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A B S T R A C T

The polarization beat length of propagating optical fields in nonlinear birefringent Kerr medium is investigated
in the presence of an externally applied DC electric field. We show that the critical power, at which the effective
polarization beat length becomes infinite, can be controlled through adjusting the externally applied electric
field. The principle of operation is based on modifying the polarization instability by electronically adjusting
the effective birefringence through an external electrical bias. The presented analytical expressions describe
the beat length and the polarization instability as a function of the applied electric field for an arbitrary optical
input state.
Introduction

Polarization instability in a medium arises when the nonlinear
change of the refractive index is comparable with the linear birefrin-
gence. This phenomenon manifests when the nonlinear birefringence
cancels completely the linear birefringence and the beat length esca-
lates to infinity. Physically, the beat length (𝐿𝑒𝑓𝑓

𝐵 ) is the length at which
the optical power is transferred from one polarization to another. In a
nonlinear medium, such as the Kerr medium, the 𝐿𝑒𝑓𝑓

𝐵 length becomes
infinite at a critical input power for a propagating light that is polarized
along the fast axis [1–3]. It then follows that a substantial change in
the output polarization state is observed when the input power (or its
polarization state) is slightly differing.

Controlling the polarization dynamics and obtaining non-trivial po-
larization evolution is vital [4–15] to optimize the operation of several
photonic devices [16]. These include the birefringent optical fibers
(BOFs), [17–21], the multimode interference (MMI) couplers [22], the
Y-branches [23] and also, the integrated photonic circuits [24], spe-
cially the electric-field-induced second harmonic generation (EFISHG)
could be considered as a practical possibility, in integrated photonics,
due to the fact that the nonlinear susceptibility 𝜒3 in silicon is two
order of magnitude larger than in silicon oxide, and that in integrated
photonics the non-linear modal area is reduced by a large factor when
compared to typical optical fibers [25]. This keeps the electric fields
required below the silicon breakdown, although not too far from it.
Another favorable condition of integrated devices is that the required
field may be produced across a small distance (few microns), thus
avoiding the requirement of high voltage components [26].
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Interestingly, for propagating optical fields in non-resonant Kerr
nonlinear medium, a biasing electric field induces birefringence even
if the medium is optically isotropic [27]. In [28], the authors have
studied the impact of applying a DC electric field (i.e., 𝐸𝑒𝑥𝑡), to a
third-order nonlinear medium, on the evolution of propagating optical
waves. They found that the polarization evolution can be controlled
by the applied 𝐸𝑒𝑥𝑡 field. As a matter of fact, the 𝐸𝑒𝑥𝑡 field turns the
third-order nonlinearity into a second-order-like as if one deals with
an electro-optic-like effect.

While these effects in a nonlinear and birefringent medium have
been known for long, and examined in details [28], the polarization
instability in nonlinear medium with the presence of externally applied
DC electric field has received little attention. Both the 𝐿𝐵 , which
is the beat length when nonlinear optical effects are neglected, and
the 𝐿𝑒𝑓𝑓

𝐵 are important quantities that must be characterized in fibers
and waveguides. For instance, reducing these lengths can improve the
stability of the optical system and enhance the communication capacity
significantly [29]. However, in practice, these lengths are fixed once
the geometry, the materials, and the input power are selected. Thus, a
limited capability to adaptively designing/monitoring the performance
of the pertinent optical systems is experienced.

In this letter, we present a theoretical description for electronically
controlled polarization instability [28]. The considered scheme implies
adjusting the critical power (at which the polarization instability takes
place) through modifying the effective birefringence by applying an ex-
ternal electric field 𝐸𝑒𝑥𝑡. We have carried out analytical expressions that
relate 𝐿𝐵 and 𝐿𝑒𝑓𝑓

𝐵 with the DC applied field. The derived expression
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shows that both the critical power and the effective beat length can be
arbitrarily shifted by adjusting the applied DC electric field.

The theoretical analysis begins by deriving the governing coupled
differential equations of the evolution of the optical field in Kerr non-
linear medium while an external electric field is applied. On assuming a
slow-varying-envelope approximation (whereby the second derivatives
are neglected), considering harmonic fields, and omitting the transverse
variations, a well-known first-order differential equation relating the
optical electric field and the polarization is obtained, given by [28]:

𝜕�⃗�
𝜕𝑧

= −𝑖 𝑘
2 𝜀

𝑃𝑁𝐿, (1)

where �⃗� is the optical electric vector field, 𝑘 is the propagation con-
stant, 𝜀 is the material permittivity, and 𝑃𝑁𝐿 is the nonlinear polariza-
tion vector.

In the following, without losing any aspect of generality, we analyze
the 𝑥−polarization component while it is coupled to the 𝑦−polarization
component. It then follows that the nonlinear polarization 𝑃𝑥𝑁𝐿

is given
by:

𝑃𝑥𝑁𝐿
= 𝜖0𝜒
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, (2)

where 𝐴𝑥 and 𝐴𝑦 are the complex amplitudes of two orthogonal modes
(in case of an optical fiber) or TE modes (in case of planar waveg-
uides), 𝜀0 is the vacuum permittivity, and 𝜒 ≡ 𝜒 (3) is the nonlinear
susceptibility.

Substituting (2) into (1) yields the spatial evolution of the polariza-
tion state, given by:
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Here, 𝐴 and 𝐸𝑒𝑥𝑡 are normalized such that |𝐴|2 and 𝐸2
𝑒𝑥𝑡 are in power

unit (i.e., 𝑊 ). The parameter 𝛾 = 3𝜒𝑘0∕(8𝑛𝐿 ) and 𝑛𝐿 =
√

𝜀0(1 + 𝜒 (1)),
where 𝜒 (1) is the linear susceptibility.

At this point, we propose to re-write (3) in the following form:
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The above two equations can be expressed in the circular polariza-
tion bases using the following transformation:
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where 𝜅𝑒𝑥𝑡 = 𝛾 𝐸2
𝑒𝑥𝑡. It then follows that the evolution equations are

given by:

𝑖
𝜕𝐴𝑠(𝑧)
𝜕𝑧

= 𝜅𝑒𝑥𝑡 𝐴3−𝑠 +
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2
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𝐴𝑠 , (7)

where 𝑠 = 1, 2 pertains to the right 1 and left 2 circular polarization.
This equation governs the self-induced polarization rotation- and the
polarization instability, resulting from a subtle balance between linear
birefringence and self — as well as cross-phase modulation. This is a
significant result, which is a generalization of [2,30–32]. Hereby, the
polarization dynamics in this regime are controlled by a static electric
field. Here, 𝜅𝑒𝑥𝑡 (which is in 𝑚−1 unit) is a controlled parameter that is
a function of the applied DC electric field. For 𝐸 = 0, the equations
2

𝑒𝑥𝑡
Fig. 1. (Color online) Evolution of the inverse effective beat length versus 𝑃𝑐𝑟. Different
𝑃0 are considered.

in (7) are identical to those in [30–32] which governs nondispersive
cross-phase modulation (XPM) in birefringent fibers. The solutions
in [30–32] are also applicable for short pulses (i.e., 100 ps) given that
the fiber length is adequately shorter than the dispersion length and
the walk-off length [2].

The polarization state is determined by the complex ratio 𝜉 =
𝐴1∕𝐴2. The azimuth of the polarization ellipse is 𝜃 = (1∕2) arg(𝜉). We
consider an input beam linearly polarized at angle 𝜃0 with respect to
the slow axis. Thus, the slow axis is represented by 𝜃0 = 0𝑜 and the fast
axis is represented by 𝜃0 = 90𝑜.

The solutions of (7) can be sought in the form of 𝐴𝑠 =
(

𝑃𝑐𝑟 𝑝𝑠
)1∕2 exp(𝑖 2𝜃0) [1,2], where for convenience we have defined the

normalization parameter by 𝑃𝑐𝑟 = 3𝐸2
𝑒𝑥𝑡. Here, 𝑝𝑠 are the normalized

power in the 𝑠 mode satisfying 𝑝 ≡ 𝑃0∕𝑃𝑐𝑟 = 𝑝𝑠 + 𝑝(3−𝑠), where 𝑃0 is the
total power launched into the medium.

It follows from (7) that when optical nonlinear effects are neglected,
the medium shows only linear birefringence. Considering this scenario,
the propagating light beams along the principal axes preserve their
polarization state and the instability is not taking place. The governing
equation in this case can be written as:

𝑖
𝜕𝐴𝑠(𝑧)
𝜕𝑧

= 𝛾 𝐸2
𝑒𝑥𝑡 𝐴3−𝑠. (8)

From (8), one can infer the low-power polarization beat length, given
by: 𝐿𝐵 = 𝜋∕(𝛾 𝐸2

𝑒𝑥𝑡). It is straight forward to reduce the above ex-
pressions in (8) as a system of uncoupled linear ordinary differential
equations which behaves like a harmonic oscillator. See [1] for more
details. For an isotropic medium, as the external electric field 𝐸𝑒𝑥𝑡 → 0
the beat length also 𝐿𝐵 → ∞ [2]. However, for birefringent medium,
the right hand side of (8) is given by (𝛥𝛽∕2 + 𝛾𝐸2

𝑒𝑥𝑡)𝐴3−𝑠, where 𝛥𝛽 =
𝛽0𝑥 − 𝛽0𝑦. Here, 𝛽0𝑥 and 𝛽0𝑦 are the propagation constants of slow
and fast polarization modes, respectively. Thus, 𝐿𝐵 approaches (2𝜋∕𝛥𝛽)
as 𝐸𝑒𝑥𝑡 → 0. In this work, we consider the case of isotropic optical
medium. We also remark that in a case of pulse propagation, a similar
system of Eqs. (7) can be obtained in the quasi-CW regime [33].

On the other hand, for intensive optical input power, the polariza-
tion evolution can be described in term of Jacobian elliptic function as
detailed in [1,2]. By following the same approach, one can obtain the
effective beat length from (7), given by:

𝐿𝑒𝑓𝑓
𝐵 (𝑃0;𝑃𝑐𝑟) =

2 K(𝑚)

𝛾
√

|𝑞|
1

𝐸2
𝑒𝑥𝑡

,

=
2 K(𝑚)

𝜋
√

|𝑞|
𝐿𝐵 , (9)

where K(𝑚) is the quarter-period argument of the Jacobian elliptic
function. For completeness, we also present the solution of the power
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Fig. 2. (Color online) Evolution of the inverse effective beat length versus 𝑃0. Different
𝑃𝑐𝑟 are considered.

evolution 𝑝𝑠, given by:

𝑝𝑠(𝑧) =
𝑃0
2𝑃𝑐𝑟

−
√

𝑚|𝑞| Cn
[

√

|𝑞| 2𝛾 𝐸2
𝑒𝑥𝑡 𝑧 + K(𝑚)

]

, (10)

where Cn(.|𝑚) is the Jacobian elliptic function, 𝑚 =
[

1 − 𝑅𝑒(𝑞)∕|𝑞|
]

∕2,
nd 𝑞 = 1 + 𝑝 𝑒𝑖 2𝜃0 . In Fig. 1, the normalized inverse effective beat
ength is calculated against the normalized input power 𝑝. Here, the
ropagating beam is polarized along the fast axes (𝜃 = 900). We have

also computed 3 examples with different 𝑃0. The first one is the black
continuous curve (one on the left) for which we have assumed 𝑃0 =
1𝑚𝑊 , with the instability present at 𝑝 = 1 when 𝑃𝑐𝑟 reaches the value
of 𝑃0. As can be seen, as 𝑃𝑐𝑟 varies, the critical power shifts as governed
by (9). This scenario can be utilized for electronically controlling the
optical switching. Also, the instability broadens in terms of the power
𝑝 while having smaller interval of 𝐿𝑒𝑓𝑓

𝐵 affected by the instability for
larger 𝑃𝑐𝑟 (i.e., larger DC electrical field). While similar what was
observed previously in [1], the beat length monotonically decreases for
power values increased beyond the critical power.

Fig. 2 is devoted to show the inverse beat length versus 𝑃 . This
is illustrated by computing some examples of very distinctive regions
for constant 𝑃𝑐𝑟 while 𝑃0 is increased. Similar to Fig. 1, the effective
beat length becomes infinite as input power becomes identical to the
critical power. Further increment in the input power turns the fiber
birefringent again but with reversed slow and fast axes. Once the
condition for the instability is passed (the input power is increased
beyond the critical power), 𝐿𝑒𝑓𝑓

𝐵 decreases monotonically in a similar
behavior to the case of slow axis oriented beam.

Finally, we present an illustrative example using real experimental
parameters. We consider an optical fiber with 6.6 μm effective mode
radius, 𝑛𝐿 = 1.46 refractive index, and 𝛾 = 0.0043𝑊 −1𝑚−1 nonlinear
coefficient. The corresponding normalized effective beat length for
these values is presented in Fig. 3 as function of 𝑃𝑐𝑟. As an example,
if one considers 𝑃0 = 1𝑚𝑊 and 𝐸′

𝑒𝑥𝑡 = 80𝑉 ∕𝜇𝑚, the beat lengths
are 𝐿𝐵 = 3.11𝑚 and 𝐿𝑒𝑓𝑓

𝐵 = 9.35𝑚. We note that the quantity 𝐸𝑒𝑥𝑡 =
(2 𝑛𝐿 𝐴2

𝑒𝑓𝑓 𝜖0 𝑐)1∕2 𝐸′
𝑒𝑥𝑡 in our theoretical description is normalized so

that 𝐸2
𝑒𝑥𝑡 is in [𝑊 ] unit, while 𝐸′

𝑒𝑥𝑡 is the physical applied DC electric
field in [𝑉 ∕𝑚] and 𝑐 is the light speed in free space.

The presented scheme in this work is also applicable for micro-
photonic devices including planar waveguides and photonic integrated
circuits. Several interesting devices/systems are natural candidates to
benefit from electronically controlled polarization instability. These
include fiber laser devices that incorporate birefringent cavities [34],
supercontinuum photonic crystal fibers that use polarization dynamics
of Raman solitons [35], vector cavity solitons in birefringent res-
onators [36], semiconductor lasers that utilize vertical cavity res-
onators, and vertical cavity surface-emitting lasers, just to mention few
3

Fig. 3. (Color online) Normalized effective beat length evolution versus 𝑃𝑐𝑟. Different
𝑃0 are considered.

xamples. Alternatively, the proposed modality can be devised as a
ensitive polarizer (utilizing the polarization instability) that is directly
ntegrable with a specific device (e.g., a semiconductor vertical-cavity
urface-emitting laser) to monitor its extreme operation [37].

In conclusion, we have theoretically demonstrated the possibility of
ontrolling the polarization instability of optical fields propagating in
err nonlinear medium through applying an external electric field. The
roposed scheme implies electronically modifying the effective birefrin-
ence of the medium and thus varying the critical power required for
he polarization instability.
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