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Abstract: Mobile robots are endeavoring toward full autonomy. To that end, wheeled mobile robots
have to function under non-holonomic constraints and uncertainty derived by feedback sensors
and/or internal dynamics. Speed control is one of the main and challenging objectives in the endeavor
for efficient autonomous collision-free navigation. This paper proposes an intelligent technique
for speed control of a wheeled mobile robot using a combination of fuzzy logic and supervised
machine learning (SML). The technique is appropriate for flexible leader-follower formation control
on straight paths where a follower robot maintains a safely varying distance from a leader robot. A
fuzzy controller specifies the ultimate distance of the follower to the leader using the measurements
obtained from two ultrasonic sensors. An SML algorithm estimates a proper speed for the follower
based on the ultimate distance. Simulations demonstrated that the proposed technique appropriately
adjusts the follower robot’s speed to maintain a flexible formation with the leader robot.

Keywords: autonomous robot; speed control; intelligent technique; fuzzy system; supervised ma-
chine learning

1. Introduction

With increasing computing power, fast progress in sensor and actuator design, and
low-cost production, robotic systems have been in ever-increasing demand and application.
The ultimate goal of robotic engineers and researchers is to achieve fully autonomous
navigation in indoor/outdoor environments [1]. The control system of an autonomous
wheeled mobile robot perceives its environment via embedded sensors and controls the
robot’s navigation. An effective control algorithm navigates the robot through a (near-)
optimal collision-free path from a start position to the target [2,3]. The path’s optimality is
measured with respect to the traversed path length and navigation time, etc. Navigation in
unknown environments with stationary and/or mobile obstacles is the main challenge for
wheeled mobile robots [4,5].

Efficient speed control is essential to the navigation and path tracking of wheeled
mobile robots. Employing intelligent and knowledge-based controllers for adjusting
the robot speed autonomously during navigation has been addressed in the literature.
Kodagoda et al. [6] have developed and implemented fuzzy controllers for the steering
and speed control of an autonomous guided vehicle. They applied fuzzy logic for steering
control and with the suitable incorporation of a braking controller, the stability of the vehicle
is guaranteed. Dursun and Durdu [7] have presented a method for the speed control of a
DC motor utilized in robots and countless industrial applications based on sliding mode
control and analysis under load changes. Shijin and Udayakumar [8] have introduced a
PID controller to adjust the speed of wheeled mobile robots using dynamic and kinematic
modeling. Their model considers the errors that emerge between the controller output
and the actual speed of the robot. Some other works [9–13] have used velocity control as a
partial element of the navigation and obstacle avoidance behavior of mobile robots.
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Among intelligent and knowledge-based techniques, fuzzy decision-making plays
a vital role in robot navigation with imprecise, incomplete, and vague sensor measure-
ments [14,15]. Besides fuzzy decision-making, machine learning is a powerful technique to
make appropriate decisions in the absence of sufficient knowledge. Supervised machine
learning (SML) uses a training set to adjust the decision process based on a pre-defined
pattern. It can be integrated into fuzzy decision-making to learn based on phenomena data
gathered from the environment and can iteratively modify parameters of the fuzzy mem-
bership, or can be applied along with a fuzzy controller to make optimal or near-optimal
decisions regarding the dynamicity of the environment.

Existing works for the speed control of mobile robots typically do not use intelligent
methods, and those that do use intelligent methods usually apply only one intelligent
strategy for this process. In contrast, this paper presents an intelligent technique for the
speed control of a wheeled mobile robot using a combination of fuzzy decision-making
and SML. The technique is aimed to appropriately adjust the speed of a follower mobile
robot in a two-robot leader-follower formation. The follower robot is equipped with two
ultrasonic sensors installed in its front to constantly measure its distance to the leader
robot. The use of two ultrasonic sensors can enhance the accuracy and reliability of the
measurements. The follower’s speed is adjusted via the fuzzy controller and the SML
algorithm employed in the proposed technique. The fuzzy controller uses both ultrasonic
sensory measurements to determine the ultimate distance of the follower to the leader. The
sensory measurements often are imprecise due to sensor errors. Fuzzy decision-making
can appropriately deal with the imprecise measurements. The SML algorithm specifies a
proper speed for the DC motors of the follower robot using the ultimate distance from the
fuzzy controller. The advantage of combining a fuzzy controller and the SML algorithm in
one technique is that the intelligent inference process is efficient under various phenomena
data. Simulation results have shown that the proposed technique preserves the stability
of the robot while preventing collisions with the leader. The main contributions of the
technique can be highlighted as below:

• Applying two ultrasonic sensors to enhance the accuracy of the distance measurements
• Determination of the ultimate distance with the fuzzy controller based on the mea-

surements from both ultrasonic sensors
• Specifying the speed of the (follower) robot with the SML algorithm based on the

ultimate distance

The remainder of the paper is organized as follows. Section 2 presents some back-
ground on fuzzy decision-making and machine learning. Section 3 describes the com-
ponents of the proposed technique in detail, including the fuzzy controller and SML
algorithm. Section 4 contains the evaluation results of the proposed technique under
different scenarios. Finally, our conclusions are presented in Section 5.

2. Background

This section presents a brief description of the main elements and procedures that are
used in fuzzy decision-making and supervised machine learning (SML).

Fuzzy logic [16,17] is a powerful tool to deal with imprecise, vague, and incomplete
information in complex systems such as robotic systems. It is based on relative graded
membership to resemble human perception and cognition in decision-making in the ab-
sence of precise knowledge. All functions of fuzzy decision-making are provided by a fuzzy
inference system. As illustrated in Figure 1, this system consists of four main components:
fuzzifier, rules, inference engine, and defuzzifier. The fuzzifier unit converts a crisp set
of input values to a fuzzy set using membership functions. The fuzzy set of the output is
calculated by fuzzy rules through a fuzzy inference process. Finally, the defuzzifier unit
converts the output fuzzy set to a crisp value using defuzzification.
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Figure 1. A schematic of fuzzy inference system.

Machine learning [18] is a subset of artificial intelligence in which computers can
learn without being explicitly programmed. It is related to the development process of
computer systems in which they can make intelligent decisions in response to new data
based on previously gained experience. Figure 2 shows the main steps in machine learning
systems. Collecting raw data is the first step of a machine learning system. The data
preparation phase determines the quality of data applied in analytical processes. An
appropriate learning model is selected and trained in the next phase. The evaluation phase
determines the performance of the selected learning model. Finally, the feedback from
the evaluation phase is used to improve the model efficiency or replace it with another
model. SML [19,20] is one of the machine learning algorithms in which the learning model
is trained using a pre-defined training set to improve the accuracy of the decision-making.
The linear regression model is a fundamental SML algorithm with two parameters that can
be represented as,

S(x) = α + βx (1)

where α and β indicate parameters that are determined during supervised training of the
model. The main goal of the linear regression model in (1) is to predict the best output
for each input x. It is worth noting that this paper considers an SML algorithm based on
linear regression.

Figure 2. Main steps of the machine learning algorithms.
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3. The Proposed Technique

Assume a two-robot leader-follower formation control scenario, where the follower
robot steers to maintain a formation with the leader robot. Two ultrasonic sensors, installed
on the forward motion direction of the follower robot, continuously measure its distance
to the leader robot. Figure 3 shows the workflow of the proposed technique for the speed
control of the follower robot. The technique consists of a fuzzy controller and an SML
algorithm to specify the ultimate distance to the leader and the speed of the follower,
respectively, in order to maintain the formation with the leader robot. The leader robot
changes its speed every t2 seconds to a random value that is unknown to the follower and
subsequently the follower robot adjusts its speed every t1 seconds.

Figure 3. The workflow of the proposed technique for the speed control.
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3.1. The Robot Model

Differentially driven mobile robots are very common robot models used for theoretical
and experimental studies. The specific mobile robot selected for the proposed speed
controller technique implementation was the Pioneer 3-DX [21] (Figure 4). This robot
model was employed for the experimental studies in the V-REP robot simulator discussed
in Section 4. We have used only two sonars installed in the front of the robot to detect
obstacles (here, to detect the leader robot).

Figure 4. Robot models for theoretical and experimental studies. (a) Schematic of a differentially driven mobile robot (the
bottom view), (b) A V-REP implemented Pioneer 3-DX robot.

3.2. The Fuzzy Controller

The fuzzy controller determines the ultimate distance between the follower robot
and the leader vehicle based on data readings of the ultrasonic sensors. Beforehand, it
should be checked that at least one of the readings of the two sensors is less than or equal
to 100 cm. The other measurement, if greater than that threshold, is set to 100 cm. In case
both measurements are greater than that threshold, both are set to 100 cm. The rationale
behind this is that when these measurements are set to the specified threshold, the speed
controller will steer the follower with the maximum speed until the distance to the leader
becomes less than 100 cm. Then, the speed controller can adjust the speed appropriately
in order to avoid collision with the leader. Note that we assume the follower’s maximum
speed is larger than the leader’s actual speed.

The fuzzy controller consists of two input parameters, namely ‘Distance 1’ and ‘Dis-
tance 2’, and one output parameter, namely ‘ultimate distance’. The linguistic terms of all
the parameters are specified as {very near, near, middle, far, very far}, and their universe of
discourse is determined as {0, 1, . . . , 100} cm. Since the follower navigates in the highest
velocity when the distance between the leader and the follower is equal or greater than
100 cm, we considered that it has the maximum value in the universe of discourse. That is,
the distances greater than 100 cm will be considered equal to 100 cm. Membership degrees
of all the linguistic terms and quantitative amounts are determined by the bell-shaped
membership function [22] as follows:

F(x; a, b, c) =
1

1 +
∣∣ x−c

a

∣∣2b (2)
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where x is a member of the universe of discourse, c and a are used to adjust the center and
width of the membership function, and b is the slope at the cross points. Figure 5 shows
the membership graphs specified for this controller.

Figure 5. Membership graphs of the fuzzy controller.

Table 1 represents the IF-THEN rules that are used in the fuzzy controller. These rules
are designed based on our experiences in a case study, in which Distance 1 and Distance 2
were fed into the fuzzy controller to obtain the safe ultimate distance. However, some of
the rules were adopted with human perceptions to enhance the performance of the fuzzy
controller. These rules are applied to generate the total rule. The outputs are determined
in a way that they can determine an appropriate ultimate distance based on Distance 1
and Distance 2. The fuzzy rules of this controller are specified by the fuzzification unit
as below:

Rule 1: If x is ‘very near’ and y is ‘very near’ then f1 is ‘very near’
Rule 2: If x is ‘very near’ and y is ‘near’ then f2 is ‘very near’
. . .

Rule 25: If x is ‘very far’ and y is ‘very far’ then f25 is ‘very far’

Table 1. IF-THEN rules of the fuzzy controller to determine the ultimate distance.

Rule No.
Inputs Output

Distance 1 Distance 2 Ultimate Distance

1 very near very near very near
2 very near near very near
3 very near middle near
4 very near far near
5 very near very far near
6 near very near very near
7 near near near
8 near middle near
9 near far middle
10 near very far middle
11 middle very near near
12 middle near near
13 middle middle middle
14 middle far middle
15 middle very far middle
16 far very near near
17 far near middle
18 far middle middle
19 far far far
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Table 1. Cont.

Rule No.
Inputs Output

Distance 1 Distance 2 Ultimate Distance

20 far very far far
21 very far very near near
22 very far near middle
23 very far middle middle
24 very far far far
25 very far very far very far

After all of the rules are separately built by the max-min function, they are aggregated
together by the max function to produce the total rule as follows: 1.0000000000 . . . 0.0000099999

. . . . . . . . .
0.0000099999 . . . 0.0000099999


201×201

∧

 0.0001599700 . . . 0.0000099999
. . . . . . . . .

0.0000099999 . . . 0.0000099999


201×201

∧ . . .

∧

 0.0000099999 . . . 0.0000099999
. . . . . . . . .

0.0000099999 . . . 1.0000000000


201×201

=

 1.000000000 . . . 0.000039998
. . . . . . . . .

0.000039998 . . . 1.000000000


201×201

The total rule is applied to calculate the distance between the robot and the leader
vehicle. Algorithm 1 represents an overall view of this procedure. At first, Distance 1 and
Distance 2 are separately fuzzified by the fuzzification unit. Then, the input fuzzy set is
determined by the AND operation between the fuzzy sets of the distances. The inference
process is performed by the Mamdani fuzzy model, as below:

µz(C) = max [min [µx(A), µy(B)]] (3)

where A and B are the input sets, C is the output set, µx(A) is the membership degree of
x in set A, µy(B) is the membership degree of y in set B, and µz(C) is the membership
degree of z in set C. This process specifies the fuzzy set of the ultimate distance based on
the input fuzzy set and the total rule. Finally, the crisp value of the ultimate distance is
computed by the defuzzification unit using the center of gravity method [23] as follows:

G =
∑n

i=1 µU(xi)xi

∑n
i=1 µU(xi)

(4)

where U is the universe of discourse, xi is element i th of the fuzzy set U, µU(xi) is the
membership degree of xi, and n is the number of elements.

Algorithm 1 Determination of the ultimate distance with the fuzzy controller

1 LD← Distance 1
2 RD← Distance 2
3 D← Ultimate distance
4 R← Total rule
5 LDF ← FUZZIFICATION (LD)
6 RDF ← FUZZIFICATION (RD)
7 InputF ← AND (LDF, RDF)
8 DF ← INFERENCE (InputF, R)
9 D← DEFUZZIFICATION (DF)

10 Return D
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3.3. The SML Algorithm

The speed of the robot’s DC motors should be regulated to control the robot’s speed
based on the ultimate distance determined by the fuzzy controller. The speed should be
determined in a way that the stability of the robot’s speed and the distance between the
vehicles will be high. If the distance is short then the speed will be decreased; otherwise, it
will be increased accordingly. The SML algorithm specifies the speed of both motors based
on the distance between the robot and the leader vehicle.

Table 2 presents some data in the training set that is determined in the controller to
find all of the possible solutions to regulate the speed of both DC motors. The distance is
in the range of [0, 100] cm, and the speed is in the range of [0, 255] PWM which later is
converted to an actual value as m/s. The main algorithm to determine the best solution
can be given by linear regression, as below:

Di f fi =
∑S

j=1
∣∣(αDj + β

)
− Sj

∣∣
S

, ∀i ∈ {1, . . . , N} (5)

where N is the number of feasible solutions, Di f fi is the difference (from the target) for
each solution, S indicates the number of selections for each solution, Dj represents the
distance for each selection, Sj is the number of randomized times for each selection, and α,
β represent the weighting parameters (to be generated randomly). The weights having the
least difference are selected as the best solution.

Table 2. Some data in the training set of the SML algorithm.

# Distance (cm) Speed (pwm)

1 28 111
2 46 147
3 90 235
4 14 83
5 2 59
6 37 129
7 57 169
8 77 209
9 100 255
10 83 221
11 70 195
12 53 161
13 33 121
14 10 75
15 4 63
16 36 127
17 58 171
18 76 207
19 94 243
20 98 251

All possible solutions are generated after the simulation process based on the training
set. Table 3 contains some of the generated solutions. The results are increasingly sorted
based on the difference parameter. Therefore, the first solution is selected as the best
solution. Figure 6 shows all solutions and the best solution resulting from the simulation
process. The blue squares indicate the instances of the training set, the yellow lines indicate
all the solutions, and the red line indicates the best solution.
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Figure 6. All solutions (yellow lines) and the best solution (red line) of the SML algorithm. Data are
demonstrated with blue squares.

Table 3. Some of the solutions of the SML algorithm.

# α β Difference

1 1.9958 55.265 0.11188
2 2.0416 53.442 1.1689
3 2.0207 58.254 4.3476
4 2.1844 43.425 4.5341
5 2.1849 43.375 4.7434
6 1.8035 61.932 4.8971
7 2.1776 49.905 5.3224
8 1.8547 67.367 5.4634
9 2.1408 42.899 5.547
10 1.8535 57.073 5.5498
11 1.7426 68.478 6.0083
12 2.2565 37.729 6.158
13 2.2412 39.78 6.2725
14 2.1326 41.218 6.3085
15 2.3216 33.757 8.5793
16 2.3812 40.222 9.4291
17 1.917 68.832 9.6143
18 2.2925 32.29 9.664
19 2.3279 47.099 9.9256
20 2.2919 46.491 10.077

For N = 20 randomly generated α and β, the best solution with the minimum differ-
ence value Di f fi = 0.11188 is found at α = 1.9958 and β = 55.265. Therefore, the speed
can be predicted by:

Velocity = α× dis + β = 1.9958× dis + 55.265 = 2× dis + 56 (6)

where dis indicates the ultimate distance determined by the fuzzy controller.
Algorithm 2 describes how to find all possible solutions and the best solution for the

controller. The values of M, N, P, minα, maxα, minβ, and maxβ are considered to equal 75,
100, 50, 0.1, 2.5, 30, and 70, respectively.
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Algorithm 2 Selection algorithm of the SML algorithm

Input:
T← Training set
M← number of instances in training setN← number of solutions
P← number of selections for each solution
minα ←minimum α; maxα ←maximum α

minβ ←minimum β; maxβ ←maximum β

Output:
Solutions (S), α, β

1 begin
2 for all N
3 begin
4 α = (maxα −minα) × rand() + minα

5 β = (maxβ −minβ) × rand() + minβ

6 sum = 0
7 for all P
8 begin
9 R = round(rand() ×M);

10 if R = 0 then
11 R = 1
12 new = α × T(R,1) + β

13 sum = sum + abs(new − T(R,2))
14 end;
15 difference = sum/P
16 S(i,1) = α

17 S(i,2) = β

18 S(i,3) = difference
19 end;
20 Sort S increasingly based on the difference values
21 α = S(1,1);
22 β = S(1,2);
23 end;

4. Evaluations

The performance of the proposed technique for the speed control was evaluated under
different conditions based on a case study that used the Pioneer 3-DX [24,25] to navigate
two robots on a road between two positions. Figure 7 shows a schematic of the simulation
scenario. The length, width, and height of the robot were 485 mm, 381 mm, and 217 mm,
respectively. We used scalability around 70% of the real robot in the simulations. The
simulation process was performed using an integration of MATLAB and V-REP in which
the model was considered in the V-REP simulator and the robot’s speed was regulated in
the MATLAB environment. The robot’s speed was determined in the periodic time t1 while
the leader vehicle’s speed was specified in the periodic time t2. The default values of t1
and t2 were considered as 2 s and 5 s, respectively. Note that max indicates the maximum
speed of the leader vehicle.

Figure 7. A schematic of the case study using two Pioneer 3-DX robots in V-REP.
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Figure 8 shows the performance of the proposed technique under various assumptions
of time parameters t1 and t2 as well as velocities of the leader. As can be seen in the results,
when the leader changed its speed to a random value, the follower’s velocity controller
could regulate the follower’s velocity properly, so, the formation was maintained without
collision between the two robots. Furthermore, the time histories of the follower’s velocities
showed relative smoothness that provided for stable motion. Figure 8f illustrates that when
the follower’s speed was constrained to be less than 1 m/s, the controller steered the robot
with the maximum speed to keep the formation.

Figure 8. Time histories of the relative distances as well as velocities.
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To compare the proposed technique with a static method under an automated highway
scenario, the robots were considered to move down a two-lane road (Figure 9). The leader
robot decreased its speed from 2 to 0.5 m/s gradually while in the static method the
follower robot adjusted its speed as

Speed =

{
|dis−100|

T , dis < 50
2, else

(7)

where dis indicates the average of Distance 1 and Distance 2, and T represents the time
interval between estimation steps. The simulation results in Figure 9 demonstrate that
when using the static method, the follower could not efficiently adjust its speed to follow
the leader with maintaining a regular distance. In contrast, when using the proposed
technique, the follower adjusted its speed intelligently and maintained its distance to the
leader properly after 7 s.

Figure 9. Comparison of results of the proposed technique and the static method.

The simulation results of the proposed technique shown in Figures 8 and 9 demon-
strate that the proposed fuzzy controller for determining the distance between the vehicles
and the SML algorithm for calculating the robot’s speed worked properly under different
conditions. The evidence can be seen in the results, which show that the distance between
the vehicles remained in a safe range to avoid any conflicts or collisions between them.
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5. Conclusions

In wheeled mobile robots, speed control is a very challenging and time-consuming
task that is required to appropriately perform the navigation and path-tracking processes.
This paper presented an intelligent speed control for a wheeled mobile robot using a
fuzzy system and supervised machine learning (SML). Two ultrasonic sensors are applied
in front of the robot to measure the distance between the robot and the leader vehicle
separately. The use of two sensors can enhance the precision of the distance estimation.
Initially, the ultimate distance of the robot from the leader vehicle is specified by the
fuzzy controller based on distance measurements from the sensors. Afterward, the SML
algorithm computes the speed of the DC motor using the ultimate distance.

The Pioneer 3-DX was applied as a case study in the V-REP simulator through in-
tegration with the MATLAB environment to navigate two robots between two positions
on a road. Evaluation results indicated that the proposed technique adjusts the speed of
the robot properly so that the distance of the robot from the leader vehicle is optimal or
near-optimal, and the robot does not collide with the front vehicle. In future work, we will
use various types of sensors to improve the precision of the measured distance and speed
of the robot.

In future works, the fuzzy controller’s performance will be analyzed under a scenario
that assumes one of the sensors has malfunctioned. Additionally, various techniques (e.g.,
neural networks) will be incorporated into the controller to increase the learning capability
of the system.
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