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ABSTRACT This study focuses on non-invasive fetal electrocardiogram extraction based on a novel hybrid
method, which combines the advantages of non-adaptive and adaptive approaches for non-invasive fetal
electrocardiogram morphological analysis. Besides estimating fetal heart rate, which is the main parameter
used in the clinical practice, this study provides non-invasive ST segment analysis on data from Abdominal
and Direct Fetal Electrocardiogram Database consisting of simultaneous traditional - gold standard invasive
fetal scalp electrode and non-invasive fetal electrocardiogram recorded during delivery. This innovative
approach utilizing the combination of independent component analysis and recursive least squares algorithms
has the potential to extract valuable information from non-invasive fetal electrocardiogram in order to
identify eventual sign of fetal distress. This was a prospective observational study of non-invasive fetal
electrocardiogram, using 4 abdominally sited electrodes, against the traditional fetal scalp electrode on
8 patients. In terms of fetal heart rate estimation, the accuracy was high for all 8 tested patients with average
value equaled 0.20 beats per minute and average value of 1.96 standard deviation equaled 5.80 beats per
minute. In 7 patients, it was possible to perform the ST segment analysis with high accuracy in determining
T/QRS in comparison with the reference fetal scalp electrode signal with average values and 1.96 standard
deviation equaled 0.008 and 0.031 respectively. This study thus demonstrates that ST segment analysis is
feasible using non-invasive fECG using the proposed hybrid method.

INDEX TERMS Non-invasive fetal electrocardiography (NI-fECG), fetal heart rate (fHR), ST segment
analysis (ST-analysis), hybrid method (HM), independent component analysis and recursive least squares
(ICA-RLS), electronic fetal monitoring (EFM), fetal distress (FD), fetal scalp electrode (FSE).

I. INTRODUCTION

Electronic fetal monitoring (EFM) is an essential part of
modern obstetrics, serving mainly to diagnose fetal dis-
tress (FD). Conventional EFM methods, such as cardiotocog-
raphy (CTG), have been used over the last decades in clinical
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practice mainly for continuous fetal heart rate (fHR) moni-
toring during labor but also for the intermittent assessment
during pregnancy [1], [2]. However, several studies [3]-[5]
show that CTG is not sufficiently accurate and conclusive
and is burdened with a large inter- and extra-observer dis-
agreement [6], [7]. This is demonstrably one of the reasons
for inappropriate diagnosis of fetal distress and consequently,
high number of unnecessarily performed caesarean sections.
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For these reasons, physicians are demanding conceptually
new solutions for non-invasive diagnostic methods [8].

Fetal electrocardiography (fECG) is among the most
promising EFM methods. The main reason is that the fECG
signal carries valuable information as changes in the mor-
phology of the fECG waveform which are associated with
dysfunction induced by FD [9]-[11]. Therefore, ST segment
analysis of the fECG has been developed to provide objective
information about the fetal condition as an adjunct to fHR
monitoring [1], [12]. Two large randomized clinical trials
showed a significantly lower rate of metabolic acidosis at
birth and fewer operative deliveries for FD when CTG and
ST analysis were used simultaneously [13], [14]. Metabolic
dysfunction induced by FD might be reflected in fECG wave-
form as ST segment changes, such as an increase in T wave,
which can be quantified by the ratio of the T wave to the QRS
amplitude (T/QRS ratio) [15]. Simultaneous monitoring of
fHR and ST segment analysis can thus help to reduce uncer-
tainty of FD diagnosis and thus a number of unnecessarily
performed caesareans for patients with suspected FD [1].

In non-invasive fetal electrocardiography (NI-fECG) based
monitoring, fetal health state is assessed using the informa-
tion extracted from the electrical potentials produced by the
fetal heart, which are recorded by means of electrodes placed
on the maternal abdomen. However, in these recordings,
fetal electrocardiogram (fECG) is accompanied by mater-
nal electrocardiogram (mECG) and a significant amount of
noise [16]. Unfortunately, the magnitude of the fetal compo-
nent is low compared to maternal one. Moreover, the signals
overlap in time as well as frequency domain making the
accurate extraction or morphological analysis of the fECG
waveform a challenging task [16]—[18]. The resulting quality
of fECG extraction has a major impact on both the accuracy of
fHR estimation and extraction of the PQRST waves. In this
study, a novel method of ST segment analysis is presented,
which makes also possible further morphological analysis of
other fECG features, such as QT interval [19]. Abnormalities
in the fetal QT interval indicate electrophysiological changes
in the myocardium. Long QT syndrome is a condition in
which repolarization of the heart is affected. It results in an
increased risk of an arrhythmia which can result in sudden
infant death syndrome and fetal hypoxia [19]-[22].

A number of NI-fECG extraction methods have been
introduced in the past, including principal component
analysis (PCA) [23], [24], independent component analy-
sis (ICA) [23], [25], wavelet transform (WT) [26], adap-
tive neuro-fuzzy inference system (ANFIS) [27] or least
mean squares (LMS) and recursive least squares (RLS)
algorithms [28]. Recent studies [29]-[32] have shown that
hybrid methods (HM), which combine the advantages of
non-adaptive and adaptive approach to fECG extraction,
achieve greater accuracy in fECG extraction than when using
the methods individually. However, most algorithms pre-
sented in these studies as well as the previous research of
the authors’ team presented in [23], [28]-[30], were able to
obtain only a small portion of the large information potential
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of NI-fECG; their main aim was to determine fetal R positions
and use them to estimate the fHR.

Recent studies [12], [33], [34] show the possibility
to extract additional clinically relevant information from
NI-fECG. However, to obtain a fECG signal of a sufficient
quality to perform morphological analysis, it is necessary
to select extraction methods more carefully so that the pro-
cess does not deform the signal’s morphology. In our pre-
vious works [29], [30], we achieved the best results using
the ICA-RLS-WT algorithm, combining three different algo-
rithms (ICA, RLS, and WT). However, in the last step the
WT was applied to highlight the R peaks for more accurate
fHR estimation which caused distortion of the fECG signal
morphology and thus loss of important diagnostic informa-
tion. For this reason, the study introduced herein performs
the ST analysis on NI-fECG signals extracted with a help of
ICA-RLS algorithm comprising the ICA and RLS methods.

In addition to the selection of suitable extraction method,
it is necessary to pay attention to algorithm settings. Authors
of [35] focus on optimization approaches for different filter-
ing methods, however, their research relates mainly to the
R-R interval detection. Such setting is thus applicable for
further morphological analysis and will be a subject of our
research.

Finally, it is necessary to choose the appropriate database
to test the method’s efficacy. Unfortunately, lack of publicly
available databases with high quality abdominal recordings
makes the NI-fECG research difficult. Current databases
provide recordings that are either of insufficient length or
quality [36]. Moreover, each of the database differs in the
electrode placement and acquisition system configuration,
as the location and number of electrodes is not standardized
as is the case with classical ECG [36]. The effect of elec-
trode placement and data acquisition quality on the efficacy
of fECG extraction have been demonstrated in [28], [37].
Thus, to ensure accurate morphological analysis, the record-
ings should not contain a significant amount of noise, the
fetal/maternal component ratio should be high enough, and
the polarity of the signals should be unified.

Some authors [38] introduced synthetic signal generators
to produce data for their experiments, however, the results
obtained using artificial test signals often differ from those
performed on real signals. In this study, the Abdominal and
Direct Fetal ECG Database (ADFECGDB) [39], [40] was
selected to test the proposed HM. This database is suitable
for the objectives established since it includes both abdominal
and reference scalp signals, recorded invasively during the
labor by means of fetal scalp electrode. The reference signal
can be considered as a gold standard because it allows us to
obtain reference PQRST waves, determine T/QRS ratio and
thus evaluate the accuracy of the NI- ST-analysis.

Il. STATE OF THE ART

Morphological analysis of the fECG signal, acquired
by internal monitoring, can be performed by means of
STAN® (Neoventa Medical AB, Mélndal, Sweden). STAN
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FIGURE 1. Example of the STAN monitor output: (a) fHR trace, (b) uterine
contractions (toco), (c) T/QRS trace, and (d) example of the averaged
T/QRS.

is an analysis tool for fetal monitoring, which combines
ST-Analysis and CTG, providing extended and more accurate
information about the fetus during labor than the CTG alone.
An example of the STAN monitor output is shown in Fig. 1.
The fECG is an invasive procedure in which the fHR is
continuously calculated using the detected fQRS complexes,
and ST segment analysis is performed by monitoring changes
in the T/QRS ratio [36]. Nevertheless, the fECG can be
performed only during the labor (after rupture of membranes)
since it requires the FSE to be attached on the fetal head
or hip decreasing comfort of the patient. The invasive fetal
monitoring is also warranted in several risks that include
infection or bruising of the fetus [41]. For these reasons, the
benefits of this method are often questioned [42], [43].

A. MORPHOLOGICAL ANALYSIS

Although the NI-fECG research has been significantly evolv-
ing in the past decade and novel extraction algorithms are
constantly emerging, the efficiency of the filtration process
remains assessed solely on the basis of fHR estimates [36].
Most of the contributions claim to obtain excellent results in
fHR determination, however, this evaluation does not reflect
the extraction efficiency in terms of signal morphology. Nev-
ertheless, several attempts were made to extract the morpho-
logical features from the NI-FECG [44]. Their results can be
summarized as follows:

o In [1], the authors reviewed the development of a
three-stage methodology. In the first stage, the fHR was
extracted from the abdominal ECG signals (aECGs)
using a nonlinear analysis. In the second stage, a blind
source separation technique was applied to obtain the
fECG. Finally, monitoring of the fetus was implemented
using features extracted from both the fHR and fECG
morphology (the T/QRS ratio and the fetal ST wave-
forms characteristics). Synthetic recordings were used
for the experiments.

e The authors of [45] used an algorithm based on
the optimal-shrinkage under the wave-shape manifold
model to extract fECG. Both fHR and signal morphol-
ogy (PR, QT and ST intervals) were analyzed during the
experiments on a dataset including real and simulated
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signals indicating the physiological and pathological
condition of fetuses (e.g. fetal arrhythmia).

In study presented in [46], the authors dealt with the
detection of fetal arrhythmias. The type of arrhythmia
was determined based on the estimated P-wave mor-
phology. Blocked normal P wave can be associated with
the presence of second-degree AV block. The analysis
was performed on 500 real recordings.

The authors of the study introduced in [44] tested three
classes of NI-FECG extraction algorithms: blind source
separation, template subtraction and adaptive methods.
In addition to the detection of fQRS complexes, the
problem of determination of QT interval length and
T/QRS ratio was considered. The experiments were per-
formed only on synthetic data.

In a study presented in [47], the authors introduced
Bayesian filtering framework based on the extended
Kalman filter. Synthetic data was used for the evaluation
based on determining the length of the QT interval.

In [48] the fECG signal was extracted using the Kalman
filter framework. The fHR estimation and ST segment
analysis were performed based on real recordings.

In [20] the authors performed QT interval analysis on
real recordings using model-based estimation method.
First, R peaks were detected based on threshold value
and RR intervals were determined. Subsequently, the
interval, in which the T wave should occur, was cal-
culated. The end of the T wave was calculated as the
median of this interval. The beginnings of the Q peaks
were determined manually. The difference between QT
intervals obtained by means of reference methods (scalp
fECG and Doppler Ultrasound) was less than 5%. The
effect of QT prolongation in bradycardia and long QT
syndrome has been demonstrated.

In [19], the authors performed QT interval analysis using
a STAN S21 device on 68 fetuses that showed signs
of metabolic acidosis at birth (pH < 7.05). Approx-
imately the same number of patients was used as a
control group. The measurements were taken at the
beginning of the recording (on the fHR baseline), during
decelerations and at the end of the recording. The QT
parameter was calculated by Bazett’s formula and the
determined intervals were compared using Wilcoxon
test. The results confirmed that there is a significant
shortening of the QT interval during severe intrapartum
hypoxia and metabolic acidosis and thus proved that
intrapartum QT interval monitoring may provide addi-
tional information on the condition of the fetus.

Fetal QT interval analysis on non-invasive abdominal
recordings was also part of the Challenge 2013 call [49].
For this purpose, a dataset was created containing
recordings from different sources, with variable gesta-
tional age and electrode placement. The accuracy of
the fetal QT interval estimation was evaluated using the
root mean square difference between the reference and
the calculated QT intervals. In the reference recordings,
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fetal QT intervals were determined by an expert [49].
The best results were achieved by authors of [50].

The results of all these studies indicate that morphological
analysis using NI-fECG is possible and provides results as
obtained by invasive variant of fECG. However, quality aECG
recordings must be used, filtering methods and settings that
do not cause signal distortion must be appropriately selected,
and suitable methods must be chosen for the correct detection
of individual waves and oscillations in the fECG signal.

B. METHODS FOR fECG SIGNAL EXTRACTION

The challenge in processing and analyzing fECG is to extract
the high quality fetal component from aECG signals. In the
past, many authors [51]-[56] designed and tested methods
that could suppress the interference contained in the aECG
signal (especially the mECG component) and highlight the
fECG component as much as possible.

o Wavelet transform is one of the most commonly used
methods for fECG extraction, mainly due to the possi-
bility of signal analysis in the time-frequency domain.
To obtain optimal results, it is necessary to pay attention
to the system setting, namely to the selection of the
mother wavelet, its scale, and the number of decom-
position levels. For the purposes of fECG extraction,
the method was tested in [51], [57], where Daubechies
wavelet was selected; in [58], the Symlet wavelet was
found as suitable for fECG extraction; in [59] the authors
concluded the Biorthogonal wavelet as the most effec-
tive wavelet base type for the fECG extraction.

o Empirical mode decomposition based methods - the
principle of EMD based methods is based on the decom-
position of the input signal into simpler signals, which
are called intrinsic mode functions (IMFs). By select-
ing one or more IMFs and summing them, it is pos-
sible to create the filtered fECG signal. The basic
EMD method achieved a relatively high-quality extrac-
tion of fECG in the [60], [61]. The extraction was
further improved by using improved variants of this
method, such as ensemble empirical mode decompo-
sition (EEMD) [60], [61], complementary ensemble
empirical mode decomposition (CEEMD) [60], [61],
or complementary ensemble empirical mode decompo-
sition with adaptive noise (CEEMDAN) [62].

o Kalman filtering - this method estimates the useful sig-
nal from noisy data based on the most recently mea-
sured data, the system model, but also using data on the
previous state of the system. The disadvantage of the
basic version of the filter is that it can be used only for
linear systems. For practical use, an extended Kalman
filter (EKF) and extended Kalman smoother (EKS) have
been developed, which can also be used for nonlinear
systems. Both filter variants, EKF and EKS, demon-
strated their effectiveness in mECG component sup-
pression and fECG signal extraction in [53], [63], [64]
and [54], respectively.
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o Artificial neural networks are used for parallel data

processing based on mimicking the behavior of bio-
logical structures. The use of convolutional neural net-
works (CNN) to remove noise from the fECG signal has
been tested in [65] with very good results. High-quality
fECG filtration was also achieved in [66], where
dynamic neural networks (DNN) with FIR synapses
were tested and analyzed. The adaptive neuro-fuzzy
inference system (ANFIS), combining neural networks
and fuzzy logic principles, was tested in [67]. The echo
state networks (ESN) method was used for fECG filter-
ing in [68] and achieved very high quality results.
Blind source separation methods - these methods have
received a great deal of attention in the past, as they
have been successful in fECG extraction. The princi-
ple is based on the decomposition of the signal mix-
ture (aECG) into the original source components (fECG,
mECG, noise). These methods assume that the sources
are statistically independent. The basic representatives
include the ICA [23], [55], [69]-[72], PCA [23], [73]
or the singular value decomposition (SVD) [74], [75].
From this group of methods, the ICA [23] method
proved to be the most suitable for fECG extraction.
Several extended variants of ICA have been intro-
duced, such as joint approximate diagonalization of
eigen-matrices (JADE) [76], [77], the very efficient
FastICA algorithm [78]-[80] or the multidimensional
ICA (MICA) method [81]. A comparison of the per-
formance of several ICA based methods was performed
in [82]. The authors analyzed the FastICA algorithm,
JADE, the efficient version of the FastICA (EFICA)
and the second order blind identification (SOBI), where
EFICA proved to be most efficient for fECG extraction.
Similarly, in [83], the authors compared different ICA
based algorithms: FastICA based on kurtosis, FastICA
based on negentropy and JADE method. The most accu-
rate extraction of fECG was obtained using the JADE
method, but the FastICA method was able to extract
fECG faster. The resulting performance of ICA based
algorithms is affected by the number of input signals.
At the same time, the higher the number of input sig-
nals, the more accurately it is possible to obtain source
signals. Most of the presented ICA based methods are
multichannel, but there is also a single-channel variant
presented in [45], [84], achieving very promising results
in the extraction of fECG. Nevertheless, a larger number
of input signals is associated with greater computational
complexity and lower comfort for the pregnant subject
when recorded.

o Adaptive filters - these filters are based on minimizing

the error signal by automatically adjusting the filter
coefficients. The error signal is defined as the difference
between the desired output and the actual output of
the algorithm. For fECG extraction, the mECG compo-
nent (MECG), which can be recorded from the mother’s
chest or extracted from a mixture of aECG signals using

28611



IEEE Access

R. Martinek et al.: Non-Invasive fECG Extraction Based on Novel Hybrid Method for Intrapartum ST Segment Analysis

a blind source separation method (e.g. ICA), is mod-
ified to form the mECG component contained in the
aECG signal. This modified mECG component is then
subtracted from the aECG signal and fECG is obtained.
The adaptive LMS algorithm uses mean square error
minimization between the desired and actual output.
The LMS filter in combination with WT was used to
extract the fECG efficiently in [59], [85]. The combina-
tion of LMS and ICA also achieved promising results
in [70]. Other extended variants of this filter normal-
ized LMS (NLMS), delayed LMS (DLMS) and block
LMS (BLMS) were compared in [86], where the best
results were achieved using the BLMS algorithm. The
adaptive RLS method, which uses the minimization of
the total squared error between the desired and actual
output, was tested in [87] for fECG filtering. The perfor-
mance of the method was compared with LMS but better
results were achieved with RLS algorithm. In [88], the
performance of the method in fECG extraction was com-
pared with NLMS, and even in this case better results
were obtained with RLS. A total of nine combinations
of cascading RLS, LMS and NLMS filters were tested
in [56]. The most promising results were achieved by the
combination of LMS and RLS methods.

A comparison different extraction methods for fHR deter-
mination, morphology bias and computational complexity is
summarized in Table 1. The evaluation of individual param-
eters was performed as follows:

o Accuracy of fHR determination - this parameter was
evaluated using high, medium and low -categories,
defined as:

— High - the method was able to suppress all noise
efficiently and in the statistical evaluation of fHR
determination achieved the accuracy of > 95%
(based on the ACC, SE, PPV and F1 parameters).

— Medium - the method was able to suppress most
interference, but some residues decreased the values
of ACC, SE, PPV and F1 reaching the accuracy
of > 80% in the statistical evaluation of fHR
determination.

— Low - the method was not able to sufficiently
remove the interference and in the statistical eval-
uation of fHR achieved the accuracy of < 80% was
achieved using the parameters ACC, SE, PPV and
F1.

o Distortion of morphology - determines morphology of
the signal is distorted by the given method. If so, it is
no longer possible to perform morphological analysis of
the signal, if not, morphological analysis of the signal is
possible.

o Computational complexity - the parameter was evaluated
using the categories high, medium and low defined as
follows:

— High - the method is computationally intensive and
cannot be used in real-time applications.
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TABLE 1. Comparison of methods for fECG extraction.

Algorithm Accuracy of fHR  Distortion of Computational
determination morphology complexity

WT Medium Yes Low

EMD Medium Yes Medium
CEEMD High Yes High
ANFIS High Yes High

ICA Medium No Medium
PCA Medium No Low
SVD Low No Low
LMS Medium No Low

RLS High No Medium

— Medium - the method is computationally slightly
more demanding and can be used in real-time appli-
cations after optimization.

— Low - the method is not computationally demanding
and can thus be used in real-time applications.

C. FETAL HEART RATE TRACE AND ST ANALYSIS
INTERPRETATION

Correct feature extraction is important for the subsequent
fetal health assessment. This subsection will outline the clin-
ical methodology for evaluating fHR traces and direct fECG
recordings. These recommendations are used by the clini-
cians as well as in the fetal monitoring systems and devices
based on fECG (e.g. STAN S31 and STAN S41).

In 2015, the FIGO published a new consensus guideline
on intrapartum fetal monitoring (FIGO2015) [89] that mod-
ified the earlier version published in 1987 (FIGO1987) [90].
These new recommendations constituted the first wide-scale
agreement on essential aspects of CTG monitoring. The
purpose of the FIGO guidelines is to assist in the use and
interpretation of CTG tracings [2], as well as in the clinical
management of specific CTG patterns, such as baseline fHR,
variability or decelerations [6], [7] (see Table 2). Moreover,
the Swedish Society of Obstetrics and Gynecology (SSOG),
issued their latest recommendations related to the same mat-
ter in 2017 [91] (SSOG2017).

The assessment is usually performed by obstetricians
or midwifes who classify the tracings into one of three
classes: normal, suspicious or pathological according to the
criteria summarized in Table 2 [89]. The tracings should
be reevaluated within a reasonable time frame (at least
every 30 minutes) due to changing nature of CTG signals
during labor [89], [92].

In addition to the above-mentioned evaluation param-
eters, further morphological analysis of the fECG wave-
form, especially ST-segment analysis (ST-analysis), has been
proposed. Its objective was to improve the clinical use of
EFM since various studies [13], [93]-[95] have demonstrated
that it can provide information on oxygenation of the fetal
myocardium [12]. Studies also linked adrenaline surge and
the appearance of high T waves in the fetal ECG [96].
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TABLE 2. CTG classification criteria, interpretation and recommended management according to FIGO consensus guidelines on intrapartum fetal

monitoring.
Normal Suspicious Pathological
Baseline 110-160 bpm < 100 bpm
Variability 5-25 bpm Reduced variability. Increased
Lacking at least one variability. Sinusoidal pattern.
characteristic of normality.
Decelerations  No repetitive! decelerations. but with no pathological features. Repetitive late or prolonged decelerations
for > 30 min (or > 20 min if reduced variability).
Deceleration > 5 min.
Interpretation  No hypoxia/acidosis. Low probability of hypoxia/acidosis. ~ High probability of hypoxia/acidosis.
Clinical No intervention necessary to Action to correct Immediate action to correct reversible causes,
management improve fetal oxygenation state.  reversible causes if identified, adjunctive methods, or if this is not possible

close monitoring

or adjunctive methods.

expedite delivery. In acute situations

immediate delivery should be accomplished.

TABLE 3. Suggested Course of Action based on ST Events noted and Classification of CTG based on STAN Guidelines.

ST event Intermediary CTG Abnormal CTG Preterminal CTG
Episodic T/QRS rise > 0.15 > 0.10
Baseline T/QRS rise > 0.10 > 0.05 Immediate delivery
Biphasic ST Three biphasic ST events ~ Two biphasic ST events

Prolongation of the QRS interval was found to be associ-
ated with baseline tachycardia, shortening of the P-R inter-
val with CTG decelerations, and T wave inversion with
signs of placental dysfunction [97]. Additionally, Pardi et al.
in [98] showed changes in ECG configuration during periods
of fetal hypoxia, with P wave and P-Q interval modifica-
tions appearing consistently during late decelerations; ST
depression/elevation/inversion or increased T wave ampli-
tude occurred in 48% of cases.

Based on those findings and the recommendations for ST
analysis evaluation published in [12], which were later taken
over by Neoventa Medical to create their evaluation guide
used in STAN analyzer, new categories of ST related events
were identified including:

o Three categories of biphasic ST segments according to

the relationship between the baseline and their slope:
— 1 (slope above baseline),
— 2 (crossing the baseline),
— 3 (below baseline).
« Three types of relevant ST events, associated with acido-
sis and incorporated into signal processing algorithms:
— episodic T/QRS rise (T/QRS rise > 0.10 in 2 con-
secutive T/QRSs),
— baseline T/QRS rise (T/QRS rise > 0.05 in more
than 10 minutes),

IDecelerations are repetitive when associated with > 50% contractions.
Absence of accelerations in labour is of uncertain significance.
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— ST interval depressions: categories 2 and 3 biphasic
ST events.

Currently, the clinical use of ST analysis requires it to be
combined with CTG analysis [95], see Table 3. Homogeneity
and agreement statistics between the CTG classifications
SSOG2017, FIGO2015, and FIGO1987 were performed and
published in [91]. The study aimed to reveal homogeneity
and agreement between the systems in classifying CTG and
ST events, and relate them to maternal and perinatal out-
comes. The results showed discrepancies in the classification
between the old and new systems.

IIl. MATERIAL AND METHODS

The aim of this study is to test and statistically evaluate the
effectiveness of the hybrid ICA-RLS extraction method of
fECG. The ICA method allows for separating the statistically
independent signals and it has been already successfully used
for the fECG extraction [25]. This algorithm is relatively
computationally demanding; therefore, several faster variants
of this method have been introduced [29], [99]. The most
commonly used variant, the so-called FastICA algorithm, was
successfully applied to extract the fECG from aECGs [72].
The RLS method is also an effective tool for the fECG
extraction, as confirmed by [28], [100], but its main disadvan-
tage is the high computational complexity. The background
theory of ICA and RLS methods is well described in the
literature [23], [28], [29], [ 78], [101], [102], and their detailed
presentation will therefore not be included in this study.
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FIGURE 2. Examples of the omitted abdominal ECG signals (recordings r04, r07, r11, and r12) and estimated fECG signals.

This section will introduce only the hybrid ICA-RLS based
system, the testing dataset, and the evaluation parameters and
process.

A. DATASET

The hybrid method was tested using real data, as the assess-
ment of extraction efficiency on synthetic signals is often
misleading. In addition, it was necessary to select a database
that includes a continuous reference scalp recordings in
addition to abdominal ones so that the accuracy of the
NI-fECG can be evaluated. Only one publicly available
database (ADFECGDB) meets these criteria, thus we used it
in our experiments [23], [39], [103]. These recordings were
obtained from 12 subjects between the 38" and 41 week
of pregnancy. Each includes four abdominal and one direct
signal along with the annotations indicating the location of
the fetal R peaks. These annotations were created by on-line
analysis in the KOMPOREL system and verified by a group
of cardiologists [39], [103]. The sampling frequency was
1000 Hz (for five recordings) and 500 Hz (for seven record-
ings), the signal resolution was 16 bits. The abdominal signals
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were recorded using the Ag-AgCl electrodes, while the direct
signals were recorded by means of spiral fetal scalp electrode.
The configuration of the abdominal electrodes comprised
four electrodes placed on the abdomen, an abdominal refer-
ence electrode placed above the pubic symphysis and a com-
mon mode reference electrode (with active-ground signal)
placed on the left leg [39], [103].

Although the database includes a total of 12 recordings,
we only used 8 of them for the experiments. The reason is that
the quality of some of the recordings (r04, 107, r11, and r12)
is low for the needs of morphological analysis. Fig. 2 shows
the examples of the omitted abdominal signals along with the
estimated fECG signals. It can be noticed that the extraction
system was not able to suppress the unwanted signals and
thus the resulting fECG signals are too noisy for the needs
of any further analysis. In fact, even accuracy of the fHR
determination is quite low in comparison with the rest of the
dataset as demonstrated by the fHR traces displayed in Fig. 3
and other investigations presented in [30], [104].

Reference annotations are available at ADFECGDB to
compare the accuracy of determining the R peak positions
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FIGURE 3. Examples of the fHR traces estimated using the omitted recordings (r04, r07, r11, and r12) to demonstrate

their low quality for the purpose of morphological analysis.
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FIGURE 4. Block diagram of ST analysis using reference and extracted fECG signal.

in the extracted signal with respect to the reference. In this
study, however, we focus on morphological analysis, for
which no reference values or annotations are available
for possible comparison. For this reason, we had to cre-
ate reference annotations for each record. Fig. 4 illustrates
the process of generating ST analysis reference values
from the fECG signal measured by the scalp electrode
(direct fECG) and estimated ST analysis values using the
extracted fECG signal. These annotations are available at
https://dx.doi.org/10.21227/70cd-bw64 [105].

B. HYBRID SYSTEM DESIGN

The hybrid system is designed to perform ST segment anal-
ysis from extracted fECG signals using a combination of
FastICA and RLS algorithms, which allows us to combine
the advantages of both methods and achieve more accurate
fECG extraction. Fig. 5 shows schematic diagram of the
experimental setup with examples of the outputs. The system
is based on our previous research focused on fHR estimation
introduced in [29], [30]. The process comprises of following
steps:

o Selection of suitable aECG signals - Table 4 shows
the RLS filter order settings for each record as well as
selected electrode combination used as the ICA-RLS
hybrid system input. Filter order settings and selected
electrode combination was based on the previous
study [29] focused on the selection of suitable electrodes
and RLS filter order for each recording.

e Preprocessing - bandpass finite impulse response fil-
ter (FIR) with cut-off frequencies 3 and 150 Hz, filter
order of 500.
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o Decomposition of the signal using FastICA - the
algorithm decomposes the input signals to multiple
independent components including mECG* which is a
component corresponding to the maternal mECG, and
aECG*, which is a component corresponding to the
aECG inputs with an enhanced fetal component. The
FastICA algorithm is set to at least 20 iterations and
3 output components.

o Adaptive filtering - the estimated mECG* and aECG*
signals are used as reference and primary inputs to the
RLS algorithm, respectively. For the RLS algorithm,
the forgetting factor was set to 1 and the filter order
varied in the range from 1 to 100. Using this adaptive
algorithm, the fECG signal was extracted. Table 4 shows
the RLS filter order settings for each recording as well
as selected electrode combination used as the ICA-RLS
hybrid system input.

The estimated fECG signal enters the R peak detec-
tor based on continuous wavelet transform (CWT)
[29], [106]-[108]. This detector estimates the positions of
R peaks that will be subsequently compared with the refer-
ence annotations obtained using the direct signal registered
with a help of FSE (see Fig. 5). This signal is pre-processed
by the FIR filter described above. For the recordings from
ADFECGDB database (accessible at Physionet) the annota-
tions were available, for the remaining signals the R peak
positions were determined using the CWT-based detector.

The instantaneous fHR was estimated using the deter-
mined intervals between consecutive R peaks (RR intervals).
Subsequently, the fHR traces for both reference and esti-
mated signals were determined and compared using the
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FIGURE 5. Example of the STAN monitor output: (a) fHR trace, (b) uterine contractions (toco), (c) T/QRS trace, and (d) example of the

averaged T/QRS.

TABLE 4. ICA-RLS algorithm settings.

r03 r05 r06 r08 r09 ri10

Recordings ro1 r02
Combination of electrodes 1,34
Filter order 4

1234 24 14 34 14 14 14
66

52 34 16 100 16 56

Bland-Altman plot. The Bland-Altman plot shows the mean
value 1 and +1.960, which reflect the difference between the
estimated and reference fHR traces. Moreover, the R peak
positions were used to evaluate the quality of the extrac-
tion based one the ACC, SE, PPV and F1 indices defined
by (1), (2), (3), and (5), respectively. The true positive (TP),
false positive (FP), and false negative (FN) values were deter-
mined using the estimated and reference signals. The time
interval for the TP determination was selected as 50 ms
from the reference R peak [29], [32].

TP
ACC = — 100 (%), (1
TP + FP + FN
P
Se= — . 100 (%), )
TP + FN
PPV = —— 100 (%), 3
TP + FP (%) )
Se - PPV 2. TP
Fl=2.2¢ 100 (%).

'Se+ PPV 2-TP+FP+FN
“
Finally, the main parameter to evaluate the quality of the

extraction, being the main goal of this study, was based on
the applicability of the ST segment analysis on the estimated
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fECG signal. The individual fQRS complexes and the deter-
mined T/QRS are displayed in the graph to compare the
efficacy for visual evaluation. The objective evaluation of the
determined T/QRS is performed using the ACCr/qrs param-
eter. For detailed description of the ST segment analysis,
please refer to the next Section.

C. ST SEGMENT ANALYSIS
In the clinical practice, the STAN machine calculates the
normal T/QRS ratio for each fetus and thus establishes the
‘baseline value’ over the first 4-5 minutes [109]. The device
then analyses every 30 ECG complexes and compares them
with this ‘baseline value’. Each analysis is marked on the
fHR trace with a cross ‘X’ (see Fig. 1) or star ‘*’ (see Fig. 6).
If the analyzed ECG complexes differ significantly from the
‘baseline value’, they will be flagged up as an ‘ST event’.
In the presence of an ‘ST event’, it is necessary to classify the
CTG trace according to STAN guidelines (see Table 3) and
then to determine whether it is significant and requires any
action [109].

In our study, we first applied the R peak detection and
then carried out the analysis of 30 averaged consecutive
fECG cycles. For averaging, we determined a window with a
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FIGURE 6. Example of the averaging and T/QRS calculation for NI- ST-analysis: (a) recording r03, high accuracy achieved, and (b) recording r06, low

accuracy achieved.

fixed length of 600 ms (beginning 190 ms before the R peak
location and ending 410 ms after it) to cover all the physi-
ological changes in the fECG cycle. Fig. 6 shows examples
of the averaging and T/QRS calculation procedure for signals
providing good (Fig. 6a) and poor results (Fig. 6b).

When assessing the quality of T/QRS estimation, we take
into account the amplitude of the R peaks, S peaks, and
T waves. When pre-processing signals, the magnitude of the
signal is normalized (according to the R peak amplitude) to
prevent an error caused by poor signal amplification. First,
it is necessary to determine the beginning and the end of
the QRS complex. These are calculated using the wavelet
transform with first order Gaussian wavelet base and 4 levels
of decomposition, similarly as in the R peak detection.

For T-wave detection, the wavelet-based detector was not
efficient enough even when using different types of waves
and decomposition levels, probably due to its low amplitude
in fECG signals. The T wave detection was thus realized
based on the approach presented in [110]. For this purpose,
the signal was first duplicated and a Butterworth bandpass
filter was applied at frequency band of 0.5-10 Hz, which is
believed to cover most of the T wave content [110]. Subse-
quently, the QRS complex was suppressed and the T wave
was detected by using thresholding. Finally, ST analysis was
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performed by calculating the T:QRS ratio for each of the aver-
aged fECG cycle, i.e. the ratio between the T wave amplitude
and peak-to-peak amplitude the QRS complex.

The ability of the hybrid system to extract the fECG signal
of a sufficient quality for the purpose of the morphological
analysis of the fECG signal was assessed by the parameter
called T/QRS Accuracy (denoted as ACCrygrs). The defini-
tion of ACCryqrs was inspired by a study presented in [1] and
can be described by the following formula (5):

|T/QRSrREr —T / ORSFILTER|
T /ORSREF

) 100 (%),
©)

where T /QRSriTER is the T:QRS ratio calculated for the
averaged complexes being the result of the analysis of the
extracted signals, and T/ QRSRgp is the reference T:QRS ratio
calculated for the averaged complexes determined based on
the analysis of the direct signal from the scalp electrode.

ACCriqrs = <1 -

D. ECG SIGNAL FEATURE EXTRACTION

Several approaches to detect the individual features of the
ECG waveform were presented in the literature, which can
also be used for the purposes of non-invasive fetal ST
analysis:
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o A simple method introduced in 1985 known as the Pan
and Tompkins detector has been often used to detect
R peaks [111]. As an example the work [112] can
be given, where based on signals from the MIT/BIH
database [113] the detection accuracy reached 99.00%.
An improved variant of the algorithm was also tested
in [114] on MIT/BIH and the sensitivity of the method
was 99.40%.

o For noisy signals, more robust detection algorithms
should be used. Wavelet transform is a prevalent method
for the QRS complex detection. When using this
method, the wavelet base needs to be selected carefully.
Mexican hat, symlet, morlet, Daubechies and the first
derivative of the Gaussian function are among the most
frequently used base functions for the detection of QRS
complexes. In [115], the authors present the use of the
dbl wavelet to detect the R peak on a scale of 1 and to
detect the P and T waves on scales 4 and 5. In [116], the
authors use the db4 waveform to detect QRS complexes.
Using the MIT/BIH database the results with sensitivity
of 98.10% were obtained. For further details on this
method and its application please refer to [106], [117].

o Similar thresholding-based detector can be used to
detect P and T waves in high-quality signals. This algo-
rithm was tested in [118], where the authors aimed
to estimate the beginnings and ends of these waves.
However, according to the authors, this method is not
very suitable for automated evaluation of P and T wave
localization.

o In [110], the authors presented a method for T wave
detection. The algorithm consists of the following steps:
preprocessing (0.5-10 Hz bandpass filtering), QRS
complex suppression, generation of the so-called poten-
tial blocks by using moving averages, and thresholding
as the final step. The algorithm was tested on both the
MIT/BIH database [113] and the QT database [119],
on average a sensitivity of over 98.50% was achieved
for both datasets.

o In [120], the authors use quadratic spline-wavelet,
applied to the region starting 0.25-R-R before the R peak
to detect the P wave. The algorithm was tested on a QT
database [119] with an accuracy of 99.90%.

« In[121], the authors present the detection of P wave and
T wave by the method of particle swarm optimization.
The method is also suitable for detecting the beginnings
and ends of waves. The authors performed the evalu-
ation on the QT database and the examined indices of
the detection quality (sensitivity and positive predictive
value) exceeded 95.00%.

o In [122] the author presents the possibility of detecting
both P wave and T wave by continuous wavelet trans-
form and Gaussian wavelet. Because these waves do not
have as steep a course as the QRS complex, a scale of 4
is more suitable for them. For P wave detection, the win-
dow is located between the end of the previous T wave
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and the beginning of the QRS complex. In addition, this
method makes it possible to detect biphasic waves.

o In[123], the authors compared the methods for detecting
the end of a T wave:

— The Philips method represents the construction
of a line connecting the top of a T wave and a
point 100 ms behind the inflection point of the
falling edge of the wave. At the point of the highest
value of the difference between the line and the
signal, the end of the T-wave is located.

— The derivation method consists of deriving the sig-
nal and finding the first extreme of the derivative
behind the T-wave.

— MS-Tpeak method proposes the connection of the
top of the T wave and the inflection point. At the
point where the line thus formed intersects the sig-
nal, the end of the T-wave is determined.

— The tangent interpolation method is based on the
interpolation of an inflection point by a tangent.
At the point where the tangent intersects the isoline
obtained from the TP interval, the end of the T wave
is determined.

To perform ST analysis, it is necessary to determine the
amplitude of R peaks, S peaks and T waves. A detector based
on a CWT was used to detect the positions of the R peaks.
First, the signal decomposition is performed by CWT using
Gaussian mother wavelet and 5 levels of decomposition.
Subsequently, all local maxima and minima with a minimum
distance of 0.2 s are found. The maximum threshold is set to
0.4 - Ajax, wWhere Ay 1s the local maximum of the highest
amplitude in the first 4 s of the signal. The minimum threshold
is set to 0.4 - A,in, Where A, is the local minimum of the
highest amplitude in the first 4 s of the signal. This maxi-
mum and minimum threshold is then adjusted accordingly
when shifted through the signal. In the next step, all local
maxima exceeding the set maximum threshold are marked as
the modulus maxima. Similarly, all local minima exceeding
a specified minimum threshold are marked as the modulus
minima. In the last step of R peak detection, the areas where
the distance between the recorded modulus minima and the
modulus maxima is less than 120 ms (maximal length of the
QRS complex) are determined and the centers between them
are referred to as zero-crossing. Finally, the largest values are
found in the zero-crossing region in order to determine the
positions and amplitudes of the R peaks.

The QRS complexes are cut out according to the deter-
mined R-positions; averaging of 30 QRS complexes is per-
formed. The position of the T wave is determined in following
steps and explained on one averaged complex as illustrated in
Fig. 7:

1) DWT with db6 Daubechies wavelet and decomposition
level 7 is applied to averaged complex; complex is then
reconstructed using the wavelet (detail) coefficients at
level 7. The algorithm then detects all local maxima
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FIGURE 7. lllustration of the T wave detection process.

after determined R peak position. The local maximum
with the largest amplitude is determined (Fig. 7(a)) and
its position is used to find the approximate T wave
position, which is selected as the highest value detected
within 25 ms from this position in averaged complex.

2) Averaged complex after decomposition from step a) is
reconstructed using the wavelet (detail) coefficients at
level 6. The algorithm then detects all local maxima
after determined R peak position. The nearest local
maximum to the estimated approximate T wave posi-
tion is determined (Fig. 7(b)) and its position is used to
find the approximate T wave position, which is selected
as the highest value detected within £25 ms from this
position in averaged complexes.

3) Averaged complex after decomposition from step a) is
reconstructed using the wavelet (detail) coefficients at
level 5. The algorithm then detects all local maxima
after determined R peak position. The nearest local
maximum to estimated approximate T wave position
is determined (Fig. 7(c)) and its position is used to find
the approximate T wave position, which is selected as
the highest values detected within £25 ms from this
position in averaged complex.

Finally, to determine the amplitude of the S peak, the
lowest value in the interval between the detected R peak
and the following 40 ms is determined. This is done for all
averaged complexes.

IV. RESULTS

For statistical evaluation of the fHR estimation, TP, FP and
FN values were determined and used to calculate the qual-
ity indices such as ACC, SE, PPV, and F1, see Table 5.
The results presented in Table 5 show that the ICA-RLS
method achieved high efficacy in fHR estimation. The accu-
racy (ACC) of over 95% was achieved for the recordings
r01, r02, r05, r08 and r09, while for the recordings r01, r02,
r03, 105, 108, r09 and r10 the sensitivity (SE) of over 95%
was attained. Finally, the PPV and F1 values above 95%
were noted for the recordings 01, 102, r03, r05, r08, and
r09. Moreover, very low FP a FN values were obtained while
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analyzing the recordings 101, r05, and r08. Moreover, Table 5
includes the results of ICA-RLS-EMD and ICA-RLS-WT
methods. These results show that ICA-RLS method achieves
lower accuracy for some recordings due to the absence of the
application of EMD or WT method in the last step due to their
negative effect on the signal morphology.

The parameter ACCt/Qrs Was used for statistical evalua-
tion of the method ability to recover the signal of sufficient
quality for the morphological analysis. The evaluation was
carried out for groups of averaged complexes as listed in
Table 6. The results demonstrate functionality of the method
for the ST segment analysis on 7 out of 8 recordings. For the
recordings 101, r02, r05, 108, r09, and r10 it was possible to
perform the ST analysis for the entire length of the recordings.
The most accurate results were obtained for the recordings
101, r02, and 108, while for the recordings r05, 09 and r10
the accuracy level was high enough (ACCr/grs > 54.84%).
For the recording 106, it was possible to achieve high quality
only for a part of the signal. Unfortunately, for the recording
r03 the ST segment analysis was not functional due to poor
quality of the input signal.

Fig. 8 shows examples of the averaged fQRS complexes
obtained using the proposed hybrid ICA-RLS method in
comparison with the reference fQRS complexes obtained
using the fetal scalp electrode for the recording rO1. This
recording was selected since it achieved the best results of
the ST analysis. This example demonstrates that the choice of
the hybrid method and its settings are appropriate since they
provide estimated signal of high-quality and do not affect its
morphology. It should be noted that the quality of the input
aECG signals plays an important role in fECG signal extrac-
tion and non-invasive ST segment analysis. If the morphology
of the input abdominal signal is distorted due to poor quality
of the registration itself (as is the case of recording r03), it is
nearly impossible to estimate signal of a sufficient quality to
perform non-invasive ST segment analysis.

As the common technique to evaluate two methods of
measurement is the Bland-Altman plot, we used it to assess
the accuracy of the proposed hybrid extraction procedure.
We compared our results with the reference annotations and
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FIGURE 8. Comparison of the averaged T/QRS estimated using the hybrid method ICA-RLS in comparison with the reference T/QRS obtained by means

of fetal scalp electrode (the recording ro1).

TABLE 5. Statistical evaluation of the fHR determination in signal obtained by the ICA-RLS, the ICA-RLS-EMD and the ICA-RLS-WT method.

ICA-RLS

Recordings Beats TP FP FN ACC(%) SE(%) PPV (%) F1(%)
r01 644 643 4 1 99.23 99.85 99.38 99.61
r02 660 653 11 7 97.32 98.94 98.34 98.64
r03 684 669 22 15 94.76 97.81 96.82 97.31
r0s 645 644 5 1 99.08 99.85 99.23 99.54
r06 674 623 66 51 84.19 92.43 90.42 91.42
r08 651 649 2 2 99.39 99.69 99.69 99.69
r09 657 645 5 12 97.43 98.17 99.23 98.70
rl0 637 623 58 14 89.64 97.80 91.48 94.54

ICA-RLS-EMD

Recordings Beats TP FP FN ACC(%) SE(%) PPV (%) F1 (%)
r01 644 642 1 2 99.53 99.69 99.84 99.76
r02 660 658 1 2 99.55 99.70 99.85 99.77
r03 684 677 2 7 98.69 98.98 99.71 99.34
r05 645 643 0 2 99.69 99.69 100.00 99.84
r06 674 630 27 44 89.87 93.47 95.89 94.66
r08 651 650 1 99.69 99.85 99.85 99.85
r09 657 652 0 5 99.24 99.24 100.00 99.62
rl0 637 617 33 20 92.09 96.86 94.92 95.88

ICA-RLS-WT

Recordings Beats TP FP FN ACC(%) SE(%) PPV (%) F1(%)
r01 644 643 1 1 99.69 99.85 99.85 99.85
r02 660 656 1 4 99.24 99.39 99.85 99.62
r03 684 647 4 37 94.04 94.59 99.39 96.93
r05 645 644 1 1 99.69 99.85 99.85 99.85
r06 674 592 43 82 82.57 87.83 93.23 90.45
r08 651 650 1 1 99.69 99.85 99.85 99.85
r09 657 626 1 31 95.14 95.28 99.84 97.51
rl0 637 626 33 11 93.43 98.27 94.99 96.61

direct signals. However, some annotations contained several
outliers that affected the determination of mean y and 1.960
values when plotting the Bland-Altman graph. These outliers
were replaced with the annotations calculated as the mean of
the preceding and consecutive correctly determined values.
Table 7 shows mean values of © and +1.960 allowing
for assessing the ability of ICA-RLS method to estimate the
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signal of suitable quality for fHR and ST analysis. The closer
the values of & and £1.960 are to zero, the smaller is the
difference between the extracted and the reference signals.
In the case of fHR determination, low values demonstrat-
ing the effectiveness of the method, were achieved for the
recordings r01, r02, 03, r05, r08, and r09. Higher values
of both parameters were obtained for the recordings r06
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TABLE 6. Evaluation of the applicability of the ICA-RLS method for ST analysis according to ACCr/qrs (%)

Order of T/QRS Recordings
r01 r02 r03 r05 r06 r08 r09 rl0
1 97.7 96.9 17.91 739 < 1.00 7426 8592 7551
2 86.65 9412 <1.00 6648 <1.00 76.12 7857 83.49
3 7441 8255 < 1.00 4862 <1.00 7031 748  84.83
4 8541 705 <1.00 5675 <1.00 73.06 78.65 72.81
5 90.14 93.13 < 1.00 5079 <1.00 77.13 7396 59.64
6 97.34 9442 < 1.00 45 <1.00 7343 9434 60.53
7 98.88 8443 < 1.00 4659 <1.00 7445 9348 6275
8 99.49 7761 <1.00 392 <1.00 804 9362 59.6
9 91.03 7368 <1.00 4478 <1.00 86.82 7029 55.76
10 85.84 8815 <1.00 5324 <1.00 09194 5272 77.84
11 6944 988 <1.00 6548 <1.00 9513 3571 59.6
12 81.62 9378 < 1.00 6627  90.67 93.11 4127 40.17
13 78.8 945 <1.00 7282 9352 90.58 5452 3383
14 8254 99.13 < 1.00 8596  84.99 923  30.85 3297
15 9593 81.16 < 1.00 60.63  70.13 87.8 4.03  29.88
16 98.57 6972 < 1.00 63.23 63.56 8849 2023 25.03
17 99.88 6098 < 1.00 6491 46.65 89.44 27.69  8.07
18 98.53 4457 < 1.00 7622 @ 61.37 9429 3286 187
19 90.26 4091 < 1.00 78.77 45.5 98.26 — 6.6
20 9479 5458 < 1.00 749 — 97.76 — —
21 8433 1077 < 1.00 89.95 — 96.97 — —
22 — 40.98 — 95.18 — 99.48 — —
TABLE 7. Mean values p and +1.960 determined for ICA-RLS, ICA-RLS-EMD and ICA-RLS-WT in fHR and ST analysis.
ICA-RLS ICA-RLS-EMD ICA-RLS-WT
Record fHR ST analysis fHR ST analysis fHR ST analysis
N +1.960 o +1.960 o +1.960 " +1.960 u +1.960 o +1.960
(bpm)  (bpm) (bpm) (bpm) | (bpm)  (bpm) (bpm) (bpm) | (bpm)  (bpm) (bpm) (bpm)
r01 0.01 1.76 -0.0025 0.0043 -0.25 5.39 -0.0082 0.0061 0.01 1.64 0.0030 0.0087
r02 -0.31 5.09 0.0042 0.0072 -0.22 7.63 0.0357 0.0264 0.03 3.06 -0.0130 0.0111
r03 0.11 5.83 0.0307 0.0102 -0.26 291 0.0165 0.0068 0.12 5.31 -0.0111 0.0093
r05 0.02 2.07 0.0063 0.0046 -0.13 4.13 -0.0034 0.0038 0.01 1.91 -0.0123 0.0052
r06 1.29 14.08 0.0060 0.1942 -1.15 5.62 1.7625 2.4839 0.27 10.40 1.3922 3.7476
r08 0.01 1.91 -0.0037 0.0055 -0.26 7.12 -0.0146 0.0093 0.02 1.91 0.0006 0.0030
r09 0.09 2.01 0.0086 0.0112 -0.48 3.60 0.0229 0.0196 -0.08 4.19 -0.0063 0.0058
r10 1.39 13.65 0.0134 0.0137 -0.32 8.73 1.7567 2.9646 0.11 7.81 0.0308 0.0289

and r10, which means that for these recordings the fHR
was not extracted as accurately. In the case of ST analy-
sis, low values, and thus high effectivity, were achieved for
the recordings r01, r02, r05, 106, r08, and r09. However,
for recordings 106 and 109, a higher value of £1.960 was
achieved, which corresponds to lower efficacy of ST anal-
ysis. Similarly, for the recordings r03 and r10 we obtained
high values of both parameters as well. Moreover, Table 7
includes mean values of u and £1.960 for ICA-RLS-EMD a
ICA-RLS-WT methods for fHR determination and ST anal-
ysis. Below we provide 3 examples of Bland-Altman plots:
Fig. 9 and Fig. 10 present cases of the method efficiency
for both fHR and ST analysis, whereas Fig. 11 shows an
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example of accurate determination of fHR and ineffective ST
analysis.

Finally, we provide a graphical illustration of the fHR
traces and ST analysis as displayed by the STAN monitor
screen and compare the estimated parameters with the ref-
erence ones. Fig. 12 shows such traces for all tested record-
ings. The upper waveform represents fHR traces obtained
by the ICA-RLS method (red) along with the reference fHR
trace (black) created using the database annotations. The
lower part shows the results of the ST analysis. The T:QRS
ratios obtained by the ICA-RLS method (red stars) are again
compared with the T:QRS ratios determined using the refer-
ence signal.
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FIGURE 9. Bland-Altman plots for the comparison of the parameters
obtained using the reference and estimated signals for the recording ro1:
(a) fHR, and (b) ST analysis.
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FIGURE 10. Bland-Altman plots for the comparison of the parameters
obtained using the reference and estimated signals for the recording r03:
(a) fHR, and b) ST analysis.

The more the estimated fHR traces and T:QRS ratios fol-
low the reference trends, the more efficient is the method of
the fECG extraction. It can be stated that our method allowed
for high accuracy fHR monitoring in case of all tested signals,
especially for the recordings r0O1, r02, r05, 08 and r09, where
the estimated fHR trace follows perfectly the trend of the
reference one. Nevertheless, for the recordings r03, r06, and
r10 slight deviations from the reference fHR trace can be
noticed. However, these are negligible differences that do not
affect the final diagnosis of the fetal distress.

Furthermore, it can be stated that the ST analysis was
successful for the recordings r01, r02, r05, and r08. While
for the recordings r09 and r10 slight deviations of the T:QRS
ratios from the reference can be seen. Again, these differences
would not affect the final fetal diagnosis. When investigating
the recordings r06, we noticed that most part of it was ana-
lyzed accurately, however with slight deviations caused by a
poor quality of the original aECG signal. The worst results
were achieved for the recording r03, where the quality of the
estimated signal was not suitable for the ST analysis and thus
the analysis was not performed.

V. DISCUSSION

The results of our experiments show that the proposed hybrid
method combining the ICA and RLS algorithms is able to
extract a high quality fECG signal and accurately determine
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FIGURE 11. Bland-Altman plots for the comparison of the parameters
obtained using the reference and estimated signals for the recording r08:
(a) fHR, and (b) ST analysis.

the fHR for all tested recordings. However, the primary objec-
tive of the study was to perform the ST segment analysis in
order to access equivalent diagnostic information to the one
obtained using the invasive monitoring. This has been proven
as possible, but compared to the fHR determination much
more attention must be given to the selection of appropriate
filtering methods and their settings. Also, suitable detection
methods must be chosen and high-quality input aECG record-
ings must be used in order to automatically extract a fECG
signal of sufficient quality.

To illustrate the effect of the filtration method used on
the estimated signal, we compared the averaged fQRS com-
plexes extracted using the hybrid method ICA-RLS, the
ICA-RLS-EMD and the ICA-RLS-WT, see Fig. 13. This
figure shows the negative effect of the EMD and the WT
method on the resulting signal morphology. In terms of detec-
tion of R peaks and determination of fHR, these methods
are very effective. However, the EMD based method and the
WT based method are not suitable for ST segment analy-
sis because it changes the fECG signal morphology. These
changes can be noticed in all elements of the PQRST com-
plex, except for the R peak, which could affect ST analysis
and lead to loss of valuable clinical information that could
otherwise be obtained from NI-fECG. The most significant
changes occur in the P and Q wave. The S and T waves
are affected less significantly, but even such differences have
a great impact on the accuracy of ST analysis and the loss
of valuable clinical information that would be otherwise
obtained from NI-fECG.

Furthermore, to illustrate the influence of the quality of
aECG signals on the efficiency of the fECG extraction and
the subsequent ST analysis, we present an example of results
of ST analysis performed on both estimated and reference
signals for all of the tested recordings (see Fig. 14). Six parts
of the trace were selected to show instances of the inputs,
estimated signals and direct fECG signal from fetal scalp.
Three of these selected samples, denoted as (a), (b), and (c),
correspond to the sections where an accurate ST analysis was
achieved (the estimated T:QRS ratio is in the accordance with
the reference one). For each example, we provide 5-second
fragments of signals corresponding to that particular time
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FIGURE 12. Graphical illustration of the fHR traces and ST analysis as displayed by the STAN monitor.

Reference
ICA-RLS
ICA-RLS-EMD
ICA-RLS-WT

FIGURE 13. Comparison of averaged fQRS complexes obtained using hybrid extraction system ICA-RLS, ICA-RLS-EMD and
ICA-RLS-WT on the recording r05 illustrating the drawback of WT method used in postprocessing of the resulting fECG

signal.

frame. It can be noticed that the quality of the extracted fECG
is high and thus the ST analysis could be performed. The
rest of the examples, denoted as (d), (e), and (f), correspond
to the sections of the signal where the determination of the
ST analysis was not successful (the estimated and reference
T:QRS ratio differ). The quality of the aECG and conse-
quently the extracted fECG signals is poor compared to the
previous cases. The signal contains maternal residua and its
morphology is deformed, hence, the ST segment analysis was
not successful.

Finally, we compared the results obtained with the results
of a very few studies that have dealt with the morpholog-
ical analysis of the fECG signal (these are summarized in
Table 8). Objective comparison of results is very difficult
since the authors use different databases for testing (the
Non-Invasive Fetal ECG Arrhythmia Database [46], the Fetal
ECG Synthetic Generator [38], use their own synthetically
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generated signals [1] or used their own real signals [20]. It is
clear that most authors use synthetic data for experiments,
on which they achieve very accurate results. Unfortunately,
subsequent testing of algorithms on real data usually achieves
significantly worse results.

Herein, we used real records for our experiments con-
taining a signal from the scalp electrode, which we used to
create annotations to determine the accuracy of ST analysis.
For future research in this area, it would be appropriate test
the algorithms on more extensive dataset with continuously
recorded abdominal direct ECG recordings. Another limita-
tion in objective comparison is the use of various parameters
(coefficient of determination [44] or the root mean square
error [48]) to evaluate the effectiveness of morphological
analysis. For these reasons, we tried to make a combination
of both objective and subjective comparison of the achieved
results.
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FIGURE 14. Example of the ST segment analysis performed on the fECG signal obtained by the ICA-RLS hybrid method. Subfigures (a), (b),
and (c) show 3 sections where the accuracy of ST analysis was high, while (d), (e) and (f) show 3 sections of inaccurate ST segment analysis.

« In [45], optimal shrinkage was used to determine fHR
with accuracy of 79.25+31.75% for (semi)-real records
and with 93.21 £ 14.31% for synthetic records. In both
cases, these are worse results than we have achieved.
In case of morphological analysis, the authors did not
deal with ST analysis, but with P wave and T wave
detection, in which they reached values of 4.85 + 8.33
and 0.2240.34 according to the normalized mean ampli-
tude error. The authors state that the method was also
effective for recordings containing arrhythmias, but less
effective for signals with significant mECG amplitude.

The authors in [46] dealt with the detection of arrhyth-
mias by analyzing the morphology of the P wave.
The authors used their own real records acquired
on 500 women (gestational age: 22-41 weeks) for test-
ing. The study does not report statistical results for the
determination of fHR or for the analysis of P wave mor-
phology. However, the authors state that the algorithm
was able to detect all cases of arrhythmias and in only
one case was the arrhythmia incorrectly identified due
to the low resolution of the P wave.
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o Three types of methods (BSS methods, TS and adaptive

methods) were tested in [44]. When determining fHR,
the algorithms achieved an accuracy of 86.40-99.90%,
77.40-96.00%, and 87.1-97.90%, respectively. In all
cases, these are slightly worse results than those
obtained using the algorithm presented by us. The
authors also dealt with determining the QT interval
and the T/QRS ratio. The evaluation was performed
using the coefficient of determination, which reached
the values of 0.189, 0.846, and 0.574, respectively, when
evaluating the accuracy of the estimated QT interval, and
0.098, 0.916, and 0.812, respectively, when determining
the T/QRS ratio. The least accurate results were obtained
with records containing ectopic beats.

In [47], the authors did not deal with the determination
of fHR, but only with the determination of the accu-
racy of the estimated length of the QT interval using
extended Kalman filter. They managed to achieve an
accuracy of 4.00 ms evaluated by the median absolute
error. The advantage of this method is that it requires
only single-channel as an input.
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TABLE 8. Summary of state-of-the-art methods for NI-fECG morphological analysis.

Author, source  Algorithm fHR (%)  erphological Evaluation of Dataset Advantages
Analysis Morphological Analysis and limitations
Normalized mean . + effective on
. . (semi)-Real, . .
Su et al. Optimal 79.25 £31.75 P and T wave amplitude error (-) Synthetic pathological recordings
[45] shrinkage 93.21 +14.31 detection 4.85 + 8.33 Y . - less effective with a
on recordings L .
0.22 £0.34 significant amplitude of mMECG
S ICA, 7CA. . ) ;ef.fecc:ltlve folr .
r et. al. wave
€ :«;42] al JADE and . o . Real arrhytl rlma ( Etermmatlon
- t
SOBI ICA clection a gor'll m was '
very sensitive to noise
BSS methods, 86.4-99.9 QT. T/QRS dCoefI?meflt of + tested at
Andreotti et. al. TS, ’ ’ ? etermination (-) ) different noise levels
. 77.4-96.0 QT, T/QRS 0.189, 0.098 Synthetic .
[44] adaptive - less effective on
87.1-97.9 QT, T/QRS 0.846,0.916 . . .
methods recordings with ectopic beats
0.574,0.812
Median absolute + single channel method
Behar et al. . .
Extended KF — QT error (ms) Synthetic - not tested on recordings
[47]
4.00 with abnormalities
+ without distorting
Thy t mez ini
Clifford et al. - e root mean clinical parameters
(48] KF framework — ST analysis square error (%) Real - diminished patient activity
3.20 by epidural, leading to
easier extraction of fECG
+ effective for recordings
Ionescu et al. FastICA, ; p ;
o QT. T/QRS - Synthetic with low amplitude
[72] WT, FFT of fECG component
- tested on only two recordings
ffective ST
K < etal Efficient T/QRS ratio, ACC (%) J; ¢ eclwe i ,
arvounis et al.
" variant 94.79 ST waveform 92.49 Synthetic wave Om(lic asst C"z‘on
of FastiCA classification 79.87 - not tested on recordings
with abnormalities
Challenge + effective even
PodziemskKi et al. 2013 for very noisy recordings
TS — QT — .
[50] dataset - not tested on recordings
(mix) with abnormalities
+ tested on recordings
Widatalla et al. Model QT Difference (%) Real with abnormalities
— eal
[20] based < 5.00 - less effective for recordings
with higher noise levels
+ without distorting
Proposed ACC (% linical S
P ICA-RLS 91.42-99.69 ST analysis (%) Real clinical parameters
algorithm 1.52-89.60 - not tested on recordings

with abnormalities

o The authors in [48] tested the KF framework to extract
the signal for the ST analysis. The authors used their own
real records acquired from 32 women (gestational age:
35-41 weeks) for testing. The accuracy was determined
using the root mean square error, which reached a value
of 3.20%. The authors note a limitation of the study
which is the use of epidural in almost all women during
the signal acquisition, which could lead to a suppression
of patient activity and made it easier to extract the fECG
signal. In this study, real records were used for testing,
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however, these are different records than we used and an
objective comparison is not possible.

o The combination of three methods (FastICA, WT, FFT)

was tested in [72] to determine the length of the QT
interval and the T/QRS ratio. The authors did not present
any statistical evaluation, but according to them, this
method is also suitable for the analysis of records
with low amplitude of the fECG component. How-
ever, the method was tested only on two synthetic
records.
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.

FIGURE 15. Detection and analysis of the estimated fECG signal features in comparison with reference signal obtained

with fetal scalp electrode (the recording r08).

FIGURE 16. Example of the ongoing series of measurements of the research team from VSB-Technical University of
Ostrava.

o The efficient variant of FastICA was tested in [1]. The
authors presented the statistical evaluation for the deter-
mination of fHR, they achieved an average accuracy
of 94.79%, which is a slightly worse result than that
achieved by our proposed method. When evaluating
the T/QRS ratio, an average accuracy of 92.49% was
achieved, which is a significantly better result than we
achieved. It should be noted that the efficient variant
of FastICA was tested only on synthetic records and
our proposed ICA-RLS on real records. In addition, the
authors dealt with the ST waveform classification, which
achieved an average accuracy of 79.87%.

o The authors in the [50] tested the template subtraction
method and dealt with the length of the QT interval in
the morphological analysis. No statistical evaluation was
presented in the study, but according to the authors the
method was efficient especially for partly noisy signals,
but good results were also achieved for very noisy data.

o The model-based estimation was used in [20], where the
authors primarily dealt with the analysis of the length of
the QT interval. The authors used their own real records
recorded on 58 women (gestational age: 20—41 weeks)
for testing. The method was tested on normal (physi-
ological) records, but also on records with abnormal-
ities (e.g. bradycardia, tachycardia, heart anomalies,
heart failure, placental dysfunction). A difference of
< 5.00% was achieved between the reference and esti-
mated values.

One of the challenges that future research should focus on
is the analysis of other morphological elements that can help
to further refine the fetal distress determination. Fig. 15 shows
an example of detection and analysis of the extracted signal
of a high quality. These signals could be used to perform mor-
phological analysis of any part of the fECG cycle, especially
the QT interval, which is significantly shortened due to fetal
distress.

28626

In order to verify the functionality of the proposed hybrid
system in a larger number of patients, it will be necessary
to create a quality database of real recordings. Ideally, the
database should contain a sufficient number of recordings
of adequate length covering possible variations in the fetal
position and the pregnancy stage. Further research should be
also focused on the effects of the electrode placement and
system configuration. This would help in developing a new
diagnostic system based on the simultaneous monitoring of
fHR and NI-ST-analysis with the benefit of maintaining the
non-invasiveness of the examination while refining the fetal
distress diagnostics.

In our future research, our team intends to continue this
work and focus primarily on creating our own aECG dataset
with a large number of records for the purpose of testing
and validating various approaches to fECG signal processing
and extraction. Our dataset will contain records with vari-
ous gestational age and different fetal positions. In addition
to physiological records, pathological records will also be
present. Thanks to this, various situations and effects can be
tested and thus investigate which signal processing method
is suitable for given purpose in clinical practice. Moreover,
all records will contain information about the type of the
signal (physiological or pathological), gestational age, fetal
position and so on. Abdominal signals will be multichannel,
at the same time, continuous measurement of direct fECG
will be performed using a transvaginal fetal scalp electrode
with simultaneous scanning using CTG. This will provide
valid references for validating whether the extraction of fECG
signals was successful in terms of both fHR monitoring and
morphological analysis. In addition, reference annotations
from the direct fECG signal will be created for each record.
The annotations will contain the exact positions of fetal R
peaks for possible testing of the accuracy of the fHR determi-
nation, which will also be possible to compare with the fHR
trace provided by CTG device. Furthermore, the annotations
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will contain reference markers for the ST analysis and thus the
morphological analysis of the extracted fECG curve can be
tested and evaluated. Fig. 16 shows a series of measurements
already performed on several pregnant volunteers. The figure
shows the use of CTG for continuous monitoring of fHR.

VI. CONCLUSION

This study investigated the effectiveness of the hybrid
ICA-RLS method for the morphological analysis of
the NI-fECG signal. Tests on real recordings from the
ADFECGDB database have shown that in addition to
accurate fHR estimation, it is also possible to perform
non-invasive morphological analysis of the fECG signals.
The primary objective of the study was to perform the ST seg-
ment analysis in order to increase the accuracy of fetal distress
diagnosis. The ability to accurately determine fHR and per-
form ST segment analysis was assessed using objective qual-
ity indices such as ACC, SE, PPV, and F1, but also with a help
of graphical evaluation methods (Bland-Altman plots and
fHR traces). High accuracy of fHR estimation, reflected in the
values of the mean p within the range from 0.01 to 1.39 bpm
and the mean +1.960 from 1.76 to 14.08 bpm, was achieved
for all eight patients examined. Based on the comparison with
the results achieved using invasive means of fetal monitoring,
the proposed algorithm has proven also its ability to perform
the high quality ST segment analysis. For 7 out of 8 patients
we were able to determine T/QRS ratio precisely with the
values of the mean || ranging from 0.0025 to 0.0307 and
+1.960 from 0.0043 to 0.1942. The results of this study
demonstrate that morphological analysis can be performed on
NI-fECG signal while achieving similar results as when direct
fECG signal is used. The future research will aim to extend
this study to the analysis of other fECG signal features, such
as QT interval.
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