
mathematics

Article

Cliques Are Bricks for k-CT Graphs

Václav Snášel, Pavla Dráždilová and Jan Platoš *

����������
�������

Citation: Snášel, V.; Dráždilová, P.;

Platoš, J. Cliques Are Bricks for k-CT

Graphs. Mathematics 2021, 9, 1160.

https://doi.org/10.3390/math9111160

Academic Editors: Raimondas Ciegis

and Rafael Sebastian

Received: 9 March 2021

Accepted: 19 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic;
vaclav.snasel@vsb.cz (V.S.); pavla.drazdilova@vsb.cz (P.D.)
* Correspondence: jan.platos@vsb.cz; Tel.: +420-597-325-960

Abstract: Many real networks in biology, chemistry, industry, ecological systems, or social networks
have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past
few decades, a variety of complex systems have been successfully described as networks whose links
connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between
two or more nodes and generalized network structures to allow us to go beyond the framework of
pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial
complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution
of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the
evolution of real simplicial complex networks. We conclude with a summary of composition k-CT
graphs (glued graphs); their closed trail distances are in a specified range.

Keywords: cyclic distance; closed trail distance; glued graph; cyclic structure; higher-order structure

1. Introduction

High-order cliques that are more complex than triangles enable a better understanding
of complex networks. These structures improve our understanding of the clustering
behavior of network structures concerning standard metrics. Yin et al. [1] measured the
closure probability of higher-order network cliques using the introduced higher-order
clustering coefficients. High-order closed trail clustering and closure coefficients were
used [2] to evaluate a network structure. The why, how, and when of representations for
complex systems were discussed [3]. Simplicial complexes were used for the representation
of social contagion [4], for the modeling and analysis of biomolecules [5], and for big data
processing [6]. The relevance of a simplicial community and higher-order connections’
quality in simplicial networks may be studied using centrality measures such as the
simplicial degree centrality or the eigenvector centrality [7].

The analysis of large graphs is usually based on the study of two-connected compo-
nents. The size of the components differs for different networks [8]. Unfortunately, this
approach cannot be easily scaled, and it is difficult for weighted graphs. Another approach
uses the cycles of a limited length, as suggested by Boruvka [9,10]. Our approach extends
this principle to the limited-length cycles in the definition of two-connected components.
Moreover, we describe building a graph or a network from the basic bricks—cliques. We
demonstrate how to glue cliques and k − CT graphs into larger graphs, and prove the
properties of the glued graph based on the glueing.

Limited-length cycles are crucial in algebraic topology applications [11,12]; they are
necessary to calculate the topological properties of data [13,14]. Moreover, cycles play
important roles in other research areas such as in fullerenes in material science [15] and in
complex and social networks [16].

The concept of limited-length cycles requires the measurement of the distances be-
tween nodes. The standard measure is the shortest path [17,18], but other approaches also
exist [19–22]. The cyclical metric-based distance was introduced [23]. The distance between
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two vertices in a graph is defined as the shortest closed trail that contains these two vertices.
The distance defined as such allows simple generalization for weighted graphs and allows
scalability. The k− CT components extracted using the cyclical metric can highlight the
locally and cyclically connected subgraphs. Moreover, these components are not based on
the biconnectivity property and may be used to partition densely connected biconnected
components.

The remainder of this article is organized as follows: Section 2 introduces the termi-
nology and the notation that are used in the article. The closed trail distance in biconnected
undirected graphs and the construction of the k − CT graphs by gluing graphs is then
defined in Section 3. The advantages and limitations of k − CT graphs are discussed
in the Conclusions.

2. Terminology and Notation

This section contains the basic definition from graph theory required to fully under-
stand the proposed approach The definitions of the following terms were mostly taken
from [24].

A graph G = (V, E) consists of two sets V and E, where the elements of V are vertices
(or nodes) and the elements of E ⊆ (V

2) are edges. A walk on a graph is an alternating
series of vertices and edges

W(v0, vk) = v0e1v1e2 . . . vk−1ekvk

such that, for j = {1, . . . , k}, the vertices vj−1 and vj are the end points of the edge ej. A
closed walk is a walk where the initial vertex is also the final vertex. The length of a walk
is the number of edges in the walk. The length of a walk is denoted as |W(u, v)|. A trail
is a walk in which no edge occurs more than once. A closed trail is a closed walk with
no repeated edges. The closed trail that contains the vertex v and the edge e is denoted
by CT(v; e) (Figure 1), and the length of this closed trail is denoted by |CT(v; e)|. The
closed trails that are specified by vertices u, v or by vertices u, v and edge e are denoted
by CT(u, v) or CT(u, v; e). Other possibilities of denotation of closed trails are provided in
Figure 1. A path is a walk in which no edge or internal vertex occurs more than once (a
trail in which all the internal vertices are distinct). The shortest path with an initial vertex
u and a final vertex v is denoted by SP(u, v). A circuit is a closed trail. A cycle is a closed
path with a length of at least one. A graph with k vertices and k edges, all in a single cycle,
is denoted by Ck. A chord is an edge joining non-consecutive vertices of the cycle with
a length greater than 3. A chordless cycle with a length greater than 3 is called a hole. A
clique is a subgraph where each vertex is adjacent to every other vertex. A clique with k
vertices is denoted by Qk. The subclique is a subgraph induced by a subset of a vertices
that forms a clique.

v
e

v u

wz

v u

w
e

v u

w

CT(v; e) CT4(u, v, w, z, u) CT(v, u; e; w, v) CT(u, v, w)

Figure 1. The first closed trail contains the vertex v, the edge e and the other elements of the graph.
The second closed trail contains only the vertices u, v, w, z and has a length equal to 4. The third
closed trail contains the vertex v, the edge e with the incident vertices u, w, and the other elements of
the graph. The fourth closed trail CT(u, v, w) contains two closed trails CT(u, v) and CT(v, w) that
have common vertex v.

A connected graph is a graph where there is a walk between every pair of vertices.
A biconnected graph is a connected and non-separable graph, meaning that if any vertex
was to be removed, the graph would remain connected. A component of a graph is a
maximal connected subgraph. An edge e is a bridge of the connected graph G, if and only if
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removing it disconnects the graph G. An articulation is a vertex of a graph whose removal
increases the number of components. Therefore, a biconnected graph has no articulation
vertices. A biconnected component is a maximal biconnected subgraph.

Any k-CT graph is denoted by Gk, and a set of k-CT graphs is denoted by Gk.

3. Composition of k − CT Graphs from Cliques

This section describes the main contribution of the article. We demonstrate the princi-
ple of the composition of the graph using cliques and k-CT graphs, and prove the properties
of the constructed graphs.

The construction of k − CT graphs from cliques and p − CT graphs with p < k
demonstrates the specific properties of these graphs. For example, a 6− CT graph can
be a cycle with a length of 6, and this graph is sparse. However, a 6− CT graph can
be a composite formed from two cliques connected via a vertex that has a high degree.
This vertex is the hub in the network. The properties of the 6− CT graph depend on
how the graph was created. These graphs can be described using simple complexes. For
example, we can represent the situation in a co-author network where a group of authors
collaborated on a particular article (Figure 2).

Definition 1 ([25]). Let n ≥ 1 be an integer and V = {v1, ..., vn} be a collection of n symbols.
An (abstract) simplicial complex K on V or a complex is a collection of subsets of V, excluding ∅,
such that

1. if σ ∈ K and τ ⊂ σ, then τ ∈ K,
2. {vi} ∈ K for every vi ∈ V.

The set V is called the vertex set of K, and the elements {vi} are called vertices or 0-simplices.
We sometimes write V(K) for the vertex set of K.

Definition 2 ([3]). The clique complex X(G) of a graph G is the simplicial complex with all
complete subgraphs of G as its faces.
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Figure 2. Data from a co-author network represented by a graph and simplicial complex.

3.1. Closed Trail Distance in an Undirected Graph82

We define a metric between the vertices in a biconnected graph without loops via a closed trail (circuit).83

This metric is applicable in connected graphs without bridges where, for every two vertices u, v, there exists a84

closed trail containing u, v.85

Definition 3. A graph G = (V ,E) is a k-closed trail connected graph (k-CT graph) if every two vertices lie on86

the closed trail (circuit) with a length ≤ k. The k-CT component of the graph is a maximal k-CT subgraph.87

Definition 4. Let G = (V ,E) be a graph. Let dct : V ×V → R+
0 be defined by the equation

dct(u,v) = minCT (u,v)∈G|CT (u,v)|,

where CT (u,v) is a closed trail that contains the vertices u, v. Then, the function dct is called the closed trail88

connected distance (CT -distance).89

Theorem 1. The CT -distance is a metric on the set of vertices V in the graph G = (V ,E).90

Figure 2. Data from a co-author network represented by a graph and simplicial complex.

3.1. Closed Trail Distance in an Undirected Graph

We define a metric between the vertices in a biconnected graph without loops via a
closed trail (circuit). This metric is applicable in connected graphs without bridges where,
for every two vertices u, v, there exists a closed trail containing u, v.

Definition 3. A graph G = (V, E) is a k-closed trail connected graph (k-CT graph) if every two
vertices lie on the closed trail (circuit) with a length ≤ k. The k-CT component of the graph is a
maximal k-CT subgraph.

Definition 4. Let G = (V, E) be a graph. Let dct : V ×V → R+
0 be defined by the equation

dct(u, v) = minCT(u,v)∈G|CT(u, v)|,



Mathematics 2021, 9, 1160 4 of 9

where CT(u, v) is a closed trail that contains the vertices u, v. Then, the function dct is called the
closed trail connected distance (CT-distance).

Theorem 1. The CT-distance is a metric on the set of vertices V in the graph G = (V, E).

The proof of the theorem is provided in [23].

Lemma 1. Every 3-CT component is a clique.

Proof. Let u, v be arbitrary vertices in the 3-CT component. According to Definition 4,
dct(u, v) ≤ 3. If u 6= v, then CT(u, v) = ue1ve2we3u is the closed trail that contains the
vertices u, v and has a length equal to 3. It follows that the arbitrary vertices u, v in the 3-CT
component have to be adjacent and the 3-CT component is a clique.

Lemma 2. Any connected graph without bridges has dct : V ×V → R+
0 as a metric.

The proof of the lemma is provided in [23].
The extension of the CT-distance for a disconnected or connected graph with bridges

is possible as follows:

Definition 5. Let G = (V, E) be a disconnected or connected graph with a bridge. If for vertices u
and v, there is no closed trail containing these vertices, then the CT-distance between the vertices u
and v is equal to ∞ (dct(u, v) = ∞).

3.2. Construction of k− CT Graphs

The clique Q2 is one of the elements that can be used to construct k− CT graphs. This
element does not contain a cycle and is always connected with other elements through
both adjacent vertices. Then, it can be a part of a closed trail. Other cliques Qk for k ≥ 3
contain triangles, and they can be connected with other elements via one vertex, via one
edge, or via a selected subgraph.

Lemma 1 states that every clique is a 3-CT graph. How can we construct 4-CT graphs
from cliques and how can we construct k-CT graphs for k ≥ 5?

We define a glued graph of two graphs G1 and G2 via the isomorphic subgraphs S1 and
S2. The subgraphs S1 and S2 can be arbitrary, but in this paper, they are cliques. Different
studies have used different terminology: amalgamation of graphs [26], interface gluing [27],
the glued graph between G1 and G2 at the clone H [28], or a similar k-clique-sum [29].

Definition 6. Let graphs G1 = (V1, E1) and G2 = (V2, E2) have subgraphs S1 = (VS1, ES1)
and S2 = (VS2, ES2). A function f : VS1 → VS2 is a bijection such that if (u, v) ∈ ES1, then
( f (u), f (v)) ∈ ES2. This function is an isomorphism of subgraphs S1 and S2. The glued graph via
isomorphism f is:

G1 + f G2 = (V1 tV2, E1 t E2),

where V1 tV2 = (V1 \VS1)
⋃

V2, E1 t E2 = (E1 \ ES1)
⋃

E2.

The glued graph is created from two graphs via the isomorphism f : VS1 → VS2 (see
example in Figure 3.). We use abbreviations for more readable notation when the subgraphs
are a vertex, edge, and clique with three or more vertices:

• G1 +v G2 when f : {v1} → {v2},
• G1 +e G2 when f : {u1, v1} → {u2, v2},
• G1 +Qp G2 when f : {u1

1, . . . , up
1} → {u1

2, . . . , up
2}.
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u1 v1

w1

G1

u2 v2

w2

G2

u v

w

G1 + f G2

Figure 3. Glued graph from graphs G1 and G2 with isomorphism f : {u1,v1,w1}→ {u2,v2,w2}.
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Theorem 2. Let Qk be cliques with k vertices. For a glued graph:

1. Qk +v Ql ∈ G6 for k, l ≥ 3,
2. Qk +e Ql ∈ G4 for k, l ≥ 3,
3. Qk +Qp Ql ∈ G4 for 1 < p < k, l and k, l ≥ 3.

Proof.

1. According to Lemma 1 dct(u1, v) ≤ 3, ∀u1 ∈ V(Qk), dct(u2, v) ≤ 3 ∀u2 ∈ V(Ql), and
k, l ≥ 3. We consider the following situations in the glued graph Qk +v Ql :

(a) if u1 = u2, then dct(u1, u2) = 0;
(b) if both vertices u1, u2 ∈ V(Qk) or u1, u2 ∈ V(Ql), then dct(u1, u2) ≤ 3;
(c) if v 6= u1 ∈ V(Qk), v 6= u2 ∈ V(Ql), and Qk is glued with Ql via v, then

dct(u1, u2) = dct(u1, v) + dct(u2, v) = 6.

From these situations, it follows that Qk +v Ql ∈ G6.
2. The gluing occurs via the edge e = {v, w}, where e ∈ E(Qk) and e ∈ E(Ql).

(a) If ui = v or ui = w, then dct(u1, u2) ≤ 3 ∀u1, u2 ∈ V(Qk +e Ql).
(b) If both vertices u1, u2 ∈ V(Qk) or u1, u2 ∈ V(Ql), then dct(u1, u2) ≤ 3.
(c) If u1 ∈ V(Qk) \ V(Qp) and u2 ∈ V(Ql) \ V(Qp), then C3(u1, v, w, u1) exists

for all u1 ∈ V(Qk) \V(Qp), v 6= u1 6= w and C′3(u2, v, w, u2) exists for all u2 ∈
V(Ql) \V(Qp), v 6= u2 6= w. From the existence of two cycles with lengths equal
to three that share a common edge follows the existence of C4(u1, v, u2, w, u1),
where the edge e = {v, w} is the chord of cycle C4 and dCT(u1, u2) = 4.

From these situations, it follows that Qk +e Ql =∈ G4.
3. The proof is similar to the previous situation where the graphs are glued via Qp with

p = 2.

(a) If both vertices u1, u2 ∈ V(Qp), then dct(u1, u2) ≤ 3.
(b) If both vertices u1, u2 ∈ V(Qk) or u1, u2 ∈ V(Ql), then dct(u1, u2) ≤ 3.
(c) If u1 ∈ V(Qk) \V(Qp) and u2 ∈ V(Ql) \V(Qp), then

dct(u1, u2) = |CT(u1, v, u2, w, u1)| = 4, where v, w ∈ V(Qp).

From these situations, it follows that Qk +Qp Ql ∈ G4.

The first part of Figure 4 demonstrates the glued graph from Q4 and Q′4 via the
vertex v. The middle part of Figure 4 demonstrates the glue of two cliques Q4 and Q′4
via the common edge {v, w}. Dashed lines represent the shortest closed trail containing
u1, u2. The third part of Figure 4 demonstrates the glue of two cliques Q5 and Q′5 via the
common clique Q3 with V(Q3) = {x, v, w}. Dashed lines represent the shortest closed trail
containing the vertices u1, u2 in the glued graph.

Theorem 3. Let Ck be a single (chordless) cycle graph with length k; Gk is the set of k-CT graphs.
For a cycle graph and a glued graph:

1. Ck ∈ Gk for k ≥ 3,
2. Ck +v Cl ∈ Gk+l for k, l ≥ 3,
3. Ck +e Cl ∈ Gk+l−2 for k, l ≥ 3, and
4. Qk +e Cl ∈ Gl+1 for k, l ≥ 3.
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Proof.

1. It follows from Definition 3 of k-CT graphs that the CT distance between two different
vertices of the cycle Ck is k and Ck ∈ Gk. The cycle Ck is the sparsest k-CT graph.

2. When we glue Ck and Cl cycle graphs so that they share one vertex v, then, from the
properties of the cycles, it follows that: dct(u1, v) ≤ k, ∀u1 ∈ V(Ck) and dct(u2, v) ≤
l, ∀u2 ∈ V(Cl). The CT distance in the glued graph Ck +v Cl is dct(u1, u2) =
|CT(u1, v, u2)| = |Ck(u1, v)| + |Cl(u2, v)| ≤ k + l for all vertices u1 in Ck and for
all vertices u2 in Cl . Therefore, Ck +v Cl ∈ Gk+l .

3. When we glue the Ck and Cl cycles so that they share one edge e = {v, w}, the
resulting graph is a cycle with the chord e, and it has k + l − 2 vertices. The CT
distance is dct(u1, u2) = |Ck+l−2(u1, u2)| = k + l − 2 for all vertices u1 in Ck, where
v 6= u1 6= w, and for all vertices u2 in Cl , where v 6= u2 6= w. Other CT distances in
the glued graph are smaller than k + l− 2, and the glued graph is from the set Gk+l−2.

4. When we glue the Qk clique and Cl cycle so that they share one edge e = {v, w},
then the resulting graph contains k− 2 cycles with chord e and l + 1 vertices. The
CT distance is dct(u1, u2) = |Cl+1(u1, u2)| = l + 1 for all vertices u1 in Ck, where
v 6= u1 6= w, and for all vertices u2 in Cl , where v 6= u2 6= w. Other CT distances in
the glued graph are smaller than l + 1, and the glued graph is from the set Gl+1.
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Figure 4. Glued cliques Qk and Q′k – via the vertex, via the edge and via the clique Q3. From the first picture it is
obvious that the glued graph via the vertex has dct(u1,u2)≤ 6 ∀u1,u2 ∈V (Q4 +v Q′4). From the second and third
pictures it is obvious that the glued graph via the edge or triangle has dct(u1,u2) ≤ 4 ∀u1,u2 ∈V (Qk +Qp Q′k).
Glued two cliques via the edge or via the subclique create a graph from the set G4.

Theorem 3. Let Ck be a single (chordless) cycle graph with length k; Gk is the set of k-CT graphs. For a cycle150

graph and a glued graph:151

1. Ck ∈Gk for k ≥ 3,152

2. Ck +v Cl ∈Gk+l for k, l ≥ 3,153

Figure 4. Glued cliques Qk and Q′k—via the vertex, via the edge, and via the clique Q3. From the first picture, it is obvious
that the glued graph via the vertex has dct(u1, u2) ≤ 6 ∀u1, u2 ∈ V(Q4 +v Q′4). From the second and third pictures, it is
obvious that the glued graph via the edge or triangle has dct(u1, u2) ≤ 4 ∀u1, u2 ∈ V(Qk +Qp Q′k). Glued two cliques via
the edge or via the subclique create a graph from the set G4.

Lemma 3. For each v ∈ V(Gk) and for each e ∈ E(Gk), there exists CT(v; e) in Gk such that
|CT(v; e)| ≤ k + 1.

Proof. Let e ∈ E(Gk), e = {u, w}, and u, v, w ∈ V(Gk). From Definition 3, the existence of
the shortest closed trails CT(v, u) and CT(v, w), such that |CT(v, u)| ≤ k and |CT(v, w)| ≤
k (Figure 1), follows. Then, |SP(v, u)| ≤ k

2 and |SP(v, w)| ≤ k
2 . For the shortest closed trail

that contains the vertices u, v, w, the following apply:

1. If E(SP(v, u)) ∩ E(SP(v, w)) = ∅, then
|CT(v, u; e; w, v| ≤ |SP(v, u)|+ 1 + |SP(w, v)| ≤ k

2 + 1 + k
2 ≤ k + 1;

2. If E(SP(v, u)) ∩ E(SP(v, w)) 6= ∅, then
CT(v; e) consists of SP(v, u) or SP(v, w), the edge e, and the rest of CT(v, u) or CT(v, w).
In this situation: |CT(v, u; e; w, v| ≤ min{|SP(v, x)| + |CT(v, y) \ SP(v, y)|} + 1 ≤
k + 1 where x ∈ {u, w}, y ∈ {u, w} \ {x}.

Lemma 4. 3(4,5)-CT graphs do not contain articulation.

Proof. Proof by contradiction. Let some Gk for k ∈ {3, 4, 5} contain a vertex v, which is an
articulation. Then, there exist vertices u 6= w such that the shortest closed trail CT(u, w)
contains the articulation v, and the vertices u, w are adjacent to the vertex v. For this shortest
closed trail is true: |CT(u, w)| = |CT(u, v, w, . . . , z1, v, z2, . . . , u)| ≥ 6. This contradicts the
assumption that there is articulation in Gk for k ∈ {3, 4, 5}.
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Theorem 4. Let G4 and Gk be graphs with a specified CT distance. For a glued graph:

1. G4 +v Gk ∈ Gr, where 6 ≤ r ≤ k + 4 for k ∈ {3, 4, 5} and k ≤ r ≤ k + 4 for k ≥ 6;
2. G4 +e Gk ∈ Gr, where 4 ≤ r ≤ k + 4 for k ∈ {3, 4} and k ≤ r ≤ k + 4 for k ≥ 5.

Proof.

1. The lower estimate of r:

(a) Proof by contradiction. Let G4 +v Gk ∈ Gr for k ∈ {3, 4, 5} and r < 6. There
exist u1 ∈ G4 and u2 ∈ Gk, such that dCT(u1, v) ≥ 3 and dCT(u2, v) ≥ 3. From
the assumption, it follows that dCT(u1, u2) < 6, which is in contradiction with
the CT distance between u1 and u2, which is longer than or equal to 6, which
follows from Theorem 2 part 1.

(b) It is obvious that for k ≥ 6, G4 +v Gk ∈ Gk is true.

The upper estimate of r follows from Theorem 3 part 2.
2. The lower estimate of r:

(a) It is obvious that r ≥ 4 for k ∈ {3, 4}. It follows from Theorem 2 part 2.
(b) The situation with k ≥ 5 is obvious. The CT distance in a glued graph cannot be

shorter than the CT distance in the part of the glued graph.

The upper estimate of r follows from Lemma 3 and Theorem 3 part 3. An example of
this situation is shown by the last image in Figure 5.

The examples in Figure 6 demonstrate different possibilities for G4 +v G6. The first
part of Figure 6 demonstrates the lowest value of r and the third part demonstrates the
highest value of r.
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Figure 6. Gluing G4 and G6 via vertex v.

The examples in Figure 5 demonstrate different possibilities for G4 +e G6. The first
part of Figure 6 demonstrates the lowest value of r and the third part demonstrates the
highest value of r.

Generally, let G4 = Qp +e Qq and Gk = Cm +e Cn, where p, q, m, n ≥ 3 and k =
m + n− 2 (from Theorem 3, part 3). When we glue these glued graphs via the same edge e,
then G4 +e Gk = Qp +e Qq +e Cm +e Cn ∈ Gr with r = max{m + 1, n + 1, k} = k because
k−m = n− 2 ≥ 3− 2 = 1 and k− n = m− 2 ≥ 3− 2 = 1. This corresponds to the first
part of Figure 6.

Theorem 5. Let Gk and Gl be graphs with a specified CT distance. For a glued graph:

1. Gk +v Gl ∈ Gr, where 6 ≤ r ≤ (k + l) for each k, l ∈ {3, 4, 5, 6};
2. Gk +Qp Gl ∈ Gr, where max{k, l} ≤ r ≤ (k + l) for each [(k, l ≥ 4 and p ≥ 2) or (k, l ≥ 7

and p = 1)].
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Proof.

1. The lower estimate of r: A glued graph Gr via the vertex v has the vertex v as
an articulation. From Lemma 4, it follows that the Gr with r < 6 cannot contain
articulation. The smallest r for the glued graph Gr via the vertex v is 6. The upper
estimate of r follows from Theorem 3 part 2.

2. The lower estimate of r: From Definition 3 and Definition 6, it follows that it is
impossible to obtain a glued graph Gr = Gk +Qp Gl with r < k and r < l. The upper
estimate of r follows from Theorem 3 part 2.

The glued graph Gk +Qp Gl via a clique can be realized using different methods as
demonstrated in Figure 7.

Version May 17, 2021 submitted to Mathematics 8 of 9
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Figure 7. Glued graphs G5 via Q3 with vertices u,v,w.

representation, as a graph or as a simplicial complex. The k-CT distance of the particular graph depends on the228

internal structure of the glued graphs.229

The designed approach to constructing glued graphs can be used for modeling complex networks represented230

as simplicial complexes or graphs. Their k will be in the proved range and only in special cases will it be precise231

(examples in Figures 5, 6, and 7). Moreover, the proposed approach leads to some specific outcomes, such as that232

the glueing of cliques via edges has the same properties as the glueing of cliques via subclique; both resulting233

graphs are from G4, but the glueing of cliques via vertexes is from G6. From this point of view, two persons in234

the social network that participate in the glueing of two cliques play the same role as the bigger subclique.235

We presented the proposed approach, discussed the glueing of graphs concerning the k-CT distance, and236

studied the change in the structural properties of the original graphs and the glued one. We only considered237

cliques-faces and higher-order structures k−CT components. The results provided in this article may be extended238

to other types of graphs.239
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4. Conclusions

This article demonstrates the construction of k-CT graphs from cliques and p-CT
graphs where p ≤ k. These graphs correspond to simplicial complexes because the glueing
is realized by a clique (in graph terminology) and face (in simplicial complex terminology).
The discussed type of k-CT graphs (glued graphs) composition guarantees that their
closed trail distances are within a specified range. This is valid for both types of data
representation, as a graph or as a simplicial complex. The k-CT distance of the particular
graph depends on the internal structure of the glued graphs.

The designed approach to constructing glued graphs can be used for modeling com-
plex networks represented as simplicial complexes or graphs. Their k will be in the proved
range and only in special cases will it be precise (examples in Figures 6 and 7). Moreover,
the proposed approach leads to some specific outcomes, such that the glueing of cliques
via edges has the same properties as the glueing of cliques via subclique; both resulting
graphs are from G4, but the glueing of cliques via vertexes is from G6. From this point of
view, two persons in the social network that participate in the glueing of two cliques play
the same role as the bigger subclique.

We presented the proposed approach, discussed the glueing of graphs concerning the
k-CT distance, and studied the change in the structural properties of the original graphs
and the glued one. We only considered cliques-faces and higher-order structures’ k− CT
components. The results provided in this article may be extended to other types of graphs.
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