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Abstract

The increasing sophistication of wind turbine design and control generates a need for
high-quality wind data. The relatively limited set of available measured wind data may be
extended with computer generated data, for example, to make reliable statistical studies of
energy production and mechanical loads. Here, a data-driven model for the generation of
surrogate wind speeds is compared with two state-of-the-art time series models that can
capture the probability distribution and the autocorrelation of the target wind data. The
proposed model, based on the phase-randomised Fourier transform, can generate wind
speed time series that possess the power spectral density of the target data and converge to
their generally non-Gaussian probability distribution with an arbitrary, user-defined preci-
sion. The model performance is benchmarked in terms of probability distribution, power
spectral density, autocorrelation, and nonstationarities such as the diurnal and seasonal
variations of the target data. Comparisons show that the proposed model can outperform
the selected models in reproducing the statistical descriptors of the input datasets and is
able to capture the nonstationary diurnal and seasonal variations of the wind speed.

1 INTRODUCTION

In recent years, the penetration of wind power in the electricity
systems has increased considerably [1]. As a result, a growing
need to efficiently integrate the increasing share of wind energy
into the grid has emerged [2]. The availability of high-quality
wind speed data has become crucial to advance the integration
process while keeping the cost of wind energy low [3]. However,
due to the cost and duration of wind measurement campaigns it
has become increasingly advantageous to rely on surrogate wind
data for the development of several strategic applications. In
particular, the latest advancements in power system modelling
with an increased share of wind energy [4, 5], in the design of
larger and lighter rotors as well as in control and condition mon-
itoring strategies have created a need for realistic surrogate time
series of wind speeds. The recent increase in the use of sonic
anemometers as well as reanalysis data such as MERRA-2 [6]
has brought the advent of high-quality datasets that can be used
to develop and tune wind speed models for the generation of
realistic wind speed time series.
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The generation of surrogate time series is referred to in the
meteorology and wind energy communities as wind speed mod-
elling, that is related to, but not synonymous with, forecasting.
The goal of wind speed modelling is not to predict the future
as in forecasting, but to computer-generate surrogate data that
share as many relevant features as possible with physical data.
Wind time series are characterised by probability density func-
tions (PDF), expressing the relative frequency of occurrence of
wind speeds, and by power spectral densities (PSD) or, equiva-
lently, autocorrelation functions (ACF), expressing the temporal
coherence of the data. The PDF of wind speeds is typically non-
Gaussian, unless very short timespans are considered. The pos-
itively skewed Weibull distribution is the most commonly used
distribution for wind data [7]. The PSD characterises the wind
time series in terms of the dominant frequencies and the related
temporal patterns that drive the wind speed process [8]. More-
over, wind time series are inherently non-stationary as their PDF
and PSD vary over time as a result of deterministic meteoro-
logical factors changing over diurnal and seasonal time scales
[9–11]. Therefore, capturing all the above-mentioned features
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poses a major challenge for any wind speed model in the gener-
ation of realistic surrogate wind speed time series.

There exist different families of models to generate surrogate
time series, more or less common depending on the branch of
physics or engineering where they are applied. The first distinc-
tion to make is between physical modelling on the one hand
and data-driven (statistical) modelling on the other. Physical
modelling generally involves the solution of physical conserva-
tion equations, as is done in numerical weather prediction tools
such as WRF [12]. Physical models are highly effective, but have
a high computational cost and may produce more information
than is required. Data-driven models on the other hand, do not
involve the solution of physical conservation laws, although
they may use physical constraints on the model output, and are
comparatively cheap. All data-driven models start from a set of
training data and learn from those data how to produce surro-
gate time series with the same characteristics as the training data.

In the data-driven or statistical wind modelling class, estab-
lished methods for generating surrogate wind speeds broadly
fall in one of the two categories: Markov chain (MC)-based
models and autoregressive integrated moving average (ARIMA)
models. Markov chain models do not require the estimation
of a continuous wind speed distribution and as such can con-
form to a discrete measured distribution. The fact that they
are capable of reproducing the PDF of the real data is indeed
one of their main advantages [13]. Their main drawback is that
their memory is limited by the order of the model. As a con-
sequence, daily trends can only be modelled with time steps of
a few hours. Equivalently, the 10 min time steps prescribed by
the IEC 61400-12-1 standard [14] only allow very short-term
trends to be modelled. There is a practical limit to expanding the
time memory of Markov chain models by adding extra orders, as
the models quickly become prohibitively expensive with increas-
ing model order. Nesting Markov chain models can improve the
performance over standard Markov chain models but even for
those models the autocorrelation quality quickly deteriorates as
the time lag becomes larger [15].

ARIMA models consist of a modified form of the
autoregressive-moving average (ARMA) process, that are
designed to model time series with a homogeneous non-
stationary behaviour [16]. In its standard modelling procedure,
it is not well suited to model highly non-stationary and non-
Gaussian random processes as the wind speed variation and
thus requires modifications to produce satisfactory simulation
results [17]. A proper power transformation of the data can be
introduced to partly overcome the limitation to Gaussian pro-
cesses; with the further introduction of limitation and seasonal
partition of the data, it has been shown to adequately model the
monthly variation of wind power generation [18]. Furthermore,
ARIMA models struggle to capture reliably the diurnal and sea-
sonal variations of wind speeds. This can be partly mitigated by
using nested ARIMA methods, but even then the distributions
of the wind data are far from perfect [19]. Even with improve-
ments such as nesting, neither the ARIMA nor the Markov
chain models are fully satisfactory for wind modelling, as man-
ifested in their inability to conform to both the PDF and the
PSD (or the ACF) of a measured dataset.

A third and prominent category of data-driven models based
on artificial neural networks (ANN) has been proposed for
wind scenario generation and forecasting. Among those mod-
els, machine learning algorithms based on generative adversarial
networks (GAN) have been shown to be capable of generating
realistic wind power scenarios on a limited time horizon of a
few days that conform simultaneously to the PDF and the PSD
of the test data [20, 21]. However, to our knowledge no inves-
tigation has been conducted on the capability of these models
of capturing temporal correlations and probability distributions
over longer time horizons such as seasonal and annual varia-
tions.

Recently, an alternative data-driven method for the gener-
ation of synthetic wind speeds was suggested by the authors
in reference [22], which is based on the non-Gaussian phase-
randomised Fourier transform (NGPRFT) model. The class of
NGPRFT data-driven models originated in the 1990s in the
fields of non-linear physics [23, 24] and system identification
[25], and is able to produce surrogate data that do conform
to both a prescribed generally non-Gaussian PDF and a PSD.
Prior to reference [22], this class of models was never con-
sidered for the generation of surrogate wind data. However,
because of their iterative rank-reordering process, the NGPRFT
model class is a promising alternative as it can also capture non-
stationary features of the wind speed such as its diurnal and sea-
sonal variations.

The main contribution of this work is to compare the
NGPRFT model from reference [22] with recent implemen-
tations of the Markov chain [26] and ARIMA [17] models for
the generation of synthetic wind data that aim to reproduce the
diurnal and seasonal variations of the wind speed. The proposed
model is applied to the same datasets used for the published test
cases of the selected models, and the simulation results are com-
pared in terms of the accuracy in reproducing the PDF, the PSD,
and the non-stationary features of the input data. Additionally,
the level of user interaction required by the selected models is
discussed and compared with the NGPRFT model. A second
contribution of this paper is to test and discuss the performance
of the proposed NGPRFT model when wind speed datasets of
different time resolutions and record lengths are used to gener-
ate surrogate data.

2 PHASE-RANDOMISED FOURIER
TRANSFORM MODEL

This section briefly describes the main implementation steps
of the proposed NGPRFT methodology. The reader is referred
to reference [22] for a thorough description of its algorithm.
The proposed model is illustrated in the high-level flow chart
of Figure 1. In the initialization phase, two initial sequences are
generated that are consistent with the PSD and the PDF of the
target wind speed time series, respectively. Next, an iterative
process first reorders the sequence conforming to the target
PDF to match the rank order of the sequence possessing the
target PSD. Then, a new sequence is generated from the Fourier
amplitudes of the target data and the spectral phases of the
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FIGURE 1 High-level flowchart of the proposed NGPRFT model

last reordered sequence. This new sequence replaces the initial
sequence with the target PSD in the next reordering step, and
the iterations continue until the last generated sequence has
converged to the PDF of the target data.

2.1 Initialization phase

2.1.1 PSD sequence

The initial sequence possessing the target PSD is generated as
a random-phase multi-sine signal from the frequency domain.
This is achieved by inverse Fourier transforming the absolute
Fourier amplitudes of the target data |X ( fk )| multiplied by a
set of phases 𝜑rnd

k randomly sampled from the uniform dis-
tribution  [0, 2𝜋), where k = 0, … ,N − 1 and |X ( fk )| = 0
for k = N∕2, … ,N − 1, with N equal to the total number of
observations in the target time series; that yields

zn = 2ℜ{ℱ−1{|X ( fk )|e j𝜑rnd
k }}, (1)

where ℜ{⋅} indicates the real part, and n = 0, … ,N − 1.

2.1.2 PDF sequence

The initial sequence consistent with the PDF of the target wind
speed dataset is obtained by performing an inverse cumulative
distribution function (CDF) transform on an equally spaced
sequence of N samples taken on the interval (0, 1), and denoted
by un,

yn = F−1(un ), (2)

where F−1 is the inverse CDF of the target wind speed time
series. To complete the initialization phase, the variance and the
mean of the sequence consistent with the target PDF, yn, are
imposed on zn, and the absolute values of the Fourier ampli-
tudes of this sequence are stored, Zk = | {zn}|.
2.2 Iterative process

This process consists of three steps (Figure 1). First, a rank-
reorder step is performed by applying a non-linear transforma-

tion that reorders yn in a new sequence ỹn; as a result, the smallest
value of yn is given the same position in ỹn that the smallest value
of zn has in its own sequence, and so forth for all the N values.
In the second step, the spectral phases of this new sequence ỹn
are computed by means of the Fourier transform of the signal,
which yields

𝜑k = tan−1

(
ℑ{ {ỹn}}

ℜ{ {ỹn}}

)
, (3)

where ℑ{⋅} and ℜ{⋅} indicate the imaginary part and the real
part, respectively. In the last step, the final sequence z̃n is gener-
ated by inverse Fourier transforming the stored Fourier ampli-
tudes Zk multiplied by the last computed phases 𝜑k, and then
taking the real part of the inverse Fourier transform; that is ,

z̃n = ℜ{ℱ−1{Zke j𝜑k }}. (4)

This last generated sequence replaces zn in the successive rank-
reordering step of yn performed in the next iteration, and this
three-step process is iterated until the PDF of z̃n converges to
the PDF of the target wind speed dataset.

2.3 Model properties

By its design, the proposed NGPRFT model simulates an
ergodic, pseudo-random process. This emphasises two central
features of the model. First, each realisation of the simulated
process results in a synthetic time series that always conforms to
the same statistical descriptors which are, by construction of the
model, the PDF and the PSD of the input wind data. Second,
the initial random phases 𝜑rnd

k give rise to a stochastic reorder-
ing of the synthetic wind speeds without altering their value in a
random fashion, and that effectively delivers the same synthetic
wind speeds with a different time evolution for each realisation
of the model.

As for the extreme wind speeds, repeating the simulation
with the same input data and with the same sampling defined by
Equation (2) results in a different synthetic signal characterized
by the same extreme values. These extremes, however, appear
at different time instants in the synthetic signal as a result of
the different random seed drawn for the initial phases 𝜑rnd

k .
Therefore, if one wishes to extend the simulated extreme winds,
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the number of the simulated samples N is to be increased so as
to increase the sampling in the tail region of the target CDF.

Periodic features of the target data such as the diurnal and
seasonal variations create peaks in the PSD. The number of
components in Equation (4) that is needed to model these
periodic variations is minimized if an integer number of years
(the seasonal variations) and days (the diurnal variations) are
included in the synthesized signal. This leads to a sparse rep-
resentation (only a few parameters are needed) of the peri-
odic phenomena in the synthetic data that better mimics the
observed seasonal/diurnal behaviour in the target data.

The random-phase multi-sine signal of Equation (1) requires
that the total number of samples of the target data are used to
retrieve the target PSD. Concurrently, the target PDF sequence
of Equation (2) must possess an equal number of samples for
the rank-reordering step to be enforced, which yields a synthetic
sequence with the same number of samples as the target data.
Therefore, the whole range of target data constitutes simultane-
ously the training and test dataset for the proposed model.

3 COMPARISON WITH MC AND ARIMA
MODELS

The performance of the proposed NGPRFT model is com-
pared with two state-of-the-art modelling techniques for the
simulation of non-stationary wind speeds, namely the non-
homogeneous Markov chain model (NHMC) put forward by
Xie et al. [26], and the ARIMA-based frequency-decomposed
methodology presented by Yunus et al. [17]. These models are
selected as a benchmark since both aim to reproduce the proba-
bility distribution and the time correlation of the observed data,
while attempting to capture seasonal and diurnal variations that
are characteristic of the wind speed stochastic process. Such
non-stationary features are taken into account by adopting dif-
ferent modelling strategies.

The comparison carried out in this section aims at showing
the performance of the proposed NGPRFT model in repro-
ducing the PDF and the PSD, or equivalently, the ACF of the
observed wind data when it is applied to the same datasets
of the test cases presented in references [26] and [17] for the
NHMC model and the ARIMA-based model, respectively. Par-
ticular emphasis is put on how accurately the proposed model
can capture the non-stationarity of the wind speed data pertain-
ing to the seasonal and diurnal variation of the wind speed. In
addition, the level of user interaction required by the selected
models is discussed.

3.1 NHMC model comparison

In the NHMC model, the time homogeneity assumption is
relaxed allowing the Markov chain transition probability matrix
to become a function of time. Then, the time-varying transi-
tion matrix, that represents the wind speed variation at different
times, is generated by means of a seasonal partition technique
and a sequence period extraction procedure is performed on

FIGURE 2 Average seasonal variation comparison shown as monthly
average wind speeds of 10 years of data. ASV observed at Crosby as grey bars
along with its inter-annual variability as grey error bars; NGPRFT-generated
ASV as blue, thick line with its confidence intervals as blue, shaded regions
(average over 10,000 simulations); NHMC-generated ASV as orange, thick line

the wind data. This allows to yield state transition probabilities
that are time related and finely adjusted to simulate the diurnal
and seasonal variation of the wind speed.

The proposed NGPRFT method is applied to the same
dataset used in the case study of reference [26], recorded at
Crosby, USA, that is the hourly averaged wind speeds extracted
from the database available on the internet at the North Dakota
Agricultural Weather Network (NDAWN) website [27] for the
10-year period ranging from January 2003 to December 2012. A
synthetic wind speed time series of the same length is generated,
and the agreement of the proposed model with the target data is
investigated in terms of its probability distribution, its PSD, and
its ACF. To allow for a direct comparison, the same statistical
descriptors produced by the NHMC model and shown in the
case study of reference [26] are digitised and presented along
with the results given by the NGPRFT model. In addition, the
degree of non-stationarity reproduced in the synthetic data is
shown and compared in terms of the average seasonal variation
(ASV) of the wind speed and the amplitudes of the diurnal
cycle harmonics of the wind speed detected in the PSD.

3.1.1 Average seasonal variation

Figure 2 shows the ASV of the observed wind speeds at Crosby
calculated as the monthly average wind speed across the 10
years of data (grey bars), along with its inter-annual variability
calculated as the associated standard deviation (grey error bars).
The same average variation is shown for the synthetic data
simulated by the NGPRFT model (blue thick line) and by the
NHMC model (orange thick line). The ASV shown for the
NGPRFT model is an average result obtained over 10,000
realizations of the model; the confidence strips of the multiple
realizations are calculated as the associated standard deviation
(blue shaded regions), and indicate the inter-annual variability
of the monthly average synthetic data. This is done as the
initial random seed for the phases 𝜑rnd

k determines a stochastic
rearrangement of the synthetic wind speeds that ultimately
leads to an ASV varying in a limited range with the different
realizations of the model.
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FIGURE 3 PDF agreement of synthetic wind speeds generated by the
NGPRFT model and by the NHMC model with the wind data observed at
Crosby

The monthly fluctuation observed in Figure 2 reveals a signif-
icant intra-annual or seasonal variation of the wind speed in the
observed data at Crosby. This seasonal variation is well repro-
duced by the proposed NGPRFT model, whose ASV averaged
across multiple simulations is consistent with the ASV of the
observed wind data. From a visual comparison with the ASV
produced by the NHMC model it can be noticed that overall
the NGPRFT model shows a comparable performance with the
model in reference [26] in simulating the observed seasonal vari-
ation at Crosby. For some months, the NGPRFT model yields
slightly larger deviations from the observed data compared to
the NHMC model (January, May, and July), showing a poorer
performance. However, note that the NGPRFT-simulated ASV
is presented here as an average over multiple realisations to
show its convergence to the observed data; when simulating,
the ASV error can be computed and one may reject simulation
results until a prescribed tolerance is satisfied. In contrast, the
authors of reference [26] do not specify whether their simula-
tion result represents one realisation of the NHMC model or
is an average over multiple realisations. Nevertheless, a degree
of randomness in the simulation results of the NHMC model is
to be expected as Markov chain methods belong to the class of
Monte Carlo methods.

3.1.2 Probability distribution

The PDF of the synthetic wind speeds generated by the pro-
posed model is shown in Figure 3 along with the probability dis-
tributions of the observed wind speeds at Crosby and the syn-
thetic speeds produced by the NHMC model. It can be noticed
that the PDF yielded by the NGPRFT model is consistent with
the observed wind speed distribution, and its simulated wind
speeds fit very accurately the target stochastic process. The
goodness of the fit with the observed wind data is evaluated
in terms of the R2 coefficient and the root-mean-square error
(RMSE) of the CDF, RMSECDF. In Table 1, these statistics are
summarised and compared with the values obtained from the
application of the NHMC model and provided in reference [26].
The visual comparison and the reported metrics show that the
NGPRFT model and the NHMC model attain a similar perfor-

TABLE 1 Goodness of fit of the compared models for the Crosby dataset

Site Model R2 RMSECDF

Crosby

NGPRFT 0.999999 0.0005

NHMC 0.999963 0.0020

FIGURE 4 Root-mean-square error of the NGPRFT-generated PDF
with respect to the PDF of the Crosby wind data

TABLE 2 ACF error produced by the compared models for different lags
when synthesizing from the Crosby dataset

Model 12-h lag 24-h lag 48-h lag 100-h lag

NGPRFT 0.0001 0.0001 0.0001 0.0001

NHMC 0.0247 0.0193 0.0160 0.0157

mance in reproducing the probability distribution of the wind
speed measured at Crosby.

It is important to note that the observed PDF is always repro-
duced with the same level of accuracy when multiple simula-
tions are carried out with the proposed NGPRFT model. This
means that the random phases drawn to generate the initial PSD
sequence (random-phase multi-sine) do not affect the values of
the generated wind speeds but only determine their reordering
in the time series.

A measure of the convergence rate of the NGPRFT model
is given in Figure 4, where the deviation of the synthetic PDF
from the target PDF is calculated at each iteration as the RMSE.
A fast convergence can be observed.

3.1.3 Autocorrelation function

The analysis of the ACF of the wind speed modelled by the pro-
posed NGPRFT model resulted in the agreement shown in Fig-
ure 5. The synthetic ACF is presented for the first 48 lags, corre-
sponding to 48 h, along with the observed ACF at Crosby, and
it is compared with the ACF produced by the NHMC model
for the same number of lags. In addition, the RMSE of the
ACF, RMSEACF, is calculated for four selected time lags and
compared in Table 2 with the same ACF error produced by the
NHMC model and presented in the case study of reference [26].
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FIGURE 5 ACF agreement of synthetic wind speeds obtained from the
NGPRFT model and from the NHMC model with wind data measured at
Crosby

This analysis shows that the proposed NGPRFT model gen-
erates synthetic wind speeds whose ACF is consistent with the
ACF of the wind speed observed at Crosby. Figure 5 illustrates
that the proposed model can reproduce accurately the diurnal
correlation of the observed wind speed indicated by the peri-
odic variation of the ACF with a 24-h period. Also, a visual
comparison reveals that the NHMC model yields a similar
agreement with the observed ACF, being able to capture both
the ACF decaying trend and the diurnal correlation structure
of the wind speed at Crosby. From the quantitative comparison
presented in Table 2, it can be noticed that the NGPRFT model
yields an RMSE in the ACF that is consistently lower than the
ACF error produced by the NHMC model for all the analysed
time lags.

When multiple simulations are performed with the NGPRFT
model, the target ACF is always reproduced with the same level
of accuracy as the initial random phases do not affect the auto-
correlation structure of the simulated process.

3.1.4 Power spectral density

The performance of the proposed NGPRFT model in repro-
ducing the spectral energy content of the observed wind speeds
at Crosby is investigated through a spectral analysis of the sim-
ulated wind speeds. This analysis allows to reveal the presence
of deterministic frequency components that give rise to non-
stationarity in the wind speed data, and to assess how accurately
these components are simulated by the synthetic data. To this
end, the PSD of the NGPRFT-simulated wind speeds is shown
in the top plot of Figure 6, along with the PSD of the observed
wind speeds at Crosby. To allow for a direct comparison with
simulation results given in reference [26], the PSD produced by
the NHMC model is digitised and presented in the bottom plot
of the same figure. The simulation results of reference [26] are
presented in a separate plot as the PSD of the observed data
shown there does not coincide with the PSD calculated from
the observed wind speeds and shown in the top plot of Fig-
ure 6. This suggests that some technique was applied to reduce
the variance of the estimated PSD of the observed data, and the
same technique is likely to have been applied to the NHMC-

FIGURE 6 Square-root PSD agreement of synthesized wind speeds
generated by the NGPRFT model (top) and by the NHMC model (bottom) with
observed wind data at Crosby

simulated PSD. As the digitised PSD is given in m s−1∕2, the
PSD obtained from the NGPRFT model is shown in the same
units by taking the square root of its values. For visualisation
purposes, the zero frequency or DC component of the PSD is
not shown. The lowest spectral peak is the annual frequency
component occurring at f = 3.171×10−8 Hz.

The PSD analysis shows that the NGPRFT model can repro-
duce with high accuracy the entire frequency content of the
wind speed at Crosby, including the strongest deterministic
components detected in the observed data at the annual, diur-
nal, and semi-diurnal time scales, namely at f = 3.171×10−8,
1.157×10−5, and 2.314×10−5 Hz, respectively. The goodness of
the agreement with the observed PSD is calculated as the RMSE
in the PSD produced by the NGPRFT model, RMSEPSD, that
results in a value of 2.1×10−4. The same level of accuracy in
reproducing the observed PSD is attained for multiple realiza-
tions of the NGPRFT model, as the stochastic reordering due
to the initial random phases 𝜑rnd

k always yields a synthetic wind
speed time series consistent with the target PSD. Note that
the presence of a strong diurnal component in the frequency
domain is associated with the 24-h periodic variation observed
for the ACF, as the power spectrum and the autocorrelation
function constitute a Fourier-transform pair according to the
Wiener–Khinchin theorem [28].

A visual inspection of the PSD agreement produced by
the NHMC model (bottom plot of Figure 6) reveals that the
NHMC-simulated PSD fails to reproduce the spectral content
of the Crosby data with the same level of accuracy yielded by the
NGPRFT model. The NHMC model underperforms in esti-
mating the amplitudes of the observed PSD at Crosby through-
out the analysed frequency range, with the exception of the
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diurnal and semi-diurnal harmonics whose amplitudes are cor-
rectly captured by the model. Larger deviations are observed
for the amplitudes of the third and the fifth harmonics of
the diurnal cycle. The poor retrieval of those harmonics sug-
gests that the shape of the target diurnal cycle in the time
domain is not reproduced with the same accuracy attained by
the NGPRFT model.

In addition, the NHMC model fails to adequately reproduce
the frequency content between the annual and the diurnal peak,
that represents the wind speed fluctuations associated with the
passage of large, synoptic-scale pressure systems [29]. As the
authors of reference [26] do not provide any metric for the devi-
ations from the observed PSD, it is not possible to perform
a quantitative comparison with the error in the PSD obtained
from the NGPRFT model.

3.1.5 User interaction

As described in reference [26], the NHMC model construction
requires user tuning during the preprocessing phase in order to
enable the modelling of the seasonal and diurnal characteris-
tics of the specific input wind data. In the seasonal effect parti-
tion, an optimal partition method is implemented to split the
wind data in a number of segments that reflect the seasonal
variability of the data. In this step, a user choice is required to
determine the optimal number of segments as this is not spec-
ified by the optimal partition method. Then, after performing
the sequence period extraction, the user has to decide on the
most suitable wind variation period R according to the periodic
characteristics of the wind data; this parameter will determine in
turn the number of transition probability matrices used by the
model to represent the wind speed variation at different times.
Finally, any Markov chain model requires an initial choice by the
user on the number of states into which the input wind data are
discretised, that define the state transition probabilities of the
transition matrix. Overall, the user interaction required during
the preprocessing phase affects the performance of the NHMC
model and necessitates some expertise by the user to fine tune
the NHMC model.

In contrast, the NGPRFT model is fully automated and no
tuning of the model is required to generate synthetic data from
target data with any length and temporal resolution. It is only
recommended that the target data contain an integer number
of days and years so as to avoid introducing any leakage in the
periodic components of the PSD.

3.2 ARIMA model comparison

With regard to the ARIMA-based model, a frequency decom-
position of the wind speed data is introduced in the standard
ARIMA modelling procedure [16] to better capture the peri-
odic and non-stationary characteristics of the wind speed fluc-
tuations. This decomposition allows to split the wind speed data
into a high-frequency (HF), stationary component, and a low-
frequency (LF), non-stationary component that accounts for

the seasonal and diurnal cyclical variation of the wind speed.
Both components are in turn modelled separately by perform-
ing a standard ARIMA procedure, and then combined to get the
synthetic wind speed time series. In addition, shifting and limita-
tion of the wind speed data are introduced before modelling and
during simulation with respect to the standard ARIMA mod-
elling procedure.

The ARIMA-based frequency-decomposed model put for-
ward in reference [17] is the second model selected for bench-
marking the proposed methodology. To do that, the NGPRFT
model is applied to generate synthetic wind data from the
same dataset used in their test case, namely the 10-min aver-
age wind speeds recorded by the meteorological mast located in
the Näsudden peninsula in Gotland, Sweden, from the 1 Jan-
uary to 31 December 2005 at a height of 100 m. This dataset
is maintained and provided by the Department of Earth Sci-
ences at Uppsala University. A synthetic wind speed time series
of the same length of the dataset is generated, and the com-
parison with the ARIMA-simulated wind data is carried out in
terms of the same statistical descriptors presented in Section IV
of reference [17], namely the probability distribution, the ACF,
and the power spectrum. Their values are digitised and shown
along with the results given by the application of the proposed
NGPRFT model.

3.2.1 Probability distribution

The performance of the two models is first compared in terms
of their capability to reproduce the probability distribution of
the observed wind speeds. A quantile–quantile (Q–Q) plot is
employed to assess such a capability. This type of plot provides
a graphical method to compare two PDFs: the closer the data
points lay on the straight line y = x, the better is the agreement
of the compared probability distributions.

Figure 7 shows the Q–Q plot of the synthetic wind speeds
obtained from the application of the proposed NGPRFT
model, along with the digitised Q–Q plot produced by the
ARIMA-based modelling. It can be noticed that the wind data
simulated with the NGPRFT model are in very good agreement
with the observed wind speeds at Näsudden. In contrast, the Q–
Q plot given by the ARIMA-simulated data reveals deviations
from the reference data occurring at wind speeds around 15 m
s−1 that become larger with increasing wind speed. Addition-
ally, significant deviations of the ARIMA-simulated data from
the observed data can be also observed in the very low wind
speed region between 0 and 3 m s−1. The authors of reference
[17] comment that the underperformance of the ARIMA model
in reproducing the largest wind speeds is due to the limited
number of wind speeds higher than 20 m s−1 in the Näsud-
den dataset. They further comment that the extreme wind con-
ditions can be properly modelled with a separate technique
when required.

In contrast, the extreme wind speeds observed at Näsudden
are well captured by the NGPRFT model, that shows a very lim-
ited deviation with respect to the observed data for the highest
wind speed occurrences. Moreover, the kernel of the proposed
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FIGURE 7 Quantile–quantile plot of observed wind speeds at Näsudden
against synthetic wind speeds generated by the NGPRFT model and the
ARIMA-based model.

FIGURE 8 Root-mean-square error of the NGPRFT-generated PDF
with respect to the Näsudden PDF.

model guarantees that the same extreme values are generated for
each realisation of the NGPRFT model when it is applied to the
same input data and with the same sampling defined by Equa-
tion (2). The stochastic component of the model also ensures
that, for each simulation, the generated extreme wind speeds
appear at different time instants in the synthetic time series as a
result of the different random initial phases 𝜑rnd

k .
In addition, a measure of the convergence rate of the

NGPRFT model is given in Figure 8, where the deviation of
the synthetic PDF from the target PDF is calculated at each
iteration as the RMSE. A fast convergence can be observed.

3.2.2 Autocorrelation function

A second level of comparison is conducted to assess the perfor-
mance of the two models, NGPRFT and ARIMA based, in sim-
ulating the temporal autocorrelation of the observed wind data
at Näsudden. To do that, the ACF of the observed wind data is

FIGURE 9 ACF agreement of the synthetic wind speeds simulated by the
NGPRFT model and by the ARIMA-based model with the observed wind
speeds at Näsudden.

shown in Figure 9 along with the synthetic wind data generated
by the NGPRFT model, and the digitised ACF values of the
ARIMA-simulated data for a time lag up to one month (4320
lags). For the latter, the figure shows the ACF values result-
ing from two different cutoff frequencies (1∕Tcutoff), that deter-
mine different decompositions into low-frequency and high-
frequency components in the ARIMA-based model.

A visual inspection reveals that the NGPRFT-simulated ACF
follows very closely the autocorrelation of the wind speed mea-
sured at Näsudden throughout the whole range of analysed
time lags. On the other hand, the ARIMA-simulated ACF that
seems to yield a satisfactory match with the target autocorre-
lation profile (Tcutoff = 2 days) can only reproduce the pattern
of the observed ACF for approximately 500 lags, as its agree-
ment degrades considerably at larger time lags. In addition, the
ACF simulated by the ARIMA model shows a consistent bias
throughout the calculated time lags. The authors of reference
[17] deem the ACF agreement given by their ARIMA-based
model satisfactory, and comment that the agreement after 500
lags is less significant as the ACF of the observed wind speed is
lower than 0.2. However, this comparison shows that the pro-
posed NGPRFT model performs significantly better in repro-
ducing the observed ACF at Näsudden, even for values lower
than 0.2.

3.2.3 Power spectral density

Further information on how accurately the temporal autocorre-
lation and the periodic characteristics of the observed data are
reproduced in the synthetic data can be inferred by performing
a Fourier or spectral analysis on the observed and synthetised
time series. For this reason, the periodograms of the measured
and the simulated wind speed data is presented in reference [17].
To provide a meaningful comparison with their investigation,
the periodograms of the observed data and the synthetic data
obtained from the NGPRFT model are calculated and shown
in the top plot of Figure 10 in the same units as in reference
[17], namely dB (cycles/h)−1. The bottom plot of Figure 10
shows the digitised ARIMA-simulated periodogram along with
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FIGURE 10 Periodogram agreement of synthetic wind speeds with
Näsudden dataset. NGPRFT-simulated periodogram in the top plot;
ARIMA-simulated periodogram in the bottom plot

the periodogram of the observed data calculated in reference
[17].

A visual comparison of the top plot of Figure 10 reveals
that the NGPRFT model can reproduce with very high accu-
racy the PSD of the observed wind speed time series throughout
the whole range of computed frequencies. The deviation of the
NGPRFT-simulated periodogram with respect to the observed
periodogram is given as the RMSE of the statistics, RMSEPER,
which yields a value of 7.7×10−3.

In contrast, the bottom plot of Figure 10 shows that the
ARIMA-based model manages to capture only the decaying
trend of the observed spectral content without matching accu-
rately the magnitudes of the target periodogram. The authors
of reference [17] do not provide a metric that quantifies the
observed deviation, therefore only a visual comparison is pos-
sible. Nevertheless, the results shown in this second level of
comparison suffice to state that the proposed NGPRFT model
outperforms the ARIMA-based model in reproducing both
the temporal autocorrelation and the spectral content of the
observed wind data at Näsudden.

3.2.4 User interaction

In the modified ARIMA-based modelling procedure proposed
in reference [17], user interaction is required throughout the
process. During the first stage, the HF and LF components
are obtained by performing a standard ARIMA modelling pro-
cedure. This entails user intervention to determine the proper
combination of required transformations (i.e. differencing and
power transformation) to be applied to the observed wind data

in order to identify the correct ARIMA model structure for
the two components. In addition, a choice has to be made by
the user for a suitable criterion to use for the determination
of the transformation factor 𝜈 that yields the best simulation
results for each frequency component. Although the subsequent
steps of the model identification can be automated, the modi-
fied ARIMA-based model also introduces shifting and limita-
tion of the observed wind data before modelling to improve
simulation results. The necessity to implement both steps is left
to the user to judge based on the characteristics of the input time
series. In a positive case, user interaction is required to deter-
mine suitable upper and lower limits and/or a constant offset
value to apply to the input data that can be estimated by per-
forming sensitivity analysis on the simulation results. Overall,
the fine tuning of the modified ARIMA-based model entails a
high level of user interaction, that requires an expert time-series
analyst with previous experience in ARIMA model identifica-
tion to be performed effectively.

In contrast, the NGPRFT model does not require user inter-
action throughout its operation and thus can be fully automated.
In particular, no tuning of the model is needed to generate syn-
thetic wind speeds from target data of different length and tem-
poral resolution.

4 CONCLUSIONS

Here, the proposed NGPRFT model has been compared with
two state-of-the-art models for the generation of surrogate wind
data to benchmark its performance in reproducing the proba-
bility distribution, the PSD, and the periodic variations of the
target wind speed dataset. The main contribution of this work
has been to show that the NGPRFT class of data-driven mod-
els can outperform Markov chain and ARIMA models in gen-
erating surrogate data that conform to both the generally non-
Gaussian PDF and the PSD of a given wind speed dataset. In
addition, its performance in capturing the target diurnal and sea-
sonal variations of the wind speed has been analysed.

The models selected for the comparison were the NHMC
model of reference [26] and the ARIMA-based model in refer-
ence [17]. The NGPRFT model has been applied to the same
datasets used in the respective test cases of the selected models,
and the comparison has been conducted in terms of the PDF,
the ACF, and the PSD of the generated time series. For both
test cases, the NGPRFT-simulated wind speeds show a per-
fect reconstruction of both the PDF and the PSD of the target
wind data. In terms of probability distribution, the NGPRFT
model produces a marginally superior agreement with the target
PDF compared to the NHMC model, whereas it yields a signif-
icantly better performance with respect to the ARIMA-based
model. As for the PSD, the proposed model outperforms both
the NHMC approach and the ARIMA-based model in repro-
ducing the target PSD in the respective test cases. In particu-
lar, the NGPRFT-simulated PSD reproduces with high fidelity
all the harmonics of the diurnal cycle in the test case of refer-
ence [26], while the NHMC-simulated PSD fails in getting the
correct spectral amplitudes for some of those harmonics (third
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and fifth). The ACF analysis confirms this better performance
and shows that the NGPRFT-simulated wind speeds reproduce
the same diurnal correlation of the observed wind data. A sub-
stantially superior performance is also shown by the NGPRFT
model in the ACF analysis of the test case of reference [17]
compared to the ARIMA-based model. Additionally, the pro-
posed model sufficiently reproduces the seasonal variations of
the wind data in the test case of reference [26], showing the abil-
ity to capture such a non-stationary feature of the wind varia-
tion.

In addition, a user-interaction analysis shows that both the
NHMC model and the ARIMA-based approach require user
intervention to fine tune the modelling process according to the
characteristics of the input wind data. In contrast, the proposed
NGPRFT model does not require any tuning from the user and
shows identical performance when applied to datasets with dif-
ferent temporal resolutions (1 h and 10 min, respectively), and
different record lengths (10 years and 1 year, respectively).
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