IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 31 July 2018; revised 12 April 2019; accepted 19 April 2019.
Date of publication 10 July 2019; date of current version 4 June 2021.

Digital Object Identifier 10.1109/TETC.2019.2919801

An Efficient Monte Carlo-Based Probabilistic
Time-Dependent Routing Calculation Targeting
a Server-Side Car Navigation System

EMANUELE VITALI", DAVIDE GADIOLI

, GIANLUCA PALERMO

, (Member, IEEE),

MARTIN GOLASOWSKI, JOAO BISPO ©, PEDRO PINTO ©, JAN MARTINOVIC, KATERINA SLANINOVA ©,

JOAO M. P. CARDOSO

, (Senior Member, IEEE), AND CRISTINA SILVANO

, (Fellow, IEEE)

E. Vitali, D. Gadioli, G. Palermo, and C. Silvano are with the Dipartimento di Elettronica, Infomazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
M. Golasowski, J. Martinovi¢, and K. Slaninova are with the IT4Innovations, VSB - Technical University of Ostrava, Ostrava 708 00, Czech Republic

J. Bispo, P. Pinto, and J.M.P. Cardoso are with the Faculty of Engineering (FEUP), University of Porto, Porto 4099-002, Portugal
CORRESPONDING AUTHOR: G. PALERMO (gianluca.palermo @ polimi.it)

ABSTRACT Incorporating speed probability distribution to the computation of the route planning in car
navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel
approach for selecting dynamically the number of samples used for the Monte Carlo simulation to solve the
Probabilistic Time-Dependent Routing (PTDR) problem, thus improving the computation efficiency. The
proposed method is used to determine in a proactive manner the number of simulations to be done to extract
the travel-time estimation for each specific request, while respecting an error threshold as output quality level.
The methodology requires a reduced effort on the application development side. We adopted an aspect-ori-
ented programming language (LARA) together with a flexible dynamic autotuning library (mARGO) respec-
tively to instrument the code and to make decisions on tuning the number of samples to improve the
execution efficiency. Experimental results demonstrate that the proposed adaptive approach saves a large
fraction of simulations (between 36 and 81 percent) with respect to a static approach, while considering dif-
ferent traffic situations, paths and error requirements. Given the negligible runtime overhead of the proposed
approach, the execution-time speedup is between 1.5x and 5.1x. This speedup is reflected at the infrastruc-
ture-level in terms of a reduction of 36 percent of the computing resources needed to support the whole navi-
gation pipeline.

INDEX TERMS High performance computing, approximate computing, adaptive applications, smart cities,

vehicle routing

I. INTRODUCTION
In smart cities, the trend is to combine and automate several
common tasks to ease the life of citizens. Among these tasks,
traffic estimation and prediction play a central role not only
to avoid traffic congestion, thus enabling predictable travel
times, but also reducing car emissions. Considering the rising
wave of self-driving cars, the amount of car navigation
requests will increase rapidly together with the need of real-
time updates and processing on large graphs representing the
urban network. This trend imposes large and powerful com-
puting infrastructures based on HPC resources.

Concerning the algorithmic problem, car navigation is one
of the main problems of the applied theoretical research. The

Dijsktra’s shortest path algorithm is used to find the optimal
path between two vertices in a weighted graph representing a
road network. Apart from the single navigation between two
points, navigation algorithms are used in various systems for
solving larger optimization problems, like route planning for
a fleet of package delivery vehicles, waste collection man-
agement and traffic optimization in a smart city [1]. Defini-
tion of the optimal path is based on the type of used weights
of the graph edges. The shortest path is based on the geo-
graphical distance between two adjacent vertices of a graph.
The fastest path is based on the time needed to cross a partic-
ular edge. There might be more complex criteria, however
their description is out of the scope of this paper. Time

2168-6750 © 2019 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

1006 See https://www.ieee.org/publications/rights/index.html for more information.

VOLUME 9, NO. 2, APRIL-JUNE 2021

https://orcid.org/0000-0001-8629-2099
https://orcid.org/0000-0001-8629-2099
https://orcid.org/0000-0001-8629-2099
https://orcid.org/0000-0001-8629-2099
https://orcid.org/0000-0001-8629-2099
https://orcid.org/0000-0002-0143-0737
https://orcid.org/0000-0002-0143-0737
https://orcid.org/0000-0002-0143-0737
https://orcid.org/0000-0002-0143-0737
https://orcid.org/0000-0002-0143-0737
https://orcid.org/0000-0001-7955-8012
https://orcid.org/0000-0001-7955-8012
https://orcid.org/0000-0001-7955-8012
https://orcid.org/0000-0001-7955-8012
https://orcid.org/0000-0001-7955-8012
https://orcid.org/0000-0002-3017-9449
https://orcid.org/0000-0002-3017-9449
https://orcid.org/0000-0002-3017-9449
https://orcid.org/0000-0002-3017-9449
https://orcid.org/0000-0002-3017-9449
https://orcid.org/0000-0002-3673-9494
https://orcid.org/0000-0002-3673-9494
https://orcid.org/0000-0002-3673-9494
https://orcid.org/0000-0002-3673-9494
https://orcid.org/0000-0002-3673-9494
https://orcid.org/0000-0002-2520-7054
https://orcid.org/0000-0002-2520-7054
https://orcid.org/0000-0002-2520-7054
https://orcid.org/0000-0002-2520-7054
https://orcid.org/0000-0002-2520-7054
https://orcid.org/0000-0002-7353-1799
https://orcid.org/0000-0002-7353-1799
https://orcid.org/0000-0002-7353-1799
https://orcid.org/0000-0002-7353-1799
https://orcid.org/0000-0002-7353-1799
https://orcid.org/0000-0003-1668-0883
https://orcid.org/0000-0003-1668-0883
https://orcid.org/0000-0003-1668-0883
https://orcid.org/0000-0003-1668-0883
https://orcid.org/0000-0003-1668-0883

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

needed to cross a particular stretch of road can be affected by
various elements, such as accidents, traffic congestion, road
works and so on. At the basic level, an upper legal limit of
speed is used, based on the assumption that each vehicle trav-
els with the same speed. This can be vastly inaccurate due to
the intrinsic natural behavior of the traffic.

With the increasing availability of historical traffic moni-
toring data, there are several research efforts to determine the
average speed on road networks by using statistical analysis
and various models. However, a single speed value is still
not very useful as it does not reflect the stochastic behavior
of the traffic. The probability distribution of the speed at a
certain time enables to incorporate low-probability real-
world events that can cause major delays and affect traffic
over wide areas. By adding the probability distribution to the
computation, the system can compute the probability of
arrival time within a certain time frame that can be useful for
a more precise route planning. This problem is called Proba-
bilistic Time-Dependent Routing (PTDR).

A scalable algorithm for solving the PTDR problem based
on Monte Carlo simulations has been presented in [2], [3], and
it represents the basis of our work. In particular, this algorithm
uses probability distributions of the travel time for the individ-
ual graph edges to estimate the distribution of the total travel
time and it is integrated with an experimental server-side rout-
ing service. This service is deployed on an HPC infrastructure
to offer optimal performance for a large number of requests as
needed by the smart city context. The PTDR algorithm used in
this work simulates a large number of vehicles driving along a
determined path in a graph at a particular time of departure.
The speed of vehicles on each road is sampled from the speed
probability distribution (also called speed profile) associated
to each graph edge. The number of samples is a parameter that
affects directly the informational value of the output as well as
its computational requirements. Given the large amount of
requests to be served, even small changes in the workload can
affect the overall HPC system efficiency. While the original
version of the algorithm [2] was based on a worst-case tuning
of the number of samples, and given that a reactive approach
[4] is not a viable solution due to the overheads, in this paper
we present a proactive method for adapting dynamically the
number of samples for the Monte Carlo (MC) simulations
based on the PTDR algorithm.

The main contributions of this paper can be summarized as
follows:

e We propose a methodology for self-adapting the PTDR
algorithm presented in [2], [3] to the input data in a pro-
active manner, maximizing its performance, while
respecting the output quality level,;

e We propose a probabilistic error model used to corre-
late the input data characteristics with the number of
samples used by the Monte Carlo algorithm;

e We adopted an aspect-oriented programming language
to keep separated the functional version of the applica-
tion from the code needed to introduce the adaptivity
layer.

VOLUME 9, NO. 2, APRIL-JUNE 2021

The remainder of this paper is organized as follows.
Section II provides an overview of the related works, while
Section III provides an introduction to the Monte Carlo appr-
oach to solve the PTDR problem. Sections IV and V describe
the proposed methodology respectively from the adaptivity
and code integration point of view. Finally, Section VI
describes the experimental campaign to validate the proposed
methodology, while Section VII concludes the paper.

Il. RELATED WORK

Determining the optimal path in a stochastic time-dependent
graph is a well-studied problem which has many formulations
[5]. Our approach is close to the Shortest-path problem with
on-time arrival reliability (SPOTAR) formulation. It can be
seen as a variant of the Stochastic on-time arrival (SOTA)
problem, for which a practical solution exists as shown in [6].
These algorithms have the objective of maximizing the proba-
bility of arriving within a time budget and are related to opti-
mal routing in stochastic networks. However, there are not so
many solutions for the time-dependent variant of both of the
problems. In [5], authors show practical results for the time-
dependent variant of SOTA, while in [7] authors elaborate on
the complexity of existing theoretical solutions of the SPO-
TAR problem and show how it can be extended with time
dependency. There are many other papers which show various
theoretical approaches for the SOTA problem, including some
practical applications [6]-[10]. The solution to the SPOTAR
problem based on policy-based SOTA as a heuristic is pre-
sented in [9]. However, the authors make the assumption that
the network is time-invariant, which is not true in real cases
whether considering long paths. The solution is also unusable
in online systems as its scalability to graphs representing real-
world routes is not sufficient.

Our approach follows the same philosophy presented in
[2], [3], where the authors provide an approximate solution
of the time-dependent variant of the SPOTAR problem based
on Monte Carlo simulations. As shown in Section III, our
approach uses the k-shortest paths algorithm [11]-[13] to
determine the paths for which the travel time distribution
is estimated. This separation allows us to implement the
approach in an online system which provides adaptive rout-
ing in real-time. Given the Monte Carlo nature of the algo-
rithm, to improve the efficiency of the PTDR calculation, we
have two main alternatives [14]. The first is sampling effi-
ciency, while the second is sampling convergence. In both
cases, the algorithm optimization is given by exploiting the
iterative nature of the Monte Carlo simulation. To obtain
sampling efficiency, several techniques have been proposed
to determine what is the next sample to be evaluated to maxi-
mize the gathered knowledge [15], [14]. However, in the
implementation under analysis, this has been discarded
because our goal is to exploit the parallelism of the underly-
ing HPC architecture [3] that excludes any iterative approach
to the Monte Carlo. For the same reason, the approaches
based on a statistical property evaluation after every iteration
[4], checking if the error is acceptable, are not acceptable.

1007

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

Both approaches would be too time-consuming and, as
already analyzed in [2], for the specific problem the number
of samples must be chosen a priori in a proactive rather than
in a reactive manner.

In this paper, we adopted autotuning techniques to face with
the Monte Carlo efficiency problem. Classical autotuning
approaches are based on code refactoring and loop parameteri-
zation to optimize extra-functional properties (e.g., power and
performance) on a given target architecture (e.g., A-tune [16],
SPIRAL [17], ATLAS [18], PowerDial [19]). Concerning a
Monte Carlo application, in [20] the authors developed a
framework to select automatically the optimal parameters for
GPU accelerated kernels, such as block size, number of threads
and other variables of the CUDA runtime. All those appr-
oaches are orthogonal to the proposed work, which is more
focused on reducing the number of samples rather than tailor-
ing the computation for a specific platform.

Two interesting works facing the autotuning problem con-
sidering the output accuracy (and based on Monte Carlo simu-
lations) are presented in [21] and [22]. These works adopt an
ad-hoc DSL language as front-end for the developer, giving to
the compilation framework the customization and the related
execution. Our approach tries to face the problem from a dif-
ferent perspective. First, we intend to reduce as much as possi-
ble the intrusiveness on the target code, thus reducing the load
on the application developer. Second, our approach relies
more on run-time and data-aware decisions, avoiding compile-
time decisions on performance-accuracy trade-offs.

A two-step approach for solving the Monte Carlo problem
has been envisioned in [23]. Similar to our work, the authors
suggest to have a first step with a reduced number of samples
to provide an initial approximate solution as fast as possible,
and then to refine the output towards the required accuracy in
successive iterations. In the proposed context, this idea suf-
fers from two main problems. First, it is suitable for scientific
work-flows, where an intermediate solution is used to trigger
the next computations, but this is not our case. Second, in the
iterative phase, it suggests a reactive approach rather than a
proactive one, that we already discussed to be necessary for
the specific PTDR problem. Another two-step approach has
been presented in [24]. In this case, the approach suggests to
build from each input a small canary — a statistically repre-
sentative subset of the actual input — that is used for a param-
eters’ exploration at runtime. In the specific PTDR case, the
approach suffers from a large overhead due to the canary
extraction and approximation selection. In the proposed
approach, we moved the two operations at design-time by
generalizing the approximation selection according to the
unpredictability function computed at runtime. Moreover,
the proposed approach has been designed to guarantee statis-
tically the compliance with an output error level.

Finally, the work in [25] presents a proactive control of the
application tuning as a constrained optimization problem,
which can be solved at the run-time according to profiling
information. The paper introduces a Bayesian model to learn
the accuracy of the computation according to data features that

1008

Reordering and
best solution
chioice

Request — > K_Alternative_paths Output

iiii
Routing
FIGURE 1. Navigation infrastructure for serving a single request.

are mainly related to the data size. Despite of the similarity of
this previous work with one of the components used for the
integration (i.e., the mARGOt autotuner [26], [27]), the pro-
posed approach is mainly related to the data-aware error predic-
tion model for PTDR, where SLA constraints are considered,
and to the seamless integration of the adaptivity concepts.

lll. MONTE CARLO APPROACH FOR PROBABILISTIC
TIME-DEPENDENT ROUTING

So far, many theoretical formulations and several algorithms

have been developed for solving the problem of computing

the travel time distribution [5]. In this paper, we consider a

path-based approach (SPOTAR), where the paths are known
a-priori and travel-time distributions are determined subse-

quently for each path [28].

In the context of the traffic navigator application shown in
Figure 1, our focus is on the efficient estimation of the arrival
time distribution (PTDR - Probabilistic Time-Dependent
Routing phase). More in detail, the three main steps of the
application can be described as follows:

(i) The first step consists of selecting K alternative paths to
be passed to the next steps. In the navigation scenario,
the identification of the shortest path is not enough to
determine a good solution, if no traffic information
have been considered. Thus alternative routes, derived
by the k-Short Paths algorithms with limited overlap,
must be adopted in this step [11]-[13]. This first phase
is out of the scope of this paper;

(i1) For each path selected by the previous step, the compu-
tation of the travel time is done by using the Probabilis-
tic Time-Dependent Routing module. While the exact
solution to the travel-time estimation (PTDR) has an
exponential complexity, in this work we approximate
efficiently the solution of the SPOTAR problem by
adopting a Monte Carlo sampling approach [2];

(iii) The final step gathers timing information provided by the
k instances of the PTDR module for each single request
and selects the best path for the user. Actually, this phase
does not provide a single route, but reorders the list of k
paths according to the user preference and to the timing
distributions determined in the previous phase [29].

This three-step approach of the navigation application
enable us to obtain an approximate solution to the SPOTAR
problem, which can be used as an online system to serve a
large volume of routing requests.

Our definition of a probabilistic road network is similar to
the definition of the stochastic time-dependent network as
described by Miller-Hooks [28], with the exception of the
segment travel times, which has been substituted by the
speed probability distribution (speed profile) for a given time

VOLUME 9, NO. 2, APRIL-JUNE 2021

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

of departure within a week. Formally, let G = (V,E) be a
well-connected, directed and weighted graph, where V is the
set of vertices and E is the set of edges. Each vertex repre-
sents a junction or some important point corresponding to
geospatial properties of the road, while edges represent the
individual road segments. Each path selected by the first
phase of the application (i.e., K-Alternative paths) can be
formally represented as a vector of graph edges S = (si,
$2y .. ,8,), While S, € E and n is the number of road seg-
ments in the path.

Using a travel time estimation function, we are interested
in estimating the travel time 6 as @S_,,‘ps where S is the given
path, ¢ is the departure time and Py are the probabilistic speed
profiles for the segments in S. More in detail, € T is a depar-
ture time within a set of possible discrete departure times
T={t:t=n-¢,n € N} [30], where the length of the inter-
val ¢ is determined by input data. P is the set of probabilistic
speed profiles for the entire graph edges E, where Py C P.
Each speed profile p € P is represented by a set of discrete
speed values and assigned probabilities. The number of speed
values depends on the method used for deriving the profiles
from historical traffic monitoring data, while the minimum and
maximum values represent respectively the congestion speed
and the free flow speed. In this work, the discrete time interval
and the number of speed values have been set respectively to
¢ =900 s (15 minutes) and to 4 speed levels according to the
characteristics of the available input data.

Focusing on the SPOTAR problem, we are not interested
in a single travel time value 6, but we have to calculate the
probability distribution of the arrival time. Given the previ-
ous formalization of the problem, the travel time distribution
can be estimated by traversing the path segments together,
while considering the speed profile distribution. In particular,
we can define a tree, where each layer represents a segment
in the selected path [2]. The tree root is the starting segment,
while the end segment is on the leaves. Each node in all
layers of the tree has [children, where / is a number of the
discrete speed values for each segment, and the tree depth
corresponds to the number of selected path segments |S].
Each edge in the tree is annotated by the discrete speed value,
its probability, and by the length of the considered segment.
A travel time can be computed by a depth-first search (DFS),
while selecting an arbitrary child node at each level of the
tree. The travel time value is then the sum of the time spent
in each segment (length/speed), while the probability of that
value is the product of the probability on each edge of the tra-
versal. Each traversal corresponds to a single car traveling
along the entire path. The exact solution is obtained by an
exhaustive search over all the possible paths between the
root node and all the leaves. This approach is clearly not effi-
cient, because it scales exponentially with the number of seg-
ments in the path.

A Monte Carlo-based approach can be successfully
employed in this case. By generating a large number of ran-
dom tree traversals, enough samples can be obtained to esti-
mate the final distribution. We define this final distribution,

VOLUME 9, NO. 2, APRIL-JUNE 2021

5, — @fi@

Path, Starting Time and other PTDR
information

Travel Time
Distribution

FIGURE 2. The original approach for probabilistic time-depen-
dent routing based on Monte Carlo simulations to derive the
travel time distribution.

which is a collection of 6 values (0; .. .#6,) obtained through
the Monte Carlo simulation MCS(x, i), where x is the number
of random tree traversals, and i is the input set of the 0 func-
tion (i.e., S, , Ps).

Given that travel times usually have a long tailed distribu-
tion due to inherent properties of the traffic (e.g., rare events
such as accidents), a large number of samples is needed to
estimate the travel time distribution with a sufficient level of
precision. Regarding the definition of the number of samples
for the Monte Carlo simulation, the specific implementation
of the PTDR kernel cannot rely on a run-time stability analy-
sis of the output. Each tree traversal (a sample of the Monte
Carlo simulation) is totally independent to the others, thus
this problem is perfectly suitable for parallel computing
architectures, such as modern CPUs or accelerators. To
exploit efficiently the parallelism, it is necessary to know a-
priori the number of travel time estimations required to build
the final distribution.

To summarize, the PTDR algorithm can be seen as in
Figure 2, where all the information regarding the request are
provided to the Monte Carlo simulation (MCS) to get the pre-
dicted travel time distribution for the given route.

IV. THE PROPOSED APPROACH

The Monte Carlo simulation is designed to use a given num-
ber of samples x for every run. Based on a conventional
approach, this number is selected according to the worst-case
analysis and it is given by the lowest number of samples to
reach the target precision [3]. In this section, we present the
proposed technique to select at runtime the number of sam-
ples for the Monte Carlo simulation according to the input
data characteristics.

Before moving to the methodological part, let us better
contextualize the problem. Even if we are interested in the
travel time distribution, our goal is to know a value 7; to
guarantee, with a certain probability, that the travel time will
be within that value: P(6 < t;) > y where i has been defined
as the input set of the travel-time function. The value t; is the
output of the PTDR phase. In the following, we characterize
that value with an additional property t;,, where y is the
probability that the travel time will be lower than .

Based on Monte Carlo simulation, we can estimate the value
of 7;, by using x samples as follows: 7}, = MCS(x,i,y). We
estimate the value 7} by selecting the yth percentile of the
finite-sample dlstrlbutlon obtained from the Monte Carlo sim-
ulation (i.e., if y = 95% then 7;, is the 95th percentile of the
distribution).

1009

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

In the context of this work, we are interested in minimizing
the execution time of the function MCS, while limiting the pre-

|l\ zv‘

diction error defined as error;, = . The target problem
can be expressed as follows:
minimize cpu_time;
X
, €y
subject to error;, <,

where e represents the upper bound on the computation error.
We want this error be relative to the output of the MCS, which
is the desired percentile of the predicted travel time. In this
way, we can abstract from the actual path. Given the tight cor-
relation between the execution time and the used number of
samples x, the previous problem can be simplified by consider-
ing the minimization of x instead of the cpu_time. According
to the Monte Carlo’s properties [31], we can derive that
Tiy = 155 > where %ﬁ;’ is the output of the MCS function com-
puted by using an infinite number of samples. Thus, we can re-
formulate the error as

5~ Tl)

Moreover, the value 7} is a random variable, asymptotically
normally distributed w1th mean fiz and standard deviation

. In particular, according to the central limit theorem [32],
the mean value does not depend on the number of Monte Carlo
simulations, and the standard deviation decreases by increas-
ing the number of samples. Given that, we can define the error
as characterized by a normal distribution with mean 0 and a
standard deviation o / Mt - In the following, we refer to the

standard deviation of the error as Ver - This expression is the

same as the coefficient of variation (relatlve standard devia-
tion) of the result of the Monte Carlo simulation.

According to the probabilistic nature of the problem, we
cannot guarantee that the error will be always less than e.
However, this can be done by relaxing the error constraint by
introducing a confidence interval (CI) level. Given the nor-
mal distribution of the error, the selected confidence interval
can be correlated with the expected error

P(error’ify <e)>Cl= eri’or“i‘:y < n(CI) x vir <k, 3)

where n(CI) is a value that express the confidence level (e.g.,
n(68%) = 1, n(95%) = 2 and n(99.7%) = 3 derived from the
1-3 o-intervals of the normal distribution). Thus, if we
decrease the number of Monte Carlo simulations used to
derive r" we decrease the execution time of the application,
but we reduce the accuracy of the results, with a larger value
for the coefficient of variation Vr -

An additional problem is given by the fact that 77 is input-
dependent. Therefore it is not possible to predict the possible
Monte Carlo error for unknown paths, according to the number
of samples. To deal with this problem, we found a feature u; of
the inputs 7 that can be used to quickly estimate the number of

1010

Profilied Knowledge
Data Evaluation
and Feature ——————
Extraction

Dynamic
autotuner «—— | Other
Requirements (e.g.
SLA, Available
Resources,
Objective
Function,...)

5”3.,

MCS

L‘égje

Path, Starting Time and other PTDR
information

Travel Time
Distribution

FIGURE 3. Proposed adaptive approach for PTDR routing based
on Monte Carlo simulations and dynamic choice of number of
simulations.

samples necessary to keep the error below the threshold e. The
idea is to evaluate the error by using u; instead of the actual i,
so that we can transform the original problem as

error;, < n(CI) X vy . 4)

The feature u; has been called unpredictability, since it repre-
sents a set of input characteristics i (e.g., road and starting
time) that provides information about how complex is the
prediction of ;. Therefore it is related on how many sam-
ples are required to satisfy a certain error and confidence
level. More details on the unpredictability feature are pre-
sented in Section IV-A.

Given that the error is no more related to the specific input
set i, but only to the feature u;, the number of samples needed
to satisfy the constraint can be easily extracted by Ve < (e c1)
A profiling phase on a set of representative inputs can be used
to extract the values of D;x , that will be used to determine the

correlation between the unpredlctablhty function and the error.
More details on the profiling phase including the prediction
function are presented in Section IV-B.

To summarize, the proposed methodology adds an adap-
tive layer on top of the Monte Carlo simulation (see Figure 3)
to determine at runtime the right number of samples for each
request satisfying the required accuracy. A feature-extraction
procedure estimates the unpredictability value from the input
data of the request (path, starting time and segment speed-
profiles). The dynamic autotuner combines this data feature
with the profiled knowledge and the extra-functional require-
ments to configure the Monte Carlo simulation.

A. UNPREDICTABILITY FEATURE

Given that the extraction of the data feature from the inputs
should be done at runtime, its computation should not be a
costly operation. Otherwise, the benefit of speeding up the
computation phase by reducing the number of Monte Carlo
samples would be reduced by the data feature extraction over-
head, eventually making the whole approach meaningless.
From the experimental data, we have found that a measure of
the unpredictability of the path can be extracted by a simple
statistical property of the set of travel times 6 extracted by a
quick Monte Carlo simulation: the coefficient of variation.

VOLUME 9, NO. 2, APRIL-JUNE 2021

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Intuitively, the more the results are spread out, the more the
route is hard to predict. Therefore, to get a precise estimation
of the distribution, and in particular the percentiles, we need a
higher number of samples.

The unpredictability function is defined as u; = oy /15,
where oy, and p, are evaluated on a MCS done with the
minimum number x of samples allowed at runtime. It is
important to note that oy, is the variance of the travel times
extracted by a single Monte Carlo simulation on the mini-
mum number of samples. We calculate the unpredictability
function together with the first set of Monte Carlo samples to
further reduce the overhead introduced by the data feature
extraction. In particular, we will use this first short Monte
Carlo run to determine if there is a need of further samples
(and how many) to satisfy the error constraint.

To validate the usage of u instead of i, we used the Spear-
man correlation test [33] between the unpredictability value
and the value of vir used in the calculation of the expected

error for different values of x and y over a wide range of
inputs sets i. In all cases, the correlation values were larger
than 0.918 showing a p-value almost 0. These correlations
confirm our hypothesis and the p-values prove that the results
are statistically significant.

B. ERROR PREDICTION FUNCTION

To predict the expected error for a specific configuration
according to the data feature u, we need to extract vr from
profiling data. We run the Monte Carlo simulation ‘several
times for each configuration in terms of number of samples. In
particular, we decided to use values ranging from 100 samples
up to 3,000. The two numbers are derived from the observation
that 100 samples are the minimum to estimate the percentile
for the distribution, while 3,000 is the number of samples
found to be good enough to satisfy the worst case conditions in
the previous work [34]. In this range of values, we also selected
300 and 1,000 samples by considering that the Monte Carlo
error decreases as 1/+/n [35]. Thus in our case at each sam-
pling level, we have that the error is almost halved.

We run each set of Monte Carlo simulation with the same
configuration in terms of the number of samples on a large set
of inputs 7, and we extract Vir and u; from each configuration.
Then we create a predictor byx x,as the quantile regression [36]
over the extracted data. The use of quantile regression improve
the robustness of the model in the context of its use. Indeed,
we are not interested in predicting an average value as final
result, but we want to use it for the inequality formula
”m, , < n(a) In this case, a higher value of the quantile with
respect to 50th (the purely linear regression), guarantees a
higher robustness in satisfying the previous inequality. The
quantile used for the regression is an additional parameter that
can be explored to trade-off robustness and performance.

V. INTEGRATION FLOW

While the previous section introduced the proposed method-
ology from the end-user perspective, thus considering the

VOLUME 9, NO. 2, APRIL-JUNE 2021

execution time and the elaboration error, this section focuses
on the application-developer perspective by presenting the
integration flow proposed to enhance the target application
with limited effort. The proposed integration flow enforces a
separation of concerns between the functional and extra-
functional properties by using an Aspect-Oriented Program-
ming Language to inject the code to introduce the adaptivity
layer in the target source code.

On one side, we used the mARGOt framework [26], [27] to
tune dynamically the application, thus implementing the adap-
tivity concepts presented in Section IV and highlighted in
Figure 3. mARGOt is an open-source dynamic autotuning
library that enhances an application with an adaptation layer.
In particular, it provides to the application the most suitable
configuration of the software knobs, according to the applica-
tion requirements and to the execution environment evolution.
The configuration selection is done by relying on application
knowledge gathered at profile time. In this context, we used
mARGOt to select the number of samples to minimize the exe-
cution time, while keeping the error below a certain threshold.
In particular, the selection is done by considering the unpre-
dictability value of the current path, and using as application
knowledge the design-time model described in Section IV-B.

On the other side, we have hidden to the application devel-
oper the code manipulation complexity by using LARA [37]
as a language to describe user-defined strategies, and its
Clava source-to-source compiler’ for code analysis and trans-
formation. LARA is a Domain Specific Language inspired by
the Aspect-Oriented Programming concepts. It enables the
user to capture specific points in the code based on structural
and semantic information, and then analyze and act on those
points. This generates a new version of the application, leav-
ing the original unchanged and separating the main func-
tional concerns from those specified in LARA. Clava is a C/
C++ source-to-source compiler, where the code analysis and
transformation steps are guided by scripts written in the
LARA language. In this work, we used LARA and Clava for
two main tasks. First, to instrument the original source code
with the autotuner glue code. Second, to configure the auto-
tuner library according to the application requirements.

Figure 4 outlines the integration framework, highlighting
the two main LARA aspects used (Listings 1 and 2) and the
automatic generation process from the original application
(Listing 3) to the final enriched code (Listing 4).

The code in Listing 1 shows the aspect needed to configure
mARGOt, generating an autotuning library tailored accord-
ing to the application requirements. This represents the mAR-
GOt Configuration aspect shown in Figure 4. At lines 9-16,
we define the num_samples tunable software knob, the
unpredictability feature that we want to observe, the error
metric and the goal (i.e., the Service Level Agreement,
error < 3%). Once the knobs, metrics and data features are
defined, we can proceed with the generation of the multi-
objective constrained optimization problem (lines 19-21),

'Project repository: https:/github.com/specs-feup/clava

1011

https://github.com/specs-feup/clava

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

3
. " >
mARGOt Configuration N N T [N
aspect (.lara) [0]
Original Q Q
Application 2
(-cpp) o i
- - Final
f
Application Specific Application

Glue Code and mARGOt APl ——

insertion aspect (.lara) (-cpp)

User Specified Automatically Generated

FIGURE 4. Integration flow outlining the two main LARA aspects
and related actions: Original code enrichment and autotuner
configuration.

called states in mARGOt (line 19). Lines 20-21 define
respectively the objective function and the constraint for the
target problem. Finally, line 24 builds the LARA internal
structure margotCodeGen_ptdrMC that is then used to gen-
erate the mARGOt configuration file and its code generator.
The second aspect (shown in Listing 2) integrates the pro-
posed methodology in the target application. This is the Appli-
cation Specific Glue Code and mARGOt API insertion aspect
shown in Figure 4. It takes as input (line 3) the mARGOt code
generator given by the previous aspect (Listing 1) and the
number of samples needed to evaluate the unpredictability
feature. At line 6, we query the original code (shown in Listing
3) to identify the statement (stmt) including the Monte Carlo
function call (mc.RunMonteCarloSimulation) as target join
point to be manipulated. Lines 7—17 contain the actual manip-
ulation actions done on the selected join point stmt of the
target code. There are two different types of operations. First,
to integrate the mARGOt calls for initializing the library and
updating the software knob (Lines 10 and 14). Second, to
insert the glue code (LARA codedef) for calculating the
unpredictability (line 12 and lines 21-25), and to replace the
original Monte Carlo call with the optimized one that does not
repeat the unpredictability samples (line 16 and lines 28-31).

aspectdef McConfig
/+ Generated Code Structurex/
output codegen end

1
2
3
4
5 /+ mARGOt configuration =/
6 var config = new MargotConfig();
7 var ptdrMC = config.newBlock(’ ptdrMC’);
8
9 /#* knobs #/
10 ptdrMC.addKnob(’ num_samples’, " samples’, "int’);
11 /+ data features */
12 ptdrMC.addDataFeature(’ unpredictability’, ’ float’, ' >=");
13 /* metrics =/
14 ptdrMC.addMetric(’ error’, " float’);
15 /* goals =/
16 ptdrMC.addMetricGoal(’ my_error_goal’,’<=’,0.03, "error’);

18 /* optimization problem */

19 var problem = ptdrMC.newState(’ problem’);
20 problem.minimizeKnob(’ num_samples’);

21 problem.subjectTo(’ my_error_goal’);

22

23 /# creation of the mARGOT code generator for the following code
enhancement (McCodegen aspect) */

24 margotCodeGen_ptdrMC = MargotCodeGen.fromConfig(config, ’
ptdrMC’);

25 end

LISTING 1. LARA aspect for configuring the mARGOt autotuner.

1012

1 aspectdef McCodegen
2 /+ Target function, mARGOLt code generator from McConfig aspect, #
samples for feature extraction +/

3 input margotCodeGen_ptdrMC, unpredictabilitySamples end
4
5 /+ Target function call identification =/
6 select stmt.call{’ mc.RunMonteCarloSimulation’} end
7 apply
8 /+ Target Code Manipulation */
9 /+ Add mARGOt Init+/
10 margotCodeGen_ptdrMC.init($stmt);
11 /+ add unpredictability code */
12 $stmt.insert before UnpredictabilityCode(unpredictabilitySamples);
13 /+ Add mARGOt Update #/
14 margotCodeGen_ptdrMC.update($stmt);
15 /+ Add Optimized Call Code */
16 $stmt.insert replace OptimizedCall(unpredictabilitySamples);
17 end
18 end

20 /= Unpredictability extraction code */

21 codedef UnpredictabilityCode(unpredictabilitySamples) %{
22 auto travel_times_feat = mc.RunMonteCarloSimulation([[
unpredictabilitySamples]], startTime);

23 ResultStats feat_stats(travel_times_feat, {});
24 float unpredictability = feat_stats.variationCoeff;
25 }%end

27 /+ Optimized MonteCarlo call =/
28 codedef OptimizedCall(unpredictabilitySamples) %{

29 auto run_result = mc.RunMonteCarloSimulation(samples — [[
unpredictabilitySamples]], startTime);

30 run_result.insert(run_result.end(), travel_times_feat.begin(),
travel_times_feat.end());

31 }%end

LISTING 2. LARA aspect for inserting the application-specific
glue code (unpredictability extraction) and the required mMARGOt
calls.

/+ Load data »/

Routing::MCSimulation mc(edgesPath, profilePath);

auto run_result = mc.RunMonteCarloSimulation(samples, startTime);
ResultStats stats(run_result);
Routing::Data::WriteResultSingle(run_result, outputFile);

return 0;

U W=

LISTING 3. Original source code before integrating the adaptivity
layer.

1 /+Load data #/
2 Routing:MCSimulation mc(edgesPath, profilePath);
3 /+ BEGIN LARA INSERT codedef UnpredictabilityCode */
4 auto travel_times_feat = mc.RunMonteCarloSimulation(100, startTime);
5 ResultStats feat_stats(travel_times_feat, {});
6 float unpredictability = feat_stats.variationCoeff;
7/« END LARA INSERT codedef UnpredictabilityCode */
8 /+ BEGIN LARA margotCodeGen_ptdrMC.update »/
9 if(margot:ptdrMC::update(samples, unpredictability)) {
10 margot:ptdrMC::manager.configuration_applied();

}
12 /+ END LARA margotCodeGen_ptdrMC.update =/
13 /+ BEGIN LARA REPLACE codedef OptimizedCall +/
14 auto run_result = mc.RunMonteCarloSimulation(samples — 100, startTime);
15 run_result.insert(run_result.end(), travel_times_feat.begin(),
travel_times_feat.end());
16 /+ END LARA REPLACE codedef OptimizedCall +/
17 ResultStats stats(run_result);
18 Routing::Data::WriteResultSingle(travel_times_new, outputFile);
19 return 0;

LISTING 4. Target source code after the integration of the adap-
tivity layer.

Listing 4 shows the outcome of the integration flow after
all the code manipulation steps, as highlighted in Figure 4.
The code inserted or replaced with LARA is marked with
BEGIN-END comments.

VOLUME 9, NO. 2, APRIL-JUNE 2021

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

3000 samples.
1000 samples
300 samples
100 samples

3000 regression
1000 regression
300 regression
100 regression

3000 samples
1000 samples
300 samples
100 samples

oy %]

V3,

3000 samples
1000 samples
300 samples
100 samples

3000 regression
1000 regression
300 regression
100 regression

3000 regression
1000 regression
300 regression
100 regression

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.04 0.06 0.08
Input Unpredictability

(a) Quantile regression using the 50" perc.

0.1
Input Unpredictability

(b) Quantile regression using the 75" perc.

0.12 0.14 0.16 0.18 0.2 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Input Unpredictability

¢) Quantile regression using the 95" perc.
(g g p

FIGURE 5. Training of the error model by using different number of samples and quantile regressions.

Overall, in this instance of integration, we used 53 lines of
LARA to generate 221 lines of C++ code. However, the
advantage does not only consists in saving lines of code (>
4x). There are three main reasons to justify this approach.
First, the user does not need to know the details about the
mARGOt configuration files and low-level C++ API, but he
can instead focus on the high-level interface available in
LARA that is more declarative on the target problem (as
shown in Listings 1 and 2). Second, the proposed approach
reuses information through different steps of integration.
There is mARGOt-specific information that should be pro-
vided to the user at several steps, such as in the configuration
files and when using the autotuning API (e.g., the name of the
autotuner block and the knobs and data features). By using the
high-level LARA aspects, the user defines this information
only once, thus saving time and possibly introducing fewer
errors. Third, the proposed approach leverages on the separa-
tion of concerns between the original code (functional descrip-
tion) and the autotuning code (extra-functional optimizations).
Therefore the extra-functional optimizations, including prob-
lem definition (optimization targets and constraints), are kept
separated and the user does not have to modify the original
source code. In this way, the original code developer does not
need to be involved in the optimization process, even enabling
the functional development and extra-functional optimization
to run in parallel.

VI. EXPERIMENTAL RESULTS

In this section, we show the results of applying the proposed
methodology to the PTDR algorithm. The platform used for
the experiments is composed of several nodes based an the
Intel Xeon E5-2630 V3 CPUs (@2.8 GHz) with 128 GB of
DDR4 memory (@1866 MHz) on a dual channel memory
configuration. In Section VI-A, we show the results of the
model training for estimating the expected error. Then, in
Section VI-B, we validate the approach by verifying the error
constraint €. In Section VI-C, we compare the proposed
approach with respect to the original version taking a static
decision on the number of samples, while in Section VI-D,
we discuss the overhead introduced. Finally, in Section VI-
E, we evaluate the optimization impact when considering the
navigation service at system-level.

VOLUME 9, NO. 2, APRIL-JUNE 2021

A. TRAINING THE MODEL

The first phase of the methodology is done off-line and con-
sists of training the error model (erfor;,) presented in
Section IV-B by using a different number of samples. For
training the quantile regression, we used profiling data
extracted by running the PTDR algorithm on a training set.
This training dataset has been built by using random requests
done on 300 different paths across the Czech Republic in dif-
ferent time-slots, thus considering different speed profiles for
each segment of the paths. All these requests have been done
for all the 4 levels of sampling used in this paper (i.e., 100,
300, 1000 and 3000, as described in Section IV-B). The out-
put of the model training is shown in Figure 5. The points in
the three plots represent the results obtained from the profil-
ing runs. The lines represent the quantile regression lines,
thus the model that will be used at runtime. The three sub-
figures are different in terms of the quantile value used for
the regression. Figures 5(a), 5(b) and 5(c) represents the
regression results by using respectively the 50th, 75th and
95th quantile. The three regressions are slightly different
because we pass from a more permissive one in Figure 5(a),
where almost half of the points are below the corresponding
regression lines, to the most conservative one in Figure 5(c),
where only a few points are above. We can see that the
coefficients of the lines of the quantile regression are almost
doubled passing from 75th to 95th percentile (e.g., for 100
samples, the coefficients pass from 0.27 to 0.38, while for
3,000 samples they pass from 0.049 to 0.071).

The extracted models are now ready to be used at runtime by
the dynamic autotuner to select the minimum number of sam-
ples that satisfy the error constraint for the given unpredictabil-
ity value. The results shown in Section VI-B will demonstrate
the effectiveness of the proposed method at runtime.

B. VALIDATION RESULTS

The set of validation results presented in this section are
reported to demonstrate how the dynamic tuning of the num-
ber of samples satisfies the error constraints. We randomly
generated 1,500 requests for the enhanced PTDR module for
routes on the Czech Republic at different starting times.
These requests are different from the ones used in the train-
ing phase of the model. We validated the approach by using

1013

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

+: 100

0: 3000

Error [%]
Error [%]

+: 100 +: 100

0: 3000 0: 3000

Error [%]
IS

@
@goog% °

o o 2
X 1 o
%ﬁé’ 8 ° 1

0.05 01 0.15 0.2 025 0.05 0.1
Unpredictability

(a) Quantile regression using the 50"

Unpredictability

perc. (b) Quantile regression using the 75" perc.

0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Unpredictability

(c) Quantile regression using the 95" perc.

FIGURE 6. Validation of the proposed approach by using 3 percent as target error and different percentiles for the quantile regression.

three different quantile regressions (on 50th, 75th and 95th
quantile), two different target errors e (3 and 6 percent) and a
confidence interval (CI) for the error constraint equal to 99
percent (i.e., n(99%) = 3). The error is derived by consider-
ing a run of Monte Carlo simulation on the same input set by
using 1 million of samples, enough to be considered a good
estimation of the actual travel time distribution. Then, we
selected as error the maximum among different key percen-
tiles: 5th, 10th, 25th, 50th, 75th, 90th and 95th percentile.
The results are reported in Figures 6 and 7 respectively for
an error constraint € equal to 3 and 6 percent. The two figures
show the error results for each run with respect to the unpre-
dictability feature extracted on the path. Each dot in the plots
represents a PTDR request, while its shape depends on the
number of samples used for the Monte Carlo simulation. In
most of the cases, the actual error is below the target error.
As it was expected by considering the same value of the error
constraint €, the more conservative is the quantile regression,
the less are the points that violate the constraint error. For the
data we processed, the number of times that the error con-
straint is not respected is within the selected CI (99 percent).
At the same time, moving from a less conservative quantile
regression (e.g., 50th percentile) towards a more conservative
one (e.g., 95th percentile), it is possible to note how the
threshold values for selecting the same number of samples
shift to the left. By considering an error constraint € = 3%
(see Figure 6), the maximum unpredictability value for 300
samples moves from 0.075 to less than 0.06 respectively
when considering the quantile regression from the 50th per-
centile, up to the 95th quantile. Similar is the case when we

0: 3000

consider an error constraint € = 6% (see Figure 7), where the
same threshold moves from an unpredictability of 0.15 to
0.14 and 0.11 when using the 50th, the 75th and the 95th as
quantile value for the regression. Finally, we can notice the
difference in terms of number of samples between the two
cases with different e values. Indeed, while for € equal to 3
percent (Figure 6) only a very small fraction of the cases use
100 samples and there is a not negligible fraction of cases
where 3,000 samples are employed. For € equal to 6 percent
(Figure 7), in some cases only 100 samples are required.

C. COMPARISON RESULTS WITH STATIC APPROACH
In this section, we demonstrate the advantages of the pro-
posed approach with respect to the baseline version [2],
where the number of samples is defined a priori. To provide
a fair comparison, we extracted the number of samples to be
used for the baseline version by using the training dataset.
For the 4 levels of sampling used in this paper (i.e., 100,
300, 1000 and 3000, as described in Section IV-B), we ana-
lyzed the cumulative distributions of the expected error (see
Figure 8). We selected the minimum sampling level that
passes a certain threshold of the cumulative value before
reaching the error constraint value e. This threshold value
has almost the same robustness meaning of the quantile
regression value used in our approach. In the following, we
compare the proposed approach, where the quantile regres-
sion model has been built over a certain percentile, with a
static tuned version, where the same percentile is used as
threshold for the cumulative. If we use for the proposed
approach the quantile regression at 95 percent, we compare

0: 3000 0: 3000

Error [%]
Error [%]

Error [%]
IS

0.05 0.1 0.15 0.2 0.25 0.05 0.1
Unpredictability

(a) Quantile regression using the 504"

Unpredictability

perc. (b) Quantile regression using the 75" perc.

0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Unpredictability

5th

(c) Quantile regression using the 95" perc.

FIGURE 7. Validation of the proposed approach by using 6 percent as target error and different percentiles for the quantile regression.

1014

VOLUME 9, NO. 2, APRIL-JUNE 2021

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

100 samples
300 samples

1000 samples
3000 samples

0.9
0.8 1
0.7 4

0.6 7
0.5
0.4 +

Cumulative

0.3 4
0.2 4
0.1 4

0 T T T T T T T)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Error

FIGURE 8. Cumulative distribution of the error by varying the
number of samples over the training set.

with the statically tuned version, where the number of sam-
ples is defined by looking at the cumulative curve that
reaches at least 95 percent before to the target error con-
straint. In Figure 8, we can notice that for an error constraint
€ = 6% the static tuning is set to 1,000 samples for the per-
centile interval between 72th and 98th. For values larger than
98th and smaller than 72th percentile (down to 7th) we have
to consider respectively the configuration using 3,000 and
300 samples. On the other side, for € = 3% we select 3,000
samples within the percentile interval 72th-97th, 1,000 sam-
ples for percentile values smaller than 72th (down to 5th),
while we need more than 3,000 samples if the request is very
tight on a percentile larger than 97th.

Table 1 shows the comparison results obtained by using the
proposed adaptive technique with respect to the original version
(baseline) with the statically defined number of samples
obtained with the previously described analysis. In particular,
Table 1 presents the average number of samples and gain with
respect to the baseline for different values of error constraint €
and different percentiles used to build the predictive model and
for the static tuning of the baseline. The results are obtained by a
large experimental campaign over randomly selected pairs of
Czech Republic routes and starting times, different from those
used for the training. While the routes have been randomly
selected, we used a more realistic distribution of the starting
time emulating the actual road usage [38], [39].

In the considered cases, the proposed approach reduces the
number of samples by at least the 36 percent, and up to the
81 percent. As expected, the average number of samples for
the proposed approach is smaller when we relaxed either the
error constraint (i.e., 6 percent) or the percentile used for build-
ing the model (e.g., 50th percentile). The lower gain for the
configurations using the 50th percentile with respect to the
cases using the 75th-95th percentile is due to the fact that in
the former case the baseline requires a smaller number of sam-
ples with respect to the latter case (i.e., 1,000 versus 3,000 for
€ = 3% and 300 versus 1,000 for e = 6%). Looking at abso-
lute numbers, it is possible to detect that even if the percentage
gain seems to be higher with more conservative regressions

VOLUME 9, NO. 2, APRIL-JUNE 2021

TABLE 1. Average number of samples for the validation set using
different quantile regression values (columns) and different
error constraints

Average Number of Samples

€ 50th perc. 75th perc. 95th perc.

3% Dbaseline 1000 3000 3000
adaptive 632 (=36%) 754 (—=74%) 1131 (—62%)

6% baseline 300 1000 1000
adaptive 153 (—49%) 186 (—81%) 283 (—=71%)

The results are reported for the baseline and proposed adaptive versions.

(75th-95th), the actual average number of samples used is
smaller with the more permissive quantile (50th).

The reduction in terms of the number of samples is directly
reflected on the execution time because there is a linear
dependency. We observed an execution time speedup
between 1.5x and 5.1x. A more detailed analysis on the over-
head is presented in Section VI-D.

To further analyze the benefits of the proposed methodology,
Figure 9 shows the number of samples selected by the adaptive
Monte Carlo simulation, when the same request in terms of tar-
get path is done every 15 minutes during the entire week. The
temporal interval is derived from the smallest time granularity
(¢) of the database containing the speed profiles. The two plots
(a) and (b) have been generated by using the 3 and 6 percent
respectively as maximum target error and for both experiments
a quantile regression on the 75th percentile.

By looking at the number of samples requested by the
adaptive version of the Monte Carlo simulation, we can eas-
ily recognize well-known traffic behaviors in both plots. The
daily distribution on the weekdays is characterized by two
main peaks determined by less predictable situations. The
first peak is around the 7-8 am timeslot, while the second
one is around the 4-5 pm. During the weekend, the morning
peak is a bit postponed, while the afternoon peak almost dis-
appears. It is also clearly visible how the evening hours are
the most predictable ones.

The dynamic behavior captured by the enhanced version of
the algorithm cannot be exploited by using the original (base-
line) version. Following the same philosophy adopted in
Table 1, the original version must be tuned by considering
3,000 samples for the experiment in Figure 9(a) (¢ = 3%) and
1,000 samples for the experiment in Figure 9(b) (e = 6%). In
both cases, the static tuning requires a higher number of sam-
ples than the proposed techniques, which instead requires such
alarge number only when strictly required (traffic peaks). Also
considering the static tuning to the average case (i.e., 1,000
samples for the experiment in Figure 9(a) and 300 samples for
the experiment in Figure 9(b)) is not a viable solution. This is
because there are still a lot of sampling reduction possibilities
in predictable moments that are not captured, and more impor-
tantly, the travel time predictions are not able to satisfy the
algorithm output quality during the most unpredictable peri-
ods. Finally, a fixed time-slot policy is sub-optimal, given that

1015

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

3000

1000

Number of Samples

100

L LI
0 U

Monday Tuesday Wednesday

Thursday Friday

Saturday Sunday

(a) Error constraint e=3%

3000

Number of Samples

LI

Monday Tuesday Wednesday

A A

Thursday Friday

Saturday Sunday

(b) Error constraint e=6%

FIGURE 9. Number of samples selected by the proposed adaptive method when the same request is performed every 15 minutes during

the week.

the unpredictability strongly depends not only on the time of
the request, but also on the path characteristics (e.g., urban or
countryside path, close or far from the congested areas) and
length (e.g., when it is expected the arrival in a congested area).

D. OVERHEAD ANALYSIS

Even if we already described in Section V how we reduced
the integration overhead from the application developer point
of view, this section explains the time-overhead introduced
to obtain the proposed adaptivity. In particular, the additional
computations that we add are related to the calculation of the
v and to the autotuner calls used to determine the right
number of samples to be used. The initial 100 Monte Carlo
samples, required to extract the data feature, are not part of
the overhead given that they are reused (and thus discounted)
to calculate the expected travel time (see Listing 4).

Figure 10 shows the overhead introduced by the proposed
methodology compared to a set of Monte Carlo calculation
by using a different number of samples (from 100 to 300,
and 1 M) over a set of paths among different locations in the
three main cities of the Czech Republic. As expected, it is

108

107
2106
g10°]
E
< 104 =
5103
o
Q

2
X 10

10! S

10°

overhead 100 300 1000 3000
Num of Samples

1000000

FIGURE 10. Execution time overhead due to the additional code
for the proposed method with respect to the target Monte Carlo
simulation by varying the number of samples.

1016

evident that the execution time is strictly correlated to the
number of samples used for the travel time computation. The
different paths used are in a range between 300 and 800 seg-
ments. When we fixed the number of samples, the different
number of segments are the main reasons of variability for
the computing time of the Monte Carlo simulation.

Even if needed for every request, the overhead introduced
by our approach is almost negligible, being more than two
orders of magnitude smaller than the smaller Monte Carlo
simulation with 100 samples. In particular, the execution
times of the data feature extraction and mARGOt calls are
comparable to the evaluation of a single sample of the Monte
Carlo run on a path composed of 200 road segments.

E. SYSTEM-LEVEL PERFORMANCE EVALUATION

To quantify at system-level the effects of the proposed adap-
tive method, in this section we present an analysis done
when considering that the efficient PTDR module is included
in the full navigation pipeline shown in Figure 1. We built a
performance model of the navigation pipeline by using the
simulation environment Java Modeling Tools (JMT) [40].
JMT is an integrated environment for workload characteriza-
tion and performance evaluation based on queuing models
[41]. Tt can be used for capacity planning model simulation,
workload characterization and automatic identification of
bottlenecks. In particular, to build the simulation model of
the queuing network, we considered one station for each of
the modules composing the navigation pipeline and we
added a fork-join unit to model the parallel PTDR evalua-
tions of each alternative path found in the first stage.

The model, shown in Figure 11, was annotated with values
derived by the profiling of each module (K-Alternative path,
PTDR, and reordering) and considering a value for K (the
number of alternative paths) equal to 10. Moreover, we made
a resource allocation according to a load produced by up to
100 K cars producing a request every 2 minutes. The latter

VOLUME 9, NO. 2, APRIL-JUNE 2021

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

J -
s >

Navigation_Requests

D

Queue_K_AlternPath

—»@—»

Fork_K_Paths Queue_PTDR

—

Join_K_Paths

Queue_Reordering

|!<

Navigation_Response

FIGURE 11. Navigation pipeline modeled using JMT.

number is in line with the consideration of having self-driv-
ing cars continuously connected with route planner, while
the former has been derived by a simple estimation consider-
ing a Smart City such as the Milan urban area. In this area,
there is a population of around 4 Million people and every
day it is estimated that there are more than 5 Million trips, of
which only less than 50 percent are done by using public
transports [42], [43].

Under these conditions and considering the configuration
with € = 6% and 95th percentile, we found that by adopting
the proposed technique we obtained a 36 percent reduction
in terms of number of resources needed to satisfy the target
workload. In particular, we can distinguish two cases. The
first case considers the number of resources needed to satisfy
the steady-state conditions, and thus that the throughput in
terms of input requests should be satisfied by all the stages.
In this case, without the proposed optimization, we would
have needed at least 777 computing resources (cores).
Among them, 400 cores (52 percent of the entire set) should
be dedicated to PTDR. By applying the proposed technique
only 497 cores are needed, reducing to 120 (24 percent of the
entire set) those required for the PTDR stage. The second
case considers a more dynamic environment, where it is sug-
gested to keep the average utilization rate of each station
below 70 percent. While respecting this rule of thumb [44],
the distribution of the system response time (the time passing
from the navigation request to the response) is narrow, thus
better to react to a burst of requests. In this second case, with-
out the proposed optimization, we would have needed 1,010
cores to allocate the entire pipeline. The 572 of them (57 per-
cent of the entire set) should be dedicated to the PTDR stage.
By applying the proposed technique, 646 cores are enough to
allocate the pipeline and out of them only 172 (26 percent of
the entire set) are dedicated to the PTDR.

VIl. CONCLUSIONS

In this paper, we presented an innovative approach to select
dynamically the number of samples used in a Monte Carlo
simulation to solve the Probabilistic Time-Dependent Rout-
ing problem. The proposed method samples quickly the data

VOLUME 9, NO. 2, APRIL-JUNE 2021

to extract an unpredictability feature to determine in a proac-
tive manner the number of simulation to be executed while
satisfying a certain error threshold. The runtime decision is
based on a probabilistic error model — learned offline — corre-
lating the unpredictability feature extracted from the data and
the number of samples used by the Monte Carlo algorithm.
Experimental results demonstrated that the proposed adap-
tive approach for the PTDR problem is able to save a large
fraction of simulations (between 36 and 81 percent) with
respect to a static approach while considering different traffic
situations, paths and error requirements. Considering the
entire navigation pipeline, composed also of the k-alternative
path and reordering stages, the proposed technique guaran-
tees a significative reduction in terms of computing resour-
ces. Finally, we adopted an aspect-oriented programming
language (LARA) together with a flexible dynamic autotun-
ing library (mARGO) to reduce the effort necessary on the
application developer for introducing the code needed to
improve the execution efficiency.

ACKNOWLEDGMENTS

This work has been supported by European Commission
under the grant 671623 FET-HPC-ANTAREX (AutoTuning
and Adaptivity appRoach for Energy efficient eXascale HPC
systems) and by The Czech Ministry of Education, Youth
and Sports from the National Programme of Sustainability
(NPU 1) project “IT4Innovations excellence in science —
LQ1602” and by the IT4Innovations infrastructure which is
supported from the Large Infrastructures for Research,
Experimental Development and Innovations project “IT4In-
novations National Supercomputing Center — LM2015070.

REFERENCES

[1] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applica-
tions, vol. 18. Philadelphia, PA, USA: SIAM, 2014.

[2] R.Tomis, L. Rapant, J. Martinovi¢, K. Slaninovd, and I. Vondrak, “Probabi-
listic time-dependent travel time computation using Monte Carlo simulation,”
in Proc. Int. Conf. High Perform. Comput. Sci. Eng., 2015, pp. 161-170.

[3] M. Golasowski, R. Tomis, J. Martinovi¢, K. Slaninova, and L. Rapant, “Perfor-
mance evaluation of probabilistic time-dependent travel time computation,” in
Proc. IFIP Int. Conf. Comput. Inf. Syst. Ind. Manage., 2016, pp. 377-388.

[4] M. J. Gilman, “A brief survey of stopping rules in Monte Carlo simula-
tions,” in Proc. 2nd Conf. Appl. Simulations, 1968, pp. 16-20.

[51 A. Agafonov and V. Myasnikov, “Reliable routing in stochastic time-
dependent network with the use of actual and forecast information of the
traffic flows,” in Proc. IEEE Intell. Vehicles Symp., 2016, pp. 1168-1172.

[6] S. Samaranayake, S. Blandin, and A. Bayen, “A tractable class of algo-
rithms for reliable routing in stochastic networks,” Procedia-Social Behav-
ioral Sci., vol. 17, pp. 341-363, 2011.

[7]1 Y.M.Nie and X. Wu, “Shortest path problem considering on-time arrival prob-
ability,” Transp. Res. Part B: Methodological, vol. 43, no. 6, pp. 597-613,
2009.

[8] M. Abeydeera and S. Samaranayake, “GPU parallelization of the stochas-
tic on-time arrival problem,” in Proc. 21st Int. Conf. High Perform. Com-
put., 2014, pp. 1-8.

[9] M. Niknami and S. Samaranayake, “Tractable pathfinding for the stochas-
tic on-time arrival problem,” in Proc. Int. Symp. Exp. Algorithms, 2016,
pp. 231-245.

[10] E. Nikolova, J. Kelner, M. Brand, and M. Mitzenmacher, “Stochastic
shortest paths via Quasi-convex maximization,” in Proc. Eur. Symp. Algo-
rithms, 2006, pp. 552-563.

1017

IEEE TRANSACTIONS ON

EMERGING TOPICS

IN COMPUTING

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

[30]

[31]
(32]
(33]

[34]

[35]

1018

A. Paraskevopoulos and C. Zaroliagis, “Improved alternative route plan-
ning,” in Proc. 13th Workshop Algorithmic Approaches Transp. Model.
Optimization Syst., Sep. 2013, pp. 108—122. [Online]. Available: https:/
hal.inria.fr/hal-00871739

C. Theodoros, B. Panagiotis, G. Johann, and L. Ulf, “Alternative routing:
K-shortest paths with limited overlap,” in Proc. 23rd SIGSPATIAL Int.
Conf. Advances Geographic Inf. Syst., 2015, pp. 68:1-68:4.

T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser, “Exact and
approximate algorithms for finding k-shortest paths with limited overlap,”
in Proc. 20th Int. Conf. Extending Database Technol., 2017, pp. 414-425.
H. Janssen, “Monte-Carlo based uncertainty analysis: Sampling efficiency and
sampling convergence,” Rel. Eng. Syst. Safety, vol. 109, pp. 123-132, 2013.
Q. Xu, M. Sbert, M. Feixas, and J. Sun, “A new adaptive sampling tech-
nique for Monte Carlo global illumination,” in Proc. 10th IEEE Int. Conf.
Comput.-Aided Des. Comput. Graph., Oct. 2007, pp. 191-196.

C. A. Schaefer, V. Pankratius, and W. F. Tichy, “Atune-IL: An instrumen-
tation language for auto-tuning parallel applications,” in Proc. Eur. Conf.
Parallel Process., 2009, pp. 9-20.

M. Pischel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “SPIRAL: A generator for platform-adapted
libraries of signal processing algorithms,” Int. J. High Perform. Comput.
Applications., vol. 18, no. 1, pp. 21-45, 2004.

R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra soft-
ware,” in Proc. ACM/IEEE Conf. Supercomput., 1998, pp. 1-27.

H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in Proc.
16th Int. Conf. Archit. Support Program. Languages Operating Syst., 2011,
pp. 199-212.

A. Paukste, “Monte Carlo optimisation auto-tuning on a multi-GPU clus-
ter,” in Proc. 2nd IEEE Int. Conf. Parallel Distrib. Grid Comput., Dec.
2012, pp. 894-898.

V. Vassiliadis, C. Chalios, K. Parasyris, C. D. Antonopoulos, S. Lalis,
N. Bellas, H. Vandierendonck, and D. S. Nikolopoulos, “Exploiting signif-
icance of computations for energy-constrained approximate computing,”
Int. J. Parallel Program., vol. 44, no. 5, pp. 1078-1098, Oct. 2016.

J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe, “Language and compiler support for auto-tuning vari-
able-accuracy algorithms,” in Proc. Int. Symp. Code Generation Optimiza-
tion, Apr. 2011, pp. 85-96.

J. S. Miguel and N. E. Jerger, “The anytime automaton,” in Proc. ACM/
IEEE 43rd Annu. Int. Symp. Comput. Archit., Jun. 2016, pp. 545-557.

M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang,
“Input responsiveness: Using canary inputs to dynamically steer approxi-
mation,” in Proc. 37th ACM SIGPLAN Conf. Program. Language Des.
Implementation, 2016, pp. 161-176.

X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive control of
approximate programs,” in Proc. 21st Int. Conf. Archit. Support Program.
Languages Operating Syst., 2016, pp. 607-621.

D. Gadioli, G. Palermo, and C. Silvano, “Application autotuning to sup-
port runtime adaptivity in multicore architectures,” in Proc. Int. Conf.
Embedded Comput. Syst.: Archit. Model. Simul., 2015, pp. 173-180.

D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt: A dynamic
autotuning framework for self-aware approximate computing,” IEEE
Trans. Comput., vol. 68, no. 5, pp. 713-728, May 2019.

E. Miller-Hooks and H. Mahmassani, “Path comparisons for a priori and
time-adaptive decisions in stochastic, time-varying networks,” Eur. J.
Oper. Res., vol. 146, no. 1, pp. 67-82, 2003.

J. Martinovi¢, V. Snasel, J. Dvorsky, and P. Drazdilova, “Search in docu-
ments based on topical development,” in Proc. Advances Intell. Web Mas-
tering - 2, 2010, pp. 155-166.

M. Asghari, T. Emrich, U. Demiryurek, and C. Shahabi, “Probabilistic
estimation of link travel times in dynamic road networks,” in Proc. 23rd
SIGSPATIAL Int. Conf. Advances Geograph. Inf. Syst., 2015, Art. no. 47.
J.M. Juritz, J. W. F. Juritz, and M. A. Stephens, “On the accuracy of simulated
percentage points,” J. Amer. Statistical Assoc., vol. 78, pp. 441-444, 1983.

D. C. Montgomery and G. C. Runger, Applied Statistics and Probability
for Engineers. Hoboken, NJ, USA: Wiley, 2003.

D. Zwillinger and S. Kokoska, CRC Standard Probability and Statistics
Tables and Formulae. London, U.K.: Chapman & Hall, 2000.

R. Tomis, J. Martinovic¢, K. Slaninova, L. Rapant, and I. Vondrak, “Time-
dependent route planning for the highways in the Czech Republic,” in
Proc. IFIP Int. Conf. Comput. Inf. Syst. Ind. Manage., 2015, pp. 145-153.
P. P. Boyle, “Options: A Monte Carlo approach,” J. Financial Econ., vol. 4,
no. 3, pp. 323-338, 1977.

[36]

[37]

[38]

R. Koenker, Quantile Regression. Cambridge, U.K.: Cambridge Univ.
Press, 2005.

J. M. Cardoso, J. G. Coutinho, T. Carvalho, P. C. Diniz, Z. Petrov, W. Luk,
and F. Gongalves, “Performance-driven instrumentation and mapping strate-
gies using the LARA aspect-oriented programming approach,” Sofiw.: Prac-
tice Experience, vol. 46, no. 2, pp. 251-287, 2016.

US Department of Transportation, Federal Highway Administration, US
Department of Transportation, Federal Highway Administration — Traffic
Report, 2014. [Online]. Available: https://www.fhwa.dot.gov/policy/
publications.cfm

UK Department for Transport, gov.uk, “Average annual daily flow and
temporal traffic distributions,” 2017. [Online]. Available: https://www.
gov.uk/government/statistical-data-sets/tra03-motor-vehicle-flow

M. Bertoli, G. Casale, and G. Serazzi, “JMT: Performance engineering
tools for system modeling,” SIGMETRICS Perform. Eval. Rev., vol. 36,
no. 4, pp. 10-15, Mar. 2009.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantita-
tive System Performance: Computer System Analysis Using Queueing Net-
work Models. Upper Saddle River, NJ, USA: Prentice-Hall, 1984.

Milano Agenzia Mobilita’ Ambiente e Territorio, Annu. Mobility Rep..
2015. [Online]. Available: https://www.amat-mi.it/it/documenti/

Marco Bedogni, Milano Agenzia Mobilita’ Ambiente e Territorio, Road
Traffic Measures the City Milan. 2016. [Online]. Available: http://www3.
gdos.gov.pl/Documents/Wizyty/W %C5%82ochy/Road%20Traffic%
20Measures %20in%?20the %20city %200f%20Milan.pdf

M. Gribaudo, P. Piazzolla, and G. Serazzi, “Consolidation and replication
of VMs matching performance objectives,” in Proc. Int. Conf. Analytical
Stochastic Model. Techn. Appl., 2012, pp. 106—120.

EMANUELE VITALI received the MSc degree in
computer engineering from Politecnico di Milano,
Italy, in 2015. He is working toward the PhD degree
in the Dipartimento di Elettronica, Informazione e
Bioingegneria (DEIB), Politecnico di Milano, since
May 2017, where he was a research fellow. His main
research interests include hardware architectures and
application autotuning.

DAVIDE GADIOLI received the master of science
degree in computer engineering, in 2013, and
the PhD degree in computer engineering from Poli-
tecnico di Milano, Italy, in 2019. Currently, he is a
postdoc with the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria (DEIB) of Politecnico di
Milano. In 2015, he was a visiting student with IBM
Research (The Netherlands). His main research inter-
ests include application autotuning, autonomic com-
puting, and approximate computing.

GIANLUCA PALERMO received the master of
science degree in electronic engineering, and the PhD
degree in computer engineering from Politecnico di
Milano, Italy, in 2002 and 2006. He is currently an
associate professor with the Department of Electron-
ics, Information and Bioengineering (DEIB) at the
same University. Previously, he was consultant engi-
neer with the Low-Power Design Group of AST -
STMicroelectronics working on Network-on-Chip
architectures, and research assistant with the
Advanced Learning and Research Institute (ALaRI),

Universita’ della Svizzera Italiana (Switzerland). His research interests include
design methodologies and architectures for embedded and HPC systems focus-
ing on autotuning aspects. He is an active member of the scientific community
serving in organizing and program committees of several conferences in his
research areas. Since 2003, he published more than 100 scientific papers in
peer-reviewed conferences and journals. He is member of the IEEE, ACM, and
HiPEAC.

VOLUME 9, NO. 2, APRIL-JUNE 2021

https://hal.inria.fr/hal-00871739
https://hal.inria.fr/hal-00871739
https://www.fhwa.dot.gov/policy/publications.cfm
https://www.fhwa.dot.gov/policy/publications.cfm
https://www.gov.uk/government/statistical-data-sets/tra03-motor-vehicle-flow
https://www.gov.uk/government/statistical-data-sets/tra03-motor-vehicle-flow
https://www.amat-mi.it/it/documenti/
http://www3.gdos.gov.pl/Documents/Wizyty/W%C5%82ochy/Road%20Traffic%20Measures%20in%20the%20city%20of%20Milan.pdf
http://www3.gdos.gov.pl/Documents/Wizyty/W%C5%82ochy/Road%20Traffic%20Measures%20in%20the%20city%20of%20Milan.pdf
http://www3.gdos.gov.pl/Documents/Wizyty/W%C5%82ochy/Road%20Traffic%20Measures%20in%20the%20city%20of%20Milan.pdf

Vitali et al.: An Efficient Monte Carlo-Based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

MARTIN GOLASOWSKI is working toward the
PhD degree in the Advanced Data Analysis and
Simulation Laboratory, IT4Innovations National
Supercomputing Center of the Czech Republic,
where he is a researcher. Topic of his research are
high performance programming models for Monte
Carlo methods and emerging heterogenous architec-
tures. He participated in the H2020 FET project
ANTAREX, H2020 ICT project LEXIS and in the
research activities and development of FLOREON+
system for disaster management support. His other
interests include parallel computing architectures, data processing, and visual-
isation. He has published more than 30 conference papers and several journal
articles.

JOAO BISPO received the bachelor’s degree in
2006, and the PhD degree from the Instituto Supe-
rior Tcnico (IST), Lisbon, in 2012, with a thesis
about automatic runtime migration of binary code
to hardware. He is a post-doctoral researcher with
the SPeCS Lab, Faculty of Engineering, University
of Porto (FEUP). His research interests an on hard-
ware synthesis from high-level descriptions and
source-to-source compilation.

PEDRO PINTO received the MSc degree from the
University of Porto, in 2012. He is currently work-
ing toward the PhD degree in the Faculty of Engi-
neering, University of Porto. Since graduating, he
has been involved in several research projects in
the area of compilers. His main research interests
include source-to-source compilation, application
analysis and optimization, and code transforma-
tions, as well as broader topics such as program-
ming languages, high-performance computing, and
machine learning.

JAN MARTINOVIC is currently head of Advanced
Data Analysis and Simulation Lab, IT4Innovations
National Supercomputing Center, VSB Technical
University of Ostrava, Czech Republic. His research
activities are focused on information retrieval, data
processing, design and development of information
systems, and disaster management. His activities
also cover a development HPC as a Service Middle-
ware which allows to use HPC infrastructure
remotely by specific APL He is coordinator of the
H2020 ICT project LEXIS (Large-scale Execution
for Industry & Society). He had previous experience with coordination of the
different contracted research activities and had responsibility for the technical
coordination of the several national projects. He was the leader of IT4I as a
partner of the two H2020-FETHPC-2014 projects ANTAREX and ExCAPE.
He is also responsible for the research and development team of FLOREON+
system for disaster management support. He has published more than 100
papers in international journals and conferences.

VOLUME 9, NO. 2, APRIL-JUNE 2021

KATERINA SLANINOVA received the doctoral
degree in informatics from the VSB Technical Uni-
versity of Ostrava, Czech Republic. She is deputy
head of Advanced Data Analysis and Simulations
Lab, IT4Innovations National Supercomputing
Center, VSB Technical University of Ostrava,
Czech Republic. Her research interests include
information retrieval, traffic analysis, vehicle rout-
ing problem, hyperparameter search, data mining,
process mining, and complex networks. Her recent
activities also cover cooperation with SMEs in
areas such as traffic management, artificial intelligence, time series analysis,
etc. She participated in H2020 ICT project LEXIS and H2020 FETHPC proj-
ect ANTAREX. She worked within the team of the Center for the Develop-
ment of Transportation Systems RODOS. She has published more than 70
papers in international journals and conferences.

JOAO M. P. CARDOSO received the PhD
degree in electrical and computer engineering from
the IST/UTL (Technical University of Lisbon), Lis-
bon, Portugal, in 2001. He is full professor with the
Department of Informatics Engineering, Faculty of
Engineering, University of Porto, and a senior
researcher with INESC TEC. Before, he was with
the IST/UTL (2006-2008), a senior researcher at
INESC-ID (2001-2009), and with the University of
Algarve (1993-2006). In 2001/2002, he worked for
PACT XPP Technologies, Inc., Munich, Germany.
He has been involved in the organization and served as a Program Commit-
tee member for many International Conferences. He was co-scientific coordi-
nator of the FP7-EU project REFLECT and technical manager of the H2020-
EU project ANTAREX, and coordinator of various national funded projects.
He has (co-)authored more than 200 scientific publications. His research
interests include compilation techniques, domain-specific languages, recon-
figurable computing, high-level synthesis and application-specific architec-
tures, and high-performance computing with an emphasis in embedded
computing. He is a senior member of the IEEE and ACM.

CRISTINA SILVANO is a full professor of com-
puter architectures with the Department of Elec-
tronics, Information and Bioengineering (DEIB),
Politecnico di Milano, Italy. Her main research
interests include energy-efficient embedded sys-
tems, design space exploration of manycore archi-
tectures, and application autotuning for HPC. She
has published more that 160 scientific papers in
peer-reviewed journals and conferences, five books
and she holds several patents in collaboration with
Group Bull and STMicroelectronics. She was proj-
ect coordinator of three European projects: H2020-ANTAREX, FP7-
2PARMA and FP7-MULTICUBE. She has served in the organizing and pro-
gram committees of several major conferences in computer architectures,
embedded systems, and electronic design automation. She is associate editor
of the ACM Transactions on Architecture and Code Optimization and the
IEEE Transactions on Computers. She served as independent expert
reviewer for the European Commission and for several science foundations.
In 2017, she has been elevated to the grade of the IEEE fellow.

1019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

