
Computers and Mathematics with Applications 103 (2021) 156–170
Contents lists available at ScienceDirect

Computers and Mathematics with Applications

www.elsevier.com/locate/camwa

Semi-analytic integration for a parallel space-time boundary element

method modelling the heat equation

Jan Zapletal a,b,∗, Raphael Watschinger c, Günther Of c, Michal Merta a,b

a IT4Innovations, VŠB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
b Department of Applied Mathematics, VŠB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
c Institute of Applied Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria

A R T I C L E I N F O A B S T R A C T

Keywords:
Boundary element method
Space-time
Heat equation
Integration
Parallelisation

The presented paper concentrates on the boundary element method (BEM) for the heat equation in three spatial
dimensions. In particular, we deal with tensor product space-time meshes allowing for quadrature schemes
analytic in time and numerical in space. The spatial integrals can be treated by standard BEM techniques
known from three dimensional stationary problems. The contribution of the paper is twofold. First, we provide
temporal antiderivatives of the heat kernel necessary for the assembly of BEM matrices and the evaluation of the
representation formula. Secondly, the presented approach has been implemented in a publicly available library
besthea allowing researchers to reuse the formulae and BEM routines straightaway. The results are validated by
numerical experiments in an HPC environment.

1. Introduction

For a bounded Lipschitz domain Ω ⊂ℝ3 we aim to solve the heat equation

𝜕𝑢

𝜕𝑡
(𝒙, 𝑡) − 𝛼Δ𝑢(𝒙, 𝑡) = 0 for (𝒙, 𝑡) ∈ Ω × (0, 𝑇) =∶𝑄 (1.1)

with the heat capacity constant 𝛼 > 0, the initial condition

𝑢(𝒙,0) = 0 for 𝒙 ∈Ω (1.2)

and a Dirichlet or Neumann boundary condition, i.e.

𝑢(𝒙, 𝑡) = 𝑔(𝒙, 𝑡) for (𝒙, 𝑡) ∈ 𝜕Ω× (0, 𝑇) =∶ Σ

or

𝛼
𝜕𝑢

𝜕𝒏
(𝒙, 𝑡) = ℎ(𝒙, 𝑡) for (𝒙, 𝑡) ∈ Σ,

respectively.
Such initial boundary value problems can be solved by boundary element methods. A survey on discretisation methods involving boundary

integral equations is given in [1]. Here we consider a space-time formulation and a Galerkin method for discretisation. A comprehensive analysis
of the involved integral equations is given in [2]. Error analysis for the Galerkin method has been provided in [2–6]. A space-time formulation has
certain advantages with respect to adaptivity and parallelisation. It allows quite general adaptivity in space and time compared to time stepping and
convolution quadrature methods. A common parallelisation in space can be enhanced by an additional parallelisation with respect to time, which is
not possible for time-stepping approaches.

* Corresponding author at: IT4Innovations, VŠB – Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
E-mail address: jan.zapletal@vsb.cz (J. Zapletal).
https://doi.org/10.1016/j.camwa.2021.10.025
Received 19 February 2021; Received in revised form 15 October 2021; Accepted 20 October 2021
Available online 9 November 2021
0898-1221/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.camwa.2021.10.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2021.10.025&domain=pdf
mailto:jan.zapletal@vsb.cz
https://doi.org/10.1016/j.camwa.2021.10.025
http://creativecommons.org/licenses/by/4.0/

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
We aim to provide a complete and (hopefully) error-free presentation of details on the implementation of a Galerkin boundary element method
for the three-dimensional heat equation considering all boundary integral operators. Galerkin methods have been considered in, e.g., [2,3,6,7] for
2d and [8–10] for 3d. Typically, implementational aspects are discussed only briefly and a lot of effort is necessary to transform the theoretical
results into a performant computer code. Our aim is to fill this gap by providing a detailed discussion and a publicly available C++ library.

In case of space-time tensor product discretisations the integrals with respect to time can be carried out analytically. This may result in a
significant reduction of computational times. In [3], aspects of the temporal integration are discussed and [8] considers the 3d setting. Unfortunately
such presentations are typically very brief and we thus try to cover the topic in greater detail.

The paper is organised as follows. In Section 2 we introduce the considered space-time boundary integral equations. The discretisation by the
boundary element method is provided in Section 3 together with the derivation of heat kernel antiderivatives necessary for the assembly of system
matrices and the evaluation of the representation formula. For a later reference by an interested reader using the presented results we provide a
short summary of the formulae in Section 4. Section 5 describes the implementation approach as provided in the besthea C++ library [11]. We
validate the result by numerical experiments in Section 6 and conclude in Section 7.

2. Boundary integral equations

The solution to the initial problem (1.1)–(1.2) is given by the representation formula

𝑢(𝒙, 𝑡) = 𝑉
(
𝛼
𝜕𝑢

𝜕𝒏

)
(𝒙, 𝑡) −𝑊 𝑢(𝒙, 𝑡) (2.1)

with the single-layer potential

𝑉
(
𝛼
𝜕𝑢

𝜕𝒏

)
(𝒙, 𝑡) ∶=

𝑡

∫
0

∫
𝜕Ω

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏)𝛼 𝜕𝑢
𝜕𝒏

(𝒚, 𝜏) d𝒔𝒚 d𝜏,

the double-layer potential

𝑊 𝑢(𝒙, 𝑡) ∶=

𝑡

∫
0

∫
𝜕Ω

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏)𝑢(𝒚, 𝜏) d𝒔𝒚 d𝜏,

the fundamental solution to the heat equation

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) ∶=
⎧⎪⎨⎪⎩

1
(4𝜋𝛼(𝑡− 𝜏))3∕2

exp
(
−
‖𝒙− 𝒚‖2
4𝛼(𝑡− 𝜏)

)
for 𝑡 > 𝜏,

0 otherwise,

and its scaled normal derivative

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏) ∶=

⎧⎪⎨⎪⎩
(𝒙− 𝒚) ⋅ 𝒏𝒚

16(𝜋𝛼)3∕2(𝑡− 𝜏)5∕2
exp
(
−
‖𝒙− 𝒚‖2
4𝛼(𝑡− 𝜏)

)
for 𝑡 > 𝜏,

0 otherwise.

The operators 𝑉 and 𝑊 are well-defined in the setting of anisotropic Sobolev spaces, see e.g. [12,13] for a definition of such spaces. In particular,
natural choices are 𝑋 ∶=𝐻1∕2,1∕4(Σ) for the space of the Dirichlet datum 𝑢 and its dual 𝑋′ ∶=𝐻−1∕2,−1∕4(Σ) for the Neumann datum 𝑤 ∶= 𝛼𝜕𝑢∕𝜕𝒏.

By applying the Dirichlet and Neumann trace operators to the representation formula (2.1) we get the boundary integral equations [1–3,5]

𝑉 𝑤(𝒙, 𝑡) =
(
1
2
𝐼 +𝐾

)
𝑢(𝒙, 𝑡) for almost all (𝒙, 𝑡) ∈ Σ,

𝐷𝑢(𝒙, 𝑡) =
(
1
2
𝐼 −𝐾 ′

𝑇

)
𝑤(𝒙, 𝑡) for almost all (𝒙, 𝑡) ∈ Σ,

respectively. The boundary integral operators 𝑉 , 𝐾 , 𝐷, and 𝐾 ′
𝑇

satisfy

𝑉 ∶ 𝑋′ →𝑋, 𝑉 𝑤(𝒙, 𝑡) =

𝑡

∫
0

∫
𝜕Ω

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏)𝑤(𝒚, 𝜏) d𝒔𝒚 d𝜏,

𝐾 ∶ 𝑋 →𝑋, 𝐾𝑢(𝒙, 𝑡) =

𝑡

∫
0

∫
𝜕Ω

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏)𝑢(𝒚, 𝜏) d𝒔𝒚 d𝜏,

𝐷∶ 𝑋 →𝑋′, 𝐷𝑢(𝒙, 𝑡) = −𝛼 𝜕

𝜕𝒏𝒙

𝑡

∫
0

∫
𝜕Ω

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏)𝑢(𝒚, 𝜏) d𝒔𝒚 d𝜏,

𝐾 ′
𝑇
∶ 𝑋′ →𝑋′, 𝐾 ′

𝑇
𝑤(𝒙, 𝑡) =

𝑡

∫
0

∫
𝜕Ω

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒙
(𝒙− 𝒚, 𝑡− 𝜏)𝑤(𝒚, 𝜏) d𝒔𝒚 d𝜏,

where the integral representations on the right hold for sufficiently regular functions. Note that the operator 𝐾′
𝑇

is not the adjoint of 𝐾 , but rather
the adjoint of the time reversed double-layer operator 𝐾𝑇 ∶= Θ𝑇 ◦𝐾 with Θ𝑇 𝑓 (𝒙, 𝑡) ∶= 𝑓 (𝒙, 𝑇 − 𝑡).
157

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
The above boundary integral equations are equivalent to the variational formulations

⟨𝑉 𝑤, 𝑞⟩Σ =
⟨(

1
2
𝐼 +𝐾

)
𝑢, 𝑞

⟩
Σ

for all 𝑞 ∈𝑋′, (2.2)

⟨𝐷𝑢, 𝑟⟩Σ =
⟨(

1
2
𝐼 −𝐾 ′

𝑇

)
𝑤, 𝑟

⟩
Σ

for all 𝑟 ∈𝑋 (2.3)

with the duality pairing ⟨⋅, ⋅⟩Σ between 𝑋′ and 𝑋 given by the continuous extension of

⟨𝑣,𝑤⟩Σ ∶=

𝑇

∫
0

∫
𝜕Ω

𝑣(𝒙, 𝑡)𝑤(𝒙, 𝑡) d𝒔𝒙 d𝑡.

For the duality pairing with the hypersingular operator we have an alternative representation removing the non-integrable singularity, namely
[2,14]

⟨𝐷𝑢, 𝑟⟩Σ = ⟨𝑉 𝐜𝐮𝐫𝐥𝜕Ω 𝑢, 𝐜𝐮𝐫𝐥𝜕Ω 𝑟⟩Σ − ⟨𝜕𝑡𝑉 (𝑢𝒏), 𝑟𝒏⟩Σ, (2.4)

where the surface curl of a sufficiently regular function 𝑢 is defined by

𝐜𝐮𝐫𝐥𝜕Ω 𝑢(𝒙, 𝑡) ∶= 𝒏(𝑥) × ∇𝑥𝑢̃(𝒙, 𝑡),

for a suitable extension 𝑢̃ of 𝑢 to an open neighbourhood of Σ. If the functions 𝑢 and 𝑟 are regular enough, (2.4) admits an integral representation.
We will consider such a representation in the discrete setting in Section 3.3.

To solve an initial boundary value problem for the heat equation (1.1) with homogeneous initial conditions and prescribed Dirichlet or Neumann
boundary data, it suffices to determine the unknown boundary data. Then we can use the representation formula (2.1) to recover the solution. In the
case of a Dirichlet boundary value problem the Neumann datum 𝑤 can be determined from (2.2) while in the case of a Neumann boundary value
problem the Dirichlet datum 𝑢 satisfies (2.3). It is shown in [2,3] that these variational formulations admit a unique solution. In the next section we
deal with their discretisation.

3. Boundary element method

For the discretisation of the variational formulations (2.2) and (2.3) we need a discretisation of the space-time boundary Σ. We restrict our
attention to tensor product space-time discretisations Σℎ with uniform time steps. For a given uniform decomposition of the time interval

(0, 𝑇) =
𝐸𝑡⋃
𝑖=1

(𝑡𝑖−1, 𝑡𝑖) =
𝐸𝑡⋃
𝑖=1

((𝑖− 1)ℎ𝑡, 𝑖ℎ𝑡)

and an admissible triangular mesh Γℎ, which approximates Γ ∶= 𝜕Ω and is given by

Γℎ =
𝐸𝒙⋃
𝑗=1

𝛾𝑗

with 𝛾𝑗 denoting planar triangular elements, we define the space-time mesh

Σℎ ∶=
𝐸𝑡𝐸𝒙⋃
𝑘=1

𝜎𝑘 =
𝐸𝑡⋃
𝑖=1

𝐸𝒙⋃
𝑗=1

𝛾𝑗 × (𝑡𝑖−1, 𝑡𝑖).

On Σℎ we construct approximating spaces 𝑋1,0
ℎ

⊂ 𝑋 and 𝑋0,0
ℎ

⊂ 𝑋′ accordingly as tensor products, i.e. as linear combinations of functions whose
spatial and temporal contributions can be separated as

𝜑𝒙𝑡,𝑘(𝒙, 𝑡) = 𝜑𝑡,𝑖(𝑡)𝜑𝒙,𝑗 (𝒙).

We thus define the space

𝑋0,0
ℎ

∶= span(𝜑0,0
𝒙𝑡,𝑘

)𝐸𝑡𝐸𝒙

𝑘=1 = span((𝜑0
𝑡,𝑖𝜑

0
𝒙,𝑗)

𝐸𝒙

𝑗=1)
𝐸𝑡

𝑖=1

of functions piecewise constant both in space and time and the space

𝑋1,0
ℎ

∶= span(𝜑1,0
𝒙𝑡,𝑘

)𝐸𝑡𝑁𝒙

𝑘=1 = span((𝜑0
𝑡,𝑖𝜑

1
𝒙,𝑗)

𝑁𝒙

𝑗=1)
𝐸𝑡

𝑖=1

of functions globally continuous and piecewise linear in space and piecewise constant in time. Here we denote by 𝑁𝒙 the number of nodes of the
triangular mesh Γℎ.

A function 𝑢ℎ in 𝑋1,0
ℎ

admits the representation

𝑢ℎ =
𝐸𝑡∑
𝑖=1

𝑁𝒙∑
𝑗=1

𝑢𝑖,𝑗𝜑
0
𝑡,𝑖𝜑

1
𝒙,𝑗 ,

where the first index of the coefficient 𝑢𝑖,𝑗 is associated with time and the second one with space. This notation is slightly inconsistent with respect to
the naming convention classically used for the function spaces, where the first superscript is related to space and the second one to time. However,
for the implementation and representation of the matrices it is more natural to sort with respect to time first, which is why we use this notation.

To discretise the variational formulations (2.2) and (2.3) we replace the functions in 𝑋 and 𝑋′ with their discrete counterparts in 𝑋1,0
ℎ

and 𝑋0,0
ℎ

respectively. In the following subsections we give more details about the resulting discrete operators. In particular, we focus on the computation of
the corresponding integrals.
158

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
3.1. Single-layer boundary integral operator

We start with the discretisation of the bilinear form ⟨𝑉 𝑤, 𝑞⟩Σ. By replacing 𝑤 with the approximation

𝑤ℎ ∶=
𝐸𝑡∑
𝑖=1

𝐸𝒙∑
𝑗=1

𝑤𝑖,𝑗𝜑
0
𝑡,𝑖𝜑

0
𝒙,𝑗

and testing with a basis function

𝑞ℎ ∶= 𝜑0
𝑡,𝑘
𝜑0
𝒙,𝓁

we obtain

⟨𝑉 𝑤ℎ, 𝑞ℎ⟩Σℎ =
𝑇

∫
0

∫
Γℎ

𝜑0
𝑡,𝑘
(𝑡)𝜑0

𝒙,𝓁(𝒙)

𝑡

∫
0

∫
Γℎ

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏)
𝐸𝑡∑
𝑖=1

𝐸𝒙∑
𝑗=1

𝑤𝑖,𝑗𝜑
0
𝑡,𝑖(𝜏)𝜑

0
𝒙,𝑗 (𝒚) d𝒔𝒚 d𝜏 d𝒔𝒙 d𝑡

=
𝑘−1∑
𝑖=1

𝐸𝒙∑
𝑗=1

𝑤𝑖,𝑗 ∫
𝛾𝓁

∫
𝛾𝑗

𝑡𝑘

∫
𝑡𝑘−1

𝑡𝑖

∫
𝑡𝑖−1

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙 +
𝐸𝒙∑
𝑗=1

𝑤𝑘,𝑗 ∫
𝛾𝓁

∫
𝛾𝑗

𝑡𝑘

∫
𝑡𝑘−1

𝑡

∫
𝑡𝑘−1

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙.

Here we changed the order of the integrals, which is justified by Fubini’s theorem and the fact that 𝐺𝛼 is Lebesgue integrable on Σℎ × Σℎ, which
follows from the estimate [15, Ch. 13 §3]

|𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏)| ≤ 𝑐(𝛼) 1
(𝑡− 𝜏)3∕4

1‖𝒙− 𝒚‖3∕2 (3.1)

and the existence of the integrals

∫
Γℎ

∫
Γℎ

1‖𝒙− 𝒚‖3∕2 d𝒔𝒚 d𝒔𝒙,

𝑡𝑘

∫
𝑡𝑘−1

𝑡

∫
𝑡𝑘−1

1
(𝑡− 𝜏)3∕4

d𝜏 d𝑡,

𝑡𝑘

∫
𝑡𝑘−1

𝑡𝑖

∫
𝑡𝑖−1

1
(𝑡− 𝜏)3∕4

d𝜏 d𝑡

for all 𝑘 ∈ {1, … , 𝐸𝑡} and 𝑖 such that 1 ≤ 𝑖 < 𝑘.
Since the fundamental solution depends only on the difference 𝑡 − 𝜏 and the considered decomposition of the time interval is uniform, the double

temporal integrals depend only on the difference 𝑑 ∶= 𝑘 − 𝑖. The duality pairing with all basis functions thus leads to the block Toeplitz matrix vector
product

𝖵ℎ𝒘 =

⎡⎢⎢⎢⎢⎣

𝖵0
ℎ

0 … 0
𝖵1
ℎ

⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

𝖵
𝐸𝑡−1
ℎ

… 𝖵1
ℎ

𝖵0
ℎ

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝒘0

𝒘1

⋮

𝒘𝐸𝑡−1

⎤⎥⎥⎥⎥⎥⎦
(3.2)

with vector components 𝑤𝑑
𝑗
∶=𝑤𝑑+1,𝑗 and the spatial matrix blocks defined by

𝖵0
ℎ
[𝓁, 𝑗] ∶= ∫

𝛾𝓁

∫
𝛾𝑗

𝑡1

∫
0

𝑡

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙,

𝖵𝑑
ℎ
[𝓁, 𝑗] ∶= ∫

𝛾𝓁

∫
𝛾𝑗

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙

(3.3)

for 𝑑 ∈ {1, … , 𝐸𝑡 − 1}. To set up 𝖵ℎ we use analytic integration in time and a regularised quadrature in space as used in stationary problems. The
details are given in the following paragraphs.

Temporal antiderivatives:
Using 𝑡𝑑 = 𝑑ℎ𝑡, we have to evaluate

𝑉 𝑑 (𝒓) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℎ𝑡

∫
0

𝑡

∫
0

𝐺𝛼(𝒓, 𝑡− 𝜏) d𝜏 d𝑡 for 𝑑 = 0,

(𝑑+1)ℎ𝑡

∫
𝑑ℎ𝑡

ℎ𝑡

∫
0

𝐺𝛼(𝒓, 𝑡− 𝜏) d𝜏 d𝑡 for 𝑑 ∈ {1,… ,𝐸𝑡 − 1}.

(3.4)

We start with the latter. Integrating with respect to 𝜏 leads to

𝑉 𝑑 (𝒓) =

(𝑑+1)ℎ𝑡

∫
𝑑ℎ𝑡

(
𝐺d𝜏
𝛼 (𝒓, 𝑡− ℎ𝑡) −𝐺d𝜏

𝛼 (𝒓, 𝑡)
)
d𝑡

with
159

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
𝐺d𝜏
𝛼 (𝒓, 𝛿) = 1

4𝜋𝛼‖𝒓‖ erf
(‖𝒓‖
2
√
𝛼𝛿

)
(3.5)

and the error function

erf(𝑥) ∶= 2√
𝜋

𝑥

∫
0

𝑒−𝑡
2 d𝑡.

Continuing in the integration we obtain

𝑉 𝑑 (𝒓) = 2𝐺d𝜏d𝑡
𝛼 (𝒓, 𝑑ℎ𝑡) −𝐺d𝜏d𝑡

𝛼 (𝒓, (𝑑 + 1)ℎ𝑡) −𝐺d𝜏d𝑡
𝛼 (𝒓, (𝑑 − 1)ℎ𝑡) (3.6)

with

𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) = 1

4𝜋

[(‖𝒓‖
2𝛼2

+ 𝛿

𝛼‖𝒓‖
)
erf
(‖𝒓‖
2
√
𝛼𝛿

)
+
√
𝛿√

𝜋𝛼3
exp
(
− ‖𝒓‖2

4𝛼𝛿

)]
(3.7)

for 𝛿 > 0 and ‖𝒓‖ > 0. For 𝑉 0(𝒓) we obtain in a similar fashion

𝑉 0(𝒓) =

ℎ𝑡

∫
0

(
𝐺d𝜏
𝛼 (𝒓,0) −𝐺d𝜏

𝛼 (𝒓, 𝑡)
)
d𝑡 = ℎ𝑡𝐺

d𝜏
𝛼 (𝒓,0) −𝐺d𝜏d𝑡

𝛼 (𝒓, ℎ𝑡) +𝐺d𝜏d𝑡
𝛼 (𝒓,0). (3.8)

Thus the integrals in (3.3) are linear combinations of the integrals

∫
𝛾𝓁

∫
𝛾𝑗

𝐺d𝜏d𝑡
𝛼 (𝒙− 𝒚, 𝛿) d𝒔𝒚 d𝒔𝒙, for 𝛿 ∈ {0, ℎ𝑡,… ,𝐸𝑡ℎ𝑡}, (3.9)

∫
𝛾𝓁

∫
𝛾𝑗

𝐺d𝜏
𝛼 (𝒙− 𝒚,0)d𝒔𝒚 d𝒔𝒙. (3.10)

Notice that a contribution with a fixed 𝛿 can be reused to assemble 𝖵𝑑
ℎ

for several values of 𝑑.

Stable Evaluations of 𝑉 𝑑 (𝒓) for special cases:
We have to provide stable alternatives of (3.5) and (3.7) in the limit cases 𝒓 = 0 or 𝛿 = 0 to avoid division by zero. In (3.6) with 𝑑 = 1 and (3.8)

where 𝑑 = 0 we evaluate 𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) from (3.7) in 𝛿 = 0 by

lim
𝛿→0+

𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) = ‖𝒓‖

8𝜋𝛼2

for ‖𝒓‖ > 0. Similarly, we have to consider the limit

lim‖𝒓‖→0+
𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) =

√
𝛿

2
√
𝜋3𝛼3

to evaluate 𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) in 𝒓 = 0 for 𝛿 > 0. In (3.8) we have to additionally evaluate 𝐺d𝜏

𝛼 (𝒓, 𝛿) from (3.5) in 𝛿 = 0 by

lim
𝛿→0+

𝐺d𝜏
𝛼 (𝒓, 𝛿) = 1

4𝜋𝛼‖𝒓‖ (3.11)

for ‖𝒓‖ > 0.

Computation of the Galerkin weights of 𝖵𝑑
ℎ
:

We have to compute the spatial integrals of (3.9) and (3.10). For 𝛿 > 0 the integrand in (3.9) is smooth. Therefore, standard quadrature routines
can be applied to evaluate

∫
𝛾𝓁

∫
𝛾𝑗

𝐺d𝜏d𝑡
𝛼 (𝒙− 𝒚, 𝛿) d𝒔𝒚 d𝒔𝒙 = 4Δ𝓁Δ𝑗 ∫̂

𝛾

∫̂
𝛾

𝐺d𝜏d𝑡
𝛼 (𝒙̂− 𝒚̂, 𝛿) d𝒔𝒚̂ d𝒔𝒙̂ (3.12)

where we make use of the standard mapping to a reference element 𝛾̂ . Here we denote the composition of the mapping and the kernel function by
𝐺d𝜏d𝑡
𝛼 and the surface area of a triangle 𝛾𝑗 by Δ𝑗 .

The integrand 𝐺d𝜏
𝛼 (𝒙 − 𝒚, 0) of (3.10) given in (3.11) has a singularity like the Laplace kernel for 𝒙 = 𝒚. Thus we can use standard quadrature

routines only if the triangles 𝛾𝓁 and 𝛾𝑗 are separated. If instead 𝛾𝓁 and 𝛾𝑗 have non-empty intersection, i.e. they share a vertex or an edge or are
identical, we use regularised quadrature techniques based on the Duffy substitution [16,17]. The integral (3.10) then transforms to an integral of
the type

𝑁S∑
𝑠=1

1

∫
0

1

∫
0

1

∫
0

1

∫
0

𝐺d𝜏
𝛼 (𝑭 𝑠

𝒙
(𝜂1, 𝜂2, 𝜂3, 𝜉) − 𝑭 𝑠

𝒚
(𝜂1, 𝜂2, 𝜂3, 𝜉))𝐽𝑠(𝜂1, 𝜂2, 𝜂3, 𝜉) d𝜂1 d𝜂2 d𝜂3 d𝜉 (3.13)

with a mapping 𝑭 𝑠 = (𝑭 𝑠
𝒙
, 𝑭 𝑠

𝒚
)∶ [0, 1]4 → 𝑆 ⊂ 𝛾̂ × 𝛾̂ and the Jacobian 𝐽𝑠 ∶ [0, 1]4 →ℝ,

𝑭 𝑠(𝜂1, 𝜂2, 𝜂3, 𝜉) = (𝒙̂, 𝒚̂), 𝐽 𝑠(𝜂1, 𝜂2, 𝜂3, 𝜉) d𝜂1 d𝜂2 d𝜂3 d𝜉 = d𝒔𝒚 d𝒔𝒙.
160

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
Analogously we deal with the integrals in (3.9) for 𝛿 = 0. Although in that case the function 𝒓↦𝐺d𝜏d𝑡
𝛼 (𝒓, 0) does not have a pole at 𝒓 = 𝟎 it is still

not smooth and we use the regularised quadrature for intersecting triangles as well. This also unifies the implementation for other kernels possibly
singular in this case.

If we use discrete test and trial functions with higher polynomial degree in space for the discretisation of the bilinear form ⟨𝑉 𝑢, 𝑞⟩, e.g. 𝑢ℎ, 𝑞ℎ ∈
𝑋1,0
ℎ

, the computation of the matrix entries follows the same lines. In particular, the matrix entries of the 𝑑-th block are given by

𝖵𝑑
ℎ
[𝓁, 𝑗] ∶= ∫

Γℎ
∫
Γℎ

𝜑𝒙,𝓁(𝑥)𝜑𝒚,𝑗 (𝑦)𝑉 𝑑 (𝒙− 𝒚) d𝒔𝒚 d𝒔𝒙,

with 𝑉 𝑑 from (3.4).

3.2. Double-layer boundary integral operator

For the discretisation of ⟨𝐾𝑢, 𝑞⟩Σ we replace 𝑢 with its approximation 𝑢ℎ in 𝑋1,0
ℎ

, i.e.

𝑢ℎ ∶=
𝐸𝑡∑
𝑖=1

𝑁𝒙∑
𝑗=1

𝑢𝑖,𝑗𝜑
0
𝑡,𝑖𝜑

1
𝒙,𝑗 .

By testing with the basis function

𝑞ℎ ∶= 𝜑0
𝑡,𝑘
𝜑0
𝒙,𝓁

we obtain for 𝑑 = 𝑘 − 𝑖 that

⟨𝐾𝑢ℎ, 𝑞ℎ⟩Σℎ =
𝑘−1∑
𝑑=1

𝑁𝒙∑
𝑗=1

𝑢𝑘−𝑑,𝑗 ∫
𝛾𝓁

∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)𝛼

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙 +

𝑁𝒙∑
𝑗=1

𝑢𝑘,𝑗 ∫
𝛾𝓁

∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)𝛼

𝑡1

∫
0

𝑡

∫
0

𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙.

Again, we changed the order of integration using Fubini’s theorem, which is applicable since 𝜕𝐺𝛼∕𝜕𝒏𝒚 is integrable on Σℎ × Σℎ. This follows from
the estimate [15, Ch. 13 §3]

|||||
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏)

||||| =
|(𝒙− 𝒚) ⋅ 𝒏𝒚 |

16𝜋3∕2(𝛼(𝑡− 𝜏))5∕2
exp
(
−
‖𝒙− 𝒚‖2
4𝛼(𝑡− 𝜏)

)
≤ 𝑐(𝛼) 1

(𝑡− 𝜏)3∕4
|(𝒙− 𝒚) ⋅ 𝒏𝒚 |‖𝒙− 𝒚‖7∕2 (3.14)

similarly as in [18, Sect. 8.2.2], because the spatial boundary Γℎ is piecewise smooth. An analogous estimate to (3.14) holds for |∇𝒚𝐺𝛼|. This allows
us to exchange the spatial gradient and the time integrals for 𝒙− 𝒚 ≠ 0 [19, Prop. 5.9] which yields

𝑡1

∫
0

𝑡

∫
0

𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡 = 𝜕

𝜕𝒏𝒚

𝑡1

∫
0

𝑡

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡,

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡 = 𝜕

𝜕𝒏𝒚

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡.

Temporal antiderivatives:
As before we analytically evaluate the integrals

𝐾𝑑 (𝒓) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼
𝜕

𝜕𝒏𝒚

ℎ𝑡

∫
0

𝑡

∫
0

𝐺𝛼(𝒓, 𝑡− 𝜏) d𝜏 d𝑡 for 𝑑 = 0,

𝛼
𝜕

𝜕𝒏𝒚

(𝑑+1)ℎ𝑡

∫
𝑑ℎ𝑡

ℎ𝑡

∫
0

𝐺𝛼(𝒓, 𝑡− 𝜏) d𝜏 d𝑡 for 𝑑 ∈ {1,… ,𝐸𝑡 − 1}.

For 𝑑 > 0 we obtain from (3.6) that

𝐾𝑑 (𝒓) = 𝛼

[
2
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝑑ℎ𝑡) −

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, (𝑑 + 1)ℎ𝑡) −

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, (𝑑 − 1)ℎ𝑡)

]
. (3.15)

Since 𝐺d𝜏d𝑡
𝛼 depends only on the norm of its first argument, we can write

𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) =∶ 𝑔d𝜏d𝑡𝛼 (‖𝒓‖, 𝛿) with 𝑔d𝜏d𝑡𝛼 (𝜌, 𝛿)∶ ℝ ×ℝ→ℝ (3.16)

to get

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) =

𝜕𝑔d𝜏d𝑡𝛼

𝜕𝜌
(‖𝒓‖, 𝛿)𝒏𝒚 ⋅∇𝒚‖𝒙− 𝒚‖ = −

𝜕𝑔d𝜏d𝑡𝛼

𝜕𝜌
(‖𝒓‖, 𝛿) 𝒓 ⋅ 𝒏𝒚‖𝒓‖ (3.17)

with

𝜕𝑔d𝜏d𝑡𝛼

𝜕𝜌
(‖𝒓‖, 𝛿) = 1

4𝜋

[(
1
2𝛼2

− 𝛿

𝛼‖𝒓‖2
)
erf
(‖𝒓‖√)

+
√
𝛿√

3
exp
(
− ‖𝒓‖2

4𝛼𝛿

)]
.

2 𝛼𝛿 ‖𝒓‖ 𝜋𝛼

161

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
Collecting all intermediate steps brings us to

𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = − 1

4𝜋
𝒓 ⋅ 𝒏𝒚‖𝒓‖

[(
1
2𝛼

− 𝛿‖𝒓‖2
)
erf
(‖𝒓‖
2
√
𝛼𝛿

)
+
√
𝛿‖𝒓‖√𝜋𝛼 exp

(
− ‖𝒓‖2

4𝛼𝛿

)]
. (3.18)

For 𝐾0(𝒓) we use (3.8) to get

𝐾0(𝒓) = 𝛼

[
ℎ𝑡
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒓,0) −

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, ℎ𝑡) +

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓,0)
]
. (3.19)

Similarly as in (3.17) with (3.16) we have

𝜕𝐺d𝜏
𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = −

𝜕𝑔d𝜏𝛼
𝜕𝜌

(‖𝒓‖, 𝛿) 𝒓 ⋅ 𝒏𝒚‖𝒓‖
with 𝐺d𝜏

𝛼 (𝒓, 𝛿) =∶ 𝑔d𝜏𝛼 (‖𝒓‖, 𝛿) and

𝜕𝑔d𝜏𝛼
𝜕𝜌

(‖𝒓‖, 𝛿) = − 1
4𝜋

1‖𝒓‖
[

1
𝛼‖𝒓‖ erf

(‖𝒓‖
2
√
𝛼𝛿

)
− 1√

𝜋𝛼3𝛿
exp
(
− ‖𝒓‖2

4𝛼𝛿

)]
.

Thus, we obtain

𝛼
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = 1

4𝜋
𝒓 ⋅ 𝒏𝒚‖𝒓‖2

[
1‖𝒓‖ erf

(‖𝒓‖
2
√
𝛼𝛿

)
− 1√

𝜋𝛼𝛿
exp
(
− ‖𝒓‖2

4𝛼𝛿

)]
. (3.20)

Stable Evaluations of 𝐾𝑑 (𝒓) for special cases:
For a stable evaluation of (3.15) for 𝑑 = 1, we evaluate (3.18) for 𝛿 = 0 and ‖𝒓‖ > 0 by

lim
𝛿→0+

𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = −

𝒓 ⋅ 𝒏𝒚
8𝜋𝛼‖𝒓‖ .

Conversely, for 𝛿 > 0 the value of 𝛼(𝜕𝐺d𝜏d𝑡
𝛼 ∕𝜕𝒏𝒚)(𝒓, 𝛿) in 𝒓 = 0 is given by

lim‖𝒓‖→0+
𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = 0.

This follows by estimating

|||||𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿)
||||| ≤
|||||||||

(‖𝒓‖2
2𝛼 − 𝛿

)
erf
(‖𝒓‖

2
√
𝛼𝛿

)
+
√
𝛿‖𝒓‖√
𝜋𝛼

exp
(
− ‖𝒓‖24𝛼𝛿

)
4𝜋‖𝒓‖2

|||||||||
=∶ |||𝑔̃d𝜏d𝑡𝛼 (‖𝒓‖, 𝛿)|||

and observing (e.g. using L’Hospital’s rule) that the limit of 𝑔̃d𝜏d𝑡𝛼 for 𝜌 = ‖𝒓‖ → 0+ is zero.
For a stable evaluation of 𝐾0(𝒓) by (3.19), we provide the values of (3.20) in 𝛿 = 0 for ‖𝒓‖ > 0 as

lim
𝛿→0+

𝛼
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) =

𝒓 ⋅ 𝒏𝒚
4𝜋‖𝒓‖3 . (3.21)

Computation of the Galerkin weights of 𝖪𝑑
ℎ
:

The layout of the block matrix 𝖪ℎ is the same as the one of 𝖵ℎ in (3.2), i.e.

𝖪ℎ =

⎡⎢⎢⎢⎢⎣

𝖪0
ℎ

0 … 0
𝖪1
ℎ

⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

𝖪
𝐸𝑡−1
ℎ

… 𝖪1
ℎ

𝖪0
ℎ

⎤⎥⎥⎥⎥⎦
. (3.22)

The individual blocks 𝖪𝑑
ℎ

are set up as

𝖪𝑑
ℎ
[𝓁, 𝑗] = ∫

𝛾𝓁

∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)𝐾

𝑑 (𝒙− 𝒚) d𝒔𝒚 d𝒔𝒙,

where the integrals are evaluated in the same way as the integrals we considered for the single-layer operator. In particular, we use the same
regularisation technique. This time, we have to deal with a singularity similar to the one of the double-layer boundary integral operator of the
Laplacian, see (3.21).

Remark (The Galerkin matrix of the operator 𝐾 ′
𝑇

). The matrix related to the operator 𝐾 ′
𝑇

is obtained from 𝖪ℎ by transposing each block in (3.22)

separately, not the matrix as a whole. We denote the resulting matrix by 𝖪⊤𝒙 , using the symbol ⊤𝒙 to express the blockwise transposition.

ℎ

162

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
3.3. Hypersingular boundary integral operator

For functions 𝑢ℎ and 𝑟ℎ in 𝑋1,0
ℎ

one can show that the right-hand side of (2.4) and therefore the bilinear form ⟨𝐷𝑢ℎ, 𝑟ℎ⟩Σℎ admits the following
weakly singular integral representation (see [14, Equations (20) and (46)], compare also [8,5])

⟨𝐷𝑢ℎ, 𝑟ℎ⟩Σℎ = 𝛼2

𝑇

∫
0

∫
Γℎ

𝐜𝐮𝐫𝐥Γℎ 𝑟ℎ(𝒙, 𝑡) ⋅
(𝑡

∫
0

∫
Γℎ

𝐜𝐮𝐫𝐥Γℎ 𝑢ℎ(𝒚, 𝜏)𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝒔𝒚 d𝜏
)
d𝒔𝒙 d𝑡

− 𝛼

𝐸𝑡∑
𝑛=1

𝑡𝑛

∫
𝑡𝑛−1

∫
Γℎ

𝑟ℎ(𝒙, 𝑡)𝒏(𝒙) ⋅
[𝑡𝑛−1

∫
0

∫
Γℎ

𝒏(𝒚)𝑢ℎ(𝒚, 𝜏)
𝜕𝐺𝛼

𝜕𝜏
(𝒙− 𝒚, 𝑡− 𝜏) d𝒔𝒚 d𝜏 − ∫

Γℎ

𝒏(𝒚)𝑢ℎ(𝒚, 𝑡𝑛−1+)𝐺𝛼(𝒙− 𝒚, 𝑡− 𝑡𝑛−1) d𝒔𝒚
]
d𝒔𝒙 d𝑡,

(3.23)

where 𝑢ℎ(𝒚, 𝑡𝑛−1+) denotes the right limit of 𝑢ℎ with respect to time in 𝑡𝑛−1.
By inserting

𝑢ℎ ∶=
𝐸𝑡∑
𝑖=1

𝑁𝒙∑
𝑗=1

𝑢𝑖,𝑗𝜑
0
𝑡,𝑖𝜑

1
𝒙,𝑗

and testing with the basis function

𝑟ℎ ∶= 𝜑0
𝑡,𝑘
𝜑1
𝒙,𝓁

we obtain for 𝑑 = 𝑘 − 𝑖 that

⟨𝐷𝑢ℎ, 𝑟ℎ⟩Σℎ =
𝑘−1∑
𝑑=1

𝑁𝒙∑
𝑗=1

𝑢𝑘−𝑑,𝑗 ∫
Γℎ

∫
Γℎ

𝐜𝐮𝐫𝐥Γℎ 𝜑
1
𝒙,𝓁(𝒙) ⋅ 𝐜𝐮𝐫𝐥Γℎ 𝜑

1
𝒙,𝑗 (𝒚)𝛼

2

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙

+
𝑁𝒙∑
𝑗=1

𝑢𝑘,𝑗 ∫
Γℎ

∫
Γℎ

𝐜𝐮𝐫𝐥Γℎ 𝜑
1
𝒙,𝓁(𝒙) ⋅ 𝐜𝐮𝐫𝐥Γℎ 𝜑

1
𝒙,𝑗 (𝒚)𝛼

2

𝑡1

∫
0

𝑡

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙

−
𝑘−1∑
𝑑=1

𝑁𝒙∑
𝑗=1

𝑢𝑘−𝑑,𝑗 ∫
Γℎ

∫
Γℎ

𝒏(𝒙) ⋅ 𝒏(𝒚)𝜑1
𝒙,𝓁(𝒙)𝜑

1
𝒙,𝑗 (𝒚)𝛼

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝜕𝐺𝛼

𝜕𝜏
(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙

+
𝑁𝒙∑
𝑗=1

𝑢𝑘,𝑗 ∫
Γℎ

∫
Γℎ

𝒏(𝒙) ⋅ 𝒏(𝒚)𝜑1
𝒙,𝓁(𝒙)𝜑

1
𝒙,𝑗 (𝒚)𝛼

𝑡1

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡) d𝑡d𝒔𝒚 d𝒔𝒙.

(3.24)

Changing the order of the integrals is justified as before by Fubini’s theorem. Indeed, for the integrals in the first two lines we can argue as in the case
of the single-layer operator in Section 3.1. For the integrals in the fourth line it suffices to observe that 𝐺𝛼 is Lebesgue integrable on Σℎ × Γℎ which
follows from (3.1). Similarly, for the integrals in the third line we note that 𝜕𝐺𝛼∕𝜕𝜏 is Lebesgue integrable on all sets (Γℎ × (𝑡𝑑 , 𝑡𝑑+1)) × (Γℎ × (0, 𝑡1))
with 𝑑 ≥ 1, because there holds the estimate

|||| 𝜕𝐺𝛼

𝜕𝜏
(𝒙− 𝒚, 𝑡− 𝜏)

|||| = |6𝛼(𝑡− 𝜏) − ‖𝒙− 𝒚‖2|
(4𝛼)5∕2𝜋3∕2(𝑡− 𝜏)7∕2

exp
(
−
‖𝒙− 𝒚‖2
4𝛼(𝑡− 𝜏)

)
≤ 𝑐(𝛼) 1

(𝑡− 𝜏)7∕4
1‖𝒙− 𝒚‖3∕2 ,

and the right-hand side is integrable on the respective sets, since in particular

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

1
(𝑡− 𝜏)7∕4

d𝜏 d𝑡 <∞

for all 𝑑 ≥ 1.

Temporal antiderivatives:
For the first summands in (3.24) we know the temporal antiderivatives from the single-layer boundary integral operator, see (3.6) and (3.8). For

the second part in (3.24) we analytically evaluate the integrals

𝐷2,𝑑 (𝒓) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼

ℎ𝑡

∫
0

𝐺𝛼(𝒓, 𝑡) d𝑡 for 𝑑 = 0,

−𝛼

(𝑑+1)ℎ𝑡

∫
𝑑ℎ𝑡

ℎ𝑡

∫
0

𝜕𝐺𝛼

𝜕𝜏
(𝒓, 𝑡− 𝜏) d𝜏 d𝑡 for 𝑑 ∈ {1,… ,𝐸𝑡 − 1}.

For 𝑑 > 0 we can write

𝐷2,𝑑 (𝒓) = −𝛼

(𝑑+1)ℎ𝑡

∫
𝑑ℎ𝑡

𝐺𝛼(𝒓, 𝑡− ℎ𝑡) −𝐺𝛼(𝒓, 𝑡) d𝑡 = −𝛼
[
2𝐺d𝑡

𝛼 (𝒓, 𝑑ℎ𝑡) −𝐺d𝑡
𝛼 (𝒓, (𝑑 + 1)ℎ𝑡) −𝐺d𝑡

𝛼 (𝒓, (𝑑 − 1)ℎ𝑡)
]

(3.25)
163

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
with 𝐺d𝑡
𝛼 = −𝐺d𝜏

𝛼 from (3.5). For 𝑑 = 0 we directly get

𝐷2,0(𝒓) = −𝛼
[
𝐺d𝑡
𝛼 (𝒓,0) −𝐺d𝑡

𝛼 (𝒓, ℎ𝑡)
]
.

Stable Evaluations of 𝐷2,𝑑 (𝒓) for special cases:
The values 𝐺d𝑡

𝛼 (𝒓, 0) in (3.25) for 𝒓 ≠ 0 are obtained by the limit in (3.11). Additionally we have to treat the limit for 𝛿 > 0,

lim‖𝒓‖→0+
𝐺d𝑡
𝛼 (𝒓, 𝛿) = − 1

4
√
𝜋3𝛼3𝛿

to evaluate 𝐺d𝑡
𝛼 (𝒓, 𝛿) in 𝒓 = 0 in a stable way.

Galerkin matrix 𝖣ℎ:
The Galerkin matrix 𝖣ℎ possesses the same layout as (3.2) and can be split into 𝖣ℎ = 𝖣1

ℎ
+ 𝖣2

ℎ
. For 𝐷2

ℎ
we have just computed the temporal

antiderivatives. Its blocks 𝖣2,𝑑
ℎ

are set up as

𝖣2,𝑑
ℎ

[𝓁, 𝑗] = ∫
Γℎ

∫
Γℎ

𝒏(𝒙) ⋅ 𝒏(𝒚)𝜑1
𝒙,𝓁(𝒙)𝜑

1
𝒙,𝑗 (𝒚)𝐷

2,𝑑 (𝒙− 𝒚) d𝒔𝒚 d𝒔𝒙.

Again, these integrals are handled in the same way as those of the single-layer operator.
For the matrix 𝖣1

ℎ
emerging from the first two lines of (3.24) we can make use of 𝖵ℎ. Since the surface curls of spatially piecewise linear functions

are piecewise constant on triangles, we can rewrite any of the summands in the first part of (3.24) as

𝖣1,𝑑
ℎ

[𝓁, 𝑗] ∶= ∫
Γℎ

∫
Γℎ

𝐜𝐮𝐫𝐥Γℎ 𝜑
1
𝒙,𝓁(𝒙) ⋅ 𝐜𝐮𝐫𝐥Γℎ 𝜑

1
𝒙,𝑗 (𝒚)𝛼

2

𝑡𝑑+1

∫
𝑡𝑑

𝑡1

∫
0

𝐺𝛼(𝒙− 𝒚, 𝑡− 𝜏) d𝜏 d𝑡d𝒔𝒚 d𝒔𝒙

=
∑

𝛾𝑛⊂supp𝜑1
𝒙,𝓁

∑
𝛾𝑚⊂supp𝜑1

𝒙,𝑗

𝐜𝐮𝐫𝐥Γℎ 𝜑
1
𝒙,𝓁|𝛾𝑛 (𝒙) ⋅ 𝐜𝐮𝐫𝐥Γℎ 𝜑1

𝒙,𝑗 |𝛾𝑚 (𝒚)𝛼2𝖵𝑑
ℎ
[𝑛,𝑚].

Thus, for all 𝑑 ∈ {0, … , 𝐸𝑡 − 1} the block 𝖣1,𝑑
ℎ

is a sparse transformation of the single-layer block 𝖵𝑑
ℎ

from (3.3). In particular, the individual blocks
can be assembled by

𝖣1,𝑑
ℎ

= 𝖳⊤
⎡⎢⎢⎣
𝛼2𝖵𝑑

ℎ
𝖮 𝖮

𝖮 𝛼2𝖵𝑑
ℎ

𝖮

𝖮 𝖮 𝛼2𝖵𝑑
ℎ

⎤⎥⎥⎦𝖳, 𝖳 ∶=
⎡⎢⎢⎣
𝖳1
𝖳2
𝖳3

⎤⎥⎥⎦ , 𝖳𝑜[𝑚, 𝑗] ∶= [𝐜𝐮𝐫𝐥Γℎ 𝜑
1
𝒙,𝑗 |𝛾𝑚]𝑜. (3.26)

3.4. Boundary integral equations and systems of linear equations

To solve Dirichlet initial boundary value problems, we consider a Galerkin variational formulation of the weakly singular boundary integral
equation (2.2) with 𝑢 = 𝑔 and end up with the system of linear equations

𝖵ℎ𝒘 =
(
1
2
𝖬ℎ + 𝖪ℎ

)
𝒈

with an 𝐿2(Σℎ) projection of the Dirichlet data 𝑔 into 𝑋1,0
ℎ

. We have described the matrices 𝖵ℎ and 𝖪ℎ in Sections 3.1-3.2. The mass matrix 𝖬ℎ

realises the identity in (2.2) and has the form

𝖬ℎ = ℎ𝑡

⎡⎢⎢⎢⎢⎣

𝖬ℎ,𝒙 0 … 0
0 𝖬ℎ,𝒙 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 𝖬ℎ,𝒙

⎤⎥⎥⎥⎥⎦
, 𝖬ℎ,𝒙[𝓁, 𝑗] = ∫

Γℎ

𝜑0
𝒙,𝓁(𝒙)𝜑

1
𝒙,𝑗 (𝒙) d𝒔𝒙.

For a Neumann initial boundary value problem we solve the Galerkin variational formulation of the hypersingular boundary integral equa-
tion (2.3) with 𝑤 = ℎ. The related system of linear equations is

𝖣ℎ𝒖 =
(
1
2
𝖬

⊤𝒙

ℎ
− 𝖪

⊤𝒙

ℎ

)
𝒉

with an 𝐿2(Σℎ) projection of the Neumann data ℎ into 𝑋0,0
ℎ

. Here 𝖬⊤𝒙

ℎ
and 𝖪⊤𝒙

ℎ
denote the matrices obtained by blockwise transposition of 𝖬ℎ

and 𝖪ℎ, respectively. We have presented the matrix 𝖣ℎ in Section 3.3. In addition we need to assemble the matrices 𝖪ℎ and 𝖬ℎ. The blockwise
transposition can be realised in the application of the matrices.

3.5. Single- and double-layer potentials

To evaluate the discretised representation formula (2.1) in 𝒙 ∈Ω and 𝑡𝑘 + 𝜀 = 𝑘ℎ𝑡 + 𝜀 with 𝜀 ∈ [0, ℎ𝑡) we have to compute the contribution of the
single-layer potential

𝑉 𝑤ℎ(𝒙, 𝑡𝑘 + 𝜀) =
𝑘∑
𝑖=1

𝐸𝒙∑
𝑗=1

𝑤𝑖,𝑗 ∫
𝛾

𝑡𝑖

∫
𝑡

𝐺𝛼(𝒙− 𝒚, 𝑡𝑘 + 𝜀− 𝜏) d𝜏 d𝒔𝒚 +
𝐸𝒙∑
𝑗=1

𝑤𝑘+1,𝑗 ∫
𝛾

𝑡𝑘+𝜀

∫
𝑡

𝐺𝛼(𝒙− 𝒚, 𝑡𝑘 + 𝜀− 𝜏) d𝜏 d𝒔𝒚

𝑗 𝑖−1 𝑗 𝑘

164

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
=
𝑘−1∑
𝑑=0

𝐸𝒙∑
𝑗=1

𝑤𝑘−𝑑,𝑗 ∫
𝛾𝑗

ℎ𝑡

∫
0

𝐺𝛼(𝒙− 𝒚, (𝑑 + 1)ℎ𝑡 + 𝜀− 𝜏) d𝜏 d𝒔𝒚 +
𝐸𝒙∑
𝑗=1

𝑤𝑘+1,𝑗 ∫
𝛾𝑗

𝜀

∫
0

𝐺𝛼(𝒙− 𝒚, 𝜀− 𝜏) d𝜏 d𝒔𝒚

=
𝐸𝒙∑
𝑗=1

∫
𝛾𝑗

𝑘−1∑
𝑑=0

𝑤𝑘−𝑑,𝑗
[
𝐺d𝜏
𝛼 (𝒙− 𝒚, 𝑑ℎ𝑡 + 𝜀) −𝐺d𝜏

𝛼 (𝒙− 𝒚, (𝑑 + 1)ℎ𝑡 + 𝜀)
]
d𝒔𝒚 +

𝐸𝒙∑
𝑗=1

∫
𝛾𝑗

𝑤𝑘+1,𝑗
[
𝐺d𝜏
𝛼 (𝒙− 𝒚,0) −𝐺d𝜏

𝛼 (𝒙− 𝒚, 𝜀)
]
d𝒔𝒚

with the antiderivative 𝐺d𝜏
𝛼 known from (3.5) and its limit for 𝛿→ 0+ in (3.11). Since we evaluate the potential in points 𝒙 which are not on Γℎ, all

integrands are smooth and standard quadrature can be used to compute all integrals.
For the double-layer potential we similarly obtain

𝑊 𝑢ℎ(𝒙, 𝑡𝑘 + 𝜀) =
𝑘∑
𝑖=1

𝑁𝒙∑
𝑗=1

𝑢𝑖,𝑗 ∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)

𝑡𝑖

∫
𝑡𝑖−1

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡𝑘 + 𝜀− 𝜏) d𝜏 d𝒔𝒚 +

𝑁𝒙∑
𝑗=1

𝑢𝑘+1,𝑗 ∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)

𝑡𝑘+𝜀

∫
𝑡𝑘

𝛼
𝜕𝐺𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑡𝑘 + 𝜀− 𝜏) d𝜏 d𝒔𝒚

=
𝑁𝒙∑
𝑗=1

∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)

𝑘−1∑
𝑑=0

𝑢𝑘−𝑑,𝑗𝛼

[
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝑑ℎ𝑡 + 𝜀) −

𝜕𝐺d𝜏
𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, (𝑑 + 1)ℎ𝑡 + 𝜀)

]
d𝒔𝒚 +

𝑁𝒙∑
𝑗=1

∫
Γℎ

𝜑1
𝒙,𝑗 (𝒚)𝑢𝑘+1,𝑗𝛼

[
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒙− 𝒚,0) −

𝜕𝐺d𝜏
𝛼

𝜕𝒏𝒚
(𝒙− 𝒚, 𝜀)

]
d𝒔𝒚

with 𝛼𝜕𝐺d𝜏
𝛼 ∕𝜕𝒏𝒚 from (3.20) and its limit for 𝛿→ 0+ in (3.21).

4. Summary

For a better readability and to provide a reference to a reader implementing the method we provide a summary of the developed formulae below.
With uniform time steps all matrices 𝖠ℎ ∈ {𝖵ℎ, 𝖪ℎ, 𝖪

⊤𝒙

ℎ
, 𝖣ℎ} possess a block Toeplitz structure

𝖠ℎ =

⎡⎢⎢⎢⎢⎣

𝖠0
ℎ

0 … 0
𝖠1
ℎ

⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

𝖠
𝐸𝑡−1
ℎ

… 𝖠1
ℎ

𝖠0
ℎ

⎤⎥⎥⎥⎥⎦
.

The hypersingular operator matrix is built as 𝖣𝑑
ℎ
= 𝖣1,𝑑

ℎ
+𝖣2,𝑑

ℎ
with

𝖣1,𝑑
ℎ

= 𝖳⊤
⎡⎢⎢⎣
𝛼2𝖵𝑑

ℎ
𝖮 𝖮

𝖮 𝛼2𝖵𝑑
ℎ

𝖮

𝖮 𝖮 𝛼2𝖵𝑑
ℎ

⎤⎥⎥⎦𝖳, 𝖳 ∶=
⎡⎢⎢⎣
𝖳1
𝖳2
𝖳3

⎤⎥⎥⎦ , 𝖳𝑜[𝑚, 𝑗] ∶= [𝐜𝐮𝐫𝐥𝜕Ω 𝜑1
𝒙,𝑗 |𝛾𝑚]𝑜.

The matrix 𝖪⊤𝒙

ℎ
discretising the operator 𝐾 ′

𝑇
is obtained from 𝖪ℎ by blockwise transposition. Individual blocks 𝖠𝑑

ℎ
∈ {𝖵𝑑

ℎ
, 𝖪𝑑

ℎ
, 𝖣2,𝑑

ℎ
} are built by a

standard regularised BEM quadrature as

𝖠𝑑
ℎ
[𝓁, 𝑗] = ∫

Γℎ
∫
Γℎ

𝐴𝑑 (𝒙− 𝒚)𝜑𝓁(𝒙)𝜑𝑗 (𝒚) d𝒔𝒚 d𝒔𝒙

with 𝐴𝑑 ∈ {𝑉 𝑑, 𝐾𝑑, 𝐷2,𝑑} and

𝑉 𝑑 (𝒓) = 2𝐺d𝜏d𝑡
𝛼 (𝒓, 𝑑ℎ𝑡) −𝐺d𝜏d𝑡

𝛼 (𝒓, (𝑑 + 1)ℎ𝑡) −𝐺d𝜏d𝑡
𝛼 (𝒓, (𝑑 − 1)ℎ𝑡),

𝑉 0(𝒓) = ℎ𝑡𝐺
d𝜏
𝛼 (𝒓,0) −𝐺d𝜏d𝑡

𝛼 (𝒓, ℎ𝑡) +𝐺d𝜏d𝑡
𝛼 (𝒓,0),

𝐾𝑑 (𝒓) = 𝛼

[
2
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝑑ℎ𝑡) −

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, (𝑑 + 1)ℎ𝑡) −

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, (𝑑 − 1)ℎ𝑡)

]
,

𝐾0(𝒓) = 𝛼

[
ℎ𝑡
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒓,0) −

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓, ℎ𝑡) +

𝜕𝐺d𝜏d𝑡
𝛼

𝜕𝒏𝒚
(𝒓,0)
]
,

𝐷2,𝑑 (𝒓) = −𝛼
[
2𝐺d𝑡

𝛼 (𝒓, 𝑑ℎ𝑡) −𝐺d𝑡
𝛼 (𝒓, (𝑑 + 1)ℎ𝑡) −𝐺d𝑡

𝛼 (𝒓, (𝑑 − 1)ℎ𝑡)
]
,

𝐷2,0(𝒓) = −𝛼
[
𝐺d𝑡
𝛼 (𝒓,0) −𝐺d𝑡

𝛼 (𝒓, ℎ𝑡)
]
.

The antiderivatives of the heat kernel and limit cases for stable evaluations are given by

𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) = 1

4𝜋

[(‖𝒓‖
2𝛼2

+ 𝛿

𝛼‖𝒓‖
)
erf
(‖𝒓‖
2
√
𝛼𝛿

)
+
√
𝛿√

𝜋𝛼3
exp
(
− ‖𝒓‖2

4𝛼𝛿

)]
,

lim
𝛿→0+

𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) = ‖𝒓‖

8𝜋𝛼2
for ‖𝒓‖ > 0,

lim‖𝒓‖→0+
𝐺d𝜏d𝑡
𝛼 (𝒓, 𝛿) =

√
𝛿√
3 3

for 𝛿 > 0,

2 𝜋 𝛼

165

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
Table 5.1

Mapping of variables 𝑖𝑡 → 𝑑.

𝑖𝑡 = 𝛿∕ℎ𝑡 0 1 2 ⋯ 𝐸𝑡 − 1 𝐸𝑡

𝑑 0, 1 0, 1, 2 1, 2, 3 ⋯ 𝐸𝑡 − 2, 𝐸𝑡 − 1 𝐸𝑡 − 1

Table 5.2

Mapping of variables 𝑑 → 𝑖𝑡.

𝑑 0 1 2 ⋯ 𝐸𝑡 − 1

𝑖𝑡 = 𝛿∕ℎ𝑡 0, 1 0, 1, 2 1, 2, 3 ⋯ 𝐸𝑡 − 2, 𝐸𝑡 − 1, 𝐸𝑡

𝐺d𝜏
𝛼 (𝒓, 𝛿) = 1

4𝜋𝛼‖𝒓‖ erf
(‖𝒓‖
2
√
𝛼𝛿

)
,

lim
𝛿→0+

𝐺d𝜏
𝛼 (𝒓, 𝛿) = 1

4𝜋𝛼‖𝒓‖ for ‖𝒓‖ > 0,

𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = − 1

4𝜋
𝒓 ⋅ 𝒏𝒚‖𝒓‖

[(
1
2𝛼

− 𝛿‖𝒓‖2
)
erf
(‖𝒓‖
2
√
𝛼𝛿

)
+
√
𝛿‖𝒓‖√𝜋𝛼 exp

(
− ‖𝒓‖2

4𝛼𝛿

)]
,

lim
𝛿→0+

𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = −

𝒓 ⋅ 𝒏𝒚
8𝜋𝛼‖𝒓‖ for ‖𝒓‖ > 0,

lim‖𝒓‖→0+
𝛼
𝜕𝐺d𝜏d𝑡

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = 0 for 𝛿 > 0,

𝛼
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) = 1

4𝜋
𝒓 ⋅ 𝒏𝒚‖𝒓‖2

[
1‖𝒓‖ erf

(‖𝒓‖
2
√
𝛼𝛿

)
− 1√

𝜋𝛼𝛿
exp
(
− ‖𝒓‖2

4𝛼𝛿

)]
,

lim
𝛿→0+

𝛼
𝜕𝐺d𝜏

𝛼

𝜕𝒏𝒚
(𝒓, 𝛿) =

𝒓 ⋅ 𝒏𝒚
4𝜋‖𝒓‖3 for ‖𝒓‖ > 0,

𝐺d𝑡
𝛼 (𝒓, 𝛿) = − 1

4𝜋𝛼‖𝒓‖ erf
(‖𝒓‖
2
√
𝛼𝛿

)
,

lim‖𝒓‖→0+
𝐺d𝑡
𝛼 (𝒓, 𝛿) = − 1

4
√
𝜋3𝛼3𝛿

for 𝛿 > 0.

5. Implementation

In this section we discuss an implementation strategy for the assembly of the single-layer matrix 𝖵ℎ. All other BEM matrices can be treated
analogously. The computationally most intensive part is the evaluation of the antiderivatives 𝐺d𝜏 and 𝐺d𝜏d𝑡. Indeed, in addition to the evaluation
of the distance between spatial coordinates ‖𝒙 − 𝒚‖, which is the most time consuming part of the BEM assembly for the Laplace equation, one
has to evaluate the exponential and error functions in many quadrature points for all blocks of the Toeplitz matrix. The implementation strategy in
shared memory thus follows the ideas presented by the authors previously for 3d space and 2d space-time BEM in [20–22]. To make use of modern
multicore processors with vector arithmetic units we make use of features of modern OpenMP [23], namely threading and SIMD vectorisation. The
source code of the library besthea implemented by the authors is publicly available [11].

5.1. Assembly of blocks

The naive approach to assemble the Toeplitz matrix (3.2) would be to assemble blocks 𝖵𝑑
ℎ

one by one, i.e. loop over the parameter 𝑑. Looking
at (3.6), this would mean that 𝐺d𝜏d𝑡(⋅, 𝛿) would have to be evaluated multiple times in all spatial quadrature points for a fixed 𝛿 and different values
of 𝑑. E.g., for 𝛿 = 2ℎ𝑡 the same kernel would have to be evaluated for all blocks with 𝑑 ∈ {1, 2, 3}.

Taking into account the uniform discretisation of the time interval one can instead loop over 𝑖𝑡 ∶= 𝛿∕ℎ𝑡 and thus evaluate the costly kernel once
only. In Tables 5.1 and 5.2 we summarise the relation between 𝑑 and 𝑖𝑡, i.e. we state to which blocks 𝖵𝑑

ℎ
the kernels 𝐺d𝜏d𝑡(⋅, 𝑖𝑡ℎ𝑡) contribute and vice

versa. Note that a similar strategy can also be applied to evaluate the single- and double-layer potentials given in Section 3.5.
A sketch of the matrix assembly code is given in Listing 1. As pointed out above, we loop over the variable 𝑖𝑡 = 𝛿∕ℎ𝑡 and continue with visiting

all test and trial spatial elements (triangles). The loop over test triangles is distributed among available OpenMP threads in a dynamic fashion. For
each pair of elements the functions evaluate_kernel and add_to_matrix are called to assemble the local contribution and add it to the global
matrix multiplied with the test and trial basis functions. We give more details about these procedures in the next subsection.

5.2. Local contributions

To exploit the full potential of floating point units we vectorise the code at the level of local contributions to the global matrix. For simplicity we
opt for the OpenMP implementation of vector processing similarly as in [20–22].
166

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
1 for (int i_t = 0; i_t <= n_timesteps; ++i_t) {
2 ...
3 #pragma omp for schedule(dynamic)
4 for (int i_test = 0; i_test < n_elements; ++i_test) {
5 ...
6 for (int i_trial = 0; i_trial < n_elements; ++i_trial) {
7 ...
8 evaluate_kernel(i_test, i_trial, i_t * h_t, ...);
9 add_to_matrix(i_test, i_trial, i_t, ...);

10 } } }

Listing 1: General structure of the matrix assembling.

Looking back on (3.13), we approximate the regularised integrals of the type

1

∫
0

1

∫
0

1

∫
0

1

∫
0

𝑓 (𝜂1, 𝜂2, 𝜂3, 𝜉) d𝜂1 d𝜂2 d𝜂3 d𝜉 ≈
𝑀∑

𝑖,𝑗,𝑘,𝓁=1
𝑤𝑖𝑤𝑗𝑤𝑘𝑤𝓁𝑓 (𝑧𝑖, 𝑧𝑗 , 𝑧𝑘, 𝑧𝓁) (5.1)

by a tensor product quadrature scheme defined in [0, 1]4. The regular integrals can be evaluated by triangle rules [24, Section C1] as

∫
𝛾

∫
𝛾

𝑓 (𝒙,𝒚) d𝒚 d𝒙 ≈
𝑁∑

𝑖,𝑗=1
𝑤𝑖𝑤𝑗𝑓 (𝒛𝑖,𝒛𝑗). (5.2)

In both cases we collapse the sums, or loops, into a single one to make the vector of quadrature points as long as possible to evaluate the kernel

1 #pragma omp simd aligned(x1, x2, x3, y1, y2, y3, kernel, w : 64) simdlen(8)
2 for (int k = 0; k < size; ++k) {
3 kernel[k] = _kernel->eval(x1[k] - y1[k], x2[k] - y2[k], x3[k] - y3[k], delta, ...) * w[k];
4 }

Listing 2: evaluate_kernel.

function efficiently. This is shown in Listing 2, where the temporal antiderivative is evaluated. The variable size corresponds to 𝑀4 and 𝑁2

from (5.1) and (5.2), respectively. The OpenMP pragma tells the compiler that SIMD vectorisation should be used, that all the underlying arrays are
aligned at the 64-byte boundary, and that the vector size should be 8 (we assume double precision arithmetic and AVX512 instruction set extension).
Notice that we also make use of the structure of arrays concept separating coordinates of the quadrature nodes into separate arrays x1, x2, x3, . . . ,
to ensure unit strided access to data. Earlier work [20–22] has shown that this approach is more efficient than an array of structures.

After performing and storing the kernel evaluations in kernel by evaluate_kernel for the current pair of elements, we evaluate the test and
trial basis functions as shown in Listing 3, multiply with kernel and add value to the respective spatial and temporal indices in the global matrix.
Here we use the mapping from Table 5.1. The multiplier for value is determined from (3.6). Again we make use of vectorisation. The add_atomic
function makes use of the OpenMP atomic clause to avoid data races between individual threads.

1 for (int i = 0; i < n_loc_test; ++i) {
2 for (int j = 0; j < n_loc_trial; ++j) {
3 value = 0.0;
4
5 #pragma omp simd aligned(x1_ref, x2_ref, y1_ref, y2_ref, kernel : 64) private(test, trial) reduction(+ : value) simdlen(8)
6 for (long k = 0; k < size; ++k) {
7 test = test_basis.eval(x1_ref[k], x2_ref[k], ...);
8 trial = trial_basis.eval(y1_ref[k], y2_ref[k], ...);
9 value += kernel[k] * test * trial;

10 }
11 value *= test_area * trial_area;
12
13 if (i_t > 0) {
14 matrix.add_atomic(i_t - 1, test_l2g[i], trial_l2g[j], -value);
15 if (i_t < n_timesteps) {
16 matrix.add_atomic(i_t, test_l2g[i], trial_l2g[j], 2.0 * value);
17 }
18 } else {
19 matrix.add_atomic(0, test_l2g[i], trial_l2g[j], value);
20 }
21 if (i_t < n_timesteps - 1) {
22 matrix.add_atomic(i_t + 1, test_l2g[i], trial_l2g[j], -value);
23 } } }

Listing 3: add_to_matrix.

6. Numerical experiments

In this section we perform numerical experiments validating the presented approach both in terms of convergence and scalability in shared
memory. The experiments have been performed at the Barbora supercomputer at IT4Innovations National Supercomputing Center, Czech Republic.
167

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
Table 6.1

Dirichlet problem and the convergence of Neumann data.

Computed 𝑤ℎ Projected 𝑤∗
ℎ

Representation

𝐸𝑡 𝐸𝒙 𝐿2(Σℎ) eoc 𝐿2(Σℎ) eoc 𝓁2 eoc

8 192 6.07e-1 — 5.49e-1 — 2.99e-2 —
16 768 4.28e-1 0.50 3.77e-1 0.54 3.46e-3 3.11
32 3072 1.80e-1 1.25 1.70e-1 1.15 6.51e-4 2.41
64 12288 9.94e-2 0.86 9.58e-2 0.82 1.48e-4 2.14

6.1. Convergence

First of all, we check that the presented semi-analytic evaluation of the integrals and its implementation in [11] is correct. To that end we consider
the initial problem (1.1)–(1.2) with the heat capacity constant 𝛼 = 0.5 and zero initial conditions in the space-time domain 𝑄 ∶= (−1,1)3 × (0,1). We
choose the solution 𝑢(𝒙, 𝑡) = 𝐺𝛼(𝒙 − 𝒚∗, 𝑡) with 𝒚∗ ∶= (0, 0, 1.5)⊤, which allows us to validate our numerical approximation. We consider both the
Dirichlet problem with the prescribed boundary datum

𝑢(𝒙, 𝑡) =𝐺𝛼(𝒙− 𝒚∗, 𝑡) for (𝒙, 𝑡) ∈ Σ,

and the Neumann problem with

𝛼
𝜕𝑢

𝜕𝒏
= 𝛼

𝜕𝐺𝛼

𝜕𝒏𝒙
(𝒙− 𝒚∗, 𝑡) for (𝒙, 𝑡) ∈ Σ.

We have described details of the applied Galerkin methods in Section 3. In addition we use the matrix 𝖵11
ℎ

as the essential part of an operator
preconditioner for 𝖣ℎ [25,26,7], where 𝖵11

ℎ
is the realisation of the single-layer operator for functions piecewise linear and globally continuous in

space. We check the convergence of the approximations 𝑢ℎ and 𝑤ℎ corresponding to 𝒖 and 𝒘 to the known Cauchy data on a sequence of uniformly
refined meshes Σℎ.

We consider only tensor product meshes Σℎ in this paper. The coarsest one is formed by a surface mesh consisting of 192 triangular elements,
i.e. 32 congruent triangles on each face of the cube, and a partition of the time interval (0, 1) into 8 time steps. At each refinement level we quadrisect
all triangles and bisect the time steps, i.e. we keep ℎ𝒙 ≈ ℎ𝑡. The solution of the BEM system is computed by the FGMRES [27] method with a relative
accuracy of 10−8.

In Tables 6.1, 6.2 we provide the convergence results. In the first two columns, 𝐸𝑡 and 𝐸𝒙 denote the number of elements in time and space,
respectively. The columns labelled with 𝐿2(Σℎ) contain the relative errors

𝐿2(Σℎ)(𝑢ℎ) ∶=
‖𝑢− 𝑢ℎ‖𝐿2(Σℎ)‖𝑢‖𝐿2(Σℎ)

with

‖𝑢‖2
𝐿2(Σℎ)

∶=

𝑇

∫
0

∫
Γℎ

|𝑢(𝒙, 𝑡)|2 d𝒔𝒙 d𝑡.
These integrals are evaluated using standard tensor product quadrature rules in space and time of sufficiently high orders. The estimated order of
convergence provided in the columns denoted by eoc is computed as

eoc(𝑢ℎ) = log2
(
𝐿2(Σℎ)(𝑢2ℎ)
𝐿2(Σℎ)(𝑢ℎ)

)
.

For comparison, Tables 6.1 and 6.2 contain not only the results for the computed approximations 𝑢ℎ and 𝑤ℎ, but also for the 𝐿2(Σℎ) projections 𝑢∗
ℎ

and 𝑤∗
ℎ

of the known solution defined by

𝑢∗
ℎ
= argmin

𝑣ℎ∈𝑋
1,0
ℎ

‖𝑣ℎ − 𝑢‖𝐿2(Σℎ), 𝑤∗
ℎ
= argmin

𝑧ℎ∈𝑋
0,0
ℎ

‖𝑧ℎ −𝑤‖𝐿2(Σℎ).

In the last two columns we present convergence results for the evaluation of the representation formula. For this purpose the representation formula
was evaluated in 104 nodes (𝒙̃𝑗 , ̃𝑡𝑗) distributed in [−0.5, 0.5]3 × [0.25, 0.75]. The columns labelled with 𝓁2 contain the relative errors

𝓁2(𝑢ℎ) ∶=

√∑
𝑗 |𝑢(𝒙̃𝑗 , 𝑡̃𝑗) − 𝑢ℎ(𝒙̃𝑗 , 𝑡̃𝑗)|2√∑

𝑗 |𝑢(𝒙̃𝑗 , 𝑡̃𝑗)|2 .

Let us shortly comment on the results in Tables 6.1 and 6.2. In both tables, the 𝐿2 error of the computed approximation follows the best possible
error, which is attained by the respective projections. In the case of the Dirichlet problem, the estimated orders of convergence of the 𝐿2 errors
vary quite a lot. Asymptotically we would expect at least an order of 0.75, while previous examples indicated that an order of 1 can be attained [5,
Thm. 7.4 and Sect. 8.2]. Even though we are probably still in a preasymptotic regime due to the relatively small number of unknowns which we
consider limited by the use of a standard, non-compressed BEM, our computations agree with these expectations. For the evaluation error inside the
domain we expect and observe a quadratic convergence order [5, Eq. (7.5)]. Also in the case of the Neumann problem our results agree with the
theory. We expect and observe convergence order 1 for the 𝐿2 error of the Dirichlet datum [6, Eq. (7.16)] and order 1.5 for the evaluation error [6,
Sect. 7.2.2]. A different refinement strategy of two subdivisioning steps in time with one spatial refinement step would provide better convergence
rates. In total, we observe expected convergence behaviours, which indicate the correctness of the developed and implemented quadrature routines.
168

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
Table 6.2

Neumann problem and the convergence of Dirichlet data.

Computed 𝑢ℎ Projected 𝑢∗
ℎ

Representation

𝐸𝑡 𝐸𝒙 𝐿2(Σℎ) eoc 𝐿2(Σℎ) eoc 𝓁2 eoc

8 192 3.14e-1 — 2.50e-1 — 5.16e-2 —
16 768 1.51e-1 1.06 1.27e-1 0.98 1.57e-2 1.72
32 3072 6.88e-1 1.13 6.11e-2 1.05 3.80e-3 2.04
64 12288 3.45e-2 0.99 3.18e-2 0.94 1.09e-3 1.80

Table 6.3

Scalability of the assembly of BEM matrices.

Time [s] Efficiency [%]

Threads 𝖵ℎ 𝖵11
ℎ

𝖪ℎ 𝖣ℎ 𝖵ℎ 𝖵11
ℎ

𝖪ℎ 𝖣ℎ

1 119.62 308.03 118.89 443.45 100.00 100.00 100.00 100.00
2 63.54 165.81 60.78 235.00 94.14 94.35 97.81 92.89
4 31.09 88.97 31.74 124.32 96.20 89.18 93.65 86.55
8 15.68 46.98 16.75 64.80 95.34 85.54 88.72 81.95
16 8.06 24.64 8.26 33.48 92.80 82.78 90.00 78.13
18 7.10 22.09 7.26 30.03 93.65 82.05 90.98 77.47

36 4.54 12.94 4.97 19.18 73.19 64.21 66.40 66.12

Table 6.4

Scalability of the evaluation of potentials.

Time [s] Efficiency [%]

Threads 𝑉 𝑤ℎ 𝑊 𝑢ℎ 𝑉 𝑤ℎ 𝑊 𝑢ℎ

1 8.36 21.17 100.00 100.00
2 5.44 11.65 76.84 90.87
4 2.40 5.68 87.08 93.14
8 1.28 2.97 81.43 89.11
16 0.69 1.53 76.09 86.49
18 0.50 1.26 92.89 93.11

36 0.31 0.82 74.11 71.73

6.2. Scalability

The scalability of the besthea library [11] has been tested on the same example as before, but on a fixed mesh with 3072 spatial boundary
elements, 32 time steps, and the representation formula was evaluated in 1089 ⋅ 32 = 34848 space-time points. The library and examples were
compiled by the Intel Compiler 19.0.5.281 with the flags -O3 -qopenmp -xcore-avx512 -qopt-zmm-usage=high to make use of the AVX512
instruction set available on the 18-core Intel Xeon Gold 6240 CPU at the Barbora supercomputer. The nodes are configured as dual socket, i.e. every
node consists of two such CPUs.

The baseline for our experiments is given by the performance on a single thread. The number of threads is controlled by the KMP_HW_SUBSET
environment variable. When using up to 18 threads (a single socket) we set it to KMP_HW_SUBSET=1s,Xc with X denoting the number of threads.
This ensures that the threads stay within a single socket. To use all 36 threads we set KMP_HW_SUBSET=2s,18c.

In Table 6.3 we provide the assembly times of BEM matrices and the efficiency of the code. One can see that the efficiency stays above 90% within
a single socket with piecewise constant basis functions, where the contribution to the global matrix does not require atomic addition. For piecewise
linear functions there are memory conflicts between individual threads and the efficiency is reduced, although the numbers stay reasonable. When
crossing the socket and utilising all 36 cores the assembly times are further reduced, although the efficiency drops. This is caused by the fact that the
matrix data is stored in std::vector with the standard allocator which is not NUMA aware. The first touch policy thus cannot be easily applied
and threads can access memory across sockets. This effect could be alleviated by a different storage structure or a raw array. However, the future
aim of the besthea library is to use the fast multipole method parallelised in distributed memory via MPI and assign a single process per socket.

Similarly, Table 6.4 provides scalability results for the evaluation of the single- and double-layer potentials, see Section 3.5. Again, the efficiency
is above 90% when the whole socket is populated and drops when accessing both sockets.

7. Conclusion

The aim of the paper was to provide the readers with semi-analytical formulae for the assembly of boundary element matrices and the evaluation
of the representation formula for the heat equation in three spatial dimensions. Throughout the paper a uniform discretisation of the timeline is
chosen for simplicity, however, the same antiderivatives can be used on non-uniform grids. While only lowest order piecewise polynomial tensor
product discretisation spaces were considered, a generalization to higher order polynomial spaces is possible. Since we use numerical quadrature
schemes to evaluate the spatial integrals, the same formulae and regularization techniques can be used for higher order polynomials in space. For
higher order polynomials in time similar semi-analytic formulae can be derived involving higher order antiderivatives of the heat kernel and similar
singularities in space as the lowest order formulae. The described lowest order operators have been implemented in the publicly available C++

library besthea [11] and thus our results can be used in further BEM projects. In the numerical experiments we have validated that the formulae
deliver the expected results.
169

J. Zapletal, R. Watschinger, G. Of et al. Computers and Mathematics with Applications 103 (2021) 156–170
The provided implementation supplies a fast computation of the entries of the Galerkin matrices using threading and vectorisation. However
it does not scale optimally across NUMA nodes (sockets). This is due to the fact that the main aim of the library is to provide boundary element
methods accelerated by the fast multipole method (FMM) and parallelised in distributed memory. The formulae provided here will be used for the
near field entries only, thus further optimisation of the full assembly is not planned (also taking into account the massive memory requirements).
With FMM, a single MPI process will be assigned to a single socket and thus the NUMA effects will be automatically overcome.

Acknowledgements

The authors acknowledge the support provided by the Czech Science Foundation under the project 19-29698L, by the Austrian Science Fund
(FWF) under the project I 4033-N32, and by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental
Development, and Innovations project e-INFRA CZ – LM2018140.

References

[1] M. Costabel, Time-dependent problems with the boundary integral equation method, in: E. Stein, R. de Borst, T.J. Hughes (Eds.), Encyclopedia of Computational Mechanics, John
Wiley & Sons, Ltd., 2004, pp. 703–721, Ch. 25.

[2] M. Costabel, Boundary integral operators for the heat equation, Integral Equ. Oper. Theory 13 (4) (1990) 498–552, https://doi .org /10 .1007 /BF01210400.
[3] P.J. Noon, The single layer heat potential and Galerkin boundary element methods for the heat equation, Ph.D. thesis, University of Maryland, 1988.
[4] D.N. Arnold, P.J. Noon, Boundary integral equations of the first kind for the heat equation, in: Boundary Elements IX, Stuttgart, 1987, vol. 3, Comput. Mech., Southampton, 1987,

pp. 213–229.
[5] S. Dohr, K. Niino, O. Steinbach, Space-time boundary element methods for the heat equation, in: Space-Time Methods – Applications to Partial Differential Equations, De Gruyter,

2019, pp. 1–60.
[6] S. Dohr, Distributed and preconditioned space-time boundary element methods for the heat equation, Ph.D. thesis, Graz University of Technology, 2019.
[7] S. Dohr, M. Merta, G. Of, O. Steinbach, J. Zapletal, A parallel solver for a preconditioned space-time boundary element method for the heat equation, in: R. Haynes, S. MacLachlan,

X.-C. Cai, L. Halpern, H.H. Kim, A. Klawonn, O. Widlund (Eds.), Domain Decomposition Methods in Science and Engineering XXV, Springer International Publishing, Cham, 2020,
pp. 108–116.

[8] M. Messner, A Fast Multipole Galerkin Boundary Element Method for the Transient Heat Equation, 1st edition, Monographic Series TU Graz: Computation in Engineering and
Science, vol. 23, Verlag der Technischen Universität, Graz, 2014.

[9] M. Messner, M. Schanz, J. Tausch, A fast Galerkin method for parabolic space–time boundary integral equations, J. Comput. Phys. 258 (2014) 15–30, https://doi .org /10 .1016 /j .
jcp .2013 .10 .029.

[10] M. Messner, M. Schanz, J. Tausch, An efficient Galerkin boundary element method for the transient heat equation, SIAM J. Sci. Comput. 37 (3) (2015) A1554–A1576, https://
doi .org /10 .1137 /151004422.

[11] M. Merta, G. Of, R. Watschinger, J. Zapletal besthea, https://github .com /zap150 /besthea, 2020.
[12] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer Berlin Heidelberg, Berlin, Heidelberg, 1972.
[13] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 2, Springer Berlin Heidelberg, Berlin, Heidelberg, 1972.
[14] R. Watschinger, G. Of, An integration by parts formula for the bilinear form of the hypersingular boundary integral operator for the transient heat equation in three spatial

dimensions, J. Integral Equ. Appl. (accepted).
[15] W. Pogorzelski, Integral Equations and Their Applications, Vol. 1, Pergamon Press, Oxford, 1966.
[16] S.A. Sauter, C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
[17] N. Manson, J. Tausch, Quadrature for parabolic Galerkin BEM with moving surfaces, Comput. Math. Appl. 77 (1) (2019) 1–14, https://doi .org /10 .1016 /j .camwa .2018 .09 .004.
[18] W. Hackbusch, Integral Equations: Theory and Numerical Treatment, Birkhäuser, Basel, 1995.
[19] M. Brokate, G. Kersting, Measure and Integral, Birkhäuser, Basel, 2015.
[20] J. Zapletal, M. Merta, L. Malý, Boundary element quadrature schemes for multi- and many-core architectures, in: 5th European Seminar on Computing ESCO 2016, Comput. Math.

Appl. 74 (1) (2017) 157–173, https://doi .org /10 .1016 /j .camwa .2017 .01 .018.
[21] J. Zapletal, G. Of, M. Merta, Parallel and vectorized implementation of analytic evaluation of boundary integral operators, Eng. Anal. Bound. Elem. 96 (2018) 194–208, https://

doi .org /10 .1016 /j .enganabound .2018 .08 .015.
[22] S. Dohr, J. Zapletal, G. Of, M. Merta, M. Kravčenko, A parallel space-time boundary element method for the heat equation, Comput. Math. Appl. 78 (9) (2019) 2852–2866, https://

doi .org /10 .1016 /j .camwa .2018 .12 .031.
[23] OpenMP Architecture Review Board, OpenMP application program interface (11 2018), https://www .openmp .org /wp -content /uploads /OpenMP -API -Specification -5 .0 .pdf.
[24] S. Rjasanow, O. Steinbach, The Fast Solution of Boundary Integral Equations, Mathematical and Analytical Techniques with Applications to Engineering, Springer, 2007.
[25] O. Steinbach, W. Wendland, The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math. 9 (1998) 191–216.
[26] R. Hiptmair, Operator preconditioning, Comput. Math. Appl. 52 (2006) 699–706.
[27] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (1993) 461–469.
170

http://refhub.elsevier.com/S0898-1221(21)00379-5/bibE555EFB01EB49A49AB1E37AD74FC86EFs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibE555EFB01EB49A49AB1E37AD74FC86EFs1
https://doi.org/10.1007/BF01210400
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibB5E9D3B046BCB0726177D47821D8DBF6s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibD12859DFA737E0ED1DE5C197CFDAB9EEs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibD12859DFA737E0ED1DE5C197CFDAB9EEs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibA900C4AA3A7B0D96254077DD6CE76E4Fs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibA900C4AA3A7B0D96254077DD6CE76E4Fs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibAF5D336BF0D6BB105E6948CDF7DC274Ds1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibA65605EE99230FC13CE22CC659F990ECs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibA65605EE99230FC13CE22CC659F990ECs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibA65605EE99230FC13CE22CC659F990ECs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bib9A90C08310B18F6D21DDF60F4260A3E5s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bib9A90C08310B18F6D21DDF60F4260A3E5s1
https://doi.org/10.1016/j.jcp.2013.10.029
https://doi.org/10.1016/j.jcp.2013.10.029
https://doi.org/10.1137/151004422
https://doi.org/10.1137/151004422
https://github.com/zap150/besthea
http://refhub.elsevier.com/S0898-1221(21)00379-5/bib1511F3632FC58AA110A5D328816AC89Cs1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibEDBF92DDB3C0D042CEFB31EA631CF0E3s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibFF3CBD72C23B44ACE72BCA2174E5B61Es1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibF343112D867049B344A8A439DB61D288s1
https://doi.org/10.1016/j.camwa.2018.09.004
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibCCCE6EC6D95445F4BA5D4782AA808635s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibDC12A3A4506616CAD5DEE50097A2E2C6s1
https://doi.org/10.1016/j.camwa.2017.01.018
https://doi.org/10.1016/j.enganabound.2018.08.015
https://doi.org/10.1016/j.enganabound.2018.08.015
https://doi.org/10.1016/j.camwa.2018.12.031
https://doi.org/10.1016/j.camwa.2018.12.031
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://refhub.elsevier.com/S0898-1221(21)00379-5/bib2CA2E39EECB45D9C718ED917A645D250s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bibD8ECD47B0DC00C7EF2551D080F1EB966s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bib7AEEA5C42339F94D47F2AE4E47BE78F8s1
http://refhub.elsevier.com/S0898-1221(21)00379-5/bib887FD297E674445C90D460B96833841Cs1

	Semi-analytic integration for a parallel space-time boundary element method modelling the heat equation
	1 Introduction
	2 Boundary integral equations
	3 Boundary element method
	3.1 Single-layer boundary integral operator
	3.2 Double-layer boundary integral operator
	3.3 Hypersingular boundary integral operator
	3.4 Boundary integral equations and systems of linear equations
	3.5 Single- and double-layer potentials

	4 Summary
	5 Implementation
	5.1 Assembly of blocks
	5.2 Local contributions

	6 Numerical experiments
	6.1 Convergence
	6.2 Scalability

	7 Conclusion
	Acknowledgements
	References

