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Abstract: Video quality evaluation needs a combined approach that includes subjective and objective
metrics, testing, and monitoring of the network. This paper deals with the novel approach of
mapping quality of service (QoS) to quality of experience (QoE) using QoE metrics to determine
user satisfaction limits, and applying QoS tools to provide the minimum QoE expected by users.
Our aim was to connect objective estimations of video quality with the subjective estimations.
A comprehensive tool for the estimation of the subjective evaluation is proposed. This new idea
is based on the evaluation and marking of video sequences using the sentinel flag derived from
spatial information (SI) and temporal information (TI) in individual video frames. The authors of
this paper created a video database for quality evaluation, and derived SI and TI from each video
sequence for classifying the scenes. Video scenes from the database were evaluated by objective
and subjective assessment. Based on the results, a new model for prediction of subjective quality is
defined and presented in this paper. This quality is predicted using an artificial neural network based
on the objective evaluation and the type of video sequences defined by qualitative parameters such
as resolution, compression standard, and bitstream. Furthermore, the authors created an optimum
mapping function to define the threshold for the variable bitrate setting based on the flag in the video,
determining the type of scene in the proposed model. This function allows one to allocate a bitrate
dynamically for a particular segment of the scene and maintains the desired quality. Our proposed
model can help video service providers with the increasing the comfort of the end users. The variable
bitstream ensures consistent video quality and customer satisfaction, while network resources are
used effectively. The proposed model can also predict the appropriate bitrate based on the required
quality of video sequences, defined using either objective or subjective assessment.

Keywords: bitrate; subjective video quality assessment; objective video quality assessment; spatial
information; temporal information; H.264/AVC; H.265/HEVC; neural network

1. Introduction

The growing interest in real-time services, especially video transmission over Internet
Protocol (IP) packet networks, prompts analyses of these services and their behavior.
The interest in these networks is intensifying. Video is a major component of all data
traffic via IP networks, and its quality has a key role in multimedia technologies [1].
That was the reason and motivation for selecting this topic for this paper. Maximum
perceived quality with effective use of a network’s resources is a challenge to achieve by
setting the compression parameters optimally. The assignment of bitrate boundaries for
different types of video sequences in terms of dynamics and lighting is described. Video
surveillance and data collection from IP cameras for home and retail security solutions
have grown over the last few years. Intelligent transport systems, body-worn cameras,
and many others contribute to the amount of data. They need to be processed as efficiently
as possible in terms of video compression by maintaining the highest possible quality
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with minimal network resource use. The reputation of artificial intelligence for video
monitoring, analyzing video content, and detecting incidents is good. We have found
many applications that levy extreme demands and require network resources to be booked
on the transfer path for mobile and dynamic wireless networks, such as [2], an example
being remote medical procedures. As an artistic endeavor, such a network could be thought
of as a concert performed by orchestra members who are in different locations. The IP
network architecture was not designed for real-time services or the transmission of data
that are sensitive to delay. Many factors can affect the quality of service, especially packet
loss, delay, jitter, and bandwidth [3]. According to [4], the proportion of UHD flat-panel
TVs will be around 66% in 2023, up from 33% in 2018. The paper aims to define the
threshold between the quality of the video and the satisfaction of the end users. A service
provider wants to deliver services with the minimum investment possible; implementing
quality of service (QoS) tools or quality of experience (QoE) monitoring is a source of costs.
However, the customers are not satisfied with the delivery of content of a quality that
does not allow them to enjoy the service unobstructed. Users expect guaranteed quality
from subscription services regardless of the type of transfer and technology used, and
regardless of the network architecture (e.g., centralized or decentralized). Increased user
demands and high-quality service expectations have encouraged operators to improve
their systems. This need is also stimulated by ultra-high video resolution (4K/8K). In such
a flexible and agile background, it is essential to deal with a new model or approaches
(e.g., some metrics evaluating user satisfaction, or setting a suitable bitrate to match with
compression standard and quality). Our approach uses QoE metrics to determine user
satisfaction limits and QoS tools that guarantee the minimum QoE expected by users.
It is necessary to evaluate the performance of systems that send information from one
source to another (data link), whether that information transfer is efficient and effective.
We rated the user perception of transmission quality against the quality of its content
for end-to-end delivery systems (IPTV). Generally, it is assumed that high performance
and transmission quality leads to excellent user satisfaction with services. The proposed
model brings the advantage of a variable bitrate that changes by type of the scene and
simulations of the subjective quality of the scene using a classifier based on the artificial
intelligence network that was published in [5]. It keeps a constant quality for the end users
and also safe bandwidth for the providers. In the research community, some surveys about
adaptive streaming [6,7] and prediction of the quality of the video (especially QoE) [8–10]
exist. The term QoE originated as a counterbalance to QoS and included something that
addresses human perception and experience, as these were considered more appropriate
for designing highly acceptable systems and services. QoE reflects the fact that perceived
quality is a crucial factor in evaluating structures, services, and applications. To this end,
research is continuing into finding networks and various support technologies that can
evaluate QoE. It is necessary to explore possibilities that will increase network quality, user
satisfaction, and save network resources.

A lot of papers deal with the topic of video quality. We describe models, procedures,
and analyses of the related research in Section 3. Quality evaluation is described in
detail, but we could not find a model defining the relationships between perceived quality
and mathematically calculated subjective metrics, or some tool for predicting subjective
quality based on objective assessment. We implemented a tool for retaining perceived
quality using a variable bitrate for different types of video sequences. Our model offers
a prediction of subjective quality, and a mapping function that compares subjective and
objective assessments.

The evaluation results led us to set the appropriate bitstream based on the compression
standards, resolution, and scene type used. Our model gives recommendations for selecting
a suitable bitrate for individual video scenes to achieve subjective quality.

2. Scope and Contributions

In summary, this paper has the following novel contributions:
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• Creating a database of video sequences (Section 5.1).
• Video sequence classification by spatial information (SI) and temporal information

(TI) (Section 5.2).
• Evaluation of the video scenes by objective and subjective metrics (Section 5.4).
• The proposal of a new classifier based on artificial intelligence (Section 6).
• Determining the correlations of the results for the objective and subjective evaluations

of the video (Section 7), followed by a prediction of subjective quality.
• Creating an optimal mapping function for predicting objective and subjective evalua-

tions of the quality (Section 8).

– Prediction of bitrate based on requested quality estimated using the SSIM index.
– Prediction of bitrate based on requested quality using MOS.

The rest of the paper is organized as follows, Section 3 reviews the state-of-the-
art in QoE and adaptive streaming. The aims of the paper are presented in Section 4.
Section 5 provides insights into the data preprocessing, whilst Section 6 explains proposed
classifier and neural network. Selection of a suitable topology is explained in Section 7,
the development of the prediction model is described in Section 8, and the results of
validation experiments are presented in Section 9. Finally, Section 10 concludes the paper.

3. Related Work

The papers that deal with exploring video quality are described in this part. The per-
ceptions of the human brain cannot be replaced by computing through algorithms. A more
reliable method is assessment by end users. Quality can be defined as the degree to which
something meets a set of requirements. For video, it is determined as a result of perception
by the human visual system.

The quality of video sequences can be adapted based on the customers’ requirements
and the results of their perceptions of quality. Thus, providers can change settings regarding
quality, such as the bitrate of a scene. From this point of view, both QoS and QoE are
essential to video content providers’ considerations. They are essential to the satisfaction of
the end users, as they lead to an increase in the enjoyment of these services. QoE is detailed
in [11].

The authors of [7] performed a survey for QoE, which was structured according to the
influence of video adaptation on QoE. This research presented an overview of the actual
state of affairs and recent developments. The authors also described methods of HTTP
video streaming and the point of view of the end users evaluating the video. VQAMap was
introduced as a new tool for the mapping of objective evaluation to the subjective MOS
values in the paper [12]. This mechanism uses public databases of the VQA evaluation.
They also evaluated the accuracy of quality estimation and compared the power deviation
of the objective metrics. The quality of the approximation was assessed using a correlation,
and the accuracy of the quality estimate was around 95 percent. Data from three public
databases were selected for the model. Subjective data were converted to the same input
scale (according to the selected MOS scale, for example, 1–5). The model uses nonlinear
regression and inverse interpolation. The model evaluates lower-resolution videos using
the H.264 compression standard.

The authors of [13] created a new no-reference metric for video quality assessment
based on the bitrate. Firstly, it checks the influence of the bitstream, and the model was
improved through features for visual perception such as TI, image contrast, and texture.
The final model was established using the appropriate settings of the weights for the
parameters. Ten types of reference scenes and a database of 150 test samples were used
for testing of the metric. The Spearman and Pearson correlation coefficients verified the
effectiveness of the model.

The framework for streaming video over DASH was developed in [14]. Optimal
bitrate switching was proposed for the satisfaction of the end customers. The aim of the
model was also to maximize the overall performance in the created framework.
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The paper [15] analyzed the impacts of the compression and network distortion on
streaming video. The authors proposed a reduced-reference metric for perceptual video
quality evaluation using optical flow functions. The deviation of the damaged frames is
used in this proposal. The streaming artifact and distortion sources are taken into account.
The distorted video sequences from three databases for the video quality assessment were
used for the validation of the proposed metric. With this approach it is possible to predict
the perception of quality. Results expressed by the Pearson and Spearman correlation
coefficients were evaluated for the artifacts of compression, channel-induced distortion,
and other distortion.

The authors of [16] dealt with HTTP adaptive streaming. They focused on longer
sequences with durations of approximately two minutes for the evaluation of the video
quality. Six video sequences in FHD resolution with a framerate of 24 fps encoded by H.264,
characterized by the SI and TI, were used. The paper examined the influence of adaptive
bitstream modifications during streaming.

Adaptive HTTP streaming using driven rate adaptation is introduced in [17], which
is appropriate for providers and for customers. The authors computed the initial delay—
interruptions in the transmission—using the proposed algorithm. Based on it, they adapted
the bitstream of the streaming video dynamically for maximum customer satisfaction.
The main idea of the paper was to satisfy QoE for the streaming videos. The authors
evaluated the subjective and also the objective quality of the test sequences. Spatial and
temporal information characterize the video sequences. The paper [18] dealt with 5G
network architecture with satellite communication for the achievement of QoE in HTTP
live streaming. The authors proposed a network with a mobile and satellite network
operator and a video provider.

A model for the extraction of the multifunction elements in the spatial and frequency
fields was deployed in the paper [19]. It uses the proposed filter log-Gabor for visual
information. They used spatial frequency for the variations of the sensitivity to contrast
and texture. A new model for QoE evaluation of the new and advanced multicast services
for the 5G networks was deployed [20]. It uses the measure of deformity in the depth map.
The relation between the depth map and the quality of the picture is described.

Other authors developed a model that connects different information from videos
together in [21]. They presented a stacked auto-encoder, sparse representation, and saliency.
On that basis, the authors constructed a model for the combination and analysis of vari-
ous features.

The paper [22] examined the perceptibility of packet loss deficiency in the scenes’
temporal and spatial sections. End users tapped the touchscreen while the video was
streamed, in the locations of artifacts. The authors analyzed objective attributes from these
artifacts to create the various models for combining characteristics into a new metric based
on the objective evaluation of the artifacts’ noticeability.

A new metric to evaluate the stalling of streaming video without access to a buffer
was designed in the paper [23]. The algorithm can automatically detect the quality of
freeze frames from decoded video based on their global intensity and the characteristics
of the local texture. A linear model is used for quality evaluation. The advantages of the
proposed metric are the independence of the data and platform adaptability. The paper [24]
describes the advantages of machine learning for the quality prediction of the videos and
describes the limitations of the current state. The subjective database for the panoramic
scenes was created in the paper [25]. Change of video sampling was suggested before the
coding during the subjective assessment. Sixty panoramic videos with coding degradations
were used for the subjective evaluation of the quality using the ACR-HR method by thirty
evaluators. The well-known support vector machine and Gaussian mixture model and
the new convolutional neural network (CNN)-based automatic speaker verification were
applied and subjected to synthesized speech in the paper [26]. This work analyzed and
evaluated the ability of commonly used ASVs to recognize the user-targeted speech from
the synthesized speech.
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Other authors published several articles on the issue under consideration. The pa-
pers [27,28] describe the simulation of a network traffic and prediction model for the
subjective assessment of the video sequences damaged by packet loss. Based on the pro-
posed analytical model, we developed an application to predict QoS qualitative parameters
in IP networks concerning the strategies used for packet processing in routers and the
capacity of the network. The model can predict the quality of triple-play services according
to the transmission speed of the router interface in packet networks.

Paper [29] presented a method of estimating users’ perceived quality of UHD video
experience flows in the emerging 5G networks as part of a comprehensive 5G-QoE frame-
work. The authors used the four video sequences from Ultra Video Group and the five
from Mitch Martinez. They used SHM 6.1 to encode the video scenes to H.265 compression
standards and two resolution types (Full HD and Ultra HD). The results of subjective
testing achieved accuracy of up to 94%. Paper [30] presented a simulation of typical and
adaptive streaming scenarios for mobile devices. For that reason, Quad HD resolution
was used. The author described the perceived video quality for both cases using three
types of scenarios with different bandwidths. Forty humans evaluated five different video
scenes with the subjective ACR method. Subsequently, the authors compared adaptive and
standard streaming. They could not find the complex solution for deploying a variable
bitstream based on the scene type.

Our paper presents an optimal mapping function for predicting objective and sub-
jective evaluations of the quality. Our paper’s main benefit is the possibility of setting an
appropriate bitrate for the individual video sequences based on a new classifier for predict-
ing the boundaries SI and TI following the quality requirements. Differences between the
last two papers and our approach are shown in Table 1.

Table 1. A comparison table of the selected relevant works.

Our Paper Paper [29] Paper [30]

The main idea of the paper

Setting an appropriate bitrate
based on a new classifier for
predicting the boundaries SI
and TI followed the quality

requirements

The method of estimating the
perceived quality of

experience of users of UHD
video flows in the emerging

5G networks is presented

The paper describes streaming
of the video sequences using

both the classical and the
adaptive streaming approach;
3 type of Bandwidth scenarios

Source of the video
sequences

Media Lab (8)/Ultra Video
Group (4)

Ultra Video Group (4)/Mitch
Martinez (5) N/A

Number of video sequences 12 9 5

Duration of the video
sequences [sec.] 10 10 60

Definition of the individual
video sequences SI, TI, qualitative parameters N/A SI, TI

Software for the encoding FFmpeg
A modified version of the
scalable HEVC reference

software (version SHM 6.1)
N/A

Compression standards H.264, H.265 H.265 N/A

The resolution Full HD, Ultra HD Full HD, Ultra HD Quad HD

Frame rate 30 30/24 30/24

Subjective evaluators 30 64 40
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Table 1. Cont.

Our Paper Paper [29] Paper [30]

Methods of the evaluation Subjective (ACR), Objective
(SSIM) Subjective (ACR) Subjective (ACR)

Performance

Each simulation is statistically
verified with a high success

rate of predicting the
simulated variables

The results of subjective
testing achieve an accuracy of
up to 94%. MOS scores of the

test subject have the
maximum variance of 0.06

and 0.17.

The adaptive streaming case
outperforms the standard for

all the scenarios

4. The Aim of the Paper

The current section highlights the aims of this paper and further steps to be made in
the field of video quality evaluation, namely, research into the practical use of bitstream.
The buffer is an essential part of the encoder and decoder. It balances the variable bitrate
depending on the content of the current scene and compression applied. A static view of
television news or political discussion needs a lower bitrate than a highly-dynamic action
scene, an advertising spot, or a dynamic sports match. Sports broadcasting needs to be dif-
ferentiated into more categories: high motion sports (such as hockey or football), dynamic
sports (such as darts), and nearly static sports (such as chess). Therefore, the purpose of
this work was to determine the proper bitrate for specific scenes and achieve the highest
end user satisfaction regarding quality. One of the aims was to define boundaries for
individual sequences based on the spatial and temporal content. A suitable bitstream could
be assigned for each resolution and for each boundary. It is possible to save a significant
portion of the average bitstream by deploying a variable bitrate (VBR). The average and
the maximum bitstream values of VBR are important. One needs to select the appropriate
test scenes to determine video quality and encoding.

The variety of dynamics plays a primary role in the selection of video scenes. If the
quality evaluation results are to be trusted, a big database of the samples is indispensable.
Twelve of them were selected by the content complexity characterized by SI and TI in our
experiment. The authors used objective and subjective metrics for the evaluation of the
video sequences. The subjective estimation of the video followed ITU recommendations
P.910 [31] and ITU-T BT.500-14 [32]. People of both genders of various ages evaluated the
video sequences. Both approaches of video evaluation defined the correlation relationship.
The prediction of the subjective assessment based on the objective uses this continuity.

The main aim of this paper study to propose a new classifier for predicting the bound-
aries using SI and TI, while following quality requirements. Based on these constraints,
an appropriate bitrate could be set. Content classification analysis is performed by cal-
culating the time and spatial information indices relative to the luminance component of
each video. We define the boundaries for time and spatial information using the mapping
feature. Thresholding and scalability for bitstreams are used in the model for adaptive
conservation of network resources according to established boundaries. We introduce a
new classifier that determines the scene type based on TI and SI information. Depending on
the scene type, the model determines the appropriate bitrate based on a mapping function.
The results from the model were verified by comparing predicted video quality using
the proposed classifier with the required bitrate value. It is expected that the numerical
expression of quality obtained using the objective method would be better correlated with
human subjectivity. Various metrics can express the correlation between subjective and
objective evaluation. The two most common statistical parameters related to expressing
performance are root mean square error (RMSE) and Pearson’s correlation coefficient.

Our classifier’s advantage is the knowledge that the image quality is insufficient,
sufficient, or perfect. If a video with specific parameters achieves the best quality observable
by the human eye, it is unnecessary to use better parameters because the eyes do not notice
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them. Thus, the service providers can know the scenes’ qualitative settings needed to
achieve maximum customer satisfaction. It can dynamically change the quality of various
video sequences and offer the full degree of satisfaction during the whole broadcast.
Examples of usage are online broadcasting and streaming sessions. When a broadcast from
a studio is alternated with a dynamic scene, it is possible to change the scenes’ qualitative
parameters. The advantage is that the videos will have a different quality based on the
content; qualitative parameters for the studio broadcast with slightly dynamic movements
can be lower. Another example of usage is virtual reality, where the quality of processing
and of the video scenes affects the resulting experience.

5. Data Preprocessing

Some partial steps are necessary to do for designing of the classifier based on artificial
intelligence. The first is creating a video database distinguished by the SI and TI encoded
to require a format of specified resolution, compression standard, and bitstream rate;
evaluation of the video quality and classification of the video sequences are described in
this section.

5.1. Creating the Database of Video Sequences

A testing database of the video scenes was prepared. Researchers from the Media
Lab of the Shanghai Jiao Tong University [33] dedicate their work to video signals. The se-
quences in their laboratory include a range of topics related to the video signal. They are
working on video analysis, processing, and compression. A set of fifteen 4k video test
sequences for downloading in the uncompressed format—YUV 4:4:4 color sampling, 10
bits per sample with a frame rate 30—are available for download. Our database needs to
cover a wide range of video scenes in terms of SI and TI. After calculating these parameters
for each sequence from the Media Lab, we chose eight of them with various pieces of SI
and TI. These broadly cover all quadrants from TI and SI viewpoints. The Ultra Video
Group (UVG) of the Laboratory of Pervasive Computing in the Tampere University of
Technology [34] is a leading academic video coding group in Finland with many years of
experience in this area. We used four 4K test sequences made available for download in
raw format as complementary video scenes to our database. These suitably expanded the
SI and TI distributions in the less covered quadrants of the graphs of SI and TI dependence,
especially for video scene “ReadySteadyGo”. These four additional video sequences were
used to expand the database for objective evaluation and bitstream prediction based on
an objective SSIM metric. Hence, twelve source video sequences (SRCs) were used in our
paper. SI and TI can be compared in Figures 4–7. From these graphs it can be seen that the
sequence selection covers a variety of scenes.

The neural network simulates individual sequences encoded by different values of the
bitstream, compression standard, and resolution. SI, TI, and quality parameters characterize
the video scenes. Individual video scenes are varied by the speed of the movement, object
movement, details of the frames, and light intensity. Scene selection was performed by
ITU-T Recommendations P.910 [31] and ITU-T BT.500-14 [32].

The original samples from the database were created as ten second video sequences
encoded with 30 frames per second, Ultra HD resolution, 4:4:4 chroma subsampling,
and ten bits of the bit depth per channel. Video scenes longer than ten seconds do not
influence the quality evaluation. We had to convert all SRCs to YUV 4:4:2 typical chroma
subsampled, using FFmpeg [35] as a first step. The encoding was repeated for all SRCs
to convert them to Full HD resolution, two types of codecs, and eight types of a bitrate.
Encoding parameters are shown in Table 2.

Thus, each SRC for both resolutions was encoded to H.264 (AVC) and H.265 (HEVC)
compression standards, and eight different bitstreams (Figure 1).
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Table 2. Parameters for encoding.

Parameter Description

Resolution Full HD, Ultra HD
Type of codec H.264 (AVC), H.265 (HEVC)
Bitrate [Mb/s] 1, 3, 5, 8, 10, 12, 15, 20

Chroma subsampling 4:2:0
Bit depth 10
Framerate 30 fps
Duration 10 s

Figure 1. The process of coding, classification, and evaluation of quality.

5.2. Video Sequence Classification

Spatial and temporal information were used for identification of the video sequences.
These values classify the video content of each scene in our database, and to have a different
rate for each video sequence encoded to a different resolution, bitrate, or compression
standard. Numerous types of video sequences with different SI and TI were adopted.
We complied with the ITU’s recommendations [31,32] for conducting subjective tests.
The MOS scale was applied for subjective video evaluation. Generally, spatial and temporal
information is used to represent video content. This information is the critical and key
variable of a given scene and determines the compression rate of the video. The content
classification was analyzed by computing the SI and TI indices for each video sequence.

5.2.1. Spatial Information

Spatial information is based on the Sobel filter (the Sobel operator) that uses the edge
of the frames for taking information about frequency which determines SI. A higher value
of SI indicates increasing sequence spatiality. First, each video frame is filtered by the Sobel
filter at the specified time. The standard deviation (stdspace) of the pixels is then calculated
for each filtered frame (see Figure 2).

Figure 2. Spatial information (SI).
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This operation is repeated for each frame in the video sequence, and the result is the
highest value in the time series (maxtime) representing the SI content of the selected scene
(Equation (1)) [16] (parameters are shown in Table 3):

SI = maxtime[stdspace[Sobel( fn)]] (1)

Table 3. Equation parameters.

Parameter Description

maxtime The maximum value in the time
stdspace Standard deviation over pixels
Sobel The Sobel filter

fn Number of frames in time n

5.2.2. Temporal Information

This information indicates changes in the video sequence motion over time. A greater
value indicates a higher sequence motion. From a technical point of view, TI is based on
the function of movement difference. This feature is a difference between pixel values at
the same place in the space in the successive frames of the video (see in Figure 3). This
information determines differences in the movement of the frames or consecutive times,
which defines the function (n) in Equation (2):

Mn(i, j) = Fn(i, j)− F(n−1)(i, j) (2)

where Fn(i, j) is the pixel of the image F at the ith row, jth column, and nth frame in time.
The standard deviation is calculated from the function above, and the maximum value is
found by Equation (3):

TI = maxtime[stdspace[Mn(i, j)]] (3)

Equation parameters are shown in Table 3.

Figure 3. Temporal information (TI).

The goal of the classifier is to determine the boundaries of SI and TI for bitstream
switching. No reference Mitsu tool [36] was used to evaluate the level of distortion in
the video scenes. We can compare results for H.265 compression standard for both Ultra
HD and Full HD resolutions between 3 and 20 Mb/s in Figures 4–7. There is information
displayed about SI and TI dependence for these videosequences. The paper proves the
variability of SI and TI values across the encoded parameters, such as bitrate, resolution,
and compression standards. The classification of the video samples can thus be done by SI
and TI.



Sensors 2021, 21, 1949 10 of 31

From the graphs, we can see that the created database consists of the various video
sequences, thereby covering a wide range of scenes, which makes it possible to adapt the
results in practice.

5.3. Evaluation Methodology

The data analysis consists of the precise steps: data elimination, accurate statistical
assessment, and presentation of the results. Irrelevant data need to be detected, and data
out of the confidence interval need to be determined. Those data will not be included
in the final presentation. The Pearson correlation coefficient commonly used in linear
regression can specify the relevance of data. Spearman’s correlation coefficient can be
used as a secondary method to estimate relevance. Thirty out of thirty-five evaluators
were included in the evaluation. Ratings from the five respondents were not accepted
because their results differed from other values. The average age of participants was
thirty-five. Of these, the fifteen men were twenty-one to forty-four, and the fifteen women
were nineteen to thirty-four.

5.4. Evaluation Dataset

Subjective assessment: We followed recommendations in [31,32] that describe con-
ditions for the reference video scenes; instructions on how evaluators can do the evaluation,
adjust brightness, adjust distance from the monitor, process, and analyze results; and many
other things. The minimum number of evaluators needed to be fifteen. Each of them had
the same instructions and conditions for carrying out the evaluation.

Figure 4. Ultra HD, H.265, bitrate 3 Mbps.
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Figure 5. Ultra HD, H.265, bitrate 20 Mbps.

Figure 6. Full HD, H.265, bitrate 3 Mbps.
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Figure 7. FULL HD, H.265, bitrate 20 Mbps.

The legend for Figures 4–7 is displayed in Figure 8.

Figure 8. The legend of Figures 4–7.

A video laboratory with a recommended condition was used for the testing. We
gave clear instructions for carrying out this work to participants in the evaluation. It
included the condition that the video sequences were evaluated in terms of image quality,
not scene selection and processing. The demonstration of test sequences was performed.
The guidance included the scale of the evaluation, video quality degradation.

We decided on the ACR subjective method, which evaluates the scene’s quality
without comparison with the original. It illustrates the conditions in a real deployment,
where the end customer has the opportunity to see only the broadcast video. This method
is faster when we compare it with DSIS or DSCQS.

Objective assessment: In this case, the MSU Video Quality Measurement Tool [37]
was selected for evaluation. Reference video scenes were compared with the test samples.

The results of the objective assessment using the SSIM metric for the UVG sequence are
shown in Figure 9 for Full HD and in Figure 10 for Ultra HD resolution. The results for the
chosen SJTU Media Lab video sequences are in Figures 12–15 in Section 7. The evaluated
data are compared with the objective and subjective metric in the selected video.
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Figure 9. SSIM evaluation of Ultra Video Group (UVG) sequences—Full HD.

Figure 10. SSIM evaluation of UVG sequences—Ultra HD.

6. The Classifier Based on an Artificial Intelligence

A new classifier for prediction of bitrate and video evaluation is proposed. It knows to
predict both subjective and objective approaches using artificial intelligence. MATLAB was
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used for creating a neural network. The term for this network was derived from the basic
functional unit of the human nervous system or nerve cells that are present in the brain and
other parts of the human body. The neural network is trained by successively adjusting
its weights and biases (these variables are also called free parameters). This procedure
is performed iteratively to obtain the desired output. These variables are also called free
parameters. Training is needed in the first phase of the neural network (learning). It is
implemented using a defined set of rules known as the learning algorithm. This process
needs a set of training data, and it is then tested on a set of testing data.

Our model implements a multilayer neural network using back-propagation, which
can update weights and reduce an error function to its local minimum by moving weights
forward and backward. The model with a feed-forward neural network was implemented
in MATLAB R2020b. We used three types of gradient modes (the convergence rate, stability,
and complexity of these methods are different):

• Batch gradient descent (traingd).
• Batch gradient descent with momentum (traingdm).
• Gradient descent with variable learning rate (traingdx).

6.1. Data Processing

Training of the neural network can be more effective if inputs and outputs are done
by scaling in the same interval. We tested scaling at <−1; 1> and <0; 1> intervals (we also
tested training without scaling inputs and outputs). Network training was done separately
for the H.264 and H.265 codecs and both codecs at once, which made it possible to compare
network training for two different input groups.

We trained the neural network ten times for each topology for more accurate results.
Weights and biases were always randomly generated. This has limited the impact of
randomly generated initialization weights, which has increased the statistical significance of
the whole process. A validation set of data was used during training to verify the rightness
of the network training to prevent it from being overloaded. Training and testing sets were
created from the database. It was a random choice into 75:25 for training:testing. After that,
the validation set was generated from the training database at a ratio of 70:30 for the
training set. This process was repeated ten times to guarantee statistical significance. Each
repetition trained the network with different training and validation sets. The training was
performed for multiple topologies that contained two, three, and four layers of concealed
neurons, with up to 160 neurons in one layer. The network was overburdened with a
higher number of layers; a higher number of neurons in one layer was not necessary, as the
network was able to properly train with fewer neurons, which demonstrates the results
of the simulation. The ratio of data distribution, number of layers, number of neurons
resulting from training, and simulation tests show the results of the final programmed
algorithm and the results obtained by looking for the proper functions and selecting the
correct data layout. The number of repeats chosen was also based on the results of the
authors [38].

We used a validation set to prevent network overreliance. If the error rate of the
validation set did not decrease six consecutive times, the training ended. The best results
from the training were from the time when the network was best trained (before recording
the first occurrence of six error rate of the validation set). As a result, the weights and
biases were reached with the minimum error of the validation set. Thus, if the error rate of
the training data dropped, but the error rate of the validation set increased or remained
at the same level, training stopped. We tested changing the number of incidences of
error rate on the validation set, but no better results were achieved. The possibility to
modify the error calculation function was also verified. We performed a simulation for
both resolutions separately and another simulation together, and for both compression
standards. It is necessary to test network training using test data that the neural network
(Figure 11) does not yet have available. We calculated the correlation based on the Pearson
correlation coefficient after data simulation. If the error rate of the test set is significantly
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lower than the error rate of the validation set, this would mean a poor partitioning of the
video sequence database.

6.2. The Classifier

The neuron-based classifier predicts the appropriate bitrate based on the scenes clas-
sified by the critical SI and TI and the qualitative parameters of a given video sequence.
The model allows the prediction of:

• Bitrate, which depends on the type of scene and its quality evaluated by an objective
SSIM metric.

• Bitstream based on the kind of sequence and its quality estimated using the MOS scale
quality score (value achieved with the subjective ACR metric).

Besides bitstream prediction, the designed model can predict subjective video quality
based on the type of the scenes, objective expression by the SSIM metrics and encoded
video parameters. In practice, end customer satisfaction is significant, and it is essential
to evaluate the perceived quality of the viewed video sequences by users. The objective
metric itself does not give us information about the perceived quality of the content being
viewed by users.

In addition to bitstream and subjective quality prediction based on the objective
evaluation, quality can be predicted only from the video scenes. The model thus can
predict the subjective and objective quality of the video sequence identified by the type of
it and bitstream.

Figure 11. An example of the neural network.

7. Correlation of the Results between the Objective and Subjective Evaluation of
the Video

The database with 384 video sequences was created. It includes twelve types of the
scenes encoded into two resolutions and compression standards and eight bitstreams. We
classified each video from our database using SI and TI information and evaluated quality
using objective tests. The subjective metric evaluated SJTU Media Lab Sequences (265
scenes). In this section, the results of the quality of the video sequences from the created
database are evaluated. The correlation between subjective and objective quality evaluation
and the model of subjective quality prediction based on the objective are also described.
The results obtained using the subjective ACR metric as an average MOS for the selected
video type can be seen in Figure 12 (Bund Nightscape) and Figure 13 (Wood). These results
can be compared with the values obtained by evaluating video quality using the objective
SSIM metric in Figure 14 (Bund Nightscape) and Figure 15 (Wood).
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Figure 12. Bund Nightscape, subjective evaluation.

Figure 13. Wood, subjective evaluation.
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Figure 14. Bund Nightscape, objective evaluation.

Figure 15. Wood, objective evaluation.

From the figures, we can see that subjective metrics are very similar and close to
objective metrics. The best score is seen with the H.265 standard in Full HD resolution
and the worst score with H.264 in Ultra HD resolution. The best results for Full HD have
slow-motion scenes (scenes with lower TI value) such as the “Construction Field” and
“Tall Buildings” scenes. The resulting curve of the Wood sequence (sequence with the
highest SI and TI values) is located around half of all quality curves. We can say that the
human brain does not detect the motion of the camera and the movement of the object on
a static background. Minor scoring differences in the MOS scale are at the higher bitrate.
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Likewise, slow-motion scenes achieved the best results in Ultra HD resolution—in this
case, the Construction Field and Bund Nightscape scenes.

The average results show high similarity between the subjective (Figure 16) and objec-
tive (Figure 17) tests. The quality of all the analyzed sequences increases logarithmically.
Users rated video quality very similarly compared to the SSIM metrics. It confirms the
credibility of subjective tests. The human brain does not perceive the change of codec with
a high bitstream as intensely as in objective evaluation. In this case, user ratings move
roughly to a similar level. The efficiency of coding using H.265 is higher than for H.264;
H.265 surpassed H.264 in both Full HD and Ultra HD.

Figure 16. The average results of MOS.

Figure 17. The average results of SSIM.
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7.1. Subjective Quality Prediction

If our model knows quality estimated by objective metrics and the scene’s type, he
can predict subjective quality. That is the main topic of this chapter. It focuses on learning
topology selection, continuously testing, and simulating topology. Additionally, human
video quality comprehension by the objective value with SSIM metric is described.

7.2. Selection of a Suitable Topology for the Neural Network

For achieving a trained neural network is necessary to set the right number of hidden
layers and neurons in each of them. If the number of neurons is too low, the neural network
cannot reach trained condition. Too many of them lead to the overtraining of the network—
that means that it is trained only for learned values and cannot to predict a new one. The
process of creating the neural network is shown in Figure 18.

Figure 18. The process of creating the neural network.

Our model works with five inputs entering the system (the type of scene consists of SI
and TI, resolution, compression standard, objective evaluation). Based on it, we defined
basic topologies for the neural network. The first layer consists of five neurons (five inputs),
the last layer has only one neuron (one output), and some hidden layers were also created
in primary topologies:

• 5-1;
• 5-1-1;
• 5-3-1;
• 5-3-2-1;
• 5-5-3-1.

For more accurate results, any simulation was repeated ten times. Each time, the sim-
ulation starts with randomly generating weights and biases. Simulations were done for
zero, one, and two hidden layers. One of the steps in each simulation is to divide a set
of data into the training and testing group. After that, allocate validation data from the
training collection. It is necessary to note that this process is always randomly generated,
and so each simulation brings relevant results. At the moment, our network is trained,
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the next ten rounds of the simulations with randomly generated training and validation
sets are performed. So that for each of the ten network modeling repetitions, a training and
validation set were randomly generated ten times (described in Section 6).

Pearson’s correlation coefficient, number of iterations, and time needed to reach them
(mean values) for the Ultra HD resolutions are shown in Table 4. When we compared
the best results for primarily defined layers, two layers model (without the hidden layer)
reached better results. The criteria for selecting the best topologies were based on correla-
tion and the associated error rate followed by the number of neurons and the associated
time to get optimal topology.

Table 4. The basic and the best topologies of the subjective prediction; Ultra HD.

Codec Topology R2
TRAIN[-] Time [s] Num. of Epochs [-]

H.264 + H.265

5-1 0.97 64.962 681
51-25 0.996 12.446 302
5-1-1 0.974 99.480 762
5-3-1 0.977 108.160 965
5-3-2-1 0.974 91.926 820
5-5-3-1 0.98 106.551 924

H.264

5-1 0.934 93.305 853
31-15 0.993 281.610 273
5-1-1 0.953 91.826 963
5-3-1 0.934 135.354 1101
5-3-2-1 0.957 152.567 1118
5-5-3-1 0.953 94.658 888

H.265

5-1 0.971 96.904 808
39-19 0.992 30.651 278
5-1-1 0.969 91.443 836
5-3-1 0.975 116.228 1037
5-3-2-1 0.984 103.205 827
5-5-3-1 0.989 118.936 918

Subsequently, we selected the two-layers model for the next simulation and looking
for even better results. We started with a small number of neurons, which we gradually
increased. From the results, we again selected the best simulations. Table 4 shows the
results (simulations were also done separately for compression standard H.264 and H.265
for Ultra HD resolution). Mean squared error (MSE) and the Pearson correlation coefficient
for each data set of the simulations are displayed in Table 5 (simulations were also done
separately for compression standard H.264 and H.265 for Ultra HD resolution).

Table 5. Simulation of the MOS prediction for the best topologies.

Resolution Codec Topology MSE R2
TRAIN[-] R2

VAL [-] R2
TEST [-]

Ultra HD
H.264 + H.265 51-25 0.002 0.996 0.996 0.997

H.264 31-15 0.004 0.994 0.987 0.999
H.265 39-19 0.004 0.993 0.998 0.997

Full HD+
Ultra HD

H.264 + H.265 47-23 0.006 0.986 0.991 0.993

We compared more algorithms and settings of the simulation. The gradient descent
with variable learning rate algorithm (“traingdx”) achieved the best results with the “tansig”
activation function, and when data were scaled in the interval <−1; 1>. The algorithm
“traingdx” needs fewer iterations for training.
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8. Creating an Optimal Mapping Function

The mapping function for predicting objective and subjective evaluation of the quality
to determine the boundaries of TI and SI was developed. For proper usage of variable
bitrate, it is crucial to set it up correctly to achieve optimal quality for each video. It was
necessary to select a wide range of video sequences to cover the various scenes for this
purpose and to make the model usable. We chose these videos based on the critical
parameters which specify their type. The mapping function can evaluate the optimal
bitrate to fulfill the specified quality in the form of MOS or SSIM index. The suggested
model then estimates how a bitstream meets established quality requirements for the type
of video sequence. It also allows the opposite kind of prediction—to evaluate quality based
on the type of video sequence and bitstream. It can predict quality in the form of MOS or
SSIM value.

8.1. Prediction of Bitrate Based on Requested Quality Estimated Using the SSIM Index

The model’s purpose is to define the bitrate for each type of video sequence. In this
case, we describe the model for prediction bitstream using the estimated quality represented
by the SSIM value. Input variables of the neural network are information about the type
of scene identified by SI and TI, qualitative parameters and required quality expressed by
SSIM. We compare each resolution separately in one simulation because we would like
to know the differences in the model’s ability to predict bitrate in different environments.
As technology is continuously evolving, it is important to focus on the assumed use of
higher resolution. It is another reason for a separate simulation of compression standards
in Ultra HD resolution. It allows us to look at determining the appropriate bitrate of this
resolution, whether VBR is deployed, or that the prediction of this model could be used for
the minimum bitrate using Constant bitrate (CBR).

Table 6 shows the best simulation topologies from Table 7 for resolutions separately
and together. The statistical evaluation of predictions by the model for selected topologies
is given in Section 9.2.

Table 6. Simulation of bitrate prediction based on SSIM for the best topologies.

Resolution Codec Topology MSE R2
TRAIN[-] R2

VAL[-] R2
TEST [-]

Ultra HD
H.264 + H.265 43-21 0.041 0.949 0.944 0.963

H.264 79-39 0.0001 0.999 0.999 0.999
H.265 63-31 0.001 0.999 0.999 0.999

Full HD+
Ultra HD

H.264 + H.265 47-23 0.029 0.963 0.957 0.985

Table 7. The best topologies of bitrate prediction based on SSIM.

Resolution Codec Topology R2
TEST [-] Time[s] Num. of

Epochs[-]

Ultra HD
H.264 + H.265 43-21 0.946 191.265 338

H.264 79-39 0.970 363.562 266
H.265 63-31 0.939 627.246 360

Full HD + Ultra HD H.264 + H.265 47-23 0.965 217.427 294

8.2. Prediction of Bitrate Based on Requested Quality Using MOS

The satisfaction of end customers is the most important factor in evaluating quality.
The opinion of the user and his perception of quality is a benefit to the provider of triple-
play services. If the provider knows how the customer perceives quality, it can adjust the
quality of the offered content and set up the appropriate quality parameters as bitstream.
We used different types of video sequences evaluated by users. These scenes were encoded
using a variety of bitrates. We have created a comprehensive database of rated videos
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based on different bitstream changes. It is possible to determine the appropriate bitrate
based on the desired quality expressed by the MOS scale and predict it with the proposed
model using the database.

In Table 8, we can see the best topologies of bitrate prediction based on information
about the scene and evaluated the quality of the video sequences using MOS. The top
topologies are selected based on the average Pearson correlation coefficient of the test set,
the number of iterations and the associated time to get an accurate topology.

Table 8. The best topologies of bitrate prediction based on MOS.

Resolution Codec Topology R2
TEST [-] Time[s] Num. of

Epochs [-]

Ultra HD
H.264 + H.265 47-23 0.988 12.163 270

H.264 35-17 0.992 18.957 330
H.265 71-35 0.990 20.299 347

Full HD + Ultra HD H.264 + H.265 71-35 0.990 29.113 250

Table 9 contains the results obtained by simulation at selected topologies from Table 8.
The smallest achieved error is calculated during training using the MSE function. Cor-
relations are evaluated using the Pearson correlation coefficient for all of the data sets
(training, validation, and test) in the simulation. Statistical evaluation of model predictions
for selected topologies is given in Section 9.3.

Table 9. Simulation of bitrate prediction based on MOS for the best topologies.

Resolution Codec Topology MSE R2
TRAIN[-] R2

VAL[-] R2
TEST [-]

Ultra HD
H.264 + H.265 47-23 0.013 0.982 0.991 0.992

H.264 35-17 0.006 0.992 0.991 0.996
H.265 71-35 0.011 0.988 0.982 0.993

Full HD+
Ultra HD

H.264 + H.265 71-35 0.008 0.989 0.99 0.995

9. Model Verification

This section deals with verifying individual predictions and describes how a des-
ignated classifier, using artificial intelligence, can predict the subjective video quality
evaluation based on objective assessment, the appropriate bitstream based on the required
video quality and the qualitative parameters of the scene.

9.1. The Prediction of the Subjective Value

This section describes verification and validation of subjective quality prediction based
on the scene, bitstream and objective result by SSIM. Topology 51-25 was selected as the
best in the model to simulate both compression standards simultaneously (described in
Section 7.1. This topology achieved the best correlation and predicted data. In Table 4
we can also see the results of the model prediction for both compression standards used
separately and compare them to each other.

The statistical evaluation needs to confirm the simulated results. Several methods for
the verification were chosen. A 95% confidence interval was used.

9.1.1. The Descriptive Statistics

It was made between reference and test set for the analysing of data dependability.
The minimum and maximum values, average values, medians and confidence intervals are
quite similar (it can be seen in Table 10). We can assume that the simulation and developed
model are credible from this statistical evaluation because of the data statistics similarity.



Sensors 2021, 21, 1949 23 of 31

Table 10. Descriptive statistics for MOS prediction, Ultra HD, H.264 + H.265.

Reference Set Test Set

Average value [-] 3.481 3.501
Minimum [-] 1.333 1.382
Maximum [-] 4.900 4.920

Median [-] 3.700 3.850
Confidence interval [-] <3.067; 3.896> <3.091; 3.910>

Pearson’s correlation coef. [-] 0.999
Spearman’s correlation coef. [-] 0.976

9.1.2. The Correlation Diagram and Root Mean Square Error (RMSE)

From the Figure 19 is possible to see the similarity between statistics. It is confirmed
by the RMSE, a measure of the deviation between reference and streamed data. It measures
the average magnitude of the error. The value of RMSE = 0.066 represents the error rate
of 1.32%.

Figure 19. Correlation diagram for MOS prediction, Ultra HD, H.264 + H.265.

9.1.3. Probability Density Function

The probability density is the relationship between observations and their probabil-
ity. A probability distribution can be understood as a representation that assigns each
elementary phenomenon a real number that characterises the likelihood of this event.
The probability density is a function whose value for any selected element from possible
patterns (random variable values) can be interpreted as the relative multiplicity of the
element value within the entire collection of possible patterns. The Figure 20 show that the
simulated set is close to the reference, which again confirms the credibility of the model.
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Figure 20. The probability density function for MOS prediction, Ultra HD, H.264 + H.265.

9.2. Prediction of Bitrate Based on SI, TI, and Video Quality Characterized by Objective SSIM

This section includes verifying bitstream prediction for the required video quality
evaluation using the SSIM metric. An evaluation of both resolutions and compression
standards in one run is given.

9.2.1. The Descriptive Statistics

The Table 11 shows the proximity of mean values, medians, and confidence intervals
between original and prediction values. A comprehensive video quality assessment tool
was developed for different collections of scenes that are coded for different compression
standards and resolutions. The bitstream prediction results have a high prediction ac-
curacy; therefore, simulations can combine two resolutions. The model adapts to given
requirements and recognises the difference in quality for individual and fundamentally
different groups of videos. The first data column in the Table shows results for Ultra HD
separately, second data column for Ultra HD and Full HD resolutions.

Table 11. Descriptive statistics for bitrate prediction based on SSIM, H.264 + H.265.

Ultra HD Full HD + Ultra HD

Reference Set Test Set Reference Set Test Set

Average value [-] 9.438 9.664 8.583 9.14
Minimum [-] 1.000 0.369 1 0.73
Maximum [-] 20.000 19.884 20.00 22.11

Median [-] 10.000 10.744 8.00 22.84
Confidence interval [-] <7.708; 11.167> <8.071; 11.257> <5.43; 7.22> <5.39; 7.18>

Pearson’s correlation coef. [-] 0.964 0.985
Spearman’s correlation coef. [-] 0.976 0.970

9.2.2. The Correlation Diagram and RMSE

This simulation has a slightly higher error than the BR prediction based on MOS. RMSE
function represents 8.015% of the prediction error for UHD (Figure 21) The correlation
diagram and RMSE function for Full HD and Ultra HD in one run is shown in Figure 22.
Using RMSE calculations, the estimated error rate is 5.55%.
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Figure 21. Correlation diagram for bitrate prediction based on SSIM, Ultra HD, H.264 + H.265.

Figure 22. Correlation diagram for bitrate prediction based on SSIM, Full HD + Ultra HD,
H.264 + H.265.

9.2.3. Probability Density Function

Distributive density trace for reference and simulated sets in BR prediction based on
required SSIM quality for Ultra HD resolution is shown in Figure 23. We can compare it
with the results for Full HD and Ultra HD resolution in one run in Figure 24. The density
trace of these simulations visually confirms the correlation of the test and reference sets.
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Figure 23. The probability density function for bitrate prediction based on SSIM, Ultra HD,
H.264 + H.265.

Figure 24. The probability density function for bitrate prediction based on SSIM, Full HD + Ultra
HD, H.264 + H.265.

9.3. Prediction of Bitrate Based on SI, TI and Video Quality Characterized by MOS

This section verifies the bitstream prediction results for the input information charac-
terizing the scene and expresses the user’s quality rating of the given video, represented in
the mean value of the MOS.

9.3.1. The Descriptive Statistics

The Table 12 shows the similarity of descriptive statistics for bitrate prediction based on
MOS for Ultra HD resolution and also for Full HD and Ultra HD resolution in one simulation.

Table 12. Descriptive statistics for bitrate prediction based on MOS, Ultra HD, H.264 + H.265.

Ultra HD Full HD + Ultra HD

Reference Set Test Set Reference Set Test Set

Average value [-] 9.656 9.594 8.73 8.74
Minimum [-] 1 0.667 1.00 0.93
Maximum [-] 20 20.467 20.00 19.83

Median [-] 8 8.106 8.00 8.05
Confidence interval [-] <7.380; 11.932> <7.307; 11.881> <7.28; 10.19> <7.31; 10.18>

Pearson’s correlation coef. [-] 0.994 0.99
Spearman’s correlation coef. [-] 0.99 0.99
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9.3.2. The Correlation Diagram and RMSE

When RMSE is calculated for bitstream prediction based on SI, TI, and MOS, it corre-
sponds to a 3.41% error rate for Ultra HD resolution (see Figure 25) and 3.25% predictive
error for both resolutions (Figure 26).

Figure 25. Correlation diagram for bitrate prediction based on MOS, Ultra HD, H.264 + H.265.

Figure 26. Correlation diagram for bitrate prediction based on MOS, Full HD + Ultra HD,
H.264 + H.265.
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9.3.3. Probability Density Function

Distribution density trace also shows the similarity of reference and test sets for bitrate
prediction based on MOS for Ultra HD resolution in Figure 27 and also for Full HD and
Ultra HD resolution Figure 28.

Figure 27. The probability density function for bitrate prediction based on MOS, Ultra HD,
H.264 + H.265.

Figure 28. The probability density function for bitrate prediction based on MOS, Full HD + Ultra
HD, H.264 + H.265.

10. Conclusions

The paper dealt with a variable bitrate for the streaming of video in triple-play services
in compliance with QoE. For scene description we applied spatial and temporal information.
The bitstream classifier was developed using artificial intelligence. The mapping function
that can find the optimal bitrate to fulfill the quality requirements for a variety of video
scenes was described. It would allow the essential quality of the video to be transmitted to
end users. The advantage of VBR is the efficient use of network resources for consistent
video quality.

It is necessary to provide the highest possible quality for broadcast content, as cus-
tomer satisfaction is the primary goal when providing triple-play services. Our solution
offers a model which can be used to determine the qualitative settings to achieve this goal.

The quality was evaluated by both types of metrics (objective by SSIM and subjective
by ACR). Based on the described correlation, the MOS prediction of subjective quality can
be made.

The generated model evaluates the appropriate bitrate for the desired quality of a
given video, defined by characteristic and qualitative parameters. The scene can carry
a dynamic flag, or the video sequence can be converted in real-time, which would be
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time-consuming and computationally demanding and cause some delay. The real-time
calculation is not convenient for online transmission. It would be an advantage with video
on-demand, games, and virtual reality.

The presented model achieved excellent results. Each simulation was statistically
verified to predict the simulated variables with a high success rate. The proposed model
offering bitstream prediction by using characteristics of video sequences in the form of SI
and TI information, the prediction of video quality, and the mapping of subjective quality
through an objective evaluation is unique and brings added value to the field of video
quality evaluation. The paper describes a full methodology leading to the fulfillment of
its goals. Section 3 describes the current situation in this area and presents some of the
scientific works addressing it.

A database of video sequences has been created to ensure a wide variety of possible
scenarios. It contains motion pictures encoded based on different qualitative parameters
with various bitstreams. These videos were subjectively evaluated by numerous observers
using the ACR metric and also objectively assessed using the SSIM metric. After that,
the correlation between these two evaluations was found; see in Section 7. The scene
classifier is described in Section 6. The mapping function which determines the appropriate
bitrate for the specified quality ratings in the form of MOS or SSIM based on the type
of sequence characterized by SI and TI is described in Section 8. The next section deals
with verifying and validating the proposed model, where the predicted value is compared
with the reference using different statistical methods. The created model can be used in
practice and implemented in real-time. This paper provides a new approach which permits
adaptive reservation of network resources according to the scene.

The proposed model is able to map objective quality to subjective; and predict the
subjective or objective quality of video sequences from SI, TI, and qualitative parameters.
The key part is the bitrate prediction based on the requirements for the quality. All types of
prediction were carried out using artificial intelligence in MATLAB. We are considering
the implementation of our own solution of the neural network for improving the model
and the results. Another idea is to extend our model using the next compression standards,
resolutions, and bitrates. Future work will concentrate on parsing a video into small parts,
and tagging them based on each scene’s type computed from SI and TI. Consequently,
each segment will be assigned an appropriate bitrate. The desired quality will thus be
maintained throughout the whole video sequence.
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