
 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4348 

 

OPTIMIZING A QUADRUPED 
ROBOT: A COMPARISON OF 

TWO METHODS 
ROBERT PASTOR1, ZDENKO BOBOVSKY1, PETR OSCADAL1, 
JAKUB MESICEK2, MAREK PAGAC2, ERIK PRADA3, LUBICA 

MIKOVA3, JAN BABJAK1  

1Department of Robotics, 2Department of Machining, Assembly 
and Engineering Metrology, Faculty of Mechanical 

Engineering, VSB-TU Ostrava, Czech Republic. 
3Department of Mechatronics, Faculty of Mechanical 

Engineering, Technical University of Kosice, Slovak 
Republic  

DOI : 10.17973/MMSJ.2021_6_2021008 

robert.pastor@vsb.cz  

Robots that have been optimized in simulation often 
underperform in the real world in comparison to their simulated 
counterparts. This difference in performance is often called a 
reality-gap. In this paper, we use two methods, genetic 
algorithm and topology optimization, to optimize a quadruped 
robot. We look at the original and optimized robots’ 
performance in simulation and reality and compare the results. 
Both methods show improvement in the robot’s efficiency, 
however the topology optimization behaves in a more 
predictable manner and shows similar results in simulation and 
in real laboratory testing. Modifying robot morphology with a 
genetic algorithm, although less predictable, has a potential for 
more improvement in efficiency. 
 
             KEYWORDS 
reality-gap, genetic, topology, optimization, quadruped  

1 INTRODUCTION  

When designing a robot, its morphology, sensory apparatus, 
motor system, control architecture, and other aspects need to 
be considered. All of these aspects interact and determine 
robot’s behavior [Doncieux 2015]. Evolutionary robotics (ER) is a 
holistic approach to robot design, which tackles these aspects 
simultaneously. 
Using ER techniques often requires evaluating the fitness 
function for many individuals over many generations, leading to 
a large number of evaluations. Employing ER methods for 
optimizing controllers on real robots tends to be expensive in 
terms of time consumption and mechanical wear. Some systems 
show successful evolution of a controller on a real robot, other 
studies are relying on simulations, where doing tens of 
thousands of evaluations is realistic and often necessary 
[Doncieux 2010] [Hettiarachchi 2012]. ER methods can be used 
to learn, or rather optimize, various controllers, for example, 
Central Pattern Generators [Habu 2019] on a simulated 
quadruped or a periodic function motion model for a bipedal 
robot [Maximo 2017]. 
In the case of morphology optimization, where the body of a 
robot is being evolved according to a fitness function, evaluating 
on a real robot poses additional challenge of constantly 
modifying the mechanical design of the robot. The robot would 
have to be disassembled and modified each time the 
morphology changes, which happens constantly with every new 
evaluated individual in the evolutionary process. This could be 
addressed by modular structures, either self-reconfigurable or 
manually configurable [Brunete 2017]. Self-reconfigurable 

modules can change the design of the whole robot themselves 
in between evaluations [Alattas 2019]. Manually reconfigurable 
modules require an operator to reconnect the modules into 
different configurations, which can be very time consuming for 
a researcher. Assembling modules by hand can be avoided by 
using an external robotic manipulator to put modules together, 
modules can automatically connect with magnets [Moreno 
2018], or be glued together [Brodbeck 2015]. 
Modular robots can be relatively quickly rebuilt into different 
morphologies, although these morphologies will depend heavily 
on the size and capabilities of individual modules. Different 
approach is to have robots with links that can change shape. 
Robots with adaptive morphology [Mintchev 2016] could be 
used to optimize their bodies during their operation. Nygaard et 
al. demonstrated a quadruped robot with dynamic morphology 
[Nygaard 2018], where a robot can change the length of its legs 
automatically.  
Even though testing the methods of evolutionary robotics on 
real robots has been done to some extent, still the majority of 
work in this area is done in simulations. Bringing solutions 
evolved in simulations into the real world often creates a 
problem referred to as reality-gap. Koos et al. [Koos 2013] 
marked reality-gap as arguably the most critical issue that 
currently prevents the use of ER for practical robotic applications 
and introduced a transferability approach to evaluate 
controllers.  Nick Jakobi et al. [Jakobi 1995] showed that to get 
almost identical behavior in reality, appropriate levels of noise 
must be included in the simulation.  
Optimizing a robot can also be done by optimizing its parts using 
more general engineering methodologies, namely structural 
topological optimization. This methodology is becoming 
increasingly important as it allows for higher performance, 
lightweight structures, and higher efficiency. [Zargham 2016]. 
Topological optimization gives answer to the placement of 
material within a prescribed design domain in order to obtain 
the best structural performance. The method has been 
developed in the 80s and has seen a lot of development since 
[Sigmund 2013]. There are many programs using the methods of 
topological optimizations available to engineers.  
In this article, we compare two approaches to optimizing a 
quadruped robot. Topological optimization as an example of a 
more standardized approach from mechanical engineering and 
a more experimental approach in the form of a genetic 
algorithm. The second chapter describes the robot used for the 
optimization, its parameters and features. The third chapter 
covers topological optimization used to minimalize the weight of 
the robot. The fourth chapter describes our approach of using a 
genetic algorithm to optimize the morphology of the robot. This 
is followed by the results in chapter five where we show our 
measurements from simulations and laboratory tests. 

2 QUADRUPED ROBOT  

The robot used in this paper is a quadrupedal walking robot, 
developed by the Department of Robotics, VSB-TUO. It is a small 
robot, weighting about 1850 g. The body of the robot contains 
control electronics and a li-po accumulator. The robot and its 
dimensions can be seen in Figure 1. 



 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4349 

 

 
 

Figure 1. Robot dimensions; (a) side view, (b) back view, (c) top view, 
(d) isometric view  

Parameter Value 

Body dimensions 240x120x90 mm 

Weight 1850 g 

Battery Li-po 3S 1550 mAh 11,1 V 

Powered time Up to 50 minutes 

Motors 12 x Dynamixel AX-12 

Leg length (links) 379 mm (49 + 130 + 194) 

Table 1. General parameters of the robot  

2.1 Control  

The whole system contains the quadrupedal robot and a PC, 
which the operator uses. The robot receives velocity commands 
(𝒗𝑿, 𝒗𝒀, 𝝎) and other parameters from a PC and sends back 
sensor measurements. The robot then executes movements 
according to the set velocity. Gait generator and inverse 
kinematics are calculated in real-time onboard the robot and the 
resulting joint angles are set.  
The robot runs on a microcontroller Netduino 2 Plus, which is 
programmed in .Net C\#. The microcontroller board is expanded 
with a custom-made module, often called a shield (Figure 2).  
This shield expands the capabilities of the Netduino platform 
with current measuring sensors, a buffer that allows control of 
Dynamixel servos and additional connectors. A Bluetooth-UART 
module is used for communicating with the PC. Each leg is 
actuated by three Dynamixel AX-12 servomotors.  

 
 Figure 2. Sensor shield  

2.2 Gait generation  

In all tests in this article, the robot was walking in a static gait, 
where at least three legs are always in contact with the floor. The 
gait generator computes the pose of five points, namely, the 
robot body and tips of each leg. These points are moving on 
trajectories driven by parameters, such as velocity, body 
orientation, gait timing, and others. Calculated poses are then 
processed with inverse kinematics into joint variables.  
The robot has 12 DOF (Figure 3), which can be divided into four 
serial linkages of three DOF. The inverse kinematics method used 
in this robot is a simple analytical method (equations 1-7), which 

maps the pose (X, Y, and Z, ignoring orientation) of the leg tip to 
the joint space (𝜃1 , 𝜃2, 𝜃3) (Figure 4).   

𝜌 = √𝑥𝑃
2 + 𝑦𝑃

2 (1) 

𝑐 = √𝑧𝑃
2 + (𝜌 − 𝑙1)2 (2) 

𝛼 = acos (
𝑐2 + 𝑙2

2 − 𝑙3
2

2 ⋅ 𝑐 ⋅ 𝑙2

) (3) 

𝛾 = acos (
𝑙3

2 + 𝑙2
2 − 𝑐2

2 ⋅ 𝑙3 ⋅ 𝑙2

) (4) 

𝜓 = 𝑎𝑟𝑐𝑡𝑔 (
𝑧𝑃

2

(𝜌 − 𝑙1)2
) (5) 

where xP,yP,zP is the end point of the leg, and l1,l2,l3 is the length 
of the first segment. Then the joint angles for the second and 
third joint are 

𝜃2 = 𝜓 + 𝛼 (6) 

𝜃3 = 𝛾 − 𝜋 (7) 

 

 
 Figure 3. Degrees of freedom  

 
 Figure 4. Leg kinematics. (a) In the first motor frame, (b) in the leg 
plane  

2.3 Sensors  

The robot is equipped with four Hall effect sensors ACS712, that 
monitor the current draw of each leg separately, and one Hall 
effect sensor ACS711, monitoring the current draw of the entire 
robot. Current measurements are sampled at 100 Hz and a 
moving average filter of 5 samples. An inertial measurement unit 
(UM7 from Redshift Labs) measures the orientation in space and 
accelerations exerted on the robot’s body. Sensor data are 
transmitted to the operator and recorded at the rate of 15 Hz. 
Dynamixel AX-12 servos have a built-in functionality to measure 
the applied torque. Resolution of this torque measurement is 
however very low, and we did not use it. 

2.4 Simulation  

Dynamic simulations proved to be a very effective tool when 
designing a control system of the robot. The software used for 
simulations of this robot is V-rep by Coppelia Robotics. The 
dynamic simulation runs on a Newton physics engine, with a 
step-size of 50 ms.  



 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4350 

 

The model has the same physical parameters as the real robot 
including kinematics, dimensions, weight, inertia and motor 
torques (Figure 5). This model server not only for testing the 
control system but is an important tool throughout the whole 
article. It is used to get force variables necessary for topological 
optimization in chapter 3. V-rep software has a remote API, 
which allows other programs to control various aspect of the 
simulation. Thanks to the API, it is able to serve as a means of 
evaluating the fitness in chapter 4. And finally, simulations of the 
optimized robots serve as a comparison to the real laboratory 
tests in chapter 5. 

 
 

 Figure 5. (a) Real robot, (b) visual simulation model, (c) dynamic 
simulation model 

We can measure various parameters of the model during the 
dynamic simulation. The joints of the mechanism can measure 
their the applied torques. There is also a number of force-torque 
sensors embedded in each leg. Figure 6 shows the placement of 
force-torque sensors in the leg and numbering of the leg 
segments. The first and second segment are from both sides 
connected to a servo motor while the third segment is 
connected to a servo motor on one side and ends with a leg tip. 
In this paper we will focus on optimizing the second and third 
segment of the leg. 

 
 Figure 6. Force sensor placements in the simulation model 

The force-torque sensors will be used to get force constrains for 
topological optimization in chapter 3. (Figure 7) Torque 
measurements will be used to compute fitness value for genetic 
algorithm in chapter 4. and for final comparison between the 
methods in chapter 5. 

 
 Figure 7. An example of measurements from FT sensors in the legs. 
Measured while walking in simulation: (a) Force measurements, (b) 
Torque measurements 

3 TOPOLOGICAL OPTIMIZATION  

In this chapter we describe a more traditional approach to 
optimizing mechanical components using topological 
optimization (TO). TO has been a part of dedicated programs for 
decades and in recent years has found its way into mainstream 
CAD software packages (SolidWorks, Fusion360, Catia and 
others). It is a proven approach in mechanical engineering with 
a wide user base. We are using it as an example of a more 
traditional approach and a benchmark against the more 
scientific approach in chapter 4.  
Topological optimization uses a prior knowledge of loads and 
constrains acting on a mechanical part to minimize the used 
material. It uses a defined set of constrains to drive the 
optimization process. The constrain can be fixed surfaces or 
boundary conditions, that cannot change during the 
optimization. In our case the constrains are the connecting 
flanges on each end of the leg segment. The leg does not change 
length during the process, only the internal structure is modified. 
The kinematics and therefore the capabilities of the robot should 
stay the same while the efficiency should increase thanks to the 
removed weight.  
To get a set of loads for the optimization, we used the simulation 
model described in the previous chapter. We simulated the 
robot while walking in various conditions and measured forces 
and torques in the leg sensors. One example of a measurement 
is shown in Figure 7. 
The model was simulated with various settings, to determine 
and measure the loads in the legs during walking. The maximum 
measured loads from V-rep simulation were used as a parameter 
for the optimization in solidThinking Inspire software (Figure 8). 
The material used in optimization is PA 12 (PA 2200), with tensile 
strength of 48 MPa. The part was allowed displacement of 1,5 
mm.  



 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4351 

 

 
 Figure 8. Segment in SolidThinking Inspire; (a) Von Mises stress before 
TO, (b) displacement before TO, (c) Von Mises stress after TO, (d) 
displacement after TO 

Figure 9 shows the leg design after topological optimization. The 
new leg segments were printed out of ABS and PA 12, making 
the whole robot 142 g lighter (Table 2). 

 
 Figure 9. (a) Original leg, (b) Topologically optimized leg 

Part Original Optimized 

2nd segment 28.7 g 17 g 

3rd segment 36.8 g 13 g 

Table 2. Leg segment mass  

4 GENETIC OPTIMIZATION  

The use of genetic algorithms (GA) is very frequent in 
evolutionary robotics. Robots can evolve controllers for their 
locomotion, environment specific behaviors, their morphology, 
or multiple things at once. Several papers used GA to optimize 
the morphology of quadrupedal machines, mostly virtual 
creatures [Larpin 2011][Heinen 2009][Bongard 2011][ Nygaard 
2016][Leger 1999]. Even though the use of GA and more broadly 
methods of evolutionary computing have been around for 
decades we can still consider their use in everyday engineering 
as an experimental approach.  
In this paper, we are using a GA to optimize the length of the leg 
segments. Each leg in the simulation model (Figure 6) has two 
segments that can change length before running the simulation. 
The inverse kinematics in our control script (chapter 2.2.) can 
handle changes in length of individual legs. We have however 
decided not to optimize all 8 leg segments individually and 
decided to use left-right symmetry. This way both front legs have 
segments of the same length. The same goes for back legs. By 
mirroring the mechanism, we are making the search space 

smaller with only 4 lengths to optimize instead of 8. We can also 
assume that symmetrical body will perform better during 
walking than an asymmetrical body.  
We are using a GA implementation from Matlab optimization 
toolbox. The population size was set to 50. There were 5 input 
parameters for the optimization, the front and back leg 
segments and a velocity (Table 3). Fitness function was 
calculated in a control script that communicated with the 
simulation in V-rep and returned fitness value back to the GA. 
Figure 10 shows the overview of the connection between V-rep 
and Matlab. 

Parameter lb ub result 

Front leg 2nd segment 0 m 0.5 m 0.050 m 

Front leg 3rd segment 0 m  0.5 m 0.007 m 

Rear leg 2nd segment 0 m 0.5 m 0.051 m 

Rear leg 3rd segment 0 m 0.5 m 0.056 m 

Set velocity 0 m/s 1 m/s 0.045 m/s 

Table 3. Optimized parameters, their limits (lb = lower bound, up = upper 
bound) and the best individual.  

 
 Figure 10. Diagram of the optimization 

Matlab implementation of GA minimizes the value of an 
objective (fitness) function. Therefore, our fitness function is 
formulated to be minimized. After each simulation, the values of 
average torque on the motors and the traversed distance are 
requested from V-rep and a fitness is calculated according to the 
formula 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = τ ⋅ w− PX (8) 

where τ is an average torque from the simulation, PX in the 
translated distance in the X axis and w is a multiplier, which puts 
the torque into the same range as the distance.  
Ten runs of the GA optimization were performed, each taking 
about 30 hours. Figure 11 shows the evolutionary progress of the 
10 runs. Fitness, torques and distance travelled are averaged and 
shown as the black line. The vertical error bars show the 
standard deviation.  



 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4352 

 

The GA did in some cases abuse conditions of the simulation. In 
those cases, the robot had small front legs and long rear legs, 
which caused the robot to flip forwards, and thus move in the X 
direction and remain on its back with the legs moving through 
air with small torque on the motors. This made the GA stuck in a 
local minimum.  
In other cases, the GA produced successful kinematics. The best 
individual from GA optimization has shorter legs, the 3rd 
segment of the front legs is shortened to mere 7 mm (Table 2). 
The segments were 3d printed and installed on the robot for 
laboratory testing. 

 
 Figure 11. Average progress of the genetic algorithm; (a) Fitness, (b) 
Torque ,(c) Traveled distance 

5 EXPERIMENTS 

To test how the improvements in current consumption compare 
between simulation and reality, we tested the robot walking in 
the same conditions in our lab. All three versions of the robot 
(original, GA kinematics, and topologically optimized) were 
simulated in V-rep and tested in our lab. 

Parameter Value 

Set velocity Forward 40 mm/s 

Body height 150 mm 

Cycle time 3 s 

Leg-swing height 50 mm 

Table 4. Velocity and posture parameters for test  

5.1 Simulation  

The simulation here is very similar to the one used during the 
genetic algorithm optimization, described above. Unlike the 
simulation during the GA optimization however, we are 
measuring the torque for all the time steps of the simulation, 
instead just the final average. Each simulation is run for 500 
simulation steps, which corresponds to 25 seconds of simulation 
time. The simulations are repeated and recorded ten times for 
each model. 

5.2 Lab setup 

The robot was placed on an even floor under a camera (Figure 
12). The body of the robot is equipped with an ArUco marker and 
the camera detects the position of the marker. The camera is an 
Intel Realsense D435i, which is an RGBD camera, however only 
RGB images were used in detecting the position of the robot. The 
detection was done using OpenCV and the ArUco module. The 
detection was done on pictures at resolution of 1280x720 pixels. 

 
 Figure 12. Lab setup; (a) Schematic, (b) photo from the lab. 

5.3 Measuring 

The robot walked under the camera for 25 s, which is the same 
time we used in our simulations. Electrical current 
measurements were recorded during the walking. This walking 
test was repeated and recorded ten times. Then we rebuilt the 
robot to a different configuration and tested the same way 
again. Figure 13 shows the three configurations on the 
laboratory floor. 

 
 Figure 13. Three different configurations during the walking test (a) 
original robot, (b) GA optimized morphology, (c) Topologically 
optimized legs 

6 RESULTS 

Is this section we examine the torque measurements from 
simulation and the electrical current measurements from the 
tests with real robots. We will not directly map the motor torque 
to current consumption, or vice-versa, as this would not be an 
accurate mapping given the used sensors. Instead we will 
consider both of these measurements as the measurement of 
the robot efficiency and look at the percentage of its 
improvement. 
Each bar in Figure 14 shows the average of ten tests with one 
configuration. We can see that the genetic algorithm achieved 
better results than topologic optimization in both simulation and 
laboratory testing.  
The results are more apparent in Table 5. Third and fifth column 
show percentage improvement of an optimized configuration 
relative to the original configuration. The last column shows the 
difference between improvement in simulation and 
improvement in laboratory testing. 



 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4353 

 

 
Figure 14. Measured efficiency of the different robots. (a) Simulated test, 
(b) real test  

Robot 
configuration 

Simulation 

result 

[Nm] 

Improvement 

in simulation 

[%] 

Lab 

experiment 

[A] 

Improvement 

on real robot 

[%] 

Original 

configuration 
2.96 - 2.03 - 

Topologically 

optimized 
2.63 11.0 1.86 10.7 

GA optimized 

morphology 
2.42 18.2 1.58 23.9 

Table 5. Experimental results 

One of our conditions in optimizing the robot efficiency was to 
keep performance. When we investigate the trajectory that the 
robot body creates, we can see a significant difference between 
simulation and lab testing. Figure 15 shows how much does the 
robot body deviate from the simulated trajectory. For clarity, 
only one simulated trajectory is shown since they are very 
similar. The change in the overall direction is most likely caused 
by the robot slipping on the floor, as it seems that the trajectory 
randomly shifts to the left and right over the several repetitions. 
Another difference from the simulation is the amplitude of the 
swinging motion, that the robot body performs to keep its center 
of mass above feet with floor contact. 

 

 Figure 15. Position of the robot during walking (XY plane - floor), (a) 
original robot, (b) GA optimized kinematics, (c) Topologically optimized 
design  

7 RESULTS 

A selected quadrupedal robot was described and then modelled 
in simulation software V-rep. Two approaches for optimizing 
efficiency of the robot were tested and compared. The first 
approach was topological optimization which is more traditional 
and something a mechanical engineer might use. As a second 
approach we used a genetic algorithm which we estimate would 
be preferred by a computer scientist. In both cases the subject 
of optimization was the length of the leg segments.  
We have tested the original robot and the optimized robots in 
simulation and obtained improved results. The robot optimized 
with TO showed an improvement of 11% and the robot 
optimized with GA showed an improvement of 18.2%. Then we 
have tested the robots in real life laboratory testing. In real life 
test the robot optimized with TO showed an improvement of 
10.7%, which was very similar to the improvement in simulation. 
The robot optimized with GA showed 23.9% improvement. This 
means that it performed 5.7% better than what we would expect 
from our simulation. The discrepancy, often called reality gap, 
could be caused by a number of things. The GA changed the 
lengths of robot’s legs therefore it might affect the behavior of 
the friction in robot’s joints and the slippage of the legs. These 
things are difficult to approximate in simulation. 
 An interesting behavior was revealed when measuring exact 
trajectories of the robot body with a motion capture system 
from an overhead camera. Both TO and GA optimized robots 
show a lot less disturbance when walking in a straight line when 
compared to the original robot. This is not something that we 
expected since we did not optimize for straight walking but for 
efficiency which was measured as a sum of motor torques. It 
might be that optimizing for efficiency intrinsically makes other 
features of the robot behavior better. 
Naturally when both approaches show an improvement, why 
not use both GA and TO? Using both GA with a full dynamic 
model and a TO at the same time is problematic. Mainly because 
in our case the GA uses prior knowledge of density of the leg 
segments (the weight of a segment is linearly dependent on its 
length) and TO changes the density. At the same time, TO uses 
prior knowledge of the forces, torques and constrains for each 
mechanical part and because GA changes the length of the leg 
segments during its run it would be in effect changing the 
constrains for TO. Their use at the same time is problematic 
because they would change each other initial conditions. 
Possible solution would be to run each of them in turns and 
iterate towards an optimal morphology and topology this way. 
The authors are not aware of a project that would combine these 
two methods. 
Our future work will focus on using similar methods of 
optimization on modular manipulators. Minimizing the 
measured differences between simulation and reality by 
dynamically refining the simulated model during optimization. 

8 CONCLUSIONS 

We could conclude that optimizing a robot with topological 
optimization is more predictable than optimizing it with genetic 
algorithm. Optimizing the whole robot morphology with a 
genetic algorithm has showed better improvements than 
optimizing the legs with topology optimization. It is hard to say 
that modifying a robot’s morphology with a GA is a generally 
better approach than optimizing its parts with TO. We had the 
opportunity to change the morphology without changing the 



 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4354 

 

robot’s performance, this is often not the case with robots in 
practical use.  
Optimizing with TO is a rather standard process these days, it 
however creates machine parts that are difficult to manufacture 
and therefore is not suitable for wide range of uses due to the 
manufacturing costs. On the other hand, optimizing morphology 
with GA is a lengthy process usually with a lot of custom 
solutions. The resulting morphology from GA, however, can be 
manufactured with more conventional methods. It could be 
therefore thought of as a tradeoff between design and 
manufacturing phases. 

ACKNOWLEDGMENTS 

This work was supported by the European Regional 
Development Fund in the Research Centre of Advanced 
Mechatronic Systems project, project number 
CZ.02.1.01/0.0/0.0/16_019/0000867 within the Operational 
Programme Research, Development and Education.  

This article has been completed in connection with project 
Innovative and additive manufacturing technology – new 
technological solutions for 3D printing of metals and composite 
materials, reg. no. CZ.02.1.01/0.0/0.0/17_049/0008407 
financed by Structural Funds of European Union and project. 

This article has been also supported by specific research project 
SP2020/141 and financed by the state budget of the Czech 
Republic. 

REFERENCES 

 

[Alattas 2019] Alattas RJ, Patel S, Sobh TM. Evolutionary 
Modular Robotics: Survey and Analysis. J Intell Robot 
Syst Theory Appl [Internet]. 2019 Sep 14 [cited 2020 
Nov 6];95(3–4):815–28. Available from: 
https://doi.org/10.1007/s10846-018-0902-9  

[Bongard 2011] Bongard J. Morphological change in machines 
accelerates the evolution of robust behavior. Proc 
Natl Acad Sci U S A [Internet]. 2011 Jan 25 [cited 
2020 Nov 6];108(4):1234–9. Available from: 
www.pnas.org/cgi/doi/10.1073/pnas.1015390108 

[Brodbeck 2015] Brodbeck L, Hauser S, Iida F. Morphological 
Evolution of Physical Robots through Model-Free 
Phenotype Development. Bongard J, editor. PLoS 
One [Internet]. 2015 Jun 19 [cited 2020 Nov 
6];10(6):e0128444. Available from: 
https://dx.plos.org/10.1371/journal.pone.0128444 

[Brunete 2017] Brunete A, Ranganath A, Segovia S, de Frutos 
JP, Hernando M, Gambao E. Current trends in 
reconfigurable modular robots design. Int J Adv 
Robot Syst [Internet]. 2017 May 12 [cited 2020 Nov 
6];14(3):172988141771045. Available from: 
http://journals.sagepub.com/doi/10.1177/1729881
417710457 

[Doncieux 2015] Doncieux S, Bredeche N, Mouret JB, (Gusz) 
Eiben AE. Evolutionary robotics: What, why, and 
where to [Internet]. Vol. 2, Frontiers Robotics AI. 
Frontiers Media S.A.; 2015 [cited 2020 Sep 17]. p. 4. 
Available from: www.frontiersin.org 

[Doncieux 2010] Doncieux S, Mouret JB. Behavioral diversity 
measures for evolutionary robotics. In: 2010 IEEE 
World Congress on Computational Intelligence, 
WCCI 2010 - 2010 IEEE Congress on Evolutionary 
Computation, CEC 2010. 2010.  

[Habu 2019] Habu Y, Uta K, Fukuoka Y. Three-dimensional 
walking of a simulated muscle-driven quadruped 
robot with neuromorphic two-level central pattern 
generators. Int J Adv Robot Syst. 2019;  

[Heinen 2009] Heinen MR, Osório FS. Evolving morphologies 
and gaits of physically realistic simulated robots. In: 
Proceedings of the ACM Symposium on Applied 
Computing [Internet]. New York, New York, USA: 
ACM Press; 2009 [cited 2020 Nov 6]. p. 1161–5. 
Available from: 
http://portal.acm.org/citation.cfm?doid=1529282.1
529540 

[Hettiarachchi 2012] Hettiarachchi DS, Iba H. An Evolutionary 
Computational Approach to Humanoid Motion 
Planning. Int J Adv Robot Syst [Internet]. 2012 Nov 
15 [cited 2020 Nov 6];9(5):167. Available from: 
http://journals.sagepub.com/doi/10.5772/51905 

[Jakobi 1995] Jakobi N, Husbands P, Harvey I. Noise and the 
reality gap: The use of simulation in evolutionary 
robotics. In: Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics). 
1995.  

[Koos 2013] Koos S, Mouret JB, Doncieux S. The transferability 
approach: Crossing the reality gap in evolutionary 
robotics. IEEE Trans Evol Comput. 2013;17(1):122–
45.  

[Larpin 2011] Larpin K, Pouya S, Van Den Kieboom J, Ijspeert AJ. 
Co-evolution of morphology and control of virtual 
legged robots for a steering task. In: 2011 IEEE 
International Conference on Robotics and 
Biomimetics, ROBIO 2011. 2011. p. 2799–804.  

[Leger 1999] Leger PC. Automated synthesis and optimization 
of robot configurations: An evolutionary approach. 
Ph.D. dissertation, Robotics Institute, Carnegie 
Mellon University, Pittsburgh, PA, December 1999. 
Avaliable from: 
https://www.researchgate.net/publication/259588
0_Automated_Synthesis_and_Optimization_of_Rob
ot_Configurations_An_Evolutionary_Approach 

[Maximo 2017] Maximo MR, Colombini EL, Ribeiro CH. Stable 
and fast model-free walk with arms movement for 
humanoid robots. Int J Adv Robot Syst [Internet]. 
2017 May 14 [cited 2020 Nov 
6];14(3):172988141667513. Available from: 
http://journals.sagepub.com/doi/10.1177/1729881
416675135 

[Mintchev 2016] Mintchev S, Floreano D. Adaptive 
morphology: A design principle for multimodal and 
multifunctional robots. IEEE Robot Autom Mag. 
2016 Sep 1;23(3):42–54.  

[Moreno 2018] Moreno R, Veenstra F, Silvera D, Franco J, 
Gracia O, Cordoba E, et al. Automated 
Reconfiguration of Modular Robots Using Robot 
Manipulators. In: Proceedings of the 2018 IEEE 
Symposium Series on Computational Intelligence, 
SSCI 2018. Institute of Electrical and Electronics 
Engineers Inc.; 2019. p. 884–91.  

[Nygaard 2018] Nygaard TF, Martin CP, Torresen J, Glette K. 
Exploring Mechanically Self-Reconfiguring Robots 
for Autonomous Design. 2018 May 8 [cited 2020 
Nov 6]; Available from: 
http://arxiv.org/abs/1805.02965 

[Nygaard 2016] Nygaard TF, Torresen J, Glette K. Multi-
objective evolution of fast and stable gaits on a 
physical quadruped robotic platform. In: 2016 IEEE 

https://doi.org/10.1007/s10846-018-0902-9


 

 

MM SCIENCE JOURNAL I 2021 I JUNE 

4355 

 

Symposium Series on Computational Intelligence, 
SSCI 2016. Institute of Electrical and Electronics 
Engineers Inc.; 2017.  

[Sigmund 2013] Sigmund O, Maute K. Topology optimization 
approaches: A comparative review [Internet]. Vol. 
48, Structural and Multidisciplinary Optimization. 
Springer; 2013 [cited 2020 Oct 8]. p. 1031–55. 
Available from: 
https://link.springer.com/article/10.1007/s00158-
013-0978-6 

[Zargham 2016] Zargham S, Ward TA, Ramli R, Badruddin IA. 
Topology optimization: a review for structural 

designs under vibration problems. Struct Multidiscip 
Optim [Internet]. 2016 Jun 1 [cited 2020 Oct 
8];53(6):1157–77. Available from: 
https://link.springer.com/article/10.1007/s00158-
015-1370-5 

 
  
 
 
 

 

CONTACTS: 

Ing. Robert Pastor 
VSB - Technical University of Ostrava, Department of Robotics 
17. listopadu 2172/15, Ostrava, 708 00, Czech Republic 
+420 597 324 125, robert.pastor@vsb.cz 
 


