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ABSTRACT

This study aimed to find the most suitable combination of adaptive and non-adaptive methods for
extraction of non-invasive fetal electrocardiogram (NI-fECG) using signals recorded from the mother’s
abdomen. Among the nine methods considered, the combination of independent component analysis
(ICA), fast transversal filter (FTF), and complementary ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) proved to be the most effective for the extraction of fECG from
abdominal recordings. This combined method was suitable due to both being effective in extracting
fECG and being less computationally complex. Further, so far, FTF and CEEMDAN methods have
not been extensively tested for fECG extraction, and in particular, have not been examined as a
hybrid method. The ICA-FTF-CEEMDAN hybrid algorithm was tested on two patient databases: Fetal
Electrocardiograms, Direct and Abdominal with Reference Heartbeats Annotations (FECGDARHA) and
PhysioNet Challenge 2013. The evaluation of the accuracy of fQRS complexes detection was performed
using the following parameters: accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and F1
score. The fetal heart rate (fHR) determination accuracy was evaluated using Bland-Altman plots and
fHR traces. When testing on the FECGDARHA database, average values of ACC = 92.98%, SE = 95.33%,
PPV = 96.4% and F1 = 95.86% for detection fQRS were achieved. The error in estimating the fHR
was —1.02 £ 7.02 (i + 1.960) bpm. When testing on the Challenge 2013 database, average values
of ACC = 78.47%, SE = 82.06%, PPV = 87.90% and F1 = 84.62% for fQRS detection were achieved,
and the error in estimating the fHR was —6.62 £ 10.33 (£ 1.960) bpm. In addition, a non-invasive
morphological analysis (ST analysis) was performed on the records from the FECGDARHA database,

which was accurate in 7 of 12 records with values of © < 0.03 and values of +1.960 < 0.04.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

damage [1,4]. However, a condition that requires an immediate
resolution in a matter of minutes is asphyxia. Blood oxygen satu-

Fetal hypoxia is one of the most common causes of perina-
tal morbidity and mortality [1,2]. Fetal hypoxia is a condition
that develops over the course of pregnancy. In the initial stage
(hypoxemia), there is a decrease in oxygen saturation in the
arterial blood, but cellular and organ functions are not affected.
When hypoxemia worsens, the fetal’s adaptive and compensatory
mechanisms are triggered, allowing them to survive in this state
for several days/weeks without any significant harm [3]. If the
oxygen saturation of fetal blood is further reduced, its deficiency
begins to manifest itself in peripheral tissues, and the anaero-
bic mechanism is triggered resulting in hypoxia. The fetus may
remain in this condition for several hours without permanent
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ration is extremely low, and anaerobic metabolism takes place
not only in peripheral tissues but also in the heart and brain,
followed by systemic collapse with heart and central nervous
system failure [5].

Accurate and timely diagnosis of hypoxia is, therefore, a pri-
mary goal in fetal monitoring. The first efforts to monitor the fe-
tus were based on intermittent auscultation of fetal heart sounds
and calculation of fetal heart rate (fHR) [6]. Thanks to advances
in science and technology, the first monitors based on phonocar-
diography monitoring heart sounds were invented in the second
half of the 20th century. These devices were not able to dis-
tinguish between the maternal and fetal heart sounds, so the
automatic determination of fHR was not possible [7]. A ma-
jor breakthrough came with the invention of cardiotocography
(CTG), which is based on fetal monitoring using simultaneous
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recording of fHR and uterine contractions [8]. By introducing this
non-invasive method in the 1960s and enabling continuous mon-
itoring in clinical practice [9], there was a significant reduction
in fetal deaths. Unfortunately, CTG proved to suffer from a high
rate of false positives (up to 60%) [10-12], and the detection
of hypoxia based only on the assessment of fHR turned out to
not be accurate enough [10,13]. This led to a high number of
unnecessarily performed caesarean sections, which are a great
burden with added risks for both the mother and the fetus [13-
15]. More accurate fetal monitoring was enabled by Neoventa
Medical (Molndal, Sweden) devices; this company was the first
to introduce the innovative STAN S31 ST segment analyzer into
the clinical practice in 2007 [9]. This device records the fetal
electrocardiogram (fECG) by attaching a bipolar spiral electrode
on the fetal scalp (i.e., fetal scalp electrode, FSE) and analyzing
the changes in the morphology of the fECG signal; in particular
the T/QRS ratio (known as ST analysis, STAN) [16,17]. Therefore,
simultaneous fHR and STAN monitoring help to increase the
accuracy of detecting fetal hypoxia, hence reducing the number of
unnecessary caesarean sections [18]. Invasiveness of the method
entails the risk of infection when placing the scalp electrode on
the fetus and the serious limitation that it can be implemented
only after the rupture of the amniotic fluid membrane during
childbirth method of monitoring fECG less desirable [19,20].

For these reasons, attention has recently been focused on
the development of non-invasive versions of fECG. This method
is based on recording the electrical activity of the fetal heart
using electrodes that are placed on the mother’s abdomen. The
possibility of recording fECG during pregnancy and childbirth,
non-invasiveness and greater safety of the method are significant
advantages of this method [21]. Nevertheless, when using this
technique to record fetal cardiac activity, maternal cardiac activ-
ity is mixed with the recorded signal with a significantly larger
magnitude than the fECG magnitude. Moreover, the maternal
and fetal components overlap in both the time and frequency
domains, so extracting a good quality fECG continues to be a
challenging task [19,21].

The benefit of our proposed hybrid method enabling it to
achieve high quality extraction is that it combines the advantages
of three techniques: independent component analysis (ICA), fast
transversal filter (FTF) and complementary ensemble empirical
mode decomposition with adaptive noise (CEEMDAN). The advan-
tage of the ICA method is that it requires solely abdominal signals
(aECG) at the input, from which it is able to estimate the maternal
ECG (mECG) and the aECG signal with enhanced fetal component.
Therefore, there is no need to use another chest lead to record
the mECG signal. In clinical practice, mECG signal recorded from
mother’s chest is often of a poor quality and the measurement
itself is uncomfortable since it decreases her mobility. Therefore,
using the mECG and aECG signals estimated by means of the ICA
method leads to better extraction with FTF algorithm, which is
prone to poor quality input signals. The adaptive FTF algorithm
excels in eliminating mECG almost completely since it is able
to adapt to the nature of the signal on its input. The CEEMDAN
method can smooth the residue of the mECG component in the
resulting fECG signal without distorting its morphology, as is
the case with other smoothing methods, such as the wavelet
transform (WT) [22].

Thus, the use of solely aECG signals, quality extraction of fECG
using adaptive filtering, and smoothing the resulting fECG signal,
while remaining its morphology and thus allowing ST segment
analysis, is the main benefit of this algorithm. In addition, the
results of the study showed that with the help of well-scanned
non-invasive signals, it is possible to obtain the same accurate
results of fHR and ST analysis as in the case of the invasive variant.
Another benefit is its high computing speed, which would allow
its implementation in real-time operating devices.

Applied Soft Computing 113 (2021) 107940
2. State of the art

There are numerous filtration methods that can be applied to
extract useful information from the non-invasive fECG record-
ing. These are, for example, methods based on the blind source
separation (BSS) technique [23-25], which can extract original
source signals from a signal mixture. This group of methods
also include the popular ICA [26-28] and the principal compo-
nent analysis (PCA) [26,29]. Another important method for fECG
extraction is the application of WT [30-32] or the template sub-
traction method (TS), which is based on subtracting the template
(parent component) from the abdominal signals [33,34]. More
advanced methods include the application of artificial neural net-
works (ANNs) [35,36] that are able to learn and analyze complex
data. In this category, the adaptive linear network (ADALINE) [37,
38], which is a single-layer artificial neural network that uses
linear activation functions to update its weights, is also worth
mentioning.

Recent studies, [39-45], have demonstrated that hybrid sys-
tems that combine several algorithms are more effective in ex-
tracting accurate fECG compared with using only a single al-
gorithm. We have previously presented such methods. For in-
stance, in [22] two hybrid methods combining ICA, recursive least
squares (RLS) and WT (i.e., ICA-RLS-WT) as well as a combination
of ICA, adaptive neuro-fuzzy interference system (ANFIS) and
WT (i.e., ICA-ANFIS-WT) were presented. In [46], we presented
procedures based on combining empirical mode decomposition
(EMD) with some of the other methods that resulted in ICA-EMD,
ICA-EMD-WT and ICA-RLS-EMD. The best results were obtained
with ICA-RLS-EMD method, but for some recordings, the extrac-
tion was not efficient enough. The aim of this study was to find
suitable alternatives to RLS and EMD methods that will help in
to achieving more accurate extraction. These assumptions were
met by the FTF and CEEMDAN methods and therefore they were
selected for implementation and testing. A comparison of the
main advantages and limitations of the individual fECG extraction
methods that have been used in the past for fECG extraction are
summarized in Table 1.

2.1. Adaptive filters

Adaptive filters are very popular and frequently used as signal
processing tools nowadays. These filters are characterized by the
ability to automatically adjust the adaptive coefficients of the fil-
ter. This occurs by minimizing the error signal, which is defined as
the difference between the desired output and the actual output
of the system [47,48]. An adaptive system usually consists of two
parts, a digital filter, and an adaptive algorithm for adjusting the
filter coefficients [49]. Currently, there is a large number of types
of adaptive filters, an overview of which is summarized in [50].
Adaptive filters can generally be divided into two groups, based
on the approach they use to optimize the error function. These
are the stochastic gradient adaptation methods and the optimal
recursive adaptation methods [47,50]. The stochastic gradient
adaptation group includes the least mean square (LMS) method,
which, due to its simplicity and low computational complexity, is
one of the most widely used techniques. The step size parameter
determines the convergence rate and it also affects how fast and
how close the adaptive filter approaches the desired output val-
ues [51,52]. The normalized LMS (NLMS) algorithm was created
by modifying the standard LMS algorithm; it excels due to its
simplicity and robust performance.

The optimal recursive adaptation methods can include the
RLS algorithm, the advantage of which is excellent performance,
when working in time-varying environments, and fast conver-
gence. There are some disadvantages for these methods in the
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Table 1
Comparison of advantages and disadvantages of different fECG extraction algorithms.
Method Advantages Limitations
ICA, PCA Stable To achieve greater accuracy of algorithms, it is
necessary to use a larger number of quality input signals
WT Fast Distortion of signal morphology
TS Simple mQRS detection accuracy significantly
influences the overall performance
ANNSs, ANFIS, Precise The performance of the algorithm depends on the
ADALINE correct setting of a large number of parameters
RLS Precise As the filter order increases,
the computational speed decreases
FTF Fast The performance of the algorithm strongly
depends on the quality of the input signals
EMD Stable The extraction efficacy may be
adversely affected by mode mixing
CEEMDAN Stable As the number of ensemble trials increases,

the computational speed decreases

form of increased computational complexity [53]. This group can
also include a FTF, which was designed specially to reduce the
computational complexity of the RLS filter while maintaining the
speed of convergence. Its concept is structurally based on four
different filters working simultaneously on one task [54-56].
For the purposes of extracting fECG, the LMS, NLMS, DLMS,
BLMS filters were implemented and compared in the past in [48].
The best results were achieved using the BLMS filter, and on the
other hand, the worst results were obtained using the NLMS filter.
The efficacy of LMS a NLMS methods was also compared in [35],
however, in this case, no significant differences were found be-
tween these filter performances. The authors of the study [57]
tested NLMS and RLS filters to extract fECG. It has been proven
that better results were obtained using the RLS algorithm, and, in
addition, it converged faster than the NLMS algorithm. The RLS
filter outperformed also the LMS algorithm in [58] according to
the evaluation based on the sensitivity (SE), positive predictive
value (PPV) and F1 metrics. The LMS algorithm was effective
in combination with the ICA [41], the WT [32,59,60], or with
LMS and ANN [61]. An interesting approach is also combining
multiple adaptive filters, as proposed in [62]. The best results
were achieved using a combination of LMS and RLS algorithms.

2.2. Empirical mode decomposition based methods

The EMD method was proposed in [63] for addressing non-
linear and non-stationary issues. Its principle is based on the
decomposition of the input complex signal into simpler signals,
which are called intrinsic mode functions (IMFs). By summing
all IMFs, the original signal can be reconstructed [63-65]. The
advantage of EMD lies in its high speed compared to other ver-
sions of this method. Its disadvantage, on the other hand, lies
in the limitation called mode mixing which affects the resulting
extraction quality [64]. This problem is due to the fact that one of
the IMFs contains several components with different frequencies,
or components with similar frequencies are contained in several
different IMFs [66]. To address this shortcoming, the ensemble
empirical mode decomposition (EEMD) method was proposed
in [67]. This is based on the principle of adding independent
Gaussian white noise to the input signal and performing several
ensemble trials. Each trial uses the same procedure as EMD. The
resulting IMFs are obtained by averaging the corresponding IMFs
from all ensemble trials [64,68]. By applying the EEMD method,
the risk of mode mixing occurrence can be eliminated, but a
new problem arose when reconstructing the original signal. This
reconstructed signal contained significant residues of Gaussian
white noise [64,69]. To prevent this while preserving the benefits
of the EEMD method, the complementary ensemble empirical
mode decomposition (CEEMD) was designed in [69]. The principle

of CEEMD is the same as EEMD, but instead of fully indepen-
dent Gaussian white noise, complementary paired positive and
negative white noise is generated, which leads to mutual elimi-
nation of noise residues in the resulting signal [64,69]. The low
computational speed of the algorithms, which decreases with the
increasing number of ensemble trials, is another disadvantage
of the EEMD method, as well as CEEMD [64]. For this reason,
in [70], CEEMDAN, which uses a smaller number of iterations
(i.e., nearly a half), thus increasing the computational efficiency
of the algorithm, was proposed [70].

For fECG extraction, the EMD method was successfully tested
in combination with ICA in [71] or in combination with multi-
ple signal classification [72]. In [40], the authors concluded that
the system combining the EEMD, ICA, and wavelet shrinkage
showed to be most effective in suppressing maternal component
compared to the system combining EMD and wavelet shrinkage.
The performance of the EMD, EEMD and CEEMD methods was
compared for fECG extraction in combination with correlation
analysis in [73]. The CEEMD method provided better frequency
resolution of IMFs than EMD or EEMD and more accurate re-
construction of the original signal. An accurate fECG extraction
was also achieved using CEEMDAN in [74]. According to [75], the
EMD and EEMD methods were outperformed by the CEEMDAN
algorithm, since it could provide better frequency separation of
the extracted IMFs.

A comparison of the basic representatives of adaptive fil-
ters and EMD-based methods is summarized in Table 2. The
evaluation of individual parameters was achieved as follows:

1. Performance: the performance was evaluated using the
high, medium, and low categories in terms of the accuracy
of fHR determination of the extracted signals.

(a) High: the method was able to filter out all distur-
bances highly effectively and, in the statistical eval-
uation of fHR, values < 95% were achieved using the
ACC, SE, PPV and F1 parameters.

(b) Medium: the method was able to filter out most
interference, but some interference residues led to
ACC, SE, PPV and F1 parameter values < 80% in the
statistical evaluation of fHR.

(c) Low: the method was not able to sufficiently elim-
inate the interference and, in the statistical evalua-
tion of fHR, values < 80% were achieved using the
ACC, SE, PPV and F1 parameters.

2. Computational complexity: the parameter was assigned
three levels of high, medium, and low categories, based on
subjective evaluation.

(a) High: reflects a computationally complex method
that cannot be used in real-time applications.
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Table 2
Performance parameters of basic adaptive filters and EMD-based methods.
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Algorithm Performance

Computational complexity

References

LMS Medium

Low

Wau et al. [32], Camps et al. [35],
Martinek et al. [47], Kaur et al. [51],
Shengkui [52], Swarnalatha et al. [62],
Gupta et al. [41], Behar et al. [58],
Lima-Herrera et al. [59], Ziani et al. [60],
Kaleem et al. [61]

Adaptive
methods
NLMS Medium

Low

Camps et al. [35], Martinek et al. [48],
Kaur et al. [51], Swarnalatha et al. [62],
Liu et al. [57]

RLS High

Medium

Martinek et al. [47], Diniz [53],
Swarnalatha et al. [62], Behar et al. [58],
Liu et al. [57]

FTF High

Low

Cioffi et al. [54], Setareh et al. [55],
Bessekri et al. [56]

EMD Low

Low

Huang et al. [63], Ren et al. [64],

Gao et al. [66], Liu et al. [76],

Azbari et al. [73], Taralunga et al. [71],
Wei et al. [72]

EMD-based

EEMD
methods

Medium

Ren et al. [64], Wu et al. [67],

High Chang [68], Liu et al. [76],

Azbari et al. [73], Liu et al. [40]

CEEMD Medium

High

Ren et al. [64], Yeh et al. [69],
Liu et al. [76], Azbari et al. [73]

CEEMDAN Medium

Medium

Ren et al. [64], Torres et al. [70],
Colominas et al. [77], Liu et al. [76],
Li et al. [78], Queyam et al. [75],
Muduli et al. [74]

(b) Medium: denotes a slightly more computationally
demanding method that can be used in real-time
applications after optimization.

(c) Low: assigned to a computationally not complex
method that can be used in real-time applications.

3. Materials and methods

This section describes the methods implemented within the
hybrid system. Based on the literature search and study of the
issue, ICA, FTF, and CEEMDAN were selected. Furthermore, the
proposed hybrid system, its optimal settings, the parameters
used to evaluate the performance of the hybrid system and the
database used for testing each method are described.

3.1. Independent component analysis

The ICA extraction technique belongs to the group of blind
source separation methods. Its principle is based on the decom-
position of the input mixed signal into the original separate
source components [26,79-81]. In the case of fECG extraction, the
input mixed signal represents the aECG signal recorded from the
mother’s abdominal wall, and the source components consist of
fECG, mECG and noise. To perform the extraction correctly, the as-
sumptions that the source components are non-Gaussian signals
and are statistically independent of each other must be met [79,
82]. More accurate source signals extraction can be achieved
using a larger number of input signals. In the past, several ex-
tended versions of the ICA method were presented: the com-
putationally efficient FastICA algorithm [83], efficient version of
the FastICA (EFICA) [84] or joint approximate diagonalization of
eigen-matrices (JADE) [28]. In this study, the FastICA version
using a fixed-point iteration scheme was applied to obtain results
faster than the classical version. More detailed information on the
ICA method can be obtained in [26-28,79,82].

3.2. Fast transversal filter

The goal of the adaptive FTF filter is to minimize the error
signal between the desired and actual output by automatically
adjusting the adaptive coefficients. The FTF filter achieves the
same performance as the RLS, but it possesses a much higher
computational speed. The FTF filter is not burdened by a linear
increase in the computation time with increasing filter order, as is
the case with RLS [55,85]. Therefore, its use is a very suitable solu-
tion for real-time applications. The principle of the filter is based
on the use of four transversal filters working simultaneously on
one task.

These four transversal filters designed to compute update
quantities as described in [55,86] include:

e Forward prediction transversal filter - this block calculates
the forward filter weights in such way that minimizes the
least-square error of the subsequent sample based on the
previous ones. To calculate the error of estimation for the
forward prediction, the filter uses a priori and a posterior fil-
ter weights as well as the minimum weighted least squares
error.

e Backward prediction transversal filter — calculates the back-
ward filter weights in such way that minimizes the least-
square error of the n — Mth sample using the vector in-
put x,(n) = [x(n)x(n — 1x(n — 2)...x(n — M + 1]’. As
with forward prediction, this filter calculates the minimum
weighted least squares error and the posterior and prior
filter weights.

e Gain computation transversal filter — is used for recursive
computation of the gain vector. The gain vector is used to
update the forward, backward, and joint-process estimation
filter weights. It also provides recursive computation of the
conversion factor [55].

e Joint-process estimation transversal filter — determines the fil-
ter weight so that the error between the desired and actual
signal is as small as possible. Thus, this block calculates filter
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weights in the same way as the adaptive algorithms used
earlier.

The disadvantage of the algorithm is the instability after a fi-
nite number of iterations. However, several approaches [85,87]
have been proposed to solve this problem. Usually, these ap-
proaches are based on expressing the update equations in dif-
ferent forms [86]. The detailed description of this filter is very
extensive, and a complete description of the algorithm can be
obtained in [54-56,85,86].

3.3. Complementary ensemble empirical mode decomposition with
adaptive noise

The principle of the CEEMDAN method is based on the de-
composition of a more complex input signal into simpler signals,
called IMFs [70,88]. The method builds upon the previously pre-
sented EEMD method [67], which in turn is built upon EMD
procedures [63]. The main idea is to add independent Gaussian
white noise to the input signal and perform several ensemble
trials. The resulting IMFs are obtained by averaging the corre-
sponding IMFs from all ensemble trials [64,68]. The CEEMDAN
method differs in the following aspect: the addition of paired
positive and negative adaptive white noise to the input signal,
which better eliminates the mode mixing issue, and, also, the
resulting IMFs are calculated sequentially. That is, each IMF is
used to calculate the succeeding IMF [76,77]. This results in a
smaller number of iterations which leads to an increase in the
computational speed of the algorithm [70].

The algorithm can be summarized as follows:

e First, the number of ensemble trials realizations N and the
standard deviation of the added noise series Nyq are set.

e Gaussian noise w(t) with unit variance is added to the
original signal x(t).

s(t) = x(t) + Bow(t), (1)

where f is the level of noise.

e Signal s(t) is decomposed N-times using the EMD method
and the first IMF;(t) is obtained by averaging all IMF(t)
related to N trials. The EMD method is based on identifying
local minima and maxima in the signal s(t) followed by
detecting the upper and lower envelopes of the signal using
a cubic spline by combining all maxima and minima, respec-
tively. The mean of the envelopes is then subtracted from
the original signal x(t) and IMF,(t) is obtained as follows:

IMF(t) = x(t) — (M(s(t))), (2)

where (M(s(t))) represents the mean of the envelopes of the
signal s(t).

o The residual signal rq(t) is calculated by subtracting the first
extracted IMF;(t) from the original signal x(t).

ri(t) = x(t) — IMFy(t). (3)

e The second IMF,(t) is extracted in the same manner as the
first one, but instead of the original signal x(t), the residual
signal r1(t) is used.

IMF,(t) = ri(t) — (M(r1(t) + Brw(t))). (4)

e To obtain additional IMFs, the entire procedure is repeated,
but ri(t) is used as the further residual after the kth decom-
position, where k = 1, 2, ..., K. The IMF(t) is obtained as:

IMFy(t) = re—1(t) — (M(ri—1(t) + Be—1w(t))). (5)
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e The whole procedure is repeated until the residual signal
cannot be extracted (i.e. the residual signal is a monotone
function, a function with only one extremum or a constant).

The motivation to use ICA, FTF and CEEMDAN methods in fECG
extraction system and post-processing was following:

1. Fetal ECG extraction - accurate fECG extraction is a very
challenging task in which conventional techniques are not
efficient enough. Adaptive algorithms (especially RLS) have
proven to be very promising for fECG extraction in our
previous research [22,46]. The RLS algorithm was able to
extract fECG with high accuracy, but with increasing fil-
ter order, its computational speed decreased significantly,
which would make it impossible to use it in real-time ap-
plications. Therefore, an alternative was sought that could
extract fECG with the same (or higher) accuracy, but much
faster, even with higher filter orders. The FTF algorithm met
these requirements and was selected and tested for these
reasons. The FTF algorithm requires two input signals: the
aECG (mixture of mECG, fECG and other interferences) and
the reference mECG signal, which is modified by the FTF
method so that it corresponds as closely as possible to
the maternal component in the aECG signal and can be
subtracted from it, thus obtaining fECG and some residual
noise. In general, there are two approaches to obtain these
two inputs (mECG and aECG):

e The first involves simultaneous scanning of mECG
from the mother’s thorax and aECG from the ab-
dominal area. However, the thoracic mECG signal dif-
fers from the maternal component sensed on the ab-
dominal wall in terms of its magnitude, phase, and
morphology. Moreover, in clinical practice it is quite
challenging to ensure a high quality thoracic mECG
signal, i.e. without artifacts that are caused by mater-
nal movement or improper electrode placement and
fixation. The quality of the extraction by an adaptive
algorithm is closely connected to the quality of the
input signals, and therefore distortion the maternal
reference signal leads to inaccurate fECG extraction.
Additionally, its measurement can be unnecessarily
uncomfortable and stressful for the mother [9].

e For these reasons, we chose the second approach,
which is based on obtaining the mECG and aECG
input signals solely from aECG signals. This involves
implementation of a separation algorithm (such as
ICA), which is able to estimate mECG and aECG with
an enhanced fetal component.

2. Post-processing — for post-processing, it was necessary
to select a method that would be able to remove mECG
residues so that the fHR determination is accurate and at
the same time would not affect the morphology of the
resulting fECG waveform, so that the ST signal analysis
could be performed. Past research [22] has shown that
WT-based methods are not suitable for further morpho-
logical analysis, and therefore EMD-based algorithms have
been considered. Among them, CEEMDAN, which was used
in the hybrid system for the final smoothing of fECG,
proved to be the most suitable in terms of the efficacy and
computational complexity.

The advantages of individual methods and their combination
to achieve accurate and time-efficient fECG extraction can be
summarized as follows:
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e ICA-FastICA is a computationally efficient method with low
memory requirements [89] but is not able to sufficiently
suppress mECG and extract fECG in sufficient quality when
used on its own. On the other hand, using solely aECG input
signals, it can provide a good estimate of the mECG and
aECG signal with enhanced fetal component that are used
as inputs for FTF algorithm.

e FTF-adaptive filters generally excel in performance and
adaptability in time-varying environments (which is also the
case with fECG) [53]. In case that the filter receives high-
quality input signals (aECG and mECG), it is able to extract
an accurate fECG signal only with minor mECG residue.
Moreover, it performs in a time-efficient manner even with
increasing filter order.

e CEEMDAN method proved to be the best compromise be-
tween performance and computational complexity among
other EMD-based algorithms. Despite the fact that it can-
not extract fECG or mECG on its own, it has proven to
be suitable for use in the post-processing phase for the
additional suppression of mECG residues. In addition, it did
not significantly alter the morphology of the fECG signal,
allowing accurate morphological analysis to be performed.

3.4. Dataset

In this work, the hybrid algorithm was tested on two
databases. The first one is called the Fetal Electrocardiograms,
Direct and Abdominal with Reference Heartbeats Annotations (FECG-
DARHA) and is freely available in figshare repository [90]. The
dataset contains 12 five-minute recordings obtained from women
between the 38th and 42nd week of gestation. The recordings
were obtained at an advanced stage of child development. Each
recording contains four abdominal signals recorded from the
mother’s abdominal area using standard Ag/AgCl electrodes. At
the same time, the direct fECG signal was recorded from the fetal
head using a sterile spiral electrode. The signals were recorded
using the KOMPOREL system and digitized with 16-bit resolution
and a sampling frequency of 1000 Hz for the direct fECG and
500 Hz for the abdominal signals. In addition, this system auto-
matically detected and marked the positions of fetal R-peaks, the
accuracy of which was verified by clinical experts. The dataset,
therefore, also includes annotations providing the exact positions
of fetal R-peaks. Data collection was performed at the Department
of Obstetrics and Gynaecology of the Medical University of Silesia
in Katowice, Poland [90].

The second database is called the Physionet Challenge 2013
[91]. The database was created as part of the PhysioNet Computing
in Cardiology Challenge 2013, which aimed to support the devel-
opment of algorithms for accurate localization of fQRS complexes
and fQT interval estimation in non-invasive fECG signals. Each
recording contains four abdominal signals one minute long and
with a sampling frequency of 1000 Hz. At the same time, direct
fECG signals were also captured using a fetal scalp electrode,
which served to create reference annotations indicating the posi-
tion of fQRS complexes. Nevertheless, only annotations are part of
the database; direct fECG signals are not part of the database. The
data were obtained from different women with a different gesta-
tional age of the fetus. Different devices with different resolutions
and configurations were used to record the signal [91].

3.5. Hybrid system design

This section describes the ICA-FTF-CEEMDAN hybrid system
for the extraction of non-invasive fECG, including the parameters
that were used to evaluate the quality of the extraction. The
hybrid system can be described using the following steps:
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e Selection of suitable aECG signals: first, it was necessary to
select at least two input signals, as this is a multi-channel
algorithm. Four input signals were available for each record-
ing, but not all of them were captured well (e.g. the fe-
tal component acquired very low magnitudes). Therefore,
only the most suitable signals were selected so as not to
unnecessarily reduce the extraction effectiveness.

e Preprocessing: input aECG signals were preprocessed using
a bandpass finite impulse response filter (BPF FIR) with a
frequency range of 3-150 Hz (fQRS complexes occur in the
range of 10-15 Hz [20]) and a filter order of 500 Hz. The
filter was used to remove isoline fluctuations and motion
artifacts, see Fig. 1.

e FastICA: Furthermore, the ICA method, which is based on
the decomposition of a mixture of signals into the original
source components, was applied. In this case, a very effec-
tive FastICA algorithm was used; it was arbitrarily set to
20 iterations and decomposition of the input aECG signals
into three components. The first component corresponded
to aECG with highlighted fECG (referred to as aECGyca), the
second mECG (referred to as mECGcs) and the third one
corresponded to noise, see Fig. 2. As the polarity of the ICA
components was rotated during the extraction, an algorithm
checking the highest positive and negative amplitude within
50 ms from the detected R-peaks was used, and, based
on this, the algorithm determined whether the signal was
rotated correctly or whether it needed to be rotated.

e FTF: the first two components of aECGjca and mECGca were
time and amplitude aligned, using automatic centering. The
centering was based on detecting the positions and ampli-
tudes of maternal R-peaks. The shifts between the individual
maternal R-peaks in aECGcy and the maternal R-peaks in
mECG|ca were determined and the average time shift was
calculated. The signals were aligned by this average time
shift. Similarly, differences between amplitudes were de-
termined. The signal with the higher average amplitude of
the maternal R-peaks was proportionally reduced relative
to the signal with lower average amplitude. Such centered
signals were used as inputs of the adaptive FTF algorithm.
The aECGicp component was used as the primary input
(desired signal). And, the mECGjca component, which the
FTF algorithm filtered into the approximate form of the
mECG component contained in the primary input, was used
as the second input. Subsequently, the mECGgrr component
extracted by the FTF filter was subtracted from the aECGca
signal, thus obtaining fECGgr with a suppressed maternal
component, see Fig. 3. As for the FTF algorithm, forgetting
factor A was set to a value of 1 due to optimization, and filter
order M was tested in the range of 1 to 100 with increments
of 1.

o CEEMDAN: since the fECGgrr signal contained residual noise,
the CEEMDAN method was used to remove it. It decomposed
the input fECGgrr signal to simpler signals, so-called IMFs.
The decomposition into IMFs continued until the stopping
condition was reached (the residual signal was a monotone
function, a function with only one extremum or a constant).
A total of 10 IMFs were extracted, and a final signal indicated
as fECGceempan Was generated by selecting the appropriate
IMFs, see Fig. 4. For this method, it was necessary to set the
value of the standard deviation of the added noise series Nyyq
and the number of ensemble trials N. Parameter Ngg was
tested in the range of 0.1 to 0.9 in 0.1 increments. Parameter
N was tested for values of 10, 30 and 60; testing for higher
values was not necessary, as the extraction effectiveness
was no longer improved.
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Fig. 1. Selection of suitable aECG signals and their preprocessing. Example of (a) all input aECG signals for recording r01, (b) selected aECG signals that are suitable
for further processing, (c) filtering of suitable aECG signals using a BPF FIR filter in the range of 3-150 Hz.
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Fig. 2. Signal processing using the FastICA algorithm. Example (a) presents preprocessed input aECG signals, example (b) shows the extraction of three ICA components
and example (c) represents the assignment of the ICA components to the source signals and adjusting their polarity.
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Fig. 3. Signal processing using the FTF algorithm. Example (a) presents aECGyca, which was used as the desired signal, indicated as d(n), and mECGca, which needed
to be filtered by the FTF filter, indicated as x(n). Example (b) shows the mECGgr component that was extracted by the FTF filter, indicated as y(n). The extracted
mECGgrr was subtracted from aECGca, thus creating the fECGgr error signal, indicated as e(n). Example (c) represents the fECGgre output signal.

e Algorithms settings: to achieve the most efficient extraction individual recordings are summarized for the FECGDARHA
of fECG, optimal setting of the parameters of the individual database and the Challenge database in Tables 3 and 4,
algorithms was crucial. Selection of suitable input aECG respectively.
signals, parameter M and forgetting factor A setting for the e Evaluation parameters: the effectiveness of the hybrid
FTF filter, N, Ny parameters of the CEEMDAN method and method was evaluated, both in terms of the accuracy of
selection of suitable IMFs by means of which the resulting fetal R-peaks detection and in terms of the accuracy of fHR
fECGcgempan Was generated. This was achieved using an determination. First, fetal R-peaks were detected using a
automated algorithm that compared various combinations detector based on continuous wavelet transform (CWT). The
of the parameters set and selected the combination that positions of the detected R-peak positions were compared
provided fECG signal with the highest accuracy according to with the reference R-peak positions given in the annota-
the ACC value. Accuracy comparison was carried out using tions. If the position of the detected R-peak was £50 ms
annotations. The most suitable parameters values for the from the reference position, it was marked as true positive
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extracted IMFs, example (c) shows the resulting extracted fECGcggmpan Signal using a hybrid algorithm compared to the reference recording which was made using
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Table 3
ICA-FTF-CEEMDAN algorithm settings for recordings from the FECGDARHA
database.

Recordings Combination ICA FTF CEEMDAN

of electrodes Number of M A N Ny IMFs
iterations

r01 1,3 4 20 2 1 10 02 2+3

r02 1,23, 4 20 99 1 10 06 3+4

03 2,4 20 90 1 60 07 3

ro4 1,4 20 38 1 30 09 245

r05 1,4 20 21 1 10 05 243+7

r06 1,234 20 16 1 30 05 3+4

r07 1,4 20 36 1 30 09 245

r08 1,4 20 2 1 60 04 4

r09 1,24 20 16 1 10 06 2+3+4+6

r10 1,23 4 20 54 1 60 04 2+44+6

r11 1,23 4 20 100 1 60 0.7 3

r12 1,23, 4 20 16 1 30 03 2+4346+7
Table 4
ICA-FTF-CEEMDAN algorithm settings for recordings from the Challenge
database.

Recordings Combination ICA FTF CEEMDAN

of electrodes Numberof M A N Ngg IMFs
iterations

a0l 1,3, 4 20 11 1 10 08 2+43+5+7

a02 1,24 20 2 1 60 05 4+6+8

a0n3 1,4 20 68 1 10 05 3+6+8

ao4 1,2 20 30 1 10 05 243

a05 1,3 20 30 1 10 05 243

a06 2,4 20 25 1 60 04 34647

a07 1,23 4 20 4 1 10 04 3454648

a08 1,4 20 2 1 10 03 2

a09 1,4 20 99 1 30 06 3

alo0 2,4 20 84 1 10 09 2

all 1,4 20 68 1 30 03 24345

al2 13,4 20 9 1 30 06 34647

al3 2,4 20 35 1 60 09 4+7

al4 1,23 4 20 10 1 10 07 344

al5 1,4 20 49 1 10 03 2

al6 1,4 20 68 1 10 08 445

al7 1,4 20 2 1 10 03 2

al8 1,2,3,4 20 33 1 10 01 549

al19 3,4 20 35 1 60 06 4

a20 1,4 20 99 1 60 09 445

a21 2,3, 4 20 8 1 30 09 243444547

a22 1,4 20 2 1 10 02 2

a23 1,3 20 47 1 30 09 24445

a24 1,3 20 52 1 60 09 3+4

a25 2,3 20 90 1 60 09 4

(TP), i.e. as a correctly detected (true) R-peak. Detected R-

peaks in the extracted signal, which fell outside this interval,

were marked as false positive (FP), so it corresponded to the
detection of a peak that was not a fetal one (for example,
the maternal residue or other interference). Omitted fetal
R-peaks that were in the original but were not detected
by the detector were marked as false negative (FN) values
(for example, the amplitude of fetal R-peaks could be sup-
pressed by the filtration) [39,92,93]. ACC, SE, PPV and F1
indices could be determined using FN, FP, and TP values. The
ACC parameter expresses how many R-peaks were detected
correctly with respect to all detected and omitted R-peaks.
Thus, it defines the ratio of all TP values with respect to all
marked values (TP, FP, FN), see Eq. (6). The SE parameter
shows how many of all existing R-peaks were correctly
predicted. It is defined as the ratio of all TP values to all
existing R-peaks (TP and FN), see Eq. (7). The PPV parameter
tells how many of the R-peaks that were detected were
true. Defined as the ratio of all TP values to all detected R-
peaks (TP and FP), see Eq. (8). And parameter F1 takes into
account both parameters SE and PPV and is defined as their
harmonic average, see Eq. (9).

ACC= —————— . 100 (%). (6)
TP + FP + FN
P
SE=———— 100 (%). (7)
TP + FN
PPV = —— . 100 (%). 8
TP + FP (%) (8)
SE - PPV 2.TP
F1=2. -100 (%). 9)

SE+PPV _ 2-TP + FP + EN

To evaluate the fHR, it was necessary to convert the vectors
of intervals between the detected positions of the R-peaks
into vectors of the current fHR values. The accuracy of the
fHR determination was evaluated using Bland-Altman plots,
where vector of differences and vector of the average of
the two signals were determined. When graphically rep-
resented, the difference is shown on the vertical axis and
the average of the values is found on the horizontal axis.
The middle horizontal line indicates the mean u of all dif-
ferences and, based on this line, a 95% confidence interval,
which lies in the interval u £ 1.960, is then plotted [94].
In addition, fHR traces were plotted for the comparison
of fHR. To plot the fHR traces, it was necessary to create
moving averages from the fHR values calculated. A width of
30 samples was the most suitable window size. A schematic
representation of the procedure for evaluating the extracted
signals is shown in Fig. 5.
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Fig. 5. Procedure for evaluation of the extracted fECGcgpmpan Signals. Example (a) shows the extracted fECGcgpmpan Signal using a hybrid algorithm in comparison
with the reference recording. Example (b) demonstrates the detection of fetal R-peaks and the determination of the TP, FP, and FN values. Example (c) represents

the fHR trace plotting.

o ST segment analysis: This method is based on monitoring the
T/QRS ratio. The change in this ratio is due to a change in
cellular ionic currents during anaerobic metabolism of the
fetal heart. It has been shown that the combined monitoring
of fHR and ST analysis leads to the early identification of
cases of acidosis during childbirth, and at the same time
it has been associated with reduced number of unneces-
sary caesarian sections [17,20]. The current disadvantage
of today’s ST analyzers is its invasiveness and the use be-
ing possible only during childbirth. Therefore, it is highly
desirable to find a solution to perform a non-invasive ST
analysis with the same accuracy as can be done invasively.
In order to determine whether the determination of the ST
analysis on the estimated fECG signal was accurate, it is
necessary to have a reference signal measured with a scalp
electrode. This is only met by the FECGDARHA database, so
ST analysis was performed on 12 records from this database.
Fig. 6 illustrates the ST analysis procedure which can be
summarized in the following steps:

1. Determination of the R-peak positions in the esti-
mated fECG signal using a CWT detector. Annota-
tions with R oscillation positions are available for the
reference signal and their detection is therefore not
necessary.

2. Averaging of 30 consecutive complexes for both the
reference and estimated signal. This approach was
inspired by the ST analyzers used in clinical practice.

3. Determination of positions and amplitudes of R peak,
S peak, and T wave in averaged complexes. These
positions were also detected by CWT detector but
with different settings.

4. Determination of ST analysis for individual complexes
by calculating the T/QRS ratio, i.e. the ratio of the
amplitude of the T wave to the sum of the amplitude
of the R and S waves.

5. Plotting the determined values into the graph in the
form of marks “, as displayed by ST in the clinical
practice.

4. Results

This section summarizes the results obtained when testing the
hybrid method on real recordings. The statistical results obtained
according to the ACC, SE, PPV and F1 indices are presented for the
FECGDARHA database in Table 5. Indices values greater than 95%

are highlighted in green (6 recordings evaluated according to ACC,
9 recordings evaluated according to SE, 11 recordings evaluated
according to PPV, and 10 recordings evaluated according to F1).
The values of all quality indices were higher than 80% with all
recordings except r11 (indices values lower than 80% are high-
lighted in red). As for recordings r01, r05, r08 and r09, all fetal
R-peaks were detected correctly; no FP or FN fetal R-peaks were
detected, and all quality indices achieved a value of 100%. The
table also shows the error mean values x and values of £1.960,
reflecting the differences between the reference fHR and the fHR
estimated by the hybrid method. The results can be interpreted
as follows: the hybrid method was effective for all recordings
(highlighted in green) except r11, since, in this case, high mean
values 1 and values of +1.960 were obtained (highlighted in
red).

The statistical evaluation for the Challenge database is summa-
rized in Table 6. Indices values greater than 95% are highlighted
in green (11 recordings evaluated according to ACC, 14 recordings
evaluated according to SE and F1, and 15 recordings evaluated
according to PPV). The ACC, SE and F1 parameters exceeded the
value of 80% for 17 recordings, and PPV was higher than 80% for
20 recordings (indices values lower than 80% are highlighted in
red). All fetal R-peaks were detected correctly in recordings a04,
a05, a08, a15, al7, a22 and a25; in addition, no FP and FN values
were detected, and values of 100% were achieved for all quality
indices. When evaluating mean values w and values of +1.960,
the method was effective for 15 and 13 recordings, respectively
(highlighted in green). High mean values u and values of £1.960
were acquired for 10 and 12 recordings, respectively (highlighted
in red).

The obtained results of parameters u and £1.960 can be
visualized using Bland-Altman plots. These graphs carry the
same information as mentioned in the previous paragraph, but
in a graphical form. The example of Bland-Altman plots, (a)
for recording r03 and (b) for recording r09 in Fig. 7, presents
recordings for which highly accurate results were achieved in
determining fHR. Fig. 8 shows (a) recording r04 and (b) recording
r12, for which a slight deviation of fHR values from the reference
values was achieved. Fig. 9 represents (a) recording a09 and (b)
recording a16, for which the hybrid method was not effective
because the estimated fHR values excessively deviated from the
reference values.

A comparison of fHR traces of all recordings from the FECG-
DARHA database is shown in Fig. 10(a). All recordings except
recording r11 copy the reference trend, and the method can,
therefore, be considered effective for these recordings. As for the
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Fig. 6. Procedure of the ST segment analysis. Example (a) shows the extracted fECGcgempan Signal using a hybrid algorithm with detected R-peaks and reference
signal. Example (b) shows averaged complex of extracted fECGcgpmpan Signal and reference recording with marked R peak, S peak and T wave locations. Example (c)

represents graphical form of the ST segment analysis using the “** marks.

Table 5

Statistical evaluation of the accuracy of fetal R-peaks detection and determination of fHR using the hybrid method when testing on the FECGDARHA database.
Recordings Number of fetal R-peaks TP FP FN ACC SE PPV F1 nw +1.960

in annotations (%) (%) (%) (%) (bpm) (bpm)

r01 644 644 0 0 100.00 100.00 100.00 100.00 —0.18 5.32
r02 660 659 1 1 99.70 99.85 99.85 99.85 —0.01 7.64
r03 684 682 1 2 99.56 99.71 99.85 99.78 —0.02 2.58
ro4 632 570 26 62 86.63 90.19 95.64 92.83 —1.90 7.50
r05 645 645 0 0 100.00 100.00 100.00 100.00 0.04 3.92
r06 674 643 20 31 92.65 95.40 96.98 96.19 —0.64 4.60
r07 627 595 18 32 92.25 94.90 97.06 95.67 —0.90 5.76
r08 651 651 0 0 100.00 100.00 100.00 100.00 —0.31 7.11
r09 657 657 0 0 100.00 100.00 100.00 100.00 0.03 2.52
r10 637 630 27 7 94.88 98.90 95.89 97.37 —0.12 7.10
ri1 705 485 166 220 55.68 68.79 74.50 71.53 —7.14 21.67
r12 685 659 13 26 94.41 96.20 98.07 97.13 —1.11 8.50

Table 6

Statistical evaluation of the accuracy of fetal R-peaks detection and determination of fHR using the hybrid method when testing on the Challenge database.

Recordings Number of fetal R-peaks TP FP FN ACC SE PPV F1 " +1.960
in annotations (%) (%) (%) (%) (bpm) (bpm)
a0l 145 139 4 6 93.30 95.86 97.20 96.53 0.01 10.82
a02 160 34 66 126 15.04 21.25 34.00 26.15 —36.64 22.95
a03 128 127 1 1 98.45 99.22 99.22 99.22 0.43 7.67
a04 129 129 0 0 100.00 100.00 100.00 100.00 —0.01 16.50
a05 129 129 0 0 100.00 100.00 100.00 100.00 0.01 1.63
a06 160 106 24 54 57.61 66.25 81.54 73.10 —16.35 18.89
a07 130 70 47 60 39.55 53.85 59.83 56.68 3.58 16.48
a08 128 128 0 0 100.00 100.00 100.00 100.00 0.04 1.83
a09 130 92 16 38 63.01 70.77 85.19 77.31 —8.44 15.07
alo0 175 149 11 26 80.11 85.14 93.13 88.96 —9.09 13.05
all 140 79 22 61 48.77 56.43 78.22 65.56 —19.47 19.28
al2 138 134 2 4 95.71 97.10 98.53 97.81 0.08 5.31
al3 126 121 2 5 94.53 96.03 98.38 97.19 —1.11 6.06
al4 123 121 1 2 97.58 98.37 99.18 98.78 —0.25 6.32
al5 134 134 0 0 100.00 100.00 100.00 100.00 0.07 12.24
al6 130 63 34 67 38.42 48.46 64.95 55.51 —13.14 18.49
al7 132 132 0 0 100.00 100.00 100.00 100.00 0.08 5.59
al8 150 31 66 119 14.35 20.67 31.96 25.10 —43.81 16.54
al9 127 122 4 5 93.13 96.06 96.83 96.44 —0.09 2.13
a20 131 121 4 10 89.63 92.37 96.80 94.53 —2.54 8.97
a21 145 102 11 43 65.39 70.35 90.27 79.07 —14.34 15.46
a22 126 126 0 0 100.00 100.00 100.00 100.00 0.05 2.03
a23 126 108 7 18 81.20 85.71 93.91 89.63 —4.39 7.70
a24 123 120 2 3 96.00 97.56 98.36 97.96 —0.17 3.98
a25 125 125 0 0 100.00 100.00 100.00 100.00 —0.01 3.19

recording r11, the method curve is deviated from the reference
curve, and the determination of fHR using the hybrid method
cannot be considered sufficiently accurate. A comparison of fHR
traces of 12 selected recordings is shown in Fig. 10(b). In this case,
the method was also effective for all displayed recordings, except
for recording a23. Here, as in the previous case, this is a deviation
of the method curve from the reference curve, which indicates

10

an inaccurate estimate of fHR using the hybrid method. In both
graphs, the names of the recordings are indicated at the top, and
the sections related to the given recordings are marked with an
arrow.

We also performed an ST analysis using the estimated data and
evaluated its accuracy. The evaluation was based on a comparison
of the T/QRS ratios estimated by the ICA-FTF-CEEMDAN method
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compared to the ratios determined using the reference scalp
fECG record. Since the reference record was only available in the
FECGDARHA database, the ST analysis was performed on only
12 records from this database (the Challenge database contained
only annotations with reference positions of fetal R-peaks). The
values u and £1.960 were used for the comparison, see Table 7.
According to the obtained results, ST analysis was performed with
high accuracy (associated with low values of © and +1.960) for
records r01, r02, r03, r05, r08, r09, and r10. High values of © and
+1.960 were obtained for the remaining signals and therefore
the ST analysis cannot be considered accurate.

11

The same conclusions can also be drawn when comparing the
graphical outcomes of ST analysis on the estimated and reference
fECG signals, see Fig. 11. For the records r01, r02, r03, r05, r08,
r09, and r10, the values of the estimated T/QRS ratios are very
close to the reference ones, while for the records r04, r06, r07,
r11, and r12 it is the opposite case. For these records, the de-
viations are so significant that the red data points on the graph
are not visible because they are outside the y-axis range. It can
be concluded that ST segment analysis was highly effective in 7
of the 12 records tested. The inaccuracy of ST analysis for the
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Table 7

Mean values u and values of +1.960 determined for ST analysis.
Recordings (=) +1.960 (-)
r01 —0.0033 0.0043
r02 0.0285 0.0350
r03 0.0106 0.0146
r04 0.9227 1.6366
r05 0.0053 0.0195
r06 0.9568 1.7441
r07 4.1834 5.5388
r08 0.0197 0.0046
r09 0.0252 0.0105
r10 0.0107 0.0064
r11 3.8900 4.6441
r12 12.7130 25.6508

remaining recordings could be due to poorer quality of the input
aECG signals and less accurate detection of R oscillations.

In addition to evaluating filtering effectiveness, an evaluation
of the algorithm was also performed in terms of the computa-
tional speed of the algorithm. A comparison of computational
speed depending on filter order M using RLS and FTF algorithms
is presented in Fig. 12(a), and a comparison of the computational
speed as a function of the number of ensemble trials N of EEMD
and CEEMDAN algorithms is shown in Fig. 12(b). An entire 5 min
recording was used to evaluate the computational speed of the fil-
ter. The figure shows that the RLS and FTF filters worked at about
the same speed up to the 20th filter order. At filter orders higher
than this value, the RLS filter required approximately linearly
more computation time, while the FTF filter was able to perform
filtering quickly regardless of the filter order. As for the EEMD and
CEEMDAN methods, there was a linear increase in computational
time depending on the increasing number of ensemble trials N
in both methods. However, the total computational time was
approximately 40% lower for the CEEMDAN method.
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5. Discussion

The results presented in this paper shows that the hybrid
method was effective for most of the recordings tested. The
method was not effective only for recordings that were not cap-
tured well. The influence of the quality of aECG signals on the re-
sulting filtering is shown in Fig. 13. Example (a) presents record-
ing r05, in which high accuracy was achieved in the detection of
fQRS complexes (ACC = 100%). High-quality aECG signals were
captured with this recording, without any significant interference
and with sufficient fECG magnitude. While example (a) presents
recording r11, in which low accuracy was achieved in the detec-
tion of fQRS complexes (ACC = 55.68%). The low effectiveness
of this method was probably caused by the poor quality aECG
signals, which contained interference and the fECG component
acquired low magnitudes. Accurate extraction of fECG from such
aECG signals is almost impossible.

In addition to the quality of aECG recordings, the resulting
filter quality was also affected by the optimal setting of the
parameters of the individual algorithms. As for the FTF algorithm,
they are filtering order M and forgetting factor A. The influence
of setting these parameters for recording a24 is shown in Fig. 14.
Example (a) shows the influence of setting these parameters on
the resulting accuracy of fQRS complexes detection according to
the ACC parameter in the form of a 3D graph. As for this record-
ing, the filter was effective at the following setting: A > 0.9996
and 46 < M < 54. Example (b) shows the waveform of the signal
where the setting was too low, A = 0.9995 and M = 44, which
led to a failure to suppress the mECG component, and, thus, to
inaccurate detection of fQRS complexes (ACC = 65.52%). Example
(c) shows the most effective signal extraction (ACC = 85.04%)
where the optimal setting was achieved at A = 1 and M = 52.

For the CEEMDAN method, the optimal setting of the number
of ensemble trials N and the value of the standard deviation of
the added noise series Ny affected the resulting filtration quality.
The influence of setting these parameters also for recording a24
is shown in Fig. 15. Example (a) shows the influence of setting
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and the fECG component having a low magnitude (recording r11).

these parameters on the resulting accuracy of fQRS complexes
detection according to the ACC parameter in the form of a 3D
graph. As for this recording, the filter was effective at the fol-
lowing setting: N > 50 and Ny, > 0.7. Example (b) shows the
waveform of the signal where the setting was too low, N = 10
and Ngg = 0.2, which led to insufficient suppression of the
mECG component, and, thus, to less accurate detection of fQRS
complexes (ACC = 85.38%). Example (c) shows the most effective
signal extraction (ACC = 96.00%) where the optimal setting was
achieved at N = 60 and Ny4 = 0.9.

An example of a signal extracted using the ICA-FTF-CEEMDAN
hybrid method in comparison with signals extracted using the
other hybrid methods is shown in Fig. 16. It is visible that no
significant differences in extraction quality are seen for the sig-
nals extracted using ICA-RLS and ICA-FTF. While using ICA-RLS-
EEMD and ICA-FTF-CEEMDAN, the CEEMDAN method was able to
suppress the maternal component slightly better. Moreover, the
morphology of the fECG curve was not deformed as opposed to
using the EEMD method.
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Finally, we created both subjective and objective evaluation
and summaries of other significant results in the field of fECG ex-
traction. In this comparison, we tried to reflect key aspects, such
as the algorithm used, the database on which the algorithm was
tested, the accuracy of fetal R-peaks detection using ACC, SE, PPV,
F1 statistical parameters (the average value for all recordings on
which the method was tested) and the advantages and limitations
of the methods, see Table 8.

e In a previous publication [95], a combination of sequential
total variation denoising (STVD) and template subtraction
using PCA (TSPCA) was tested on 8 recordings from the
Fetal ECG Synthetic Database (FECGSYNDB) [96] and on 68
recordings from the Challenge 2013database. The evaluation
of the accuracy of fetal R-peaks detection was assessed using
the SE, PPV and F1 parameters, but only for recordings from
the Challenge database. The authors achieved the following
average values: SE = 90.50%, PPV = 89.40% and F1 =
89.90%, which are better results than those obtained in this
study when testing on the Challenge database, but, on the
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achieved when evaluating the accuracy of fetal R-peaks
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' visual comparison of the extracted signals, it can be argued
3 4 5 6 5 that the method was able to extract fECG as effectively as

Time (s) the method proposed in the present paper.

e In [100], a combination of WT and a clustering-based tech-
nique (CT) was tested on 5 recordings from the ADFECGDB
database and 26 recordings from the Challenge 2013

Fig. 16. An example of r10 signal extracted using the ICA-FTF-CEEMDAN hybrid
method in comparison with signals extracted using the other hybrid methods,
and an example of the input aECG signal.

other hand, worse than when testing on the FECGDARHA
database. Its low computational burden enabling real-time
monitoring was the advantage of the method. Its low per-
formance in noisy signals and distortion of the morphology
of the fECG signal were, however, the disadvantages of the
method.

e The authors in [97] designed a combination of compressive
sensing (CS) and non-negative matrix factorization (NMF),
which they tested on 60 recordings from the Challenge
2013 database and 5 recordings from the Abdominal and
Direct Fetal ECG Database (ADFECGDB), which is available at
PhysioNet [91]. The ADFECGDB database contains 5 identical
recordings (r01, r04, r07, r08 and r10) as well as the FECG-
DARHA database. In the ADFECGDB database, the average
values of SE = 95.30%, PPV = 94.60% and F1 = 94.80% were
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database. When testing on recordings from the ADFECGDB
database, average values of ACC = 97.30%, SE = 98.40%,
PPV = 98.40% and F1 = 98.63% were achieved when
detecting fetal R-peaks. When testing on recordings from
the Challenge database, the average values of ACC = 97.08%,
SE = 97.93%, PPV = 99.11% and F1 = 98.52% were achieved,
which, in both cases, are better results than we achieved.
However, the authors excluded lower quality recordings.
The authors in [101] combined the Savitzky-Golay smooth-
ing filter (SGSF) and polynomial networks (PN). The method
was tested on recordings from the Non-Invasive Fetal ECG
Database (NIFECGDB) available on the PhysioNet [91]. The
authors used a signal to noise ratio (SNR) - a different metric
than what was used in the current study - to evaluate
the extraction, but the residues of the mECG component
were visible in the extracted signals, and it can therefore
be argued that the method worked less effectively than the
method we proposed.
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e The combination of clustering and PCA was tested in [102]
on 5 recordings from the ADFECGDB database, on 20 record-
ings from the Challenge 2013 database, and on recordings
from the FECGSYNDB database containing abnormalities.
When testing on recordings from the ADFECGDB database,
average values of SE = 96.60%, PPV = 95.60% and F1
= 96.09% were achieved for detecting fetal R-peaks. When
testing on recordings from the Challenge database, the av-
erage values of SE = 95.85%, PPV = 95.10% and F1 =
95.47% were achieved, which, in both cases, are better re-
sults than those obtained in the present study. The evalua-
tion of the FECGSYNDB recordings was performed using the
SNR parameter.

e In [103], a combination of CS and ICA was tested on 5
recordings from the ADFECGDB database and on recordings
from the Challenge 2013 database. When testing on record-
ings from the ADFECGDB database, average values of SE
= 92.50%, PPV = 92.00% and F1 = 92.20% were achieved
for detecting fetal R-peaks. When testing on recordings from
the Challenge database, average values of SE = 78.00%, PPV
= 77.00% and F1 = 77.50% were achieved, which are worse
results for both databases than those achieved using the
algorithm proposed in the present paper.

e The authors in [104] tested a combination of extended
Kalman smoother (EKS), ANFIS and differential evolution
(DE) on 75 recordings from the Challenge 2013 database and
55 recordings from the NIFECGDB database. When testing on
recordings from the Challenge database, average values of
ACC = 84.89%, SE = 91.47%, PPV = 92.18% and F1 = 91.82%
were achieved for detecting fetal R-peaks. When testing on
recordings from the NIFECGDB database, the average values
of ACC = 90.66%, SE = 94.21%, PPV = 96.05% and F1

95.12% were achieved. In both cases, these are better
results than those obtained in the present study, but the
authors state that worse fECG extraction could occur at a
lower sampling frequency.

e The combination of RR time-series smoothing (RRTSS) and
template-matching (TM) was tested in [34] on recordings
from the Challenge 2013 database. When detecting fetal R-
peaks, the average value of F1 = 95.00% was achieved.
However, during the extraction, the fQRS complex was dis-
torted, which would affect a deeper morphological analysis
of the signal.

e Finally, we compared the achieved results with our pre-
viously presented algorithms. The algorithms were tested
on the same databases (FECGDARHA database and Chal-
lenge 2013 database), and the results were evaluated us-
ing the same statistical parameters (ACC, SE, PPV, and F1).
In [22], the ICA-RLS-WT algorithm was introduced. Accord-
ing to the statistical evaluation, worse results were achieved
for recordings from both databases (FECGDARHA: ACC =
85.92%, SE = 89.70%, PPV = 92.41%, and F1 = 90.99%,
Challenge 2013: ACC = 68.25%, SE = 72.60%, PPV = 81.31%,
and F1 = 75.68%) than those achieved using the algorithm
proposed in the present paper. Using the WT method, the
algorithm was computationally less complex, but the mor-
phology of the fQRS was distorted. In [46], the ICA-RLS-EMD
algorithm was tested. According to the statistical evalua-
tion, worse results were achieved for recordings from both
databases (FECGDARHA: ACC = 84.73%, SE = 87.99%, PPV
= 92.72%, and F1 = 90.10%, Challenge 2013: ACC = 64.95%,
SE = 69.34%, PPV = 79.62%, and F1 = 72.74%) than those
achieved using the new algorithm. Using the EMD method,
the algorithm was computationally less complex (compared
to the EEMD or CEEMDAN method), but it was less effective
for recordings with low fECG magnitude.
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6. Summary and future directions

Based on both objective and subjective evaluation, the pro-
posed hybrid algorithm proved to be very efficient for signal ex-
traction when tested on both publicly available databases. When
testing on the FECGDARHA database, average values of ACC =
92.98%, SE = 95.33%, PPV = 96.49% and F1 = 95.86% for
detection fQRS were achieved. The error in estimating the fHR
was —1.02+7.02 (u£1.960 ) bpm. When testing on the Challenge
2013 database, average values of ACC = 78.47%, SE = 82.06%, PPV
= 87.90% and F1 = 84.62% for fQRS detection were achieved,
and the error in estimating the fHR was —6.62 £+ 10.33 (u £
1.960) bpm.

In addition, non-invasive ST analysis was performed on
records from the FECGDARHA database, which was accurate in
7 of 12 records with values of u < 0.03 and values of +1.960 <
0.04. A less accurate performance of ST analysis was for record-
ings whose aECG signals were not recorded in sufficient quality
and for which the detection of R oscillations was less accurate.
The dependence of the performance quality on the parameters
setting can be considered as a limitation of the algorithm. The
main benefits of the algorithm can be summarized as follows:

e Use of solely abdominal electrodes — it is thus not necessary
to use a chest lead to obtain the reference mECG signal;
this approach provides more comfort and mobility for the
mother.

e High quality extraction of fECG thanks to the adaptive filter
used.

e Accurate detection of fQRS complexes and determination of
fHR.

e Preservation of signal morphology allowing accurate ST
analysis.

e Time-efficient algorithm enabling implementation in real-
time devices.

The proposed algorithm will be implemented within the pro-
totype of a device for non-invasive fECG monitoring, on which our
team is currently working. Using the device, it will be possible
to record multichannel fECG signals and monitor fHR continu-
ously. The device will be particularly suitable for remote home
monitoring as a supplement to conventional CTG used in clinical
practice.

If this device for non-invasive fECG monitoring and signal
analysis based on ICA-FTF-CEEMDAN became a common part of
clinical practice, or even replaced CTG, fetal hypoxia could be
detected with greater accuracy compared to CTG due to accurate
morphological signal analysis. This could lead to a significant
reduction in the number of unnecessary caesarian sections. Re-
ducing the number of these highly invasive procedures could
lead to less mental and physical strain on the mother (for ex-
ample, post-traumatic stress disorder, abnormal uterine bleeding
or urinary incontinence have been reported in connection with
cesarean section in the literature [105,106]). Another effect could
be a reduction in the financial costs of health care providers
(for example, due to longer postpartum care due to postpartum
complications [ 107]). In addition, neither the mother nor the fetus
would be exposed to emitted ultrasound energy, as is the case
with CTG. Moreover, the measurements would not require highly
skilled personnel thus it could be performed even in the comfort
of home as part of remote monitoring. Compared to the invasive
variant of fECG, the measurement would not only have to be
performed during childbirth, but also during pregnancy, when
heart disorders (for example, arrhythmias) could be detected well
in advance. Furthermore, the fetus would not face the increased
risk of injury to scalp by the scalp electrode associated with
possibility of introducing an infection [108]. In addition to fECG
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Table 8
Comparison of the results with other studies. ACC, SE, PPV, and F1 values shown are average values calculated for all recordings tested.
Author, Algorithm Dataset ACC SE PPV F1 Advantages
source (%) (%) (%) (%) and limitations
Challenge 2013 - 90.50 89.40 89.90 + low computational load
Lee et al. [95] STVD-TSPCA FECGSYNDB - - - - — distortion of fECG morphology
— poor performance for low SNR levels
ADFECGDB 95.30 94.60 94.80 84.00 + single channel method
Gurve et al. [97] CS-NMF Challenge 2013 - - - - — poor performance for high noise
recordings
. + time-efficient method
Sameni et al. [98] mCA-GEVD DalSy B - B B — not tested on recordings with higher
noise level
ADFECGDB 97.30 98.40 98.86 98.63 + allows use in real time applications
Castillo et al. [100] WT-CT Challenge 2013 97.08 97.93 99.11 98.52 + single channel method
— lower quality recordings were not
used for testing
Ayat et al. [101] SGSF-PN NIFECGDB - - - - + single channel method
Y : — not tested on recordings with higher
noise level
ADFECGDB - 96.60 95.60 96.09 + single channel method
Zhang et al. [102] Clustering-PCA Challenge 2013 - 95.85 95.10 95.47 + tested on recordings with
abnormalities
FECGSYNDB - - - - — poor performance for high noise
recordings
ADFECGDB + allows use in real time applications
Da Poian et al. [103] CS-ICA Challenge B 92.50 92.00 9220 + suitable for low-power monitoring
- 78.00 77.00 77.50 .
2013 devices
— not effective for poor quality aECG
signals
. Challenge 2013 84.89 91.47 92.18 91.82 + single channel method
Panigrahy et al. [104]  EKS-DE-ANFIS NIFECGDB 90.66 9421 96.05 95.12 — low performance at lower sampling
frequency
+ single channel method
Liu et al. [34] RRTSS-TM Challenge 2013 - - - 95.00 — poor performance for high noise
recordings
— phase and amplitude of fQRS were
distorted
Previously presented FECGDARHA 85.92 89.70 92.41 90.99 + lower computational load due to the
ICA-RLS-WT use of WT
algorithm [22] Challenge 2013 68.25 72.60 81.31 75.68 — distorts the morphology of fQRS
Previously presented FECGDARHA 84.73 87.99 92.72 90.10 + lower computational load due to the
ICA-RLS-EMD
use of EMD
algorithm [46] Challenge 2013 64.95 69.34 79.62 72.74 — poor performance for recordings with
low fECG magnitude
Proposed ICA-FTF-CEEMDAN FECGDARHA 92.98 95.33 96.49 95.86 1j(rll;:lsoes not distort the morphology of
algorithm Challenge 2013 78.47 82.06 87.90 84.62 — the need for optimal parameter
settings

signals, electrical signals produced by uterus during contractions
could be extracted and analyzed from the recordings.

The computational complexity of individual ICA and FTF meth-
ods was classified as low and the CEEMDAN method as a medium
(see, Table 2), and thus the implementation within real-time
devices appears to be very promising. However, the disadvantage
of the algorithm was its dependence of high performance on
optimal setting of parameters. Parameter optimization leads to an
increase in the computational time of the algorithm. Therefore, if
necessary to reduce the computational time, it is possible to re-
duce the time when optimizing the parameters as follows: (1) The
algorithm setting could be optimized for a shorter signal section
(such with 15, 30 or 60 s) and extraction would be performed
with this setting for the rest of the signal; (2) The optimization
could be also performed at shorter but more frequent intervals
(for example, the first 10 s of the signal would be used for
optimization, the next 60 s of the signal would be extracted with
this setting followed by another 10 s for optimization, etc.).

The algorithm could also find application in other areas where
it seems promising to use adaptive algorithms. These include
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the processing of other human biological signals, such as adult
ECG [109,110], speech signals [111,112] or signals used in
telecommunications [113].

Future research will focus on verifying the effectiveness of
the method in the above-mentioned real prototype device and
its effectiveness will be tested on a larger number of records,
including pathological records. Using the prototype, a dataset will
be created with real fECG records, both physiological and patho-
logical, including different gestational gestation ages and fetal
positions. In addition to non-invasive aECG recordings, a simul-
taneously recorded CTG reference or direct fECG signal using a
scalp electrode so that we can create annotations. The dataset can
then be used by researchers to evaluate the accuracy of filtration
techniques. In the future, it is also possible to perform other
types of morphological analyzes (such as QT interval analysis),
which provide physicians with valuable information about the
health of the fetus. Further research should also focus on the
classification of fECG signals into categories, such as physiological
and pathological, and on the detection of arrhythmias, as in the
case of adult ECG [114,115]. Here, it would be appropriate to
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test algorithms based on artificial intelligence and machine learn-
ing (e.g. ANNs, k-means, k-medoids, support vector machines or
fuzzy logic) within the classification tasks.

7. Conclusion

The results of the study showed that the ICA-FTF-CEEMDAN
hybrid method was able to efficiently extract fECG from abdom-
inal recordings. Also, it achieved more accurate statistical results
in the detection of fQRS complexes than the previously presented
approaches. Compared to the RLS algorithm, the detection of fQRS
complexes by FTF did not improve significantly. However, with
increasing filter order, the RLS filter required linearly more com-
putation time, while the FTF filter was able to perform filtering
quickly regardless of the filter order (the computation time was
approximately 2 s for filter order values ranging from 1 to 100).
When comparing the EEMD and CEEMDAN methods, the CEEM-
DAN method achieved slightly better suppression of the maternal
component. Further, the shape of the fECG waveform was not
as deformed as when using EEMD. Preservation of the signal
morphology has a fundamental influence on the subsequent mor-
phological analysis of the fECG signal. As for both methods, there
was a linear increase in computational time for both methods
depending on the increasing number of ensemble trials in both
methods, but the total computational time for the CEEMDAN
method was approximately 40% lower. The proposed algorithm
thus proved to be effective both in terms of accuracy of fHR
determination and in terms of computational speed, i.e. enabling
its implementation within real-time operating devices. Moreover,
no additional lead is needed to record the reference mECG from
the mother’s chest, leading to greater maternal comfort and mo-
bility. The main benefit of this approach is that it can obtain the
signal of a sufficient quality to perform an accurate ST analysis.
This confirms the assumption that non-invasive fECG monitoring
can achieve as accurate results as when monitored invasively.
Thus, non-invasive fECG appears to be a promising alternative
to CTG and invasive fECG, which are used in the today’s clinical
practice. To verify the effectiveness of this combined algorithm,
it would be necessary to have a database with a larger number
of signals. Unfortunately, there are still relatively a few databases
with real recordings and annotations. Therefore, future research
will focus on the design of a monitoring device for fECG, where
this algorithm will be tested on our own data. Furthermore, the
algorithm will also be tested on pathological recordings, and the
research will also focus on the classification of fECG signals into
categories, such as physiological and pathological and other types
of morphological analysis (such as QT interval analysis).
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