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Abstract: The aim of the article is to compare two classifications systems of engineering-geological en-
vironment sustainability in terms of its permeability evaluated on the basis of permeability coefficient.
The first evaluated classification assumes a permeable environment to be a positive characteristic
in the engineering-geological assessment, while the other considers an impermeable environment
as favourable. The four fine-grained soil materials were selected, as they had very similar, almost
identical grains-size distribution, but different microstructure characterized by grains sphericity,
angularity, and roughness. At the same time, the influence of changes in the density of soil materials
(density index 10%, 30%, 60%, 90%) was analysed. Permeability coefficient was determined using
six methods (empirical formulae, laboratory and microscopic analysis). The laboratory method
falling head test (FHT) was taken as a reference test that reflected the actual water flow through
the soil. It was found that with an increase in grain angularity and roughness (and a decrease in
sphericity), the permeability coefficient was decreasing and this trend culminated along with gradual
compaction. Moreover, the research shows that unsuitable methods may classify soil materials into
wrong engineering-geological permeability classes, which may have negative consequences during
engineering-geological or geotechnical assessment and cause subsequent problems in foundation
engineering.

Keywords: engineering geology; soil permeability; fine-grained soils; soil microstructure; methods
of permeability coefficient determination; scanning electron microscope technique; Kozeny-Carman
Formula; Slichter Formula; Seelheim Formula; laboratory soil permeability testing

1. Introduction

An important factor in engineering geology is the permeability of the geological
environment [1–7] which subsequently influences a number of boundary conditions in
foundation engineering. Thus, it is vital to appropriately determine the most impor-
tant parameter in the quantification of geological environment permeability, namely the
permeability coefficient [8,9]. Due attention must be paid to the choice of methods in
its determination [10–14] as well as the differences in the values obtained by different
methods.

There are many methods of determining the permeability coefficient, but they may
be generally divided into in-situ tests (i.e., pumping and borehole permeability tests),
laboratory tests (i.e., constant water head test, falling water head test, capillary permeability
test), empirical and predictive methods. Each of these groups has its advantages and
disadvantages. In-situ tests return the most reliable results, however they are costly and
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technically difficult—erroneous results may be influenced by incomplete recognition of
the geological structure of the layer. In laboratory tests, the challenge lies in preparing
representative samples for testing, and sample size is limited [15,16]. Empirical formulae,
which are widely used, are based mainly on the grain-size of soils and thus their use,
although easy and quick, is subject to significant errors. Often these formulae, based
only on grain-size diameters, do not take into account the relationship between porosity,
compaction, specific surface area and permeability coefficient [17–22].

This problem is addressed in the article via demonstrating the differences based on
the analysis of four soil materials of more or less identical grain-size distribution (grain
size), but varying microstructure. The differences obtained in the permeability coefficient
values mean that the permeability of the geological environment may not be determined
correctly. A serious problem of engineering-geological investigations is the fact that the
permeability coefficient is often determined based on empirical formulae, but not on
more suitable laboratory, microscopic or in-situ methods. However, this may have severe
consequences in the field of engineering geology, geotechnics, and foundation engineering.
Wrong verdicts may often lead to inappropriate engineering design decisions, wrong
redevelopment or foundation engineering projects, which is a negative phenomenon with
a number of technical, economic and safety impacts.

The permeability of the geological environment influences many engineering struc-
tures, especially these where the presence of water may have fatal consequences, such as
water reservoirs, dams, or other water management structures. The permeability of the ge-
ological environment has been investigated by a number of authors, and the most common
criterion was the character of the engineering structure. For example, Chen et al. [23], Stark
et al. [24], and Xu et al. [25] investigated the permeability of the geological environment in
dams, Masset and Loew [26] studied underground structures and tunnels, and studies on
the redevelopment of contaminated geological environment have been frequent [27].

In case of water flow through the soil, its microstructure reflecting the particle shape
and their roughness is also very significant. It determines the capability to retain bound
water as well as water movement [28]. Although many researchers have proved that
the geometrical properties of soil particles determine the parameters and behaviour of
subsoil [28–31], these findings are often neglected in engineering practice.

The aim of the article was to determine the soil permeability coefficient of four fine-
grained soils, taking into account their particle shape properties such as sphericity, angu-
larity, and roughness under various density conditions. Apart from studying the effect
of grains’ surface on the permeability coefficient, we also assessed different methods in
determining the permeability coefficient, namely in terms of different purpose classifica-
tions of engineering environment permeability to determine suitability or unsuitability
of a particular project. We assumed that the determination of permeability coefficient is
influenced by the very method, but also by the permeability classification system, because
it determines the relevant limits of the characteristic. It has certain consequences during the
implementation of an engineering structure, where permeability plays a significant role.

The study has important implications for engineering geology, geotechnics, foundation
and civil engineering, as it demonstrated substantial differences in the determination of the
permeability coefficient depending on the methods used to meet the boundary conditions
of fine-grained soils. Using microscopic techniques and laboratory methods, much more
accurate determination of permeability coefficient was obtained than in the empirical
approaches.

2. Materials and Methods
2.1. Characteristics of the Soil Materials

In the research, we determined the permeability coefficient by four case studies of
fine-grained soil. We used a selected soil material (Figure 1) of similar, almost identical
grain-size distribution, but of a different microstructure, which was characterised by the
total shape index ζ0C that expresses the variability of sphericity, angularity, and roughness



Materials 2021, 14, 6411 3 of 17

Zięba [28] according to Parylak [32]. The method of determining this parameter is described
in Equation (1).

ζ0C =
ζΦ + ζ1−A + ζ1−Ia

3
[−] (1)

where:
ζΦ—sphericity index; ζ1−A—angularity index; ζ1−Ia—roughnes index.

In this case, the microstructure ranged from ideally spherical, smooth particles (artifi-
cial glass microbeads, ζ0C = 1.00) to highly irregular and rough ones (fly ash, ζ0C = 0.48)
(Figure 1).

Figure 1. SEM images of 4 soil particles’ shapes: (a) glass microbeads (GM); (b) sandy silt from
Krakowiany (SK); (c) sandy silt from Graniczna (SG); (d) fly ash (FA).

One studied soil material was of a natural character (sandy silt from Krakowiany
SK—Figure 1b) and three were of an anthropogenic character (glass microbeads GM—
Figure 1a, sandy silt from Graniczna SG, Figure 1c, and fly ash FA—Figure 1d). Their
detailed origin is as follows: GM—factory-produced 100% glass microbeads; SK—natural
soil from Krakowiany, Lower Silesian Voivodeship, Poland; SG—granite processing waste
obtained from Graniczna near Strzegom, Lower Silesian Voivodeship, Poland; FA—fly
ash from hard coal combustion, wet storage—Łaziska Power Plant, Silesian Voivodeship,
Poland.

An important boundary condition of the study was the differences in the parameter
of sphericity in various fine-grained materials (Figure 1). Sphericity had the maximum
value of 100% in the first material (GM), and it decreased gradually to 45% in the second
(SK), 26% in the third (SG), and 27% in the fourth (FA). Another important parameter
was angularity. The first material (GM) had almost zero angularity (the material was
highly spherical, concave), but the angularity increased in the second material (SK) to
34%, in the third material (SG) by 9% to 43%, and in the fourth material (FA) by 19% to
62%. If we quantify changes in roughness of the studied soil materials, we observe zero
roughness in GM an increase to almost 10% in SK, to 11% in SG, and to 22% in FA. This
means that to evaluate the factors, the differences in the materials need to be substantial
to be able to prove their influence on the changes in permeability coefficient in terms of
engineering-geological environment permeability.

To be able to study the effect of shape characteristics on the changes in permeability
coefficient, it was vital to comply with a boundary condition of having soil materials in the
case studies with almost identical particle sizes (Table 1).

Other important characteristics of soil materials in the case studies were total porosity,
effective porosity, total shape index and specific surface area—see Table 1. Minimum total
porosity of 0.27 was observed in the first anthropogenic soil (GM) at density index (ID) 90%,
and maximum total porosity of 0.51 was reported in fly ash at density index 10%. Minimum
effective porosity of 0.20 was observed in FA at density index 90%, and maximum effective
porosity of 0.38 was reported in GM at density index of 10%.
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Table 1. Input parameters of soils.

Soil Type

Density Index Particle Size Diameter Total
Porosity

Effective
Porosity

Total Shape
Index

Specific
Surface Area

ID d10 d20 d30 d40 d50 d60 d70 d80 d90 n ne ζ0C S0
[%] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [–] [–] [–] [m2·g−1]

Glass
microbeads

(GM)

10 0.021 0.027 0.033 0.043 0.060 0.071 0.091 0.120 0.229 0.38 0.38 1.0 0.268
30 0.021 0.027 0.033 0.043 0.060 0.071 0.091 0.120 0.229 0.36 0.36 1.0 0.268
60 0.021 0.027 0.033 0.043 0.060 0.071 0.091 0.120 0.229 0.32 0.32 1.0 0.268
90 0.021 0.027 0.033 0.043 0.060 0.071 0.091 0.120 0.229 0.27 0.27 1.0 0.268

Sandy silt from
Krakowiany

(SK)

10 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.47 0.31 0.67 0.395
30 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.44 0.29 0.67 0.395
60 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.40 0.27 0.67 0.395
90 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.35 0.23 0.67 0.395

Sandy silt from
Graniczna (SG)

10 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.50 0.29 0.58 0.448
30 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.48 0.28 0.58 0.448
60 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.44 0.26 0.58 0.448
90 0.021 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.40 0.23 0.58 0.448

Fly ash (FA)

10 0.019 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.51 0.24 0.48 1.340
30 0.019 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.49 0.24 0.48 1.340
60 0.019 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.45 0.22 0.48 1.340
90 0.019 0.027 0.033 0.043 0.060 0.080 0.110 0.160 0.229 0.41 0.20 0.48 1.340
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An important boundary condition of permeability coefficient is soil porosity (Figure 2),
in the form of total porosity [33], but much more important in this case is effective poros-
ity [34,35]. The value of effective porosity is closely related to specific surface area which
reflects the roughness of the particle surface and determines the soil capability to retain
bound waters [36,37]. Which is why, the equivalent diameter of total pore space is bigger
than the equivalent diameter of effective pore space (Figure 2).

Figure 2. Pore space analysis based on SEM image.

This relationship manifests itself significantly in the varying values of total porosity
(Figure 3a) and effective porosity (Figure 3b). Based on the increasing roughness from
glass microbeads to fly ash in the four studied soil materials, it may be concluded that
the smoothest surface of the first anthropogenic soil (GM) has analogous values of total
and effective porosity. On the other hand, the roughest surface of the fourth soil material
(FA) has a vast difference between the total and effective porosity caused by the roughness
and a more pronounced zone of bound water around the grains. The values of total and
effective porosity of the second (SK) and third soil material (SG) fall between the values of
GM and FA. Thus, the dependence is visible in a gradual increase between the total and
effective porosity of samples.

Figure 3. Porosity of the studied soil samples: (a) Total porosity, (b) Effective porosity.
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2.2. Methods Used to Determine the Permeability Coefficient

For the purposes of this article, the permeability coefficient was determined using
6 methods, including laboratory tests and empirical formulae as well as innovative tech-
niques for determining the permeability coefficient based on the analysis of scanning
electron microscope images (Figure 4).

Figure 4. Methods of permeability coefficient determination applied (the differences between the
formulae are marked in different colours).

The authors divided the empirical formulae available in the literature into three groups
and selected one formula from each group that could be applied to the studied soils. The
three applied methods of empirical formulae (Figure 4) must be understood in a wider
context of all other methods summarized in Figure 5 which also presents ones whose
boundary conditions are not suitable for fine-grained soils. This context (Figure 5) shows
important analogies in the calculations for each group.

The first formula (Figure 4) falls in the group of empirical methods where equation
take into account the function of porosity f (n) and the function of specific surface area f (S0),
which reflects the effective porosity. The second formula falls in the second group, taking
into account the function of porosity f (n) and the function of grain size diameter f (di). The
third formula from the third group accounts for the function of grain diameter f (di) only.
Each formula thus contains empirical coefficient βi. The permeability coefficient k was
expressed in [m·s−1].
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Figure 5. Other empirical formulae. The differences between the formulae are marked in colours:
Kruger Formula [17,38], Hazen-Lange Formula [38,39], Hazen Formula [38,39], USBR Formula [17],
Zamarin Formula [22,38,40], Terzaghi Formula [38,40].

With regard to the range of applicability of individual formulae, the following equa-
tions were selected. From the first group we chose the empirical formula Kozeny-Carman
based on the boundary condition of ranges of applicability-silts, sands, and gravelly
sands [39,41]. From the second group, we selected Slichter Formula because of the range of
applicability—0.01 mm ≤ d10 ≤ 5 mm [17]. From group 3, we chose the Seelheim Formula
based on the range of applicability—sands, clay and elutriated chalk [22].

The fourth method (falling head test FHT) used to measure the permeability coefficient
belonged to the group of laboratory tests [42]. The calculation of the permeability coefficient
k took into account the amount of water flow V through the sample cross-section F in time
t at given hydraulic gradient i.

The fifth and sixth methods were from the group of SEM methods. The fifth applied
method (Kozłowski method—SEM K) is based on the analysis of scanning electron mi-
croscope SEM images [43]. The formula takes into account volumetric weight of water γ,
dynamic viscosity of water µ (both at 10 ◦C), area of the SEM image A (concerning total
porosity), cross-section area of pore i (Ai) and hydraulic radius of pore i (Rh,i). However,
this method recognizes the total pore space area (not effective), so it does not reflect the
influence of the microstructure of the soil particles.

Therefore, in the sixth method SEM K-Z, the authors modified Kozłowski’s method
based on an empirical analysis of effective pore diameter with reference to the soil mi-
crostructure [28]. The total shape index (ζ0C) was introduced as a parameter reducing
the value of pores cross-section area to obtain the effective pore space area. The same
assumption was made for the determination of the effective porosity.

In both SEM methods, the permeability coefficient was determined on the basis of
image analysis. Thirty SEM photographs of each variant (different soils with different
density index) were analysed. The geometrical parameters of pore spaces were identified
using ImageJ software (Figure 6). Based on this, the values of permeability coefficient were
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determined for each photograph. The obtained results were subjected to statistical analysis.
For each variant, the arithmetic mean and standard deviation were determined for the
significance level equal to 0.05. In addition, the coefficient of variation was calculated.
When it exceeded 10%, extreme values of permeability coefficient were rejected and other
results were averaged [44].

Figure 6. Analysis of the pore space of a single image using ImageJ software on example of fly ash:
(a) output image; (b) image after transformations; (c) geometric pore parameters.

3. Results and Discussion

Based on the results of the tests and calculations of the permeability coefficient
(Figure 4), the evaluation of individual methods was performed. The results obtained
from the laboratory tests (FHT) were taken as the reference values (Figure 7). In this
method, the permeability coefficient was determined on the basis of the actual water flow
through the soil samples. 

2 

 
Figure 7. The values of permeability coefficient k obtained with different methods for different soils in relation to FHT.
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The results imply that higher permeability values in the first soil material and a
gradual decreasing trend from the second through the fourth soil material (Figure 7). This
is explained by the gradual fall in the grain sphericity and an increase in grain angularity
and roughness from the first to the fourth soil material. It is best seen using the reference
method four and it may also be observed in method six. The remaining methods confirm
the trend only partially, which relates to the methodological shortages described in the
previous section.

In principle, we can observe in the results that the first two empirical methods (Kozeny-
Carman and Slichter) show lower permeability coefficients from 40% to 97% than the refer-
ence laboratory method FHT. The third empirical Seelheim Formula presents significantly
higher values than the reference method, except for two values in the first anthropogenic
soil material. The microscopic Kozlowski method SEM K mostly shows significantly higher
values than the reference method (in the order of hundreds per cent), except for the first
anthropogenic soil material (GM), where the values are higher by only 9 to 13%. The
best compatibility was achieved using the sixth method (SEM K-Z), where the maximum
difference with the reference method was below 15%, but the majority of the measured
values had a difference of a single digit value (Figure 7).

If we evaluate the values of permeability coefficient based on the different methods
applied (Figure 8), the following findings are achieved. The Kozeny-Carman Formula
(Figure 8a) shows a decrease in density index in all studied materials from the most
compacted state to the least. This is logical because more water permeates through looser
and less compacted material than through more compacted one. The difference between
the least compacted state (density index ID = 10%) and the most compacted state (density
index ID = 90%) was 75% in GM. On the other hand, in SK the difference was 73% and the
decreasing trend continued in other soil materials, i.e., 64% in SG and 66% in FA.

A similar trend of decreasing values based on density index was also observed in the
Slichter Formula (68%, 62%, 52%, 53%). In Seelheim Formula the trend differed. Density
did not seem to play any role in the soil materials and the hydraulic permeability value
stayed unchanged. In falling head test (fourth method) the trend of permeability coefficient
was similar to the first and second empirical formulae, i.e., the values fell along with higher
compaction, but the percentage difference between the first and last value was slightly
smaller (37%, 41%, 49%, 37%) than in the first and second methods. In the microscopic
methods the trend was similar in the fact that the permeability coefficient values fell from
the least to the most compacted state. However, the differences in values of the four soil
materials had a reversed course than in the previous case. This means that differences in
values grew (34%, 48%, 53%, 54%). The fourth and fifth methods had analogous percentage
differences between changes in the states of compaction.

The acquired results imply that the most suitable method out of the six applied to
determine permeability coefficient was the fourth method of reference laboratory falling
head test, as it reflected the changes in the state of compaction between the least and most
compacted state. At the same time, it most closely reflected changes between concave
grains of GM and most angular grains of FA. Fly ash had the best boundary conditions
to achieve best state of compaction. Thus, GM had the worst boundary conditions to
achieve the best state of compaction. All the facts are presented in the trend of permeability
coefficient changes (Figure 8d).

The second most suitable method was the modified Kozlowski method (SEM K-Z)
(Figure 8f). Similarly to the FHT, the modified Kozlowski method reflected the physical
process of soil compaction in the gradual decrease in permeability coefficient from the
least compacted to the most compacted state. In addition, the method reflected the shape
and material character of the soil grains. More angular grains compact in a better manner
than concave grains. Thus, permeability coefficient falls from more suitable to less suitable
shapes in terms of compaction.
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1 
 

 
  Figure 8. The values of permeability coefficient k obtained with the same method for different soils in relation to the density

index ID.

The third most useful was the Kozlowski method (SEM K). Although it reflected the
process of gradual compaction of the different soil materials, the permeability coefficient
values only partially accounted for the difference in grain shapes. Despite the fact that
materials with more concave grains should have a higher permeability coefficient than
materials with more angular grains (Figure 8e), this was only fully reflected in the modified
Kozlowski method SEM K-Z (Figure 8f).

The fourth in terms of suitability was the Kozeny-Carman Formula (Figure 8a) and
the fifth was Slichter Formula (Figure 8b). In case of both formulae, it may be stated that
permeability coefficient fell along with a higher compaction state. However, similarly to
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the Kozlowski method, the differences between the grain shapes were not reflected in the
permeability coefficient values, and the final values of permeability coefficient were even
lower than in the more methodically optimal laboratory (SEM) methods.

The last, i.e., the least suitable, was the Seelheim Formula (Figure 8c). This method took
into account only the diameter d50 and did not reflect the process of gradual compaction
of soil materials or the grain shape characteristic. Consequently, all soils have exactly the
same permeability coefficient at each compaction, which is inconsistent with the actual
water flow in the analysed materials.

The permeability coefficient is an important parameter in the assessment of soil
environment, both in engineering geology and geotechnics. Thus, the research study aims
to point at its importance in permeability assessment and in the choice of a suitable method
of its determination. In the four case studies, the most suitable method was the reference
laboratory FHT method. If permeability coefficient is not considered, wrong decisions may
be taken in foundation engineering or other uses of engineering-geological environment.
The study showed that the assessment of permeability coefficient using different methods
led to different classifications of permeability, which may also result in wrong decisions.

From the point of view of engineering practice, a correct description of the phe-
nomenon of water flow in soil and a precise determination of the permeability coefficient
that characterises it is particularly important. Therefore, it is crucial to choose an appro-
priate method to determine this parameter [18,19,45]. The research carried out in this
paper proves that there are large discrepancies in the obtained results depending on the
method used.

To date, numerous studies have been carried out showing significant differences
between results obtained with different empirical formulae, as well as empirical formulae
and laboratory and field studies [16,17,19,22,41,46–48]

There have been few studies comparing different methods of determining perme-
ability coefficient with consideration of particle shape characteristic and porosity. In their
paper, Cabalar and Akbulut compared the values of permeability coefficient for sands with
different gradation and shape, with the use of SEM images and simple indices classifying
particle shape [18]. SEM images were used to demonstrate physical differences/similarities
among the tested soils. Roundness and sphericity were estimated with a method pro-
posed by Muszynski and Vitton [49]. Permeability coefficient was examined using a
constant head method and predictive methods (Hazen, Kozeny-Carman, Terzaghi, Cha-
puis, Slitcher, USBR, NAVFAC, Alyamani and Sen, and Breyer). Slitcher and Terzaghi
methods returned the best correlation with measured coefficient of permeability values,
while Kozeny-Carman and NAVFAC approaches gave the worst correlation with measured
values.

In the literature reviewed, the authors obtained results that cannot be compared
with one another, nor can the tendency for individual empirical formulae to over- or
underestimate results in comparison with laboratory methods be clearly identified. Few
methods for determining permeability coefficient (both laboratory and empirical) can be
applied to a wide range of grain sizes, hence global analysis and comparisons between
studies are problematic.

Microscopic methods may be considered as an alternative to empirical formulae for
determining the permeability coefficient. Pioneer studies in this field were carried out
by Kozłowski (SEM K method) [43], but they were limited to cohesive soils (clay). The
modification of Kozlowski equation (SEM K-Z) extended the application of microscopic
methods transitional soils. In practice, such approach to the problem allows to determine
the permeability coefficient in a shorter time on many samples (irrespective of their grain
size), also on small samples which are too tiny for laboratory tests.

In connection with engineering-geological and civil engineering practice, and espe-
cially with foundation engineering, soil classifications for different purposes or different
properties are crucial. It is important to consider permeability [50] of foundation soils as
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one of the classification criteria. Next, we may ask whether it is more frequent to perceive
permeable soils as more suitable foundation soils, or impermeable soils as suitable.

In fact, both assessment approaches are used, but more frequently permeable soil is
considered more suitable. Research shows that permeable soils such as gravel and sandy
soils are more suitable in terms of load-bearing capacity [51,52] and settlement [53,54]
than fine-grained soils. The difference between the two approaches is thus seen in several
engineering-geological properties, including permeability. Figure 9 shows permeable
geological environment perceived as suitable foundation engineering soil. The classification
of foundation engineering soils is grounded in European Standard ISO-14688-2:2004 [55].
On the other hand, Figure 10 shows impermeable geological environment as a suitable
geological environment (less frequent approach). This approach is typical for engineering
geology, geotechnics and foundation engineering [56–59]. This is due to the fact that the
realised objective, i.e., a building, determines the suitability or unsuitability of certain
properties of foundation soil, which is variable depending on the objective.

If we evaluate the determination of permeability coefficient, it proves to be a highly
sensitive topic when one sample is considered suitable using one classification method and
simultaneously unsuitable (or conditionally suitable) using another classification method.
In terms of practicality, this may mean that we may select an inappropriate approach
during foundation engineering or other interference with the geological environment.

Figure 9. Purpose-made classification of engineering-geological environment permeability (suitable—green, conditionally
suitable—yellow, unsuitable—red) based on permeability coefficient, where high permeability is perceived as a positive
property of rock massive.
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Figure 10. Purpose-made classification of engineering-geological environment permeability (suitable—green, conditionally
suitable—yellow, unsuitable—red) based on permeability coefficient, where low permeability is perceived as a positive
property of rock massive.

It is more common to assess permeable geological environment as a suitable foun-
dation engineering soil (Figure 9). Important parameters were values obtained using the
reference falling head test (FHT), which shows more realistic values of permeability coeffi-
cient. In SK, SG, and FA (apart from GM), the permeability coefficient according to FHT
was classified in the sector of conditionally suitable foundation engineering soils, i.e., with
low permeable soil. On the contrary, FHT classified the anthropogenic soil material of glass
microbeads in the green sector of suitable (medium permeable) foundation engineering
soils. The results imply that the determination of permeability coefficient according to
different methods leads to different classifications of foundation soils. In the four case
studies, some methods classified the same sample into conditionally suitable or suitable
foundation soils (Figure 9). The results close to the reference method FHT should be
decisive.

This type of classification is suitable for all types of structures, where permeable
soils represent appropriate load-bearing foundation soil because of more fitting physical-
mechanical properties in terms of load-bearing capacity. It corresponds to the fact that
permeable soils have better capacity to drain water and thus are subjected to fewer changes
in the volume, which brings more positive connections in load-bearing capacity and
settlement. On the contrary, low permeable fine-grained soils, which are the subject of
the four case studies, represent more problematic foundation soil (conditionally suitable).
In particular, problems are encountered if they are found in soft or slushy consistencies.
The anthropogenic soil material of glass microbeads is a certain exception as it is more
permeable and thus conditionally suitable.

The second, less common approach is when impermeable engineering-geological
environment is considered a suitable foundation soil for a given purpose. This way,
the impermeable engineering-geological environment of fine-grained soils may be more
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suitable foundation soil. Therefore, sandy silt from Krakowiany, sandy silt from Graniczna,
and fly ash are conditionally suitable foundation soils—see the yellow colour in Figure 10.
All the values of these three studied soils (including the changes in density index) fell in this
part of the classification graph using the reference falling head test. Only the anthropogenic
soil of glass microbeads was classified as unsuitable because it was more permeable due to
the grain shape.

Using this opposite approach (Figure 10), the application of different methods led to
different classifications. If a method is selected inappropriately, the soil may be classified
based on the permeability coefficient as low permeable using FHT, but as medium perme-
able using another one. It may cause problems in engineering geology and foundation
engineering.

4. Conclusions

The study points at the fact that the permeability of the engineering-geological envi-
ronment perceived through permeability coefficient is an important scholarly topic with a
number of boundary conditions that limit or enable its application in engineering geology,
geotechnics, and foundation engineering.

The results show that grain sphericity, angularity, and roughness in fine-grained soils
are very important parameters of foundation soils affecting the permeability expressed by
permeability coefficient. Clearly, if we have soils of analogous grain-size distribution but
different grain shape and roughness, the permeability (permeability coefficient) increases
along with a rise in the sphericity and concaveness and a fall in grain angularity and
roughness. Also, along with a rise in angularity (lower sphericity and concaveness) and
roughness, the permeability decreases, manifesting in lower permeability coefficient. The
difference in the permeability coefficient between the most spherical (least angular and
rough) grains of glass microbeads was four-fold in comparison with the most angular and
roughest fly ash. Moreover, the difference increases further, along with higher compaction,
which means that at higher compaction, the differences in grain shapes are even more
important.

When evaluating the effect of compaction on the permeability coefficient values
and thus on permeability of the selected fine-grained soil materials, it may be stated
that the effect of compaction was studied using four states of compaction (density index
10%, 30%, 60%, and 90%). Using the laboratory method, we identified that there was a
similar efficiency of compaction in the most angular and roughest FA, where the difference
between the minimum and maximum compaction was 37%, which manifested itself in
lower permeability coefficient values. Similar effects occurred in the most concave grains
too (GM). In the two remaining materials, the difference between the minimum and
maximum compaction states was 41% (SK) and 49% (SG). Using the modified microscopic
method, we found that the efficiency of compaction increased gradually (34%, 48% 53%,
54%) along with changes in the grain shape and roughness from the least angular and least
rough to the most angular and roughest shapes, which was demonstrated in a gradual
decrease of the permeability coefficient and permeability.

Another assessment criterion in the study was the choice of methods in determin-
ing the permeability coefficient in selected fine-grained soils with analogous grain-size
distributions. FHT was adopted as the reference method, because in this laboratory test
the permeability coefficient was determined based on water flow through the soil. Using
FHT, the permeability coefficient values reflected the differences in the soil material grain
shape as well as states of compactness expressed as density index. Comparable results
were achieved using the modified Kozlowski method, while using the four remaining
approaches we observe a number of drawbacks described above.

Another aspect of the study assessment was to point at the differences in the perme-
ability coefficient values on particular classifications of engineering-geological environment
permeability when determining the suitability or unsuitability of rock/soil massive for a
particular purpose. The results show that the influence is clear and it is vital to approach
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the choice of permeability coefficient assessment methods in a sensitive manner and take
into account also the grain shape and roughness. Also, it is important to consider effective
porosity and density index. This is because all these boundary conditions have specific
influence on the purpose classification systems of engineering-geological environment
permeability used in engineering geology, geotechnics, and foundation engineering. The
results prove that all the boundary conditions may manifest themselves in altered classi-
fication category of suitable, conditionally suitable or unsuitable engineering-geological
environment for a particular purpose. This may have negative consequences in foundation
engineering as these purpose classifications are important tools in foundation engineering
processes. The study proved that certain permeability of engineering-geological environ-
ment may constitute a suitable engineering-geological environment for one purpose, but
conditionally suitable or unsuitable for another.
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map incorporating the effect of landslides and surface flooding for land-use purpose. Bull. Eng. Geol. Environ. 2014, 73, 1117–1126.
[CrossRef]
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