
Big Data Processing by Means
of Unconventional Algorithm

Zpracování rozlehlých dat s využitím nekonvenčních algoritmů.

Ing. David Andrešič

PhD Thesis

Supervisor: doc. RNDr. Petr Šaloun, Ph.D.

Ostrava, 2021

Abstrakt a přínos práce

Během posledních let se objevilo několik algoritmů pro klasifikaci časových řad z různých
oblastí. Avšak astronomické časové řady (známé také jako světelné křivky) jsou pro klasifi-
kaci poněkud větší výzvou. Vyznačují se velkými rozdíly v délkách, periodách, zašuměnosti
a nemají jasné hranice mezi jednotlivými třídami. V této práci popisujeme některé z těchto
problémů na třech veřejně dostupných datových sadách a několika obecně úspěšných klasifi-
kačních algoritmech. Také ukazujeme náš postup, který zahrnuje použití umělých neuronových
sítí vylepšených evolučními algoritmy za účelem nalezení modelu s největší přesností klasi-
fikace předzpracovaných světelných křivek s extrahovanými atributy. Náš postup je schopen
konkurovat současným řešením pro tyto datové sady.

Klíčová slova

umělé neuronové sítě, vícevrstvý perceptron, astronomické časové řady, světelné křivky, long
short-term memory, velká data, klasifikace

Abstract and Contributions

During last years, several successful algorithms emerged for classification of time series from var-
ious areas. But astronomical time series (a.k.a. light curves) are a bit more challenging to clas-
sify. They greatly vary in lengths, periods, noisiness and do not have clear borders between
classes. In this work, we depict these issues on three publicly available data sets and several
well-performing algorithms. We also present our approach that includes the use of artificial
neural networks enhanced by evolutionary algorithm to find the best performing classifica-
tion algorithm for pre-processed light curves with extracted features. Our approach is able
to challenge results of related work that includes these data sets.

Keywords

artificial neural network; multi-layer perceptron; astronomical time series; light curves; long
short-term memory; big data; classification

Acknowledgement

I would like to thank my supervisor doc. RNDr. Petr Šaloun, Ph.D. for his mentoring
and scientific lead. I would also like to thank our colleague Bc. Bronislava Pečíková from
Slovak University of Technology for her cooperation during her work on master thesis. Special
thanks go to Dr. Eamonn Keogh of University of California Riverside for his points regarding
Dynamic Time Warping. Lastly and most certainly not leastly I would like to thank my wife
Radka for her devoted support and my daughter Natálie for being merciful.

Contents

List of symbols and abbreviations 7

1 Introduction 9
1.1 Types of Stars Variability . 9
1.2 Goals . 10

2 State of the Art 12
2.1 Time Series Classification Methods . 12
2.2 Other Related Work . 19

3 Data Sets 20
3.1 BRITE . 21
3.2 Kepler . 21
3.3 Kepler K2 . 22

4 Artificial Neural Networks Approaches 24
4.1 Data Pre-processing . 25

5 Binary Classification Experiments and Results 26
5.1 BRITE Data Set . 26
5.2 Kepler K2 Data Set . 27
5.3 Kepler Data Set . 37

6 Multi-class Classification Experiments and Results 39
6.1 Data Pre-processing . 39
6.2 Experiments . 40

7 Case Study: Detection of Nova Cas 2021 58
7.1 Possible Practical Use . 59

8 Conclusions 64

5

Bibliography 66

A List of Publications 71
A.1 Author’s Bibliography Related to the Thesis . 71

Bibliography 71
A.2 Author’s Bibliography Unrelated to the Thesis 72

Bibliography 72

B Author’s Curriculum Vitae 73
B.1 Education . 73
B.2 Work Experience . 74
B.3 Certificates . 76
B.4 Computer skills . 77
B.5 Language Skills . 77

6

List of symbols and abbreviations

ANN – Artificial Neural Network
K2SFF – K2 Extracted Lightcurves
MLP – Multi-layer Perceptron
CNN – Convolutional Neural Network
FT – Fourier Transform
FFT – Fast Fourier Transform
PSO – Particle Swarm Optimization
BRITE – BRIght Target Explorer
LSTM – Long Short-term Memory
COTE – Collective of Transformation-based Ensembles
HIVE-COTE – Hierarchical Vote Collective of Transformation-based Ensembles
FCN – Fully-Convolutional Network
DTW – Dynamic Time Warping
BOSS – Back of SFA symbols
KNN – K-Nearest Neighbour
SVM – Support Vector Machine
RF – Random Forest
SVML – SVM with linear kernel
SVMQ – SVM with quadratic kernel
RandF – Random Forest
RotF – Rotation Forest
ED – Euclidian Distance
BN – Bayesian Network
NB – Naive Bayes
RNN – Recurrent Neural Network
GAP – Global Average Pooling
ResNet – Residual Neural Network
MPCE – Mean Per-Class Error

7

TN – True Negative
TP – True Positive
FITS – Flexible Image Transport System
ML – Machine Learning
GCVS – General Catalogue of Variable Stars
NASA – National Aeronautics and Space Administration
MCDCNN – Multi Channel Deep CNN
CUDA – Compute Unified Device Architecture
ASAS – The All Sky Automated Survey
2MASS – The Two Micron All-Sky Survey

8

Chapter 1

Introduction

Time series classification in astronomy can be useful in many areas. In this work, we focused
on so called light curves: flux or magnitude values measured in some (often irregular) period
of time. This can be used to detect variable stars (of many physical classes), extra-solar
planets or maybe (in future with more powerful astronomical hardware) extra-solar moons
orbiting planets, stellar systems analysis and other physical phenomena.

Since these data comes from various automatized astronomical devices that produce huge
amount of data (even petabytes per night [1]), we are facing big data issues. To handle
a classification in this amount of data, an automated solution is crucial. In this work, we
tested different variations of algorithms based on artificial neural network as a mean of machine
learning to test how they perform with light curves. We also propose a network enhanced by
evolutionary algorithm capable to challenge current top results on similar data sets.

1.1 Types of Stars Variability

In the Universe, most of stars are actually variable in their luminosity. Describing physical
reasons of this variability is beyond the scope of this work, so we offer at least a brief overview
of classes used in our training data:

• Delta Scuti - young pulsating stars that are similarly as cepheids used as a so called
standard candle to measure distances between galaxies.

• Detached Eclipsing Binary - when both companions in a binary star system have no
significant gravitational affect to each other.

• Semi-Detached/Contact Eclipsing Binary - when one of the companions in a binary
star system is affected by gravitational pull of the other one (but not vice versa) which
actually transfers its gas to itself (accretion).

9

• Gamma Dor - young pulsating stars with not very clear physical cause.

• RR Lyrae ab - pulsating stars typically with a half of mass of our Sun used as standard
candles.

• Other Periodic/Quasi-Periodic.

In our training data, other stars are labeled as noise. An example of how such time series
for these classes looks like is depicted on Fig. 1.1. On x axis there is always a time (usually
some variation of Julian Date). On y axis there is usually a flux defined as the total amount
of energy that crosses a unit area per unit time1 (see Equation 1.1).

F = L

4πr2 (1.1)

Where F is the flux at distance r, L is the luminosity of the source star and r is the
distance between Earth and the source star.

1.2 Goals

Giving the need of automated solution due to huge amount of incoming data and current
state of the art in the area of light curves classification, we identified following goals:

• Find a variable star classifier (at least a binary one) capable to challenge current state-
of-the-art accuracies.

• Identify best-performing artificial neural network topologies and data pre-processing
approaches.

• Verify robusness of the found approach on other light curves and astronomical time
series.

1According to COSMOS - The SAO Encyclopedia of Astronomy: http://astronomy.swin.edu.au/cosmos/
F/Flux

10

http://astronomy.swin.edu.au/cosmos/F/Flux
http://astronomy.swin.edu.au/cosmos/F/Flux

Figure 1.1: Example light curves from Kepler K2 data set. Left one from the pair is always
with a low confidence in class (under 50%), right ones have high confidence in class (over
90%).

11

Chapter 2

State of the Art

Time series classification is a bit specific because the classifier works with sorted data where
even in the order of the data a significant markers for some class can be hidden. Most literature
on time series classification assumes following [2] [3]:

• copious amounts of perfectly aligned atomic patterns can be obtained,

• the patterns are all of equal length,

• every item that we attempt to classify belongs to exactly one of our well-defined classes.

For such time series, the classification using Nearest Neighbor algorithm with the relatively
expensive Dynamic Time Warping as a distance measure function is usually performs best
as a machine learning approach [4]. But these assumptions are challenging in astronomical
time series since they greatly vary in lengths, periods, noisiness and are without clear borders
between classes. In [5] authors also concludes that Long Short-Term Memory is another
state-of-the-art technique for this task.

2.1 Time Series Classification Methods

During last years, several successful machine learning methods emerged for time series clas-
sification. They are often bench-marked using UCR Time Series Archive [6] made in 2002
by University of California. It is a set of data sets from different domains that is continuously
extended and today it contains 128 data sets. Over 1000 papers were published using this
archive until now, but it may not be so conclusive since it heavily depends on experiment
configuration details [7]. Nevertheless, authors in [8] shown that on this data set COTE and
HIVE-COTE performs best (followed by ResNet and FCN).

12

2.1.1 Traditional and Other Machine Learning Methods

Although we focused on artificial neural networks, we also comes with a brief overview of cur-
rent methods and algorithms without them to summarize current state-of-the-art approaches.

2.1.1.1 Dynamic Time Warping (DTW)

This algorithm was introduced in 1968 [9] for speech recognition. It measures a distance
between two time series so it can be used with K-nearest neighbor. Multiple variations of
this algorithms has emerged since then, but with only marginal improvement of its original
results [10]. It is still subject of ongoing research - recently it was for example migrated
to GPU for speeding up and discovered that it is not ideal to apply universal phasing for
aligning light curves [11]. The greatest advantage of DTW is that in opposite to a traditional
Euclidean distance metric it uses a mapping between two structurally similar points which
makes this metric independent [12]. It should therefore by able to identify stars of the same
variability class even in case when the stars were not in the same time in the same phase.
Another advantage should be the ability to discover a similarity even with different dense of
measurements (or speed of change) which means that it could discover a similarity of time
series of two variable stars with different gaps between measurements (“sample rate”). It also
means that it should be able to discover a similarity even in case of different periods. Authors
in [7] compares similar methods of time series classification and it turned out that they did
not achieved significantly better results than DTW.

Since we have labeled data, we prefer a supervised learning, which is why we did not
considered this method. The metric itself could be useful for data pre-processing (e.g. for es-
tablishing an average distance of variable/non-variable stars as a one of extracted attributes).

2.1.1.2 Back of SFA symbols (BOSS)

Introduced in 2015 by Patrick Schäfer [10]. The algorithm is based on a comparison of patterns
extracted from time series and contains 3 steps:

1. separation of time series to blocks of same length (sliding windows),

2. transformation of each block using Symbolic Fourier Transformation (SFA),

(a) a discrete Fourier transform is applied to each block,

(b) then a symbolic representation of each block is created (SFA word),

3. a construction of BOSS histogram for identifying structural similarities in time series.

BOSS algorithm includes a noise reduction. It is also fast and successful in classification.
The author claims that it is able to supersede the best classification algorithms of the time

13

Figure 2.1: Critical difference diagram comparing 8 classifiers over UCR and UEA archives.
Source: [8].

and that one of the modifications could reach the top results on UCR data. But in experiments
in [7] it performed a little bit worse.

Transformation of time series could be useful for us as well as a part of data pre-processing.
We could also use SFA words themselves or BOSS histograms as inputs for artificial neural
network.

2.1.1.3 Collective of Transform-based Ensembles (COTE)

First introduced in [13] where authors designed a method that collects several time series
classifiers in various domains, related transformations to these domains and metrics that
evaluates individual classifiers outputs.

Authors in [13] claims that COTE reaches significantly higher accuracy than other known
algorithms (those based on artificial neural networks were not covered). This statement can
be supported by [7]. COTE was also a part of experiments in [8] where it was compared
with 7 other algorithms. Results are depicted on Fig. 2.1 and COTE took second place with
statistically insignificant difference from the winner.

2.1.2 Methods With use of Artificial Neural Networks

Artificial Neural Networks are not new in the area of astroinformatics. They are used in
various areas ranging from time series classification (described later in this section) to e.g.
automated spectral analysis of large archives such as LAMOST using deep learning [14].

Methods that utilizes artificial neural networks were the main aim of this work. We bring
a brief overview of those that we considered as they are usually performing best for time series
from various areas. In [12] authors also proved that artificial neural networks can supersede
other time series classification algorithms. We can name for example Convolutional network
[15], Fully Convolutional Network [5] [12], Residual Network [5], Multi-scalable Convolutional
Network [16] [12] or Long Short-term Memory (Recurrent) Network [5] [12].

2.1.2.1 Multi-layer Perceptron

Consists of interconnected layers containing artificial neurons. Neurons in two layers are
connected by weighted connection. There is no connection between neurons of the same

14

layer. The output of each neuron consists of a sum of bias and weighted inputs processed by
activation function. It is trained by a traditional backpropagation algorithm. More detailed
description of MLP can be found in e.g. [17].

In [16] authors attempts to find how each training parameter affects the classifier per-
formance especially in variable stars classification. According to them, the training speed
has no significant affect on the accuracy, but size of internal layers has. They also experi-
mented with layers from 4 to 18 neurons and it turned out that those with 4 and 8 neurons
performed best. But the main aim of their work was to compare MLP, KNN, SVM and RF
in a field of variable stars classification. They attempted to establish a specific classifier for
each class and the final class was assigned as a combination of all classifiers outputs. From
these, MLP turned out to be somewhere in the middle.

In [7] authors compares algorithms for time series classification that emerged after 2010.
It also contains MLP and Naive Bayes (NB), logistic regression, SVM with linear (SVML),
quadratic kernel (SVMQ), random forest (RandF) and rotation forest (RotF), 1-nearest neigh-
bor with Euclidean distance (ED) and WEKA C4.5 (C45). From these, MLP achieved better
results than DTW, RotF and RandF while it achieved worse results than BN, NB, C45 and
logistic regression.

In [18] authors compared several algorithms on the original Kepler data pre-processed
by feature extraction and concluded that in terms of accuracy, artificial neural networks
performs best (followed by Decision Trees).

2.1.2.2 Convolutional Network

Although first convolutional networks were designed for image recognition [19] [20] [21], today
they are commonly used in other domains such as speech recognition and processing [22] [23]
or time series analysis [24].

A typical convolutional network consists of convolutional, pooling and fully-connected lay-
ers (as depicted on Fig. 2.2). A convolutional layer consists of several convolutional filters
attempting to detect patterns (e.g. shapes, gradients or even more complex structures like
hairs in image processing domain). The filter is implemented as a matrix used for multipli-
cation of input image. Outputs of convolutional layer are then accumulated in pooling layer
made for simplification of inputs their dimensionality reduction. In the end of the network
there is a fully-connected network similar to MLP.

In time series domain the convolution can take the place in application of its filter on time
series areas. The difference from image processing is that it is applied to one-dimensional
inputs. This operation can also be understood as a non-linear transformation of the time
series. For example in case of convolution of time series by filter [1

4 , 1
4 , 1

4 , 1
4] we talk about

15

Figure 2.2: Convolutional neural network architecture. Source: [20].

Figure 2.3: Convolutional neural network architecture for time series classification. Source:
[8].

moving average with window of 4. A visualization of convolutional network for time series
classification is depicted on Fig. 2.3.

In case of traditional algorithms it is usually necessary to take care for intense data pre-
processing [15]. The great advantage of convolutional network is that it requires only minimal
modifications of input data for the classifier. This is due to convolutional filters that do the pre-
processing on their own. According to [8] the CNN is the most used type of artificial neural
network for time series classification, most probably for its robustness a relatively good train-
ing speed in comparison to MLP and RNN.

2.1.2.3 Fully Convolutional Network

The architecture of Fully Convolutional Network (FCN) is similar to CNN. The only difference
is that in the last layer, there is (instead of fully connected layer) Global Average Pooling
(GAP) layer and that it does not contain local pooling layers so the time series length remains
the same during the processing by the entire network. Using GAP significantly reduces the
number of parameters for the network. GAP performs dimensionality reduction of tensor with
dimensions h × w × d to 1 × 1 × d by reducing each h × w matrix to arithmetic average of
all of its values. Please note that while in image recognition we work with h, w > 1, in time
series domain one of these parameters is equal to 1 prior the reduction.

The advantage of FCN is that it does not require any significant data pre-processing
or features extraction [25] and it can even be used as a mean of pre-processing [5].

16

FCN achieves great results in domain of semantic segmentation of images [25] and also
in field of time series classification [5] [26]. The first use of FCN for time series classification
is described in [25]. Authors compared FCN, MLP and ResNet with DTW, COTE, BOSS
and several other algorithms. They used UCR archive for comparison (with 44 data sets
in that time). Data pre-processing contained only z-normalization and for FCN and ResNet
training the Adam Optimizer was used. Four metrics were used to evaluate results: arithmetic
average of errors across all data sets, geometric average of errors across all data sets, number
of data sets where the given algorithm performed with lowest error and Mean Per-Class Error
(MPCE):

MPCE = 1
K

∑︂
PCEk (2.1)

where PCEk = ek
ck

where ek is classification error on kth data set, ck is number of classes
in kth data set and K is number of data sets. FCN performed best using these metrics (in 18
of 44 data sets in reached lowest classification error).

Authors in [8] compared current time series classification algorithms. They experimented
with 5-layered FCN with ADAM optimizer with learning factor 0.001 and Entropy cost func-
tion. Details of parameters and results can be found in [8], but we can conclude that FCN
performs worse that ResNet and better than other 7 classifiers.

FCN was also included in experiments in [27] although this work mostly aims to recurrent
neural networks in time series classification domain. FCN with MLP were included into these
experiments just to compare the accuracy. It turned out that FCN performs much better
than all recurent networks in these experiments (simple recurent network and LSTM).

2.1.2.4 Residual Network

In general, adding more neurons and layers should increase the approximation accuracy. The
problem is that when the network architecture grows, then the backpropagation algorithm
faces the vanishing (or exploding) gradient issues. This problem was identified in [28]. Remov-
ing this weakness was the major aim of Residual network (ResNet) in order to allow effective
network training for deep learning [26]. Another great advantage is (similarly to CNN and
FCN) the need of very little data pre-processing [5].

ResNet performs very well in image recognition domain. In [26] authors designed a contest
winning network that on ImageNet data set [29] reached only 3.5%. It also turned out that
ResNet can be successfully applied to time series classification. In [25] authors experimented
with various types of networks and data sets and ResNet achieved lowest classification error
in 8 of 44 data sets. In arithmetic average it took 4th place and in geometric average it took
5th place (of 11 algorithms).

17

2.1.2.5 Elman‘s Network

Elman’s network is one of the simplest recurrent neural networks (RNN – they store an
information about their previous activations in internal memory so the information can spread
also among neurons in the same layer; successfully used for sequence data processing [12]).
The main difference between MLP and Elman’s network is that Elman’s network is enhanced
with context layer that stores an information about activation of neurons from the previous
iteration. These activations then affect the output of the layer using recurrent links. These
links exist only between ith neuron of context layer and ith neuron of internal layer and have
weight equal to 1. The network is trained using real-time recurrent learning method [30].

In [27] authors attempts to use recurrent neural networks in time series classification
domain. They compare different neural networks using UCR Time Series Archive [6]: MLP,
FCN, LSTM and several other types of recurrent networks. They divided recurrent networks
into 2 groups: those with dense layer on the output and those with recurrent layer. Their
results for recurrent networks are not very conclusive because they did not reach significantly
higher accuracy than random classifier. They conclude that according to Wilcoxon signed-
rank test:

• replacing recurrent layer by LSTM layer leads to better accuracy,

• adding third layer leads to no significant improvement of accuracy,

• replacing dense layer by recurrent layer has no significant impact to the accuracy,

• increasing number of neurons in one-dimensional recurrent network from 128 to 256
leads to worse classification accuracy.

2.1.2.6 Long Short-term Memory

The main motivation to create LSTM [31] was to be able effectively model dependencies in
large time series and also to eliminate problems with vanishing and exploding gradients [5].
The strength of LSTM comes from regulation of spreading of the activation by gates. These
gates regulate input, output and internal state of the LSTM cell. Each LSTM cell consists of
3 gates: input, forget and output. The forget gate decides which information will be removed
from internal memory. Input gate filters cell inputs and output gate decides what input values
and values from internal layer will be sent to the output of the cell.

LSTM was also a subject of experiments in [27] on UCR Time Series Archive [6] where
is achieves better accuracy than standard RNN, but worse than FCN. Authors also conclude
that increasing the number of neurons in layer from 128 to 256 had no significant affect
on classification accuracy. Authors in [32] attempted to classify astronomical time series
using LSTM and other methods. Their experiments were evaluated using Balanced Accuracy:

18

T P
P + T N

N

2 (2.2)

Where TP is a count of correctly classified positive samples and TN is a count of correctly
classified negative samples. P is a count of positive samples and N a count of negative samples.
Authors were surprised that LSTM performed bad in their experiments using this metrics.
They conclude that the Balanced Accuracy for LSTM was only 52%.

It seems that noisy time series are quite a challenge for LSTM and RNN in general.
Possible solution can be inspired by [33], where the authors used a conversion into a symbolic
representation with a self-organizing map.

2.1.2.7 LSTM Fully Convolutional Neural Network

Introduced in [5] and designed to extend FCNN by LSTM module. Authors state that their
solution significantly improves the performance of FCNN with only a small increase of the
model. They also state that their solution requires only minimal data pre-processing. They
also conclude that their method super-seeds other state-of-the-art methods.

2.2 Other Related Work

In [34] authors performed multi-class classification (instead of our binary one) for the data
from original Kepler mission ("K1") that are very similar to ours. Their original results were
similarly poor as ours and among others concludes that LSTM is not suitable for Kepler data.
They achieved best results with feature extraction. The results are very similar to those
described in [35] (again experimented on the original Kepler data). In [18] authors compared
several algorithms on the original Kepler data and reached accuracy very similar to ours on
similar Kepler K2 data set (only with different extracted features more suiting to the Kepler
data set).

There is also a Kaggle1 competition aiming on original Kepler data, but although it
promises high accuracy, it uses highly unbalanced data set and achieved results are therefore
not very informative.

In [36] authors works with a totally different light curves data set, but conclude that feature
extraction (in their case a set o 7 statistical markers) is a must-have for astronomical time
series. They also work purely with time series without any additional meta-data describing
the stars themselves. Based on just these information, they conclude that it is not possible to
perform good-performing multi-class classification for most of the variability classes. Using
Random Forest, Decision Trees and kNN algorithm they reached up to 70% accuracy which
they suspect is caused by an imbalanced data set.

1Mystery Planet (99.8%, CNN): https://www.kaggle.com/toregil/mystery-planet-99-8-cnn

19

https://www.kaggle.com/toregil/mystery-planet-99-8-cnn

Chapter 3

Data Sets

From publicly available, real-world data sets such as All Sky Automated Survey for Supernovae
(ASAS-SN), MACHO Project, Microvariability & Oscillations of Stars (MOST) we eventu-
ally chose BRITE (enhanced by variability data from GCVS catalogue) and NASA’s Kepler
(both original and K2 mission) as they provide data sets in a shape suitable for machine
learning (ML).

Real light curves are quite challenging for ML classification. They are very often noisy
due to various physical reasons or due to contamination by other signals. In [32] authors
for example filtered out those light curves with a large contamination from the neighboring
stars or those with total measured flux or a flux yield significantly lower than object’s total
flux. The sampling rate varies and especially in case of e.g. BRITE data set we can see that
whole parts of the time series are missing. Such sparseness is suspected to be one of the
reasons why classification using ML does not work very well [35]. Another suspect for ML
classification poor results is the density of the data [35], which is why we selected in case of
K2 data an original pre-processed data set with ’smoothed’ light curves. This data set also
removes incorrect values from the light curves caused by instrumentation orientation change
performed by on-board thrusters fired during exposure time. This provides more consistent
light curves, but on the other hand it brings in another issue which is sparseness. Kepler data
are also a bit specific as they contain time series measured in 2 so called cadences where each
have a different sampling rate that affects the density of the data. Some authors overcomes
this by simply ignoring them [32]. As we can see, there are many challenges, which is why
there are very often used additional meta data like those available in K2 FITS files that comes
with photometric data and physical properties of each measured star [35] [32]. This - side by
side with feature extraction - is the usual ML framework for Kepler data set. In our work,
we focused only on raw light curves and labels established by a respected 3rd party without
these meta data.

20

3.1 BRITE

Data from BRITE project - a group of nanosattelites on lower orbit launched in 2013 and
2014. This data set is made of tabular ASCII files containing (among others) Heliocentric
Julian Date and Flux (ADU/s). There are 1119 light curves within this data set. According
to GVCS catalogue [37], 601 of them are of variable stars, 279 not variable and 239 cannot
be identified by cross-matching in GCVS catalogue.

Beside the fact that variability data comes from a 3rd party archive, the greatest disad-
vantage of this data set is its variability in sampling rate (in some cases, intervals between
samples are less than 1ms on one side and approximately 60 days on the other side). Another
disadvantage is that number of samples in each light curve varies (some light curves have less
than 10 measurements, while others have tens of thousands of measurements). The average
length of light curve is 12642 of samples [2].

3.1.1 General Catalogue of Variable Stars (GCVS)

GCVS [37] is a list of variable stars. Its first version contained 10820 stars and was released
in 1948. Since then it was updated several times and today in contains 52011 variable stars
(version 5.1 released in 2015). This catalogue allows a cross identification of stars based on
their IDs in various catalogues.

Since BRITE data set does not come with an information about star variability, we used
this catalogue to add an information about variability by cross matching its ID. By this we
were able to obtain a label (7 classes of star variability) for 1119 light curves.

3.2 Kepler

Launched in 2009, Kepler was designed to detect transits of Earth-size planets in the "hab-
itable zone" [34] orbiting Sun-like stars with high photometric precision. The Kepler data
products are publicly available and quite rich. We focused on light curves containing flux
values measured in two so-called cadences: long with 29.4min and short with 58.89s sampling
frequency. The Kepler data are divided into 18 quarters - as each quarter of year the instru-
ment needed to be re-aligned to keep the focus on the same area in the Universe. The data
are in a form of astronomy-specific FITS format.

Labels were obtained from the ASAS Catalogue of Variable Stars1 as Kepler does not
provide them directly. The matching was done using Two Micron All Sky Survey (2MASS)2

catalogue ID available in both catalogues (in case of Kepler we used its Kepler Input Cata-

1ASAS Catalogue of Variable Stars: http://www.astrouw.edu.pl/asas/?page=acvs
2Two Micron All Sky Survey (2MASS): https://irsa.ipac.caltech.edu/Missions/2mass.html

21

http://www.astrouw.edu.pl/asas/?page=acvs
https://irsa.ipac.caltech.edu/Missions/2mass.html

logue3 providing these metadata). This, on the other hand, also means that labels are less
trustworthy. We were also able to match only a handful of data from the original data set up
to quarter 16. More specifically, we worked with 1198 samples of various variable stars and
1198 samples of noise (to keep the data set balanced).

3.3 Kepler K2

Continuing NASA’s mission to search Earth-like extra-solar planets in our Galaxy. Data from
K2 mission that are subject of this work are publicly available [38] [39] and well documented
[40] [41]. In this work we are interested in Kepler K2 light curves containing flux of individual
objects in time. For these data, Kepler K2 also provides official catalogue of confirmed variable
objects that we can utilize. Based on sampling frequency, we distinguish 2 cadency groups:
long with 1765.5s (29.4min) and short with 58.89s. On each Thursday, more than 160000
objects with long cadency and 512 objects with short cadency were measured and archived.
The minimal length of measurement was 1/4 of year for long cadency and 1 month for short
cadency (with exception of Q4 where module 3 objects were lost due to hardware failure).
Light curve file is in a form of time series where all undefined values are represented as NaN
(not a number). As a result, we can obtain about 40000 light curves with length up to 1300
measurements [2].

As mentioned before, we used original, but corrected K2 data that excludes observations
during thruster firings [42]. The resulting data are more smooth and without irrelevant
samples (although with some sparseness). The difference between raw and corrected data is
depicted on Fig. 3.1.

3.3.1 Similarity with Kepler “K1” Data

Kepler mission “K2” followed the original NASA’s Kepler mission with the same purpose after
the instrument stabilization failure. For this reason, these data sets are very close to each
other in terms of the content. Original Kepler data also contains light curves containing flux
values with two cadences: long with 29.4min and short with 58.89s sampling frequency.

Currently, more research seems to be done on original (“K1”) Kepler data, but due
to the data similarity, we include their results in our work as well. In [32] authors performed
multi-class classification but with poor results (balanced accuracy 52%). They confirm that
LSTM does not perform very well for Kepler data (they discuss that it was either due to the
limited positive sample size within our data or the sparseness and/or noisiness of real data)
and they achieved best results with use of significant attributes extraction (with a balanced
accuracy 74.7%). This conclusion was basically confirmed by experiments performed in [35]

3Kepler Input Catalogue: https://archive.stsci.edu/kepler/kic.html

22

https://archive.stsci.edu/kepler/kic.html

Figure 3.1: An example of the uncorrected fluxes from K2 (blue) and the corrected K2SFF
version (orange). Source: [42].

where authors performed also multi-class classification of 150000 objects into 14 variable star
classes reaching up to 65-70% accuracy. Authors also mention previous research on Kepler
data achieving up to 55% accuracy.

23

Chapter 4

Artificial Neural Networks Approaches

We decided to compare several methods of time series classification that utilizes artificial
neural networks. Our primary goal is to find the best method that will classify time series
(light curves) at least binary in a sense of object variability: the light curve contains some
period (and is therefore of variable object) or whether there is no period found (an object
is not variable) [2] as much as the data will allow us. We started with following approaches:

• multi-layer perceptron classification with own activation function,

• recurrent neural network of type LSTM,

• multi-layer perceptron with own activation function in combination with time series
pre-processing using Fourier transformation,

• recurrent neural network of type LSTM in combination with time series pre-processing
using Fourier transformation,

• multi-layer perceptron classification with own activation function in combination with
some method of significant attribute extraction,

• recurrent neural network of type LSTM in combination with some method of significant
attribute extraction (a.k.a. feature extraction),

• convolutional neural network with sigmoid activation function,

• other, not so successful (in terms of our results) artificial neural networks such as fully-
convolutional neural networks, MCDCNN and ResNet.

After these we attempted to evolutionary engineer ANN specifically for our binary classi-
fication task and establish a framework that can match the classification accuracy of related
work.

24

4.1 Data Pre-processing

We pre-processed both BRITE and Kepler K2 data sets and transformed the raw data (light
curves with flux) into a common form digestible by the ANN:

• Balancing data sets so it contains same number of variables and not variables.

• Cutting light curves in order to equal their length.

• Mix the data.

• Generate periodogram.

• Perform Fourier transformation.

• Significant attributes extraction in order to reduce dimensionality of time series data
(different techniques).

• Data normalization into interval relevant to selected activation function.

• Splitting the data set to training and test set.

4.1.1 Significant Attributes Extraction and Visualization

During our experiments described later we discovered that both original data sets may not
provide clear examples of time series of variable and non-variable stars. This led to a poor
accuracy and we were therefore looking for a way how to distinguish these time series by
means of significant attributes extraction. We tested the usability of extracted attributes
by visualization using Sammon mapping [43]. Sammon mapping attempts to find a low-
dimensionality representation of objects in high-dimensional space with as much respect to
their original geometric distances as possible. We used it to convert extracted significant
attributes to 2D and visualize, hoping to see clear clusters with variable and non-variable
time series. Such set of attributes could be then used for further classification using ANN.

25

Chapter 5

Binary Classification Experiments and
Results

As we achieved poor initial results with BRITE data set (as described in 5.1, not all experi-
ments covers it. We were looking at results with 10 following activation functions: exponential,
sigmoid, hyperbolic tangent, relu, elu, selu, soft plus, softsign, harp sigmoid, linear. Experi-
ments were performed with artificial neural network containing 3 hidden layers: 16 neurons
in input, 34 neurons in first hidden, 16 in second hidden and 64 in third hidden layer [2].

5.1 BRITE Data Set

We had started with a more problematic BRITE data set. We attempted to classify time
series by several ways, but eventually with poor results.

5.1.1 Multi-layer Perceptron

The sigmoid activation function was used in the output layer. Training was stopped after
3000 epochs. The learning rate was set to 0.005. For each activation function we trained the
MLP 10-times and based on validation data we selected the best model. Its accuracy was
then tested on testing data. Results can be seen in Tab. 5.1.

Bad results are probably caused by a small data set. Only 538 light curves came out from
pre-processing, these were then divided to a training and test set in 70:30 ratio, 10% of training
set was used for validation. For the training, only 338 light curves remained. Another issue
was the irregular interval between individual measurements within the time series. Based on
these results and results with LSTM, we decided to continue only with Kepler K2 data set.

26

Act. function Precision Recall Accuracy
Exponential 0 N/A 0.64
Sigmoid 0 N/A 0.64
Hyperb. tan. 0.03 0.18 0.59
Relu 0 0.60 0.64
Elu 0 N/A 0.64
Selu 0 N/A 0.64
Soft plus 0 N/A 0.64
Soft sign 0 0 0.62
Harp sigmoid 0 N/A 0.64
Linear 0 0 0.61

Table 5.1: Results of MLP classification for BRITE data set.

5.1.2 Long Short-term Memory

In this case, the process was a bit different. We used 900 raw time series (as LSTM is supposed
to handle it) cross-matched with GCVS catalogue. We divided them into training and test
set in 70:30 ratio. Each time series had up to 66500 measurements ("feature vector"). Shorter
time series were padded with -1 to this length and all data normalized. With these settings,
we achieved the accuracy 60%.

5.2 Kepler K2 Data Set

After attempts with BRITE data set, we switched to a more promising Kepler K2 data set.
Configuration was same as in case of BRITE.

5.2.1 Multi-layer Perceptron

The results with the same configuration as in case of BRITE can be seen in Tab. 5.2. Unfor-
tunately, there is just minimal improvement. The best activation function turned out to be
Selu that achieved accuracy 0.66. Recall is also interesting metric because it is not such an
issue if some non-variable object is classified as variable but it is important to minimize the
number of undetected variables. From this point of view, the Elu function performed best.
Accuracy and loss function of best models is depicted on Fig. 5.1 and 5.2.

Then we attempted to improve the accuracy by generating so-called periodograms cre-
ated by conventional statistical analysis. The classifier then attempted to classify these peri-
odograms instead of light curves. Results can be seen in Tab. 5.3 and shows no significant
improvement of accuracy. Nevertheless, hyperbolic tangent performed best. We also at-
tempted to establish some custom activation functions listed in Tab. 5.4 (raw light curves
were used). As last experiment with MLP, we attempted to use our own activation functions

27

Act. func-
tion

Precision Recall Accuracy

Sigmoid 0.98 0.53 0.56
Hyperbolic
tangent

0.72 0.61 0.64

Relu 0.67 0.60 0.61
Elu 0.64 0.63 0.63
Selu 0.78 0.62 0.66
Soft plus 0.82 0.58 0.62
Soft sign 0.64 0.58 0.60
Harp sig-
moid

0.98 0.49 0.48

Linear 0.73 0.61 0.63

Table 5.2: Results of MLP classification for Kepler K2 data set.

Figure 5.1: Results of MLP training with Elu activation function on K2 data set. Source: [2].

Figure 5.2: Results of MLP training with Selu activation function on K2 data set. Source:
[2].

28

Act. function Precision Recall Accuracy
Sigmoid 1.00 0.49 0.49
Hyperbolic tangent 0.51 0.71 0.66
Relu 0.54 0.70 0.65
Elu 0.63 0.65 0.65
Selu 0.65 0.61 0.62
Soft plus 0.80 0.61 0.65
Soft sign 0.56 0.67 0.64
Harp sigmoid 0.00 0.00 0.50
Linear 0.61 0.65 0.64

Table 5.3: MLP classification for K2 data converted to periodograms.

Act. function Precision Recall Accuracy
tanh(0.1*x) 0 0 0.45
tanh(0.3*x) 0.05 0.53 0.45
tanh(0.5*x) 0.52 0.66 0.59
tanh(x) 0.72 0.68 0.66
tanh(1.5*x) 0.68 0.68 0.65
tanh(2*x) 0.71 0.67 0.65

Table 5.4: MLP classification for K2 data using own act. functions.

with Kepler K2 light curves processed by Fourier transformation. Results are listed in Tab.
5.5. We achieved similar results with Cosine transformation.

5.2.2 Convolutional Network

We decided to compare CNN with MLP. All data from K2 data set were normalized by
min-max normalization, we run 5000 epochs with learning rate 0.005 and following network
configuration: two convolutional layers with sigmoid act. function, window size of 7 and 6
(or 12) filters, each followed by pooling layer and with output layer with sigmoid activation
function. Results are in Tab. 5.6 and on Fig. 5.3.

Act. function Precision Recall Accuracy
tanh(1.1*x) 0.68 0.64 0.64
tanh(1.4*x) 0.75 0.65 0.67
tanh(1.5*x) 0.74 0.65 0.66
tanh(1.7*x) 0.68 0.61 0.61
tanh(2*x) 0.72 0.63 0.63

Table 5.5: MLP classification for K2, own act. functions, FT.

29

Light curves Length Precision Acc. Recall
500 800 0.65 0.65 0.65
7502 1300 0.65 0.64 0.64
500 400 0.64 0.62 0.63

Table 5.6: Results of CNN classification for Kepler K2 data with different count of light curves
and measurements in each time series (cut to this length).

Figure 5.3: CNN experiment loss function chart during training phase (from left: eperiment
#1, #2, #3) [2].

5.2.3 Other Artifical Neural Networks

We have been experimenting with several other ANNs including ResNet, Fully-convolutional
network, MCDCNN and other configurations of MLP and CNN with even less success than
was described above. Their results are therefore omitted from this paper.

5.2.4 Other Significant Attributes Extraction Methods

As mentioned before, we attempted to extract most significant attributes from K2 data set
in order to distinguish variable and non-variable objects. To verify this, Sammon projection
was used (see Fig. 5.4 and 5.5). The experiment confirmed that the original data does not
contain clusters and we need to focus on domain-specific details of the data.

5.2.5 MLP: Improvement of Accuracy

We eventually focused on the most-promising MLP with use of feature extraction and certain
domain knowledge. We used Kepler K2 variability metadata that also provides a confidence
level of each class label (in a form of probabilistic distribution over all possible classes).
The histogram of such label confidence is depicted on Fig. 5.6. For the training purposes,
we fine-selected only those time series that has confidence level over 80% and thus are more
“clean” for the feature extraction (in other cases there is a significant probability of a bad
label) – an experimentally established set of statistical markers (calculated using tsfresh1

framework):
1tsfresh: https://tsfresh.readthedocs.io

30

https://tsfresh.readthedocs.io

Figure 5.4: Sammon projection, random init.: 500 epochs, different time series length (1200-
1225 measurements), extracted attributes or just FT or min-max norm [2].

Figure 5.5: Sammon mapping: 500 epochs, time series length: 1200-1225. Attr.: stand. dev.,
variance, min, max, mean, sum val., median, abs. sum of changes, agg. autocorr., arithmetic
coeff., binned entropy, energy ratio, agg. FFT val., first loc. of min/max, mult. max values,
index mass quant., linear trend etc. Or processed by FT or min-max normalization [2].

31

• Absolute sum of changes of the time series x:
∑︁n−1

i=1 |xi+1 − xi|.

• Aggregated auto-correlation: fagg = (R(1), ..., R(m)) for m = max(n, maxlag) where n

is the length of the time series X, maxlag is the maximal number of lags to consider,
fagg is mean, variance and standard deviation in our case and R(l) is the autocorrelation
for lag l: R(l) = 1

(n−l)σ2
∑︁n−l

t=1(Xt − µ)(Xt+l − µ) with σ2 being variance and µ mean.

• Change quantiles with lower quantile being 0.5, higher quantile being 0.7, using absolute
differences and variance as the aggregation function applied to a corridor established
by quantiles.

• CID - an efficient complexity-invariant distance for time series x attempting to estimate
its complexity specified by more peaks, valleys etc. [44]:

√︂∑︁n−2lag
i=0 (xi − xi+1)2.

• Count above/below mean returning the number of values in time series x that are above/-
below its mean.

• Energy ratio by chunks - sum of squares of chunk i out of N chunks expressed as a ratio
with the sum of squares over the whole series (we used 10 chunks).

• Fast Fourier coefficients Ak =
∑︁n−1

m=0 ame−2πi mk
n for k = 0, ..., n − 1 where Ak is the

kth Fourier (complex) coefficient, n is the length of the time series and am is the mth
value of time series. We used first 3 Fourier coefficients: their real, imaginary, absolute
and angle value.

• Aggregated Fast Fourier Transformation - spectral centroid (mean), variance, skew,
and kurtosis of the absolute Fourier transform spectrum.

• C3 measuring non-linearity in time series x [45] by computing 1
n−2lag

∑︁n−2lag
i=0 x2

i+2lag ·
xi+lag · xi where we used lag = 350.

• Mean value of a central approximation of the second derivative: 1
n

∑︁n−1
i=1

1
2(xi+2−2xi+1+

xi) where n is the length of time series x.

• Partial autocorrelation at lag k = 2 of time series x [46].

• Quantile q = 0.5.

• Range count of observed values within the interval [0, 100).

• Ratio beyond rσ - ratio of values that are more than r ·σ(x) away from the mean of time
series x where σ is standard deviation a r = 100 in our case.

• Ratio of count of unique values to count of all values of the give time series.

32

Figure 5.6: Histogram of class probabiliti es (label confidence) for Kepler K2 data.

• Skewness.

• Power spectrum of the different frequencies of the given time series.

• Standard deviation.

• Variance.

On Fig. 5.7 we depict our pre-processed data set. Visualization in 3D was done using
non-linear projection called t-SNE [47]. We can see that variable and non-variable stars are
now much more distinguishable. In the bottom part where most of non-variable stars are
located, we can see a significant number variable stars as well which suggests that there will
be a need of rather higher number of layers and neurons in them in order to “bend” the space
around them and separate them in high-dimensional space.

We also introduced batch normalization [48] for each hidden layer. The best experi-
mentally found performing network contained 3 dense layers (64, 128 and 256 neurons) and
reached accuracy over 70%. To push the accuracy even further, we introduced an evolution-
ary algorithm called Particle Swarm Optimization (PSO) [49] - a traditional optimization
algorithm that is able to cover the whole space of possible solutions on its random agents
initialization - to optimize the MLP hyper-parameters by minimization of the classification
error (1 - accuracy). We optimized the following hyper-parameters:

• Decimal places of extracted statistical markers

– Encoded as rounded integer value.

• Normalization type (min/max, mean)

33

Figure 5.7: Best describing extracted features for most reliable (in a sense of class confidence)
time series.

– Encoded as rounded value of 0 or 1.

• Learning rate

– From the interval of 0 to 1.

• MLP network structure (number of hidden layers and neurons).

– Up to 10 hidden layers having different combinations of 8, 16, 32, 64, 128, 256, 512
and 1024 neurons.

– 43757 possible structures in total.

– Encoded as rounded integer value that represents one of layers combinations.

The whole process is depicted on Fig. 5.8 and learning took 5 days on modern CUDA-
enabled machine (AMD Ryzen 7 2700 with 8 cores / 16 threads, 32GB RAM, nVidia GeForce
RTX 2070 8GB, SSD drive). By this, we achieved accuracy 98.55% using following hyper-
parameters established by PSO:

• Decimal places of extracted statistical markers: 7 (not so significant).

• Normalization type (min/max, mean): mean.

34

Figure 5.8: PSO over MLP. We start with feeding PSO with initial swarm parameters and
limits for MLP parameters that are optimized by PSO. In each iteration of PSO, n agents
runs MLP classification with optimized parameters producing the MLP classification error.
Based on this error, corrections to MLP parameters of the given agent are made for the next
iteration.

• Learning rate: 0.1196596.

• MLP network structure (number of hidden layers and neurons): 8, 16, 16, 32, 32, 32,
1024, 1024, 1024 (this actually corresponds to what we expected based on Fig. 5.7).

• Achieved by 814 light curves in balanced training set.

On Fig. 5.9 we can see the convergence of PSO algorithm. Each point represents a
position of agent in 4-dimensional space (each dimension represents one optimized MLP hyper-
parameter). The reduction to 2D was done using PCA algorithm. As we can see PSO required
just couple of iterations (about 20 or 30) to find the correct area of possible best solutions
and then just spent the remaining iterations looking for best performing MLP model within
this area. We suspect that further reducing of the area might be difficult due to the stochastic
nature of MLP. On Fig. 5.10 depicting the progress of accuracy and hyperparameters of
corresponding best fitting MLP models we can see that one of the best fitting models was
found within these first tens of PSO iterations. We can also see that high accuracy comes
with high count of hidden layers and decimal places while the learning rate remains very low
(small changes of internal states of MLP during the training iterations). Each model that
reached high accuracy also had similar structure of hidden layers starting from 8 neurons at
the beginning layers and ending with 1024 neurons among last layers.

We successfully reproduced the experiment with basically same results and accuracy.
It seems that 98.55% accuracy is the current top for our approach to binary classification
of Kepler K2 light curves. We are also aware of a bias introduced by optimizing against test
accuracy, which is why we watched close the validation accuracy as well as precision and recall
where all these metrics were over 90% too. We also tested our approach with data having

35

Figure 5.9: PSO agents convergence (after tens of iterations).

Actual class
Variable Non-variable

Predicted class Variable 73 1
Non-variable 3 61

Table 5.7: Confusion matrix.

label with lower confidence (over 80%) and achieved 82.59% accuracy after only 15 iterations
(according to Fig. 5.9 and Fig. 5.10 there is only minimal improvement possible as PSO finds
good models very fast). The confusion matrix is depicted in Tab. 5.7.

5.2.6 Results Summary

Similarly to [32] we achieved poor results with LSTM and best results using feature extraction.
Although in [32] and [35] authors worked with original Kepler mission data and multi-class
classification (instead of our binary one), we were able to reach higher accuracy on a very
similar data Kepler K2 data set and binary classification. It seems that the key lies in data
pre-processing and selection of correct training data as the confidence level for the label data
is often deeply under 50%. Comparison with Kaggle competition results is also problematic

36

Figure 5.10: Best fitting MLP models over PSO iterations and their hyper-parameters.

not just for the fact that it also uses the original Kepler mission data, but also for using a
highly imbalanced data set.

We present another example of "semi-binary" classification experiment in section 6.2.3
where we focused on training a network suitable for distinguishing a specific variability class
from each other and from noise.

5.3 Kepler Data Set

We decided to perform some experiments to compare out method with others that focus
mostly on original Kepler data. As mentioned in section 3.2, we had 2396 samples available
from quarter 1 to 16 which were balanced in a way where 1198 samples were of all variability
classes and 1198 were noise. These labels were established by respected 3rd party. For the
purpose of the binary classification though, we used only the data from the first four quarters
as they are mostly used in related work. This significantly reduced the size of the data set
(651 samples together), but the data set was still balanced. The major difference from the K2
data is that the original Kepler data were not "smoothed" by the Kepler team, which turned
out to have impact on the classification progress and overall classification accuracy. Giving
the size of the data set and our experience with binary classification of Kepler K2 data set, we
decided to introduce oversampling (by factor 2) to increase the data set size. We then applied
the same algorithm as for Kepler K2 data: extraction of the same features and evolutionary-
engineered MLP. In this experiment, the MLP hyperparameters were optimized by approach
described later in section 6.2.1. Results are depicted in Tab. 5.8. We let the PSO to perform
58 iterations which is much higher number than in previous experiments. The best achieved

37

DO BNM L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Acc
2 0 0 626 487 109 863 836 278 239 608 316 1000 70.45
5 0 0 572 411 809 601 435 220 263 362 325 1000 75.76
10 0 0.03 521 397 107 603 472 199 262 385 314 750 76.52
23 0 0.05 523 399 113 641 547 199 283 397 312 700 78.79
29 0 0.1 610 381 131 655 613 297 301 467 346 778 80.3
30 0 0.08 539 503 118 642 547 243 274 436 309 720 81.06
31 0 0.26 608 470 234 551 664 420 217 502 287 819 81.82

Table 5.8: Binary classification results and best network structures for Kepler data set us-
ing evolutionary algorithms. First column (#) indices the iteration number, DO stands for
Dropout, BNM for Batch normalization momentum and Lx columns indices the number of
perceptrons in each layer. Last columns indices the classification accuracy on a test data set.

accuracy was 81.82% for all label probabilities. We expect that the absence of sophisticated
and domain-specific smoothening together with extracted features originally experimentally
established for Kepler K2 data set is behind these results. Nevertheless we can again see
that PSO converges to the optimal model, just slower. What is also surprising is that batch
normalization is almost zeroed in all found best models (together with dropout). We can also
notice that deep models with a lot of neurons in hidden layers dominates among the best
models.

38

Chapter 6

Multi-class Classification Experiments and
Results

In our binary classification experiments for Kepler K2 there were 6 variability classes with
various distribution merged into a single class called ‘variable’. Differences between samples
of individual classes could thus make the learning and classification more difficult. We there-
fore splitted the ‘variable’ class back to 6 individual variability classes with ‘Noise’ as the 7th
class and performed the multi-class classification using (primarily) Kepler K2 data set.

6.1 Data Pre-processing

From the current state of the art and our own experiments with binary classification, we
know that feature extraction with deep MLP is the most promising approach. We therefore
extracted the same statistics as in case of binary classification (see section 5.2.5).

Number of samples in each class is depicted on Fig. 6.1 and we can see that the data
set is highly imbalanced. We used a combination of undersampling for large classes (random
n samples from the class) and oversampling for small classes (all samples in the class are
repeated to collect n samples in total) to get a balanced data set (example is depicted on
Fig. 6.2). The exact n number representing the number of samples of each class was also a
subject of experiments as it is specific for the data set. We did not want to introduce any
unnecessary bias by repeating the same samples for small classes too many times. But we also
did not want to miss the opportunity to have enough of different samples for large classes on
the other hand. For this reason we evaluated several counts of samples in each class using the
best found MLP model from previous binary classification task (see section 5.2.5). To make
the classification a bit more difficult, we did not consider the class probabilities ("confidence
level") as described in section 5.2.5 and included simply all probabilities. Data were then
normalized using min/max normalization and divided in ratio 80:20 to train and test. In Tab.

39

6.1 we present our encoding table for variability classes. The encoded values are used further
in this section in confusion matrices.

Encoded Value Class
0 Noise
1 DSCUT
2 EA
3 EB
4 GDOR
5 OTHPER
6 RRab

Table 6.1: Encoding table for variability classes.

6.2 Experiments

As mentioned before, we started with various counts of samples in each class evaluated using
model from section 5.2.5. The counts we tested were 1000 (used as a reference one), 100, 200
and 400 and we attempted to find the least usable data set that provides enough of samples
(with respect to large classes) but still does not introduce a bias by too many oversampled
small classes. We also experimented with various settings of batch normalization and dropout
to see what affect on classification accuracy they have. Results are depicted in Tab. 6.2, 6.3,
6.4 and 6.5. The best preliminary results shows accuracy over 70% using 1000 of samples per
class (800 for training; see the confusion matrix on Fig. 6.3) but as mentioned before, these
results may be biased by too large oversampling of small classes (e.g. RRab that has only 50
unique samples). To rule out this, experiments with only 100 samples per class followed (80
for training) where the overall accuracy was only up to 40%. What is interesting here is the
confusion matrix (see Fig. 6.4). It shows that class 6 (which is encoded value of RRab with
just 50 unique samples) had very little amount of classification errors. This suggests that
when we increase the oversampling, we will not introduce such a bias as the samples in this
particular class seems to be different enough from other classes. We followed this hypothesis
and increased the number of samples for each class to 200 which led to significantly higher
classification accuracy (55%). Increased number of samples (even without oversampling) thus
leads to better accuracy. From the confusion matrix (Fig. 6.5) we can see that classes 2, 3
and 4 having slightly over 200 unique samples produced a significant amount of classification
errors. As there were still some samples left unused in these classes, we decided to use them
with an addition of little oversampling and increased the count of samples in each class to 400.
This lead to the classification accuracy almost 63% where only the Noise class is significantly
misclassified (see Fig. 6.6).

40

Figure 6.1: Counts of light curves in each variability class in Kepler K2 data set.

We also discovered through naive experiments with the network structure that the best
model found for binary classification is not the best fitting for multi-class classification.
We were able to reach 47% accuracy on a data set with 100 samples per class, 57% when
having 200 samples per class and 67% when having 400 samples per each class. With respect
to results in Tab. 6.2, 6.3, 6.4 and 6.5 we can say that increasing the amount of samples leads
to better fitting model. To not introduce any unnecessary bias while keeping large-enough
data set, we decided to continue with a data set with 400 samples per each class.

6.2.1 Applying the Evolutionary Algorithm

We applied the Particle Swarm Optimization algorithm again. This time (as we performed
multi-class classification task and learned new insights from the previous experiments) we
optimized a bit different set of parameters (see Fig. 6.7). Each hidden MLP layer can be
followed by dropout and batch normalization - with same settings through the whole network.
The network itself can have up to 10 hidden layers. So beside global dropout and batch
normalization momentum we also optimized the number of perceptrons in each hidden layer
(ranging from 0 to 100 where the resulting number was multiplied by factor 10 and rounded so
we can have hidden layers with up to 1000 perceptrons - this should be faster for optimization
and in practice, tens of neurons makes more difference than individual units). As a result,
we optimized 12 parameters this time. Tests were performed on a Kepler K2 data set with
400 samples per class. The PSO was initialized with the same settings as in case of binary
classification.

41

Figure 6.2: Counts of light curves in each variability class in Kepler K2 data set after balancing
(to 1000 samples for each class in this example).

Figure 6.3: Confusion matrix for Kepler K2 multi-class classification with 1000 samples per
class. Please see Tab. 6.1 for classes encoding. We can see that OTHPER and Noise are often
confused.

42

Figure 6.4: Confusion matrix for Kepler K2 multi-class classification with 100 samples per
class. Please see Tab. 6.1 for classes encoding. We can see that RRab is (despite to just 50
original samples) correctly classified.

Figure 6.5: Confusion matrix for Kepler K2 multi-class classification with 200 samples per
class. Please see Tab. 6.1 for classes encoding. We can see that GDOR, EA and EB are often
misclassified.

43

Figure 6.6: Confusion matrix for Kepler K2 multi-class classification with 400 samples per
class (no batch normalization nor dropout). Please see Tab. 6.1 for classes encoding. We can
see that only Noise class is classified significantly incorrectly.

From Fig. 6.8 and Tab. 6.6 we can see that good optimizers are found quite quickly
among the first iterations. The best one (with accuracy 73.04% over 7 classes) was found
after just 11 iterations which took 4 days. The best fitting model contained 10 hidden layers
with dropout and batch normalization layers following them. Details can be found on the
last line of Tab. 6.6 where we can see that dropout was ignored while batch normalization
momentum was set to 0.44. The model utilized whole 10 possible hidden layers with quite a
lot of perceptrons in later layers. We can also notice a small change in best fitting models
structure in respect to the binary classification as here (after some initial attempts) there
are also usually lower numbers of perceptrons in the initial hidden layers, but this time
there are more of them than the size of the input vector. The number of perceptrons then
progresses to larger numbers in later layers similarly to the binary classification. What can
also be observed is a progression from the initial best fitting models that did not utilize all
the possible 10 hidden layers (just most of them) to the final best fitting model that used all
10 hidden layers. Based on this it seems that deep learning with MLP and elaborated feature
extraction could be a way how to effectively classify this kind of data - especially when the
network structure is engineered by the evolutionary algorithm. From confusion matrix of the
best fitting model (Fig. 6.9) we can see that there are two classes that still seems to be tricky
for the classifier - this could be addressed by adding more features to the data set (like for
example photometric metadata) or further fine-selection of the training data.

44

Figure 6.7: Visualization of the cost function for optimizing the Kepler K2 multi-class clas-
sifier. Each PSO agent comes with a dropout, batch normalization momentum and number
of neurons in MLP layer as input arguments. The MLP arguments are then multiplied by
10 and rounded. If not zeroed, then a layer with corresponding number of neurons is added,
followed by dropout and batch normalization set directly. The cost function then performs
learning of such MLP and calculates the accuracy, which is subtracted from 1 and serves as
the output to be minimized.

45

Figure 6.8: Numbers of neurons in each hidden layer over the PSO algorithm run (with
accuracy depicted on x axis). Thicker line means later layer.

Figure 6.9: Confusion matrix for the best fitting multi-class classification MLP model found
using PSO.

46

Batch normal-
ization

Dropout Iterations be-
fore overfitting

Average
Accuracy

Notes

N/A N/A ∼300 73.128 Confusion matrix shows that
OTHPER and Noise are very
similar to each other

N/A 0.2 ∼800 71.656 Confusion matrix shows that
OTHPER and Noise are very
similar to each other

Momentum=0.99 N/A ∼100 52.284 Increased speed, but worse ac-
curacy

Momentum=0.01 N/A ∼120 65.114 Increased speed, but worse ac-
curacy

Momentum=0.3 0.2 ∼300 58.584 Middle speed, worse accuracy
- both batch normalization
and dropout leads to worse ac-
curacy in this case

Table 6.2: Multi-class classification results for Kepler K2 data set with 1000 samples per class.

6.2.2 Extending the Data Set Using Photometric Metadata

We again used our data prepared in section 6.2 joined with the official metadata1. It provides
multiple additional photometric data where some of them (estimated physical parameters
of individual stars) can be particularly useful:

• Effective Temperature (K),

• log Surface Gravity (cgs),

• Metallicity (dex),

• Stellar Radius (solar units),

• Stellar Mass (solar units),

• Stellar Density (solar units),

• Extinction (mag).

These additional metadata are usually tightly related to the star class itself so we expected
an increase of the classification accuracy as it was the case in related work working with the
data from the original Kepler mission. We simply normalized these data during the pre-
processing. They were then attached to the feature vector so it contained the extracted
features and newly the photometric metadata as well. From Fig. 6.10 and 6.11 though we

1Official Kepler K2 metadata: https://archive.stsci.edu/k2/epic/search.php?action=Search

47

https://archive.stsci.edu/k2/epic/search.php?action=Search

Batch normal-
ization

Dropout Iterations be-
fore overfitting

Average
Accuracy

Notes

N/A N/A ∼100 30.074 Confusion matrix shows
that the smallest (in terms
of original samples) class
RRab is classified usually
correctly.

N/A 0.2 ∼200 35.286 Dropout increases learning
time, but also the accuracy.

Momentum=0.99 N/A ∼85 37.00 Batch normalization with
high momentum lowers
the learning time and in-
creases the accuracy.

Momentum=0.01 N/A ∼90 39.856 Batch normalization with low
momentum lowers the learn-
ing rate and increases the ac-
curacy even better than with
high momentum.

Momentum=0.3 0.2 ∼200 38.714 Combination of batch nor-
malization and dropout corre-
sponds to the other results.

Table 6.3: Multi-class classification results for Kepler K2 data set with 100 samples per class.

can see that we should not expect too much from these data as they are not clearly separable
from each other (they do not make any clear clusters).

Our results basically confirms that. Despite having the additional photometric metadata
in our feature vector, these data in their raw, just normalized form do not provide any
additional information useful for classification. In fact, we saw small decrease in classification
accuracy (69.82% - see Tab. 6.7). This is a bit surprising if we consider that in related
work, photometric metadata were crucial to achieve similar classification accuracy on a very
similar data set. We expect this to be because of its ’naive’ use (only normalization was
performed), but it also shows that our approach is robust enough to perform competitively
even without these metadata, only with light curves themselves. This is actually a good
sign because obtaining photometric metadata is error-prone. It requires a cross-matching to
some variability catalogue, usually based on coordinates only which may not be precise. Also,
photometric metadata are subject of research so they may not be precise neither. Using only
light curves data is then more robust.

Learning itself took approximately 3 days on our test machine and best model was found
after just 4 iterations. From the best models found over iterations (see Tab. 6.7) we can see
that dropout was always zeroed. Later models, on the other hand, benefits from gentle batch
normalization. Hidden layers structures shows again that deep networks with high number

48

Figure 6.10: Photometric metadata separability (vizualized using t-SNE algorithm). Each
point represents normalized photometric metadata of its respected star non-lineary trans-
formed from the original Euclidean space to Euclidean plane.

49

Figure 6.11: Photometric metadata separability (vizualized using t-SNE algorithm). Classes
Noise and OTHPER are omitted in this vizualization as they are too dominant. Each point
represents normalized photometric metadata of its respected star non-lineary transformed
from the original Euclidean space to Euclidean plane.

50

Batch normal-
ization

Dropout Iterations be-
fore overfitting

Average
Accuracy

Notes

N/A N/A ∼200 51.57 Confusion matrix shows that
classes 2, 3 and still produces
significant amount of classifi-
cation errors.

N/A 0.2 ∼370 55.356 Dropout increases the learn-
ing time, but also the accu-
racy.

Momentum=0.99 N/A ∼120 48.428 Batch normalization with
large momentum decreases
the learning time, but also
the accuracy.

Momentum=0.01 N/A ∼100 52.786 Even small momentum of
batch normalization signifi-
cantly decreases the learning
time while still slightly in-
creases the accuracy.

Momentum=0.3 0.2 ∼200 51.358 Combination of dropout and
batch normalization seems to
have no significant improve-
ment.

Table 6.4: Multi-class classification results for Kepler K2 data set with 200 samples per class.

of neurons in later layers performs best. Confusion matrix (see Fig. 6.12) shows very similar
classification errors as in case of previous experiment without metadata (see section 6.2.1).

6.2.3 Training a Fast, One-class Classifier

Looking at the confusion matrices, where usually Noise and OTHPER classes makes the most
classification errors, we were wondering if it is possible to train by our method a classifier
specific for each variability class. In this case, we therefore performed a binary classification
again. We used our data set prepared in section 6.2 with 400 samples for each class and
without photometric metadata. We kept the main classified class (e.g. GDOR) and selected
the same number of samples from other classes to get approximately 400 balanced samples
together as the other class.

Combined results for all variability classes are shown in Tab. 6.8 and ranges from 80%
to 97%. From this table, we can see that for example dropout was always zeroed while batch
normalization momentum was always very close to the maximum value. This is actually
similar to the previous binary classification experiment. It seems that batch normalization is
crucial for binary classification - more than for multi-class classification. We can also see that

51

Batch normal-
ization

Dropout Iterations be-
fore overfitting

Average
Accuracy

Notes

N/A N/A ∼240 58.964 Confusion matrix shows that
only Noise class is signifi-
cantly misclassified.

N/A 0.2 ∼550 62.608 Dropout significantly in-
creases the learning time, but
also the accuracy.

Momentum=0.99 N/A ∼100 52.00 Batch normalization with
high momentum significantly
decreases the learning time,
but also the accuracy.

Momentum=0.01 N/A ∼150 60.606 Batch normalization with low
momentum speeds up the
learning as well as slightly in-
creases the accuracy.

Momentum=0.3 0.2 ∼300 55.466 The combination of batch nor-
malization and dropout per-
formed the worst.

Table 6.5: Multi-class classification results for Kepler K2 data set with 400 samples per class.

even in this case, only deep MLPs performs best. Most of the best models were found after
just 4 iterations (about half of the day of training on our test machine), maximum was 12
iterations.

We had two major concerns about these experiments. One was the OTHPER class,
that is (based on various confusion matrices from previous experiments) very often misclas-
sified as Noise, but the actual result (80.75%) while using only a fraction of examples was
not as bad as we expected. Second concerns was related to oversampling strategy for small
classes, like for example RRab, that was highly oversampled and we were afraid of introduced
bias here. Its result (96.89%) made us worried a bit, but looking on other classes, like for
example EA and EB with almost same number of samples, but with accuracy different by 7%
and especially DSCUT class with the least oversampling, yet one of the highest accuracies,
we did not see any correlation here.

Creating classifiers for specific classes can be useful for several reasons. We can for example
train a classifier that will utilize the outputs of the individual, class-specific classifiers and will
learn to perform a "weighted" multi-class classification. Second (specific to Kepler K2 data
set) can be the OTHPER class. This class is basically a container for other, not specified
periods found in the light curve. From the domain point of view, this can imply new, so far
unknown phenomena of undiscovered exoplanets or at least to serve as a quick filter to find
candidate light curves for further analysis.

52

DO BNM L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Acc
1 0.01 0.27 357 527 670 125 946 0 453 921 319 100 64.46
1 0 0.66 550 388 503 0 789 704 400 1000 646 129 65
2 0 0.31 304 698 757 0 1000 821 510 298 0 20 68.04
2 0 0.43 0 56 463 0 641 532 1000 533 622 406 69.46
6 0 0.28 0 47 428 0 646 517 1000 514 661 238 69.64
6 0 0.41 0 0 450 0 851 497 1000 709 820 417 69.82
7 0 0.38 0 12 424 0 633 515 1000 588 682 411 71.07
7 0 0.36 50 133 535 152 672 782 985 629 705 380 72.32

11 0 0.44 66 121 526 66 651 536 847 773 664 455 73.04

Table 6.6: Multi-class classification results and best network structures for Kepler K2 data
set with 400 samples per class using evolutionary algorithms. First column (#) indices the
iteration number, DO stands for Dropout, BNM for Batch normalization momentum and Lx
columns indices the number of perceptrons in each layer. Last columns indices the classifica-
tion accuracy on a test data set.

DO BNM L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Acc
1 0 0.86 290 124 279 201 212 268 773 0 1000 597 66.43
2 0 0.21 470 384 747 456 0 253 49 502 942 573 67.14
2 0 0.07 668 0 470 113 834 0 33 138 0 1000 67.86
4 0 0.33 707 135 682 803 888 0 610 20 779 523 69.82

Table 6.7: Multi-class classification results and best network structures for Kepler K2 data
set with 400 samples per class and photometric metadata using evolutionary algorithms.
First column (#) indices the iteration number, DO stands for Dropout, BNM for Batch
normalization momentum and Lx columns indices the number of perceptrons in each layer.
Last columns indices the classification accuracy on a test data set.

53

Class DO BNM L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Acc
0 0.99 334 333 68 0 0 437 418 820 511 711 81.99
0 0.92 280 79 551 573 458 561 549 850 875 391 83.23
0 0.99 291 74 0 92 83 19 65 450 708 916 84.47
0 0.99 9 54 451 253 259 511 347 950 905 478 85.09

GDOR

0 0.97 148 38 457 476 518 485 539 931 998 635 85.71
0.17 0.99 370 182 0 948 269 728 889 609 223 0 77.02

0 0.95 173 0 379 245 461 195 264 690 216 321 78.88DSCUT
0 0.96 0 827 945 0 266 990 0 0 0 221 86.34
0 0.96 206 686 621 319 678 776 944 1000 727 59 76.4
0 0.77 762 219 153 0 216 1000 1000 613 0 0 77.64
0 0.99 734 702 168 0 329 554 939 320 988 570 78.26EA

0 0.87 801 320 146 156 270 753 443 544 428 289 80.12
0.07 0.92 919 292 619 534 910 411 537 706 571 0 83.23EB 0 0.99 364 0 906 670 1000 292 617 677 398 12 86.96
0.08 0.99 962 367 183 463 532 514 593 638 241 784 91.93
0.05 0.99 382 711 234 509 286 310 463 0 848 559 92.55

0 0.9 270 699 157 553 342 562 960 310 1000 488 93.17RRab

0.03 0.99 590 549 0 267 224 612 756 0 1000 886 96.89
0.13 0.75 543 0 475 0 552 421 496 130 876 0 79.5
0.03 0.8 637 0 495 0 557 485 315 309 917 818 80.12OTHPER
0.03 0.75 459 0 527 19 533 531 569 291 871 378 80.75

Table 6.8: Results and best network structures of binary classification for each variability
class in Kepler K2 data set with 400 samples per class using evolutionary algorithm. DO
stands for Dropout, BNM for Batch normalization momentum and Lx columns indices the
number of perceptrons in each layer. Last columns indices the classification accuracy on a
test data set. Highlighted lines indices the best found model structure for the class.

54

Figure 6.12: Confusion matrix for the best fitting multi-class classification MLP model for
data extended with photometric metadata found using PSO.

6.2.4 Testing on Original Kepler Data Set

We tested our approach on the original Kepler data as well, but based on our experience
with the binary classification of these data (see section 5.3) we did not expect too much
from it as the data itself are not smoothed at all and the number of classes is larger. Also,
the extracted features were experimentally established for Kepler K2 data set.

The original data set contained 19 classes, but we dropped out samples for some small
classes containing marginary samples at the edge between two classes, which left us 9 classes.
We also applied oversampling and undersampling to balance the data to the same number of
samples in each class.

Results are depicted in Tab. 6.9. From the learning progress we could also witness
issues with the capability to learn itself. Based on our experience with other approaches, we
expect that this is mostly caused by too much noise and/or not conclusive extracted features
(originally established for smoothed Kepler K2 data). This led to a rather poor accuracy
24.14%. Similarly to the binary classification we can see rather high number of neurons in
hidden layers and also the use of all 10 hidden layers which may imply the issues with noise
and/or not conclusive extracted features.

55

DO BNM L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Acc
1 0 0.46 106 1000 239 1000 1000 1000 210 384 890 12 14.66
3 0.02 0.49 17 799 538 1000 827 985 428 410 802 316 15
5 0 0.28 263 910 414 854 874 939 425 646 970 114 17.24
5 0 0.42 689 841 245 891 648 975 191 636 699 244 24.14

Table 6.9: Multi-class classification results and best network structures for Kepler data set
using evolutionary algorithms. First column (#) indices the iteration number, DO stands for
Dropout, BNM for Batch normalization momentum and Lx columns indices the number of
perceptrons in each layer. Last columns indices the classification accuracy on a test data set.

6.2.4.1 An Idea of Establishing the Best-Fitting Extracted Features

As a further task, we plan to introduce an evolutionary-engineered extracted features. A list
of all possible extracted features along with their possible parameters (both numerical and
categorical) will need to be encoded to real numbers as subjects of the optimization using the
evolutionary algorithm cost function. Couple of approaches are possible here:

1. Create a vector of numbers (each from range < 0; 1 >) representing all possible extracted
features. The cost function would round these numbers to get 0 or 1 meaning that
such feature should be extracted or not. Parameters of the features (e.g. number of
FFT coefficients) would be left to default and taken from a map based on an index
of the feature in the vector. This is the most direct approach producing a small vector
of optimized parameters (leading to a relatively fast optimization), but loosing some
information from the data due to just default feature parameters.

2. Extend the previous vector by encoding the feature parameters as well:

• numerical directly,

• categorical either as rounded integers from the range of all possible options or
one-hot encoding.

This will lead to even a longer vector of parameters for the cost function (especially
the more suited one-hot encoding version), but in section 6.2.1 we observed that PSO
quickly ’learns’ to ignore a set of parameters that are tied to some zeroed one.

3. When the optimization using the approach 2 takes too long, both approches can be
combined in two phases:

(a) apply the approach 1 (features with their default parameters only) to get a list
of most important features,

(b) only on those pre-selected features from the first phase, apply the approach 2
and fine-tune the feature parameters.

56

The main issue is that the number of input parameters to the optimized cost function can
be too large leading to too slow optimization. To handle this, two-phase solution described
in 3 could significantly reduce the dimensionality and thus the optimization time while still
producing a good representation of the original data.

To evaluate the affect of the extracted features, we need some cost function consuming
our vector of encoded features. This cost function will decode the vector, extract the features
accordingly and utilize metrics to measure the importance of each extracted feature. Couple
of metrics are possible here:

• XGBoost2 - a software library offering an implementation of stochaistic gradient boosting
algorithm. When fitted to the data, it provides feature importance scores from range
< 0; 1 >. The individual scores can be simply summarized, retracted from the count
of all possible extracted features and thus used as the output of the cost function which
is a subject of minimalization.

• Principal Component Analysis: since our features and their parameters are encoded
as numbers, we can measure their importance by looking at PCA components. Here, we
can sum the largest absolute values of the Eigenvectors’ components and proceed as in
case of XGBoost. The reverse mapping from principal components to features is possible
directly from the index of largest absolute values of the Eigenvectors’ components.

This approach should be easy to implement and general-enough to be applicable to basi-
cally every data set and should produce the best-fitting extracted features for it.

2XGBoost library: https://xgboost.readthedocs.io/

57

https://xgboost.readthedocs.io/

Chapter 7

Case Study: Detection of Nova Cas
2021

In a world of automated sky surveys that monitors the sky continuously every night and pro-
ducing huge amount of data, we were interested if our already trained models for light curves
classification can be somehow useful. These automated sky surveys can provide light curve
for basically every star in its field of view and our classifier (although trained on light curves
from other instruments) should be able to perform its automated and fast classification to one
of the star variability classes (if any). But it can do even more: under normal circumstances,
star variability class should not change, unless something extraordinary happens. Such ex-
traordinary phenomena could be for example the eruption of a star as a nova1 which might
result into a change in the predicted class in compare to its older flux. We decided to test
this hypothesis.

Nova Cas 2021 is a nova that erupted in March 20212 and was formerly known as a
EW -class variable star named in e.g. Czech Variable star catalogue3 as CzeV3217. After the
eruption as nova, we recognize it as Nova Cas 2021 or V1405 Cas of class EW+N.

We were able to obtain the magnitude and flux for the star from its pre-nova era from the ASAS-
SN catalogue4 which covered a period from December 19, 2020 to February 12, 2021. For the nova
era of the star, we obtained the magnitude by technique of web scrapping from AAVSO5

1In close binary star systems a smaller star (white dwarf type) pulls the hydrogen from its larger companion
by its gravitational force. When reaching the critical mass, the termonuclear reaction ignites which involves
rapid brightening of the star (several magnitudes in compare to the original brightness) that can last for several
months.

2Alert Notice 735: Nova in Cassiopeia: N Cas 2021: https://www.aavso.org/aavso-alert-notice-735
3Czech Variable star catalogue: http://var.astro.cz/
4ASAS-SN data for CzeV3217 : https://asas-sn.osu.edu/sky-patrol/coordinate/

00745124-4307-4bd9-9d95-d59d5399975e
5AAVSO data for V1405 Cas: https://app.aavso.org/webobs/results/?star=000-BNX-642&num_

results=200&page=1

58

https://www.aavso.org/aavso-alert-notice-735
http://var.astro.cz/
https://asas-sn.osu.edu/sky-patrol/coordinate/00745124-4307-4bd9-9d95-d59d5399975e
https://asas-sn.osu.edu/sky-patrol/coordinate/00745124-4307-4bd9-9d95-d59d5399975e
https://app.aavso.org/webobs/results/?star=000-BNX-642&num_results=200&page=1
https://app.aavso.org/webobs/results/?star=000-BNX-642&num_results=200&page=1

which covers a period from March 17, 2021 to May 4, 2021.
Based on the formula from GNU Astronomy Utilities manual6 we calculated the flux value

F for the nova from its magnitude m, taking the reference values Fr and mr from the pre-
nova data (more specifically for the timestamp 2021-01-05.2318521 which has low errors in
magnitude and flux). The resulting formula is:

F = 10− (m−mr)
2.5

Fr
(7.1)

Giving mr = 15.305 and Fr = 2.741 we then get the final formula for calculating the flux
F knowing the magnitude m:

F = 10− (m−15.305)
2.5

2.741 (7.2)

The resulting light curves are depicted on Fig. 7.1 and 7.2. For the next steps we always
applied data pre-processing steps for Kepler K2 multi-class classification (see section 6.2).
First, we let our pre-trained Kepler K2 multi-class classifier to predict the class of the pre-
nova light curve, which resulted into RRab class prediction. This is of course different from
the correct one (EW), but as the classifier was trained on quite different data, it is not
that important. Our hypothesis was that this class prediction should change when the nova
erupted. To test this, we combined both the light curves into one, performed the same data
pre-processing and let the pre-trained classifier to make a prediction, which resulted into
OTHPER class that evokes some variability in the data with unknown phenomena (since our
classifier was not trained for EW+N data, we consider this classification to be quite accurate).
As the predicted class changed, our hypothesis was thus confirmed.

After this, we were interested how quickly our pre-trained classifier reacts on a change
in the data and changes the predicted class. We discovered that 3 days after the eruption
our classifier pre-trained for totally different light curves detects this change and changes
the class prediction (see Fig. 7.3 for resulting light curve - you can also observe some typical
signs of light curves: sparseness, different sampling rates and various instruments as data
sources). On Fig. 7.4 you can see what portion of the available post-eruption data the classifier
needed to change the predicted class (the red part represents the data of the first cca 3 days).

7.1 Possible Practical Use

These results can have interesting implications as it depicts that our classifier pre-trained
for different light curves (coming from totally different instrument - Kepler is placed in the

6GNU Astronomy Utilities manual: https://www.gnu.org/software/gnuastro/manual/html_node/
Magnitude-to-flux-conversion.html

59

https://www.gnu.org/software/gnuastro/manual/html_node/Magnitude-to-flux-conversion.html
https://www.gnu.org/software/gnuastro/manual/html_node/Magnitude-to-flux-conversion.html

Figure 7.1: Light curve of variable star CzeV3217 before its eruption as nova. We can observe
its flux variability (y axis) during the time (Julian Date on x axis), but for all the time the
changes are constant and around the mean value.

Universe while light curves of CzeV3217 were obtained by Earth telescopes) can be used to
at least detect interesting astronomical phenomena by changing the class prediction. This
can be used for example for automated sky surveys producing light curves periodically (or at
least often enough) as an automated and fast way of interesting phenomena detector within
their pipelines. Our classifier also seems to be robust enough to handle light curves combined
from multiple instruments to detect such change. To our knowledge there is no related work
that attempted to perform such experiment.

60

Figure 7.2: Light curve of variable star CzeV3217 after its eruption as nova. We can observe
different scale of the flux (y axis) in compare to its pre-nova values on Fig. 7.1.

61

Figure 7.3: Combined light curves of variable star CzeV3217 before and 3 days after its
eruption as nova. On top we can see the light curve that our classifier used for prediction, on
bottom there are both light curves plotted separatly.

62

Figure 7.4: Combined light curves of variable star CzeV3217 before and after its eruption
as nova with the first 3 days after the eruption was spotted highlighted in red.

63

Chapter 8

Conclusions

Astronomical time series (a.k.a. light curves) are very specific in compare to other ones -
they are noisy, variable in length and observational intervals and with overlapping classes.
Traditional methods for their classification seems to not perform very well with them. Sig-
nificant attributes extraction that includes various statistical markers and FFT coefficients
seems to be necessary to achieve good results and the classification accuracy can be highly
improved by optimizing the hyper-parameters with evolutionary algorithm. It also seems that
successful classification model must contain a high number of hidden layers (“deep learning”),
low training interval (in case of MLP that is also a good choice for classification based on
extracted features) and data with high precision. Also a structure of hidden layers seems to
have an impact on classification accuracy as we observed small number of neurons in layers
at the beginning of the network and high number of neurons among the last layers of the
network.

Our approach is time consuming, but good classifiers can be found very quickly during first
iterations and then they are just fine-tuned. In the end it can reach high accuracy confirmed
by validation and test set to prevent over-fitting. So far we are not aware of a related work
reaching similar accuracy on Kepler K2 data set in both binary and multi-class classification.
Similar work usually performs multi-class classification with help of photometric metadata
as additional features while we rely just on the time series themselves (although in some
experiments we select only those with high confidence in label, which seems to be especially
important for binary classification - it seems that samples of individual classes may differ too
much from each other to be united as one ’variable’ class). No other work using Kepler or
Kepler K2 data that we are aware of also mentions what kind of or how much data they used
(that is, whether the data set was balanced, what was the number of samples used or what
was the minimum or mean of the label confidence).

We expected that by introducing photometric meta-data we can lower the confidence
in label while keeping similar accuracy. Instead it turned out that photometric metadata (at

64

least without further pre-processing) brings just more dimensions to our approach but we
can see no improvement in classification accuracy. Our classifier for Kepler K2 performs best
without them - just with the light curves themselves.

We tested our approach on original Kepler data as well and while it seems that in some
experiments it performs reasonably well (binary classification) then in other experiments
we got rather poor results (multi-class classification). Further analysis suggests that this
is most probably because of the set of extracted features originally established for Kepler
K2 data set. Nevertheless we could observe a continuous improvement of the classification
accuracy during evolutionary algorithm epochs so the design itself worked.

In all experiments we could observe that deep networks with batch normalization among
layers performed best. The batch normalization with high momentum seems to be especially
crucial for binary classification (both one-variability-class-specific and variable/non-variable).
On the other hand, dropout was always zeroed.

Our last experiment with nova detection suggests that our approach is robust enough
to work with light curves from other instruments (using a model pre-trained on a different
data set). We demonstrated its usability as a fast, real-time anomaly detection (by watching
for changes in predicted classes) in real-world light curves combined from various instruments
and time epochs. At the time of writing, we are not aware of any related work in this area.

As a further work, we would like to experiment with our idea of evolutionary established
extracted features as a mean of making our approach universal and maybe even automated.
We would also like to address the convergence speed, where despite the improvement by mod-
ifying the cost function, it still remains challenging although we can see that good classifiers
are found quite quickly. We are aware of papers that attempts to speed up the convergence
of hyperparameters optimization using e.g. Decision trees or Bayesian optimization. A nice
overview of optimizing (deep) neural networks also offers e.g. [50]. Other possibility for bi-
nary classification could be for example a solution inspired by anomaly detection where the
anomaly could be anything but noise (where the noise simply masks a non-variable star and
everything else would be considered variable).

65

Bibliography

1. SKODA, Petr. Optical Spectroscopy with the Technology of Virtual Observatory. Baltic
Astronomy. 2011-12, vol. 20. Available from DOI: 10.1515/astro-2017-0332.

2. ANDREŠIČ, D.; ŠALOUN, P.; SUCHÁNOVÁ, B. Large Astronomical Time Series Pre-
processing and Visualization for Classification using Artificial Neural Networks. In: 2019
IEEE 15th International Scientific Conference on Informatics. 2019, pp. 000311–000316.
Available from DOI: 10.1109/Informatics47936.2019.9119283.

3. HU, Bing; CHEN, Yanping; KEOGH, Eamonn J. Time Series Classification under More
Realistic Assumptions. In: SDM. 2013.

4. PETITJEAN, F.; FORESTIER, G.; WEBB, G. I.; NICHOLSON, A. E.; CHEN, Y.;
KEOGH, E. Dynamic Time Warping Averaging of Time Series Allows Faster and More
Accurate Classification. In: 2014 IEEE International Conference on Data Mining. 2014-
12, pp. 470–479. ISSN 2374-8486. Available from DOI: 10.1109/ICDM.2014.27.

5. KARIM, Fazle; MAJUMDAR, Somshubra; DARABI, Houshang; CHEN, Shun. LSTM
Fully Convolutional Networks for Time Series Classification. IEEE Access. 2018, vol. 6,
pp. 1662–1669. ISSN 2169-3536. Available from DOI: 10.1109/access.2017.2779939.

6. DAU, Hoang Anh; BAGNALL, Anthony; KAMGAR, Kaveh; YEH, Chin-Chia Michael;
ZHU, Yan; GHARGHABI, Shaghayegh; RATANAMAHATANA, Chotirat Ann; KEOGH,
Eamonn. The UCR Time Series Archive. 2018. Available from arXiv: 1810 . 07758

[cs.LG].

7. BAGNALL, Anthony; LINES, Jason; BOSTROM, Aaron; LARGE, James; KEOGH,
Eamonn. The great time series classification bake off: a review and experimental eval-
uation of recent algorithmic advances. Data Mining and Knowledge Discovery. 2016-11,
vol. 31, no. 3, pp. 606–660. Available from DOI: 10.1007/s10618-016-0483-9.

8. FAWAZ, Hassan Ismail; FORESTIER, Germain; WEBER, Jonathan; IDOUMGHAR,
Lhassane; MULLER, Pierre-Alain. Deep learning for time series classification: a review.
Data Mining and Knowledge Discovery. 2019-03, vol. 33, no. 4, pp. 917–963. Available
from DOI: 10.1007/s10618-019-00619-1.

66

https://doi.org/10.1515/astro-2017-0332
https://doi.org/10.1109/Informatics47936.2019.9119283
https://doi.org/10.1109/ICDM.2014.27
https://doi.org/10.1109/access.2017.2779939
https://arxiv.org/abs/1810.07758
https://arxiv.org/abs/1810.07758
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-019-00619-1

9. SAKOE, H.; CHIBA, S. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1978-02,
vol. 26, no. 1, pp. 43–49. ISSN 0096-3518. Available from DOI: 10.1109/TASSP.1978.

1163055.

10. SCHÄFER, Patrick. The BOSS is concerned with time series classification in the presence
of noise. Data Mining and Knowledge Discovery. 2014-09, vol. 29, no. 6, pp. 1505–1530.
Available from DOI: 10.1007/s10618-014-0377-7.

11. SART, Doruk; MUEEN, Abdullah; NAJJAR, Walid; KEOGH, Eamonn; NIENNAT-
TRAKUL, Vit. Accelerating Dynamic Time Warping Subsequence Search with GPUs
and FPGAs. In: 2010 IEEE International Conference on Data Mining. 2010, pp. 1001–
1006. Available from DOI: 10.1109/ICDM.2010.21.

12. ELMAN, Jeffrey L. Finding Structure in Time. Cognitive Science. 1990-03, vol. 14, no.
2, pp. 179–211. Available from DOI: 10.1207/s15516709cog1402_1.

13. BAGNALL, A.; LINES, J.; HILLS, J.; BOSTROM, A. Time-Series Classification with
COTE: The Collective of Transformation-Based Ensembles. IEEE Transactions on Knowl-
edge and Data Engineering. 2015-09, vol. 27, no. 9, pp. 2522–2535. ISSN 2326-3865.
Available from DOI: 10.1109/TKDE.2015.2416723.

14. ŠKODA, P.; PODSZTAVEK, O.; TVRDIÉK, P. Active deep learning method for the
discovery of objects of interest in large spectroscopic surveys. Astronomy & Astrophysics.
2020-11, vol. 643, pp. A122. Available from DOI: 10.1051/0004-6361/201936090.

15. LECUN, Yann; BENGIO, Y. Convolutional Networks for Images, Speech, and Time-
Series. In: 1995-01.

16. CUI, Zhicheng; CHEN, Wenlin; CHEN, Yixin. Multi-Scale Convolutional Neural Net-
works for Time Series Classification. 2016. Available from arXiv: 1603.06995 [cs.CV].

17. RUMELHART, David E. chapter Parallel Distributed Processing, Exploration in the
Microstructure of Cognition. In: 1986.

18. SAHA, Rohan. Comparing Classification Models on Kepler Data. 2019. Available from
DOI: 10.13140/RG.2.2.11232.43523.

19. LECUN, Yann; BOSER, Bernhard E.; DENKER, John S.; HENDERSON, Donnie;
HOWARD, R. E.; HUBBARD, Wayne E.; JACKEL, Lawrence D. Handwritten Digit
Recognition with a Back-Propagation Network. In: TOURETZKY, D. S. (ed.). Ad-
vances in Neural Information Processing Systems 2. Morgan-Kaufmann, 1990, pp. 396–
404. Available from DOI: 10.5555/109230.109279.

67

https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1109/ICDM.2010.21
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.1051/0004-6361/201936090
https://arxiv.org/abs/1603.06995
https://doi.org/10.13140/RG.2.2.11232.43523
https://doi.org/10.5555/109230.109279

20. LECUN, Yann; HAFFNER, Patrick; BOTTOU, Léon; BENGIO, Yoshua. Object Recog-
nition with Gradient-Based Learning. In: Shape, Contour and Grouping in Computer
Vision. Springer Berlin Heidelberg, 1999, pp. 319–345. Available from DOI: 10.1007/3-

540-46805-6_19.

21. FUKUSHIMA, Kunihiko. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics.
1980-04, vol. 36, no. 4, pp. 193–202. Available from DOI: 10.1007/bf00344251.

22. SUTSKEVER, Ilya; VINYALS, Oriol; LE, Quoc. Sequence to Sequence Learning with
Neural Networks. Advances in Neural Information Processing Systems. 2014-09, vol. 4.
Available from DOI: 10.5555/2969033.2969173.

23. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural Machine Transla-
tion by Jointly Learning to Align and Translate. 2014. Available from arXiv: 1409.0473

[cs.CL].

24. GAMBOA, John Cristian Borges. Deep Learning for Time-Series Analysis. 2017. Avail-
able from arXiv: 1701.01887 [cs.LG].

25. WANG, Zhiguang; YAN, Weizhong; OATES, Tim. Time Series Classification from Scratch
with Deep Neural Networks: A Strong Baseline. 2016. Available from DOI: 10.1109/

IJCNN.2017.7966039.

26. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual Learning
for Image Recognition. 2015. Available from DOI: 10.1109/CVPR.2016.90.

27. SMIRNOV, Denis; NGUIFO, Engelbert Mephu. Time Series Classification with Recur-
rent Neural Networks. In: 2018.

28. HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,
Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. 1991.

29. RUSSAKOVSKY, Olga et al. ImageNet Large Scale Visual Recognition Challenge. 2014.
Available from DOI: 10.1007/s11263-015-0816-y.

30. WILLIAMS, R. J.; ZIPSER, D. A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks. Neural Computation. 1989-06, vol. 1, no. 2, pp. 270–280.
ISSN 0899-7667. Available from DOI: 10.1162/neco.1989.1.2.270.

31. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term Memory. Neural
Computation. 1997-11, vol. 9, no. 8, pp. 1735–1780. Available from DOI: 10.1162/neco.

1997.9.8.1735.

32. HINNERS, Trisha A.; TAT, Kevin; THORP, Rachel. Machine Learning Techniques for
Stellar Light Curve Classification. The Astronomical Journal. 2018-06, vol. 156, no. 1,
pp. 7. ISSN 1538-3881. Available from DOI: 10.3847/1538-3881/aac16d.

68

https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/bf00344251
https://doi.org/10.5555/2969033.2969173
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1701.01887
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3847/1538-3881/aac16d

33. GILES, C. Lee; LAWRENCE, Steve; TSOI, Ah Chung. Machine Learning. 2001, vol. 44,
no. 1/2, pp. 161–183. Available from DOI: 10.1023/a:1010884214864.

34. E., VAN CLEVE J.; A., CALDWELL D. Kepler: A Search for Terrestrial Planets, KSCI-
19033-002 [Kepler Science Document]. 2016.

35. BASS, Gideon; BORNE, Kirk. Supervised Ensemble Classification of Kepler Variable
Stars. Monthly Notices of the Royal Astronomical Society. 2016-04, vol. 459, pp. stw810.
Available from DOI: 10.1093/mnras/stw810.

36. HOSENIE, Zafiirah; LYON, Robert J; STAPPERS, Benjamin W; MOOTOOVALOO,
Arrykrishna. Comparing Multiclass, Binary, and Hierarchical Machine Learning Clas-
sification schemes for variable stars. Monthly Notices of the Royal Astronomical So-
ciety. 2019-07, vol. 488, no. 4, pp. 4858–4872. ISSN 1365-2966. Available from DOI:
10.1093/mnras/stz1999.

37. SAMUS’, N. N.; KAZAROVETS, E. V.; DURLEVICH, O. V.; KIREEVA, N. N.; PAS-
TUKHOVA, E. N. General catalogue of variable stars: Version GCVS 5.1. Astronomy Re-
ports. 2017-01, vol. 61, no. 1, pp. 80–88. Available from DOI: 10.1134/s1063772917010085.

38. ARMSTRONG, D. J.; OSBORN, H. P.; BROWN, D. J. A.; KIRK, J.; LAM, K. W. F.;
POLLACCO, D. L.; SPAKE, J.; WALKER, S. R. K2 Variable Catalogue I: A Cat-
alogue of Variable Stars from K2 Field 0. 2014. Available from arXiv: 1411 . 6830

[astro-ph.SR].

39. ARMSTRONG, D. J.; KIRK, J.; LAM, K. W. F.; MCCORMAC, J.; WALKER, S. R.;
BROWN, D. J. A.; OSBORN, H. P.; POLLACCO, D. L.; SPAKE, J. K2 Variable Cata-
logue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0. Astronomy & Astro-
physics. 2015-06, vol. 579, pp. A19. ISSN 1432-0746. Available from DOI: 10.1051/0004-

6361/201525889.

40. CLEVE, Jeffrey Edward van et al. Kepler: A Search for Terrestrial Planets - Kepler Data
Characterization Handbook. In: 2016.

41. JENKINS, Jon M. Kepler Data Processing Handbook: Overview of the Science Operations
Center [Kepler Science Document]. 2017-01.

42. VANDERBURG, Andrew. K2 Extracted Lightcurves ("K2SFF"). STScI/MAST, 2015.
Available from DOI: 10.17909/T9BC75.

43. SAMMON, J.W. A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions
on Computers. 1969-05, vol. C-18, no. 5, pp. 401–409. Available from DOI: 10.1109/t-

c.1969.222678.

69

https://doi.org/10.1023/a:1010884214864
https://doi.org/10.1093/mnras/stw810
https://doi.org/10.1093/mnras/stz1999
https://doi.org/10.1134/s1063772917010085
https://arxiv.org/abs/1411.6830
https://arxiv.org/abs/1411.6830
https://doi.org/10.1051/0004-6361/201525889
https://doi.org/10.1051/0004-6361/201525889
https://doi.org/10.17909/T9BC75
https://doi.org/10.1109/t-c.1969.222678
https://doi.org/10.1109/t-c.1969.222678

44. BATISTA, Gustavo E. A. P. A.; KEOGH, Eamonn J.; TATAW, Oben Moses; SOUZA,
Vinícius M. A. de. CID: an efficient complexity-invariant distance for time series. Data
Mining and Knowledge Discovery. 2013-04, vol. 28, no. 3, pp. 634–669. Available from
DOI: 10.1007/s10618-013-0312-3.

45. SCHREIBER, Thomas; SCHMITZ, Andreas. Discrimination power of measures for non-
linearity in a time series. Physical Review E. 1997-05, vol. 55, no. 5, pp. 5443–5447.
Available from DOI: 10.1103/physreve.55.5443.

46. BOX, George E. P.; JENKINS, Gwilym M.; REINSEL, Gregory C. Time Series Analysis.
Wiley, 2008-06. Available from DOI: 10.1002/9781118619193.

47. MAATEN, Laurens van der; HINTON, Geoffrey. Visualizing Data using t-SNE. Journal
of Machine Learning Research. 2008, vol. 9, pp. 2579–2605. Available also from: http:

//www.jmlr.org/papers/v9/vandermaaten08a.html.

48. IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. Available from DOI: 10.5555/

3045118.3045167.

49. KENNEDY, J.; EBERHART, R. Particle swarm optimization. In: Proceedings of ICNN’95
- International Conference on Neural Networks. 1995-11, vol. 4, 1942–1948 vol.4. ISSN
null. Available from DOI: 10.1109/ICNN.1995.488968.

50. TALBI, El-Ghazali. Optimization of deep neural networks: a survey and unified taxon-
omy. 2020-06. Available also from: https://hal.inria.fr/hal-02570804. working
paper or preprint.

70

https://doi.org/10.1007/s10618-013-0312-3
https://doi.org/10.1103/physreve.55.5443
https://doi.org/10.1002/9781118619193
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.1109/ICNN.1995.488968
https://hal.inria.fr/hal-02570804

Appendix A

List of Publications

A.1 Author’s Bibliography Related to the Thesis

[1] D. Andrešič, P. Šaloun and I. Anagnostopoulos, "Efficient big data analysis on a sin-
gle machine using apache spark and self-organizing map libraries," 2017 12th Interna-
tional Workshop on Semantic and Social Media Adaptation and Personalization (SMAP),
Bratislava, 2017, pp. 1-5. (SJR: 0.194)

[2] D. Andrešič, P. Šaloun, "Efektivní analýza velkých dat pomocí Apache Spark a
samoučících neuronových sítí na jediném počítači," Data a znalosti 2017, Plzeň, 2017.

[3] D. Andrešič, P. Šaloun, "Effective Big Data Analysis on single-node Apache Spark with
Self-Organizing Map Libraries," WOFEX 2017, Ostrava, 2017.

[4] D. Andrešič, P. Šaloun, B. Pečíková, "Strojové učení při analýze rozsáhlých astronomick-
ých datasetů s časovými řadami," Data a znalosti & WIKT 2018, Brno, 2018.

[5] D. Andrešič, P. Šaloun, B. Pečíková, "Large Astronomical Time Series Pre-processing
and Visualization for Classification using Artificial Neural Networks," 2019 IEEE 15th
International Scientific Conference on Informatics, Poprad, 2019. (SJR: 0.157)

[6] D. Andrešič, P. Šaloun, B. Pečíková, "Large Astronomical Time Series Pre-processing
for Classification Using Artificial Neural Networks," 2021 In: J. Paralič, P. Sinčák, P.
Hartono, & V. Mařík (Eds.), Advances in Intelligent Systems and Computing. Springer
International Publishing. https://doi.org/10.1007/978-3-030-63872-6 (SJR: 0.184; Q3)

[7] D. Andrešič, P. Šaloun, B. Pečíková, "Large Astronomical Time Series Pre-processing
for Classification Using Artificial Neural Networks," 2021 In: Zelinka I., Brescia M.,
Baron D. (eds) Intelligent Astrophysics. Emergence, Complexity and Computation, vol
39. Springer, Cham. https://doi.org/10.1007/978-3-030-65867-0_12

71

A.2 Author’s Bibliography Unrelated to the Thesis

[1] Šaloun, Petr & Andrešič, David & Skoda, Petr & Zelinka, Ivan. (2016). Time
Series, Collaboration and Large Data Sets Enhancements of SPLAT-VO. 111-116.
10.1109SIMS.2016.20. (SJR: 0.129)

[2] D. Andrešič, A. Ondrejka, P. Šaloun and R. Cepláková, "Webový portál pro identifikaci
poruchy osobnosti z psaného textu," 12th Workshop on Intelligent and Knowledge ori-
ented Technologies 2017, Košice, 2017.

[3] P. Šaloun, M. Malčik, D. Andrešič and D. Nespěšný, "Using eyetracking to analyse how
flowcharts are understood," 2017 IEEE 14th International Scientific Conference on Infor-
matics, Poprad, 2017, pp. 394-399. (SJR: 0.157)

[4] D. Andrešič, P. Šaloun, B. Cigánková, "Crowd Sourcing as an Improvement of N-Grams
Text Document Classification Algorithm," WOFEX 2018, Ostrava, 2018.

[5] D. Andrešič, P. Šaloun, B. Cigánková, "Vylepšení klasifikace textových dokumentů al-
goritmem N-Grams pomocí crowdsourcingu," Data a znalosti & WIKT 2019, Košice,
2019.

[6] P. Šaloun, D. Andrešič, B. Cigánková and I. Anagnostopoulos, "Crowd Sourcing as an
Improvement of N-Grams Text Document Classification Algorithm," 2020 15th Interna-
tional Workshop on Semantic and Social Media Adaptation and Personalization (SMA,
2020, pp. 1-6, doi: 10.1109/SMAP49528.2020.9248454. (SJR: 0.194)

[7] Andrešič D., Šaloun P., Šaloun P., Mališů P., Dragon T., Vagner L. Umělá inteligence při
výuce programování v době Průmyslu 4.0. In Malčík M. (Eds.) Vzdělávání ve Společnosti
4.0. 2020.

72

Appendix B

Author’s Curriculum Vitae

B.1 Education

VŠB - Technical University of Ostrava

Ostrava, Czech Republic

Doctoral degree, Faculty of Electrical Engineering and Computer Science
09/2016 - now

– Specialization: Computer Science, Communication Technology and Applied Math-
ematics

– Thesis topic: Big Data Processing by Means of Unconventional Algorithm

– Case study: Astronomical time series classification by means of deep artificial
neural network (multi-layer perceptron) with topology established by evolutionary
algorithm

Master’s degree, Faculty of Electrical Engineering and Computer Science
09/2013 - 06/2016

– Specialization: Information and Communication Technology

– Thesis topic: Programme for the Post-processing and Analysis of Complex Large-
Scale Spectroscopic Surveys Using the Virtual Observatory Protocols

Bachelor’s degree, Faculty of Electrical Engineering and Computer Science
09/2010 - 06/2013

– Specialization: Information and Communication Technology

73

– Thesis topic: Programme for Interactive Spectra Analysis in Virtual Observatory
Environment

Střední průmyslová škola elektrotechniky a informatiky, Ostrava, příspěvková or-
ganizace

Ostrava - Moravská Ostrava, Czech Republic

Graduation Exam, Low-current Electrical
09/2003 - 06/2007

– Specialization: Microprocessor Technology, Radioelectronics

B.2 Work Experience

Palacký University Olomouc

Olomouc, Czech Republic

2021 - now

– Cooperation on education for foreign students ("Python for everyday use")

VŠB - Technical University of Ostrava

Ostrava, Czech Republic

2019 - now

– Cooperation on TAČR project (CMP rádce) - creating a text document classifier
that utilizes n-grams and TF/IDF approach for statistical classification

CertiCon a. s.

Prague, Czech Republic

Senior Software Engineer
2016 - now

– Development of diagnostic software for automotive area

– Development of ground/ground communication system for airports

– Work in SCRUM as a part of international teams with English on a daily basis

74

– Experience as a technical leader

– Java desktop and network development

– Experience with a properietary cloud platform

– Active in internal Java training group

– Java, Eclipse Equinox, Akka, Docker, Apache Maven, OSGi, Jenkins

Etnetera a. s.

Prague, Czech Republic

Java Developer
2013 - 2016

– Development of an Internal System for a Large Automotive Corporation

– Development Time Estimatation

– Implementation Analysis and Design of Individual System Modules

– Responsibility for Project Documentation

– Responsibility for Project Maintain, Assembly and Deployment

– Java, PL/SQL, Hibernate, Apache Wicket, Spring, UML, Maven, Apache Tomcat,
IBM WebSphere etc.

Astronomical Institute of the Czech Academy of Sciences

Ondřejov, Czech Republic

Java Programmer and Development Coordinator
2016

– Employment Agreement

– Enhancement of Spectral Analysis Tool and its Development Process

– Continuous Integration (Jenkins CI, GitHub Integration)

– Suggestions and Realization of Project Development Process Enhancements

– Active Communication in English within International Team

– Linux Server Administration (+ Docker, Jenkins CI, Apache2 as Reverse Proxy)

– Java, Ant, Jenkins CI, MediaWiki, Docker, Linux, Apache, GitHub

75

Astronomical Institute of the Czech Academy of Sciences

Ondřejov, Czech Republic

Java Programmer
2015

– Employment Agreement

– Enhancement of Spectral Analysis Tool Behind the Scope of Diploma Thesis

– Continuous Integration - Preparing Docker Image with Jenkins CI

– Suggestions of Project Development Process Enhancements (Usage of Github Is-
sues, MediWiki etc.)

– Active Communication in English within International Team

– Java, Ant

NetDirect s.r.o.

Ostrava, Czech Republic

Programmer
2008 - 2013

– Development of E-commerce Solutions

– Development Time Estimatation

– Complete Project Analysis

– C#, .NET, XSLT, T-SQL, AJAX, jQuery, etc.

B.3 Certificates

Základní studijní program Machine Learning College

Oracle Certified Associate, Java SE 8 Programmer Oracle

Introduction to Big Data Coursera Course Certificates

Big Data Modeling and Management Systems Coursera Course Certificates

Big Data Integration and Processing Coursera Course Certificates

Machine Learning With Big Data Coursera Course Certificates

76

B.4 Computer skills

Programming languages Java (actively), Python (actively), C# (formerly), SQL (actively
couple of years ago), C/C++, PHP, VBScript, Haskell, assembler

Databases MS SQL, Oracle, H2, MySQL, PostgreSQL

Web JSON, XHTML, JavaScript, AJAX, CSS, HTML5,

Frameworks Apache Wicket, Hibernate, OSGi, Spring, .NET, jQuery

Operating systems GNU/Linux (all mainstream distros, Linux From Scratch), Microsoft
Windows

Development tools Eclipse, Intellij Idea, MS Visual Studio, NetBeans, Maven, Ant, Jenk-
ins CI

Networking and system administration Basic Linux Gateway and Server (Iptables, NAT,
Apache, Tomcat, PHP, MySQL, PostgreSQL, Samba), Docker, IBM WebSphere

Analytical and documentation tools UML, Basic Design Patterns, LATEX, JavaDoc

B.5 Language Skills

English advanced

Czech native speaker

77

	List of symbols and abbreviations
	Introduction
	Types of Stars Variability
	Goals

	State of the Art
	Time Series Classification Methods
	Other Related Work

	Data Sets
	BRITE
	Kepler
	Kepler K2

	Artificial Neural Networks Approaches
	Data Pre-processing

	Binary Classification Experiments and Results
	BRITE Data Set
	Kepler K2 Data Set
	Kepler Data Set

	Multi-class Classification Experiments and Results
	Data Pre-processing
	Experiments

	Case Study: Detection of Nova Cas 2021
	Possible Practical Use

	Conclusions
	Bibliography
	List of Publications
	Author's Bibliography Related to the Thesis
	Bibliography
	Author's Bibliography Unrelated to the Thesis

	Bibliography
	Author's Curriculum Vitae
	Education
	Work Experience
	Certificates
	Computer skills
	Language Skills

