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As a GIS tool, visibility analysis is used in many areas to evaluate both visible and non-visible places. Visibility
analysis builds on a digital surface model describing the terrain morphology, including the position and shapes
of all objects that can sometimes act as visibility barriers. However, some barriers, for example vegetation, may
be permeable to a certain degree. Despite extensive research and use of visibility analysis in different areas, stan-
dard GIS tools do not take permeability into account. This article presents a new method to calculate visibility
through partly permeable obstacles. The method is based on a quasi-Monte Carlo simulation with 100 iterations
of visibility calculation. Each iteration result represents 1% of vegetation permeability, which can thus range from
1% to 100% visibility behind vegetation obstacles. The main advantage of the method is greater accuracy of visi-
bility results and easy implementation on any GIS software. The incorporation of the proposed method in GIS
software would facilitate work in many fields, such as architecture, archaeology, radio communication, and the
military.
©2021ChinaUniversity of Geosciences (Beijing) andPekingUniversity. Production andhostingby Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Visibility analysis is a widely used function in GIS (Wilson and
Gallant, 2000). It identifies areas that can or cannot be seen froma single
(or a set of) viewpoint(s). The clearly visible parts of an observer’s
surrounding area, as well as hidden parts, may thus be evaluated.
Visibility analysis proves useful when selecting the best or optimal loca-
tions in urban studies (Hindsley et al., 2013; Kloucek et al., 2015),
e.g., placement of various facilities which should be made visible (nice,
interesting places) or those which should be rather hidden (e.g. wind
turbines; Sunak andMadlener, 2016). Apart from architecture, visibility
analysis is useful for tourism purposes (Brabyn, 2015), archaeology
(Ogburn, 2006; Paliou, 2011; Supernant, 2014), communication engi-
neering (propagation of radio waves; Klampfer et al., 2011), and may
be highly serviceable in the military (Williamson and McLin, 2015).

Visibility analysis in standard geographic information systems takes
inputs such as:

• the digital surface model (DSM) – raster layer, which continuously
describes the surface elevation;

• the location of the observer – vector point location (X, Y, Z coordi-
nates);
va).
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• the parameters determining the direction of view and the maximum
visible distance.

Digital surface models are considered a category of digital terrain
models (DTM) (Wilson and Gallant, 2000). While a DTM only describes
the morphology of the terrain without its cover (buildings, vegetation,
etc.), a DSM includes such objects (Li et al., 2005). DSMs may be ob-
tained by acquiring all data at once using remote sensing. The advantage
is that all objects (visibility obstacles) on the terrain are included auto-
matically. However, the method does not allow work with the discrete
objects. On the other hand, data on the terrain and data on objects
(buildings and vegetation) can be obtained separately, thus leading to
data combination in a DSM. This way, it is possible to pre-process qual-
itative information, such as vegetation permeability.

Site visibility under the canopy cannot be evaluated using standard
visibility analysis in GIS due to the 2.5-dimensional (2.5D) geometry.
Because 2.5D can use only one Z coordinate for one position (X, Y), a
2.5D DSM only represents the treetop parts but not the bottom parts.
In addition to its shape, the position and permeability of the vegetation
must be evaluated. The vegetation data should be handled separately
(from the DSM data) for this purpose. Terrain, building, vegetation
and other obstacles can be part of visibility processingwhen they are in-
cluded in a digital surface model (DSM).

Conventional tools for visibility analysis are available in most GIS.
They are mainly based on processing with the line-of-sight approach
and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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(El-Sheimy et al., 2005; Smith et al., 2007). In this approach, an imagi-
nary connecting line (line-of-sight) is created between an observer’s
site and an observation target. In the direction of the line, a vertical pro-
file of the surface is created,which is comparedwith a direct connecting
line between the observer and the target. The comparison between the
two lines divides the line-of-sight into visible and invisible portions, in-
dicating whether the target is hidden by obstacles or not. Any invisible
portion causes invisibility of the observation target. The line-of-sight ap-
proach is a point-to-point operation. But itmay be computed froma sin-
gle point to multiple destinations, providing a simplified picture of
averal visibility from an observation point. During the calculation of vis-
ibility in all surrounding areas, each place in the surroundings progres-
sively becomes the observation target. Using the line-of-sight method
for each target eventually allows the evaluation of which surrounding
places of the observer can or cannot be seen. The most described algo-
rithms for viewshed are Xdraw, R2, R3, WS and RP (Kaucic and Zalik,
2002). There are two main concepts of visibility modelling: isovists
and viewsheds (Smith et al., 2007).

Viewshed analysis concentrates on landscape, rather than on urban
and architectural issues (Burrough, 1986). Viewshed analysis is basi-
cally calculation based on raster data (though algorithms using triangu-
lar irregular networks also exist; De Floriani et al., 1994, De Floriani and
Magillo, 1999). It was introduced by Tandy (1967) using watershed
analogy. Visibility is equivalent to shining a powerful light beam from
an observation point and scanning around in a full circle. The tracing
ray algorithm(e.g., at regular angular intervals) is applied to test the vis-
ibility between the observer point (vantage point) and the other pixels
over a regular pixelisation grid (DSM) observer. A DSM requires a high-
resolution image and takes considerable calculation time. A low-
resolution image will lead to imprecise results. A viewshed produces
an output raster with the same extent as an input raster. Software algo-
rithms for viewshed delineation were improved, for example, by Lee
and Stucky (1998), Kim et al. (2004), Bartie et al. (2010), Domingo-
Santos et al. (2011), Chamberlain and Meitner (2013), and Yu et al.
(2016).

An isovist is ‘the set of all points visible from a given vantage point in
space’ (Benedikt, 1979). The evaluated points are usually the border
points of the geometry of buildings in an urban area. Batty (2001) and
Turner et al. (2001) have extended Benedikt’s work. Isovists are natu-
rally three-dimensional, but it can be studied in two dimensions – usu-
ally a horizontal section (‘plan’). Vector data for outdoor visibility
(isovists) was mentioned by Rana (2006). He developed a program,
based on the ray tracing algorithm, that computes a visibility polygon
which encloses the visible area (Wassim et al., 2011). Nijhuis et al.
(2011) defined isovists as ‘Isovits: sight field polygons or limit-of-
vision plottings are the vector/based counterpart of viewsheds’. A first
level of visibility can be implemented in an urban landscape. It allows
optimal determination of the minimum number of target points to en-
sure complete coverage (Smith et al., 2007). A visibility graph is used
for some applications, such as urban visibility of movement patterns
in cities (Cooper, 2005; Natapov and Fisher-Gewirtzman, 2016).

The effect of vegetation permeability on visibility was theoretically
described by Llobera (2007). He recommended replacing every tree
with a set of very thin slices of a given transmissivity. The final visibility
is calculated as the ratio of rays passing through all the slices. He also
suggested a 3D representation of trees. These suggestions are reflected
in Bartie et al. (2011), in which the authors also took into account visi-
bility under bridges and overpasses. Seasonal vegetation changes and
the decay in the atmosphere were incorporated, too. The method is
based on the calculation of the visibility decrease rate caused by various
influences.

Although convectional line-of-sight builds on two options only (vis-
ible and invisible places), objects may sometimes be partly seen behind
vegetation. The main criticism of visibility analysis is that the binary
output does not reflect the complexities of reality (Chapman, 2006).
Some studies (Smith et al., 2007) have suggested diving the evaluated
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area into: almost certainly visible, possibly visible, possibly invisible
and almost certainly invisible. A simple solution would be assigning a
value between 0 and 1 to a partly visible place. However, this would in-
troduce uncertainties into the final results. Other sources of uncertainty
include the inaccuracy or complexity of the GIS data used (e.g., terrain
model) and the seasonal character of vegetation as tree foliage affects
the permeability rate. The basics of uncertain visibility analysis were
set-up by Peter Fisher (1993), who also described the main factors
that influence the visibility of surrounding areas (Caha and Rasova,
2015).

Uncertainty can be handled with fuzzy (Duraciova, 2014) or proba-
bilistic solutions (Nackaerts et al., 1999). ‘In essence the probablemodel
of error allows us to determine the area which should be visible from a
particular viewing point, while the fuzzymodel tells us howdistinct any
object might be: the visible and the distinguishable locations.’ (Fisher,
1993). Magoc et al. (2010) presented an algorithm that uses fuzzy inte-
gration to consider dependencies based on numerous criteria. These
criteria can be the distance between the observer and the target, the
time of the day, the position of the sun in the sky, the weather, and
the vegetation density.When the line-of-sight goes through the vegeta-
tion, the rate of visibility decreases. Ogburn (2006) discussed a fuzzy re-
duction in the ability to recognise objects (of precisely known sizes)
with increasing distances. Visibility reduction due to adverse environ-
ment conditions was studied as well (Wang et al., 2014). Visibility by
the human eye and visibility by an advanced digital photogrammetric
equipment were compared in various weather conditions.

Both approaches may be combined if we want to know which loca-
tions are visible and also distinguishable (Fisher, 1993). Arnot andGrant
(1981) and De Floroani and Magillo (1997) investigated the possibility
of including a DSM with different levels of accuracy to explain the con-
cept of the view scale. The need to incorporate vegetation into visibility
analysis was mentioned in studies by Lange (1990), Yang et al. (2007),
and Liu et al. (2010).

Themain problem of the conventional approach to visibility analysis
is how to handle partial visibility of vegetation. None of the mentioned
studies deal with it. In the probabilistic approach to uncertainty, re-
searchers have presented algorithms that focus on elevation-error
propagation into the results of a visibility analysis based, for example,
on Monte-Carlo analysis (Nackaerts et al., 1999). Although these algo-
rithms do not take vegetation permeability into account in their visibil-
ity analysis, the Monte-Carlo method seems to be a suitable method to
model the influence of vegetation onvisibility analysis, including its sea-
sonal character.

Guth (2009) described variousways of acquiring and preparing veg-
etation data for visibility analysis. He compared the National Elevation
Dataset of the United States, data from the Shuttle Radar Topography
Mission (SRTM), vegetation inventories such as the National Land
Cover Data, and LiDAR (light detection and ranging) data as suitable
sources for visibility analysis, recommending LiDAR data as the best
source. Raw LiDAR data can be used to categorize ground data and
cover data, according to the shape and roughness of a given surface
(Chang et al., 2008), with filtering methods. So, it is possible to detect
continuous wood canopy (Coops et al., 2007) as well as individual
trees (Chen et al., 2006). From airborne LiDAR measurement data, we
can identify more parameters of objects that can obstruct visibility, in-
cluding positions, shapes, types, etc. Some studies describe the use of
multispectral or hyperspectral data for identification of selected tree
species (Immitzer et al., 2012; Natural Resources Canada, 2015). In par-
ticular, the classification of coniferous and broadleaf trees was achieved
with a high accuracy of 99.2% (Immitzer et al., 2012). For this classifica-
tion, Immitzer et al. (2012) used the WorldView-2 image, 8 spectral
bands, 50 cm for the panchromatic band and 200 cm for the multispec-
tral bands. Just four standard bandswere sufficient for the identification
of themain four species. The accuracy of classification of all ten tree spe-
cies was over 80% in this study. More elaborate data from airborne re-
mote sensing allowed the examination of tree species in greater detail
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(Zhang and Hu, 2012). Brandtberg (2007) worked on classifying indi-
vidual tree species under leaf-off and leaf-on conditions using airborne
LiDAR. The classification was focused on five deciduous and six conifer-
ous species. Hence, some suitable sources and methods for this kind of
analysis are available. Bartie et al. (2011) andMurgoitio et al. (2013) de-
rived lodgepole pine tree obstruction permeability from the side-look
scanning of a tree. Permeability was evaluated as the ratio of tree
parts to the visible background behind the scanned trees. They also
used the side view of the tree. But each tree was investigated individu-
ally, and thus the task was time-consuming.

To improve visibility analysis, the current paper presents a method
that takes vegetation permeability into account. The method visibility
analysis focuses on incorporating partially permeable obstacles using
the Viewshed tool in ArcGIS. The novelty lies in the generalisation of a
tree’s shape and permeability. The approach is probabilistic since the re-
sults are focused on the visibility of locations (Fisher, 1993). It does not
deal with the uncertainty of DSMs, as described in (Fisher, 1993), but is
focused only on partial visibility via vegetation, based on the method
described in (Bartie et al., 2011). This paper aims to describe themethod
in two study areas. The method is universal for different types of appli-
cations (in planning, architecture, archaeology, etc.). It is easy to imple-
ment in GIS tools because it uses the tools, which are available in all
common GIS software.

2. Material and methods

Themain idea of the newmethod is based on the fact that in the vis-
ibility analysis of a scene, some parts of the scene behind vegetation are
visible while some parts are not visible. The amount of visible back-
ground is responsible for vegetation permeability. Vegetation perme-
ability was managed during the quasi-Monte Carlo simulation, which
repeats visibility analysis for all possible amount of vegetation
Fig. 1.Mapof the study areas on the university campus (VSB – Technical University of Ostrava, C
resolution 0.5 m × 0.5 m.
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permeability. Themethod is described in Section 3 (Results). It was im-
plemented in ArcGIS.Weused the Viewshed tool, because the viewshed
functionality is more widely available in GIS software than the isovist
functionality.

2.1. Study area and data

Two parts of the university campus (VSB – Technical University of
Ostrava, Czech Republic) were chosen as the test study areas (Fig. 1).
The university complex is in a suburb of the city of Ostrava, which has
a population of 300,000 inhabitants. It is a relatively flat area, and is doc-
umented in Appendix A – Morphology of the study area. The building
density is apparent from Fig. 1, with mainly 5-storey buildings. The
nice scenery of the campus is partly made up of ornamental vegetation.
There are coniferous (pine, fir, larch, spruce) and broadleaf trees (chest-
nut, birch, ash, oak, willow, lime tree, etc.), as well as bushes of various
species and shapes (dogwood, symphoricarpos, rose, scrub pine).

For Site 1, the first modelled scene, data was processed in a raster
format with a pixel size of 2 m × 2 m. We created a model of each
tree and bush as a rectangular block of dimensions 2 m × 2 m and a
specified height. Site 1was used to confirm the designed algorithm (de-
scribed later) – a verification of the relationship between the used veg-
etation permeability in the input and the degree of visibility behind the
vegetation at the output. It was necessary to do this before solving the
task in greater geometrical detail, where the verification could be
more complicated.

The second location, Site 2, was processed over the rasters with a
pixel size of 0.5m×0.5m. It allowed us to createmore detailed geomet-
rical models of vegetation, which is described later in Section 2.2 (veg-
etation data pre-processing).

Site 1 was selected because of a narrow view through the corridor of
trees, which is a pathway bounded by a line of trees on either side. The
zech Republic). Site 1 is solved using a spatial resolution of a 2mpixel size and Site 2with a
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observer site is near the line of trees with high buildings behind them. It
was necessary to pre-test the effect of using and omitting the vegetation
data during visibility analysis. To avoid long-winded calculations, we fo-
cused on details with smaller areas afterwards. Finally, we chose a dif-
ferent part of the university campus with not so many trees and
which offered a wider view. At this site, we could observe better partial
overlapping of the trees which was not clearly noticeable in Site 1
(where there was full overlapping of the trees).

More detailed and real data and values were used afterwards. These
were prepared for Site 2.

To obtain rough background visibility, the designedmethodwas ap-
plied on the whole area depicted in Fig. 1 (not just Site 1). In this case,
the same input data resolution as for Site 1 was used.

Data were obtained from the university data inventory. They were
acquired mainly by students, especially the positions, heights, species
of trees and bushes, and elevation data. Building datasets were based
on technical reports. All the datasets were in a vector format.

2.2. Vegetation data pre-processing

The vegetation layer for this study contained the locations of trees
and bushes with their attributes. The location of trees and bushes was
set as a centre point and the accompanying attributes were their
heights, diameters and species. Tree and bush positions were acquired
by geodetic backwardmeasurements and polar method (with total sta-
tion TOPCON GPT-7001), so the accuracy was precise (mean error 14
cm). The height of the vegetation was measured as a trigonometrically
determined elevation and a tape measure was used to determine the
vegetation diameter.

Our first step in this study was to obtain data about vegetation
permeability. The permeability parameter of each tree or bush was
not acquired separately. Instead, a table of typical parameters of per-
meability for each type of vegetation was prepared. The permeability
values for the winter season and the rest of the year were quantified
separately. This separate quantification was important because of
changing tree foliage during the year. A description of the method
used for the quantification follows. The database of the permeability
of tree species was built only for selected species present in the test-
ing area. It consists of about 50 species (types). For each of the species,
the permeability was evaluated as the average transparencies of a few
vegetation delegates of this species. Approximately ten winter images
and ten summer images of vegetation delegates were used for each of
the species. The tree must be photographed from the ground (or from
a place close to the ground). Pixels of vegetation pictures were sepa-
rated into vegetation and background categories with a supervised
maximum likelihood classification (ESRI, 2016). The permeability of
each tree or bush was then calculated as the number of background
pixels divided by the number of pixels that the tree or bush represents
in the rectangle. This approach is similar to that of (Bartie et al., 2011),
but its manner of data collection is faster because it is not necessary to
acquire data in the field for each study separately. Once a database of
parameters for vegetation species has been created, it can be used
repeatedly.

Then the permeability values were linked to the vegetation in the
vegetation dataset. The tables were joined through the vegetation
type. All necessary attributes of the vegetation were there. Each tree
or bush in the point layer dataset has its own value of height, diameter
and permeability.

Afterwards, the vegetation geometry was also processed. At Site 2,
each plant was processed as follows (see also Fig. 2):

(i) To simulate the vegetation diameter for point vegetation repre-
sentation, a multiple buffer was created around vegetation loca-
tions. Thismeans that circular distance zoneswere created round
the vegetation points (ESRI, 2019; Fig. 2). The maximum range
was set according to the vegetation’s width (diameter).
4

(ii) Multi-buffers (distance zones) were converted into two rasters –
a raster of vegetation heights and a raster of vegetation
permeability. The pixel values were taken from the attributes of
vegetation heights and permeability. The maximum value of
the height and permeability was in the centre of the tree or
bush. In cases of buffer overlaps, the highest value of height and
the reduced value of permeability were used.

Site 2 was processed with a resolution 0.5 m × 0.5 m, but Site 1 was
solved in a spatial resolution of 2 m pixel size. So, the vegetation was
pre-processed in a more generalized form for Site 1. The vegetation
was presented just as a rectangular block with a specified height and
one value of permeability for a whole tree or bush in this case.
2.3. Surface elevation data pre-processing

The data for the surface model were obtained from airborne remote
sensing and groundmeasurements. Stereo pairs of aerial survey photos
were processed on Erdas software to evaluate terrain heights. The re-
mote sensing dataset contains the irregular elevation point network,
with a point-spacing of 5–20m. These points were completedwith pre-
cise 3D hardlines in artificially rebuilt parts of the terrain. The hardlines
were acquired by ground measurements (GPS-RTK and geodetic mea-
surements – levelling line) and show the edges (borders) of roads,
pavements, parking sites and building footprints, the features arising
from urban activities in the area of interest. This allowed the inclusion
of the local characteristic shapes of the terrain. The DTM was created
as a 2.5Dmodel. A TIN (triangular irregular network)modelwas created
first and then itwas converted into rasters (with a resolution 0.5m×0.5
m for Site 2 and 2 m × 2 m for Site 1). A map of the DTM and its mor-
phology can be seen in Appendix A.

Then, two DSMs for each locationwere created: a DSMwithout veg-
etation (only opaque obstacles presented, e.g. buildings) and a DSM
with vegetation (opaque and partly permeable obstacles presented to-
gether). To create the DSM without vegetation, a raster of building
heights was added to the terrain. To create the DSM with vegetation, a
raster of vegetation heights was utilised. (Fig. 2 and Appendix B).

• DSM without vegetation = 2.5D DTM + 2.5D model of buildings
• DSMwith vegetation= 2.5D DTM+ 2.5Dmodel of buildings + 2.5D
model of vegetation

3. Results

3.1. A new methodology for visibility analysis

The visibility calculation was based on a quasi-Monte Carlo model-
ling method with pseudo-random values. The Monte Carlo method is
based on repeating the problem simulation many times with some ran-
domly changing parts of the input. All the results are processed after-
wards to get the required output. The prefix ‘quasi’ means that
although themethod is based on theMonte Carlomethod, it ismodified.
The modification lies in a generation not of random values in the input
but of pseudo-random values. In this case, we used an increasing nu-
merical series from 1 to 100 (which represents 0–99% of the processed
permeability).

For each one percent of permeability in the range of 0–99%, one var-
iation of visibility was calculated. The first variation processed the influ-
ence of vegetation with a 0% permeability. The second variation
(repeating) processed the influence of vegetation with a 1% permeabil-
ity, and so on (Figs. 3, 4).

The final visibility based on vegetation can be described with a sim-
ple eq. (1):



Fig. 2. Vegetation data processing. 2.5D vegetation representation and a raster of vegetation permeability are created form point vegetation data and vegetation attributes (diameter,
height and permeability).

Fig. 3. Schema of a viewshed model based on a quasi-Monte Carlo simulation.
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p xij
� � ¼ ∑100

k¼1xijk ð1Þ

where p(xij) is the probability of visibility of a cell at the ith row and jth

column in percent; and xijk is the visibility over surface with vegetation
permeability < k encoded in binary mode (0: not visible or 1: visible),
with k ranging from 1 to 100.

A different layer, ‘DSM variation’, was prepared according to the
amount of processed permeability for each repetition. Values of ‘DSM
variation’ were a combination values from the layers ‘DSM with
5

vegetation’ and ‘DSM without vegetation’. Specifically, the selection,
from which layer the values came, was based on the condition that
the value of vegetation permeability should be less than the iteration
number. In pixels where the condition was fulfilled, the layer ‘DSM var-
iation’ got its values from the layer ‘DSM with vegetation’. In pixels
where the condition failed, the pixel values from the layer ‘DSMwithout
vegetation’ were taken for ‘DSM variation’. This approach ensured that
only some of the permeable obstacles (for the actually processed
amount of permeability) were used. So, for the first iteration, it was
tested if the pixels in a layer of obstacle permeability had values less
than 1 (so all pixels with vegetation of opacity 100% were incorporated
into the DSM). In the second repetition, the selection of pixels for ‘DSM
variation’ was set with the condition that the permeability value at the
pixel site in a layer of vegetation must be less than 2 (so all pixels with
vegetation of opacity 100% or 99% were incorporated into the DSM).
Generally, opaque obstacles like terrain shapes and buildings are always
part of ‘DSM variation’. Permeable obstacles like trees and bushes are
added incorporated into ‘DSM variation’ only according to the condition
mentioned above.

During repetitions, visibility analysis from a specified point over all
calculations is performed upon updated ‘DSM variation’. There are,
thus, 100 variants of visibility when the repetition is completed. Each
variation in resultant visibility is influenced by a different number of
permeable obstacles. All variations of visibility together provide infor-
mation about how many times it is possible to see through the vegeta-
tion. These values are used as the probable visibility behind vegetation
obstacles.

The iterations of calculation are described in Fig. 4 with a simple flat
DSM, so the only obstacle is vegetation.

The new methodology was implemented in ArcGIS Appendix C and
Python script.

The following algorithm was used:



Fig. 4. Iterations of calculation.
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The method may be extended with an uncertainty in the DSM and
an uncertainty in vegetation permeability, as described in (Fisher,
1993). Therefore, for each iteration of the computation, a set of itera-
tionsmay be introduced to simulate error propagation in the DSM, veg-
etation height, vegetation width and vegetation permeability
uncertainty. All parameters may be simulated by the Monte Carlo ap-
proach.

p xij
� � ¼ ∑100

k¼1
∑q

l¼1∑
r
m¼1∑

s
n¼1∑

t
o¼1xijklmno

lþmþ nþ o

 !
ð2Þ

where p(xij) is the probability of visibility of a cell at the ith row and jth

column in percent; and xijklmno is the visibility over the surfacewith veg-
etation permeability < k, elevation realization l, realization m of width
of vegetation, realization n of height of vegetation, and realization o of
6

vegetation permeability, encoded in binary mode (0: not visible or 1:
visible), where k ranges from 1 to 100.

This extension will increase computational time, but allows for bet-
ter simulation of uncertainty in the data. The database of permeability of
vegetation must be extended with information about error distribution
for this purpose.

Themethodmay be extendedwith fuzzy approach if it is required to
distinguish locations aswell. For this purpose, all equations described in
(Fisher, 1993) may be considered. Such an extension will have a rapid
impact on the speed of the algorithm.

3.2. Visibility calculation at the study area

The first test of themethod was done on Site 1. The observer was on
the pathway bounded by lines of trees (Fig. 5 – Observer position). The



Fig. 5. Visual comparison of results for the designed method (Site 1) and site photographs. Red arrows (in map) show the direction of view from the observer’s site (from which two
photographs were taken).
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first tests of the method were successful. The original algorithm of the
Viewshed tool provided a reduction in visibility caused by surface to-
pography (terrain curvature and buildings), and our added algorithm
decreased the rate of visibility caused by vegetation permeability
(Fig. 5) in the right degree. It means that an area behind a 20% perme-
able tree can be seen with a 20% probability. The darkest blue (in
Fig. 5) represents the area which was visible without any limitation.
The lighter blue represents the area where the visibility was affected
(reduced) by vegetation. Places which could not be seen from the ob-
server’s location are not filled in the figure. So it is possible to see the
Table 1
Results of visibility calculationwith different vegetation influence. Below are the results of three
partly visible (1%–99%), and non-visible area were evaluated for each option.

Calculation type 100% visible are

Visibility without vegetation influence 17.3
Visibility with vegetation acting like an opaque barrier 3.4
Visibility with vegetation acting as a permeable barrier 3.4

7

topographic background. Visibility boundaries perpendicular to the
view direction are caused by the terrain morphology.

Fig. 5 also shows two photographs taken from the observer site. The
red arrows (in the map above) show the direction of view from the ob-
server’s position, which was used for taking the photographs. The clear
visibility above the pathway can be seen in the picture on the right pho-
tograph B. The pathway is surrounded by trees which block (or
decreased) the visibility of the surroundings. The left photograph A pre-
sents the visibility between the trees which do not completely obscure
the building behind them.
options of dealingwith vegetation during visibility analysis in rows. Ratios of 100% visible,

a (%) Partly visible area (%) Non-visible area (%)

- 82.7
- 96.6
14.4 82.2
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To compare the effect of using or omitting the vegetation data during
visibility analysis, two other common visibility calculations were done
(Table 1). The first calculation omits vegetation. The second calculation
counts vegetation as opaque barriers.When the vegetationwasnot con-
sidered, about 17% of the areawas evaluated as clear view (Table 1). But
in reality, part of it was hidden by vegetation.When the vegetation was
set as an opaque barrier, this partly hidden area was added to the
non-visible area; however, some parts of it were evaluated as partially
visible (14%). This can be seen from the visibility evaluation when the
vegetation is used as a permeable barrier. This evaluation (ratios of vis-
ibility) is site-dependent. But the effect that a partly hidden area could
be incorrectly put into a fully visible or fully invisible area during com-
mon visibility analysis is valid in general.

The calculation was also tested in greater detail at Site 2 (Appendix
D). Each tree was modelled as a group of pixels according to its height
and diameter (Fig. 2). Fig. 6 illustrates the side view which can be pre-
sented to an ordinary user.

Different cartographic presentation was made for different users.
The focus of the presentation was changed from a visible area to an in-
visible area. The result values of visibility were inverted. In this context,
the probable visibility was renamed the rate of visibility reduction. The
lowest value of probable visibility (Fig. 5) corresponds to the highest
value of visibility reduction (Fig. 6). The highest value of probable visi-
bility (Fig. 5) corresponds to the lowest value of visibility reduction
(Fig. 6). Also, the manner of scale description in the picture result was
changed. There is only a continuous scale from higher to lower visibility
reduction. This is a vaguer presentation of the results, but it respects the
rules for the visualisation of uncertain results. The present precise
values of the results are not suitable, because there was a generalisation
of tree shapes and their permeability in our method. So the results can-
not exactly respect the real state of visibility. That is why the legend in
the picture has been adapted.

The results were checked visually in the terrain. Verification of
viewshed analysis can be based on panoramatic photographs (Arnot
and Grant, 1981; De Floroani and Magillo, 1997; Sarnowski et al.,
2018), where the viewshed content is compared with the content of
the panoramatic photograps taken from the observer site (in reference
ponits). We used an analogous method – comparison with reality.
There was the possibility of classification into only 3 situations: whole
visible buildings, partly visible buildings behind the vegetation, and in-
visible buildings. The results were 95% correct in this field of view. The
inaccuracy of result was as a result of the accuracy of vegetation geome-
try. We did not examine the degree of the viewshed reduction because
Fig. 6. Side view of visibility analysi
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of the geometrical (dimension) task reduction to 2.5D. In a 3D task, su-
pervised maximum likelihood classification (ESRI, 2016) can be used,
but this will be distorted in a 2.5D task. We could not evaluate which
parts of a building thatwere seen.Whena (high)buildingwasevaluated
as visible, only the upper part could be seen, since the lower part might
behidden behind trees. This, however, is not noticeable from the results.

The algorithm is deterministic and the view of a tree with 20%
permeability causes an 80% visibility reduction behind the tree. The algo-
rithm is valid in this view. But we introduced some uncertainty into the
evaluation via a generalisation of the treemodels.We set the representa-
tive value of vegetation permeability for each type of vegetation accord-
ing to approximately 10 examples of each type. So, we suppressed the
diversity of particular examples of each vegetation type. This led to devi-
ations in the results which could be barely evaluated (as other visibility
studies shown, e.g., Bartie et al. (2011) and Murgoitio et al. (2013)).

4. Discussion

Incorporating vegetation into visibility analysis is very important al-
though for a long-time previous studies tended to neglect vegetation
data. The visibility of 14% of the surroundingswas affected by vegetation
at our study area (Study area 2). Some parts were hidden completely
and some partly. There is no doubt that partial visibility is valuable too.

Themost precise and complex data should lead to the best results of
visibility analysis. Vegetation, as one feature that obstructs visibility,
should be described with parameters like the vegetation position, the
shape of the tree or bush, and the vegetation permeability. But the
shape and permeability of a tree (or bush) varies from one occurrence
to another. There is no doubt that methods used by Bartie et al.
(2011) andMurgoitio et al. (2013) to acquire the parameters of vegeta-
tion are very useful. On the other hand, they are very time-consuming
and require a lot of site works. Using common vegetation inventories,
we usually get only information about vegetation position, species,
age and health. Next parameter - the height of vegetation can be ob-
tained by taking the difference between surface and terrain model.
We could not get information about vegetation shape and permeability.
Our database of these parameters assigned to vegetation species will
likely save time with making and processing site photos. We were con-
scious of reduction in the individuality of the vegetation.

The dimensionality of the geometry of themodel also influences the
visibility results. Our world is 3D in geometrical view. The designed al-
gorithm works with 2.5D data only. This introduces some limitations
during visibility evaluation. It is not possible to process correctly the
s results with real data (Site 2).
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space under a tree crown, because it is always modelled as a part filled
in by a tree, where there could be an open space there in reality. Data for
3D tree model construction are still not commonly (and freely) avail-
able. Using 2.5D data helps to decrease the data volume and speed up
the calculation. One big advantage of using 2.5D data is the possibility
it offers of using a common GIS viewshed function which works over
the DSM raster data.

In comparison to the methods in some of the studies mentioned (in
Section 1 – Introduction), the new method simplifies the evaluation of
the variability of vegetation permeability. The simplification consists
in establishing typical models for each type of trees and bushes. This
leads to a reduction in the variability of vegetation objects, but allows
for the processing of a wider area and quicker computation. A higher
variability and complexity of vegetation parameters should help, but it
may bring higher demands on vegetation data acquisition and
permeability evaluation. Such a solution can be used only in particular,
pre-selected small areas. For a wider and simpler calculation, a more
universal approach is suitable.

Another problematic part of the proposed algorithm concerns the
handling of trees that are in the same line of sight. The algorithm does
not deal with this situation. However, this limitation should not matter
much. According to Llobera (2007), visibility behind trees that are in the
line of sight decreases exponentially. Themost important issue is the in-
fluence of the first vegetation obstacles in front.

5. Conclusion

The method developed in this article allows the incorporation of
vegetation permeability data into visibility analysis. The method intro-
duces a more general and easier way to pre-process vegetation data as
well. It has some limitations, but it offers one universal approach to a
wide range of uses. The results describe the probable visibility or non-
visibility behind given obstacles, which corresponds to the probable
9

permeability of the obstacles. The proposed algorithm can be used in
any GIS software that can calculate viewshed for 2.5D geodata.
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Appendix A. Morphology of the study area

The profile curvature is delimiting convex (negative values) and
concave (positive values) shapes. The absolute value of the curvature
reports the rate of curvature. Higher values are more curved. Local
hardlines, such as road edges, pavements, and elevation transitions be-
tween the terrain and the buildings, can be seenmore conspicuously for
such more curved places because they have extreme values of curva-
ture. For visibility evaluation, places with higher negative values of pro-
file curvature are important. These include the convex shapes of terrain
– smaller or bigger backs of hills (or small elevation humps). They can
act as local visibility horizons, which hide a part of the terrain behind
them. The higher positive values of the profile curvature represent a
concave terrain shape (terrain depression). The profile curvature values
of flat terrain are around zero.
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Appendix B. Preparing the DSMs for visibility analysis (Site 2)

The DSMwith opaque obstacles merges the elevation of terrain and building height. The DSMwith all obstacles merges the elevation of terrain,
building height and vegetation height.
10
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Appendix C. Implementation of the newmethod in ArcGIS (ModelBuilder)

Python script
Implementation of the new methodology in ArcGIS (Python script).
11



K. Ruzickova, J. Ruzicka and J. Bitta Geoscience Frontiers 12 (2021) 101109
Appendix D. Result visibility at Site 2

The colour scale for probable visibility ranges is from darkest blue to lightest blue. Visible areas are not filled in. The colour scale was set in inverse
order to highlight the rate of invisibility in the result. This picture shows the reduction in visibility behind the vegetation. Visibility reduction could
also be perceived as the rate of shadows in a casewhere the source of light is placed in the observer’s location. The picture on the right side shows the
direction of view, which is displayed in Fig. 6.
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