+ dz =* ,*+ drz =* ,*+ dzi =* ,*+m=* ,*+n=* ,*+ ni =* ,*+ ng
=* ,*+l=* ,*+r=* ,*+w=* ,*+ ww =* ,*+j=* ,*+ jj =*}" ,

294 "QS R- Front_Consonant {*+f=* ,*+v=* ,*+f=* ,*+p=* ,*+b=* ,*+m=* ,*+w
=* ,*+ ww =*}" ,

295 "QS R- Central_Consonant {*+t=* ,*+d=* ,*+s=* ,*+ si =* ,*+z=* ,*+ zi
=* ,*+n=* ,*+r=* ,*+l=* ,*+t=* ,*+d=* ,*+ sz =* ,*+ rz =* ,*+ cz =* ,*+ drz
=* ,*+c=* ,*+ dz =* ,*+ ci =* ,*+ dzi =*}" ,
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296 "QS R- Back_Consonant {*+k=* ,*+g=* ,*+ ki =* ,*+ gi =* ,*+ ng =* ,*+x=* ,*+
gs =*}" ,

297 "QS R- Fortis_Consonant {*+ cz =* ,*+f=* ,*+k=* ,*+p=* ,*+s=* ,*+ sz =* ,*+
t=* ,*+ ci =* ,*+c=* ,*+ ki =* ,*+ gs =*}" ,

298 "QS R- Lenis_Consonant {*+ drz =* ,*+v=* ,*+g=* ,*+b=* ,*+ rz =* ,*+z=* ,*+
d=* ,*+ dzi =* ,*+ dz =* ,*+ gi =* ,*+ zi =*}" ,

299 "QS R- Neigther_F_or_L {*+m=* ,*+n=* ,*+ ni =* ,*+ ng =* ,*+l=* ,*+r=* ,*+w
=* ,*+ ww =* ,*+j=* ,*+ jj =*}" ,

300 "QS R- Voiced_Stop {*+b=* ,*+d=* ,*+g=*}" ,
301 "QS R- Unvoiced_Stop {*+p=* ,*+t=* ,*+k=* ,*+ gs =*}" ,
302 "QS R- Front_Stop {*+b=* ,*+p=*}" ,
303 "QS R- Central_Stop {*+d=* ,*+t=*}" ,
304 "QS R- Back_Stop {*+g=* ,*+k=* ,*+ gs =*}" ,
305 "QS R- Voiced_Fricative {*+v=* ,*+z=* ,*+ zi =* ,*+ rz =*}" ,
306 "QS R- Unvoiced_Fricative {*+f=* ,*+s=* ,*+ si =* ,*+ sz =* ,*+x=*}" ,
307 "QS R- Front_Fricative {*+f=* ,*+v=*}" ,
308 "QS R- Affricate_Consonant {*+ dz =* ,*+ drz =* ,*+ dzi =* ,*+c=* ,*+ cz

=* ,*+ ci =*}" ,
309 "QS R- silences {*+ pau =*}" ,
310 "QS R-schwa {*+ schwa =*}" ,
311 "QS R-a{*+a=*}" ,
312 "QS R-e{*+e=*}" ,
313 "QS R-i{*+i=*}" ,
314 "QS R-y{*+y=*}" ,
315 "QS R-o{*+o=*}" ,
316 "QS R-u{*+u=*}" ,
317 "QS R-p{*+p=*}" ,
318 "QS R-b{*+b=*}" ,
319 "QS R-t{*+t=*}" ,
320 "QS R-d{*+d=*}" ,
321 "QS R-k{*+k=*}" ,
322 "QS R-ki {*+ ki =*}" ,
323 "QS R-g{*+g=*}" ,
324 "QS R-gi {*+ gi =*}" ,
325 "QS R-f{*+f=*}" ,
326 "QS R-v{*+v=*}" ,
327 "QS R-s{*+s=*}" ,
328 "QS R-si {*+ si =*}" ,
329 "QS R-z{*+z=*}" ,
330 "QS R-zi {*+ zi =*}" ,
331 "QS R-sz {*+ sz =*}" ,
332 "QS R-rz {*+ rz =*}" ,
333 "QS R-x{*+x=*}" ,
334 "QS R-c{*+c=*}" ,
335 "QS R-dz {*+ dz =*}" ,
336 "QS R-cz {*+ cz =*}" ,
337 "QS R-drz {*+ drz =*}" ,
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338 "QS R-ci {*+ ci =*}" ,
339 "QS R-dzi {*+ dzi =*}" ,
340 "QS R-m{*+m=*}" ,
341 "QS R-n{*+n=*}" ,
342 "QS R-ni {*+ ni =*}" ,
343 "QS R-ng {*+ ng =*}" ,
344 "QS R-l{*+l=*}" ,
345 "QS R-r{*+r=*}" ,
346 "QS R-w{*+w=*}" ,
347 "QS R-ww {*+ ww =*}" ,
348 "QS R-j{*+j=*}" ,
349 "QS R-jj {*+ jj =*}" ,
350 "QS R-gs {*+ gs =*}" ,
351 ]
352 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_RR = [
353 "QS RR -Stop {*= gs@ *,*=p@*,*=b@*,*=t@*,*=d@*,*=k@*,*=g@*}",
354 "QS RR -Nasal {*= ww@ *,*= jj@ *,*=m@*,*=n@*,*= ni@ *,*= ng@ *}",
355 "QS RR - Fricative {*= f@*,*=v@*,*=s@*,*= si@ *,*=z@*,*= zi@ *,*= sz@

*,*= rz@ *,*=x@*}",
356 "QS RR -Front {*= e@*,*=i@*,*=y@*,*=f@*,*=v@*,*=p@*,*=b@*,*=m@*,*=

w@*,*= ww@ *}",
357 "QS RR - Central {*= schwa@ *,*=a@*,*=t@*,*=d@*,*=s@*,*= si@ *,*=z@

*,*= zi@ *,*=n@*,*=r@*,*=l@*,*=t@*,*=d@*,*= sz@ *,*= rz@ *,*= cz@
*,*= drz@ *,*=c@*,*= dz@ *,*= ci@ *,*= dzi@ *}",

358 "QS RR -Back {*= o@*,*=u@*,*=k@*,*=g@*,*= ki@ *,*= gi@ *,*= ng@ *,*=x@
*,*= gs@ *}",

359 "QS RR - Front_Vowel {*= e@*,*=i@*,*=y@*}",
360 "QS RR - Central_Vowel {*= a@*,*= schwa@ *}",
361 "QS RR - Back_Vowel {*= o@*,*=u@*}",
362 "QS RR - High_Vowel {*= i@*,*=y@*,*=u@*}",
363 "QS RR - Medium_Vowel {*= e@*,*=o@*}",
364 "QS RR - Low_Vowel {*= a@*}",
365 "QS RR - Rounded_Vowel {*= o@*,*=u@*}",
366 "QS RR - Unrounded_Vowel {*= a@*,*=e@*,*=i@*,*=y@*}",
367 "QS RR - IVowel {*= i@*}",
368 "QS RR - OVowel {*= o@*}",
369 "QS RR - UVowel {*= u@*}",
370 "QS RR - YVowel {*= y@*}",
371 "QS RR - SCHWAVowel {*= schwa@ *}",
372 "QS RR - Unvoiced_Consonant {*= p@*,*=t@*,*=k@*,*= ki@ *,*=f@*,*=v@

*,*=s@*,*= sz@ *,*=x@*,*=c@*,*= cz@ *,*= ci@ *,*= gs@ *}",
373 "QS RR - Voiced_Consonant {*= b@*,*=d@*,*=g@*,*= gi@ *,*=v@*,*=z@*,*=

zi@ *,*= rz@ *,*= dz@ *,*= drz@ *,*= dzi@ *,*=m@*,*=n@*,*= ni@ *,*= ng@
*,*=l@*,*=r@*,*=w@*,*= ww@ *,*=j@*,*= jj@ *}",

374 "QS RR - Front_Consonant {*= f@*,*=v@*,*=f@*,*=p@*,*=b@*,*=m@*,*=w@
*,*= ww@ *}",
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375 "QS RR - Central_Consonant {*= t@*,*=d@*,*=s@*,*= si@ *,*=z@*,*= zi@
*,*=n@*,*=r@*,*=l@*,*=t@*,*=d@*,*= sz@ *,*= rz@ *,*= cz@ *,*= drz@
*,*=c@*,*= dz@ *,*= ci@ *,*= dzi@ *}",

376 "QS RR - Back_Consonant {*= k@*,*=g@*,*= ki@ *,*= gi@ *,*= ng@ *,*=x@*,*=
gs@ *}",

377 "QS RR - Fortis_Consonant {*= cz@ *,*=f@*,*=k@*,*=p@*,*=s@*,*= sz@
*,*=t@*,*= ci@ *,*=c@*,*= ki@ *,*= gs@ *}",

378 "QS RR - Lenis_Consonant {*= drz@ *,*=v@*,*=g@*,*=b@*,*= rz@ *,*=z@
*,*=d@*,*= dzi@ *,*= dz@ *,*= gi@ *,*= zi@ *}",

379 "QS RR - Neigther_F_or_L {*= m@*,*=n@*,*= ni@ *,*= ng@ *,*=l@*,*=r@*,*=
w@*,*= ww@ *,*=j@*,*= jj@ *}",

380 "QS RR - Voiced_Stop {*= b@*,*=d@*,*=g@*}",
381 "QS RR - Unvoiced_Stop {*= p@*,*=t@*,*=k@*,*= gs@ *}",
382 "QS RR - Front_Stop {*= b@*,*=p@*}",
383 "QS RR - Central_Stop {*= d@*,*=t@*}",
384 "QS RR - Back_Stop {*= g@*,*=k@*,*= gs@ *}",
385 "QS RR - Voiced_Fricative {*= v@*,*=z@*,*= zi@ *,*= rz@ *}",
386 "QS RR - Unvoiced_Fricative {*= f@*,*=s@*,*= si@ *,*= sz@ *,*=x@*}",
387 "QS RR - Front_Fricative {*= f@*,*=v@*}",
388 "QS RR - Affricate_Consonant {*= dz@ *,*= drz@ *,*= dzi@ *,*=c@*,*= cz@

*,*= ci@ *}",
389 "QS RR - silences {*= pau@ *}",
390 "QS RR -a{*= a@*}",
391 "QS RR -e{*= e@*}",
392 "QS RR -i{*= i@*}",
393 "QS RR -y{*= y@*}",
394 "QS RR -o{*= o@*}",
395 "QS RR -u{*= u@*}",
396 "QS RR -p{*= p@*}",
397 "QS RR -b{*= b@*}",
398 "QS RR -t{*= t@*}",
399 "QS RR -d{*= d@*}",
400 "QS RR -k{*= k@*}",
401 "QS RR -ki {*= ki@ *}",
402 "QS RR -g{*= g@*}",
403 "QS RR -gi {*= gi@ *}",
404 "QS RR -f{*= f@*}",
405 "QS RR -v{*= v@*}",
406 "QS RR -s{*= s@*}",
407 "QS RR -si {*= si@ *}",
408 "QS RR -z{*= z@*}",
409 "QS RR -zi {*= zi@ *}",
410 "QS RR -sz {*= sz@ *}",
411 "QS RR -rz {*= rz@ *}",
412 "QS RR -x{*= x@*}",
413 "QS RR -c{*= c@*}",
414 "QS RR -dz {*= dz@ *}",
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415 "QS RR -cz {*= cz@ *}",
416 "QS RR -drz {*= drz@ *}",
417 "QS RR -ci {*= ci@ *}",
418 "QS RR -dzi {*= dzi@ *}",
419 "QS RR -m{*= m@*}",
420 "QS RR -n{*= n@*}",
421 "QS RR -ni {*= ni@ *}",
422 "QS RR -ng {*= ng@ *}",
423 "QS RR -l{*= l@*}",
424 "QS RR -r{*= r@*}",
425 "QS RR -w{*= w@*}",
426 "QS RR -ww {*= ww@ *}",
427 "QS RR -j{*= j@*}",
428 "QS RR -jj {*= jj@ *}",
429 "QS RR -gs {*= gs@ *}",
430 ]
431
432 NUM_SEG_IN_SYL_FW_EQ = [
433 "QS Seg_Fw ==x{* @x_ *}",
434 "QS Seg_Fw ==1{* @1_ *}",
435 "QS Seg_Fw ==2{* @2_ *}",
436 "QS Seg_Fw ==3{* @3_ *}",
437 "QS Seg_Fw ==4{* @4_ *}",
438 "QS Seg_Fw ==5{* @5_ *}",
439 "QS Seg_Fw ==6{* @6_ *}",
440 "QS Seg_Fw ==7{* @7_ *}",
441 ]
442 NUM_SEG_IN_SYL_FW_LTE = [
443 "QS Seg_Fw <=1{* @x_ *,* @1_ *}",
444 "QS Seg_Fw <=2{* @x_ *,* @1_ *,* @2_ *}",
445 "QS Seg_Fw <=3{* @x_ *,* @1_ *,* @2_ *,* @3_ *}",
446 "QS Seg_Fw <=4{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *}",
447 "QS Seg_Fw <=5{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *,* @5_ *}",
448 "QS Seg_Fw <=6{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *,* @5_ *,* @6_ *}",
449 "QS Seg_Fw <=7{* @x_ *,* @1_ *,* @2_ *,* @3_ *,* @4_ *,* @5_ *,* @6_ *,* @7_

*}",
450 ]
451 NUM_SEG_IN_SYL_BW_EQ = [
452 "QS Seg_Bw ==x{*_x/A:*}" ,
453 "QS Seg_Bw ==1{* _1/A:*}" ,
454 "QS Seg_Bw ==2{* _2/A:*}" ,
455 "QS Seg_Bw ==3{* _3/A:*}" ,
456 "QS Seg_Bw ==4{* _4/A:*}" ,
457 "QS Seg_Bw ==5{* _5/A:*}" ,
458 "QS Seg_Bw ==6{* _6/A:*}" ,
459 "QS Seg_Bw ==7{* _7/A:*}" ,
460 ]
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461 NUM_SEG_IN_SYL_BW_LTE = [
462 "QS Seg_Bw <=0{* _x/A:*,*_0/A:*}" ,
463 "QS Seg_Bw <=1{* _x/A:*,*_0/A:*,*_1/A:*}" ,
464 "QS Seg_Bw <=2{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*}" ,
465 "QS Seg_Bw <=3{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*}" ,
466 "QS Seg_Bw <=4{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A

:*}" ,
467 "QS Seg_Bw <=5{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*,*

_5/A:*}" ,
468 "QS Seg_Bw <=6{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*,*

_5/A:*,*_6/A:*}" ,
469 "QS Seg_Bw <=7{* _x/A:*,*_0/A:*,*_1/A:*,*_2/A:*,*_3/A:*,*_4/A:*,*

_5/A:*,*_6/A:*,*_7/A:*}" ,
470 ]
471
472 SYL_STRESSED_L = [
473 "QS L- Syl_Stress ==1{*/ A:1_*}",
474 "QS L- Syl_Stress ==0{*/ A:0_*}",
475 ]
476 SYL_ACCENTED_L = [
477 "QS L- Syl_Accent ==1{* _1_ *}",
478 "QS L- Syl_Accent ==0{* _0_ *}",
479 ]
480 SYL_ACCENT_TYPE_L = [
481 "QS L- Syl_TOBI_Accent -H*{*/K:H?/L:*}" ,
482 "QS L- Syl_TOBI_Accent -L*{*/K:L?/L:*}" ,
483 "QS L- Syl_TOBI_Accent -L*+H{*/K:L?+H*}",
484 "QS L- Syl_TOBI_Accent -L+H*{*/K:L+H*}",
485 "QS L- Syl_TOBI_Accent -0{*/K:0*}" ,
486 "QS L- Syl_TOBI_Accent -NONE {*/K:NONE *}",
487 "QS L- Syl_TOBI_Accent -x{*/K:x*}",
488 ]
489
490 SYL_LEN_IN_NO_SEG_EQ_L = [
491 "QS L-Syl_Num -Segs ==0{* _0/B:*}" ,
492 "QS L-Syl_Num -Segs ==1{* _1/B:*}" ,
493 "QS L-Syl_Num -Segs ==2{* _2/B:*}" ,
494 "QS L-Syl_Num -Segs ==3{* _3/B:*}" ,
495 "QS L-Syl_Num -Segs ==4{* _4/B:*}" ,
496 "QS L-Syl_Num -Segs ==5{* _5/B:*}" ,
497 "QS L-Syl_Num -Segs ==6{* _6/B:*}" ,
498 "QS L-Syl_Num -Segs ==7{* _7/B:*}" ,
499 ]
500 SYL_LEN_IN_NO_SEG_LTE_L =[
501 "QS L-Syl_Num -Segs <=1{* _0/B:*,*_1/B:*}" ,
502 "QS L-Syl_Num -Segs <=2{* _0/B:*,*_1/B:*,*_2/B:*}" ,
503 "QS L-Syl_Num -Segs <=3{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*}" ,
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504 "QS L-Syl_Num -Segs <=4{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B
:*}" ,

505 "QS L-Syl_Num -Segs <=5{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*,*
_5/B:*}" ,

506 "QS L-Syl_Num -Segs <=6{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*,*
_5/B:*,*_6/B:*}" ,

507 "QS L-Syl_Num -Segs <=7{* _0/B:*,*_1/B:*,*_2/B:*,*_3/B:*,*_4/B:*,*
_5/B:*,*_6/B:*,*_7/B:*}" ,

508 ]
509
510 SYL_STRESSED_C = [
511 "QS C- Syl_Stress ==1{*/ B:1 -*}" ,
512 "QS C- Syl_Stress ==0{*/ B:0 -*}" ,
513 "QS C- Syl_Stress ==x{*/B:x -*}" ,
514 ]
515 SYL_ACCENTED_C = [
516 "QS C- Syl_Accent ==1{* -1 -*}" ,
517 "QS C- Syl_Accent ==0{* -0 -*}" ,
518 "QS C- Syl_Accent ==x{*-x -*}" ,
519 ]
520 SYL_ACCENT_TYPE_C = [
521 "QS C- Syl_TOBI_Accent -H*{*/L:H?/M:*}" ,
522 "QS C- Syl_TOBI_Accent -L*{*/L:L?/M:*}" ,
523 "QS C- Syl_TOBI_Accent -L*+H{*/L:L?+H*}",
524 "QS C- Syl_TOBI_Accent -L+H*{*/L:L+H*}",
525 "QS C- Syl_TOBI_Accent -0{*/L:0*}" ,
526 "QS C- Syl_TOBI_Accent -NONE {*/L:NONE *}",
527 "QS C- Syl_TOBI_Accent -x{*/L:x*}",
528 ]
529
530 SYL_LEN_IN_NO_SEG_EQ_C = [
531 "QS C-Syl_Num -Segs ==x{*-x@*}",
532 "QS C-Syl_Num -Segs ==1{* -1@*}",
533 "QS C-Syl_Num -Segs ==2{* -2@*}",
534 "QS C-Syl_Num -Segs ==3{* -3@*}",
535 "QS C-Syl_Num -Segs ==4{* -4@*}",
536 "QS C-Syl_Num -Segs ==5{* -5@*}",
537 "QS C-Syl_Num -Segs ==6{* -6@*}",
538 "QS C-Syl_Num -Segs ==7{* -7@*}",
539 ]
540 SYL_LEN_IN_NO_SEG_LTE_C = [
541 "QS C-Syl_Num -Segs <=1{* - x@*,*-1@*}",
542 "QS C-Syl_Num -Segs <=2{* - x@*,*-1@*,*-2@*}",
543 "QS C-Syl_Num -Segs <=3{* - x@*,*-1@*,*-2@*,*-3@*}",
544 "QS C-Syl_Num -Segs <=4{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*}",
545 "QS C-Syl_Num -Segs <=5{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*,*-5@*}",

225



546 "QS C-Syl_Num -Segs <=6{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*,*-5@*,*-6@
*}",

547 "QS C-Syl_Num -Segs <=7{* - x@*,*-1@*,*-2@*,*-3@*,*-4@*,*-5@*,*-6@
*,*-7@*}",

548 ]
549
550 SYL_POSITION_IN_WORD_FW_EQ = [
551 "QS Pos_C -Syl_in_C -Word(Fw)==x{*@x -*}" ,
552 "QS Pos_C -Syl_in_C -Word(Fw)==1{*@1 -*}" ,
553 "QS Pos_C -Syl_in_C -Word(Fw)==2{*@2 -*}" ,
554 "QS Pos_C -Syl_in_C -Word(Fw)==3{*@3 -*}" ,
555 "QS Pos_C -Syl_in_C -Word(Fw)==4{*@4 -*}" ,
556 "QS Pos_C -Syl_in_C -Word(Fw)==5{*@5 -*}" ,
557 "QS Pos_C -Syl_in_C -Word(Fw)==6{*@6 -*}" ,
558 "QS Pos_C -Syl_in_C -Word(Fw)==7{*@7 -*}" ,
559 ]
560 SYL_POSITION_IN_WORD_FW_LTE = [
561 "QS Pos_C -Syl_in_C -Word(Fw) <=1{*@x -*,*@1 -*}" ,
562 "QS Pos_C -Syl_in_C -Word(Fw) <=2{*@x -*,*@1 -*,*@2 -*}" ,
563 "QS Pos_C -Syl_in_C -Word(Fw) <=3{*@x -*,*@1 -*,*@2 -*,*@3 -*}" ,
564 "QS Pos_C -Syl_in_C -Word(Fw) <=4{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*}" ,
565 "QS Pos_C -Syl_in_C -Word(Fw) <=5{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*,*

@5 -*}" ,
566 "QS Pos_C -Syl_in_C -Word(Fw) <=6{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*,*

@5 -*,*@6 -*}" ,
567 "QS Pos_C -Syl_in_C -Word(Fw) <=7{*@x -*,*@1 -*,*@2 -*,*@3 -*,*@4 -*,*

@5 -*,*@6 -*,*@7 -*}" ,
568 ]
569 SYL_POSITION_IN_WORD_BW_EQ = [
570 "QS Pos_C -Syl_in_C -Word(Bw)==x{*-x&*}" ,
571 "QS Pos_C -Syl_in_C -Word(Bw)==1{* -1&*}" ,
572 "QS Pos_C -Syl_in_C -Word(Bw)==2{* -2&*}" ,
573 "QS Pos_C -Syl_in_C -Word(Bw)==3{* -3&*}" ,
574 "QS Pos_C -Syl_in_C -Word(Bw)==4{* -4&*}" ,
575 "QS Pos_C -Syl_in_C -Word(Bw)==5{* -5&*}" ,
576 "QS Pos_C -Syl_in_C -Word(Bw)==6{* -6&*}" ,
577 "QS Pos_C -Syl_in_C -Word(Bw)==7{* -7&*}" ,
578 ]
579 SYL_POSITION_IN_WORD_BW_LTE = [
580 "QS Pos_C -Syl_in_C -Word(Bw) <=1{*-x&* ,* -1&*}" ,
581 "QS Pos_C -Syl_in_C -Word(Bw) <=2{*-x&* ,* -1&* ,* -2&*}" ,
582 "QS Pos_C -Syl_in_C -Word(Bw) <=3{*-x&* ,* -1&* ,* -2&* ,* -3&*}" ,
583 "QS Pos_C -Syl_in_C -Word(Bw) <=4{*-x&* ,* -1&* ,* -2&* ,* -3&* ,* -4&*}" ,
584 "QS Pos_C -Syl_in_C -Word(Bw) <=5{*-x

&* ,* -1&* ,* -2&* ,* -3&* ,* -4&* ,* -5&*}" ,
585 "QS Pos_C -Syl_in_C -Word(Bw) <=6{*-x

&* ,* -1&* ,* -2&* ,* -3&* ,* -4&* ,* -5&* ,* -6&*}" ,
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586 "QS Pos_C -Syl_in_C -Word(Bw) <=7{*-x
&* ,* -1&* ,* -2&* ,* -3&* ,* -4&* ,* -5&* ,* -6&* ,* -7&*}" ,

587 ]
588 SYL_POSITION_IN_PHRASE_FW_EQ = [
589 "QS Pos_C -Syl_in_C - Phrase (Fw)==x{*&x -*}" ,
590 "QS Pos_C -Syl_in_C - Phrase (Fw)==1{*&1 -*}" ,
591 "QS Pos_C -Syl_in_C - Phrase (Fw)==2{*&2 -*}" ,
592 "QS Pos_C -Syl_in_C - Phrase (Fw)==3{*&3 -*}" ,
593 "QS Pos_C -Syl_in_C - Phrase (Fw)==4{*&4 -*}" ,
594 "QS Pos_C -Syl_in_C - Phrase (Fw)==5{*&5 -*}" ,
595 "QS Pos_C -Syl_in_C - Phrase (Fw)==6{*&6 -*}" ,
596 "QS Pos_C -Syl_in_C - Phrase (Fw)==7{*&7 -*}" ,
597 "QS Pos_C -Syl_in_C - Phrase (Fw)==8{*&8 -*}" ,
598 "QS Pos_C -Syl_in_C - Phrase (Fw)==9{*&9 -*}" ,
599 "QS Pos_C -Syl_in_C - Phrase (Fw)==10{*&10 -*}" ,
600 "QS Pos_C -Syl_in_C - Phrase (Fw)==11{*&11 -*}" ,
601 "QS Pos_C -Syl_in_C - Phrase (Fw)==12{*&12 -*}" ,
602 "QS Pos_C -Syl_in_C - Phrase (Fw)==13{*&13 -*}" ,
603 "QS Pos_C -Syl_in_C - Phrase (Fw)==14{*&14 -*}" ,
604 "QS Pos_C -Syl_in_C - Phrase (Fw)==15{*&15 -*}" ,
605 "QS Pos_C -Syl_in_C - Phrase (Fw)==16{*&16 -*}" ,
606 "QS Pos_C -Syl_in_C - Phrase (Fw)==17{*&17 -*}" ,
607 "QS Pos_C -Syl_in_C - Phrase (Fw)==18{*&18 -*}" ,
608 "QS Pos_C -Syl_in_C - Phrase (Fw)==19{*&19 -*}" ,
609 "QS Pos_C -Syl_in_C - Phrase (Fw)==20{*&20 -*}" ,
610 ]
611 SYL_POSITION_IN_PHRASE_FW_LTE = [
612 "QS Pos_C -Syl_in_C - Phrase (Fw) <=1{*&x -* ,*&0 -* ,*&1 -*}" ,
613 "QS Pos_C -Syl_in_C - Phrase (Fw) <=2{*&x -* ,*&0 -* ,*&1 -* ,*&2 -*}" ,
614 "QS Pos_C -Syl_in_C - Phrase (Fw) <=3{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -*}" ,
615 "QS Pos_C -Syl_in_C - Phrase (Fw) <=4{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -*}" ,
616 "QS Pos_C -Syl_in_C - Phrase (Fw) <=5{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -*}" ,
617 "QS Pos_C -Syl_in_C - Phrase (Fw) <=6{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -* ,*&6 -*}" ,
618 "QS Pos_C -Syl_in_C - Phrase (Fw) <=7{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -* ,*&6 -* ,*&7 -*}" ,
619 "QS Pos_C -Syl_in_C - Phrase (Fw) <=8{*&x

-* ,*&0 -* ,*&1 -* ,*&2 -* ,*&3 -* ,*&4 -* ,*&5 -* ,*&6 -* ,*&7 -* ,*&8 -*}" ,
620 "QS Pos_C -Syl_in_C - Phrase (Fw) <=9{*&? -*}" ,
621 "QS Pos_C -Syl_in_C - Phrase (Fw) <=10{*&? -* ,*&10 -*}" ,
622 "QS Pos_C -Syl_in_C - Phrase (Fw) <=11{*&? -* ,*&10 -* ,*&11 -*}" ,
623 "QS Pos_C -Syl_in_C - Phrase (Fw) <=12{*&? -* ,*&10 -* ,*&11 -* ,*&12 -*}" ,
624 "QS Pos_C -Syl_in_C - Phrase (Fw)

<=13{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -*}" ,
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625 "QS Pos_C -Syl_in_C - Phrase (Fw)
<=14{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -*}" ,

626 "QS Pos_C -Syl_in_C - Phrase (Fw)
<=15{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -*}" ,

627 "QS Pos_C -Syl_in_C - Phrase (Fw)
<=16{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -* ,*&16 -*}" ,

628 "QS Pos_C -Syl_in_C - Phrase (Fw)
<=17{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -* ,*&16 -* ,*&17 -*}" ,

629 "QS Pos_C -Syl_in_C - Phrase (Fw)
<=18{*&? -* ,*&10 -* ,*&11 -* ,*&12 -* ,*&13 -* ,*&14 -* ,*&15 -* ,*&16 -* ,*&17 -* ,*&18 -*}" ,

630 "QS Pos_C -Syl_in_C - Phrase (Fw) <=19{*&? -* ,*&1? -*}" ,
631 "QS Pos_C -Syl_in_C - Phrase (Fw) <=20{*&? -* ,*&1? -* ,*&20 -*}" ,
632 ]
633 SYL_POSITION_IN_PHRASE_BW_EQ = [
634 "QS Pos_C -Syl_in_C - Phrase (Bw)==x{*-x#*}" ,
635 "QS Pos_C -Syl_in_C - Phrase (Bw)==1{* -1#*}" ,
636 "QS Pos_C -Syl_in_C - Phrase (Bw)==2{* -2#*}" ,
637 "QS Pos_C -Syl_in_C - Phrase (Bw)==3{* -3#*}" ,
638 "QS Pos_C -Syl_in_C - Phrase (Bw)==4{* -4#*}" ,
639 "QS Pos_C -Syl_in_C - Phrase (Bw)==5{* -5#*}" ,
640 "QS Pos_C -Syl_in_C - Phrase (Bw)==6{* -6#*}" ,
641 "QS Pos_C -Syl_in_C - Phrase (Bw)==7{* -7#*}" ,
642 "QS Pos_C -Syl_in_C - Phrase (Bw)==8{* -8#*}" ,
643 "QS Pos_C -Syl_in_C - Phrase (Bw)==9{* -9#*}" ,
644 "QS Pos_C -Syl_in_C - Phrase (Bw)==10{* -10#*}" ,
645 "QS Pos_C -Syl_in_C - Phrase (Bw)==11{* -11#*}" ,
646 "QS Pos_C -Syl_in_C - Phrase (Bw)==12{* -12#*}" ,
647 "QS Pos_C -Syl_in_C - Phrase (Bw)==13{* -13#*}" ,
648 "QS Pos_C -Syl_in_C - Phrase (Bw)==14{* -14#*}" ,
649 "QS Pos_C -Syl_in_C - Phrase (Bw)==15{* -15#*}" ,
650 "QS Pos_C -Syl_in_C - Phrase (Bw)==16{* -16#*}" ,
651 "QS Pos_C -Syl_in_C - Phrase (Bw)==17{* -17#*}" ,
652 "QS Pos_C -Syl_in_C - Phrase (Bw)==18{* -18#*}" ,
653 "QS Pos_C -Syl_in_C - Phrase (Bw)==19{* -19#*}" ,
654 "QS Pos_C -Syl_in_C - Phrase (Bw)==20{* -20#*}" ,
655 ]
656 SYL_POSITION_IN_PHRASE_BW_LTE = [
657 "QS Pos_C -Syl_in_C - Phrase (Bw) <=1{*-x#* ,* -1#*}" ,
658 "QS Pos_C -Syl_in_C - Phrase (Bw) <=2{*-x#* ,* -1#* ,* -2#*}" ,
659 "QS Pos_C -Syl_in_C - Phrase (Bw) <=3{*-x#* ,* -1#* ,* -2#* ,* -3#*}" ,
660 "QS Pos_C -Syl_in_C - Phrase (Bw) <=4{*-x

#* ,* -1#* ,* -2#* ,* -3#* ,* -4#*}" ,
661 "QS Pos_C -Syl_in_C - Phrase (Bw) <=5{*-x

#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#*}" ,
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662 "QS Pos_C -Syl_in_C - Phrase (Bw) <=6{*-x
#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#* ,* -6#*}" ,

663 "QS Pos_C -Syl_in_C - Phrase (Bw) <=7{*-x
#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#* ,* -6#* ,* -7#*}" ,

664 "QS Pos_C -Syl_in_C - Phrase (Bw) <=8{*-x
#* ,* -1#* ,* -2#* ,* -3#* ,* -4#* ,* -5#* ,* -6#* ,* -7#* ,* -8#*}" ,

665 "QS Pos_C -Syl_in_C - Phrase (Bw) <=9{* -?#*}" ,
666 "QS Pos_C -Syl_in_C - Phrase (Bw) <=10{* -?#* ,* -10#*}" ,
667 "QS Pos_C -Syl_in_C - Phrase (Bw) <=11{* -?#* ,* -10#* ,* -11#*}" ,
668 "QS Pos_C -Syl_in_C - Phrase (Bw) <=12{* -?#* ,* -10#* ,* -11#* ,* -12#*}" ,
669 "QS Pos_C -Syl_in_C - Phrase (Bw)

<=13{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#*}" ,
670 "QS Pos_C -Syl_in_C - Phrase (Bw)

<=14{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#*}" ,
671 "QS Pos_C -Syl_in_C - Phrase (Bw)

<=15{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#*}" ,
672 "QS Pos_C -Syl_in_C - Phrase (Bw)

<=16{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#* ,* -16#*}" ,

673 "QS Pos_C -Syl_in_C - Phrase (Bw)
<=17{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#* ,* -16#* ,* -17#*}" ,

674 "QS Pos_C -Syl_in_C - Phrase (Bw)
<=18{* -?#* ,* -10#* ,* -11#* ,* -12#* ,* -13#* ,* -14#* ,* -15#* ,* -16#* ,* -17#* ,* -18#*}" ,

675 "QS Pos_C -Syl_in_C - Phrase (Bw) <=19{* -?#* ,* -1?#*}" ,
676 "QS Pos_C -Syl_in_C - Phrase (Bw) <=20{* -?#* ,* -1?#* ,* -20#*}" ,
677 ]
678
679 NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ = [
680 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==x{*#x -*}" ,
681 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==1{*#1 -*}" ,
682 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==2{*#2 -*}" ,
683 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==3{*#3 -*}" ,
684 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==4{*#4 -*}" ,
685 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==5{*#5 -*}" ,
686 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==6{*#6 -*}" ,
687 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==7{*#7 -*}" ,
688 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==8{*#8 -*}" ,
689 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==9{*#9 -*}" ,
690 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==10{*#10 -*}" ,
691 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==11{*#11 -*}" ,
692 "QS Num - StressedSyl_before_C -Syl_in_C - Phrase ==12{*#12 -*}" ,
693 ]
694 NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE = [
695 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=1{*#x -* ,*#1 -*}" ,
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696 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=2{*#x
-* ,*#1 -* ,*#2 -*}" ,

697 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=3{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -*}" ,

698 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=4{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -*}" ,

699 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=5{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -*}" ,

700 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=6{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -* ,*#6 -*}" ,

701 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=7{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -* ,*#6 -* ,*#7 -*}" ,

702 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=8{*#x
-* ,*#1 -* ,*#2 -* ,*#3 -* ,*#4 -* ,*#5 -* ,*#6 -* ,*#7 -* ,*#8 -*}" ,

703 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase <=9{*#? -*}" ,
704 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase

<=10{*#? -* ,*#10 -*}" ,
705 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase

<=11{*#? -* ,*#10 -* ,*#11 -*}" ,
706 "QS Num - StressedSyl_before_C -Syl_in_C -Phrase

<=12{*#? -* ,*#10 -* ,*#11 -* ,*#12 -*}" ,
707 ]
708 NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ = [
709 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==x{*-x$*}",
710 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==1{* -1$*}",
711 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==2{* -2$*}",
712 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==3{* -3$*}",
713 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==4{* -4$*}",
714 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==5{* -5$*}",
715 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==6{* -6$*}",
716 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==7{* -7$*}",
717 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==8{* -8$*}",
718 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==9{* -9$*}",
719 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==10{* -10$*}",
720 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==11{* -11$*}",
721 "QS Num - StressedSyl_after_C -Syl_in_C - Phrase ==12{* -12$*}",
722 ]
723 NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE = [
724 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=1{* - x$*,*-1$*}",
725 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=2{* - x$*,*-1$*,*-2$

*}",
726 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=3{* - x$*,*-1$*,*-2$

*,*-3$*}",
727 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=4{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*}",
728 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=5{* - x$*,*-1$*,*-2$

*,*-3$*,*-4$*,*-5$*}",
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729 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=6{* - x$*,*-1$*,*-2$
*,*-3$*,*-4$*,*-5$*,*-6$*}",

730 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=7{* - x$*,*-1$*,*-2$
*,*-3$*,*-4$*,*-5$*,*-6$*,*-7$*}",

731 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=8{* - x$*,*-1$*,*-2$
*,*-3$*,*-4$*,*-5$*,*-6$*,*-7$*,*-8$*}",

732 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=9{* -?$*}",
733 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=10{* -?$*,*-10$*}",
734 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=11{* -?$*,*-10$

*,*-11$*}",
735 "QS Num - StressedSyl_after_C -Syl_in_C -Phrase <=12{* -?$*,*-10$

*,*-11$*,*-12$*}",
736 ]
737 NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ = [
738 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==x{*$x -*}" ,
739 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==1{*$1 -*}" ,
740 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==2{*$2 -*}" ,
741 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==3{*$3 -*}" ,
742 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==4{*$4 -*}" ,
743 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==5{*$5 -*}" ,
744 "QS Num - AccentedSyl_before_C -Syl_in_C - Phrase ==6{*$6 -*}" ,
745 ]
746 NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE = [
747 "QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=1{*$x -*,*$1 -*}" ,
748 "QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=2{*$x -*,*$1 -*,*$2

-*}" ,
749 "QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=3{*$x -*,*$1 -*,*$2

-*,*$3 -*}" ,
750 "QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=4{*$x -*,*$1 -*,*$2

-*,*$3 -*,*$4 -*}" ,
751 "QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=5{*$x -*,*$1 -*,*$2

-*,*$3 -*,*$4 -*,*$5 -*}" ,
752 "QS Num - AccentedSyl_before_C -Syl_in_C -Phrase <=6{*$x -*,*$1 -*,*$2

-*,*$3 -*,*$4 -*,*$5 -*,*$6 -*}" ,
753 ]
754 NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ = [
755 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==x{*-x!*}" ,
756 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==1{* -1!*}" ,
757 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==2{* -2!*}" ,
758 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==3{* -3!*}" ,
759 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==4{* -4!*}" ,
760 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==5{* -5!*}" ,
761 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==6{* -6!*}" ,
762 "QS Num - AccentedSyl_after_C -Syl_in_C - Phrase ==7{* -7!*}" ,
763 ]
764 NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE = [
765 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=1{* -x!* ,* -1!*}" ,
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766 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=2{* -x
!* ,* -1!* ,* -2!*}" ,

767 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=3{* -x
!* ,* -1!* ,* -2!* ,* -3!*}" ,

768 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=4{* -x
!* ,* -1!* ,* -2!* ,* -3!* ,* -4!*}" ,

769 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=5{* -x
!* ,* -1!* ,* -2!* ,* -3!* ,* -4!* ,* -5!*}" ,

770 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=6{* -x
!* ,* -1!* ,* -2!* ,* -3!* ,* -4!* ,* -5!* ,* -6!*}" ,

771 "QS Num - AccentedSyl_after_C -Syl_in_C -Phrase <=7{* -x
!* ,* -1!* ,* -2!* ,* -3!* ,* -4!* ,* -5!* ,* -6!* ,* -7!*}" ,

772 ]
773 NUM_SYLS_FROM_PREV_STRESSED_SYL_EQ = [
774 "QS Num - Syl_from_prev - StressedSyl ==x{*!x -*}" ,
775 "QS Num - Syl_from_prev - StressedSyl ==0{*!0 -*}" ,
776 "QS Num - Syl_from_prev - StressedSyl ==1{*!1 -*}" ,
777 "QS Num - Syl_from_prev - StressedSyl ==2{*!2 -*}" ,
778 "QS Num - Syl_from_prev - StressedSyl ==3{*!3 -*}" ,
779 "QS Num - Syl_from_prev - StressedSyl ==4{*!4 -*}" ,
780 "QS Num - Syl_from_prev - StressedSyl ==5{*!5 -*}" ,
781 ]
782 NUM_SYLS_FROM_PREV_STRESSED_SYL_LTE = [
783 "QS Num - Syl_from_prev - StressedSyl <=0{*!x -* ,*!0 -*}" ,
784 "QS Num - Syl_from_prev - StressedSyl <=1{*!x -* ,*!0 -* ,*!1 -*}" ,
785 "QS Num - Syl_from_prev - StressedSyl <=2{*!x -* ,*!0 -* ,*!1 -* ,*!2 -*}" ,
786 "QS Num - Syl_from_prev - StressedSyl <=3{*!x

-* ,*!0 -* ,*!1 -* ,*!2 -* ,*!3 -*}" ,
787 "QS Num - Syl_from_prev - StressedSyl <=4{*!x

-* ,*!0 -* ,*!1 -* ,*!2 -* ,*!3 -* ,*!4 -*}" ,
788 "QS Num - Syl_from_prev - StressedSyl <=5{*!x

-* ,*!0 -* ,*!1 -* ,*!2 -* ,*!3 -* ,*!4 -* ,*!5 -*}" ,
789 ]
790 NUM_SYLS_FROM_NEXT_STRESSED_SYL_EQ = [
791 "QS Num - Syl_from_next - StressedSyl ==x{*-x;*}" ,
792 "QS Num - Syl_from_next - StressedSyl ==0{* -0;*}" ,
793 "QS Num - Syl_from_next - StressedSyl ==1{* -1;*}" ,
794 "QS Num - Syl_from_next - StressedSyl ==2{* -2;*}" ,
795 "QS Num - Syl_from_next - StressedSyl ==3{* -3;*}" ,
796 "QS Num - Syl_from_next - StressedSyl ==4{* -4;*}" ,
797 "QS Num - Syl_from_next - StressedSyl ==5{* -5;*}" ,
798 ]
799 NUM_SYLS_FROM_NEXT_STRESSED_SYL_LTE = [
800 "QS Num - Syl_from_next - StressedSyl <=0{* -x;* ,* -0;*}" ,
801 "QS Num - Syl_from_next - StressedSyl <=1{* -x;* ,* -0;* ,* -1;*}" ,
802 "QS Num - Syl_from_next - StressedSyl <=2{* -x;* ,* -0;* ,* -1;* ,* -2;*}" ,
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803 "QS Num - Syl_from_next - StressedSyl <=3{* -x
;* ,* -0;* ,* -1;* ,* -2;* ,* -3;*}" ,

804 "QS Num - Syl_from_next - StressedSyl <=4{* -x
;* ,* -0;* ,* -1;* ,* -2;* ,* -3;* ,* -4;*}" ,

805 "QS Num - Syl_from_next - StressedSyl <=5{* -x
;* ,* -0;* ,* -1;* ,* -2;* ,* -3;* ,* -4;* ,* -5;*}" ,

806 ]
807 NUM_SYLS_FROM_PREV_ACCENTED_SYL_EQ = [
808 "QS Num - Syl_from_prev - AccentedSyl ==x{*;x -*}" ,
809 "QS Num - Syl_from_prev - AccentedSyl ==0{*;0 -*}" ,
810 "QS Num - Syl_from_prev - AccentedSyl ==1{*;1 -*}" ,
811 "QS Num - Syl_from_prev - AccentedSyl ==2{*;2 -*}" ,
812 "QS Num - Syl_from_prev - AccentedSyl ==3{*;3 -*}" ,
813 "QS Num - Syl_from_prev - AccentedSyl ==4{*;4 -*}" ,
814 "QS Num - Syl_from_prev - AccentedSyl ==5{*;5 -*}" ,
815 "QS Num - Syl_from_prev - AccentedSyl ==6{*;6 -*}" ,
816 "QS Num - Syl_from_prev - AccentedSyl ==7{*;7 -*}" ,
817 "QS Num - Syl_from_prev - AccentedSyl ==8{*;8 -*}" ,
818 "QS Num - Syl_from_prev - AccentedSyl ==9{*;9 -*}" ,
819 "QS Num - Syl_from_prev - AccentedSyl ==10{*;10 -*}" ,
820 "QS Num - Syl_from_prev - AccentedSyl ==11{*;11 -*}" ,
821 "QS Num - Syl_from_prev - AccentedSyl ==12{*;12 -*}" ,
822 "QS Num - Syl_from_prev - AccentedSyl ==13{*;13 -*}" ,
823 "QS Num - Syl_from_prev - AccentedSyl ==14{*;14 -*}" ,
824 "QS Num - Syl_from_prev - AccentedSyl ==15{*;15 -*}" ,
825 "QS Num - Syl_from_prev - AccentedSyl ==16{*;16 -*}" ,
826 ]
827 NUM_SYLS_FROM_PREV_ACCENTED_SYL_LTE = [
828 "QS Num - Syl_from_prev - AccentedSyl <=0{*;x -* ,*;0 -*}" ,
829 "QS Num - Syl_from_prev - AccentedSyl <=1{*;x -* ,*;0 -* ,*;1 -*}" ,
830 "QS Num - Syl_from_prev - AccentedSyl <=2{*;x -* ,*;0 -* ,*;1 -* ,*;2 -*}" ,
831 "QS Num - Syl_from_prev - AccentedSyl <=3{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -*}" ,
832 "QS Num - Syl_from_prev - AccentedSyl <=4{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -*}" ,
833 "QS Num - Syl_from_prev - AccentedSyl <=5{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -*}" ,
834 "QS Num - Syl_from_prev - AccentedSyl <=6{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -* ,*;6 -*}" ,
835 "QS Num - Syl_from_prev - AccentedSyl <=7{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -* ,*;6 -* ,*;7 -*}" ,
836 "QS Num - Syl_from_prev - AccentedSyl <=8{*;x

-* ,*;0 -* ,*;1 -* ,*;2 -* ,*;3 -* ,*;4 -* ,*;5 -* ,*;6 -* ,*;7 -* ,*;8 -*}" ,
837 "QS Num - Syl_from_prev - AccentedSyl <=9{*;? -*}" ,
838 "QS Num - Syl_from_prev - AccentedSyl <=10{*;? -* ,*;10 -*}" ,
839 "QS Num - Syl_from_prev - AccentedSyl <=11{*;? -* ,*;10 -* ,*;11 -*}" ,
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840 "QS Num - Syl_from_prev - AccentedSyl
<=12{*;? -* ,*;10 -* ,*;11 -* ,*;12 -*}" ,

841 "QS Num - Syl_from_prev - AccentedSyl
<=13{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -*}" ,

842 "QS Num - Syl_from_prev - AccentedSyl
<=14{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -* ,*;14 -*}" ,

843 "QS Num - Syl_from_prev - AccentedSyl
<=15{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -* ,*;14 -* ,*;15 -*}" ,

844 "QS Num - Syl_from_prev - AccentedSyl
<=16{*;? -* ,*;10 -* ,*;11 -* ,*;12 -* ,*;13 -* ,*;14 -* ,*;15 -* ,*;16 -*}" ,

845 ]
846 NUM_SYLS_FROM_NEXT_ACCENTED_SYL_EQ = [
847 "QS Num - Syl_from_next - AccentedSyl ==x{*-x|*}" ,
848 "QS Num - Syl_from_next - AccentedSyl ==0{* -0|*}" ,
849 "QS Num - Syl_from_next - AccentedSyl ==1{* -1|*}" ,
850 "QS Num - Syl_from_next - AccentedSyl ==2{* -2|*}" ,
851 "QS Num - Syl_from_next - AccentedSyl ==3{* -3|*}" ,
852 "QS Num - Syl_from_next - AccentedSyl ==4{* -4|*}" ,
853 "QS Num - Syl_from_next - AccentedSyl ==5{* -5|*}" ,
854 "QS Num - Syl_from_next - AccentedSyl ==6{* -6|*}" ,
855 "QS Num - Syl_from_next - AccentedSyl ==7{* -7|*}" ,
856 "QS Num - Syl_from_next - AccentedSyl ==8{* -8|*}" ,
857 "QS Num - Syl_from_next - AccentedSyl ==9{* -9|*}" ,
858 "QS Num - Syl_from_next - AccentedSyl ==10{* -10|*}" ,
859 "QS Num - Syl_from_next - AccentedSyl ==11{* -11|*}" ,
860 "QS Num - Syl_from_next - AccentedSyl ==12{* -12|*}" ,
861 "QS Num - Syl_from_next - AccentedSyl ==13{* -13|*}" ,
862 "QS Num - Syl_from_next - AccentedSyl ==14{* -14|*}" ,
863 "QS Num - Syl_from_next - AccentedSyl ==15{* -15|*}" ,
864 "QS Num - Syl_from_next - AccentedSyl ==16{* -16|*}" ,
865 ]
866 NUM_SYLS_FROM_NEXT_ACCENTED_SYL_LTE = [
867 "QS Num - Syl_from_next - AccentedSyl <=0{* -x|* ,* -0|*}" ,
868 "QS Num - Syl_from_next - AccentedSyl <=1{* -x|* ,* -0|* ,* -1|*}" ,
869 "QS Num - Syl_from_next - AccentedSyl <=2{* -x|* ,* -0|* ,* -1|* ,* -2|*}" ,
870 "QS Num - Syl_from_next - AccentedSyl <=3{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|*}" ,
871 "QS Num - Syl_from_next - AccentedSyl <=4{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|*}" ,
872 "QS Num - Syl_from_next - AccentedSyl <=5{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|*}" ,
873 "QS Num - Syl_from_next - AccentedSyl <=6{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|* ,* -6|*}" ,
874 "QS Num - Syl_from_next - AccentedSyl <=7{* -x

|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|* ,* -6|* ,* -7|*}" ,
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875 "QS Num - Syl_from_next - AccentedSyl <=8{* -x
|* ,* -0|* ,* -1|* ,* -2|* ,* -3|* ,* -4|* ,* -5|* ,* -6|* ,* -7|* ,* -8|*}" ,

876 "QS Num - Syl_from_next - AccentedSyl <=9{* -?|*}" ,
877 "QS Num - Syl_from_next - AccentedSyl <=10{* -?|* ,* -10|*}" ,
878 "QS Num - Syl_from_next - AccentedSyl <=11{* -?|* ,* -10|* ,* -11|*}" ,
879 "QS Num - Syl_from_next - AccentedSyl

<=12{* -?|* ,* -10|* ,* -11|* ,* -12|*}" ,
880 "QS Num - Syl_from_next - AccentedSyl

<=13{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|*}" ,
881 "QS Num - Syl_from_next - AccentedSyl

<=14{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|* ,* -14|*}" ,
882 "QS Num - Syl_from_next - AccentedSyl

<=15{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|* ,* -14|* ,* -15|*}" ,
883 "QS Num - Syl_from_next - AccentedSyl

<=16{* -?|* ,* -10|* ,* -11|* ,* -12|* ,* -13|* ,* -14|* ,* -15|* ,* -16|*}" ,

884 ]
885
886 SYL_VOWEL_TYPE = [
887 "QS C- Syl_Vowel ==x{*|x/C:*}" ,
888 "QS C- Syl_Vowel {*|i/C:* ,*|y/C:* ,*|e/C:* ,*|a/C:* ,*|o/C:* ,*|u/C

:* ,*| schwa/C:*}" ,
889 "QS C- Syl_Front_Vowel {*|e/C:* ,*|i/C:* ,*|y/C:*}" ,
890 "QS C- Syl_Central_Vowel {*|a/C:* ,*| schwa/C:*}" ,
891 "QS C- Syl_Back_Vowel {*|o/C:* ,*|u/C:*}" ,
892 "QS C- Syl_High_Vowel {*|i/C:* ,*|y/C:* ,*|u/C:*}" ,
893 "QS C- Syl_Medium_Vowel {*|e/C:* ,*|o/C:* ,*| schwa/C:*}" ,
894 "QS C- Syl_Low_Vowel {*|a/C:*}" ,
895 "QS C- Syl_Rounded_Vowel {*|o/C:* ,*|u/C:*}" ,
896 "QS C- Syl_Unrounded_Vowel {*|a/C:* ,*|e/C:* ,*|i/C:* ,*|y/C:*}" ,
897 "QS C- Syl_IVowel {*|i/C:*}" ,
898 "QS C- Syl_EVowel {*|e/C:*}" ,
899 "QS C- Syl_AVowel {*|a/C:*}" ,
900 "QS C- Syl_OVowel {*|o/C:*}" ,
901 "QS C- Syl_UVowel {*|u/C:*}" ,
902 "QS C- Syl_YVowel {*|y/C:*}" ,
903 "QS C- Syl_SCHWAVowel {*| schwa/C:*}" ,
904 ]
905
906 SYL_STRESSED_R = [
907 "QS R- Syl_Stress ==1{*/ C:1+*}" ,
908 "QS R- Syl_Stress ==0{*/ C:0+*}" ,
909 ]
910 SYL_ACCENTED_R = [
911 "QS R- Syl_Accent ==1{*+1+*}" ,
912 "QS R- Syl_Accent ==0{*+0+*}" ,
913 ]
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914 SYL_ACCENT_TYPE_R = [
915 "QS R- Syl_TOBI_Accent -H*{*/M:H?}",
916 "QS R- Syl_TOBI_Accent -L*{*/M:L?}",
917 "QS R- Syl_TOBI_Accent -L*+H{*/M:L?+H}",
918 "QS R- Syl_TOBI_Accent -L+H*{*/M:L+H?}",
919 "QS R- Syl_TOBI_Accent -0{*/M:0}" ,
920 "QS R- Syl_TOBI_Accent -NONE {*/M:NONE }",
921 "QS R- Syl_TOBI_Accent -x{*/M:x}",
922 ]
923
924 SYL_LEN_IN_NO_SEG_EQ_R = [
925 "QS R-Syl_Num -Segs ==0{*+0/ D:*}" ,
926 "QS R-Syl_Num -Segs ==1{*+1/ D:*}" ,
927 "QS R-Syl_Num -Segs ==2{*+2/ D:*}" ,
928 "QS R-Syl_Num -Segs ==3{*+3/ D:*}" ,
929 "QS R-Syl_Num -Segs ==4{*+4/ D:*}" ,
930 "QS R-Syl_Num -Segs ==5{*+5/ D:*}" ,
931 "QS R-Syl_Num -Segs ==6{*+6/ D:*}" ,
932 "QS R-Syl_Num -Segs ==7{*+7/ D:*}" ,
933 ]
934 SYL_LEN_IN_NO_SEG_LTE_R = [
935 "QS R-Syl_Num -Segs <=1{*+0/ D:* ,*+1/D:*}" ,
936 "QS R-Syl_Num -Segs <=2{*+0/ D:* ,*+1/D:* ,*+2/D:*}" ,
937 "QS R-Syl_Num -Segs <=3{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:*}" ,
938 "QS R-Syl_Num -Segs <=4{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:*}" ,
939 "QS R-Syl_Num -Segs <=5{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:* ,*+5/D:*}" ,
940 "QS R-Syl_Num -Segs <=6{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:* ,*+5/D:* ,*+6/D:*}" ,
941 "QS R-Syl_Num -Segs <=7{*+0/ D:* ,*+1/D:* ,*+2/D:* ,*+3/D:* ,*+4/D

:* ,*+5/D:* ,*+6/D:* ,*+7/D:*}" ,
942 ]
943
944 WORD_LEN_IN_NO_SYLS_EQ_L = [
945 "QS L-Word_Num -Syls ==0{* _0/E:*}" ,
946 "QS L-Word_Num -Syls ==1{* _1/E:*}" ,
947 "QS L-Word_Num -Syls ==2{* _2/E:*}" ,
948 "QS L-Word_Num -Syls ==3{* _3/E:*}" ,
949 "QS L-Word_Num -Syls ==4{* _4/E:*}" ,
950 "QS L-Word_Num -Syls ==5{* _5/E:*}" ,
951 "QS L-Word_Num -Syls ==6{* _6/E:*}" ,
952 "QS L-Word_Num -Syls ==7{* _7/E:*}" ,
953 ]
954 WORD_LEN_IN_NO_SYLS_LTE_L = [
955 "QS L-Word_Num -Syls <=1{* _0/E:*,*_1/E:*}" ,
956 "QS L-Word_Num -Syls <=2{* _0/E:*,*_1/E:*,*_2/E:*}" ,
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957 "QS L-Word_Num -Syls <=3{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*}" ,
958 "QS L-Word_Num -Syls <=4{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E

:*}" ,
959 "QS L-Word_Num -Syls <=5{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E

:*,*_5/E:*}" ,
960 "QS L-Word_Num -Syls <=6{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E

:*,*_5/E:*,*_6/E:*}" ,
961 "QS L-Word_Num -Syls <=7{* _0/E:*,*_1/E:*,*_2/E:*,*_3/E:*,*_4/E

:*,*_5/E:*,*_6/E:*,*_7/E:*}" ,
962 ]
963 WORD_LEN_IN_NO_SYLS_EQ_C = [
964 "QS C-Word_Num -Syls ==x{*+ x@*}",
965 "QS C-Word_Num -Syls ==1{*+1 @*}",
966 "QS C-Word_Num -Syls ==2{*+2 @*}",
967 "QS C-Word_Num -Syls ==3{*+3 @*}",
968 "QS C-Word_Num -Syls ==4{*+4 @*}",
969 "QS C-Word_Num -Syls ==5{*+5 @*}",
970 "QS C-Word_Num -Syls ==6{*+6 @*}",
971 "QS C-Word_Num -Syls ==7{*+7 @*}",
972 ]
973 WORD_LEN_IN_NO_SYLS_LTE_C = [
974 "QS C-Word_Num -Syls <=1{*+ x@ * ,*+1@*}",
975 "QS C-Word_Num -Syls <=2{*+ x@ * ,*+1@* ,*+2@*}",
976 "QS C-Word_Num -Syls <=3{*+ x@ * ,*+1@* ,*+2@* ,*+3@*}",
977 "QS C-Word_Num -Syls <=4{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@*}",
978 "QS C-Word_Num -Syls <=5{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@* ,*+5@*}",
979 "QS C-Word_Num -Syls <=6{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@* ,*+5@* ,*+6@

*}",
980 "QS C-Word_Num -Syls <=7{*+ x@ * ,*+1@* ,*+2@* ,*+3@* ,*+4@* ,*+5@* ,*+6@

* ,*+7@*}",
981 ]
982
983 WORD_POSITION_IN_PHRASE_FW_EQ = [
984 "QS Pos_C -Word_in_C - Phrase (Fw)==x{*@x +*}" ,
985 "QS Pos_C -Word_in_C - Phrase (Fw)==1{* @1 +*}" ,
986 "QS Pos_C -Word_in_C - Phrase (Fw)==2{* @2 +*}" ,
987 "QS Pos_C -Word_in_C - Phrase (Fw)==3{* @3 +*}" ,
988 "QS Pos_C -Word_in_C - Phrase (Fw)==4{* @4 +*}" ,
989 "QS Pos_C -Word_in_C - Phrase (Fw)==5{* @5 +*}" ,
990 "QS Pos_C -Word_in_C - Phrase (Fw)==6{* @6 +*}" ,
991 "QS Pos_C -Word_in_C - Phrase (Fw)==7{* @7 +*}" ,
992 "QS Pos_C -Word_in_C - Phrase (Fw)==8{* @8 +*}" ,
993 "QS Pos_C -Word_in_C - Phrase (Fw)==9{* @9 +*}" ,
994 "QS Pos_C -Word_in_C - Phrase (Fw) ==10{* @10 +*}" ,
995 "QS Pos_C -Word_in_C - Phrase (Fw) ==11{* @11 +*}" ,
996 "QS Pos_C -Word_in_C - Phrase (Fw) ==12{* @12 +*}" ,
997 "QS Pos_C -Word_in_C - Phrase (Fw) ==13{* @13 +*}" ,
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998 ]
999 WORD_POSITION_IN_PHRASE_FW_LTE = [

1000 "QS Pos_C -Word_in_C - Phrase (Fw) <=1{* @x+*,*@1 +*}" ,
1001 "QS Pos_C -Word_in_C - Phrase (Fw) <=2{* @x+*,*@1+*,*@2 +*}" ,
1002 "QS Pos_C -Word_in_C - Phrase (Fw) <=3{* @x+*,*@1+*,*@2+*,*@3 +*}" ,
1003 "QS Pos_C -Word_in_C - Phrase (Fw) <=4{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*}" ,
1004 "QS Pos_C -Word_in_C - Phrase (Fw) <=5{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5 +*}" ,
1005 "QS Pos_C -Word_in_C - Phrase (Fw) <=6{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5+*,*@6 +*}" ,
1006 "QS Pos_C -Word_in_C - Phrase (Fw) <=7{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5+*,*@6+*,*@7 +*}" ,
1007 "QS Pos_C -Word_in_C - Phrase (Fw) <=8{* @x+*,*@1+*,*@2+*,*@3+*,*@4

+*,*@5+*,*@6+*,*@7+*,*@8 +*}" ,
1008 "QS Pos_C -Word_in_C - Phrase (Fw) <=9{*@?+*}" ,
1009 "QS Pos_C -Word_in_C - Phrase (Fw) <=10{*@?+* ,* @10 +*}" ,
1010 "QS Pos_C -Word_in_C - Phrase (Fw) <=11{*@?+* ,* @10 +*,* @11 +*}" ,
1011 "QS Pos_C -Word_in_C - Phrase (Fw) <=12{*@?+* ,* @10 +*,* @11 +*,* @12

+*}" ,
1012 "QS Pos_C -Word_in_C - Phrase (Fw) <=13{*@?+* ,* @10 +*,* @11 +*,* @12 +*,*

@13 +*}" ,
1013 ]
1014 WORD_POSITION_IN_PHRASE_BW_EQ = [
1015 "QS Pos_C -Word_in_C - Phrase (Bw)==x{*+x&*}" ,
1016 "QS Pos_C -Word_in_C - Phrase (Bw) ==0{*+0&*}" ,
1017 "QS Pos_C -Word_in_C - Phrase (Bw) ==1{*+1&*}" ,
1018 "QS Pos_C -Word_in_C - Phrase (Bw) ==2{*+2&*}" ,
1019 "QS Pos_C -Word_in_C - Phrase (Bw) ==3{*+3&*}" ,
1020 "QS Pos_C -Word_in_C - Phrase (Bw) ==4{*+4&*}" ,
1021 "QS Pos_C -Word_in_C - Phrase (Bw) ==5{*+5&*}" ,
1022 "QS Pos_C -Word_in_C - Phrase (Bw) ==6{*+6&*}" ,
1023 "QS Pos_C -Word_in_C - Phrase (Bw) ==7{*+7&*}" ,
1024 "QS Pos_C -Word_in_C - Phrase (Bw) ==8{*+8&*}" ,
1025 "QS Pos_C -Word_in_C - Phrase (Bw) ==9{*+9&*}" ,
1026 "QS Pos_C -Word_in_C - Phrase (Bw) ==10{*+10&*}" ,
1027 "QS Pos_C -Word_in_C - Phrase (Bw) ==11{*+11&*}" ,
1028 "QS Pos_C -Word_in_C - Phrase (Bw) ==12{*+12&*}" ,
1029 "QS Pos_C -Word_in_C - Phrase (Bw) ==13{*+13&*}" ,
1030 ]
1031 WORD_POSITION_IN_PHRASE_BW_LTE = [
1032 "QS Pos_C -Word_in_C - Phrase (Bw) <=1{*+x&* ,*+0&* ,*+1&*}" ,
1033 "QS Pos_C -Word_in_C - Phrase (Bw) <=2{*+x&* ,*+0&* ,*+1&* ,*+2&*}" ,
1034 "QS Pos_C -Word_in_C - Phrase (Bw) <=3{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&*}" ,
1035 "QS Pos_C -Word_in_C - Phrase (Bw) <=4{*+x

&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&*}" ,
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1036 "QS Pos_C -Word_in_C - Phrase (Bw) <=5{*+x
&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&*}" ,

1037 "QS Pos_C -Word_in_C - Phrase (Bw) <=6{*+x
&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&* ,*+6&*}" ,

1038 "QS Pos_C -Word_in_C - Phrase (Bw) <=7{*+x
&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&* ,*+6&* ,*+7&*}" ,

1039 "QS Pos_C -Word_in_C - Phrase (Bw) <=8{*+x
&* ,*+0&* ,*+1&* ,*+2&* ,*+3&* ,*+4&* ,*+5&* ,*+6&* ,*+7&* ,*+8&*}" ,

1040 "QS Pos_C -Word_in_C - Phrase (Bw) <=9{*+?&*}" ,
1041 "QS Pos_C -Word_in_C - Phrase (Bw) <=10{*+?&* ,*+10&*}" ,
1042 "QS Pos_C -Word_in_C - Phrase (Bw) <=11{*+?&* ,*+10&* ,*+11&*}" ,
1043 "QS Pos_C -Word_in_C - Phrase (Bw)

<=12{*+?&* ,*+10&* ,*+11&* ,*+12&*}" ,
1044 "QS Pos_C -Word_in_C - Phrase (Bw)

<=13{*+?&* ,*+10&* ,*+11&* ,*+12&* ,*+13&*}" ,
1045 ]
1046
1047 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_EQ = [
1048 "QS Num - ContWord_before_C -Word_in_C - Phrase ==x{*&x+*}" ,
1049 "QS Num - ContWord_before_C -Word_in_C - Phrase ==1{*&1+*}" ,
1050 "QS Num - ContWord_before_C -Word_in_C - Phrase ==2{*&2+*}" ,
1051 "QS Num - ContWord_before_C -Word_in_C - Phrase ==3{*&3+*}" ,
1052 "QS Num - ContWord_before_C -Word_in_C - Phrase ==4{*&4+*}" ,
1053 "QS Num - ContWord_before_C -Word_in_C - Phrase ==5{*&5+*}" ,
1054 "QS Num - ContWord_before_C -Word_in_C - Phrase ==6{*&6+*}" ,
1055 "QS Num - ContWord_before_C -Word_in_C - Phrase ==7{*&7+*}" ,
1056 "QS Num - ContWord_before_C -Word_in_C - Phrase ==8{*&8+*}" ,
1057 "QS Num - ContWord_before_C -Word_in_C - Phrase ==9{*&9+*}" ,
1058 ]
1059 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_LTE = [
1060 "QS Num - ContWord_before_C -Word_in_C -Phrase <=1{*& x+* ,*&1+*}" ,
1061 "QS Num - ContWord_before_C -Word_in_C -Phrase <=2{*& x

+* ,*&1+* ,*&2+*}" ,
1062 "QS Num - ContWord_before_C -Word_in_C -Phrase <=3{*& x

+* ,*&1+* ,*&2+* ,*&3+*}" ,
1063 "QS Num - ContWord_before_C -Word_in_C -Phrase <=4{*& x

+* ,*&1+* ,*&2+* ,*&3+* ,*&4+*}" ,
1064 "QS Num - ContWord_before_C -Word_in_C -Phrase <=5{*& x

+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+*}" ,
1065 "QS Num - ContWord_before_C -Word_in_C -Phrase <=6{*& x

+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+* ,*&6+*}" ,
1066 "QS Num - ContWord_before_C -Word_in_C -Phrase <=7{*& x

+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+* ,*&6+* ,*&7+*}" ,
1067 "QS Num - ContWord_before_C -Word_in_C -Phrase <=8{*& x

+* ,*&1+* ,*&2+* ,*&3+* ,*&4+* ,*&5+* ,*&6+* ,*&7+* ,*&8+*}" ,
1068 "QS Num - ContWord_before_C -Word_in_C -Phrase <=9{*&?+*}" ,
1069 ]
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1070 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_EQ = [
1071 "QS Num - ContWord_after_C -Word_in_C - Phrase ==x{*+x#*}" ,
1072 "QS Num - ContWord_after_C -Word_in_C - Phrase ==0{*+0#*}" ,
1073 "QS Num - ContWord_after_C -Word_in_C - Phrase ==1{*+1#*}" ,
1074 "QS Num - ContWord_after_C -Word_in_C - Phrase ==2{*+2#*}" ,
1075 "QS Num - ContWord_after_C -Word_in_C - Phrase ==3{*+3#*}" ,
1076 "QS Num - ContWord_after_C -Word_in_C - Phrase ==4{*+4#*}" ,
1077 "QS Num - ContWord_after_C -Word_in_C - Phrase ==5{*+5#*}" ,
1078 "QS Num - ContWord_after_C -Word_in_C - Phrase ==6{*+6#*}" ,
1079 "QS Num - ContWord_after_C -Word_in_C - Phrase ==7{*+7#*}" ,
1080 "QS Num - ContWord_after_C -Word_in_C - Phrase ==8{*+8#*}" ,
1081 ]
1082 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_LTE = [
1083 "QS Num - ContWord_after_C -Word_in_C -Phrase <=0{*+ x#* ,*+0#*}" ,
1084 "QS Num - ContWord_after_C -Word_in_C -Phrase <=1{*+ x

#* ,*+0#* ,*+1#*}" ,
1085 "QS Num - ContWord_after_C -Word_in_C -Phrase <=2{*+ x

#* ,*+0#* ,*+1#* ,*+2#*}" ,
1086 "QS Num - ContWord_after_C -Word_in_C -Phrase <=3{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#*}" ,
1087 "QS Num - ContWord_after_C -Word_in_C -Phrase <=4{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#*}" ,
1088 "QS Num - ContWord_after_C -Word_in_C -Phrase <=5{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#*}" ,
1089 "QS Num - ContWord_after_C -Word_in_C -Phrase <=6{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#* ,*+6#*}" ,
1090 "QS Num - ContWord_after_C -Word_in_C -Phrase <=7{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#* ,*+6#* ,*+7#*}" ,
1091 "QS Num - ContWord_after_C -Word_in_C -Phrase <=8{*+ x

#* ,*+0#* ,*+1#* ,*+2#* ,*+3#* ,*+4#* ,*+5#* ,*+6#* ,*+7#* ,*+8#*}" ,
1092 ]
1093 NUM_WORDS_FROM_PREV_CONT_WORD_EQ = [
1094 "QS Num - Words_from_prev - ContWord ==x{*#x+*}" ,
1095 "QS Num - Words_from_prev - ContWord ==0{*#0+*}" ,
1096 "QS Num - Words_from_prev - ContWord ==1{*#1+*}" ,
1097 "QS Num - Words_from_prev - ContWord ==2{*#2+*}" ,
1098 "QS Num - Words_from_prev - ContWord ==3{*#3+*}" ,
1099 "QS Num - Words_from_prev - ContWord ==4{*#4+*}" ,
1100 "QS Num - Words_from_prev - ContWord ==5{*#5+*}" ,
1101 ]
1102 NUM_WORDS_FROM_PREV_CONT_WORD_LTE = [
1103 "QS Num - Words_from_prev -ContWord <=0{*# x+* ,*#0+*}" ,
1104 "QS Num - Words_from_prev -ContWord <=1{*# x+* ,*#0+* ,*#1+*}" ,
1105 "QS Num - Words_from_prev -ContWord <=2{*# x+* ,*#0+* ,*#1+* ,*#2+*}" ,
1106 "QS Num - Words_from_prev -ContWord <=3{*# x

+* ,*#0+* ,*#1+* ,*#2+* ,*#3+*}" ,
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1107 "QS Num - Words_from_prev -ContWord <=4{*# x
+* ,*#0+* ,*#1+* ,*#2+* ,*#3+* ,*#4+*}" ,

1108 "QS Num - Words_from_prev -ContWord <=5{*# x
+* ,*#0+* ,*#1+* ,*#2+* ,*#3+* ,*#4+* ,*#5+*}" ,

1109 ]
1110 NUM_WORDS_FROM_NEXT_CONT_WORD_EQ = [
1111 "QS Num - Words_from_next - ContWord ==x{*+x/F:*}" ,
1112 "QS Num - Words_from_next - ContWord ==0{*+0/ F:*}" ,
1113 "QS Num - Words_from_next - ContWord ==1{*+1/ F:*}" ,
1114 "QS Num - Words_from_next - ContWord ==2{*+2/ F:*}" ,
1115 "QS Num - Words_from_next - ContWord ==3{*+3/ F:*}" ,
1116 "QS Num - Words_from_next - ContWord ==4{*+4/ F:*}" ,
1117 "QS Num - Words_from_next - ContWord ==5{*+5/ F:*}" ,
1118 ]
1119 NUM_WORDS_FROM_NEXT_CONT_WORD_LTE = [
1120 "QS Num - Words_from_next -ContWord <=0{*+ x/F:* ,*+0/F:*}" ,
1121 "QS Num - Words_from_next -ContWord <=1{*+ x/F:* ,*+0/F:* ,*+1/F:*}" ,
1122 "QS Num - Words_from_next -ContWord <=2{*+ x/F:* ,*+0/F:* ,*+1/F

:* ,*+2/F:*}" ,
1123 "QS Num - Words_from_next -ContWord <=3{*+ x/F:* ,*+0/F:* ,*+1/F

:* ,*+2/F:* ,*+3/F:*}" ,
1124 "QS Num - Words_from_next -ContWord <=4{*+ x/F:* ,*+0/F:* ,*+1/F

:* ,*+2/F:* ,*+3/F:* ,*+4/F:*}" ,
1125 "QS Num - Words_from_next -ContWord <=5{*+ x/F:* ,*+0/F:* ,*+1/F

:* ,*+2/F:* ,*+3/F:* ,*+4/F:* ,*+5/F:*}" ,
1126 ]
1127
1128 WORD_LEN_IN_NO_SYLS_EQ_R = [
1129 "QS R-Word_Num -Syls ==0{* _0/G:*}" ,
1130 "QS R-Word_Num -Syls ==1{* _1/G:*}" ,
1131 "QS R-Word_Num -Syls ==2{* _2/G:*}" ,
1132 "QS R-Word_Num -Syls ==3{* _3/G:*}" ,
1133 "QS R-Word_Num -Syls ==4{* _4/G:*}" ,
1134 "QS R-Word_Num -Syls ==5{* _5/G:*}" ,
1135 "QS R-Word_Num -Syls ==6{* _6/G:*}" ,
1136 "QS R-Word_Num -Syls ==7{* _7/G:*}" ,
1137 ]
1138 WORD_LEN_IN_NO_SYLS_LTE_R = [
1139 "QS R-Word_Num -Syls <=1{* _0/G:*,*_1/G:*}" ,
1140 "QS R-Word_Num -Syls <=2{* _0/G:*,*_1/G:*,*_2/G:*}" ,
1141 "QS R-Word_Num -Syls <=3{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*}" ,
1142 "QS R-Word_Num -Syls <=4{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G

:*}" ,
1143 "QS R-Word_Num -Syls <=5{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G

:*,*_5/G:*}" ,
1144 "QS R-Word_Num -Syls <=6{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G

:*,*_5/G:*,*_6/G:*}" ,
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1145 "QS R-Word_Num -Syls <=7{* _0/G:*,*_1/G:*,*_2/G:*,*_3/G:*,*_4/G
:*,*_5/G:*,*_6/G:*,*_7/G:*}" ,

1146 ]
1147
1148 PHRASE_LEN_IN_NO_SYLS_EQ_L = [
1149 "QS L-Phrase_Num -Syls ==0{*/ G:0_*}",
1150 "QS L-Phrase_Num -Syls ==1{*/ G:1_*}",
1151 "QS L-Phrase_Num -Syls ==2{*/ G:2_*}",
1152 "QS L-Phrase_Num -Syls ==3{*/ G:3_*}",
1153 "QS L-Phrase_Num -Syls ==4{*/ G:4_*}",
1154 "QS L-Phrase_Num -Syls ==5{*/ G:5_*}",
1155 "QS L-Phrase_Num -Syls ==6{*/ G:6_*}",
1156 "QS L-Phrase_Num -Syls ==7{*/ G:7_*}",
1157 "QS L-Phrase_Num -Syls ==8{*/ G:8_*}",
1158 "QS L-Phrase_Num -Syls ==9{*/ G:9_*}",
1159 "QS L-Phrase_Num -Syls ==10{*/ G:10_*}",
1160 "QS L-Phrase_Num -Syls ==11{*/ G:11_*}",
1161 "QS L-Phrase_Num -Syls ==12{*/ G:12_*}",
1162 "QS L-Phrase_Num -Syls ==13{*/ G:13_*}",
1163 "QS L-Phrase_Num -Syls ==14{*/ G:14_*}",
1164 "QS L-Phrase_Num -Syls ==15{*/ G:15_*}",
1165 "QS L-Phrase_Num -Syls ==16{*/ G:16_*}",
1166 "QS L-Phrase_Num -Syls ==17{*/ G:17_*}",
1167 "QS L-Phrase_Num -Syls ==18{*/ G:18_*}",
1168 "QS L-Phrase_Num -Syls ==19{*/ G:19_*}",
1169 "QS L-Phrase_Num -Syls ==20{*/ G:20_*}",
1170 ]
1171 PHRASE_LEN_IN_NO_SYLS_LTE_L = [
1172 "QS L-Phrase_Num -Syls <=1{*/ G:0_*,*/G:1_*}",
1173 "QS L-Phrase_Num -Syls <=2{*/ G:0_*,*/G:1_*,*/G:2_*}",
1174 "QS L-Phrase_Num -Syls <=3{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*}",
1175 "QS L-Phrase_Num -Syls <=4{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*}",
1176 "QS L-Phrase_Num -Syls <=5{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*}",
1177 "QS L-Phrase_Num -Syls <=6{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*,*/G:6_*}",
1178 "QS L-Phrase_Num -Syls <=7{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*,*/G:6_*,*/G:7_*}",
1179 "QS L-Phrase_Num -Syls <=8{*/ G:0_*,*/G:1_*,*/G:2_*,*/G:3_*,*/G:4_

*,*/G:5_*,*/G:6_*,*/G:7_*,*/G:8_*}",
1180 "QS L-Phrase_Num -Syls <=9{*/ G:?_*}",
1181 "QS L-Phrase_Num -Syls <=10{*/ G:?_*,*/G:10_*}",
1182 "QS L-Phrase_Num -Syls <=11{*/ G:?_*,*/G:10_*,*/G:11_*}",
1183 "QS L-Phrase_Num -Syls <=12{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*}",
1184 "QS L-Phrase_Num -Syls <=13{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/

G:13_*}",
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1185 "QS L-Phrase_Num -Syls <=14{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/
G:13_*,*/G:14_*}",

1186 "QS L-Phrase_Num -Syls <=15{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/
G:13_*,*/G:14_*,*/G:15_*}",

1187 "QS L-Phrase_Num -Syls <=16{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/
G:13_*,*/G:14_*,*/G:15_*,*/G:16_*}",

1188 "QS L-Phrase_Num -Syls <=17{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/
G:13_*,*/G:14_*,*/G:15_*,*/G:16_*,*/G:17_*}",

1189 "QS L-Phrase_Num -Syls <=18{*/ G:?_*,*/G:10_*,*/G:11_*,*/G:12_*,*/
G:13_*,*/G:14_*,*/G:15_*,*/G:16_*,*/G:17_*,*/G:18_*}",

1190 "QS L-Phrase_Num -Syls <=19{*/ G:?_*,*/G:1?_*}",
1191 "QS L-Phrase_Num -Syls <=20{*/ G:?_*,*/G:1?_*,*/G:20_*}",
1192 ]
1193
1194 PHRASE_LEN_IN_NO_WORDS_EQ_L = [
1195 "QS L-Phrase_Num -Words ==0{* _0/H:*}" ,
1196 "QS L-Phrase_Num -Words ==1{* _1/H:*}" ,
1197 "QS L-Phrase_Num -Words ==2{* _2/H:*}" ,
1198 "QS L-Phrase_Num -Words ==3{* _3/H:*}" ,
1199 "QS L-Phrase_Num -Words ==4{* _4/H:*}" ,
1200 "QS L-Phrase_Num -Words ==5{* _5/H:*}" ,
1201 "QS L-Phrase_Num -Words ==6{* _6/H:*}" ,
1202 "QS L-Phrase_Num -Words ==7{* _7/H:*}" ,
1203 "QS L-Phrase_Num -Words ==8{* _8/H:*}" ,
1204 "QS L-Phrase_Num -Words ==9{* _9/H:*}" ,
1205 "QS L-Phrase_Num -Words ==10{* _10/H:*}" ,
1206 "QS L-Phrase_Num -Words ==11{* _11/H:*}" ,
1207 "QS L-Phrase_Num -Words ==12{* _12/H:*}" ,
1208 "QS L-Phrase_Num -Words ==13{* _13/H:*}" ,
1209 ]
1210 PHRASE_LEN_IN_NO_WORDS_LTE_L = [
1211 "QS L-Phrase_Num -Words <=1{* _0/H:*,*_1/H:*}" ,
1212 "QS L-Phrase_Num -Words <=2{* _0/H:*,*_1/H:*,*_2/H:*}" ,
1213 "QS L-Phrase_Num -Words <=3{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*}" ,
1214 "QS L-Phrase_Num -Words <=4{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*}" ,
1215 "QS L-Phrase_Num -Words <=5{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*}" ,
1216 "QS L-Phrase_Num -Words <=6{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*,*_6/H:*}" ,
1217 "QS L-Phrase_Num -Words <=7{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*,*_6/H:*,*_7/H:*}" ,
1218 "QS L-Phrase_Num -Words <=8{* _0/H:*,*_1/H:*,*_2/H:*,*_3/H:*,*_4/H

:*,*_5/H:*,*_6/H:*,*_7/H:*,*_8/H:*}" ,
1219 "QS L-Phrase_Num -Words <=9{*_?/H:*}" ,
1220 "QS L-Phrase_Num -Words <=10{* _?/H:*,* _10/H:*}" ,
1221 "QS L-Phrase_Num -Words <=11{* _?/H:*,* _10/H:*,* _11/H:*}" ,
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1222 "QS L-Phrase_Num -Words <=12{* _?/H:*,* _10/H:*,* _11/H:*,* _12/H
:*}" ,

1223 "QS L-Phrase_Num -Words <=13{* _?/H:*,* _10/H:*,* _11/H:*,* _12/H:*,*
_13/H:*}" ,

1224 ]
1225
1226 PHRASE_LEN_IN_NO_SYLS_EQ_C = [
1227 "QS C-Phrase_Num -Syls ==x{*/H:x=*}" ,
1228 "QS C-Phrase_Num -Syls ==0{*/ H:0=*}" ,
1229 "QS C-Phrase_Num -Syls ==1{*/ H:1=*}" ,
1230 "QS C-Phrase_Num -Syls ==2{*/ H:2=*}" ,
1231 "QS C-Phrase_Num -Syls ==3{*/ H:3=*}" ,
1232 "QS C-Phrase_Num -Syls ==4{*/ H:4=*}" ,
1233 "QS C-Phrase_Num -Syls ==5{*/ H:5=*}" ,
1234 "QS C-Phrase_Num -Syls ==6{*/ H:6=*}" ,
1235 "QS C-Phrase_Num -Syls ==7{*/ H:7=*}" ,
1236 "QS C-Phrase_Num -Syls ==8{*/ H:8=*}" ,
1237 "QS C-Phrase_Num -Syls ==9{*/ H:9=*}" ,
1238 "QS C-Phrase_Num -Syls ==10{*/ H:10=*}" ,
1239 "QS C-Phrase_Num -Syls ==11{*/ H:11=*}" ,
1240 "QS C-Phrase_Num -Syls ==12{*/ H:12=*}" ,
1241 "QS C-Phrase_Num -Syls ==13{*/ H:13=*}" ,
1242 "QS C-Phrase_Num -Syls ==14{*/ H:14=*}" ,
1243 "QS C-Phrase_Num -Syls ==15{*/ H:15=*}" ,
1244 "QS C-Phrase_Num -Syls ==16{*/ H:16=*}" ,
1245 "QS C-Phrase_Num -Syls ==17{*/ H:17=*}" ,
1246 "QS C-Phrase_Num -Syls ==18{*/ H:18=*}" ,
1247 "QS C-Phrase_Num -Syls ==19{*/ H:19=*}" ,
1248 "QS C-Phrase_Num -Syls ==20{*/ H:20=*}" ,
1249 ]
1250 PHRASE_LEN_IN_NO_SYLS_LTE_C = [
1251 "QS C-Phrase_Num -Syls <=0{*/ H:x=* ,*/H:0=*}" ,
1252 "QS C-Phrase_Num -Syls <=1{*/ H:x=* ,*/H:0=* ,*/H:1=*}" ,
1253 "QS C-Phrase_Num -Syls <=2{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=*}" ,
1254 "QS C-Phrase_Num -Syls <=3{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=*}" ,
1255 "QS C-Phrase_Num -Syls <=4{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=*}" ,
1256 "QS C-Phrase_Num -Syls <=5{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=*}" ,
1257 "QS C-Phrase_Num -Syls <=6{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=* ,*/H:6=*}" ,
1258 "QS C-Phrase_Num -Syls <=7{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=* ,*/H:6=* ,*/H:7=*}" ,
1259 "QS C-Phrase_Num -Syls <=8{*/ H:x=* ,*/H:0=* ,*/H:1=* ,*/H:2=* ,*/H

:3=* ,*/H:4=* ,*/H:5=* ,*/H:6=* ,*/H:7=* ,*/H:8=*}" ,
1260 "QS C-Phrase_Num -Syls <=9{*/ H:?=*}" ,
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1261 "QS C-Phrase_Num -Syls <=10{*/ H:?=* ,*/H:10=*}" ,
1262 "QS C-Phrase_Num -Syls <=11{*/ H:?=* ,*/H:10=* ,*/H:11=*}" ,
1263 "QS C-Phrase_Num -Syls <=12{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=*}" ,
1264 "QS C-Phrase_Num -Syls <=13{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=*}" ,
1265 "QS C-Phrase_Num -Syls <=14{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=*}" ,
1266 "QS C-Phrase_Num -Syls <=15{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=*}" ,
1267 "QS C-Phrase_Num -Syls <=16{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=* ,*/H:16=*}" ,
1268 "QS C-Phrase_Num -Syls <=17{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=* ,*/H:16=* ,*/H:17=*}" ,
1269 "QS C-Phrase_Num -Syls <=18{*/ H:?=* ,*/H:10=* ,*/H:11=* ,*/H:12=* ,*/

H:13=* ,*/H:14=* ,*/H:15=* ,*/H:16=* ,*/H:17=* ,*/H:18=*}" ,
1270 "QS C-Phrase_Num -Syls <=19{*/ H:?=* ,*/H:1?=*}" ,
1271 "QS C-Phrase_Num -Syls <=20{*/ H:?=* ,*/H:1?=* ,*/H:20=*}" ,
1272 ]
1273
1274 PHRASE_LEN_IN_NO_WORDS_EQ_C = [
1275 "QS C-Phrase_Num -Words ==x{*= x@*}",
1276 "QS C-Phrase_Num -Words ==0{*=0 @*}",
1277 "QS C-Phrase_Num -Words ==1{*=1 @*}",
1278 "QS C-Phrase_Num -Words ==2{*=2 @*}",
1279 "QS C-Phrase_Num -Words ==3{*=3 @*}",
1280 "QS C-Phrase_Num -Words ==4{*=4 @*}",
1281 "QS C-Phrase_Num -Words ==5{*=5 @*}",
1282 "QS C-Phrase_Num -Words ==6{*=6 @*}",
1283 "QS C-Phrase_Num -Words ==7{*=7 @*}",
1284 "QS C-Phrase_Num -Words ==8{*=8 @*}",
1285 "QS C-Phrase_Num -Words ==9{*=9 @*}",
1286 "QS C-Phrase_Num -Words ==10{*=10 @*}",
1287 "QS C-Phrase_Num -Words ==11{*=11 @*}",
1288 "QS C-Phrase_Num -Words ==12{*=12 @*}",
1289 "QS C-Phrase_Num -Words ==13{*=13 @*}",
1290 ]
1291 PHRASE_LEN_IN_NO_WORDS_LTE_C =[
1292 "QS C-Phrase_Num -Words <=0{*= x@ * ,*=0@*}",
1293 "QS C-Phrase_Num -Words <=1{*= x@ * ,*=0@* ,*=1@*}",
1294 "QS C-Phrase_Num -Words <=2{*= x@ * ,*=0@* ,*=1@* ,*=2@*}",
1295 "QS C-Phrase_Num -Words <=3{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@*}",
1296 "QS C-Phrase_Num -Words <=4{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

*}",
1297 "QS C-Phrase_Num -Words <=5{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@*}",
1298 "QS C-Phrase_Num -Words <=6{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@

* ,*=5@* ,*=6@*}",
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1299 "QS C-Phrase_Num -Words <=7{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@*}",

1300 "QS C-Phrase_Num -Words <=8{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@* ,*=8@*}",

1301 "QS C-Phrase_Num -Words <=9{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@*}",

1302 "QS C-Phrase_Num -Words <=10{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@*}",

1303 "QS C-Phrase_Num -Words <=11{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@* ,*=11@*}",

1304 "QS C-Phrase_Num -Words <=12{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@* ,*=11@* ,*=12@*}",

1305 "QS C-Phrase_Num -Words <=13{*= x@ * ,*=0@* ,*=1@* ,*=2@* ,*=3@* ,*=4@
* ,*=5@* ,*=6@* ,*=7@* ,*=8@* ,*=9@* ,*=10@* ,*=11@* ,*=12@* ,*=13@
*}",

1306 ]
1307
1308 PHRASE_POSITION_IN_UTTERANCE_FW_EQ_C = [
1309 "QS Pos_C - Phrase_in_Utterance (Fw)==1{* @1 =*}" ,
1310 "QS Pos_C - Phrase_in_Utterance (Fw)==2{* @2 =*}" ,
1311 "QS Pos_C - Phrase_in_Utterance (Fw)==3{* @3 =*}" ,
1312 "QS Pos_C - Phrase_in_Utterance (Fw)==4{* @4 =*}" ,
1313 ]
1314 PHRASE_POSITION_IN_UTTERANCE_FW_LTE_C = [
1315 "QS Pos_C - Phrase_in_Utterance (Fw) <=2{* @1=*,*@2 =*}" ,
1316 "QS Pos_C - Phrase_in_Utterance (Fw) <=3{* @1=*,*@2=*,*@3 =*}" ,
1317 "QS Pos_C - Phrase_in_Utterance (Fw) <=4{* @1=*,*@2=*,*@3=*,*@4 =*}" ,
1318 ]
1319
1320 PHRASE_POSITION_IN_UTTERANCE_BW_EQ_C = [
1321 "QS Pos_C - Phrase_in_Utterance (Bw) ==1{*=1|*}" ,
1322 "QS Pos_C - Phrase_in_Utterance (Bw) ==2{*=2|*}" ,
1323 "QS Pos_C - Phrase_in_Utterance (Bw) ==3{*=3|*}" ,
1324 "QS Pos_C - Phrase_in_Utterance (Bw) ==4{*=4|*}" ,
1325 ]
1326 PHRASE_POSITION_IN_UTTERANCE_BW_LTE_C = [
1327 "QS Pos_C - Phrase_in_Utterance (Bw) <=2{*=1|* ,*=2|*}" ,
1328 "QS Pos_C - Phrase_in_Utterance (Bw) <=3{*=1|* ,*=2|* ,*=3|*}" ,
1329 "QS Pos_C - Phrase_in_Utterance (Bw) <=4{*=1|* ,*=2|* ,*=3|* ,*=4|*}" ,
1330 ]
1331
1332 PHRASE_LEN_IN_NO_SYLS_EQ_R = [
1333 "QS R-Phrase_Num -Syls ==0{*/ I:0=*}" ,
1334 "QS R-Phrase_Num -Syls ==1{*/ I:1=*}" ,
1335 "QS R-Phrase_Num -Syls ==2{*/ I:2=*}" ,
1336 "QS R-Phrase_Num -Syls ==3{*/ I:3=*}" ,
1337 "QS R-Phrase_Num -Syls ==4{*/ I:4=*}" ,
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1338 "QS R-Phrase_Num -Syls ==5{*/ I:5=*}" ,
1339 "QS R-Phrase_Num -Syls ==6{*/ I:6=*}" ,
1340 "QS R-Phrase_Num -Syls ==7{*/ I:7=*}" ,
1341 "QS R-Phrase_Num -Syls ==8{*/ I:8=*}" ,
1342 "QS R-Phrase_Num -Syls ==9{*/ I:9=*}" ,
1343 "QS R-Phrase_Num -Syls ==10{*/ I:10=*}" ,
1344 "QS R-Phrase_Num -Syls ==11{*/ I:11=*}" ,
1345 "QS R-Phrase_Num -Syls ==12{*/ I:12=*}" ,
1346 "QS R-Phrase_Num -Syls ==13{*/ I:13=*}" ,
1347 "QS R-Phrase_Num -Syls ==14{*/ I:14=*}" ,
1348 "QS R-Phrase_Num -Syls ==15{*/ I:15=*}" ,
1349 "QS R-Phrase_Num -Syls ==16{*/ I:16=*}" ,
1350 "QS R-Phrase_Num -Syls ==17{*/ I:17=*}" ,
1351 "QS R-Phrase_Num -Syls ==18{*/ I:18=*}" ,
1352 "QS R-Phrase_Num -Syls ==19{*/ I:19=*}" ,
1353 "QS R-Phrase_Num -Syls ==20{*/ I:20=*}" ,
1354 ]
1355 PHRASE_LEN_IN_NO_SYLS_LTE_R = [
1356 "QS R-Phrase_Num -Syls <=1{*/ I:0=* ,*/I:1=*}" ,
1357 "QS R-Phrase_Num -Syls <=2{*/ I:0=* ,*/I:1=* ,*/I:2=*}" ,
1358 "QS R-Phrase_Num -Syls <=3{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=*}" ,
1359 "QS R-Phrase_Num -Syls <=4{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=*}" ,
1360 "QS R-Phrase_Num -Syls <=5{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=*}" ,
1361 "QS R-Phrase_Num -Syls <=6{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=* ,*/I:6=*}" ,
1362 "QS R-Phrase_Num -Syls <=7{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=* ,*/I:6=* ,*/I:7=*}" ,
1363 "QS R-Phrase_Num -Syls <=8{*/ I:0=* ,*/I:1=* ,*/I:2=* ,*/I:3=* ,*/I

:4=* ,*/I:5=* ,*/I:6=* ,*/I:7=* ,*/I:8=*}" ,
1364 "QS R-Phrase_Num -Syls <=9{*/ I:?=*}" ,
1365 "QS R-Phrase_Num -Syls <=10{*/ I:?=* ,*/I:10=*}" ,
1366 "QS R-Phrase_Num -Syls <=11{*/ I:?=* ,*/I:10=* ,*/I:11=*}" ,
1367 "QS R-Phrase_Num -Syls <=12{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=*}" ,
1368 "QS R-Phrase_Num -Syls <=13{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=*}" ,
1369 "QS R-Phrase_Num -Syls <=14{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=*}" ,
1370 "QS R-Phrase_Num -Syls <=15{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=* ,*/I:15=*}" ,
1371 "QS R-Phrase_Num -Syls <=16{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=* ,*/I:15=* ,*/I:16=*}" ,
1372 "QS R-Phrase_Num -Syls <=17{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=* ,*/I:15=* ,*/I:16=* ,*/I:17=*}" ,
1373 "QS R-Phrase_Num -Syls <=18{*/ I:?=* ,*/I:10=* ,*/I:11=* ,*/I:12=* ,*/

I:13=* ,*/I:14=* ,*/I:15=* ,*/I:16=* ,*/I:17=* ,*/I:18=*}" ,
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1374 "QS R-Phrase_Num -Syls <=19{*/ I:?=* ,*/I:1?=*}" ,
1375 "QS R-Phrase_Num -Syls <=20{*/ I:?=* ,*/I:1?=* ,*/I:20=*}" ,
1376 ]
1377
1378 PHRASE_LEN_IN_NO_WORDS_EQ_R = [
1379 "QS R-Phrase_Num -Words ==0{*=0/ J:*}" ,
1380 "QS R-Phrase_Num -Words ==1{*=1/ J:*}" ,
1381 "QS R-Phrase_Num -Words ==2{*=2/ J:*}" ,
1382 "QS R-Phrase_Num -Words ==3{*=3/ J:*}" ,
1383 "QS R-Phrase_Num -Words ==4{*=4/ J:*}" ,
1384 "QS R-Phrase_Num -Words ==5{*=5/ J:*}" ,
1385 "QS R-Phrase_Num -Words ==6{*=6/ J:*}" ,
1386 "QS R-Phrase_Num -Words ==7{*=7/ J:*}" ,
1387 "QS R-Phrase_Num -Words ==8{*=8/ J:*}" ,
1388 "QS R-Phrase_Num -Words ==9{*=9/ J:*}" ,
1389 "QS R-Phrase_Num -Words ==10{*=10/ J:*}" ,
1390 "QS R-Phrase_Num -Words ==11{*=11/ J:*}" ,
1391 "QS R-Phrase_Num -Words ==12{*=12/ J:*}" ,
1392 "QS R-Phrase_Num -Words ==13{*=13/ J:*}" ,
1393 "QS R-Phrase_Num -Words ==14{*=14/ J:*}" ,
1394 "QS R-Phrase_Num -Words ==15{*=15/ J:*}" ,
1395 ]
1396 PHRASE_LEN_IN_NO_WORDS_LTE_R = [
1397 "QS R-Phrase_Num -Words <=1{*=0/ J:* ,*=1/J:*}" ,
1398 "QS R-Phrase_Num -Words <=2{*=0/ J:* ,*=1/J:* ,*=2/J:*}" ,
1399 "QS R-Phrase_Num -Words <=3{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:*}" ,
1400 "QS R-Phrase_Num -Words <=4{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:*}" ,
1401 "QS R-Phrase_Num -Words <=5{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:*}" ,
1402 "QS R-Phrase_Num -Words <=6{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:* ,*=6/J:*}" ,
1403 "QS R-Phrase_Num -Words <=7{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:* ,*=6/J:* ,*=7/J:*}" ,
1404 "QS R-Phrase_Num -Words <=8{*=0/ J:* ,*=1/J:* ,*=2/J:* ,*=3/J:* ,*=4/J

:* ,*=5/J:* ,*=6/J:* ,*=7/J:* ,*=8/J:*}" ,
1405 "QS R-Phrase_Num -Words <=9{*=?/ J:*}" ,
1406 "QS R-Phrase_Num -Words <=10{*=?/ J:* ,*=10/J:*}" ,
1407 "QS R-Phrase_Num -Words <=11{*=?/ J:* ,*=10/J:* ,*=11/J:*}" ,
1408 "QS R-Phrase_Num -Words <=12{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:*}" ,
1409 "QS R-Phrase_Num -Words <=13{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:* ,*=13/J:*}" ,
1410 "QS R-Phrase_Num -Words <=14{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:* ,*=13/J:* ,*=14/J:*}" ,
1411 "QS R-Phrase_Num -Words <=15{*=?/ J:* ,*=10/J:* ,*=11/J:* ,*=12/J

:* ,*=13/J:* ,*=14/J:* ,*=15/J:*}" ,
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1412 ]
1413
1414 UTTERANCE_LEN_IN_NO_SYLS_EQ = [
1415 "QS Num - Syls_in_Utterance ==1{*/ J:1+*}" ,
1416 "QS Num - Syls_in_Utterance ==2{*/ J:2+*}" ,
1417 "QS Num - Syls_in_Utterance ==3{*/ J:3+*}" ,
1418 "QS Num - Syls_in_Utterance ==4{*/ J:4+*}" ,
1419 "QS Num - Syls_in_Utterance ==5{*/ J:5+*}" ,
1420 "QS Num - Syls_in_Utterance ==6{*/ J:6+*}" ,
1421 "QS Num - Syls_in_Utterance ==7{*/ J:7+*}" ,
1422 "QS Num - Syls_in_Utterance ==8{*/ J:8+*}" ,
1423 "QS Num - Syls_in_Utterance ==9{*/ J:9+*}" ,
1424 "QS Num - Syls_in_Utterance ==10{*/ J:10+*}" ,
1425 "QS Num - Syls_in_Utterance ==11{*/ J:11+*}" ,
1426 "QS Num - Syls_in_Utterance ==12{*/ J:12+*}" ,
1427 "QS Num - Syls_in_Utterance ==13{*/ J:13+*}" ,
1428 "QS Num - Syls_in_Utterance ==14{*/ J:14+*}" ,
1429 "QS Num - Syls_in_Utterance ==15{*/ J:15+*}" ,
1430 "QS Num - Syls_in_Utterance ==16{*/ J:16+*}" ,
1431 "QS Num - Syls_in_Utterance ==17{*/ J:17+*}" ,
1432 "QS Num - Syls_in_Utterance ==18{*/ J:18+*}" ,
1433 "QS Num - Syls_in_Utterance ==19{*/ J:19+*}" ,
1434 "QS Num - Syls_in_Utterance ==20{*/ J:20+*}" ,
1435 "QS Num - Syls_in_Utterance ==21{*/ J:21+*}" ,
1436 "QS Num - Syls_in_Utterance ==22{*/ J:22+*}" ,
1437 "QS Num - Syls_in_Utterance ==23{*/ J:23+*}" ,
1438 "QS Num - Syls_in_Utterance ==24{*/ J:24+*}" ,
1439 "QS Num - Syls_in_Utterance ==25{*/ J:25+*}" ,
1440 "QS Num - Syls_in_Utterance ==26{*/ J:26+*}" ,
1441 "QS Num - Syls_in_Utterance ==27{*/ J:27+*}" ,
1442 "QS Num - Syls_in_Utterance ==28{*/ J:28+*}" ,
1443 ]
1444 UTTERANCE_LEN_IN_NO_SYLS_LTE = [
1445 "QS Num - Syls_in_Utterance <=2{*/ J:1+* ,*/J:2+*}" ,
1446 "QS Num - Syls_in_Utterance <=3{*/ J:1+* ,*/J:2+* ,*/J:3+*}" ,
1447 "QS Num - Syls_in_Utterance <=4{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+*}" ,
1448 "QS Num - Syls_in_Utterance <=5{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+*}" ,
1449 "QS Num - Syls_in_Utterance <=6{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+* ,*/J:6+*}" ,
1450 "QS Num - Syls_in_Utterance <=7{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+* ,*/J:6+* ,*/J:7+*}" ,
1451 "QS Num - Syls_in_Utterance <=8{*/ J:1+* ,*/J:2+* ,*/J:3+* ,*/J:4+* ,*/

J:5+* ,*/J:6+* ,*/J:7+* ,*/J:8+*}" ,
1452 "QS Num - Syls_in_Utterance <=9{*/ J:?+*}" ,
1453 "QS Num - Syls_in_Utterance <=10{*/ J:?+* ,*/J:10+*}" ,
1454 "QS Num - Syls_in_Utterance <=11{*/ J:?+* ,*/J:10+* ,*/J:11+*}" ,
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1455 "QS Num - Syls_in_Utterance <=12{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+*}" ,

1456 "QS Num - Syls_in_Utterance <=13{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+*}" ,

1457 "QS Num - Syls_in_Utterance <=14{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+*}" ,

1458 "QS Num - Syls_in_Utterance <=15{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+*}" ,

1459 "QS Num - Syls_in_Utterance <=16{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+* ,*/J:16+*}" ,

1460 "QS Num - Syls_in_Utterance <=17{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+* ,*/J:16+* ,*/J:17+*}" ,

1461 "QS Num - Syls_in_Utterance <=18{*/ J:?+* ,*/J:10+* ,*/J:11+* ,*/J
:12+* ,*/J:13+* ,*/J:14+* ,*/J:15+* ,*/J:16+* ,*/J:17+* ,*/J
:18+*}" ,

1462 "QS Num - Syls_in_Utterance <=19{*/ J:?+* ,*/J:1?+*}" ,
1463 "QS Num - Syls_in_Utterance <=20{*/ J:?+* ,*/J:1?+* ,*/J:20+*}" ,
1464 "QS Num - Syls_in_Utterance <=21{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+*}" ,
1465 "QS Num - Syls_in_Utterance <=22{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+*}" ,
1466 "QS Num - Syls_in_Utterance <=23{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+*}" ,
1467 "QS Num - Syls_in_Utterance <=24{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+*}" ,
1468 "QS Num - Syls_in_Utterance <=25{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+*}" ,
1469 "QS Num - Syls_in_Utterance <=26{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+* ,*/J:26+*}" ,
1470 "QS Num - Syls_in_Utterance <=27{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J

:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+* ,*/J:26+* ,*/J
:27+*}" ,

1471 "QS Num - Syls_in_Utterance <=28{*/ J:?+* ,*/J:1?+* ,*/J:20+* ,*/J
:21+* ,*/J:22+* ,*/J:23+* ,*/J:24+* ,*/J:25+* ,*/J:26+* ,*/J
:27+* ,*/J:28+*}" ,

1472 ]
1473
1474 UTTERANCE_LEN_IN_NO_WORDS_EQ = [
1475 "QS Num - Words_in_Utterance ==1{*+1 -*}" ,
1476 "QS Num - Words_in_Utterance ==2{*+2 -*}" ,
1477 "QS Num - Words_in_Utterance ==3{*+3 -*}" ,
1478 "QS Num - Words_in_Utterance ==4{*+4 -*}" ,
1479 "QS Num - Words_in_Utterance ==5{*+5 -*}" ,
1480 "QS Num - Words_in_Utterance ==6{*+6 -*}" ,
1481 "QS Num - Words_in_Utterance ==7{*+7 -*}" ,
1482 "QS Num - Words_in_Utterance ==8{*+8 -*}" ,
1483 "QS Num - Words_in_Utterance ==9{*+9 -*}" ,
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1484 "QS Num - Words_in_Utterance ==10{*+10 -*}" ,
1485 "QS Num - Words_in_Utterance ==11{*+11 -*}" ,
1486 "QS Num - Words_in_Utterance ==12{*+12 -*}" ,
1487 "QS Num - Words_in_Utterance ==13{*+13 -*}" ,
1488 ]
1489 UTTERANCE_LEN_IN_NO_WORDS_LTE = [
1490 "QS Num - Words_in_Utterance <=2{*+1 -* ,*+2 -*}" ,
1491 "QS Num - Words_in_Utterance <=3{*+1 -* ,*+2 -* ,*+3 -*}" ,
1492 "QS Num - Words_in_Utterance <=4{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -*}" ,
1493 "QS Num - Words_in_Utterance <=5{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -*}" ,
1494 "QS Num - Words_in_Utterance

<=6{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -* ,*+6 -*}" ,
1495 "QS Num - Words_in_Utterance

<=7{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -* ,*+6 -* ,*+7 -*}" ,
1496 "QS Num - Words_in_Utterance

<=8{*+1 -* ,*+2 -* ,*+3 -* ,*+4 -* ,*+5 -* ,*+6 -* ,*+7 -* ,*+8 -*}" ,
1497 "QS Num - Words_in_Utterance <=9{*+? -*}" ,
1498 "QS Num - Words_in_Utterance <=10{*+? -* ,*+10 -*}" ,
1499 "QS Num - Words_in_Utterance <=11{*+? -* ,*+10 -* ,*+11 -*}" ,
1500 "QS Num - Words_in_Utterance <=12{*+? -* ,*+10 -* ,*+11 -* ,*+12 -*}" ,
1501 "QS Num - Words_in_Utterance

<=13{*+? -* ,*+10 -* ,*+11 -* ,*+12 -* ,*+13 -*}" ,
1502 ]
1503
1504 UTTERANCE_LEN_IN_NO_PHRASES_EQ = [
1505 "QS Num - Phrases_in_Utterance ==1{* -1/K:*}" ,
1506 "QS Num - Phrases_in_Utterance ==2{* -2/K:*}" ,
1507 "QS Num - Phrases_in_Utterance ==3{* -3/K:*}" ,
1508 "QS Num - Phrases_in_Utterance ==4{* -4/K:*}" ,
1509 ]
1510 UTTERANCE_LEN_IN_NO_PHRASES_LTE = [
1511 "QS Num - Phrases_in_Utterance <=2{* -1/K:* ,* -2/K:*}" ,
1512 "QS Num - Phrases_in_Utterance <=3{* -1/K:* ,* -2/K:* ,* -3/K:*}" ,
1513 "QS Num - Phrases_in_Utterance <=4{* -1/K:* ,* -2/K:* ,* -3/K:* ,* -4/K

:*}" ,
1514 ]
1515
1516 ########################################
1517 #HIGH -LEVEL FEATURE GROUPS
1518 ########################################
1519
1520 ########################################
1521 # SEGMENTAL
1522 ########################################
1523
1524 QUINTPHONE_SEGMENT_VC = [
1525 QUINTPHONE_SEGMENT_VC_LL ,
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1526 QUINTPHONE_SEGMENT_VC_L ,
1527 QUINTPHONE_SEGMENT_VC_C ,
1528 QUINTPHONE_SEGMENT_VC_R ,
1529 QUINTPHONE_SEGMENT_VC_RR ,
1530 ]
1531 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE = [
1532 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_LL ,
1533 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_L ,
1534 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_C ,
1535 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_R ,
1536 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_RR ,
1537 ]
1538 SEG_POS_IN_SYL = [
1539 NUM_SEG_IN_SYL_FW_EQ ,
1540 NUM_SEG_IN_SYL_FW_LTE ,
1541 NUM_SEG_IN_SYL_BW_EQ ,
1542 NUM_SEG_IN_SYL_BW_LTE ,
1543 ]
1544 QUINTPHONE_SEGMENTAL_FEATURES = [
1545 QUINTPHONE_SEGMENT_VC ,
1546 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE ,
1547 ]
1548
1549 QUINTPHONE = [
1550 QUINTPHONE_SEGMENT_VC ,
1551 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE ,
1552 SEG_POS_IN_SYL ,
1553 QUINTPHONE_SEGMENTAL_FEATURES ,
1554 ]
1555
1556 ########################################
1557 # SYLLABIC
1558 ########################################
1559
1560 SYLLABLE_STRESS = [
1561 SYL_STRESSED_L ,
1562 SYL_STRESSED_C ,
1563 SYL_STRESSED_R ,
1564 ]
1565 SYLLABLE_ACCENTED = [
1566 SYL_ACCENTED_L ,
1567 SYL_ACCENTED_C ,
1568 SYL_ACCENTED_R ,
1569 ]
1570 SYLLABLE_ACCENT_TYPE = [
1571 SYL_ACCENT_TYPE_L ,
1572 SYL_ACCENT_TYPE_C ,
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1573 SYL_ACCENT_TYPE_R ,
1574 ]
1575 SYLLABLE_LEN_IN_SEGMENTS = [
1576 SYL_LEN_IN_NO_SEG_EQ_L ,
1577 SYL_LEN_IN_NO_SEG_LTE_L ,
1578 SYL_LEN_IN_NO_SEG_EQ_C ,
1579 SYL_LEN_IN_NO_SEG_LTE_C ,
1580 SYL_LEN_IN_NO_SEG_EQ_R ,
1581 SYL_LEN_IN_NO_SEG_LTE_R ,
1582
1583 ]
1584 SYLLABLE_NUCLEUS = [
1585 SYL_VOWEL_TYPE ,
1586 ]
1587
1588 SYLLABLE_POSITION_IN_WORD_FW = [
1589 SYL_POSITION_IN_WORD_FW_EQ ,
1590 SYL_POSITION_IN_WORD_FW_LTE ,
1591 ]
1592 SYLLABLE_POSITION_IN_WORD_BW = [
1593 SYL_POSITION_IN_WORD_BW_EQ ,
1594 SYL_POSITION_IN_WORD_BW_LTE ,
1595 ]
1596 SYLLABLE_POSITION_IN_PHRASE_FW = [
1597 SYL_POSITION_IN_PHRASE_FW_EQ ,
1598 SYL_POSITION_IN_PHRASE_FW_LTE ,
1599 ]
1600 SYLLABLE_POSITION_IN_PHRASE_BW = [
1601 SYL_POSITION_IN_PHRASE_BW_EQ ,
1602 SYL_POSITION_IN_PHRASE_BW_LTE ,
1603 ]
1604 SYLLABLE_POSITION_IN_WORD = [
1605 SYLLABLE_POSITION_IN_WORD_FW ,
1606 SYLLABLE_POSITION_IN_WORD_BW ,
1607 ]
1608 SYLLABLE_POSITION_IN_PHRASE = [
1609 SYLLABLE_POSITION_IN_PHRASE_FW ,
1610 SYLLABLE_POSITION_IN_PHRASE_BW ,
1611 ]
1612
1613 SYLLABLE_POSITION = [
1614 SYLLABLE_POSITION_IN_WORD ,
1615 SYLLABLE_POSITION_IN_PHRASE ,
1616 ]
1617
1618 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL = [
1619 NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
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1620 NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1621 ]
1622 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL = [
1623 NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1624 NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1625 ]
1626 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION

= [
1627 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ,
1628 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ,
1629 ]
1630 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL = [
1631 NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1632 NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1633 ]
1634 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL = [
1635 NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1636 NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1637 ]
1638 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION

= [
1639 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ,
1640 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ,
1641 ]
1642
1643 SYLLABLE_NEIGHBOURHOOD = [
1644 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ,
1645 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ,
1646 NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION

,
1647 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ,
1648 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ,
1649 NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION

,
1650 ]
1651
1652 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_STRESSED_SYL = [
1653 NUM_SYLS_FROM_NEXT_STRESSED_SYL_EQ ,
1654 NUM_SYLS_FROM_NEXT_STRESSED_SYL_LTE ,
1655 ]
1656 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_STRESSED_SYL = [
1657 NUM_SYLS_FROM_PREV_STRESSED_SYL_EQ ,
1658 NUM_SYLS_FROM_PREV_STRESSED_SYL_LTE
1659 ]
1660 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_STRESSED_SYLS

= [
1661 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_STRESSED_SYL ,
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1662 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_STRESSED_SYL ,
1663 ]
1664 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_ACCENTED_SYL = [
1665 NUM_SYLS_FROM_PREV_ACCENTED_SYL_EQ ,
1666 NUM_SYLS_FROM_PREV_ACCENTED_SYL_LTE ,
1667 ]
1668 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_ACCENTED_SYL = [
1669 NUM_SYLS_FROM_NEXT_ACCENTED_SYL_EQ ,
1670 NUM_SYLS_FROM_NEXT_ACCENTED_SYL_LTE ,
1671 ]
1672 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_ACCENTED_SYLS

= [
1673 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_ACCENTED_SYL ,
1674 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_ACCENTED_SYL
1675 ]
1676
1677 RELATIVE_SYLLABLE_POSITION = [
1678 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_STRESSED_SYL ,
1679 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_STRESSED_SYL ,
1680 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_STRESSED_SYLS

,
1681 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_ACCENTED_SYL ,
1682 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_ACCENTED_SYL ,
1683 POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_ACCENTED_SYLS

,
1684 ]
1685
1686 ########################################
1687 # WORD
1688 ########################################
1689
1690 WORD_LEN_IN_SYLS = [
1691 WORD_LEN_IN_NO_SYLS_EQ_R ,
1692 WORD_LEN_IN_NO_SYLS_EQ_C ,
1693 WORD_LEN_IN_NO_SYLS_EQ_L ,
1694 WORD_LEN_IN_NO_SYLS_LTE_R ,
1695 WORD_LEN_IN_NO_SYLS_LTE_C ,
1696 WORD_LEN_IN_NO_SYLS_LTE_L ,
1697 ]
1698 WORD_POSITION_IN_PHRASE_FW = [
1699 WORD_POSITION_IN_PHRASE_FW_EQ ,
1700 WORD_POSITION_IN_PHRASE_FW_LTE ,
1701 ]
1702 WORD_POSITION_IN_PHRASE_BW = [
1703 WORD_POSITION_IN_PHRASE_BW_EQ ,
1704 WORD_POSITION_IN_PHRASE_BW_LTE ,
1705 ]
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1706 WORD_POSITION_IN_PHRASE = [
1707 WORD_POSITION_IN_PHRASE_FW ,
1708 WORD_POSITION_IN_PHRASE_BW ,
1709 ]
1710 WORD_POSITION = [
1711 WORD_POSITION_IN_PHRASE_FW ,
1712 WORD_POSITION_IN_PHRASE_BW ,
1713 WORD_POSITION_IN_PHRASE ,
1714 ]
1715 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE = [
1716 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_EQ ,
1717 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_LTE ,
1718 ]
1719 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE = [
1720 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_EQ ,
1721 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_LTE ,
1722 ]
1723 WORD_SURROUNDINGS = [
1724 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE ,
1725 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE ,
1726 ]
1727 NUM_WORDS_FROM_PREV_CONT_WORD = [
1728 NUM_WORDS_FROM_PREV_CONT_WORD_EQ ,
1729 NUM_WORDS_FROM_PREV_CONT_WORD_LTE ,
1730 ]
1731 NUM_WORDS_FROM_NEXT_CONT_WORD = [
1732 NUM_WORDS_FROM_NEXT_CONT_WORD_EQ ,
1733 NUM_WORDS_FROM_NEXT_CONT_WORD_LTE ,
1734 ]
1735 RELATIVE_WORD_POSITION = [
1736 NUM_WORDS_FROM_PREV_CONT_WORD ,
1737 NUM_WORDS_FROM_NEXT_CONT_WORD ,
1738 ]
1739
1740 ########################################
1741 # PHRASE
1742 ########################################
1743
1744 PHRASE_LEN_IN_SYLS = [
1745 PHRASE_LEN_IN_NO_SYLS_EQ_L ,
1746 PHRASE_LEN_IN_NO_SYLS_LTE_L ,
1747 PHRASE_LEN_IN_NO_SYLS_EQ_C ,
1748 PHRASE_LEN_IN_NO_SYLS_LTE_C ,
1749 PHRASE_LEN_IN_NO_SYLS_EQ_R ,
1750 PHRASE_LEN_IN_NO_SYLS_LTE_R ,
1751 ]
1752 PHRASE_LEN_IN_WORDS = [

256 Appendix B Listing of Feature Groups



1753 PHRASE_LEN_IN_NO_WORDS_EQ_L ,
1754 PHRASE_LEN_IN_NO_WORDS_EQ_C ,
1755 PHRASE_LEN_IN_NO_WORDS_EQ_R ,
1756 PHRASE_LEN_IN_NO_WORDS_LTE_L ,
1757 PHRASE_LEN_IN_NO_WORDS_LTE_C ,
1758 PHRASE_LEN_IN_NO_WORDS_LTE_R ,
1759 ]
1760 PHRASE_LEN = [
1761 PHRASE_LEN_IN_SYLS ,
1762 PHRASE_LEN_IN_WORDS ,
1763 ]
1764 PHRASE_POSITION_IN_UTTERANCE_FW = [
1765 PHRASE_POSITION_IN_UTTERANCE_FW_EQ_C ,
1766 PHRASE_POSITION_IN_UTTERANCE_FW_LTE_C ,
1767 ]
1768 PHRASE_POSITION_IN_UTTERANCE_BW = [
1769 PHRASE_POSITION_IN_UTTERANCE_BW_EQ_C ,
1770 PHRASE_POSITION_IN_UTTERANCE_BW_LTE_C ,
1771 ]
1772 PHRASE_POSITION = [
1773 PHRASE_POSITION_IN_UTTERANCE_FW ,
1774 PHRASE_POSITION_IN_UTTERANCE_BW ,
1775 ]
1776
1777 ########################################
1778 # UTTERANCE
1779 ########################################
1780
1781 UTTERANCE_LEN_IN_SYLS = [
1782 UTTERANCE_LEN_IN_NO_SYLS_EQ ,
1783 UTTERANCE_LEN_IN_NO_SYLS_LTE ,
1784 ]
1785 UTTERANCE_LEN_IN_WORDS = [
1786 UTTERANCE_LEN_IN_NO_WORDS_EQ ,
1787 UTTERANCE_LEN_IN_NO_WORDS_LTE ,
1788 ]
1789 UTTERANCE_LEN_IN_PHRASES = [
1790 UTTERANCE_LEN_IN_NO_PHRASES_EQ ,
1791 UTTERANCE_LEN_IN_NO_PHRASES_LTE ,
1792 ]
1793 UTTERANCE_LEN = [
1794 UTTERANCE_LEN_IN_SYLS ,
1795 UTTERANCE_LEN_IN_WORDS ,
1796 UTTERANCE_LEN_IN_PHRASES ,
1797 ]
1798
1799 # SEGMENTAL
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1800
1801 SEGMENTAL_POSITIONAL_ABSOLUTE = [
1802 NUM_SEG_IN_SYL_FW_EQ ,
1803 NUM_SEG_IN_SYL_FW_LTE ,
1804 NUM_SEG_IN_SYL_BW_EQ ,
1805 NUM_SEG_IN_SYL_BW_LTE ,
1806 ]
1807
1808 SEGMENTAL_QUALITATIVE = [
1809 QUINTPHONE_SEGMENT_VC_LL ,
1810 QUINTPHONE_SEGMENT_VC_L ,
1811 QUINTPHONE_SEGMENT_VC_C ,
1812 QUINTPHONE_SEGMENT_VC_R ,
1813 QUINTPHONE_SEGMENT_VC_RR ,
1814 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_LL ,
1815 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_L ,
1816 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_C ,
1817 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_R ,
1818 QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_RR ,
1819 ]
1820
1821 # SYLLABIC
1822
1823 SYLLABIC_POSITIONAL_ABSOLUTE = [
1824 SYL_POSITION_IN_WORD_FW_EQ ,
1825 SYL_POSITION_IN_WORD_FW_LTE ,
1826 SYL_POSITION_IN_WORD_BW_EQ ,
1827 SYL_POSITION_IN_WORD_BW_LTE ,
1828 SYL_POSITION_IN_PHRASE_FW_EQ ,
1829 SYL_POSITION_IN_PHRASE_FW_LTE ,
1830 SYL_POSITION_IN_PHRASE_BW_EQ ,
1831 SYL_POSITION_IN_PHRASE_BW_LTE ,
1832 ]
1833
1834 SYLLABIC_POSITIONAL_RELATIVE = [
1835 NUM_SYLS_FROM_PREV_STRESSED_SYL_EQ ,
1836 NUM_SYLS_FROM_PREV_STRESSED_SYL_LTE ,
1837 NUM_SYLS_FROM_NEXT_STRESSED_SYL_EQ ,
1838 NUM_SYLS_FROM_NEXT_STRESSED_SYL_LTE ,
1839 NUM_SYLS_FROM_PREV_ACCENTED_SYL_EQ ,
1840 NUM_SYLS_FROM_PREV_ACCENTED_SYL_LTE ,
1841 NUM_SYLS_FROM_NEXT_ACCENTED_SYL_EQ ,
1842 NUM_SYLS_FROM_NEXT_ACCENTED_SYL_LTE ,
1843 ]
1844
1845 SYLLABIC_QUALITATIVE = [
1846 SYL_STRESSED_L ,
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1847 SYL_ACCENTED_L ,
1848 SYL_ACCENT_TYPE_L ,
1849 SYL_STRESSED_C ,
1850 SYL_ACCENTED_C ,
1851 SYL_ACCENT_TYPE_C ,
1852 SYL_VOWEL_TYPE ,
1853 SYL_STRESSED_R ,
1854 SYL_ACCENTED_R ,
1855 SYL_ACCENT_TYPE_R ,
1856 ]
1857
1858 SYLLABIC_COMPOSITIONAL = [
1859 SYL_LEN_IN_NO_SEG_EQ_L ,
1860 SYL_LEN_IN_NO_SEG_LTE_L ,
1861 SYL_LEN_IN_NO_SEG_EQ_C ,
1862 SYL_LEN_IN_NO_SEG_LTE_C ,
1863 SYL_LEN_IN_NO_SEG_EQ_R ,
1864 SYL_LEN_IN_NO_SEG_LTE_R ,
1865 ]
1866
1867 SYLLABIC_PARENTAL_COMPOSITION = [
1868 NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1869 NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1870 NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1871 NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1872 NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1873 NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1874 NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
1875 NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
1876 ]
1877
1878 # WORD
1879
1880 WORD_POSITIONAL_ABSOLUTE = [
1881 WORD_POSITION_IN_PHRASE_FW_EQ ,
1882 WORD_POSITION_IN_PHRASE_FW_LTE ,
1883 WORD_POSITION_IN_PHRASE_BW_EQ ,
1884 WORD_POSITION_IN_PHRASE_BW_LTE ,
1885 ]
1886
1887 WORD_POSITIONAL_RELATIVE = [
1888 NUM_WORDS_FROM_PREV_CONT_WORD_EQ ,
1889 NUM_WORDS_FROM_PREV_CONT_WORD_LTE ,
1890 NUM_WORDS_FROM_NEXT_CONT_WORD_EQ ,
1891 NUM_WORDS_FROM_NEXT_CONT_WORD_LTE ,
1892 ]
1893
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1894 WORD_COMPOSITIONAL = [
1895 WORD_LEN_IN_NO_SYLS_EQ_L ,
1896 WORD_LEN_IN_NO_SYLS_LTE_L ,
1897 WORD_LEN_IN_NO_SYLS_EQ_C ,
1898 WORD_LEN_IN_NO_SYLS_LTE_C ,
1899 WORD_LEN_IN_NO_SYLS_EQ_R ,
1900 WORD_LEN_IN_NO_SYLS_LTE_R ,
1901 ]
1902
1903 WORD_PARENTAL_COMPOSITION = [
1904 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_EQ ,
1905 NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_LTE ,
1906 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_EQ ,
1907 NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_LTE ,
1908 ]
1909
1910 # PHRASAL
1911
1912 PHRASAL_POSITIONAL_ABSOLUTE = [
1913 PHRASE_POSITION_IN_UTTERANCE_FW_EQ_C ,
1914 PHRASE_POSITION_IN_UTTERANCE_FW_LTE_C ,
1915 PHRASE_POSITION_IN_UTTERANCE_BW_EQ_C ,
1916 PHRASE_POSITION_IN_UTTERANCE_BW_LTE_C ,
1917 ]
1918
1919 PHRASAL_COMPOSITIONAL = [
1920 PHRASE_LEN_IN_NO_SYLS_EQ_L ,
1921 PHRASE_LEN_IN_NO_SYLS_LTE_L ,
1922 PHRASE_LEN_IN_NO_WORDS_EQ_L ,
1923 PHRASE_LEN_IN_NO_WORDS_LTE_L ,
1924 PHRASE_LEN_IN_NO_SYLS_EQ_C ,
1925 PHRASE_LEN_IN_NO_SYLS_LTE_C ,
1926 PHRASE_LEN_IN_NO_WORDS_EQ_C ,
1927 PHRASE_LEN_IN_NO_WORDS_LTE_C ,
1928 PHRASE_LEN_IN_NO_SYLS_EQ_R ,
1929 PHRASE_LEN_IN_NO_SYLS_LTE_R ,
1930 PHRASE_LEN_IN_NO_WORDS_EQ_R ,
1931 PHRASE_LEN_IN_NO_WORDS_LTE_R ,
1932 ]
1933
1934 # UTTERANCE
1935
1936 UTTERANCE_COMPOSITIONAL = [
1937 UTTERANCE_LEN_IN_NO_SYLS_EQ ,
1938 UTTERANCE_LEN_IN_NO_SYLS_LTE ,
1939 UTTERANCE_LEN_IN_NO_WORDS_EQ ,
1940 UTTERANCE_LEN_IN_NO_WORDS_LTE ,
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1941 UTTERANCE_LEN_IN_NO_PHRASES_EQ ,
1942 UTTERANCE_LEN_IN_NO_PHRASES_LTE ,
1943 ]
1944
1945 POSITIONAL_ABSOLUTE = [
1946 SEGMENTAL_POSITIONAL_ABSOLUTE ,
1947 SYLLABIC_POSITIONAL_ABSOLUTE ,
1948 WORD_POSITIONAL_ABSOLUTE ,
1949 PHRASAL_POSITIONAL_ABSOLUTE ,
1950 ]
1951
1952 POSITIONAL_RELATIVE = [
1953 SYLLABIC_POSITIONAL_RELATIVE ,
1954 WORD_POSITIONAL_RELATIVE ,
1955 ]
1956
1957 QUALITATIVE = [
1958 SEGMENTAL_QUALITATIVE ,
1959 SYLLABIC_QUALITATIVE ,
1960 ]
1961
1962 COMPOSITIONAL = [
1963 SYLLABIC_COMPOSITIONAL ,
1964 WORD_COMPOSITIONAL ,
1965 PHRASAL_COMPOSITIONAL ,
1966 UTTERANCE_COMPOSITIONAL ,
1967 ]
1968
1969 PARENTAL_COMPOSITION = [
1970 SYLLABIC_PARENTAL_COMPOSITION ,
1971 WORD_PARENTAL_COMPOSITION ,
1972 ]
1973
1974 SEGMENTAL = [
1975 SEGMENTAL_POSITIONAL_ABSOLUTE ,
1976 SEGMENTAL_QUALITATIVE ,
1977 ]
1978
1979 SYLLABIC = [
1980 SYLLABIC_POSITIONAL_ABSOLUTE ,
1981 SYLLABIC_POSITIONAL_RELATIVE ,
1982 SYLLABIC_QUALITATIVE ,
1983 SYLLABIC_COMPOSITIONAL ,
1984 SYLLABIC_PARENTAL_COMPOSITION ,
1985 ]
1986
1987 WORD = [
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1988 WORD_POSITIONAL_ABSOLUTE ,
1989 WORD_POSITIONAL_RELATIVE ,
1990 WORD_COMPOSITIONAL ,
1991 WORD_PARENTAL_COMPOSITION ,
1992 ]
1993
1994 PHRASAL = [
1995 PHRASAL_POSITIONAL_ABSOLUTE ,
1996 PHRASAL_COMPOSITIONAL ,
1997 ]
1998
1999 UTTERANCE = [
2000 UTTERANCE_COMPOSITIONAL ,
2001 ]
2002
2003 ########################################
2004 # TARGET FEATURE GROUPS
2005 ########################################
2006 FEATURE_GROUPS = {
2007 ’VUV ’: VUV ,
2008 ’QUINTPHONE_SEGMENT_VC ’: QUINTPHONE_SEGMENT_VC ,
2009 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE ’:

QUINTPHONE_SEGMENT_ARTICULATORY_TYPE ,
2010 ’SEG_POS_IN_SYL ’: SEG_POS_IN_SYL ,
2011 ’QUINTPHONE_SEGMENTAL_FEATURES ’: QUINTPHONE_SEGMENTAL_FEATURES ,
2012 ’SYLLABLE_STRESS ’: SYLLABLE_STRESS ,
2013 ’SYLLABLE_ACCENTED ’: SYLLABLE_ACCENTED ,
2014 ’SYLLABLE_ACCENT_TYPE ’: SYLLABLE_ACCENT_TYPE ,
2015 ’SYLLABLE_LEN_IN_SEGMENTS ’: SYLLABLE_LEN_IN_SEGMENTS ,
2016 ’SYLLABLE_NUCLEUS ’: SYLLABLE_NUCLEUS ,
2017 ’SYLLABLE_POSITION ’: SYLLABLE_POSITION ,
2018 ’RELATIVE_SYLLABLE_POSITION ’: RELATIVE_SYLLABLE_POSITION ,
2019 ’SYLLABLE_NEIGHBOURHOOD ’: SYLLABLE_NEIGHBOURHOOD ,
2020 ’WORD_LEN_IN_SYLS ’: WORD_LEN_IN_SYLS ,
2021 ’WORD_POSITION ’: WORD_POSITION ,
2022 ’WORD_SURROUNDINGS ’: WORD_SURROUNDINGS ,
2023 ’RELATIVE_WORD_POSITION ’: RELATIVE_WORD_POSITION ,
2024 ’PHRASE_LEN ’: PHRASE_LEN ,
2025 ’PHRASE_POSITION ’: PHRASE_POSITION ,
2026 ’UTTERANCE_LEN ’: UTTERANCE_LEN ,
2027 }
2028
2029 DETAILED_GROUPS = {
2030 ’VUV ’: VUV ,
2031 ’SYL_VOWEL_TYPE ’: SYL_VOWEL_TYPE ,
2032 ’QUINTPHONE_SEGMENT_VC ’: QUINTPHONE_SEGMENT_VC ,
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2033 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE ’:
QUINTPHONE_SEGMENT_ARTICULATORY_TYPE ,

2034 ’SEG_POS_IN_SYL ’: SEG_POS_IN_SYL ,
2035 ’QUINTPHONE_SEGMENTAL_FEATURES ’: QUINTPHONE_SEGMENTAL_FEATURES ,
2036 ’SYLLABLE_STRESS ’: SYLLABLE_STRESS ,
2037 ’SYLLABLE_ACCENTED ’: SYLLABLE_ACCENTED ,
2038 ’SYLLABLE_ACCENT_TYPE ’: SYLLABLE_ACCENT_TYPE ,
2039 ’SYLLABLE_LEN_IN_SEGMENTS ’: SYLLABLE_LEN_IN_SEGMENTS ,
2040 ’SYLLABLE_NUCLEUS ’: SYLLABLE_NUCLEUS ,
2041 ’SYLLABLE_POSITION_IN_WORD_FW ’: SYLLABLE_POSITION_IN_WORD_FW ,
2042 ’SYLLABLE_POSITION_IN_WORD_BW ’: SYLLABLE_POSITION_IN_WORD_BW ,
2043 ’SYLLABLE_POSITION_IN_PHRASE_FW ’:

SYLLABLE_POSITION_IN_PHRASE_FW ,
2044 ’SYLLABLE_POSITION_IN_PHRASE_BW ’:

SYLLABLE_POSITION_IN_PHRASE_BW ,
2045 ’SYLLABLE_POSITION_IN_WORD ’: SYLLABLE_POSITION_IN_WORD ,
2046 ’SYLLABLE_POSITION_IN_PHRASE ’: SYLLABLE_POSITION_IN_PHRASE ,
2047 ’NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ’:

NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ,
2048 ’NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ’:

NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ,
2049 ’

NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION
’:
NUM_STRESSED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION
,

2050 ’NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ’:
NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_BEFORE_CURRENT_SYL ,

2051 ’NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ’:
NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_AFTER_CURRENT_SYL ,

2052 ’
NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION
’:
NUM_ACCENTED_SYLS_IN_CURRENT_PHRASE_IN_RELATION_TO_CURRENT_SYL_POSITION
,

2053 ’POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_STRESSED_SYL ’:
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_STRESSED_SYL ,

2054 ’POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_STRESSED_SYL ’:
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_STRESSED_SYL ,

2055 ’
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_STRESSED_SYLS
’:
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_STRESSED_SYLS
,

2056 ’POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_ACCENTED_SYL ’:
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_PREV_ACCENTED_SYL ,

263



2057 ’POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_ACCENTED_SYL ’:
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_NEXT_ACCENTED_SYL ,

2058 ’
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_ACCENTED_SYLS
’:
POSITION_OF_CURRENT_SYL_IN_RELATION_TO_OTHER_NEIGHBOURING_ACCENTED_SYLS
,

2059 ’WORD_LEN_IN_SYLS ’: WORD_LEN_IN_SYLS ,
2060 ’WORD_POSITION_IN_PHRASE_FW ’: WORD_POSITION_IN_PHRASE_FW ,
2061 ’WORD_POSITION_IN_PHRASE_BW ’: WORD_POSITION_IN_PHRASE_BW ,
2062 ’WORD_POSITION_IN_PHRASE ’: WORD_POSITION_IN_PHRASE ,
2063 ’NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE ’:

NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE ,
2064 ’NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE ’:

NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE ,
2065 ’NUM_WORDS_FROM_PREV_CONT_WORD ’: NUM_WORDS_FROM_PREV_CONT_WORD ,
2066 ’NUM_WORDS_FROM_NEXT_CONT_WORD ’: NUM_WORDS_FROM_NEXT_CONT_WORD ,
2067 ’PHRASE_LEN_IN_SYLS ’: PHRASE_LEN_IN_SYLS ,
2068 ’PHRASE_LEN_IN_WORDS ’: PHRASE_LEN_IN_WORDS ,
2069 ’PHRASE_POSITION_IN_UTTERANCE_FW ’:

PHRASE_POSITION_IN_UTTERANCE_FW ,
2070 ’PHRASE_POSITION_IN_UTTERANCE_BW ’:

PHRASE_POSITION_IN_UTTERANCE_BW ,
2071 ’UTTERANCE_LEN_IN_SYLS ’: UTTERANCE_LEN_IN_SYLS ,
2072 ’UTTERANCE_LEN_IN_WORDS ’: UTTERANCE_LEN_IN_WORDS ,
2073 ’UTTERANCE_LEN_IN_PHRASES ’: UTTERANCE_LEN_IN_PHRASES ,
2074 }
2075
2076 ALL_GROUPS = {
2077 ’VUV ’: VUV ,
2078 ’QUINTPHONE_SEGMENT_VC_LL ’: QUINTPHONE_SEGMENT_VC_LL ,
2079 ’QUINTPHONE_SEGMENT_VC_L ’: QUINTPHONE_SEGMENT_VC_L ,
2080 ’QUINTPHONE_SEGMENT_VC_C ’: QUINTPHONE_SEGMENT_VC_C ,
2081 ’QUINTPHONE_SEGMENT_VC_R ’: QUINTPHONE_SEGMENT_VC_R ,
2082 ’QUINTPHONE_SEGMENT_VC_RR ’: QUINTPHONE_SEGMENT_VC_RR ,
2083 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_LL ’:

QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_LL ,
2084 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_L ’:

QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_L ,
2085 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_C ’:

QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_C ,
2086 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_R ’:

QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_R ,
2087 ’QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_RR ’:

QUINTPHONE_SEGMENT_ARTICULATORY_TYPE_RR ,
2088 ’NUM_SEG_IN_SYL_FW_EQ ’: NUM_SEG_IN_SYL_FW_EQ ,
2089 ’NUM_SEG_IN_SYL_FW_LTE ’: NUM_SEG_IN_SYL_FW_LTE ,
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2090 ’NUM_SEG_IN_SYL_BW_EQ ’: NUM_SEG_IN_SYL_BW_EQ ,
2091 ’NUM_SEG_IN_SYL_BW_LTE ’: NUM_SEG_IN_SYL_BW_LTE ,
2092 ’SYL_STRESSED_L ’: SYL_STRESSED_L ,
2093 ’SYL_ACCENTED_L ’: SYL_ACCENTED_L ,
2094 ’SYL_ACCENT_TYPE_L ’: SYL_ACCENT_TYPE_L ,
2095 ’SYL_LEN_IN_NO_SEG_EQ_L ’: SYL_LEN_IN_NO_SEG_EQ_L ,
2096 ’SYL_LEN_IN_NO_SEG_LTE_L ’: SYL_LEN_IN_NO_SEG_LTE_L ,
2097 ’SYL_STRESSED_C ’: SYL_STRESSED_C ,
2098 ’SYL_ACCENTED_C ’: SYL_ACCENTED_C ,
2099 ’SYL_ACCENT_TYPE_C ’: SYL_ACCENT_TYPE_C ,
2100 ’SYL_LEN_IN_NO_SEG_EQ_C ’: SYL_LEN_IN_NO_SEG_EQ_C ,
2101 ’SYL_LEN_IN_NO_SEG_LTE_C ’: SYL_LEN_IN_NO_SEG_LTE_C ,
2102 ’SYL_POSITION_IN_WORD_FW_EQ ’: SYL_POSITION_IN_WORD_FW_EQ ,
2103 ’SYL_POSITION_IN_WORD_FW_LTE ’: SYL_POSITION_IN_WORD_FW_LTE ,
2104 ’SYL_POSITION_IN_WORD_BW_EQ ’: SYL_POSITION_IN_WORD_BW_EQ ,
2105 ’SYL_POSITION_IN_WORD_BW_LTE ’: SYL_POSITION_IN_WORD_BW_LTE ,
2106 ’SYL_POSITION_IN_PHRASE_FW_EQ ’: SYL_POSITION_IN_PHRASE_FW_EQ ,
2107 ’SYL_POSITION_IN_PHRASE_FW_LTE ’: SYL_POSITION_IN_PHRASE_FW_LTE ,
2108 ’SYL_POSITION_IN_PHRASE_BW_EQ ’: SYL_POSITION_IN_PHRASE_BW_EQ ,
2109 ’SYL_POSITION_IN_PHRASE_BW_LTE ’: SYL_POSITION_IN_PHRASE_BW_LTE ,
2110 ’NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ’:

NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
2111 ’NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ’:

NUM_STRESSED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
2112 ’NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ’:

NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
2113 ’NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ’:

NUM_STRESSED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
2114 ’NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ’:

NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
2115 ’NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ’:

NUM_ACCENTED_SYLS_BEFORE_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
2116 ’NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ’:

NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_EQ ,
2117 ’NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ’:

NUM_ACCENTED_SYLS_AFTER_CURRENT_SYL_IN_CURRENT_PHRASE_LTE ,
2118 ’NUM_SYLS_FROM_PREV_STRESSED_SYL_EQ ’:

NUM_SYLS_FROM_PREV_STRESSED_SYL_EQ ,
2119 ’NUM_SYLS_FROM_PREV_STRESSED_SYL_LTE ’:

NUM_SYLS_FROM_PREV_STRESSED_SYL_LTE ,
2120 ’NUM_SYLS_FROM_NEXT_STRESSED_SYL_EQ ’:

NUM_SYLS_FROM_NEXT_STRESSED_SYL_EQ ,
2121 ’NUM_SYLS_FROM_NEXT_STRESSED_SYL_LTE ’:

NUM_SYLS_FROM_NEXT_STRESSED_SYL_LTE ,
2122 ’NUM_SYLS_FROM_PREV_ACCENTED_SYL_EQ ’:

NUM_SYLS_FROM_PREV_ACCENTED_SYL_EQ ,
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2123 ’NUM_SYLS_FROM_PREV_ACCENTED_SYL_LTE ’:
NUM_SYLS_FROM_PREV_ACCENTED_SYL_LTE ,

2124 ’NUM_SYLS_FROM_NEXT_ACCENTED_SYL_EQ ’:
NUM_SYLS_FROM_NEXT_ACCENTED_SYL_EQ ,

2125 ’NUM_SYLS_FROM_NEXT_ACCENTED_SYL_LTE ’:
NUM_SYLS_FROM_NEXT_ACCENTED_SYL_LTE ,

2126 ’SYL_VOWEL_TYPE ’: SYL_VOWEL_TYPE ,
2127 ’SYL_STRESSED_R ’: SYL_STRESSED_R ,
2128 ’SYL_ACCENTED_R ’: SYL_ACCENTED_R ,
2129 ’SYL_ACCENT_TYPE_R ’: SYL_ACCENT_TYPE_R ,
2130 ’SYL_LEN_IN_NO_SEG_EQ_R ’: SYL_LEN_IN_NO_SEG_EQ_R ,
2131 ’SYL_LEN_IN_NO_SEG_LTE_R ’: SYL_LEN_IN_NO_SEG_LTE_R ,
2132 ’WORD_LEN_IN_NO_SYLS_EQ_L ’: WORD_LEN_IN_NO_SYLS_EQ_L ,
2133 ’WORD_LEN_IN_NO_SYLS_LTE_L ’: WORD_LEN_IN_NO_SYLS_LTE_L ,
2134 ’WORD_LEN_IN_NO_SYLS_EQ_C ’: WORD_LEN_IN_NO_SYLS_EQ_C ,
2135 ’WORD_LEN_IN_NO_SYLS_LTE_C ’: WORD_LEN_IN_NO_SYLS_LTE_C ,
2136 ’WORD_POSITION_IN_PHRASE_FW_EQ ’: WORD_POSITION_IN_PHRASE_FW_EQ ,
2137 ’WORD_POSITION_IN_PHRASE_FW_LTE ’:

WORD_POSITION_IN_PHRASE_FW_LTE ,
2138 ’WORD_POSITION_IN_PHRASE_BW_EQ ’: WORD_POSITION_IN_PHRASE_BW_EQ ,
2139 ’WORD_POSITION_IN_PHRASE_BW_LTE ’:

WORD_POSITION_IN_PHRASE_BW_LTE ,
2140 ’NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_EQ ’:

NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_EQ ,
2141 ’NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_LTE ’:

NUM_CONT_WORDS_BEFORE_CURRENT_WORD_IN_PHRASE_LTE ,
2142 ’NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_EQ ’:

NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_EQ ,
2143 ’NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_LTE ’:

NUM_CONT_WORDS_AFTER_CURRENT_WORD_IN_PHRASE_LTE ,
2144 ’NUM_WORDS_FROM_PREV_CONT_WORD_EQ ’:

NUM_WORDS_FROM_PREV_CONT_WORD_EQ ,
2145 ’NUM_WORDS_FROM_PREV_CONT_WORD_LTE ’:

NUM_WORDS_FROM_PREV_CONT_WORD_LTE ,
2146 ’NUM_WORDS_FROM_NEXT_CONT_WORD_EQ ’:

NUM_WORDS_FROM_NEXT_CONT_WORD_EQ ,
2147 ’NUM_WORDS_FROM_NEXT_CONT_WORD_LTE ’:

NUM_WORDS_FROM_NEXT_CONT_WORD_LTE ,
2148 ’WORD_LEN_IN_NO_SYLS_EQ_R ’: WORD_LEN_IN_NO_SYLS_EQ_R ,
2149 ’WORD_LEN_IN_NO_SYLS_LTE_R ’: WORD_LEN_IN_NO_SYLS_LTE_R ,
2150 ’PHRASE_LEN_IN_NO_SYLS_EQ_L ’: PHRASE_LEN_IN_NO_SYLS_EQ_L ,
2151 ’PHRASE_LEN_IN_NO_SYLS_LTE_L ’: PHRASE_LEN_IN_NO_SYLS_LTE_L ,
2152 ’PHRASE_LEN_IN_NO_WORDS_EQ_L ’: PHRASE_LEN_IN_NO_WORDS_EQ_L ,
2153 ’PHRASE_LEN_IN_NO_WORDS_LTE_L ’: PHRASE_LEN_IN_NO_WORDS_LTE_L ,
2154 ’PHRASE_LEN_IN_NO_SYLS_EQ_C ’: PHRASE_LEN_IN_NO_SYLS_EQ_C ,
2155 ’PHRASE_LEN_IN_NO_SYLS_LTE_C ’: PHRASE_LEN_IN_NO_SYLS_LTE_C ,
2156 ’PHRASE_LEN_IN_NO_WORDS_EQ_C ’: PHRASE_LEN_IN_NO_WORDS_EQ_C ,
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2157 ’PHRASE_LEN_IN_NO_WORDS_LTE_C ’: PHRASE_LEN_IN_NO_WORDS_LTE_C ,
2158 ’PHRASE_POSITION_IN_UTTERANCE_FW_EQ_C ’:

PHRASE_POSITION_IN_UTTERANCE_FW_EQ_C ,
2159 ’PHRASE_POSITION_IN_UTTERANCE_FW_LTE_C ’:

PHRASE_POSITION_IN_UTTERANCE_FW_LTE_C ,
2160 ’PHRASE_POSITION_IN_UTTERANCE_BW_EQ_C ’:

PHRASE_POSITION_IN_UTTERANCE_BW_EQ_C ,
2161 ’PHRASE_POSITION_IN_UTTERANCE_BW_LTE_C ’:

PHRASE_POSITION_IN_UTTERANCE_BW_LTE_C ,
2162 ’PHRASE_LEN_IN_NO_SYLS_EQ_R ’: PHRASE_LEN_IN_NO_SYLS_EQ_R ,
2163 ’PHRASE_LEN_IN_NO_SYLS_LTE_R ’: PHRASE_LEN_IN_NO_SYLS_LTE_R ,
2164 ’PHRASE_LEN_IN_NO_WORDS_EQ_R ’: PHRASE_LEN_IN_NO_WORDS_EQ_R ,
2165 ’PHRASE_LEN_IN_NO_WORDS_LTE_R ’: PHRASE_LEN_IN_NO_WORDS_LTE_R ,
2166 ’UTTERANCE_LEN_IN_NO_SYLS_EQ ’: UTTERANCE_LEN_IN_NO_SYLS_EQ ,
2167 ’UTTERANCE_LEN_IN_NO_SYLS_LTE ’: UTTERANCE_LEN_IN_NO_SYLS_LTE ,
2168 ’UTTERANCE_LEN_IN_NO_WORDS_EQ ’: UTTERANCE_LEN_IN_NO_WORDS_EQ ,
2169 ’UTTERANCE_LEN_IN_NO_WORDS_LTE ’: UTTERANCE_LEN_IN_NO_WORDS_LTE ,
2170 ’UTTERANCE_LEN_IN_NO_PHRASES_EQ ’:

UTTERANCE_LEN_IN_NO_PHRASES_EQ ,
2171 ’UTTERANCE_LEN_IN_NO_PHRASES_LTE ’:

UTTERANCE_LEN_IN_NO_PHRASES_LTE ,
2172 }
2173
2174 SEGMENTAL_GROUPS = {
2175 ’SEGMENTAL_POSITIONAL_ABSOLUTE ’: SEGMENTAL_POSITIONAL_ABSOLUTE ,
2176 ’SEGMENTAL_QUALITATIVE ’: SEGMENTAL_QUALITATIVE ,
2177 }
2178
2179 SYLLABIC_GROUPS = {
2180 ’SYLLABIC_POSITIONAL_ABSOLUTE ’: SYLLABIC_POSITIONAL_ABSOLUTE ,
2181 ’SYLLABIC_POSITIONAL_RELATIVE ’: SYLLABIC_POSITIONAL_RELATIVE ,
2182 ’SYLLABIC_QUALITATIVE ’: SYLLABIC_QUALITATIVE ,
2183 ’SYLLABIC_COMPOSITIONAL ’: SYLLABIC_COMPOSITIONAL ,
2184 ’SYLLABIC_PARENTAL_COMPOSITION ’: SYLLABIC_PARENTAL_COMPOSITION ,
2185 }
2186
2187 WORD_GROUPS = {
2188 ’WORD_POSITIONAL_ABSOLUTE ’: WORD_POSITIONAL_ABSOLUTE ,
2189 ’WORD_POSITIONAL_RELATIVE ’: WORD_POSITIONAL_RELATIVE ,
2190 ’WORD_COMPOSITIONAL ’: WORD_COMPOSITIONAL ,
2191 ’WORD_PARENTAL_COMPOSITION ’: WORD_PARENTAL_COMPOSITION ,
2192 }
2193
2194 PHRASAL_GROUPS = {
2195 ’PHRASAL_POSITIONAL_ABSOLUTE ’: PHRASAL_POSITIONAL_ABSOLUTE ,
2196 ’PHRASAL_COMPOSITIONAL ’: PHRASAL_COMPOSITIONAL ,
2197 }
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2198
2199 POSITIONAL_ABSOLUTE_GROUPS = {
2200 ’SEGMENTAL_POSITIONAL_ABSOLUTE ’: SEGMENTAL_POSITIONAL_ABSOLUTE ,
2201 ’SYLLABIC_POSITIONAL_ABSOLUTE ’: SYLLABIC_POSITIONAL_ABSOLUTE ,
2202 ’WORD_POSITIONAL_ABSOLUTE ’: WORD_POSITIONAL_ABSOLUTE ,
2203 ’PHRASAL_POSITIONAL_ABSOLUTE ’: PHRASAL_POSITIONAL_ABSOLUTE ,
2204 }
2205
2206 POSITIONAL_RELATIVE_GROUPS = {
2207 ’SYLLABIC_POSITIONAL_RELATIVE ’: SYLLABIC_POSITIONAL_RELATIVE ,
2208 ’WORD_POSITIONAL_RELATIVE ’: WORD_POSITIONAL_RELATIVE ,
2209 }
2210
2211 QUALITATIVE_GROUPS = {
2212 ’SEGMENTAL_QUALITATIVE ’: SEGMENTAL_QUALITATIVE ,
2213 ’SYLLABIC_QUALITATIVE ’: SYLLABIC_QUALITATIVE ,
2214 }
2215
2216 COMPOSITIONAL_GROUPS = {
2217 ’SYLLABIC_COMPOSITIONAL ’: SYLLABIC_COMPOSITIONAL ,
2218 ’WORD_COMPOSITIONAL ’: WORD_COMPOSITIONAL ,
2219 ’PHRASAL_COMPOSITIONAL ’: PHRASAL_COMPOSITIONAL ,
2220 ’UTTERANCE_COMPOSITIONAL ’: UTTERANCE_COMPOSITIONAL ,
2221 }
2222
2223 PARENTAL_COMPOSITION_GROUPS = {
2224 ’SYLLABIC_PARENTAL_COMPOSITION ’: SYLLABIC_PARENTAL_COMPOSITION ,
2225 ’WORD_PARENTAL_COMPOSITION ’: WORD_PARENTAL_COMPOSITION ,
2226 }
2227
2228 LINGUISTIC_LEVEL_GROUPS = {
2229 ’SEGMENTAL ’: SEGMENTAL ,
2230 ’SYLLABIC ’: SYLLABIC ,
2231 ’WORD ’: WORD ,
2232 ’PHRASAL ’: PHRASAL ,
2233 ’UTTERANCE ’: UTTERANCE
2234 }
2235
2236 FEATURE_TYPE_GROUPS = {
2237 ’POSITIONAL_ABSOLUTE ’: POSITIONAL_ABSOLUTE ,
2238 ’POSITIONAL_RELATIVE ’: POSITIONAL_RELATIVE ,
2239 ’QUALITATIVE ’: QUALITATIVE ,
2240 ’COMPOSITIONAL ’: COMPOSITIONAL ,
2241 ’PARENTAL_COMPOSITION ’: PARENTAL_COMPOSITION ,
2242 }
2243
2244 LINGUISTIC_LEVEL_WITH_FEATURE_TYPE_GROUPS = {
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2245 ’SEGMENTAL_POSITIONAL_ABSOLUTE ’: SEGMENTAL_POSITIONAL_ABSOLUTE ,
2246 ’SYLLABIC_POSITIONAL_ABSOLUTE ’: SYLLABIC_POSITIONAL_ABSOLUTE ,
2247 ’WORD_POSITIONAL_ABSOLUTE ’: WORD_POSITIONAL_ABSOLUTE ,
2248 ’PHRASAL_POSITIONAL_ABSOLUTE ’: PHRASAL_POSITIONAL_ABSOLUTE ,
2249 ’SYLLABIC_POSITIONAL_RELATIVE ’: SYLLABIC_POSITIONAL_RELATIVE ,
2250 ’WORD_POSITIONAL_RELATIVE ’: WORD_POSITIONAL_RELATIVE ,
2251 ’SEGMENTAL_QUALITATIVE ’: SEGMENTAL_QUALITATIVE ,
2252 ’SYLLABIC_QUALITATIVE ’: SYLLABIC_QUALITATIVE ,
2253 ’SYLLABIC_COMPOSITIONAL ’: SYLLABIC_COMPOSITIONAL ,
2254 ’WORD_COMPOSITIONAL ’: WORD_COMPOSITIONAL ,
2255 ’PHRASAL_COMPOSITIONAL ’: PHRASAL_COMPOSITIONAL ,
2256 ’UTTERANCE_COMPOSITIONAL ’: UTTERANCE_COMPOSITIONAL ,
2257 ’SYLLABIC_PARENTAL_COMPOSITION ’: SYLLABIC_PARENTAL_COMPOSITION ,
2258 ’WORD_PARENTAL_COMPOSITION ’: WORD_PARENTAL_COMPOSITION ,
2259 }

Listing B.1: Structure of features groups as defined in the Python source code of the current
work.
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Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by

Ricardo Langner. The design of the Clean Thesis style is inspired by user guide

documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.
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