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Abstract: Remote-sensing-driven urban change detection has been studied in many ways for decades
for a wide field of applications, such as understanding socio-economic impacts, identifying new
settlements, or analyzing trends of urban sprawl. Such kinds of analyses are usually carried out
manually by selecting high-quality samples that binds them to small-scale scenarios, either tem-
porarily limited or with low spatial or temporal resolution. We propose a fully automated method
that uses a large amount of available remote sensing observations for a selected period without the
need to manually select samples. This enables continuous urban monitoring in a fully automated
process. Furthermore, we combine multispectral optical and synthetic aperture radar (SAR) data
from two eras as two mission pairs with synthetic labeling to train a neural network for detecting
urban changes and activities. As pairs, we consider European Remote Sensing (ERS-1/2) and Landsat
5 Thematic Mapper (TM) for 1991–2011 and Sentinel 1 and 2 for 2017–2021. For every era, we use
three different urban sites—Limassol, Rotterdam, and Liège—with at least 500 km2 each, and deep
observation time series with hundreds and up to over a thousand of samples. These sites were
selected to represent different challenges in training a common neural network due to atmospheric
effects, different geographies, and observation coverage. We train one model for each of the two
eras using synthetic but noisy labels, which are created automatically by combining state-of-the-art
methods, without the availability of existing ground truth data. To combine the benefit of both remote
sensing types, the network models are ensembles of optical- and SAR-specialized sub-networks. We
study the sensitivity of urban and impervious changes and the contribution of optical and SAR data
to the overall solution. Our implementation and trained models are available publicly to enable
others to utilize fully automated continuous urban monitoring.

Keywords: urban change detection; continuous urban monitoring; neural network; SAR; optical
multispectral; deep-temporal; ERS-1; ERS-2; Landsat 5 TM; Sentinel 1; Sentinel 2

1. Introduction

Digital remote-sensing-driven land cover and land use (LCLU) change detection
with multi-temporal satellite data has been studied for decades, dating back to the early
1970s [1]. Due to the reliance of repeat cycles and sensor technologies of satellite-based
remote sensing, it is sought after by urban change detection to understand socio-economic
impacts and effects, identifying new settlements, monitoring urban growth, or analyzing
trends of urban sprawl, just to name a few. For these fields, knowledge of how urban
and human-made structures change over time is crucial and, depending on the exact
application, can require high spatio-temporal resolution. In addition, automatic processing
is desired if large-scale analysis is required to monitor larger areas over a longer time and to
make available the methods and results to a wider range of interdisciplinary users to thrive
on remote-sensing-based urban change detection and monitoring.

In our work, we propose an ensemble neural network architecture called the Ensemble
of Recurrent Convolutional Neural Networks for Deep Remote Sensing (ERCNN-DRS).

Remote Sens. 2021, 13, 3000. https://doi.org/10.3390/rs13153000 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7467-8218
https://orcid.org/0000-0001-8405-6658
https://orcid.org/0000-0001-8187-8218
https://orcid.org/0000-0001-8179-5949
https://orcid.org/0000-0001-7944-8956
https://doi.org/10.3390/rs13153000
https://doi.org/10.3390/rs13153000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13153000
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13153000?type=check_update&version=3


Remote Sens. 2021, 13, 3000 2 of 31

Detecting changes is tuned for impervious and built-up land covers and is trained in two
variants to detect urban-related changes and activities for two eras. The first era spans
1991–2011 with the use of ERS-1/2 and Landsat 5 TM missions as a pair. The second era is
2017–2021 with the Sentinel 1 and 2 pair. For the former, we consider time windows for
analysis of one year (1y). Six months (6m) are used for the latter due to the higher temporal
resolution between observations. We avoid the need for manual ground truth generation
by automatically creating synthetic but noisy labels using a combination of state-of-the-art
methods. These labels are used for training the ERCNN-DRS in a supervised setting.
For every era, we combine SAR and optical missions as pairs to combine their remote
sensing advantages, such as distinguishing impervious land covers with optical and higher
temporal resolution with reduced atmospheric disturbance for SAR observations. Our
method does not require the manual selection of observation samples. We use all available
observations as long as they can be properly co-registered and do not contain corrupt
information. This can usually be done with little effort, which paves the way for automatic
processing. For optical data, we remove clouds using information already available directly
at the optical data sources. Our solution aims at a large degree of automation to either train
or use the neural network models for different Areas of Interest (AoI) without the need of
manual ground truth generation or selecting high-quality observation samples. We use
two AoIs (Rotterdam and Limassol) for training and validation and one (Liège) for testing.
Each AoI is at least 500 km2 with hundreds to thousands of combined SAR and optical
observations (so-called deep-temporal). We consider 1y/6m windows for detecting urban
changes that can be continuously carried out over longer periods, which we refer to as
continuous urban change and activity monitoring with deep-temporal remote sensing data.

ERCNN-DRS is trained to detect urban changes with a varying number of optical or
SAR observations of different qualities due to atmospheric effects, different solar irradiance
and seasons, and partial updatesdue to out-of-swath conditions. The analysis windows
required were intentionally kept short to allow flexibility in selecting time ranges of interest.
Our goal is to offer a trained network that can be applied with minimal effort to an AoI for a
short period of 1y for ERS-1/2 and Landsat 5 TM, or 6m for Sentinel 1 and 2 mission pairs.

Our work first summarizes related work in Section 2 and differentiates it to our study.
In Section 3, we describe the data types used and their pre-processing to retrieve trainable
data. Our proposed neural network architecture is discussed in Section 4, including the
hyper-parameters for the two different eras and the training and validation methodology.
Section 5 contains two ablation studies to document the performance of the trained models
with respect to sensitivity to changes and the impact of SAR and optical data types. Futher,
we show some examples from the Liège test site for both eras. A final discussion with
current limitations and further improvements is carried out in Section 6. Section 7 concludes
our work.

2. Related Work

The detection of urban changes has become one of the most important applications
in remote sensing science. Urban objects include man-made structures such as airports,
buildings, or roads. An urban structure type (UST) was proposed by Lehner et al. [2], and
we alias urban as the defined built-up types. These artificial structures dynamically vary
in time and space, and therefore, it is challenging to detect them accurately. Due to the
public availability of various high-resolution remote sensing data sets, it has provided a
large number of possibilities for extracting urban information.

As mentioned earlier, (urban) change detection and monitoring with remote sensing
data has been of interest for over half a century. Table 1 gives a non-exhaustive overview
of other work with different properties, which we differentiate our work from. A lot more
work was carried out [3], and we only name some as reference. Our work is listed at the
bottom of the table for direct comparison. We consider four important properties: change
detection method, missions used, number of observations, and scaling of the method.
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Throughout the last decade, change detection for remote sensing data has increas-
ingly embraced neural networks, including deep neural networks with Multilayer Per-
ceptron (MLP) [4,5] as one of their most simple representatives. Deep learning is able to
fulfill the needs of remote sensing image processing, such as classification or segmenta-
tion [6]. Before the shift to deep neural networks, change detection was driven by Principal
Component Analysis [7] (PCA), Decision Trees [8], Change Vector Analysis [9] (CVA),
Difference or Ratio methods [10], Markov chains [11], and other methods [12]. Some
neural network-based approaches existed before 2010. However, with the recent advent
of deep neural networks, many architectures have been invented that have resulted in
better performance and methods predesignated to processing large amounts data. This is
fueled by the availability of dedicated and optimized hardware (e.g., GPU accelerators),
the amount of large storage (big data) and easy-to-use software solutions, such as the train-
ing frameworks Tensorflow ( https://www.tensorflow.org/; accessed on 29 July 2021) or
Pytorch ( https://pytorch.org/; accessed on 29 July 2021). Many studies in recent years
have shown interest in deep learning technologies [13–15]. Deep neural networks also
move feature extraction and mapping into the neural network architecture and its training
process, which is easier to handle and can lead to unprecedented performance [16].

Another property is related to the mission types. Some works consider either optical
multispectral or SAR solemnly to identify changes. The most commonly used satellite data
for analyzing urban changes are Landsat space images [14,17]. The Landsat program has
monitored the Earth’s surface since 1972 and provided data from three different devices:
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and the Multispectral
Scanner System (MSS). However, Landsat data, as well as other multispectral optical
sensors, are extremely sensitive to weather changes and the time of day, which requires
further pre-processing. Research on urban changes from Landsat data has attracted the
interest of many scholars. For example, a novel approach for extracting high-frequency
urban land cover changes by using clear-sky Landsat observations was developed by
Jing et al. [18].

For optical multispectral observations, a large range of index methods exists, which
are able to extract urban and impervious areas. To recognize urban objects, scientists
have traditionally relied on built-up indices [19,20]. Built-up indices are often fast and
accurate to extract urban information, and therefore, their usage is conventional. Several
studies have used different indices to extract urban areas [21]. These are, for example,
the Normalized Difference Built-up Index (NDBI) [22], the Normalized Difference Imper-
vious Surface Index (NDISI) [23], the Enhanced Built-up and Bareness Index (EBBI) [24],
Combinational Biophysical Composition Index (CBCI) [25], or the Enhanced Normalized
Difference Impervious Surface Index (ENDISI) [26].

Even for SAR data, some works propose methods to identify urban changes [27,28],
which demonstrate that information is immanent to designate urban changes. The advan-
tages of microwave remote sensing with respect to optical features are in weather and
atmospheric independence, the possibility to monitor during night time, and the high
sensitivity to fine changes [29]. The potential of radar data was investigated much less due
to the often difficult data pre-processing phase [30]. Other works [8,31,32] have identified
positive synergies by combining optical and SAR observations. Nevertheless, different
studies have shown that radar technology is an excellent approach for extracting urban
information. For instance, Ansari et al. [33] used multi-resolution texture features from
polarimetric SAR images to analyze urban changes. On the other side, a simple and fast
method was developed to identify structural changes in urban environments using SAR
imagery [34]. Urban mapping and delineation with the help of SAR data were presented in
other studies as well [30,35,36].

https://www.tensorflow.org/
https://pytorch.org/
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Table 1. A non-exhaustive list of other work on (urban) change detection with remote sensing data. Our work is listed at the bottom for comparison.

Change Detection Method Missions Number of Observations Resolution (m/pixel) Area (km2) Authors/Reference

Fully Convolutional Siamese OSCD [37] (Sentinel 2), 24 pairs (2015–2018), down to 10, 864.0 (OSCD) Daudt et al. [38]
Networks (FCNN) AC [39] (Aerial, RGB only) 12 pairs (2000–2007) 1.5 16.3 (AC)

Multiple- Coherent Change Sentinel 1 17 (2015–2016) 10 120.0 Manzoni et al. [34]
Detection (M-CCD)

Pulse Coupled Neural Network Sentinel 1 and 2 6 pairs (2015–2017) 10 1.75 Benedetti et al. [31]

Curvelet, Contourlet, and UAVSAR 2 pairs (2009 and 2015) 3.2 N/A (small) Ansari et al. [33]
Wavelet Transforms

Maximum Likelihood Landsat 2, 5, 7, and 8 5 (1978–2017) 30, 60 for Landsat 2 1129.4 Kundu et al. [40]

TSFLC: Temporal Segmentation and Landsat TM/ETM+, OLI 68 (1986–2017) N/A (ca. 30) 1997 Jing et al. [18]
Trajectory Classification

Omnibus and Change Vector Sentinel 1 and 12+11 (2014–2016) both 30 490 and 3500 Muro et al. [32]
Analysis (CVA) Landsat 7,8 8+6 (2015)

Decision Trees ALOS PALSAR and 174 (eff. 55) and 30 17,076 Qin et al. [8]
Landsat TM/ETM+ 20 (2006–2011)

Regression Model Landsat MSS/TM/ETM+ and 10 (1977–2008) and 30 and 3660 Lu et al. [41]
QuickBird 2 (calibration only) 0.6

Modified Ratio Operator + ENVISAT ASAR and 2 pairs (1998/99–2008) 30 N/A (small) Ban et al. [42]
Kittler-Illingworth ERS-2

Topologically Enabled Spot 2 and 5 3 (2004–2010) 10 and 5/2.5 940 Wania et al. [43]
Hierarchical Framework

Spectral and Textural IKONOS, GF-1, and total of 6 (1, 2, and 3) 0.5–2 1.4, 0.4–0.45, and Xiao et al. [10]
Differences Aerial pairs for 2000–2016 0.24–1.1

ERCNN-DRS ERS-1/2 and Landsat 5 TM, 1121 and 638 (1991–2011), 30, see Table 2 our study
Sentinel 1 and 2 2067 and 640 (2017–2021) 10
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The number of observations used for identifying urban change is the third property.
Most of the existing work uses only a few high-quality observations (i.e., image pairs) to in-
dicate changes. These samples are carefully identified and usually are from the same season
to mitigate the effect of seasonal changes and with the best-case atmospheric conditions,
if optical. Some studies attempt to use more observations, which are either averaged [14]
or used for statistical analysis [8]. Both methods are less sensitive to changes as either
the sampling interval is too coarse or averaging filters suppress changes. In addition,
benchmark data sets, such as OSCD [37] or DeepGlobe 2018 [44], exist. Despite their high
quality, these share the same limitations of including only a few multi-temporal samples
from a single sensor.

Access to observations and high quality products is also made available through
platforms such as the Thematic Exploitation Platform (TEP, https://eo4society.esa.int/pla
tform-services/; accessed on 29 July 2021) or Data and Information Access Services (DIAS,
https://earsc.org/dias-comparison/; accessed on 29 July 2021). The latter provides access
to Copernicus ( https://www.copernicus.eu/; accessed on 29 July 2021) and Sentinel data,
information products from six operational services of Copernicus, and cloud-based tools
for analysis. The former also provides the Urban TEP [45] (U-TEP), which focuses on the
effective and efficient urban management and safeguarding of livable cities. It offers its
users high-performance data access and processing, analysis and visualization services,
and a customized workplace for communication and the means to share algorithms, data,
and services. The platform offers a number of globally processed data products, such as
the World Settlement Footprint 2015 [46] (WSF) derived from Landsat 8 and Sentinel 1
data, Global Urban Footprint [47] (GUF) derived from TerraSAR-X and TanDEM-X radar
data, and TimeScan product derived from Landsat and Sentinel 1 and 2 imagery, providing
a cloud-free representation of spectral and temporal characteristics of the land surface.
The products on these platforms are of high quality but show similar temporal limitations
as the aforementioned data and studies.

The last property is the applicability and demonstration of large-scale urban change de-
tection. It is common that studies demonstrate their applicability over smaller areas, limited
time frames, or lower temporal resolution. In addition, their requirement of high-quality
data induces time-consuming and labor-intensive pre-processing that is difficult to autom-
atize. Exceptions are works such as [8,14,18], which attempt larger scale demonstrations.
Furthermore, the transfer to different remote sensing missions is underrepresented, which
results in the use of either different missions of the same type (optical or SAR) or only one
optical/SAR pair. The applicability to a broader range of sensors is not directly answered.

Compared to other studies, our work does not require high-quality samples, level 2
products, averaging over larger periods, or observations of matching seasons. Instead,
we intend to use most of the data available as long as it can be properly co-registered,
which gives access to higher frequency information. Furthermore, we extend the idea of
combining SAR and multispectral optical observations in an ensemble neural network
for overall better performance. We also demonstrate the flexibility of our solution to
different sensor generations over two eras spanning almost 25 years combined. This is
an important pre-requisite for long-term urban monitoring as it is not limited to a single
remote sensing mission. Finally, due to no available ground truth data with the required
temporal resolution, mission pairs, and temporal extent, we create synthetic noisy labels to
train the neural network.

3. Data Pre-Processing

For the two eras, we use two different remote sensing mission pairs to include both
optical multispectral and SAR observations: ERS-1/2 and Landsat 5 TM for 1991–2011,
and Sentinel 1 and 2 for 2017–2021. Three different AoIs are used, as shown in Table 2, with
different resolutions (m/pixel) across every era due to sensor capabilities. The selection of
the AoIs, the data acquisition and pre-processing methods, and time series preparation we
applied are described below.

https://eo4society.esa.int/platform-services/
https://eo4society.esa.int/platform-services/
https://earsc.org/dias-comparison/
https://earsc.org/dias-comparison/
https://www.copernicus.eu/
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3.1. Selection of AoIs

The three AoIs—Rotterdam, Liège, and Limassol (see Table 2)—were selected due to
different weather and seasonal conditions. Rotterdam is subject to high cloud coverage [48],
snow/ice, whereas Limassol has a lower probability of these but also offers less observa-
tions over time. In addition, both sites are in different geographies and show different
characteristics of impervious areas. As we discuss in Section 3.3.2, they require different
parameters for creating the synthetic labels. Furthermore, the inclusion of two different
eras gives access to a large time horizon and demonstrates the utility of our approach for
different remote sensing missions. We intentionally use L1 products due to their wide
temporal and spatial availability; our solution, however, is not bound to L1 products alone
and can encompass other, higher quality levels. We used different reference systems due to
our existing processing pipelines, which are not crucial for our study.

Table 2. AoIs of the three sites for both eras with bounding box coordinates and reference systems.
See Appendix A for a map of AoIs.

Site
AoI Bounding Box Reference Area
(Long, Lat)/(East, North) System (km2)

ER
S-

1/
2

an
d

La
nd

sa
t5

TM

Rotterdam (3,923,101, 3,202,549), (3,959,241, 3,222,337) EPSG:3035 712.9
Liège (3,988,121, 3,058,430), (4,024,261, 3,078,219) EPSG:3035 713.3
Limassol (6,403,482, 1,601,833), (6,439,623, 1,621,621) EPSG:3035 718.6

Resolution SAR: 12.5 m/pixel
Optical: 30 m/pixel (interpolated to 12.5 m/pixel)

Se
nt

in
el

1
an

d
Se

nt
in

el
2 Rotterdam (4.2033, 51.7913), (4.5566, 51.9854) EPSG:4326 523.6

Liège (5.3827, 50.5474), (5.7280, 50.7350) EPSG:4326 508.4
Limassol (32.8925, 34.6159), (33.1482, 34.8365) EPSG:4326 576.2

Resolution SAR/Optical: 10 m/pixel

Figure 1 shows the available observations over time, within each possible observation
window of one year or six months, as we discuss later. Usually, remote sensing missions are
configured with fixed repeat cycles so that sampling of observational data follows certain
patterns. However, we consider larger time ranges where transition phases of missions
and processing changes are common. In addition, further observations are discarded due to
failed co-registration because of atmospheric effects, such as clouds, dust, and water vapor,
and other effects caused by anomalies, such as banding, detector failure, and data loss.
As a result, usable observations are irregularly spaced, and hence, every fixed observation
window can include a different amount of observations. These variations add an additional
level of complexity when it comes to detecting changes. In some cases, the number of
available observations can even drop below a meaningful threshold. We combine both
optical and SAR observations to provide enough information for detecting changes, even
for shorter time frames of up to one year.

Liège was selected as the testing AoI with different observation frequencies and
a higher likeliness of cloud coverage degrading optical information quality. The same
window properties as for the other two AoIs are used (as described later).

3.2. Data Acquisition and Pre-Processing

The four different mission products used were obtained from three different data
sources. Table 3 summarizes the sources, used products, and the number of observations
available. The number of observations that were removed due to failed co-registration
or corrupted data are given in parenthesis. In the following, we briefly describe the
pre-processing applied to the products.
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0

50

100
Limassol

ERS-1/2 (ascending)
ERS-1/2 (descending)

Landsat 5 TM
Sum of observations ( = 1s)

0

50

100
Rotterdam

1992-01
1994-01

1996-01
1998-01

2000-01
2002-01

2004-01
2006-01

2008-01
2010-01

0

50

100
Liège

ERS-1/2 & Landsat 5 TM

0

50

100

150 Limassol
Sentinel 1 (ascending)
Sentinel 1 (descending)

Sentinel 2
Sum of observations ( = 2d)

0

50

100

150 Rotterdam

2017-01
2017-07

2018-01
2018-07

2019-01
2019-07

2020-01
2020-07

2021-01
0

50

100

150 Liège

Sentinel 1 & 2

Figure 1. The number of remote sensing observations for the windows wt
i,j for ERS-1/2 and Landsat

5 TM (left) and the Sentinel 1 and 2 (right) era. The x-axis denotes the start times t of the according
windows wt

i,j. The accumulated observations (≤Ω) for the given step size δ are in gray. Areas in
red/orange denote windows with observations <ω; orange marks the end of mission/data.

Table 3. The number of total observations available with removed ones in parenthesis, and corre-
sponding data sources with a short descriptor for the selected product.

Site
SAR Observations Optical Multispectral
(Ascending and Descending) Observations

ER
S-

1/
2

an
d

La
nd

sa
t5

TM

Rotterdam 974 (−118) 753 (−434)
Liège 934 (−89) 888 (−620)
Limassol 291 (−27) 380 (−61)

Source/Product ESA/SAR_IMP_1P USGS/L4-5 TM C1 L1

Se
nt

in
el

1
an

d
Se

nt
in

el
2

Rotterdam 1603 (−4) 278 (−10)
Liège 1040 (−0) 332 (−35)
Limassol 468 (−0) 407 (−35)

Source/Product Sentinel Hub/ Sentinel Hub/L1C
SENTINEL1_IW_[ASC|DSC]

3.2.1. ERS-1/2

ESA’s Earth Online SAR_IMP_1P ( https://earth.esa.int/web/guest/data-access/br
owse-data-products/-/article/sar-precision-image-product-1477; accessed on 29 July 2021)
product is used for ERS-1/2 observations. They are single-polarization (VV) backscatter
intensity in Ground Range Detected (GRD) with a pixel size of 12.5× 12.5 m and a number
of looks of three. Orbits are separated into ascending and descending directions throughout
the processing pipeline. Further processing is applied to geometrically terrain correct and
co-register with SRTM 1Sec HGT Digital Elevation Model (DEM) using the ESA SNAP
( https://step.esa.int/main/; accessed on 29 July 2021) toolset with a final clipping to the
AoI and re-projection to EPSG:3035. All transformations use nearest neighbor interpolation
to retain the values of the original data. Values are retained as a Digital Number (DN) and
stored as a single-precision floating point data type.

3.2.2. Landsat 5 TM

Landsat 5 TM L4-5 TM C1 L1 data are obtained from USGS ( https://earthexplorer.usgs
.gov/; accessed on 29 July 2021) with all seven bands and the 16-bit quality band (BQA). We
apply top-of-atmosphere (TOA) reflection correction and co-register a final re-projection
to EPSG:3035 with nearest neighbor interpolation. We use the 16-bit quality bands to
filter out clouds, cloud shadows, snow/ice, and over-saturation (value: 0b10101011100

https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/sar-precision-image-product-1477
https://earth.esa.int/web/guest/data-access/browse-data-products/-/article/sar-precision-image-product-1477
https://step.esa.int/main/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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for masking clouds, cloud shadows, and snow/ice with medium confidence; masking
saturation for five or more bands). All bands are used and super-sampled with nearest
neighbor interpolation to 12.5× 12.5 m to fit the resolution of ERS-1/2. Values are stored
as single precision floating point numbers and normalized to a range of (0.0, 1.0).

3.2.3. Sentinel 1 and Sentinel 2

Both Sentinel products are retrieved from Sentinel Hub ( https://www.sentinel-hub.c
om/; accessed on 29 July 2021) using the eo-learn API ( https://github.com/sentinel-h
ub/eo-learn; accessed on 29 July 2021). Sentinel 1 SENTINEL1_IW_[ASC|DSC] contains
the orthorectified and terrain corrected (with COPERNICUS DEM) observations as GRD.
They are dual-polarized (VV+VH) intensity backscatter in Interferometric Wide (IW) swath
mode. The equivalent number of looks (ENL) is 4.4. Same as for ERS-1/2, we kept the
ascending and descending orbit directions separate. Sentinel 2 L1C data are comprised
of 13 bands with TOA reflection correction. Clouds are masked with the available L1C
cloud mask (CLM). Observations with a maximum cloud coverage of over 80% were
removed. Both Sentinel 1 and 2 are left in EPSG:4326 (WGS84) projection with a resolution
of 10× 10 m per pixel. The Sentinel Hub provides all bands interpolated to this resolution
already. For Sentinel 1, values are retained as DN and stored as a single-precision floating
point data type. For Sentinel 2, values are stored as single-precision floating point numbers
and normalized to a range of (0.0, 1.0).

3.3. Time Series Preparation

The observations are further processed by temporal stacking, assembling, tiling,
and windowing into periods used for the change detection with the assignment of a
label. Hence, each window is a data sample containing spatial and temporal constraint
observations. These steps are carried out for every era separately. Figure 2 shows the basic
steps, which we explain in detail in the following.

Bands:
optical +
SAR

2. windowing +
labeling

𝛥: 6m/1y

𝑡
1. temporal stacking +

assembling +
tiling

Example illustration of temporal stacking of
Sentinel 2 observations of AoI Rotterdam

𝒐, 𝒔𝑎𝑠𝑐, 𝒔𝑑𝑠𝑐𝒐𝑡, 𝒔𝑎𝑠𝑐𝑡 , 𝒔𝑑𝑠𝑐𝑡 𝒐𝑡, 𝒔𝑎𝑠𝑐𝑡 , 𝒔𝑑𝑠𝑐𝑡

𝒂𝑖,𝑗
𝒘1𝑖,𝑗

𝑡
𝑡

𝒘2𝑖,𝑗𝒘3𝑖,𝑗
𝒂𝑡𝑖,𝑗

You can find all data on our GitHub repository:
https://github.com/It4innovations/ERCNN-DRS_urban_change_monitoring

Figure 2. Two-step procedure for data preparation: From the series of available observations to the
windows used for training/inference.

3.3.1. Temporal Stacking, Assembling, and Tiling

Optical observations ot ∈ Rw×h×(bOPT+1) at time t over an AoI with a width w and
height h contain the available optical multispectral bands bOPT plus one mask band.
The mask band indicates invalid pixels, e.g., due to cloud coverage, over-saturation,
snow/ice, or being outside of swath. SAR observations are separated by orbit directions,
such that sasc

t ∈ Rw×h×(bSAR+1) are the intensity backscatter polarizations (bSAR) plus a
mask band of ascending orbit direction. SAR observations from descending orbit directions
sdsc

t are defined accordingly. For each era, the aforementioned data are temporally stacked
independently to form a time series of observations. This results in o ∈ RtOPT×w×h×bOPT ,
sasc ∈ Rtasc

SAR×w×h×bSAR , and sdsc ∈ Rtdsc
SAR×w×h×bSAR , with a total of tOPT , tasc

SAR, and tdsc
SAR

observations, respectively. The masks are used to denote the pixels from each observation

https://www.sentinel-hub.com/
https://www.sentinel-hub.com/
https://github.com/sentinel-hub/eo-learn
https://github.com/sentinel-hub/eo-learn
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that are to be ignored. Their values are substituted by the previous observation (or zero
if not available). This guarantees that, at every observation, there is full coverage of the
AoI with acceptable approximations. However, the more pixels are masked out over a
longer period, the uncertainty increases (e.g., due to cloud conditions or over-saturation).
The remote sensing kinds are combined into one time series with every observation aggre-
gating optical and ascending and descending SAR data. This introduces two risks: at an
observation time point, inconsistencies between the remote sensing kinds can occur; the
amount of redundant data is increased (i.e., non-sparse representation). However, urban
changes are expected to span across a longer time frame, which mitigates these effects. We
also expect the neural network to become tolerant to smaller inconsistencies. Even though
redundant data are introduced, it simplifies the ingestion during the training phase and
further online processing is not required.

All three time series observations o, sasc, and sdsc are assembled into one time series
a ∈ Rtall×w×h×b, with tall = tOPT + tasc

SAR + tdsc
SAR as the accumulated observations of all

three kinds and b = bOPT + 2 ∗ bSAR as the accumulated bands. We assume that no
two observations happen simultaneously. Otherwise, the total number of accumulated
observations would be less as some individual observations share the same time stamp.

The accumulated time series of each AoI is tiled into x× y pixel blocks with consecu-
tive non-overlapping tiles. Only full tiles are considered with no padding applied. In the
following, we continue with each tile so that we can use ai,j ∈ Rtall×x×y×b with x and y
as spatial tile extent and i ∈ N : i ∈ [0, bw/xc], j ∈ N : j ∈ [0, bh/yc]. One aggregated
observation at time t for a tile (i, j) would then be at

i,j ∈ Rx×y×b, which contains all bands,
optical and SAR. Our method does not depend on the tile size, which can be smaller or
larger, as long as the applied filters of the neural network do not exceed these tiles. Based
on memory considerations of our training platform, a size of x = y = 32 was selected and
is used in the following to facilitate reading.

3.3.2. Windowing and Labeling

The tiled time series is further windowed into partially overlapping periods to provide
all data for the change detection. Each window tile wt

i,j, starting at time t spans a fixed
observation period ∆. We use observation periods for ERS-1/2 and Landsat 5 TM of one
year and six months for Sentinel 1 and 2. The higher repeat cycles of Sentinel missions
(ca. 6/5 days for Sentinel 1 and 2 versus ca. 35/16 days for ERS-1/2 and Landsat 5 TM)
allows shorter periods while still covering the usual time frame to detect urban changes.
We receive wt

i,j ∈ Rl×32×32×b with l as the number of observations within the observation
period. As window sizes are based on calendar months, the number of observations
l ∈ N : l ∈ [ω, Ω] varies, with ω as the lower limit and Ω as the upper limit. Windows with
less than ω observations are less likely contain enough information for change detection
and are discarded. In Figure 1, these discarded windows are in the highlighted (red/orange)
time frames. The upper bound Ω is added to limit the maximum memory footprint of each
window and is defined to hold all observations of every window possible. This is controlled
with a parameter δ to specify the minimum difference between two observations. For the
ERS-1/2 and Landsat 5 TM era, it is set to δ = 1 second

observation , which considers all observations.
One second is the highest temporal resolution for observation data; we assume no two
observations occur at the same second. For Sentinel 1 and 2, it is set to δ = 2 days

observation .
For the latter, this significantly reduces the potential maximum window size of over 300
(see Figure 1) down to a maximum of d 6 months

2 days
observation

e = 92 observation(s). This is acceptable

due to urban changes occurring at a much larger time scale and the original high number of
observations per window is a result of nearby paths/rows where only a subset of the AoI
is updated. These partial observations are mostly taken into account due to the temporal
stacking after all, only discarding overlapping swaths.

In the following, we consider windows of the form wt
i,j ∈ RΩ×32×32×b. As the

number l of observations varies for each window, we pad the remaining Ω− l observations.
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As we show in Section 4.1, we apply masking in the neural network to discard these
padded observations. Moreover, for each window, a synthetic label is created for the
training sites Rotterdam and Limassol to provide a guideline for the supervised training.
A synthetic label ŷt

i,j ∈ R32×32 is created for each tile and window at time t as

ŷt
i,j :=scm(wt

i,j[b
asc
SAR], wt

i,j[b
dsc
SAR]) · ocm(wt−∆

i,j [bOPT ], wt+∆
i,j [bOPT ]) (1)

with

scm(pasc, pdsc) =
OMNI(pasc, σ, η) + OMNI(pdsc, σ, η)

2
(2)

and

ocm(p−1, p+1) = abs

(
ENDISIc

(
(p−1)meant , α, γ

)
−

ENDISIc
(
(p+1)meant , α, γ

))
.

(3)

The operator [·] returns the subset of bands from the window. Hence, wt
i,j[bOPT ] ∈

RΩ×32×32×bOPT ( RΩ×32×32×b and accordingly for the SAR bands in ascending and de-
scending orbit directions. The variable ∆ is the observation period for the windows and
is fixed for each era. Hence, windows wt−∆

i,j [bOPT ] and wt+∆
i,j [bOPT ] denote the windows

of the immediate preceding and subsequent observation periods relative to the window
starting at time t.

The function scm creates a change map using the omnibus test statistic, as proposed by
Conradsen et al. [12], and herein denoted as OMNI(·, σ, η). Its parameters σ and η are the
significance and ENL for the multi-looking SAR data, respectively. ENL has been rounded
to the closest integer. The significance is empirically identified (see Table 4), and the SAR
related changes from the omnibus test statistic are averaged over the two orbit directions.

Table 4. Parameters of our proposed method used for creating the windows wt
i,j and synthetic labels

ŷt
i,j as needed for the training and validation processes.

ERS-1/2 and Sentinel 1 and 2
Landsat 5 TM

Parameter Mnemonic Rotterdam Limassol Rotterdam Limassol
and Liège and Liège

b[asc|dsc]
SAR SAR bands 1 (VV) 1 (VV) 2 (VV + VH) 2 (VV + VH)

bOPT optical bands 7 7 13 13
α shift 0.25 0.5 0.25 0.5
γ scale 30.0 30.0 10.0 10.0
σ significance 0.1 0.1 0.001 0.001
η ENL 3 3 4 4
δ step

( ·
observation

)
1 s 1 s 2 days 2 days

ω min. window size 25 25 35 35
Ω max. window size 110 110 92 92

It is important to note that we did not clip the DN values of ERS-1/2 or Sentinel 1
and used single-precision floating point numbers, as recommended for the omnibus test
statistic in [49]:

Saturating the extreme pixel values [...] is unfortunate in our situation where
the dominating changes detected are due precisely to those strongly reflecting
human-made objects [...]. Pixels that are saturated at several timepoints may not
be detected as change pixels, which is potentially wrong. The best way to handle
this is to store the data as floats [...].
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An optical change map is created with ocm, which takes the preceding and subsequent
observation period. The operation (·)meant ⊂ R32×32×bOPT is the arithmetic mean over time
applied individually to each band. A clipped index ENDISIc is computed thereof, which
is an extended version of the Enhanced Normalized Difference Impervious Surfaces Index
(ENDISI) that was originally proposed in [50]. According to a recent study [21]: “The
ENDISI algorithm [...] effectively distinguished impervious surface from the background.
It not only eliminated the impacts of water bodies, but also suppressed the impacts of most
bare soil and arid land”. ENDISIc ⊂ R32×32 is constructed as

ENDISIc =


0, if ENDISIe < 0
1 if ENDISIe > 1
ENDISIe, otherwise

(4)

with

ENDISIe = (ENDISI + α−MNDBI+ − 2 ·MNDWI+)γ, (5)

MNDBI+ =

{
MNDBI, if MNDBI > 0
0, otherwise

(6)

and

MNDWI+ =

{
MNDWI, if MNDWI > 0
0, otherwise

. (7)

For better readability, we omit the function arguments and consider the ENDISIc

and subsequent functions to operate element-wise on each pixel. Function ENDISIc clips
the values of ENDISIe between (0, 1), denoting impervious areas that are urban due
to their built-up/impervious reflectance characteristic with values closer to one. Values
closer to zero indicate no urban pixels. The parameter α shifts the values of ENDISI
depending on the site to separate urban and non-urban pixels. The shifting values were
empirically identified once for each site (see Table 4). Our values are in accordance with
the study [21], where dark impervious surfaces (IS) have the lowest values of ENDISI
between ca. (−0.5, 0). To increase the values of differences, ENDISIe is scaled by the factor
γ. This ensures larger change detection values.

ENDISIe further incorporates MNDWI [51] and MNDBI [52]. The use of MNDWI
reduces the false positives of water bodies, while MNDBI mitigates effects of farming
where bare soil occurs frequently and can appear as an impervious area. The use of
MNDWI also removes false positives due to incomplete cloud removal with clouds de-
tected erroneously as urban by ENDISI. Only their respective positive values are used by
MNDWI+ and MNDBI+ as they denote water or farming areas and values below zero
appear for other types of land cover, including impervious areas. The index MNDWI+ is
subtracted with a factor of two because ENDISI tends to assign higher values to cloud
fragments. The index methods ENDISI, MNDBI, and MNDWI follow their original
definitions [50–52], which are

ENDISI =
ρBlue − β

(
ρSWIR1
ρSWIR2

+ (MNDWI)2
)

ρBlue + β
(

ρSWIR1
ρSWIR2

+ (MNDWI)2
) (8)

with

β =
2(ρBlue)mean(

ρSWIR1
ρSWIR2

)
mean

+
(
(MNDWI)2

)
mean

, (9)

MNDBI =
ρSWIR1 − ρBlue
ρSWIR1 + ρBlue

(10)
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and

MNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
. (11)

The individual bands ρ are assigned, as shown in Table 5. The correction factor β,
which is defined by ENDISI, is determined for the entire AoI for every observation instead
of individually for every tile. This is to avoid biases due to limited spatial context, such as
impervious surfaces covering most of the tile. The operation (·)mean ⊂ R hence computes
the spatial mean of all pixels.

Table 5. The bands used for the synthetic label generation.

Landsat 5 TM Sentinel 2
Symbol Band Spectral Resolution Band Spectral Resolution

Range (nm) (m/pixel) Range (nm) (m/pixel)
ρBlue TM1 450–520 30 B2 459–525 10
ρGreen TM2 520–600 30 B3 541–578 10
ρRed TM3 630–690 30 B4 649–680 10
ρNIR TM4 760–900 30 B8 780–886 10
ρSWIR1 TM5 1550–1750 30 B11 1565–1659 20
ρSWIR2 TM7 2080–2350 30 B12 2098–2290 20

3.3.3. Expected Noise of Synthetic Labels

The generation of synthetic labels on unfiltered data results in outliers. We clarify the
expectations and risks of our proposed approach to later guide the discussion with the
obtained results.

The multiplication of the SAR and optical change maps serves multiple purposes.
First, the omnibus test statistic-derived changes do not distinguish between urban and
non-urban pixels. Hence, the multiplication with optically detected urban changes reduces
the false positives, e.g., by detecting changes due to farming or in water bodies. Second,
due to atmospheric conditions, outliers are quite common in optical data (e.g., clouds, cloud
shadows, changes of irradiation). This can lead to false positives where urbanized pixels
are falsely detected. An advantage of the omnibus test statistic-based change detection is
that urban areas receive a lower count of detected changes compared to non-urban pixels
due to rigid structures. The multiplication further reduces false positives thereof.

On the other hand, our method relies on a certain amount of optical observations
to distinguish between urban and non-urban pixels. False negatives occur when there
are not enough observations, either by too little SAR observations, which leads to a low
multiplication factor through scm, or by no optical data due to cloud coverage or incorrect
cloud removal. We observed the latter for some parts of the Rotterdam AoI where the cloud
mask removed some buildings with high reflective white roofs. False-positive scenarios
are also possible where erroneously urban pixels are detected optically in non-urban areas.
This can happen for bare and arid land that appears impervious for a longer time due
to droughts. Depending on the SAR detected changes, they can result as falsely labeled
urban changes. To mitigate these errors, we use optical means over the period before and
after and ensure there are at least ω observations per each window available. Windows
with a number of observations lower than ω are discarded for training. The use of means,
however, causes a problem of changes from previous and subsequent observation periods
attributed to some degree to the window of interest. As the network under training shall
only see the window of interest, it will not be able to exactly match the label but find a
general approximate solution.

Our framework is not tied to the described labeling method. Other indices, change
detection, and even prediction methods could be used. We, however, focus on long-range
changes as they happen in urban development. Shorter term urban changes will be more
dependent on the quality of optical observations.
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4. Proposed Neural Network

In the following, we describe our proposed neural network architecture to detect urban
changes using the data sets discussed earlier for the two eras of interest. Furthermore, we
elaborate on the training and validation methodology using the synthetic labels to train the
neural network.

4.1. Architecture

Semantic labeling of remote sensing images with high spatial resolution is of great
interest to a wide range of researchers. This task consists of assigning a category to every
pixel in an image. The pixel classification in urban environments is still a challenging task
because extracting spatially consistent information requires quality data processing and
high model accuracy. Authors Diakogiannis et al. [53] named two main reasons why urban
features are hard to extract/classify: (i) high variability within a class as objects with similar
spectral reflectance can belong to completely different classes; (ii) interactions between
urban features (e.g., 3D character of buildings, shadows).

For the last decade, Deep Neural Network (DNN) research has been rapidly devel-
oping, and therefore, DNN models became very popular as classifiers [54]. The main
advantage of these models is their high performance and modular design, which allows
their architectures to be easily adapted to specific needs. In our work, we use classification
principles using a Convolutional Neural Network (CNN) [55] with the combination of
Recurrent Neural Network (RNN) layers [56] to add spatio-temporal awareness. This
awareness is needed to identify changes of a certain type, which are urban/impervious-
related changes in our case.

We propose a novel neural network architecture that is a concatenation ensemble of two
sub-models: the Ensemble of Recurrent Convolutional Neural Networks for Deep Remote
Sensing (ERCNN-DRS). The sub-models are designed to ingest multispectral optical and
SAR data. Figure 3 shows the ensemble architecture. We denote the network as a function
fNN returning a prediction yt

i,j := fNN(wt
i,j) of urban changes that happened in window

wt
i,j or with separate data types for clarity: yt

i,j := fNN(wt
i,j[bOPT ], wt

i,j[b
asc
SAR], wt

i,j[b
dsc
SAR]).

As we discuss in Section 5, both sub-models can be used individually when only one kind
of data type is available but with a reduced performance.

The sub-models are comprised of different convolutional layers [55] and one RNN
layer (i.e., convolutional LSTM), which is the core of our architecture. The convolutional
LSTM (ConvLSTM) layer learns the deep-temporal dependencies between the observations.
This layer type has been introduced by Shi et al. [56] and solves the problem of applying
Long Short-Term Memory (LSTM) layers [57] to spatial data. Instead of flattening the input,
it retains the spatial information by accepting multi-dimensional inputs that are fed to the
gates using further 3× 3 convolutions. The ConvLSTM layer is fed from one (SAR) or two
(optical) 3× 3 convolutional layers. They apply the same set of filters to all observations
of a window, which is referred to as the time-distributed convolution. As a result, these
layers tend to learn filters to retrieve useful features for the following RNN layer from all
or most of the observations in a window. In addition, they can imperfectly compensate
co-registered observations caused by nearest neighbor interpolation, which can shift the
pixels by one in each direction. After the RNN layers, the activations are concatenated
to represent time-invariant features. The concatenation of sub-networks can lead to better
performance, as demonstrated in [58,59], and natively facilitates the use of different data
types. Two more 3× 3 convolutions are applied to spatial filters after the time series is
mapped to a set of representative samples. In the last layer, the activations are fed to a 1× 1
convolutional layer to correct each pixel of the prediction independently without using
any spatial context. All 3× 3 convolutions apply batch normalization and subsequently a
ReLU activation function [60] on their outputs. The ConvLSTM layers instead apply tanh
activations and hard sigmoid for the recurrent step. In addition, they apply a dropout to the
linear transformations of the recurrent states [61]. This is a regularization method used to
minimize the impact of frequent window sizes biasing the predictions. The 1× 1 layer does
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not apply batch normalization and applies a sigmoid activation instead of ReLU to generate
a heat map with values in the range of (0, 1) for every pixel in the input tile. Values close to
one denote urban changes that are more likely, whereas values closer to zero indicate no
urban-related change. All layers also train biases in addition to their kernels.

ConvLSTM
3x3

ConvLSTM
3x3

Concat

Conv 1x1

Mask

Conv 3x3

Conv 3x3

Split

Concat

𝑦 𝑥 𝑦 𝑥

𝛺

𝛺

𝛺

𝒚𝑡𝑖,𝑗
𝒚𝑡𝑖,𝑗

𝒘𝑡𝑖,𝑗

𝒘𝑡𝑖,𝑗[𝑏𝑂𝑃𝑇] 𝒘𝑡𝑖,𝑗[𝑏 𝑎𝑠𝑐𝑆𝐴𝑅] 𝒘𝑡𝑖,𝑗[𝑏 𝑑𝑠𝑐𝑆𝐴𝑅]

Conv 3x3Conv 3x3Conv 3x3

Conv 3x3Conv 3x3Conv 3x3

Conv 3x3Conv 3x3Conv 3x3

(only for training)

Input: Output:
6
5
5

42
1 3

3
time

distributed

Figure 3. The architecture of ERCNN-DRS. Bold arrows indicate data flow of windows wt
i,j for the

different data types (background blue: SAR, green: multispectral optical). The annotations 1 . . . 6
define the different hyper-parameters of the network listed in Table 6 for each era.

Throughout the network, each convolutional layer produces a different amount of
filters, which are dependent on the complexity of the input data. The model for the ERS-1/2
and Landsat 5 TM era requires less filters due to less bands, whereas the Sentinel 1 and 2 era
uses more bands containing more information. In addition, the higher spatial resolutions
show finer spatial structures for which more filters can be useful. We intentionally left
the convolutional kernels at a size of 3 × 3. Given the amount of data available per
observation period, larger kernel sizes would result in an approximately quadratic increase
of parameters of the neural network. We traded learning complex spatial structures
to learning deeper temporal correlations. This is especially important as changes over
time should have more weight compared to identifying urban micro-structures. As such,
our trained network is aimed at an applicability for a wider range of AoIs as it learns
the structure of urban (impervious) surfaces less, which can be different for different
geographies. The limitation of spatial filters helps to avoid memorization of certain urban
structures, such as reflective characteristics of rooftops, parking lots, or roads. Instead,
general characteristics of impervious surfaces should be learned through their changes
over time. Table 6 summarizes the important parameters used for the respective layers.

Due to the deep-temporal series with varying amounts of observations, we apply
masking to the ConvLSTM layers to indicate which first l observations should be consid-
ered. This is different for each observation window, resulting in an individual mask. There
is an upper bound Ω to the number of observations in the model architecture. To avoid
losing observations, this bound needs to be set to the largest number of observations ex-
pected (see Table 4). As such, only the first l observations are used and the remaining Ω− l
observations, which were padded and do not contain valid information, are masked out.
Masking also helps to exploit the capacity of the network more efficiently as the network
does not need to learn how to identity the valid observations and ignore the padded ones.
As l is already known a priori, it does not need to be learned after all.
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Table 6. The neural network model hyper-parameters used for the different eras.

Hyper- Configurations

Parameters 1 2 3 4 5 6

ER
S-

1/
2

an
d

La
nd

sa
t5

TM

Filters 4 4 20 20 8 1
Kernel 3× 3 3× 3 3× 3 3× 3 3× 3 1× 1
Stride 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1
Activation(s) ReLU tanh, hard ReLU tanh, hard ReLU sigmoid

sigmoid sigmoid
Dropout 0.4 0.4

Se
nt

in
el

1
an

d
Se

nt
in

el
2

Filters 10 10 26 26 8 1
Kernel 3× 3 3× 3 3× 3 3× 3 3× 3 1× 1
Stride 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1
Activation(s) ReLU tanh, hard ReLU tanh, hard ReLU sigmoid

sigmoid sigmoid
Dropout 0.4 0.4

4.2. Training and Validation Methodology

The aforementioned data are separated into training and validation sets. For each era,
AoIs Rotterdam and Limassol were used during the training process. For the training data
set, tiles are drawn from {(i, j) ∈ N×N | j ≡ i

2 (mod 2)}, and for the validation data set,
they are drawn from {(i, j) ∈ N×N | j ≡ 5−i

2 (mod 4)}. This is approximately one-fourth
of all tiles used for training and one-eighth for validation with both sets being disjunctive.
The tile selections ensure non-adjacent tiles in the respective sets to avoid recurring and
redundant patterns along the borders.

For each tile assigned to the training or validation data set, a subset of its windows
wt

i,j is selected. Leaving aside corner cases where preceding (wt−∆
i,j ) or subsequent (wt+∆

i,j )
windows with more than ω observations are required for the synthetic labels, a window
can be created for every observation that occurred at t. We select a random subset using a
uniform distribution with p = 1

10 . Therefore, we expect approximately one-tenth of the
overall windows to be selected. The random uniform distribution function uses different
seeds for every tile for reproducibility and to avoid all tiles of the same AoI from having
the same window starting times, which the neural network could learn. This is especially a
concern as only two different AoIs are used for training, of which all the tiles would have
the same sequence of observations within each AoI. If windows are identical for tiles of
the same AoI, the sequence can be learned, but applying it to other AoIs with different
sequences would result in bad prediction performance. This random selection also reduces
redundancies as subsequent windows would almost fully overlap except for one or a
few observations.

The selection of the loss function for the supervised learning has a significant ef-
fect on the results as it guides the network towards a solution during training. Several
(region-based) loss functions for semantic segmentation and prediction problems have
been developed previously. A few examples are the Dice, Focal Tversky, and Intersection
over Union (IoU) loss [62]. In a recent study, a new loss as the extension of the Tani-
moto coefficient—so-called Tanimoto with complement coefficient—was demonstrated
by Diakogiannis et al. [53]. It shows improved gradients of first and second-order deriva-
tions. As our labels usually contain small values, a loss function is preferred that provides
stronger and higher quality gradients. In addition, the Tanimoto coefficient is also an ideal
candidate for segmentation tasks as it shares similarities with the Dice coefficient or IoU
and ignores true negatives. Such true negatives would dominate the number of pixels as
changes are less likely than no-changes. This unbalance would lead the network to bias the
no-change background class.
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The Tanimoto coefficient T is based on the Sorenson–Dice coefficient. T and it’s
complement T̃ are defined as

T̃(y, ŷ) =
T(y, ŷ) + T(1− y, 1− ŷ)

2
(12)

with

T(y, ŷ) = ∑i yi ŷi

∑i(y2
i + ŷ2

i )−∑i(yi ŷi)
. (13)

For T and T̃, ŷ and y are the ground truth label and prediction, respectively. We use
L (ŷ, y) := 1− T̃(ŷ, y) as the loss function.

Other studies [63–66] have found and discussed the adverse effects of tiling with
respect to increased errors, especially towards the tile borders. As a result, we applied the
Tanimoto with complement loss only to the center 30× 30 pixels of every tile. The use of
3× 3 convolutional filters in the neural network requires the information of its directly
adjacent set of pixel neighbors for every pixel. This is only partially possible for pixels at
the tile boundaries, such as the edges and more pronounced at the corners. As a result,
the prediction quality at the boundaries would show a degraded quality and some capacity
of the network would be used for such corner cases. Fully convolutional neural networks
are not bound to any tile size, as already trained fully convolutional networks can use
varying tile sizes during inference, irrespective of the tile size used during training. This
enables an entire scene (AoI) used as one tile, as long as it fits into memory to speed up
prediction and avoid the boundary effects. We only constrain the tile size to 32× 32 pixel
tiles to avoid excessive memory requirements during training.

5. Results

The neural network proposed in Section 4 was trained with different hyper-parameters
and training data from Rotterdam and Limassol AoIs for each era, as previously described
in Section 3. In the following, we describe our training environment and configurations.
Due to the underlying methods and training objective, a detailed evaluation of prediction
correctness is hard to accomplish. There are no second sources that provide enough
data with similar sampling intervals and sufficient spatial resolutions to examine the
performance of the neural network predictions. Instead, we carry out two ablation studies
to evaluate the impact of urban changes over time and the contribution of optical and SAR
observations. Finally, we show some example predictions for both eras, where we found
historic Google Earth™ very high-resolution imagery, which explains (most of) the changes.

5.1. Training

We trained two models, one for every era, with the hyper-parameters shown in Table 6.
The training was carried out on one compute node with four NVIDIA Tesla V100-SXM2
GPUs on the Barbora cluster at IT4Innovations ( https://docs.it4i.cz/barbora/hardware
-overview/; accessed on 29 July 2021). Tensorflow 2.4 with Keras and Horovod [67] was
used for data parallel training, utilizing all four GPUs. We used a batch size of 32 per
GPU (effective batch size of 128), a learning rate of 0.004 (fixed over all epochs), and the
distributed synchronous minibatch stochastic gradient descent (Sync-SGD) solver [68,69]
with a momentum of 0.8.

The development of the losses over the training epochs for the two models are shown
in Figure 4. The ERS-1/2 and Landsat 5 TM model was trained for 126 epochs with a
walltime of 40:23 h and the Sentinel 1 and 2 model for 115 epochs with a walltime of
23:30 h. For the former, we used the trained weights at epoch 86, and 98 for the latter
(both zero-based), which showed the best validation loss until overfitting started to become
visible. Figure 4 shows the start of overfitting marked with a green dashed vertical line.
It also shows only one training session but with validation data sets split and assigned
individually to each of the four GPUs (shuffling was only applied to training data). Hence,

https://docs.it4i.cz/barbora/hardware-overview/
https://docs.it4i.cz/barbora/hardware-overview/
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the validation losses give insight into how well balanced the found solution is. In the
ERS-1/2 and Landsat 5 TM model, it is visible that one loss (val_1) shows higher values,
which likely stems from the Limassol AoI where there is a slight imbalance regarding the
(validation) tiles containing water areas. Such tiles contain larger errors. We have rerun the
training sessions multiple times and repeatedly observed the same behavior. This was also
true during some limited hyper-parameter searches— no exhaustive search has yet been
applied. The data sizes for the ERS-1/2 and Landsat 5 TM model are 58 GB (training) and
7 GB (validation) and 187 GB (training) and 24 GB (validation) for Sentinel 1 and 2. All are
used as GZIP-compressed TFrecord files from the training sites Rotterdam and Limassol.
To reduce the resource needs, only one-fourth of the validation data was used, and the
majority of tiles covering sea for Limassol AoI have been removed.

In addition, we trained only a subset of the ensemble by using either of the two
sub-networks OPT fNN(wt

i,j[bOPT ]) and SAR fNN(wt
i,j[b

asc
SAR], wt

i,j[b
dsc
SAR]). These correspond

to the ensemble network with one input data type removed, e.g., SAR fNN does not consider
any optical input. All hyper-parameters were left unchanged. Figure 4 shows the results
for OPT fNN in the middle and SAR fNN on the right of each era. It is visible that both do not
reach the same low loss as with the ensemble configuration. In particular, SAR fNN shows
degraded performance. This likely stems from less information to distinguish urban-related
changes and suggests that the overall solution is mostly driven by optical data. However,
in the ensemble case, SAR can add additional information, leading to lower generalized
losses. This is more visible for the Sentinel 1 and 2 era than for ERS-1/2 and Landsat 5 TM
but is consistent across both eras. Furthermore, the training requires less epochs to reach
the best general solution. We, however, have to stress that the hyper-parameters were not
changed. A change of batch size or SGD momentum could result in less epochs, or more
filters could result in an overall improved performance for the non-ensemble cases as well.
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Figure 4. Loss values over epochs for both eras: on the left, the ensemble with both multispectral
optical and SAR data; center and right, only optical and SAR data, respectively. The green vertical
dashed line indicates the best ensemble parameters.

The ERS-1/2 and Landsat 5 TM model reaches lower loss values. This is a result of
the lower spatial resolution of the remote sensing sensors. The observations hence contain
less detailed structures that are easier to learn. The model for Sentinel 1 and 2, for example,
is able to identify finer grained urban structures, such as roads and mid-sized buildings,
whereas Landsat 5 is only able to detect very large urban structures, such as highways or
logistics buildings, at best.

We would like to briefly elaborate on the aforementioned parameters Ω, the tile
size, and their value selection. In theory, neither of them would need to be artificially
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bound, leaving the maximum possible number of observations for a given window period
to be only defined by the remote sensing mission parameters. Furthermore, any AoI
could be considered as one single tile. In practice, however, we limit both parameters to
accommodate the neural network model and data in the available (GPU) memory — in
our case, 4 ∗ 16 GB. Similar to other works considered, the use of tiles (also called patches)
“under a given GPU memory constraint” [66] as well as “the input to the network [is] fixed
to a given size [...] mainly influenced by considerations of available memory size on the
GPU” [70], and we also regard tiling as a compromise to enable deeper neural networks
and data rather than a profound method. Similarly, we treat the limitation of observations
per window with Ω as a compromise as well. Tiling can increase the prediction errors due
to reduced spatial information, whereas the use of Ω and the related step size δ contribute
to a reduction of temporal information.

5.2. Ablation Studies

We attempt two ablation studies to understand the quality of responses to urban
changes and the contribution of each data type, optical and SAR, to the overall solution of
the proposed ensemble network. Both document the performance of the neural network
using deep time series and help to set the expectations of the predictions.

5.2.1. Urban Change Sensitivity

To analyze the sensitivity of the model predictions to urban changes over time, we
study them using an artificial but well-controlled test. In this test, we select one 32× 32 pixel
tile for one window that does not cover an urban area and substitute the 16× 16 pixel
center with the a tile that contains an urban area. More specifically, we use one that
is fully covering a forest as a reference tile and one from the airport of Liège for the
center. The resulting perturbed tile is called hybrid ∗wt

i,j. The window covering the
forest was selected so that it contained the maximum amount of observations among all
other windows. Otherwise, windows with less observations would not allow to study
the substitution effect towards Ω but only the first l observations. Figure 5 shows the
substitutions for both eras. The substitution in a confined space in the center is deliberate
as CNNs tend to show performance decay towards the edges of tiles as mentioned earlier.
By that, we minimize such errors. Both locations are from the same time period, but the
urban replacement is constant. As such, only changes occur at the beginning and end of
the substitution length. The substitution is controlled via two parameters ζ and ψ for the
start and length of the substitution, respectively. Both parameters are evaluated with
single increments, and a prediction of the perturbed tile is applied. It is expected that the
insertion of the urban sub-tile results in a positive prediction without dependence when the
substitution happens (ζ). The longer the substitution persists, the stronger the predicted
change should be, falling off after l

2 . Of the predictions, we compute the mean over the
30× 30 pixel center of the tile as a continuous representation of sensitivity.

Figure 6 shows the bivariate means and their intensity values, depending on ζ and ψ;
for better readability, we only used every second value for ψ. The curves with ψ = 0 (i.e., no
substitution) show constant values close to zero. Forests are neither urban nor impervious,
and there is no such change in the reference tile for the window considered. As a result,
every substitution with an impervious area should show values significantly larger than
zero. What is more, we only consider sizes of ψ that fit into the window. Therefore, growing
substitution lengths ψ delimit the start of substitution ζ towards the end.
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Figure 5. For each era, the substitution of the forest area in the center 16× 16, taken from Liège
airport. The forest tile is used with all observations wt

i,j whereas the airport sub-tile is from a fixed

date. The predictions of the hybrid ∗wt
i,j is on the right for ψ = 30 and ζ = 5.
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Figure 6. For each era, the sensitivity to the substitutions from Figure 5, depending on the substitution
length ψ and the substitution start time ζ (zero based). For ERS-1/2 and Landsat 5 TM, the hybrid
window ∗wt

i,j contains 95 observations. For Sentinel 1 and 2, 81 observations are in the window.
The curve with ψ = 0 shows the unmodified forest tile with a mean prediction close to zero.

With the substitutions carried out, different effects become visible. First, changes close
to the beginning of the windows show a higher change intensity and tail off the further
out as changes happen. These later scopes represent a dead spot of the predictions as
any change there is attenuated. The reason for that behavior is the training of different
periods with varying amounts of observations. With ω, a minimal amount of required
observations was set. Periods with more observations are less likely and, hence, result in a
lower weighting for the final predictions. At the end, the intensities rise again, leading to
more weight put on the changes at the end of the windows. The ERS-1/2 and Landsat 5
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TM model follows that pattern very clearly. For the Sentinel 1 and 2 model, the response is
a bit more complex but with the same underlying pattern. Differences are mostly the strong
attenuation towards the beginning of the window for smaller ψ with more pronounced
plateauing up to the first ω observations.

Second, changes that are short are attenuated and increase the mean intensities with
the growing ψ. This likely stems from errors in the observations where short outliers need
more (temporal) filtering. For example, co-registration errors can lead to some pixels not
detected as a change, unless there are enough observations (with the same error) increasing
confidence in the change.

We hence can conclude that only changes that occur for a longer time and close to
the beginning of the observation period (or right at the end) are well detected. The former
is acceptable as urban changes typically occur over a longer time. The latter can be
compensated by using repeated and overlapping incremental predictions to evenly cover a
selected period.

5.2.2. Correlations of SAR and Optical Predictions

Since an ensemble of networks is trained, we analyze the contribution of these sub-
networks to the overall solution. More specifically, we try to understand how well their
ingested data types (SAR or optical) are influencing the result. We create two synthetic con-
figurations. For each, we keep one data type constant, while the other remains unchanged.
The constant data type is the mean over the entire period to avoid outliers biasing the
predictions under analysis. As a result, one configuration contains a fixed mean of all the
SAR observations (ascending and descending), while optical is unchanged, denoted as
OPTyt

i,j := fNN(wt
i,j[bOPT ], (wt

i,j[b
asc
SAR])meant , (wt

i,j[b
dsc
SAR])meant). The second variation is vice

versa, using the averaged optical observations, while SAR observations are unchanged,
denoted as SARyt

i,j := fNN((wt
i,j[bOPT ])meant , wt

i,j[b
asc
SAR], wt

i,j[b
dsc
SAR]). As the network ensem-

ble applies most of the spatial and all temporal operations individually for each data type,
we expect to receive results close to each other if both data types contribute equally to the
overall prediction. However, as we apply three more convolutions, two with ReLU and
one with sigmoid activation functions after the concatenation layer, the two perturbed sub-
network outputs are not directly comparable quantitatively. To correlate such non-linear
continuous variables, we compute Kendall’s τ coefficient [71] as a measure of closeness
over all windows and tiles. Tiles are aggregated to one large prediction for each window,
OPTyt and SARyt, respectively. We apply two correlations of OPTyt and SARyt against yt.
The latter are the tile-aggregated predictions with both data types unchanged. As before,
we ignore the border pixels and only consider the center 30× 30 pixels of every tile.

As shown in Figure 7, both perturbations show a high positive correlation. The cor-
relations of OPTyt show up the highest. This indicates that it is harder for the network
to identify changes as urban or impervious related from SAR data alone (SARyt). Other
work [27,28] demonstrated that urban areas can be detected to some extend from only
SAR observations. Similarly, the SAR sub-network was also able to identify urban changes
to a good degree, as indicated by the positive correlations. Seasonal changes are visible,
resulting in recurring patterns of correlation values for SARyt. The higher correlation to
optical data suggests that the overall prediction yt relies more on optical data, which are
affected by seasonal changes. As SAR is less affected by seasonal changes, these patterns
become visible but are still of good correlation. The outlier for the ERS-1/2 and Landsat
5 TM correlations between 2002 and 2003 stems from the lack of optical data in that period
(see Figure 1). As expected, the SAR observations almost fully correlate (i.e., contribute) to
the final solution due to the loss of optical data.
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Figure 7. Kendall’s τ coefficient for fixed SAR (OPTyt) or optical (SARyt). Every data point is the start
of a window wt used for the correlation against its prediction yt. (Left): ERS-1/2 and Landsat 5-TM;
(Right): Sentinel 1 and 2.

On a related note, the positive correlation between the two data types and, in turn,
the correlation of sub-network ensembles justifies the concatenation we applied. This is
suitable for the task at hand instead of applying an averaging ensemble, which would be
preferable for uncorrelated cases [59].

5.3. Qualitative Analysis

In the following, we present some examples of predictions for both trained models.
We use as predictions ymax

i,j :=
(

fNN(wt
i,j)
)

maxt with (·)maxt ⊂ R32×32 as the maximum
of every window’s prediction throughout each era. We would like to note that this will
promote outliers of the predictions. Other filtering methods in post-processing could
be applied to mitigate these effects, such as computing the mean over time (·)meant to
only highlight changes over a longer period (i.e., constant background activities) or the
difference (·)maxt − (·)meant to suppress these background activities.

Figure 8 shows example predictions ymax
i,j (i.–iv.), each for one tile, using the model

trained for ERS-1/2 and Landsat 5 TM. As mentioned above, the prediction is the maximum
over all the windows, with a total count of 843 with starting times ranging from 7 February
1994 to 19 September 2009. Due to our processing pipeline, we do not consider the first
and last window period (1y/6m) of each era. The predictions are shown in the top middle.
We used Google Earth’s historic very-high resolution imagery (bottom row) to document
the changes and show observations before and after the respective change. Due to the
limitations of this resource, only a few samples are available, and not all changes can be
investigated thoroughly. However, we selected samples that explain the detected changes
concisely. In addition, we show the true color images from Landsat 5 TM as a comparison
and as a scale for the resolution the network works with at an approximately similar time
as the Google Earth imagery. The very high-resolution imagery at the bottom is overlaid
with a red mask derived from ymax

i,j to help comparing the images with the predictions.
Examples i. and iii. from Figure 8 show changes over a larger area with (de-)constructions
of buildings. In example i., buildings were deconstructed. A series of predictions of
this example is shown in v. Example ii. shows one hotspot (bottom right), which was
used for longer ongoing construction purposes in the surrounding area. It also shows the
limitation of sensor resolution as the new road on the top right is not detected. Example iii.
shows exceptionally high prediction values due to a longer construction period. In iv., a
construction of a parking lot next to an existing building is shown. In the same example,
the found changes on the top left in the prediction were due to SAR-detected changes in
the time frame from approximate 2003-08 to 2003-10. We were not able to obtain other data
to further investigate the root cause.
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Figure 8. ERS-1/2 and Landsat 5 TM examples of Liège (i.–iv.). Top rows are Landsat 5 TM true
color observations (left, right) with the change prediction (middle). Bottom rows are corresponding
very-high resolution imagery from Google Earth, © 2021 Maxar Technologies, with predictions
superimposed in red. Example v. shows a series of predictions from i.

Same as for the ERS-1/2 and Landsat 5 TM, we provide four example predictions ymax
i,j

(i.–iv.) in Figure 9 but with the model trained for Sentinel 1 and 2 data. For Liège, a total
of 381 windows were used, ranging from 3 July 2017 to 15 April 2020. All intensities in
ymax

i,j are higher due to the temporal change characteristics, as discussed in Section 5.2.1. It
is immediately visible that the higher sensor resolutions provide finer detailed changes,
e.g., the construction of a single house in i. Larger constructions and deconstructions in ii.
and iii. are also detected with hotspots where changes happened more often. Example ii.
shows a hotspot on the bottom left that is caused by a (temporary) construction started
in 2020-09. We were not able to obtain other data for further investigation. In v., this is
shown with a series of predictions. For example, in iii., the building on the top right is not
fully covered by the predictions due to the center of the building being unchanged, and
co-registration variances lead to "smearing" of this unchanged area. Example iv. shows the
beginning of open pit mining with hotspots where most activities happened.
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Figure 9. Sentinel 1 and 2 examples of Liège (i.–iv.). Top rows are Sentinel 2 true color observations
(left, right) with the change prediction (middle). Bottom rows are corresponding very-high resolu-
tion imagery from Google Earth, © 2021 Maxar Technologies, with predictions superimposed in red.
Example v. shows a series of predictions from ii.

6. Discussion

In the following, we discuss limitations of our proposed method and elaborate on
improvements to mitigate or solve these limitations.

6.1. Current Limitations

Our proposed method uses the available observations as long as they can be co-
registered. No further quality assessment was applied. On one hand, this enables a highly
automatic process of training and inference, but it also introduces uncertainties and errors.
The GUF [47] and WSF [46] clearly show the efforts needed for high-quality detection of
urban areas. However, they only provide a single snapshot due to the high amount of
resources needed. Our solution is designed for easy access to urban change detection for
monitoring up to the immediate past but with higher uncertainties. We have inspected
the predictions of the Liège AoI for both eras and discuss our observations with respect
to limitations of our method in the following. Due to the higher available resolution of
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Sentinel 1 and 2, we show examples only for this era. The limitations are the same for the
ERS-1/2 and Landsat 5 TM era.

The remote sensing data are sampled with irregular intervals and varying quality
due to clouds, shadows, irradiance changes, co-registration errors, atmospheric effects,
snow/ice, or saturation. Hence, not all changes on the ground can be detected at the
intensity they should be, and sampling gaps exist due to no or sparse observations. Fur-
thermore, the imbalance of remote sensing types can cause degraded prediction quality, as
shown in Figure 7 for Liège in the years 2002–2003. This all is embedded in the original
data quality and could only be mitigated with down-sampling (e.g., moving window
averaging) as done by other work [14]. This, however, yields temporal loss and dampens
high frequency changes.

Artefacts of clouds, snow, and ice can become visible in the predictions, as shown in
Figure 10i. This example shows incomplete cloud removal where the dense core of the
cloud reflects a spectrum that appears as a sudden impervious/urban change. We have
observed these cases very rarely, and light clouds do not seem to affect the predictions
noticeably, as can also be seen in the same example.

Bright or reflective surfaces (optical) or metal objects (SAR) can cause outliers and
saturation at the sensors. This leads to large gradients that are erroneously detected as
changes. For SAR, Nielsen et al. [49] state that these “outliers are usually due to strong
reflections from sharp angles on antennas and other human-made objects”. The same is
true for optical observations of high-reflective objects (e.g., with white roofs or solar panels),
which can change their reflectance values due to weather, irradiance, and atmospheric
effects quite significantly. Figure 10ii,iii show the optical saturation by the reflection of
sunlight due to solar panels and the combination of optical and SAR saturation through
metallic roofs, respectively. The mitigation of these effects would be possible by filtering
over time to reduce outliers, which trades-off temporal resolution and results in a less
sensitive change detection. Alternatively, saturations can be masked, which we applied to
Landsat 5 TM data with the 16 bit BQA data. This is not directly available for the other
data sources.

The distinction of uncultivated farmland from impervious and construction areas
can at times be difficult, especially due to the phenological changes in combination with
dry periods. We noticed that esp. during summer (e.g., the drought in central Europe in
June–July 2018) some fields are more likely detected as urban changes due to their arid
appearance. Figure 10iv. shows this effect and false detection where, only for a short time,
arid land was present, which resulted in a significant response. We also experimented
with other index methods that are more resilient to such effects, such as Combinational
Biophysical Composition Index (CBCI) [25] or a different shift parameter α for the used
ENDISI, which resulted in less sensitivity of early construction stages. We also applied the
EBBI [24] to Landsat 5 TM with good results, but it cannot be applied to Sentinel 2, which
lacks a needed thermal band. As a consequence thereof, open pit mining is recognized as
urban changes (see Figure 9iv). In our proposed solution, we decided to accept these false
positives in favor of a more rigorous detection. Farming and mining is usually a series
of constant changes over time and can be filtered if longer time series observations exist.
As an example, the mean prediction intensities of the year(s) of interest can be subtracted
from the maximum of all predictions, as mentioned earlier in Section 5.3.

The networks were trained to highlight urban related activities (i.e., changes involving
impervious areas). Sensors have a coarse resolution, which does not allow identifying
mobile objects (such as cars, trucks, planes, containers) nor distinguishing them from
construction changes due to the mixed pixel problem [72]. However, they cause changes of
reflectance to individual pixels. As a result, the network detects changes of urban activity
in general. Urban centers with high activities show higher intensities than rural areas. The
same is true for highly utilized roads and harbors with more likely identified activities,
as shown in Figure 10v.,vi., respectively. Since these changes are typically also constant
background activities, the same mitigation strategy as for farmland can be applied.
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Figure 10. Limitations of the current method. We demonstrate with Sentinel 1 and 2 examples
of Liège. Top rows are Sentinel 2 true color observations (left, right) with the change prediction
(middle). Bottom rows show the corresponding very high-resolution imagery from Google Earth, ©
2021 Maxar Technologies, with predictions superimposed in red.

The mixed pixel problem and the limitation of the sensor resolutions limit the detection
capabilities of our method. For example, in Figure 9ii, a new road on the top right was
not detected. It is shared by multiple pixels due to which the surrounding vegetation
reduces impervious reflectance characteristics. As investigated earlier, our solution has
a bias towards optical-based detection of changes. Even though ERS-1/2 has a higher
resolution than Landsat 5 TM, it did not contribute to finding such small changes.
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6.2. Further Improvements

For inference, we have retained the same tile sizes of 32× 32 and only used the center
30× 30 pixels for the predictions. As our proposed neural network architecture is fully
convolutional, we can allow any tile size without retraining. In the ideal case, the entire
AoI can be predicted at once. However, the deep time series induces significant memory
requirements and depending on the used inference platform, practical limitations of tile
sizes exist. In the work from Isensee et al. [66], a sliding window approach is proposed to
enable the use of tiles (patches) with the mitigation of stitching errors:

Images are predicted with a sliding window approach, where the window size
equals the patch size used during training. Adjacent predictions overlap by
half the size of a patch. The accuracy of segmentation decreases towards the
borders of the window. To suppress stitching artifacts and reduce the influence
of positions close to the borders, a Gaussian importance weighting is applied,
increasing the weight of the center voxels in the softmax aggregation. Test time
augmentation by mirroring along all axes is applied.

This solution can be applied to our two-dimensional predictions, using pixels instead
of voxels, applied directly after the final sigmoid activation.

Furthermore the training process can be improved by considering the real number of
observations per pixel. In our current work, we have temporally stacked the observations
to fill the gaps caused by unavailable data due to anomalies, cloud coverage, orout-of-
swath conditions. As a result, every pixel in a window can have a different amount of real
(effective) observations as it is influenced by replications of the same value to cover the
gaps. This can be taken into account with the regularization of the loss function. Pixels that
have the least amount of effective observations should only minimally influence the loss.
This can further be extended to inference to combine the prediction with a confidence map.
Change predictions of individual pixels indicate lower confidence if there are not enough
effective observations backing the prediction. This can help in identifying real changes by
lowering the error noise.

Furthermore, the training with noisy labels can be further improved. Many ap-
proaches [73] exist to learn from noisy labels with deep neural networks. We would
consider the SELF method from Nguyen et al. [74] as a viable approach. This could help to
push out the start of overfitting to lower the training losses further, leading to more accurate
predictions. A downside of SELF is its conception for classification and not prediction tasks.
Further work would be required to make it available for our solution.

7. Conclusions

In our study, we trained two ensemble neural networks of the same architecture for
the eras of ERS-1/2 and Landsat 5 TM, as well as Sentinel 1 and 2, using deep time series of
multispectral optical and SAR data types. The supervised training with synthetic but noisy
labels has shown good utility, which avoids the need to manually create ground truth labels
to train the neural networks. The ensemble of mixing two data types showed synergies
but with a tendency towards relying more on optical observations. We also analyzed the
sensitivity to changes over time, which indicates that changes closer to the beginning of the
observation window show a stronger response. This suggests to sample multiple window
predictions preferably over a longer period in order to balance change responses.

Our fully automated and parametric environment allows training and inference with
little manual work. In combination with services, such as the Sentinel Hub, the necessary
data are directly accessible and can be used for training or inference, omitting further
processing. We make available our work on Github ( https://github.com/It4innovatio
ns/ERCNN-DRS_urban_change_monitoring; accessed on 29 July 2021), including the
training environments, trained models and data samples.
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Figure A1. Bounding boxes of AoIs used in our study for ERS-1/2 and Landsat 5 TM era. Coordinates
are in EPSG:3035. Zoomed in sections show the average of all optical observations in true color.
Scales are approximations for comparison only.
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