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Abstract: Non-traditional machining (NTM) has gained significant attention in the last decade due to
its ability to machine conventionally hard-to-machine materials. However, NTMs suffer from several
disadvantages such as higher initial cost, lower material removal rate, more power consumption, etc.
NTMs involve several process parameters, the appropriate tweaking of which is necessary to obtain
economical and suitable results. However, the costly and time-consuming nature of the NTMs makes
it a tedious and expensive task to manually investigate the appropriate process parameters. The NTM
process parameters and responses are often not linearly related and thus, conventional statistical tools
might not be enough to derive functional knowledge. Thus, in this paper, three popular machine
learning (ML) methods (viz. linear regression, random forest regression and AdaBoost regression)
are employed to develop predictive models for NTM processes. By considering two high-fidelity
datasets from the literature on electro-discharge machining and wire electro-discharge machining,
case studies are shown in the paper for the effectiveness of the ML methods. Linear regression is
observed to be insufficient in accurately mapping the complex relationship between the process
parameters and responses. Both random forest regression and AdaBoost regression are found to be
suitable for predictive modelling of NTMs. However, AdaBoost regression is recommended as it is
found to be insensitive to the number of regressors and thus is more readily deployable.

Keywords: machine learning; linear regression; predictive models; response surface; machining

1. Introduction

Machining is an essential function for the manufacturing of products and components.
Traditionally, all the methods used for machining or surface finishing like cutting, grinding
and milling are the processes where hardened tools are used for the comparatively soft
workpiece. In these processes, the workpiece is always comparatively weaker than the
tool. But in the recent past, many machining processes have been used that don’t rely on
traditional machining processes and have been extensively used by different industries.
Hence these methods were called non-traditional machining (NTM). In NTM, electric
discharge machining (EDM) has played an important role. It is an NTM where an electric
spark is used to erode material immersed in dielectric fluid. It works with electrically
conductive material [1]. The principle behind EDM is the ability to control sparks to erode
materials. The unique feature of EDM is its ability to machine the shape and depth of parts
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which are impossible with traditional machining processes [2]. Thus, EDM is a precise,
cutting-edge machining technique that provides a better surface finish even working with
the hardened material. Joseph Priestly first observed the possibility of machining by metal
erosion in 1770, and further, B.R. Lazarenko and N.I. Lazarenko inadvertently found out
that erosion of tungsten could be reduced if the metal is immersed in a dielectric fluid,
which led to the invention of the first EDM machine [3]. The dielectric fluid being used
is an electrical insulator that helps in controlling the arc discharge. The dielectric fluid is
also used for flushing—a vital technique to remove unwanted metal particles from the
operational gaps and assist in machining or erosion. The colour of the spark generated
gives the inadequacy of the fluid; if the spark is red, there is inadequate fluid, and if the
spark is blue, it shows the sufficiency of the same. Dielectric fluid also helps in cooling the
flushing agent [4].

Maintaining the gaps between the electrode and workpiece is a must so that there
should not be any physical contact between the electrode and workpiece. If the contact
happens between the two, the tool may damage and can also damage the workpiece. To
maintain such a gap between them, a servomechanism is used, which helps in maintaining
the proper distance between the electrode and the workpiece.

In recent years, researchers have made significant efforts to measure the performance
characteristics of EDM. Machining performance of EDM can be characterized by the
different parameters like material removal rate (MRR), tool wear rate (TWR), radial overcut
(ROC), surface roughness (SR), etc. The controlling process parameter such as voltage,
current, pulse-on time and pulse-off time plays an important role in characterizing the
machining performance parameters such as MRR, TWR, ROC and SR. To increase the
machining efficiency, erosion of the workpiece must be maximized and TWR must be
minimized [5]. It has been reported that MRR and SR increase with an increase in pulse-on
time and decrease with an increase in pulse-off time [6]. An increase in current leads to an
increase in energy sparks which causes the melting of the surface to create a poor surface
finish [7].

In NTM processes, the quantitative relationship between the operating parameters
and controlling input parameters is often required [8]. For this, researchers have used
many regression techniques to reduce the error and give the best empirical relationship
between all the dependent and independent parameters. Table 1 presents a brief section of
literature on predictive modelling of NTM processes from the last three years.

Table 1. Literature on predictive modelling of NTM processes in last 3 years.

Ref. Year NTM Process Predictive Model Dataset Size Task

Dinesh et al. [9] 2019 EDM ANN, RSM 27 Prediction
Thankachan et al. [10] 2019 WEDM ANN 32 Prediction
Phate and Toney [11] 2019 WEDM ANN 27 Prediction

Singh et al. [12] 2019 WEDM SVM 81 Prediction
Kumar and Suresh [13] 2019 EDM RSM 27 Prediction and optimization

Ulas et al. [14] 2020 WEDM SVM, EML, WEML 81 Prediction
Shrinivas [15] 2020 EDM ANN 9 Prediction and optimization

Abhilash and Chakradhar [16] 2020 WEDM ANN 81 Classification
Abhilash and Chakradhar [17] 2020 WEDM ANFIS 81 Prediction

Prasad et al. [18] 2020 WEDM RSM 9 Prediction and optimization
Lalwani et al. [19] 2020 WEDM ANN, RSM 50 Prediction and optimization

Manikandan et al. [20] 2020 EDM ANN 27 Prediction and optimization
El-Bahloul [21] 2020 WEDM ANN, RSM 20 Prediction

Pattnaik and Sutar [22] 2021 WEDM ANN 9 Prediction

Paturi et al. [23] 2021 WEDM ANN, SVM 27 Prediction and optimization

Rajamani et al. [24] 2021 LBM ANFIS 30 Prediction and optimization

Goyal et al. [25] 2021 WEDM ANFIS 18 Prediction and optimization

Dubey et al. [26] 2021 EDM RSM 30 Prediction

Gupta [27] 2021 WEDM RSM 29 Prediction and optimization

Jiang and Yen [28] 2021 WEDM LSTM 110 Prediction

Gopinath et al. [29] 2021 ECM RSM 27 Prediction
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Based on the literature study, it is observed that response surface methodology (RSM)
is the most common predictive modelling approach used for NTM processes. Though RSM
is easy to deploy, it suffers from the drawback that its form is fixed a priori. Thus, when
the data is much more complex or has substantial non-linearity RSM may fail to accurately
model the process. In the literature, very few attempts to use machine learning to build
predictive models are seen. This lacuna is addressed in this paper by considering three
machine learning methods to build regression models to map the NTM process. As case
studies, two examples of EDM and WEDM are considered in the paper. The methodology
used in the paper is data-driven and thus can be directly adapted for any other NTM
process as well.

The rest of the paper is arranged as follows—the next section describes the methods
used in the paper. The metrics used to measure the performance of the ML methods is
also discussed in Section 2. In Section 3, two different case studies on EDM and WEDM
are discussed. Performances of linear regression, random forest and AdaBoost regression
are illustrated in the two case studies. In Section 4, conclusions based on the study
are discussed.

2. Methodology
2.1. Linear Regression

Linear regression (LR) is a common and well-known method in statistics and machine
learning [30]. The regression model has two main objectives—the first one is to establish a
positive relationship between two variables if they tend to move together, and the second
is to establish a negative relationship if there is an increase in one variable that leads to a
decrease in the other. LR is all about the statistically significant relationship between the
two or more variables. In general, these variables play two different roles in the regression
model. The dependent variable (denoted by y) is the value that needs to be predicted
or forecasted. The other is the independent variable (denoted by x), which explains the
importance of other influencing factors. It is called linear because the equation represents a
straight line in a bidimensional plot.

The general equation for the linear regression is

y = c + mx (1)

where c and m are the y-intercepts and the slope, respectively. The equation is representing
the best fit line

y = mx (2)

In statistics, generally, this equation is being represented as

y = β0 + β1x1 (3)

If n number of predictors (x1, x2, . . . , xn) are present, then the general equation is

y = β0 + β1x1 + β2x2 + β3xn (4)

2.2. Random Forest Regression

Random forest regression (RFR) is a supervised machine learning predictive algorithm
that is constructed through the decision tree algorithms. It is a model ensemble technique
that constructs the aggregations of models and improves test accuracy while reducing
the costs associated with storing, training and getting inferences from multiple models.
Random forest is one of the famous ensemble methods being used for regression. In this
ensemble method, many decision trees are being trained, hence it is called a forest, and
then the average of each prediction tree becomes the output of the random forest. It is
based on the bagging and random subspace method. Bagging, or bootstrapping, is all
about training each learner on a different data set. In a random forest, multiple trees are
built from the dataset parallelly, and none of the trees is dependent on another tree. Hence
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it is also called a parallel process [30]. The main benefit of using random forest is that it
requires less training time and has high accuracy.

Random forest prediction =
1
K

K

∑
k=1

hk(x) (5)

where K is the number of independent regression trees created for the bootstrap samples
with input vector x. hk(x) is the mean of predictions made by K regression trees.

The mean squared error for out-of-bag data (OOB) dataset is calculated as,

MSEOOB =
1
n

n

∑
i=i

(yi − yiOOB)
2 (6)

where yi and yiOOB are the ith prediction and the mean of ith prediction from all the trees.
The coefficient of determination for out-of-bag data (OOB) dataset is calculated as,

R2
OOB = 1 − MSEOOB/Vary (7)

where Vary is the total variance of the output parameter.

2.3. Adaptive Boosting Regression

Adaptive Boosting Regression (ABR) is a machine learning sequential ensemble tech-
nique used to combine several weak learners randomly from the dataset to make a strong
learner. The weak learners are formed by applying the machine learning algorithms.
During every training dataset, weight is assigned to each sample observation, and these
weights are being used to learn each hypothesis. The false predictions are being identified
and further assigned to the next base learner with high weight on this incorrect prediction.
The exact process is being repeated until the algorithm can correctly classify the output.
In regression, the output of an instant is not correct or incorrect but has an absolute value
error that may be an arbitrary constant. The median, or the weighted average, is being
used for the ensemble prediction of the individual base learner [30].

Table 2 shows the comparative assessment of advantages and disadvantages of the
three ML regression methods considered in this study.

Table 2. Advantages and disadvantages of the LR, RFR and ABR.

Algorithm Advantages Disadvantages

LR

• Simple to implement.
• Easy to interpret.
• Perfect fitting on linearly

separable datasets.
• Overfitting can be reduced by

regularization.

• Prone to underfitting.
• Outliers have large effect.
• Boundaries are linear.
• Assumes the data is independent.

RFR

• Efficient in handling non-linear
parameters.

• RFR reduces overfitting in
decision trees.

• Can solve both classification and
regression.

• Can be large, making
pruning necessary.

• Higher training time than
decision trees.

• Change greatly with small change
in data.

ABR

• Fast, easy to use and easy
to program.

• Reduces bias and variance.
• Versatile, can handle both text and

numeric data.

• Sensitive to outliers.
• Vulnerable to noise.
• If weak classifier underperforms, the

whole model may underperform.
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3. Results and Discussion
3.1. Case Study 1: EDM Machining Parameter Estimation
3.1.1. Experimental Background

An experimental dataset on EDM machining parameters by using the central com-
posite design reported by Soundhar et al. [31] is considered in this case study. Titanium
alloy (Ti–13Zr–13Nb), i.e., TZN, was used as the work material for EDM machining. TZN
has high tensile strength and toughness even at high temperatures. The benefit of using
TZN is that it is light in weight, has corrosion resistance properties and can resist very high
temperatures. TZN is generally used for medical purposes in hip and knee replacement for
the orthopedic implant. TZN alloy has inferior machining ability as it is responsible for
high TWR, low MRR and poor SR. To overcome these problems, EDM has been chosen for
the machining to get the required output.

Production of TZN can be done using different processes like the blended elemental
method, cold uniaxial pressing, cold isostatic pressing and vacuum sintering. Soundhar
et al. [31] used a hydrated-dehydrated process for making titanium powder. The detailed
method followed by Soundhar et al. [31] is as follows—titanium powder was produced
using a vertical furnace at a temperature of 500 ◦C and timing of 3 h with positive pressure.
Further on, at ideal room temperature, the hydrate was granulated in a niobium container
under a vacuum of 10-2 torr. Zirconium and niobium were being produced with a similar
process at a temperature of 800 ◦C. The hydrate method was being used to reduce cost and
produce an increased sintering rate. Further on, the powder was weighed in a lot of 4 g and
mixed using a double cone blender in fifteen minutes. After mixing, cold uniaxial pressing
was performed at 60 MPa in a steel die cylinder having 15 mm diameter without lubricants.
Cold isostatic process press is used to pressurize the specimen at 350 MPa for a duration
of 30 s. The specimen was encapsulated under a vacuum of 10-2 torr in a flexible rubber
mould. Further sintering was done in a niobium container at 10-7 torr and 900–1500 ◦C
with a heating rate of 20 ◦C/min using thermal technology equipment. The specimen was
being maintained at a particular temperature for an hour, and the furnace was cooled at
room temperature.

For the machining process, TZN alloy of specimen size 20 mm in diameter and length
of 35 mm was used by Soundhar et al. [31], and graphite electrode of 10 mm for having
higher MRR and lower EWR was used. Commercial grade kerosene was used as a dielectric
fluid to flush off the unwanted particle in the EDM. A total of 30 experiments were done
using die-sinking EDM (GraceD-6030S). The EWR and MRR were computed using the
workpiece’s weight variation and was measured with a digital weight machine [31]. Central
composite design was used for the design of experiments. The process parameters chosen
were voltage, current, pulse-off time and pulse-on time.

3.1.2. Effect of Process Parameters

Pearson’s correlation heatmap for the process parameters and the responses is shown
in Figure 1. It is observed that no correlation exists amongst the process parameters,
indicating a lack of multicollinearity. MRR is observed to have a moderately strong
positive correlation with Ton and To f f , whereas EWR has a moderately strong positive
correlation with I. SR shares a moderately strong positive linear relation with Ton. All
other parameters have a negligible linear relation with MRR, EWR and SR. Thus, ML
regression methods beyond the traditional linear regression are necessary for building
suitable predictive models.
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Figure 1. Correlation heatmap between the process parameters and the responses.

3.1.3. Linear Regression Models

A linear regression algorithm is used to describe the relationship between the machin-
ing factors, i.e., V, I, Ton and To f f and MRR. Actual versus predicted responses are plotted
in Figure 2. In these figures, two different lines have been shown: one is the identity line
(light dash line), and the other is the regression line (dark dash line). The actual MRR value
is plotted against the linear regression model-based predictive value of MRR in Figure 2a.
Each of the data points represents the ŷi value for the corresponding yi. The data points
above the identity line come in the category of overprediction and under the line comes
in underprediction. The correlation between the ŷi and yi is represented by R2, which is
around 55% for the MRR model. R2 shows that how well the linear regression model fits
the data. In Figure 2b, R2 for EWR linear regression model is 0.595, which shows that the
linear model is inadequate in explaining all the variance in the dataset. Similarly, for the
SR model shown in Figure 2c, the R2 is only 56.8%.
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Further, the performances of the linear regression models are analyzed by predicted
versus residual plots shown in Figure 3. The error terms are assumed to be normally dis-
tributed, homoscedastic and independent. The error is being calculated using
Equation (8). The residual always sums to zero in the linear regression model. The
zeroth line is being shown with the dark line in the figure. A satisfactory residual plot
is defined by the maximum number of points close to the zeroth line and very few away
from it. The plots in Figure 3 does not show any particular pattern in the scatter of the
residuals and hence satisfies the assumption that residuals are independent and normally
distributed. From Figure 3b it is observed that except for one outlier all other residuals
are within ±0.004. In Figure 3c, though is a random scattering of residuals, the negative
residuals are observed to be of larger magnitude than the positive residuals. This indicates
that the linear regression SR model has more tendency of overpredicting.
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3.1.4. Random Forest Regression Models

In this section, random forest regression models are developed for MRR, EWR and SR.
However, since random forest regression models are known to be sensitive to the number
of regressors, a sensitivity study is undertaken and reported in Table 3. It is observed that
the highest R2 and the lowest MSE is recorded for 200 regressors. Thus, 200 regressors are
chosen as the optimal for carrying out the rest of the study.

Figure 4 shows the actual versus the random forest regression predicted responses for
MRR, EWR and SR. R2 of 94.8%, 74.6% and 86.5%, respectively, are obtained for the MRR,
EWR and SR random forest regression models.

Figure 5 illustrates the residual plots for the MRR, EWR and SR random forest regres-
sion models. It is observed that for the MRR model the positive residuals are for lower
predicted values while the negative residuals are for higher predicted values. This indicates
that the model underpredicts higher response values and overpredicts lower MRRs. For
both EWR and SR models, an outlier is seen.
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Table 3. Effect of the number of regressors on predictive performance of the MRR random
forest model.

Regressor R2 MSE RMSE MAE Max. Error MedAE

100 0.91701 0.00374 0.06117 0.04808 0.12072 0.03753
200 0.94752 0.00316 0.05624 0.04387 0.12998 0.03080
300 0.93336 0.00363 0.06028 0.04641 0.12716 0.03065
400 0.94046 0.00347 0.05894 0.04479 0.11256 0.03042
500 0.93895 0.00337 0.05806 0.04483 0.11371 0.03011
600 0.94517 0.00317 0.05632 0.04338 0.11351 0.03584
700 0.93951 0.00329 0.05735 0.04490 0.11326 0.02921
800 0.94179 0.00334 0.05777 0.04528 0.11697 0.03809
900 0.94648 0.00339 0.05818 0.04555 0.12048 0.03113
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3.2. Case Study 2: WEDM of Metal Matrix Composite 
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thickness of 6 mm. The input parameters for the machining were voltage, pulse-on time, 
pulse-off time and wire feed rate to determine the effect on MRR and Kerf. Kerf was meas-
ured through a microscope and MRR was calculated by 𝑀𝑅𝑅 = 𝑀 − 𝑀𝜌𝑡  (8)

where 𝑀  and 𝑀  are the mass of material after and before machining, 𝜌 is the density 
of workpiece and 𝑡 is the total time of machining.  

Figure 5. Residuals versus random forest regression predicted (a) MRR (b) EWR (c) SR.
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3.1.5. AdaBoost Predictive Model

The AdaBoost regression model is a sequential technique where weight is assigned
to all the training points. After that, choosing the weak learner and assigning the higher
weight continues to get the best prediction. A sensitivity test is carried out to determine the
number of regressors for AdaBoost. However, a negligible effect of change in regressors
is seen on the performance metrics. Thus, 100 regressors are used for AdaBoost for the
rest of the study. Figure 6 shows the relation between the actual and AdaBoost predicted
responses. Figure 6a shows a R2 of 95.6% for the MRR model, i.e., an improvement of
1% over the random forest model. The predictive performance of AdaBoost is seen to be
poorer than random forest regression for EWR and SR.
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Figure 7 illustrates the residual for the AdaBoost regressor models. For the MRR
model shown in Figure 7a, the residual pattern is observed to be random. However, from
Figure 7b, it is observed that the residuals lie between ±0.004, and a couple of outliers are
perhaps responsible for the loss in R2.
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3.2. Case Study 2: WEDM of Metal Matrix Composite
3.2.1. Experimental Background

An experimental dataset based on WEDM machining of metal matrix composite,
reported by Shandilya et al. [32], is considered in this case study. The design of experi-
mentation of Shandilya et al. [32] is based on Box–Behnken design. WEDM machining
was carried out for a rectangular, Al-6061-based metal matrix composite workpiece having
a thickness of 6 mm. The input parameters for the machining were voltage, pulse-on
time, pulse-off time and wire feed rate to determine the effect on MRR and Kerf. Kerf was
measured through a microscope and MRR was calculated by

MRR =
M f − Mi

ρt
(8)

where M f and Mi are the mass of material after and before machining, ρ is the density of
workpiece and t is the total time of machining.

3.2.2. Effect of Process Parameters

The effect of process parameters on the MRR and Kerf is investigated using a heatmap
plot and depicted in Figure 8. The process parameters show no sign of multicollinearity.
No linear trends are observed between the process parameters and the responses. MRR
and Kerf seem to be mildly related. MRR is observed to be negatively correlated with
voltage, whereas Kerf is positively correlated with voltage. MRR and Kerf share a strong
negative correlation between them.
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3.2.3. Predictive Modelling of MRR and Kerf

As evident from the lack of strong linear correlations in Figure 8, linear regression
algorithm will be insufficient in modelling the complex machining process. In fact, it was
found that the linear regression models have poor predictive ability of only 41.5% and
50.7% R2 for MRR and Kerf model, respectively. Due to paucity of space, graphical results
for linear regression are not presented for this case study.



Processes 2021, 9, 2015 11 of 14

Actual versus the predicted responses by random forest regression models are pre-
sented in Figure 9. A drastic improvement as compared to the linear regression models
is observed. The R2 of the random forest regression models improved by approximately
49% and 43% for MRR and Kerf, respectively. However, still, some large underprediction
residuals are present in the MRR model, as observed from Figure 10a.
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The AdaBoost predictive regression MMR model is shown in Figure 11a which shows
an improvement of approximately 7% over the random forest model. The Kerf model is
seen to be of approximately similar predictive power as the random forest model.

Processes 2021, 9, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 11. Experimental versus AdaBoost regression predicted (a) MRR (b) Kerf. 

 
Figure 12. Residuals versus AdaBoost regression predicted (a) MRR (b) Kerf. 

4. Conclusions 
Non-traditional machining processes find tremendous use in the modern manufac-

turing sector primarily due to their ability to machine conventionally hard-to-machine 
materials. These NTMs depend on various technological process parameters that must be 
carefully calibrated to obtain the desired performance. However, owing to the expensive 
nature of the physical experiments, it is not always possible to apply a brute force ap-
proach to find the best possible combination of process parameters. In real-world situa-
tions, even before proceeding to the optimization phase, accurate estimations of the re-
sponses must be carried out. 

In this paper, two case studies on EDM and WEDM are illustrated to highlight the 
potential of machine learning in building accurate predictive models. Scatter plots of the 
process parameters and the responses were used to ascertain the presence or absence of 
any general trend of association. Correlation heat maps between the various process pa-
rameters indicate the lack of any multicollinearity. Also, correlation heat maps between 
the process parameters and the responses helped in identifying any linear trend in be-
tween them.  

Three popular ML algorithms, namely linear regression, random forest regression 
and AdaBoost regression, are considered for the task. Several error metrics are used to 
highlight the effectiveness of each ML model. Based on the comprehensive evaluation of 
the two case studies it is observed that though linear regression is simple and quick, it 
falls short of accurately mapping the complex interaction between the process parameters 
and the responses. On the other hand, random forest regression and AdaBoost regression 
showed remarkable accuracy on all the problems. Generally, AdaBoost regression was 
found to be marginally superior to random forest regression in terms of accuracy. How-
ever, the insensitiveness of AdaBoost on the number of regressors makes it a time-saving 

Figure 11. Experimental versus AdaBoost regression predicted (a) MRR (b) Kerf.



Processes 2021, 9, 2015 12 of 14

From Figure 12, the residuals for the MRR model are concentrated between ±0.4.
However, all the errors are reported at the lower MRRs whereas for higher MRRs near-
ideal estimation is seen.
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4. Conclusions

Non-traditional machining processes find tremendous use in the modern manufac-
turing sector primarily due to their ability to machine conventionally hard-to-machine
materials. These NTMs depend on various technological process parameters that must be
carefully calibrated to obtain the desired performance. However, owing to the expensive
nature of the physical experiments, it is not always possible to apply a brute force approach
to find the best possible combination of process parameters. In real-world situations, even
before proceeding to the optimization phase, accurate estimations of the responses must be
carried out.

In this paper, two case studies on EDM and WEDM are illustrated to highlight the
potential of machine learning in building accurate predictive models. Scatter plots of the
process parameters and the responses were used to ascertain the presence or absence of any
general trend of association. Correlation heat maps between the various process parameters
indicate the lack of any multicollinearity. Also, correlation heat maps between the process
parameters and the responses helped in identifying any linear trend in between them.

Three popular ML algorithms, namely linear regression, random forest regression and
AdaBoost regression, are considered for the task. Several error metrics are used to highlight
the effectiveness of each ML model. Based on the comprehensive evaluation of the two
case studies it is observed that though linear regression is simple and quick, it falls short
of accurately mapping the complex interaction between the process parameters and the
responses. On the other hand, random forest regression and AdaBoost regression showed
remarkable accuracy on all the problems. Generally, AdaBoost regression was found to
be marginally superior to random forest regression in terms of accuracy. However, the
insensitiveness of AdaBoost on the number of regressors makes it a time-saving option.
Thus, it can be concluded that by deploying ML predictive models, a fast and inexpensive
data-driven surrogate approach to exhaustive experimentation can be established.

One of the limitations of this study is the lack of thorough analysis on the effect of
design of experiments (DoE) on such ML systems. This could not be done in this study
due to the lack of appropriate datasets in the literature. Though, in this study, two different
DoEs called CCD and BBD were used for case study 1 and 2, respectively, no appreciable
variation in the ML models was seen with respect to the DoEs, perhaps because both CCD
and BBD belong to the same class of DoEs.

As a future scope to this work several other machine learning models such as support
vector machining, multi-layer perceptron, Gaussian regression model, etc. will be consid-
ered. Studying the uncertainty associated with the NTM processes through ML is also an
interesting avenue. Further, it will be interesting to see how these machine learning models
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perform when deployed in a process optimization scenario. For these, the ML models may
be deployed along with metaheuristic algorithms.
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