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Abstract: The aim of this research was to characterize soldering alloys of the type Sn–Sb–Ti and to
study the ultrasonic soldering of SiC ceramics with a metal–ceramic composite of the type Cu–SiC.
The Sn5Sb3Ti solder exerts a thermal transformation of a peritectic character with an approximate
melting point of 234 ◦C and a narrow melting interval. The solder microstructure consists of a tin
matrix, where the acicular constituents of the Ti6(Sb,Sn)5 phase and the sharp-edged constituents
of the TiSbSn phase are precipitated. The tensile strength of the soldering alloy depends on the Ti
content and reaches values from 34 to 51 MPa. The average strength of the solder increases with
increasing Ti content. The bond with SiC ceramics is formed owing to the interaction of titanium,
activated by ultrasound, with SiC ceramics, forming the (Ti,Si)6(Sb,Sn)5 reaction product. The bond
with the metal–ceramic composite Cu–SiC is formed owing to the solubility of Cu in a tin solder
forming two phases: the wettable η-Cu6Sn5 phase, formed in contact with the solder, and the non-
wettable ε-Cu3Sn phase, formed in contact with the copper composite. The average shear strength of
the combined joint of SiC/Cu–SiC fabricated using the Sn5Sb3Ti solder was 42.5 MPa. The Sn–Sb–Ti
solder is a direct competitor of the S-Bond active solder. The production of solders is cheaper, and
the presence of antimony increases their strength. In addition, the application temperature range
is wider.

Keywords: ultrasonic; intermetallic compounds; solder; composite

1. Introduction

The direct, fluxless soldering of combinations of metallic, non-metallic, or composite
materials offers great advantages from both technological and economical viewpoints. It
is not necessary to deposit the coatings on hard-to-solder surfaces, nor to apply special
interlayers to ensure the wettability of substrates with solders. These technological and
economic priorities of production of heavy-duty electronic devices are the driving force
of modern times. At the same time, it is necessary that these devices operate faster, more
reliably, and economically. The core of these devices consists of heavy-duty transistor
semiconductor parts, which in one package create a powerful electronic chip [1–3]. As
a primary semiconductor material, silicon carbide (SiC) has become ever more popular
nowadays. Its use results in breakthrough performance, smaller dimensions, and lower
power consumption [4–6].

The most frequent type of failure of power modules involves thermal fatigue of sol-
dered joints owing to the different coefficients of thermal expansion (CTE) of semiconductor
chips and packaging materials. Therefore, for thermal coolers or heat sinks, materials with
reduced coefficients of thermal expansion in combination with high thermal conductiv-
ity are required [7,8]. Due this reason, the Cu–SiC composite, combining high thermal
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conductivity with low coefficient of thermal expansion, has begun to be used in present
times [9].

Direct soldering of ceramics to Cu–SiC brings about a number of issues to be solved
in order to attain a sound joint. One of the most essential issues consists in the non-wetting
of ceramic materials on use of commercial solders. This issue may be solved by use of
active solders containing elements with a high affinity to some components of ceramics.
Then, it is unnecessary to coat the ceramic materials with solderable coatings. Titanium
is the most frequently used element that is added to soldering alloys, but other active
metals are also used. The performance of solders alloyed with titanium is documented
in many studies [10–17]. Titanium allows wetting and soldering of Ti, Al, Si, glass, and
different types of ceramics owing to the activation of soldered surfaces [18,19]. Sn–Ag–Ti
is the most used base of an active solder with Ti addition, initially developed by S-Bond
Technologies. This base joins most metals, ceramics, and composites. It is applied without
flux or preliminary coating of the substrates, and it does not contain lead or cadmium, thus
conforming to requirements of all initiatives regarding lead-free soldering (RoHS, etc.). The
solderability of metallic or ceramic materials by Sn–Ag–Ti-based solders is relatively well
documented in the literature [20–26]. The authors of these publications have proved the
suitability of the base for soldering of ZnS–SiO2, ITO, Al2O3, MAO-coated Al alloy, TiO2,
graphite, and AlN. Titanium in a solder ensures the formation of a reaction zone in the
solder/substrate boundary and thus the wetting of these materials. The development of
active solders is in progress, and new solder bases that would be capable of competing with
the S-Bond active solders are being designed. In this study, the Sn–Sb–Ti solder base, on
which the patent protection under the number WO2020115653 (A1)-2020-06-11 is valid [27],
were used. Although the Sn–Sb–Ti base was studied by Berger et al. [28], only the ternary
diagram of this base was investigated. This solder is a direct competitor to the S-Bond
active solder and as the soldering alloy, it will be published for the first time in this work.
The production of a solder is cheaper, and the presence of antimony increases its strength.
In addition, the application temperature range is wider.

The direct soldering of SiC/CuSiC combination by use of the Sn–Sb–Ti solder similarly
requires the selection of the correct technology since it is necessary to activate the Ti element
in the solder. Activation at high temperatures is impossible since the metal component of
the composite would be molten. Application of ultrasonic soldering for the formation of
bonds between CuSiC and SiC seems to be one of the most suitable methods applicable for
fluxless soldering of such materials. This process is highly productive. The time necessary
for bond formation is just on the order of several minutes. The soldering temperature is
20–30 ◦C above the melting point of the solder, and the activation of the active element is
ensured by the application of ultrasound. The suitability of this method has been approved
by many professional publications from the field of brazing and soldering [29–32] and the
field of transient liquid phase (TLP) bonding [33–37].

The aim of the present study was the analysis of the new active solder based on
Sn–Sb–Ti and soldering of SiC ceramics with a metal–ceramic composite of the type CuSiC.
Soldering was performed by a fluxless process with the application of ultrasound. The inter-
actions among the solder, ceramic, and composite substrates were investigated. The shear
strength of fabricated joints was measured, and their fractured surfaces were analyzed.

2. Materials and Methods

After determination of weight proportions of the prepared alloy, the weighing of
individual components was performed. As the input components for solder manufacture,
the materials with a high purity of 4N were used.

The solder manufacture in the as-cast condition was realized in a vacuum oven. The
procedure was as follows: All weighed metals were put into a crucible made of Al2O3
ceramic. The induction vacuum oven with evacuated air atmosphere was applied. The
experiment was performed in an argon overpressure of 200 Mbar. The gas Argon 4.6 was



Materials 2021, 14, 6369 3 of 22

applied. The temperature of the solder manufacture was around 1100 ◦C. Titanium was
slowly dissolved in the solder.

The experimental chemical composition is given in Table 1. Chemical analysis was
performed using atomic emission spectrometry with induction-coupled plasma (ICP-AES).
The analysis was realized on the equipment SPECTRO VISION EOP. The specimens for
ICP-AES analysis were dissolved in suitable chemical solutions of acids and bases. Proper
analysis was performed on the atomic emission spectrometer with a pneumatic atomizer
and Scott’s sputtering chamber.

Table 1. Composition of the Sn–Sb–Ti alloy and the results of chemical analysis by the ICP-AES
method (wt.%).

Specimen Charge (wt.%) ICP-AES (wt.%)

Sn Sb Ti Sn Sb Ti

Sn5Sb1Ti 94.0 5.0 1.0 Balance 4.98 ± 0.15 1.21 ± 0.25

Sn5Sb2Ti 93.0 5.0 2.0 Balance 3.94 ± 0.48 1.79 ± 0.10

Sn5Sb3Ti 92.0 5.0 3.0 Balance 5.18 ± 0.26 3.31 ± 0.34

Then a test piece for tensile strength test was machined from the soldering alloy
(Figure 1). The dimensions in Figure 1 are given in millimeters.
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Figure 1. Test piece of a solder for a static tensile test.

The following materials were used as substrates in the experiments:

• A ceramic substrate of SiC in the form of discs Ø 15 × 3 mm and for a shear strength
test in the form of squares with dimensions of 10 × 10 × 3 mm.

• A composite substrate composed of a Cu matrix reinforced with particles of SiC
ceramics in the proportion of 60/40 (metal/ceramics), shown in Figure 2, with the
average size of particles 30 µm, in the form of discs Ø 15 × 3 mm.
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The scheme of the soldered joint prepared for the chemical analysis of solder/substrate
boundaries is shown in Figure 3.
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Figure 3. Assembly of a soldered joint for analysis of solder/substrate boundaries.

The joints were fabricated using a hot plate with thermostatic regulation. The SiC
substrate was laid on the hot plate, and the solder heated at the soldering temperature was
deposited on it. Soldering was performed using ultrasonic equipment Hanuz UT2 with the
parameters given in Table 2. Solder activation was realized via an encapsulated ultrasonic
transducer consisting of a piezo-electric oscillating system and a titanium sonotrode with
an end tip diameter of 3 mm. The soldering temperature was 260 ◦C. The soldering
temperature was checked by continuous temperature measurement on the hot plate using
a NiCr/NiSi thermocouple. The time of ultrasonic power acting was 5 s. Soldering was
performed without the use of flux. After ultrasonic activation, the redundant layer of
oxides on the molten solder surface was removed. A similar process was also performed
on the other substrate. Subsequently, these substrates with molten solder were placed on
each other and the joint was formed. We have reported this procedure of soldered joint
fabrication in another study [14]. The schematic representation of this process is shown in
Figure 4.

Table 2. Ultrasonic soldering parameters.

Ultrasound power 400 (W)

Working frequency 40 (kHz)

Amplitude 2 (µm)

Soldering temperature 260 (◦C)

Time of ultrasound activation 5 (s)
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Metallographic preparation of specimens from soldered joints was realized by stan-
dard metallographic procedures used for specimen preparation. Grinding was performed
using SiC emery papers with 240, 320, and 1200 grains/cm2 granularity. Polishing was
performed with diamond suspensions with grain size 9, 6, and 3 µm. The final polishing
was performed using of polishing emulsion OP-S (Struers) with 0.2 µm granularity.

The solder microstructure was studied using scanning electron microscopy (SEM) on
microscopes TESCAN VEGA 3 and JEOL 7600 F with X-ray micro-analyzer Microspec
WDX-3PC for performing qualitative and semi-quantitative chemical analysis.

For identification of phase composition, X-ray diffraction analysis was applied. This
was realized on solder specimens of dimensions 10 × 10 mm by XRD diffractometer
PANalytical X’Pert PRO.

DSC analysis of the Sn–Sb–Ti solder was performed on equipment Netzsch STA
409 C/CD in a shielding of Ar gas with 6N purity.

For determining mechanical properties of the soldered joints, the shear strength test
was performed. The schematic representation of the specimen is shown in Figure 5. The
shear strength was measured on the versatile tearing equipment LabTest 5.250SP1-VM. For
the change in direction of tensile force, a jig with the defined shape of the test specimen
was applied (Figure 6). The shearing jig ensures a uniform shear loading of the specimen
in the plane of the solder and substrate boundary.
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3. Results
3.1. Differential Thermal Analyses (DTA)

From the analysis of records in Figure 7, only one reaction was detected in the range
of temperatures below 280 ◦C, namely a peritectic one. Table 3 gives the onset values
measured on heating and also on cooling down.
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Table 3. The values of phase transformation in Sn5SbXTi solders measured by DTA analysis.

Composition Onset Point on Heating (◦C) Onset Point on Cooling Down (◦C)

First
measurement

Second
measurement

First
measurement

Second
measurement

Sn5Sb1Ti 247.5 242.2 239.6 239.6

Sn5Sb2Ti 241.8 234.0 230.7 230.9

Sn5Sb3Ti 234.9 233.9 228.6 228.3

Table 3 suggests that a higher titanium content shifts the peritectic reaction toward
lower temperatures. On the contrary, a higher Sb content shifts the transformation temper-
ature toward higher values.

Sinn-Wen et al. [2] reported that the peritectic reaction takes place in the binary system
of Sn-Sb (Figure 8) at the temperature of 243 ◦C, which corresponds well with our results:

L + Sn3Sb2 = (Sn),

where L is for liquid and Sn is for the solid solution of Sn.
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It is probable that other peaks will appear at considerably higher temperatures, when
primary precipitation of dendrites rich in titanium occurs, as follows from the binary
diagram of Ti–Sn (Figure 9).
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The difference in values of the onset point on heating and cooling down may be
attributed to the heterogeneity of the initial alloy, owing to precipitated phases with high a
titanium content, i.e., Ti6(Sn,Sb)5, leading to exhaustion of a considerable titanium portion,
when the remaining titanium undergoes a secondary reaction with the Sn–Sb melt, forming
the brittle TiSnSb phase.

The DTA/TG analysis of the studied alloy was performed twice, at the heating and
cooling rates of 5 ◦C/min. The results concerning heating are presented in Figure 7. From
the results of DTA analysis, only one significant phase reaction with a pronounced thermal
effect was observed. The onset point on double heating corresponded to temperatures
of 227.8 and 225.9 ◦C and on cooling down corresponded to temperatures of 224.6 and
224.1 ◦C. The peak on heating corresponded to temperatures of 240.2 and 241.6 ◦C. The
DTA analysis did not record any other reactions. The difference in values of the onset
point on heating was caused by heterogeneity of the initial alloy, owing to precipitated
phases, namely the primary solidified phase of acicular morphology with a high titanium
content, i.e., Ti6(Sn,Sb)5, leading to exhaustion of a considerable portion of titanium, with
the remaining titanium reacting with the Sn–Sb melt to form the brittle TiSnSb phase. This
fact was also proved by the structural and SEM/EDX analyses.

3.2. Microstructure of the Sn5Sb3Ti Solder

The microstructure of the soldering alloy of the type Sn5Sb3Ti (Figure 10) is formed
of the solid solution (Sn) + Sb3Sn2 phase. The solder matrix contains non-uniformly
distributed intermetallic phases of titanium, antimony, and tin. The microstructure with
the designation of phases is documented in Figure 10b. Microhardness measurements of
individual phases are documented in Table 4.
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Table 4. HV microhardness of individual components of the Sn5Sb3Ti solder.

Sn Matrix Bright-Gray TiSbSn Phase Dark-Gray Ti6(Sb,Sn)5 Phase

HV 0.01 20 174 939

For determination of the chemical composition of individual components of the
soldering alloy, EDX analysis was performed (Table 5). The points of measurement are
shown in Figure 11, designated with numbers 1 to 6.
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Table 5. EDX analysis of the Sn5Sb3Ti solder.

Spectrum Sn (wt.%) Sb (wt.%) Ti (wt.%) Solder Component

Spectrum 1 32.5 31.7 35.8 Ti6(Sb,Sn)5 phase

Spectrum 2 33.9 30.9 35.2 Ti6(Sb,Sn)5 phase

Spectrum 3 49.6 34.0 16.5 TiSbSn phase

Spectrum 4 50.8 32.8 16.4 TiSbSn phase

Spectrum 5 98.1 1.9 0 Sn + Sb3Sn2 phase

Spectrum 6 97.0 3.0 0 Sn + Sb3Sn2 phase
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The microstructure (Figure 11) has revealed different morphologically and chemically
diverse constituents:

The matrix (Spectra 5 and 6) consists of a mixture with the average content of 97.5 wt.%
Sn and around 2.5 wt.% Sb. Titanium was not observed in the matrix. The majority planar
proportion in the matrix falls on tin and the minority one on the Sb3Sn2 phase (Figure 6).
The solid solution of tin shows just a limited solubility of antimony.

The bright-gray phase (Spectra 3 and 4) contains all three elements: Ti (16.5 wt.%), Sn
(50 wt.%), and Sb (33.5 wt.%). The proportions of atoms stoichiometrically correspond to
the composition formula of the TiSbSn phase.

The dark-gray phase with an acicular structure (Spectra 1 and 2) also contains all
three elements: Ti (35.5 wt.%), Sn (33 wt.%), and Sb (31.5 wt.%). Regarding the mutual
proportions of atoms, the composition of this phase stoichiometrically corresponds to the
formula of Ti6(Sb,Sn)5.

It is probable that Sn and Sb mutually substitute each other in both these phases. The
ternary diagram of Sb–Sn–Ti [29] reveals the phase compositions at temperatures of 600,
800, and 1000 ◦C. At a soldering temperature of 260 ◦C, these diagrams are not available.
Therefore, we present the binary diagrams in Figures 9 and 12. Regarding the binary
diagram of Ti–Sn, the formation of the Ti6Sn5 phase seems to be probable.
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From the results of metallography and SEM/EDX analysis, the primary reaction of
titanium with the tin melt, containing antimony addition, may be supposed. The acicular
constituents of the Ti6(Sb,Sn)5 phase with a high titanium content were formed initially
This phase then reacted with the tin melt to form small islands of irregular, mostly sharp-
edged shape, composed of the TiSbSn phase. This phase was also confirmed by the ternary
diagram in the study by Berger et al. [29].

In the case of the Sn–Sb system, a peritectic type of diagram is seen on the tin side
when the reaction takes place at the temperature of 243 ◦C and the composition of liquidus
corresponds to 6.5 at.% Sb (Figure 8).

In the Sn–Ti system, a monotectic type of diagram is seen, where the eutectic reaction
takes place at the temperature around 231 ◦C and the Ti6Sn5 phase is formed. In the case of
the Sb–Ti system, the formation of Ti11−xSb8−y (resp. Ti6Sb5) phases is probable (Figure 12).
These phases were also confirmed by a ternary diagram in the study [29].

Regarding the studied alloy of the type Sn5Sb3Ti, in accordance with the binary
diagram of Sn–Sb, we are slightly to the left from the peritectic point (Figure 8), the same
as in the case of the liquidus composition at the peritectic reaction. The solubility of Sb in
Sn at equilibrium conditions decreases with decreasing temperature.

The XRD analysis of the Sn5Sb3Ti solder proved the presence of Sn and Sb and also
the presence of intermetallic phases of titanium and antimony, namely Ti6Sb5, Ti6Sn5, and
TiSbSn, which were confirmed by the ternary diagram from the study [29]. The record
from diffraction analysis is documented in Figure 13.
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The planar distribution of titanium and antimony phases Ti6(Sb,Sn)5 and TiSbSn in
the tin matrix with a low Sb content is documented in Figure 14.
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3.3. Tensile Strength of Soldering Alloys

The mechanical tests were oriented to determine the effect of a small Ti addition on
the tensile strength of soldering alloy of the type Sn5Sb. Three compositions of soldering
alloy containing 1, 2, and 3 wt.% of Ti were used.

The dimensions of test pieces (Figure 1) were proposed and calculated. For tensile
strength measurement of soldering alloys, three specimens of each experimental soldering
alloy were used. The loading rate of the specimen was 1 mm/min. The results of the tensile
test are documented in the graph in Figure 15.
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The alloy containing 1 wt.% of Ti exhibits the lowest tensile strength, namely 43 MPa.
The strength of the solder increases with increasing Ti content. The highest tensile strength
was achieved with the solder containing 3 wt.% of Ti (51 MPa). The mentioned facts
suggest that titanium addition to an active solder partially increases the tensile strength of
soldering alloys of the type Sn–Sb–Ti, since it reacts with antimony to form the intermetallic
phases Ti6(Sb,Sn)5 and TiSbSn, which reinforce the tin matrix of the solder.

3.4. Microstructure of SiC/Sn5Sb3Ti/Cu–SiC Joint

The soldered joint of SiC/Sn5Sb3Ti/Cu–SiC was fabricated at the temperature of
260 ◦C. Owing to ultrasound activation, an acceptable joint was achieved in the soldering
process, which did not contain any cracks, nor inhomogeneities. The microstructure of the
soldered joint is shown in Figure 16.

Materials 2021, 14, x FOR PEER REVIEW 12 of 21 
 

 

The alloy containing 1 wt.% of Ti exhibits the lowest tensile strength, namely 43 MPa. 
The strength of the solder increases with increasing Ti content. The highest tensile strength 
was achieved with the solder containing 3 wt.% of Ti (51 MPa). The mentioned facts 
suggest that titanium addition to an active solder partially increases the tensile strength 
of soldering alloys of the type Sn–Sb–Ti, since it reacts with antimony to form the 
intermetallic phases Ti6(Sb,Sn)5 and TiSbSn, which reinforce the tin matrix of the solder. 

3.4. Microstructure of SiC/Sn5Sb3Ti/Cu–SiC Joint 
The soldered joint of SiC/Sn5Sb3Ti/Cu–SiC was fabricated at the temperature of 260 

°C. Owing to ultrasound activation, an acceptable joint was achieved in the soldering 
process, which did not contain any cracks, nor inhomogeneities. The microstructure of the 
soldered joint is shown in Figure 16. 

 
Figure 16. Microstructure of the SiC/Sn5Sb3Ti/Cu–SiC joint from the SEM analysis in BSE mode. 

Figure 16 shows that large particles of titanium, tin, and antimony phases occur in 
the solder matrix. A continuous transition zone with the occurrence of new intermetallic 
phases was formed in the boundary with the composite material of Cu–SiC. 

For determining the chemical composition and identifying individual phases, EDX 
analysis of the soldered joint was performed (Figure 17 and Table 6). 

 
Figure 17. Representation of measuring points of the SiC/Sn5Sb3Ti/Cu–SiC joint. 

Figure 16. Microstructure of the SiC/Sn5Sb3Ti/Cu–SiC joint from the SEM analysis in BSE mode.

Figure 16 shows that large particles of titanium, tin, and antimony phases occur in
the solder matrix. A continuous transition zone with the occurrence of new intermetallic
phases was formed in the boundary with the composite material of Cu–SiC.

For determining the chemical composition and identifying individual phases, EDX
analysis of the soldered joint was performed (Figure 17 and Table 6).
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Table 6. Point EDX analysis of the SiC/SnSb5Ti3/Cu–SiC joint.

Spectrum Sn (wt.%) Sb (wt.%) Ti (wt.%) Solder Component

Spectrum 1 34.7 30.0 35.4 Ti6(Sb,Sn)5 phase

Spectrum 2 34.6 30.1 35.3 Ti6(Sb,Sn)5 phase

Spectrum 3 47.4 35.7 16.9 TiSbSn phase

Spectrum 4 46.9 36.8 16.4 TiSbSn phase

Spectrum 5 98.5 1.5 0 Sn + Sb3Sn2 phase

The measurement was performed at five points, namely Spectra 1 to 5 (Figure 17).
Spectra 1 and 2 represent the gray phase, with a high Ti content (~35 wt.% Ti). It corresponds
to the composition of the Ti6(Sb,Sn)5 phase. It is probable that Sn and Sb mutually substitute
in both phases.

The Spectra 3 to 4 represent the bright-gray phase, with a lower Ti content (~16 to
17 wt.%). The composition of this phase corresponds to the TiSbSn phase. Spectrum 5
represents the solid solution of tin.

3.5. Analysis of the Transition Zone in the SiC/Sn5Sb3Ti Joint

Based on the previous studies [14,22], it was supposed that the active Ti element will be
concentrated in the boundary with the ceramic SiC material, where it will form new phases.
The interaction of titanium was observed in the solder/SiC ceramics boundary (Figure 18
and Table 7), whereby a higher amount of Ti was precipitated in this boundary. Spot
analysis has proved the presence of titanium in amounts from 17.5 to 33 wt.%. However,
the presence of increased antimony content, from 12 to 30 wt.%, was also observed in
the reaction layer on the boundary. It is supposed that both these elements contribute to
bond formation with the ceramic material of SiC. The presence of ceramics in the reaction
layer in amounts from 3 to 7 wt.% proves the mutual interaction between the solder and
the substrate.



Materials 2021, 14, 6369 14 of 22

Materials 2021, 14, x FOR PEER REVIEW 13 of 21 
 

 

Table 6. Point EDX analysis of the SiC/SnSb5Ti3/Cu–SiC joint. 

Spectrum Sn (wt.%) Sb (wt.%) Ti (wt.%) Solder Component 
Spectrum 1 34.7 30.0 35.4 Ti6(Sb,Sn)5 phase 
Spectrum 2 34.6 30.1 35.3 Ti6(Sb,Sn)5 phase 
Spectrum 3 47.4 35.7 16.9 TiSbSn phase 
Spectrum 4 46.9 36.8 16.4 TiSbSn phase 
Spectrum 5 98.5 1.5 0 Sn + Sb3Sn2 phase  

The measurement was performed at five points, namely Spectra 1 to 5 (Figure 17). 
Spectra 1 and 2 represent the gray phase, with a high Ti content (~35 wt.% Ti). It 
corresponds to the composition of the Ti6(Sb,Sn)5 phase. It is probable that Sn and Sb 
mutually substitute in both phases. 

The Spectra 3 to 4 represent the bright-gray phase, with a lower Ti content (~16 to 17 
wt.%). The composition of this phase corresponds to the TiSbSn phase. Spectrum 5 
represents the solid solution of tin. 

3.5. Analysis of the Transition Zone in the SiC/Sn5Sb3Ti Joint 
Based on the previous studies [14,22], it was supposed that the active Ti element will 

be concentrated in the boundary with the ceramic SiC material, where it will form new 
phases. The interaction of titanium was observed in the solder/SiC ceramics boundary 
(Figure 18 and Table 7), whereby a higher amount of Ti was precipitated in this boundary. 
Spot analysis has proved the presence of titanium in amounts from 17.5 to 33 wt.%. 
However, the presence of increased antimony content, from 12 to 30 wt.%, was also 
observed in the reaction layer on the boundary. It is supposed that both these elements 
contribute to bond formation with the ceramic material of SiC. The presence of ceramics 
in the reaction layer in amounts from 3 to 7 wt.% proves the mutual interaction between 
the solder and the substrate. 

 
Figure 18. Representation of measuring points on the SiC/Sn5Sb3Ti interface. 

Table 7. Point EDX analysis of the boundary in the SiC/Sn5Sb3Ti joint. 

Spectrum Sn (wt.%) Sb (wt.%) Ti (wt.%) Si (wt. %) Solder Component 
Spectrum 1 33.60 29.99 33.38 3.03 (Ti,Si)6(Sb,Sn)5 phase 
Spectrum 2 63.07 12.16 17.55 7.21 Si7Ti10(Sb,Sn)17 phase 
Spectrum 3 61.76 22.81 14.69 0.74 TiSbSn phase 

From the microstructure shown in Figure 18, it is clearly visible that the solder matrix is 
formed of a peritectic mixture of a solid solution (Sn, bright zone) and Sb3Sn2 (darker, bead-
like constituents). The measurement point Spectrum 1 occurs directly on the SiC/solder 
boundary. The chemical composition stoichiometrically corresponds to the intermetallic 
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Table 7. Point EDX analysis of the boundary in the SiC/Sn5Sb3Ti joint.

Spectrum Sn (wt.%) Sb (wt.%) Ti (wt.%) Si (wt. %) Solder Component

Spectrum 1 33.60 29.99 33.38 3.03 (Ti,Si)6(Sb,Sn)5 phase

Spectrum 2 63.07 12.16 17.55 7.21 Si7Ti10(Sb,Sn)17 phase

Spectrum 3 61.76 22.81 14.69 0.74 TiSbSn phase

From the microstructure shown in Figure 18, it is clearly visible that the solder matrix is
formed of a peritectic mixture of a solid solution (Sn, bright zone) and Sb3Sn2 (darker, bead-
like constituents). The measurement point Spectrum 1 occurs directly on the SiC/solder
boundary. The chemical composition stoichiometrically corresponds to the intermetallic
phase (Ti,Si)6(Sb,Sn)5, where silicon, which has substituted titanium, is partially bound.
Thus, it is evident that an interaction between the ceramics and solder took place.

Based on the chemical composition, a small zone of around 1 µm was identified in the
measurement point Spectrum 2. A quaternary phase is present in this case. It is interesting
that the proportion of atoms (Si + Ti):(Sn + Sb) = 50:50. The substitution of tin and antimony
in this phase is again supposed. Regarding the proportion of all elements present in
Spectrum 2, the phase type Si7Ti10(Sb,Sn)17 may be of concern. The proportion of atoms
Sn:Sb = 21:4. In the measurement point Spectrum 3, a phase in the solder matrix zone occurs
but relatively close to the SiC/solder boundary. This zone stoichiometrically corresponds
to the chemical composition of the intermetallic phase of TiSbSn. The substitution of Sn
and Sb has also occurred here, with a higher proportion of Sn:Sb. In addition, a slight
dilution of silicon (around 0.74 wt.%) has occurred, with partially substituted titanium.

The planar distribution of elements in the boundary is documented in Figure 19. From
this distribution, it is obvious that Ti significantly participates in bond formation with
SiC ceramics.

The line analysis and concentration profiles of Ti and Sb elements (Figure 20) prove
that both these elements precipitate on the boundary with the ceramic material of SiC. The
effect of antimony on the formation and bond strength with the ceramic material of Al2O3
is also proved by the study [41], where the shear strength of the joint was increased by Sb
addition to the Sn–Zn–Sb solder.
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From the above, the following mechanism of bond formation may be concluded. In
the soldering process, titanium and antimony are distributed to the boundary of the SiC
ceramic material, where a reaction layer ensuring the wetting of SiC ceramics is formed.
Between the active elements and the ceramic material, a reaction takes place forming
reaction products, which allow the wetting of ceramics by an active solder. The thickness
of the reaction layer is 1 to 3 µm.

3.6. Analysis of the Transition Zone in the Cu–SiC/Sn5Sb3Ti Joint

The transition zone in the joint was analyzed. A pronounced transition zone was
formed in the boundary of the Cu/Sn5Sb3Ti joint, where the Cu phase was identified,
which is the result of the interaction of the copper substrate and the solder (Figure 21). The
undulating character of the boundary with the copper substrate is the result of the action of
the ultrasound and the molten solder on the surface of the copper substrate. The thickness
of the new transition zone with intermetallic phases of copper is 2.5 to 5 µm.
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Measurement in this zone was performed at two points, Spectra 1 and 2. The results
of the measurement are given in Table 8.

Table 8. Point EDX analysis of the boundary in the Cu–SiC/Sn5Sb3Ti joint.

Spectrum Sn (wt.%) Cu (wt.%) Solder Component

Spectrum 1 39.7 60.3 η-Cu6Sn5

Spectrum 2 39.1 61.0 η-Cu6Sn5

In the points of measurement Spectra 1 and 2, the η-Cu6Sn5 phase was clearly identi-
fied. The distribution map of elements in the boundary of the Cu–SiC/Sn5Sb3Ti joint is
documented in Figure 22a, clearly showing the η-Cu6Sn5 phase, where the ε-Cu3Sn phase
is also partially visible.

The concentration profiles of Cu, Sn, Sb, and Ti elements (Figure 23) on the boundary
of Cu–SiC/Sn5Sb3Ti joints have revealed the transition zone with the formation of the
η-Cu6Sn5 phase.
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3.7. Shear Strength of Soldered Joints

The research in this study was primarily oriented to soldering SiC ceramics with a
composite Cu–SiC substrate. Due to possibilities of application of the active solder of the
type Sn5Sb3Ti and its further introduction into practice, the testing of shear strength was
extended to other metallic (Cu and Ni) and ceramic (Al2O3, AlN, and Si3N4) materials.
Ceramic materials were always tested in combination with the composite substrate of
Cu–SiC. Metallic materials were mutually soldered, namely Cu/Cu and Ni/Ni. The
measurement was performed on three specimens of each material. The results of the
average shear strength of the joints are documented in Figure 24. The highest shear
strength, achieved with the ceramic/Cu–SiC composite joint, was observed in the case
of the Al2O3/Cu–SiC joint (47 MPa). In the case of other combinations with ceramic
materials such as SiC/CuSiC, Si3N4/Cu–SiC, and ZrO2/Cu–SiC, a comparable average
shear strength in the range from 40 to 42.5 MPa was measured. In the case of metallic
materials, the average shear strength of two Ni materials was 53.5 MPa. However, in this
case, the widest scatter of measurement, ranging from 48 to 59 MPa, was also observed. The
average shear strength of Cu/Cu joint is 48.5 MPa. Although in the case of the SiC/Cu–SiC
combination of materials, a lower shear strength of the joint was measured (42.5 MPa), the
limit criterion for soldering power semiconductors is 40 MPa. The Sn5Sb3Ti solder thus
meets this condition for all materials tested.
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For more precise identification of the mechanism of bond formation, the fractured sur-
faces of joints were analyzed. Figure 25a,b shows the fractured surface on the boundary of
the SiC/Sn5Sb3Ti/Cu–SiC joint. It is evident that the fractured surface from the side of SiC
ceramics remained partially covered with the solder. Solder coverage was approximately
80%. Ductile fracture was observed in the solder. Planar analysis of the distribution of Si,
Ti, Cu, Sn, and Sb elements on the fractured surface was performed, as documented in
Figure 26b–f. The planar distribution of Si element shown in Figure 26b represents the SiC
ceramics, and local spots (where the solder was pulled out) may be observed. From the
distribution of Ti on the fractured surface, shown in Figure 26c, it may be concluded that Ti
is bound to SiC ceramics and thus it contributes considerably to bond formation.
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XRD analysis was performed in the boundary of the SiC/Sn5Sb3Ti joint (Figure 27).
The analysis proved the presence of a titanium phase of the type TiSbSn and a copper phase
of the type Cu6Sn5 on the fractured surface. Moreover, the SnSb phase was also observed,
which was not identified by EDX analysis, and its existence is also confirmed by the binary
diagram of Sn–Sb shown in Figure 8.
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4. Conclusions

The aim of the research was to characterize the soldering alloy of the type Sn–Sb–Ti
and study whether the proposed composition of the solder would be suitable for soldering
SiC ceramics with a metal–ceramic composite of the type Cu–SiC with the application of
ultrasonic soldering. The following results were achieved:

• For determining the melting point, DTA analysis was applied. From analysis of
the DTA results, only one reaction was identified, namely the peritectic one at an
approximate temperature of 243 ◦C. Sn–Sb alloys containing 1, 2, and 3 wt.% of Ti
were assessed. It was found that a higher Ti content shifts the peritectic reaction
toward lower temperatures. The addition of Ti content lowered the melting point of
the Sn5Sb3Ti alloy, which resulted in a faster transition from solid to liquid.

• The solder structure consisted of a tin matrix, which contained the solid solution (Sn)
+ Sb3Sn2 phase. The solder matrix contained non-uniformly distributed intermetallic
phases of titanium, antimony, and tin. In addition, the formation of acicular con-
stituents of the Ti6(Sb,Sn)5 phase with a high content of titanium primarily occurred.
This secondary phase reacted with the tin melt to form islands of an irregular, mostly
sharp-edged shape, namely the TiSbSn phase. The formation of titanium-containing
intermetallic phases resulted in the strengthening of the tin matrix of the solder.

• The Sn5Sb-based soldering alloy attained the average tensile strength of 43 to 51 MPa
depending on the titanium content. It was found that Ti addition to a solder partially
increases the tensile strength of soldering alloys of the type Sn5Sb. This results from
solder matrix strengthening due to intermetallic phases of titanium.

• The SiC/solder bond was formed as follows: During the soldering process, titanium
and antimony were distributed to the boundary with the ceramic SiC material, where
a reaction layer, ensuring the wettability of SiC ceramics, was formed. Between the ac-
tive element and the ceramic material, a reaction took place forming reaction products
that wet the ceramic due to an active solder. The reaction product, the (Ti,Si)6(Sb,Sn)5
intermetallic phase, was identified, where silicon, which has substituted titanium, was
partially bound. This suggests that interaction between the ceramics and the solder
took place.

• A transition zone was formed on the boundary of the Cu–SiC/solder joint, whereby
dilution of Cu from the metal–ceramic composite Cu–SiC occurred in the liquid tin
solder. Two phases were identified: the wettable η-Cu6Sn5 phase, in contact with the
solder, and the non-wettable ε-Cu3Sn phase, in contact with the copper composite.

• The measurements of shear strength were performed on a wide range of metallic and
ceramic materials. The average shear strength of a combined joint of SiC/Cu–SiC,
fabricated with the Sn5Sb3Ti solder was 42.5 MPa. The limit criterion for soldering
power semiconductors is the shear strength of 40 MPa. The Sn5Sb3Ti solder meets
this condition in the case of all materials studied.
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The Sn–Sb–Ti solder is a direct competitor of the S-Bond active solder. The production
of solder is cheaper, and the presence of antimony increases its strength. The application
temperatures range is also wider.
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