
Received November 8, 2021, accepted November 18, 2021, date of publication November 23, 2021,
date of current version December 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3130216

Application of a New CO2 Prediction Method
Within Family House Occupancy Monitoring
JAN VANUS, OJAN MAJIDZADEH GORJANI , PETR DVORACEK,
PETR BILIK , AND JIRI KOZIOREK
Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, 70800
Ostrava, Czech Republic

Corresponding author: Ojan Majidzadeh Gorjani (ojan.majidzadeh.gorjani@vsb.cz)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program under Grant NO856670, in part
by the European Regional Development Fund in ‘‘A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration’’
Project, through the Operational Program Research, Development and Education, under Grant CZ.02.1.01/0.0/0.0/17_049/0008425, and in
part by the ‘‘Student Grant System’’ of VSB—TU Ostrava under Project SP2021/123.

ABSTRACT The article describes the application of Python for verification of a newly designed method
of CO2 prediction from measurements of indoor parameters of temperature and relative humidity within
occupancy monitoring in real conditions of a family home. The article describes the implementation of
non-electric quantities (indoor CO2 concentration, indoor temperature, indoor relative humidity) measure-
ment in five rooms of a family home (living room, kitchen, children’s room, bathroom, bedroom) using
Loxone technology sensors. The IBM IoT (Internet Of Things) was used for storing and subsequent
processing of the measured values within the time interval of December 22, 2018, to December 31, 2018.
The devised method used radial basis function (artificial neural networks (ANN)) mathematical method
(implementation in Python environment) to perform accurate predictions. For further increase of the accuracy
and reduction of prediction noise from the obtained course of the predicted signal, multiple variations of the
LMS adaptive filter algorithm (Sign, Sign-Sign, Sign-Regressor) were used (implemented in the MATLAB
SW tool). The accuracy of the newly proposed CO2 concentration prediction method exceeds 95% in the
selected experiments.

INDEX TERMS Artificial neural network (ANN), intelligent buildings (IB), Loxone, monitoring, occu-
pancy, prediction, smart home (SH).

I. INTRODUCTION
The technologies used to manage and control smart buildings
and smart homes (SH) are undergoing very rapid develop-
ment due to their increasing popularity among investors.
Building management is most often used for energy savings
that can be achieved by optimum regulation. Therefore, the
current research very often addresses the issue of energy
saving with micro-grid networks [1]–[3], HEMS (Home
Energy Management System) [4], KNX (Konnex) system
elements [5]–[11], by regulating artificial lighting based on
daylight intensity [12]–[14], the possibility of simplifying
the required communications among the user interface level
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and the individual devices using unified communication
protocols [15][11], IoT platform [16]–[18], a solution for
interconnecting the devices used in SH running on differ-
ent platforms by means of Android devices [19], wireless
devices [20]–[22], a single distributed control system using
IPv6 for creating a concept of Smart (or Interconnected)
Cities [23].

Markiewicz [9] describes a language that can be used to
plan daily routines of house occupants and that can be easily
understood by an average user and can be easily interpreted
for microcontroller processors. As mentioned in the previ-
ous paragraphs, SH systems are also used in homes with
extended care for the elderly and physically and mentally
handicapped. Arnold et al. [24] discuss the issue of making
the control of SH systems for the elderly available by means
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of platforms that communicate using the common language
and are able to analyze it. The use of CO2 concentration
measurements in SH is one area that is also mentioned in
this work. Brennan et al. [25] propose a solution that enables
detection of people presence based on CO2 concentration.
Khazaei et al. [26] and Skon et al. [27] deal with indirect
measurement of CO2 concentration by neural networks.
Vanus et al. [28]–[30] also deal with the same issue. They
came with the solution of the on-line prediction of CO2 con-
centration by connecting to the IBM SPSS IoT platform. The
use of CO2 concentration measurement for room occupancy
monitoring is suggested because the concentration of this gas
is often monitored in buildings for health-related reasons, and
not only commercial buildings are increasingly equippedwith
sensors for direct CO2 concentration measurement in order
to control HVAC (Heating, Ventilation and Air Condition).
The assumed fact that the source of CO2 in the room is only
of a human (and, to a lesser extent, also of an animal) is
another reason for using CO2 as an indicator of presence. The
value of CO2 concentration in the atmosphere is constantly
changing, the average value of CO2 concentration is around
400 ppm [31]. During the breathing process, the oxy-gen
contained in the air is inhaled and converted to CO2. The air
a human exhales contains, on average, 35,000–50,000 ppm
amount of CO2; this is approximately 100 timesmore than the
concentration in the atmosphere. This fact allows us to detect
the presence of people in the room based on the progression
of the CO2 concentration and also to determine their number
based on the steepness of its gradient. The disadvantage of
using CO2 as an indicator of presence may be seen in the
costliness of the sensors for the direct measurement of CO2
and, also, the fact that these sensors are still not standard
equipment of intelligent buildings and are often installed
only where it is necessary to monitor CO2 concentration
directly, for example, due to health reasons. For this reason,
Vanus et al. [29] have come up with a solution that uses an
artificial neural network to indirectly measure CO2 concen-
tration based on temperature outdoor, temperature indoor,
and air humidity in the room, which are the values that are
mostly monitored in any intelligent building and for which
the acquisition cost of the sensors is by an order of magnitude
lower than that of sensors for direct CO2 measurement.
The use of CO2 concentrationmeasurement for room occu-

pancy monitoring is suggested because the concentration of
this gas is often monitored in buildings for health-related
reasons, and not only commercial buildings are increasingly
equipped with sensors for direct CO2 concentration measure-
ment in order to control HVAC (Heating, Ventilation and
Air Condition). The assumed fact that the source of CO2
in the room is only of a human (and, to a lesser extent,
also of an animal) is another reason for using CO2 as an
indicator of presence. The value of CO2 concentration in
the atmosphere is constantly changing, the average value
of CO2 concentration is around 400 ppm [31]. During the
breathing process, the oxy-gen contained in the air is inhaled
and converted to CO2. The air a human exhales contains,

on average, 35,000–50,000 ppm amount of CO2; this is
approximately 100 times more than the concentration in the
atmosphere. This fact allows us to detect the presence of
people in the room based on the progression of the CO2
concentration and also to determine their number based on
the steepness of its gradient. The disadvantage of using CO2
as an indicator of presence may be seen in the costliness of
the sensors for the direct measurement of CO2 and, also, the
fact that these sensors are still not standard equipment of
intelligent buildings and are often installed only where it is
necessary to monitor CO2 concentration directly, for exam-
ple, due to health reasons. For this reason, Vanus et al. [29]
have come up with a solution that uses an artificial neural
network to indirectly measure CO2 concentration based on
temperature outdoor, temperature indoor, and air humidity in
the room, which are the values that are mostly monitored in
any intelligent building and for which the acquisition cost of
the sensors is by an order of magnitude lower than that of
sensors for direct CO2 measurement.

In this article, individual Loxone sensors will be used to
measure the required non-electric indoor quantities (5 pieces
of CO2 concentration sensors, 5 pieces of temperature
sensors, 5 pieces of relative humidity sensors) for occupancy
estimation. The objective of this article is to verify the pos-
sibilities of using the Python development environment to
create a new method for obtaining the CO2 prediction using
the measured indoor values of temperature and indoor rel-
ative humidity inside a real family home within occupancy
recognition monitoring. The article has used ANN radial
basic function (RBF) mathematical method as a predictive
model and for increasing the accuracy by suppressing the
prediction noise from a predicted signal using multiple vari-
ations of the LMS adaptive filter algorithm (Sign, Sign-Sign,
Signed-Regressor). The experiments were conducted from
December 22, 2018, to December 31, 2018, in five rooms
of a family home: ‘‘living room, children’s room, bedroom,
kitchen, and bathroom’’. Another goal was to verify the
functionality and accuracy of this newly devised CO2 con-
centration prediction method for the specific areas of a family
home (kitchen, bathroom), in which the source of moisture
and CO2 concentration is not only the humans but also the
consequences of human activities that come to existence
during cooking or showering.

II. RELATED WORK
Occupancy patterns are necessary to estimate energy demand
and evaluate thermal comfort in households [32]. Chen per-
formed a comprehensive review on occupancy estimation
and detection and categorized the systems based on the use
of different sensors, such as PIR, smart meter, environmen-
tal sensors (CO2, relative humidity, temperature, pressure,
illuminance), camera, WiFi, BLE, and others [33]. Azizi
analyzed the data from the PIR sensors and the book-
ing system in 8 lecture halls in a University building and
estimated for the case study that the intervention to close
down redundant lecture halls to improve space use efficiency
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can result in a 19% reduction of energy use of lecture
halls [34]. Becker’s aim in their work was to advocate unsu-
pervised classification algorithms for occupancy detection
in private households which use the electricity consump-
tion data measured by smart meters with best-performing
algorithms showed an accuracy of 69–90% or an MCC of
0.20–0.78 [35]. Candanedo presents and evaluates a sim-
ple methodology based on Hidden Markov Models for the
problem of unsupervised occupancy detection using differ-
ent environmental parameters such as temperature, humid-
ity, humidity ratio, CO2, and light time series data with
an accuracy of 90.24% [36]. A methodology, aimed at
implementing an occupancy-based HVAC system operation
schedule, is presented by Capozzoli. The savings related to
the energy consumption of the HVAC system, as a result
of the implementation of the strategy, in comparison to
an occupancy-independent operation schedule amounted to
14% [37]. Dong proposes three different occupancy pre-
diction methods (proposed short-term stochastic modeling
methods, GSPS, EM, and uncertain basis) for demand-based
HVAC control with achieved more than 70% accuracy in the
experimental studies [38].

III. MATERIALS AND METHODS
In works [30], [39], IBM SPSS Modeler has been used to
implement radial basis functions (feedforward neural net-
works) for CO2 prediction. These papers investigated the
accuracy and performance of the trained models accord-
ing to the number of neurons in the hidden layer and the
length of the training intervals. The result indicated that the
training intervals with a length of one day are producing
the most accurate outcomes. In this article, the proposed
method (Figure 1) contains multiple parts. In the first part,
the measurement and data collection were performed using
Loxone technology. The second part contains predictive ana-
lytics implemented using TensorFlow and Keras within the
Python programming language (Figure 2). For storage and
visualization (using MQTT Gateway software similar to the
solution used in work [40]), the predictions and measured
values are sent to the IBM Watson IoT platform. In addition
to the novel methodology, the paper investigates the accuracy
of the measurements in a variety of locations within a smart
home.

FIGURE 1. General block diagram of the proposed solution.

FIGURE 2. General diagram of the predictive model development.

A. MEASUREMENTS AND DATA COLLECTION USING
LOXONE TECHNOLOGY
Loxone components were used for the actual measurements.
The Loxone system is a centralized system, the main element
of which is the PLC Loxone Miniserver [41]. Other rack
peripherals, such as DMX, EnOcean or DALI extensions,
connect to the Loxone Miniserver via the Loxone Link bus.
Other rack peripherals, such as DMX, EnOcean or DALI
extensions, connect to the Loxone Miniserver via the Loxone
Link bus. A new feature in the Loxone system includes the
Loxone Tree bus, which is used for the bus connection of
sensors and actuators to the Miniserver, which has, so far,
been implemented using separate cabling for each of these
elements.

The Loxone Miniserver is the central component of the
Loxone system. It is a powerful PLC that also includes basic
connectivity. Loxone Config software is used to configure the
program for the Loxone Miniserver. The Loxone Miniserver
is available in two versions – the DIN version for mount-
ing on the rack rail and the Go version, which is designed
especially for the additional conversion of a conventional
electrical installation to an intelligent one. The basic technical
parameters of the Loxone Miniserver (in DIN rail version)
are:

• 8× switching outputs relays for connection of blinds or
lights.

• 8× digital inputs for connecting push buttons, door and
window contacts, etc.

• 4× analogue inputs for connection of sensors, such as
temperature, humidity, etc.

• 4× analogue outputs for connection of drives etc.
• LAN interface for controlling network devices, such as
TV, etc.

• KNX / EIB interface.
• Up to 30 extension modules using Loxone Link.
• Power supply: 24 V DC.

The LoxoneMiniserver can be connected to other peripher-
als that enhance the basic connectivity or functionality of the
Miniserver using the Loxone Link bus. Loxone often extends
the range of these elements. The following section describes
those peripherals that have applications in the areas described
in other sections of this work, especially lighting and HVAC.
To ideally control the technical and operational functions of
smart homes, it is necessary to have sufficient data available
that can be used either for the direct control of some of the
functions of the intelligent building or for later indirect anal-
ysis, which can provide us with an overview of the processes
that take place in the building and is thus a useful tool in
creating the control system as a whole. Data collection in an
intelligent building can be performed either locally, where the
data is stored in a repository located directly in the building,
or remotely, where the data is sent for further analysis to a
remote network repository.

The basic quantities most commonly measured in intel-
ligent buildings are indoor and outdoor temperature and
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relative humidity. Less frequentlymeasured quantitiesmainly
include concentrations of dangerous gases, such as CO or
CO2, whose monitoring allows us to analyze the state of
the atmosphere in the room and to determine when the air
composition in the room can be toxic to humans. In this
work, temperature indoor, relative humidity indoor and CO2
concentration indoor were recorded in five rooms of a family
home for one week utilizing 5 measurement stations that
were using combined Loxone temperature/ humidity/ CO2
sensors. The rooms included: ‘‘living room, children’s room,
bedroom, kitchen, and bathroom’’. Technical parameters of
the Loxone sensor [42] ( temperature/ humidity/ CO2 sensors)
which was connected to the analog inputs directly on the
Loxone Miniserver. The component are specified as follows:
• Indoor CO2:Measurement Type Non-Dispersive Infra-
red Technology (NDIR), Measuring Range: 0. . .
2000 ppm, Accuracy of + 2% at 25◦C and 1013 mbar<
± 50 ppm, Temperature Dependency of 2 ppm CO2/◦C,
Long Term Stability 20 ppm/year, Sampling frequency
Approximately 15s

• Indoor temperature:Accuracy at 20◦C± 0.3◦C, Mea-
suring range: 0. . . 50◦C.

• Indoor relative humidity: Type of measurement
Capacitance,Measuring range: 0. . . 100%RH, Accuracy
at 20◦C ± 3% RH.

The following steps describes the procedure of creating a
project for measuring CO2, temperature and relative humidity
using the Loxone config software:

1) The project on the PC is connected to the Loxone
Miniserver.

2) Furthermore, the configuration is made in the window
of peripheral→Miniserver analog inputs according to
the connection of the sensor. The sensor has a 0-10V
output and is connected according to Figure 3.

FIGURE 3. Connection of analogue inputs.

3) scaler (Program tab → Analogue tab) and 1 virtual
status (Program tab→ General tab) are added to each
input. The result are shown in Figure 4.

4) Building properties (properties window) are set. Con-
version ratios are set for the scaler according to the
sensor ranges. Visualization must be enabled for virtual
statuses. Next, it is necessary to set the format of the
displayed value and storage of statistics with a given
period. The statistics period is selected so that the
values were stored more than once per minute. Further-
more, it is necessary to consider how many values will
be stored since at least 10MB of space must be retained

FIGURE 4. Measurement program block.

on the memory card. To display the statistics correctly,
it is also necessary to check the date and time settings
on the Miniserver.

B. PREDICTIVE ANALYTICS
This section describes the Statistical and mathematical meth-
ods used to perform the development and evaluation of the
predictive models. Supervised learning in neural networks is
the process of estimating a function from known examples
(training sets). The neural networks are non-parametric mod-
els in which the model parameters have no specific mean-
ing with regards to the original problem [43]. The primary
goal of supervised learning in neural networks is to esti-
mate the underlying functions [43]–[46]. The Radial basis
function (RBF) usually provides accurate results (mostly in
regression fit problems) and high training speeds. The stan-
dard architecture of RBF artificial neural network consists
of an input layer, a single hidden layer, and an output layer.
The input layer associates each input variable with one inde-
pendent input neuron. Therefore, the number of neurons in
the input layer is equal to the number of input variables.
These input neurons are fed with input values. The hidden
layer contains the core logic of the network. The output layer
provides a real number as a predicted value which is a scalar
function of the input vector.

An RBF that consist of a single hidden layer with fixed
functions in terms of size and position has a linear model.
Therefore, the theory of linear models is applicable to such
RBF networks. However, since the mid-’80s, some of the
already familiar concepts in statistics have been renamed to
neural networks [47].When there is more than a single hidden
layer or when the basic functions can be changed in size or
be moved, the RBF network (model) is nonlinear. Therefore,
in principle, radial functions can be used as both linear and
nonlinear models; they can also be implemented as a sin-
gle or multilayer configuration. However, since 1988 (since
Broononlinmhead a dLowe’s paper [48]), they are commonly
known as single-layer networks. A typical example of a radial
function includes the Gaussian function, which can be repre-
sented as the following (for scalar input) [49].

h(x) = e(
(x − c)2

x2
: (1)

If φ is the used function, then the center is c and the met-
ric is R; the following equation represents the most general
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formula of RBF: [43]

h(x) = φ((x − c)2R−1(x − c)) : (2)

If x is input variable and N is the neuron count of hidden
layer, then the applied RBF is formulated as:

a(x) =
N∑
i=0

hiδ(|x − ci|) (3)

where h, w and c stand for height, width and center of
Gaussian function. δ(x) is given by:

δ(x) = he
(x−c)2
2w (4)

For a better generalization of radial basis function net-
works, some nonlinear optimization is required, usually in the
form of a general-purpose gradient descent [44], [50], [51].
Nevertheless, such optimizations can increase the computa-
tion cost. The RBF network implemented in this paper uses
Adam as a method for stochastic optimization. It is an itera-
tive method that optimizes the objective function. Generally,
it replaces the actual gradient with an estimation. Therefore,
it is considered as a stochastic approximation of gradient
descent [52]. The stochastic gradient descent has become
an important optimization method in machine learning [52].
The basic idea of stochastic approximation was introduced by
the Robbins–Monro algorithm in the 1950s [53]. Bottou et.al
call the stochastic gradient descent (SGD) algorithm ‘‘a dras-
tic simplification’’ [54]. SGD can reduce the computational
burden in big data applications [55].

Adam (Adaptive Moment Estimation) was first intro-
duced by Kingma and Ba in 2015 [56]; the authors
pointed toward the benefits of using Adam on optimiza-
tion issues such as efficient computations, low memory
requirements and straightforward implementation. Adam is
suitable for the problems with sparse or very noisy gradi-
ents or where Hyper-parameters have intuitive interpretation
and commonly need minor tuning [56]. Given parameters
wt and a loss function L t , where t indexes the current
training iteration (indexed at 0) Adam’s parameter update
is [56]:

m(t+1)
w ← β1m(t)

w + (1− β1)∇wL(t) (5)

v(t+1)w ← β2v(t)w + (1− β2)(∇wL(t))2 (6)

m̂w =
m(t+1)
w

1− (β1)t+1
(7)

v̂w =
v(t+1)w

1− (β2)t+1
(8)

w(t+1)
← w(t)

− η
m̂w√
v̂w + ε

(9)

The performance of the trained models for unknown future
inputs must be estimated. The best model is the one whose
estimated prediction error is the least. Cross-valuation is a
standard method for measurements of prediction errors. If the
data is not scarce, the data set is divided into three parts

of training, testing, validation. To avoid bias, it is better to
perform this division using few different ways and then to
compute an average score over different partitions [57]–[59].
Multiple models can be trained using training partition
while being compared and evaluated using testing and val-
idation partitions. To evaluate the results obtained, Mean
Square Error (MSE) (formula 10) [60], Linear Correlation
(LC)(formula 11) [61] and accuracy (formula 12) were used.

MSE =
1
n

n∑
i−1

(yi − ŷi)2. (10)

LC =
n

∑n
i=1 yiŷi −

∑n
i=1 yi

∑n
i=1 ŷi√

n
∑n

i=1 y
2
i −(

∑n
i=1 yi)2

√
n
∑n

i=1 ŷi
2(

∑n
i=1ŷi)2

.

(11)

Accuracy=
1
n

M∑
m=1

(1−
|y(m)i − ŷ

(m)
i |

maxm(y
(m)
i )− minm(y

(m)
i )

). (12)

C. ADDITIVE NOISE CANCELLATION USING
LMS ADAPTIVE FILTERS
This section describes the proposed method for obtain-
ing optimal adjustment of the LMS adaptive filter
variation parameters with the Conventional LMS, the
Signed-Regressor LMS algorithm, the Sign LMS algorithm,
the Sign-Sign LMS algorithm of the adaptive filter. This
work elaborated the current research on CO2 concentration
course processing and recognition methods, additive noise,
determination of the signal-to-noise ratio, adaptive filters
with the LMS algorithm, noise suppression using the adaptive
filter with the LMS algorithm. The LeastMean Square (LMS)
algorithm was developed by Widrow and Hoff in 1960.
This algorithm is a member of the stochastic gradient algo-
rithms [62]. The Conventional LMS algorithm is a linear
adaptive filtering algorithm, which consists of two basic pro-
cesses of the filtering process, which involves 13, 14, (Fig. 5)
and an adaptive process(15), where w(n) is M tap – weight
vector, and w(n+ 1) isM – weight vector update [63].

y(n) =
M−1∑
i=0

wi(n)x(n− i), (13)

e(n) = d(n)− y(n), (14)

w(n+ 1) = w(n)− 2µe(n)x(n), (15)

The Sign LMS Algorithm is obtained from the conven-
tional LMS recursion (15) by replacing e(n) with its sign. This
leads to the recursion (16) [62], [65]. The Signed-Regressor
algorithm is obtained from the conventional recursion (15) by
replacing the tap-input vector x(n) with the vector sign(x(n)),
where the sign function is applied to vector x(n) on an
element-by-element basis. The Signed-Regressor recursion is
obtained from (17) [62], [65], [66]. The Sign-Sign algorithm
combines the Sign and Signed-Regressor recursions, result-
ing in the recursion (18) [62], [65].

w(n+ 1) = w(n)+ 2µsign(e(n))x(n), (16)
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FIGURE 5. Block diagram of LMS adaptive filter [64].

w(n+ 1) = w(n)+ 2µe(n)sign(x(n)), (17)

w(n+ 1) = w(n)+ 2µsign(e(n))sign(x(n)), (18)

To control the convergence speed and the stability of the
LMS adaptive filters, it is critically important to choose an
appropriate step size factor (µ) [63]. The equation (19) is used
to determine the optimal value of the factor µopt [62]. tr[R]
is the mean sum of the diagonal elements of R or the trace of
R and MK is the misadjustment parameter [67]. The values
of the misadjustment parameter are usually 10%, 20% and
30%. A value equalling 10% means that the adaptive system
has an MSE only 10% greater than ζmin. The dynamic time
warping (DTW) is a criterion used to measure the similarities
between two sequences where time and speed variation may
be present. This work uses the DTW criterion to determine
the suitable value for the filter lengthM for the LMS adaptive
filter [66], [68]. The dynamic time warping (DTW) is a crite-
rion used to measure the similarities between two sequences
where time and speed variations may be present. This work
uses the DTW criterion to determine the suitable value for
the filter length of M for the LMS adaptive filter [66], [68].
It is critical to correctly determine the adaptive filter length
of M . The short length of M results in inaccurate signal
processing due to the small number of adaptive filter param-
eters. On the other hand, choosing a high value of M also
leads to inaccurate signal processing due to the increase of
estimator variance influence. Table 1 shows the length ofMof
the adaptive filter and distance d between the reference CO2
concentration d(n) and the output signal y(n) from the LMS
adaptive filter variants (first iteration), calculated by means
of the draft method using the DTW criterion.

µopt =
M

(1+M ).tr[R]
, (19)

The proposed method for optimal adjustment of the step
size factorµopt and the filter length ofM of the LMS adaptive
filter was applied in the following steps [66], [69]–[71]:

1) Calculation of a step size factorµopt optimal value (19)
from the input signal x(n) to variations of the LMS
adaptive filter (M = 10%, M = 20%, M = 30%),
(Table 1).

2) The desired signal (reference CO2 concentration) d(n)
is used as reference vector P.

TABLE 1. Calculation of the length M of the adaptive filter and distance d
between the reference CO2 concentration d (n) and the output signal y (n)
from the LMS adaptive filter variants (first iteration), calculated by means
of the draft method using the DTW criterion (simulated in MATLAB).

3) The output signal y(n) was selected as test vector O.
4) Next, the distance d between the courses d(n) and y(n)

was calculated for the settings of the filter lengths of
M of the LMS adaptive filter variations in interval 1 to
150 (Figure 6).

5) The same procedure was used to calculate the opti-
mal filter length of M of other variations of the LMS
adaptive filter (the Signed, the Signed-Regressor and
the Signed-Signed LMS adaptive filter). As an exam-
ple, the Signed-Regressor LMS algorithm was chosen,
wherein the filter length of M = 26, for minimum
distance d = 0.07927 (Figure 6), (Table 1) between
two compared signals d(n) and y(n) (µ1 = 3.907 ×
10−3) was calculated.

D. SOFTWARE DEVELOPMENT
Python is an interpreted, general-purpose and high-level
programming language that aims to assist programmers to
write logical and clear code [72]. Python comprises maps,
filters, and reduces functions such as sets, expression gener-
ators, list comprehensions, and dictionaries [73]. Python is
often referred to as a ‘‘batteries included’’ language because
of its relevantly comprehensive standard library [74]–[77].
However, Python was designed to be highly extensible rather
than including all of its functionality into its core. In the
last few years, Python has only become popular for sym-
bolic computing [76]. All calculations in this paper were
performed using the Tensorflow library which is a sym-
bolic math library that is commonly used for machine
learning applications such as neural networks. The main
advantage of employing Tensorflow is parallel computa-
tion; computational tasks can be easily divided between the
machine’s Processing cores (Central Processing Unit (CPU),
Graphical Processing Unit (GPU) and Tensor Processing
Unit (TPU)). According to the TensorBoard software, 95%
of the network calculations are compatible with TPU [78].
Tensorflow is ideal for GPU computing due to the creation
of an algorithm graph that provides the possibility of parallel
computation [78].

The data were imported to the Python environment using
Pandas. Pandas is a free software which is developed for the
Python environment. It provides data structures and oper-
ations for manipulating numerical tables and time series.
As explained earlier, partitioning is an important step for
model evaluation and selection. Using the panda library
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FIGURE 6. Calculation of the length of M = 26 of the Signed-Regressor
LMS Adaptive filter algorithm and distance d = 0.07927 (Table 1)
between CO2 reference and CO2 predicted course in the Kitchen.

(function sample), the data set was partitioned into three
sets of training (40%), testing (30%), and validation (30%).
The neural network (RBF) implementation was performed
using the Keras library. The Keras library is an open-source
neural-network library that enables fast implementation of
deep neural networks. Keras is built on the TensorFlow library
and provides a cleaner and simpler API for building neural
network models [78]–[80]. However, Keras doesn’t include
the RBF in its framework. Therefore, the RBF ANN had to
be implemented as a new layer within the Keras framework.
The two variables of indoor temperature and relative humid-
ity were chosen as predictors. Therefore, the input layer of
theRBF network was configured as a two-dimensional vector
(Figure 7). The input layer forms a matrix with two rows
(indoor temperature and relative humidity) and n columns,
where n is the batch size (number of CO2 concentration
level predictions). The input layer propagates these values
to the hidden layer. The network employed a single-hidden
layer that consists of different Gaussians (with Gaussian
parameters of height and spread). The RBF layer (hidden
layer) affects the height of the Gaussian (the output of the
functionwith a given argument) and propagates the calculated
values to the output layer. The range of 5 to 600 was selected
as the neurons count in the hidden layer. The Output layer
multiplies the output of the previous, Hidden layer, with
the vector of weights (W ) and represented it in a scalar
form.

IV. EXPERIMENTS AND RESULTS
The experiments were performed in a smart home using
Loxone technology. The sensors were placed in five different
locations (bedroom, children’s room, living room, bathroom,
and kitchen) within the smart home to ensure the integrity
and validity of the results. The external sources of heat and
humidity often influence the measurement in locations such
as the kitchen and bathroom. This influence was previously
assumed to create a significant challenge for accurate predic-
tions of the CO2 concentration waveform. A total data inter-
val of nine days (22nd to 31st December 2019) was recorded.
For accuracy comparison, this interval was divided into
two one-day-long (2018/12/22 00:00 to 2018/12/22 23:59

FIGURE 7. Model of the implemented RBF neural network.

and 2018/12/23 00:00 to 2018/12/23 23:59), one-week-long
(2018/12/22 00:00 to 2018/12/29 23:59) and ten-day-long
intervals (2018/12/22 00:00 to 2018/12/31 23:59). Table 2
shows the 20 different data sets used to train and validate the
proposed solution.

A. CHILDREN’S ROOM
The first experimental location was the children’s room.With
a few exceptions, the overall trend of the results obtained
showed accuracy improvements with the increase in the num-
ber of neurons. However, the average of these improvements
was insignificant. Table 3 shows a slight drop in average
accuracy with the number of the hidden layer neurons count
larger than 400. The highest accuracy (96.0%) was obtained
from a model with the 600 hidden layer neurons count and
the C1 training interval (22nd December 2018/12/22 00:00 to
2018/12/22 23:59). Further investigation suggested that the
models with shorter training interval lengths (smaller data
sets) achieved better accuracy (up to 95%). However, the
interval length of ten days showed slightly better character-
istics in comparison with the seven-day interval. This could
be an indication of overfitting reduction caused by the inclu-
sion of sample data sets with a slightly different correlation
between the predictors and the predictions. In the comparison
of the reference CO2 and the predicted course of CO2 filtered
using the signed-regressor LMS algorithm of the adaptive
filter (Figure 8) in the children’s room, it can unequivo-
cally be said that there was a noticeable improvement in the
accuracy.

B. BEDROOM
The analysis performed on the results obtained from bed-
room data sets showed a slight oscillation of accuracy with
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TABLE 2. Training Data sets.

regards to the hidden layer neuron count. Table 5 clearly
shows that the oscillation of average accuracy is insignif-
icant. Therefore, the number of neurons does not signif-
icantly impact the results. The highest accuracy (95.5%)
was achieved by the model with the 500 hidden layer neu-
ron count and the training interval of B1 (22nd December
2018/12/22 00:00 to 2018/12/22 23:59). Overall, the accuracy
of the one-day-long intervals was significantly higher than the
longer intervals (seven-day-long and ten-day-long). Table 5
additionally shows that, depending on the interval lengths,
the accuracy may vary up to the significant value of 10%.
Figure 9 compares the reference CO2 and the predicted course
of CO2 filtered using the signed-regressor LMS algorithm of
the adaptive filter. This comparison demonstrates the signifi-
cance of improvement in prediction accuracy.

C. LIVING ROOM
After performing the analysis on living room data sets,
it became apparent that only the ten-day-long interval showed
a constant increase in accuracy with an increase of neu-
rons in the hidden layer. Few fluctuations could be observed
across the accuracy of the other data sets (concerning the
number of neurons in the hidden layer). With data set L1
(22nd December 2018/12/22 00:00 to 2018/12/22 23:59), the

TABLE 3. Children’s room analysis, average accuracy of the developed
models using different intervals.

TABLE 4. Children’s room analysis, Average of each interval using
different models.

FIGURE 8. Blue: reference CO2 waveform (ppm), black: Predicted CO2
waveform (ppm). red: fileterd prediction using signed – regressor LMS
adaptive filtration (µ = 2.2× 10−2 and M = 5), (children room day long
training interval of 22.12.2018).

accuracy of the models with 500 and 600 neurons in their
hidden layers drops, which could be caused by overfitting.
The highest accuracy (93.2%) was obtained from the model
with 500 neurons (in the hidden layer) and the training inter-
val L1. Table 7 shows the average of each model (examined
by different intervals). It can be observed that the number of
neurons does not significantly impact the accuracy. On the
other hand, Table 8 shows that shorter intervals (one-day-
long) are significantly more accurate. The waveform of the
predicted course of CO2 showed significant improvements
after being filtered using the signed-regressor LMS algorithm
of the adaptive filter (Figure 10).

D. KITCHEN
In the kitchen, the CO2 waveform appears to be less depen-
dent on the number of people. A single person cooking may
increase humidity, temperature, and CO2 significantly. The
analysis showed no apparent dependency between the accu-
racy and the number of neurons. However, in all particular

TABLE 5. Bedroom analysis, average accuracy of the developed models
using different intervals.

TABLE 6. Bedroom analysis, Average of each interval using different
models.
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FIGURE 9. Blue: reference CO2 waveform (ppm), black: Predicted CO2
waveform (ppm). red: fileterd prediction using signed – regressor LMS
adaptive filtration (µ = 1.66× 10−2 and M = 26), (bedroom day long
training interval of 22.12.2018).

data sets (interval), the difference between the lowest and
highest accuracy is negligible. Table 9 further supports the
observation of relatively constant accuracy across all models
(different number of neurons in the hidden layer). Table 9
shows significantly more accurate results for shorter intervals
(one-day-long). The highest accuracy (95.6%) was obtained
by the model with 300 neurons in the hidden layer and the
K1 training data set (22nd December 2018/12/22 00:00 to
2018/12/22 23:59). The waveform of the predicted course
of CO2 showed significant improvements after being filtered
using the signed-regressor LMS algorithm of the adaptive
filter (Figure 11).

E. BATHROOM
Similarly to the kitchen, external sources of heat and humidity
are also present in bathrooms. The data collected showed
a consistent pattern caused by the single-purpose nature of
bathrooms. This should improve the accuracy of the predic-
tions. The highest accuracy (96.7%) was obtained from the
training data set W1 (22nd December 2018/12/22 00:00 to
2018/12/22 23:59) and the model with the 600 hidden layer
neuron count. Except for the model with 5 neurons in the
hidden layer (accuracy of 93.3), all of the trained models with
this interval resulted in an accuracy above 96.4%. Similarly,
the result from the data set W2 (23rd December 2018/12/
23 00:00 to 2018/12/23 23:59) were also accurate (accuracy
range: 94.5% to 95.6%). Following the trend of every

TABLE 7. Living room analysis, average accuracy of the developed
models using different intervals.

TABLE 8. Living room analysis, Average of each interval using different
models.

FIGURE 10. Blue: reference CO2 waveform (ppm), black: Predicted CO2
waveform (ppm). red: filtered prediction using signed – regressor LMS
adaptive filtration (µ = 2.56× 10−2 and M = 26), (living room day long
training interval of 22.12.2018).

experiment performed earlier, the larger data sets (seven-
day-long and ten-day- long) resulted in reduced accuracy
(accuracy range: 79.5% to 82.9%). Table 12 shows up to 15%
difference in average accuracy of these intervals. With a few
exceptions, the overall trend of the results suggested improve-
ment in accuracy with the increase of neurons. However,
these improvements can be considered insignificant. Table 12
further reflects these observations. Figure 12 shows the accu-
racy improvements obtained using the signed-regressor LMS
adaptive filter in the bathroom analysis.

V. DISCUSSION
This article describes the procedure of the of CO2 concen-
tration prediction from the measured indoor relative humid-
ity and temperature and indoor (measured using Loxone).
Due to the high prediction accuracy and short training time,
ANN RBF was selected as a statistical method to perform
the predictions. By observing all the experiments performed,
it became apparent that the number of neurons in the hidden
layer does not significantly impact the accuracy. The analysis

TABLE 9. Kitchen analysis,average accuracy of the developed models
using different intervals.
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TABLE 10. Kitchen analysis, Average of each interval using different
models.

FIGURE 11. Blue: reference CO2 waveform (ppm), black: Predicted CO2
waveform (ppm). red: filtered prediction using signed – regressor LMS
adaptive filtration (µ = 3,907× 10−2 and M = 26) (kitchen day long
training interval of 22.12.2018).

TABLE 11. Bathroom analysis, Average accuracy of the developed models
using different intervals.

TABLE 12. Bathroom analysis, Average of each interval using different
models.

showed that in some cases (such as children’s room with
the interval of (2018/12/22 00:00 to 2018/12/22 23:59) the
difference between the accuracy of the models with 5 and
600 neurons in the hidden layer can be as insignificant as
0.1%. This could be a direct result of low dimension data
sets (total of 3 variables). The highest accuracy (97%) was
obtained in the bathroomwith the interval of 22nd December.
The training interval of 22nd December resulted in the most
accurate results across all the locations within the smart
home. These results were closely followed by the train-
ing interval of 23rd December. On the other hand, the
week-long and ten-day-long intervals showed significantly
lower accuracy.

FIGURE 12. Blue: reference CO2 waveform (ppm), black: Predicted CO2
waveform (ppm). red: filtered prediction using signed – regressor LMS
adaptive filtration (µ = 2.78× 10−2 and M = 10) of prediction waveform
using RBF NN (black), (bathroom day long training interval of 22.12.2018).

To accurately predict the CO2 concentration levels, a newly
designed noise suppression method was used. This method
investigated the optimal adjustment of the values of the
individual parameters of the adaptive filter with the Sign,
Sign-Sign and Sign-Regressor LMSAlgorithms. The method
first chooses a suitable LMS algorithm structure for the
adaptive filter and conducts a simulation in the MATLAB
Software. Next, to meet the conditions that are ensuring
convergence and stability of the LMS adaptive filter, the
optimal value of the parameter was calculated from the
input signal x(n) (predicted CO2) and reference signal d(n)
(measured CO2). Lastly, for optimal adjustment of the LMS
adaptive filter, M order value was calculated. Figure 6 dis-
plays the plotted optimal value of the order of M obtained
by calculation. The optimal adaptive filter structure was the
Signed-Regressor LMS Algorithm with a step size of µ =
3, 907 × 10−2 and an order of the adaptive filter of M = 26
(Figure 6). Figures 8, 9, 10, 11 and 12 clearly show the
improvements of the predicted CO2 concentration waveform
with the application of the additive noise suppression method
introduced.

This work addresses many of the previous concerns, such
as the possibility of measurements and predictions in loca-
tions, such as bathroom and kitchen, the effects of interval
lengths and the number of neurons, and the optimal noise
suppression method. However, there are a few more areas to
explore. As an example, the possibility of employing support
vector machines (SVM) or fuzzy systems, as an alternative
solution to the ANN, may increase the chance of develop-
ing a universal prediction model by focusing on a border
picture.

VI. CONCLUSION
The article describes a proposal of a newly designed indirect
method for detecting occupancy of monitored areas in intelli-
gent buildings using the prediction of the CO2 concentration
waveform from operational measurement of non-electrical
quantities (temperature indoor, relative humidity indoor)
using of artificial neural network (ANN) based on the Radial
Basis Function (RBF), developed in the Python environment.
In order to make the newly proposed CO2 prediction method
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more accurate, another newly designed method was used to
optimally adjust the parameters (filter length M and step size
parameter µ) of the adaptive filter with variations in the LMS
algorithm in the additive noise suppression application. Based
on the experiments conducted from December 22, 2018,
to December 31, 2018, in five selected rooms of a real fam-
ily home: ‘‘living room, children’s room, bedroom, kitchen,
and bathroom’’. It can be stated that the newly devised
method is fairly accurate even for the areas with increased
relative humidity formation due to human activity, such as
cooking (kitchen) or showering (bathroom). In the presented
experiments, the accuracy of the introducedmethod exceeded
95%. The achieved results shows a promising path for pre-
diction of CO2 and low cost indirect occupancy monitoring.
The author’s future work will be to use the newly proposed
method in practical implementations for HVAC control in an
intelligent building within an IoT platform and for recogni-
tion of daily living activities of seniors and disabled in Smart
Home Care.
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