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Abstract: Water pipe sediment removal should be implemented as an integral part of water mains
maintenance in order to steadily supply consumers with drinking water of high quality. Considering
the number of different water pipe sediment removal methods, the article aims to evaluate the
currently used methods to remove water pipe sediment from the pipes of the drinking water
distribution system. The evaluation compares the implementation requirements of each method as
well as the quality and the quantity of the removed products. The tested methods were unidirectional
flushing, Comprex®, and Ice Pigging®. The results of the comparison are expressed in terms of
total suspended solids (TSS) recovery, metals mass concentration and water consumption. Since
contamination can settle along the entire surface of the pipeline, it is most appropriate to recalculate
the results per unit area of the pipeline. The results point at the following efficiency the Comprex®

method was the most efficient in removing TSS, Ice Pigging® was the next and unidirectional flushing
removed a negligible amount of TSS compared to the other two methods. The absolute recovery of
TSS was 0.12–3.01 g·m−2 in unidirectional flushing of plastic pipes, 1.58–8.54 g·m−2 in unidirectional
flushing of metal pipes, 4.36–47.53 g·m−2 in Ice Pigging®, and 5.19–69.23 g·m−2 in Comprex®. The
composition of the sediment was strongly influenced by particle origin: Pipe material affected the
crystalline phase of the sediment and the water source and the age of the pipe affected the amorphous
phase of the sediment. Therefore, it was found that evaluation of efficiency based on the amount of
TSS removed is only suitable for sites that meet the same conditions as pipe material, water source
and ideally the pipe age. It has further been found that the Comprex® method can be advantageously
used in real conditions to clean pipes with insufficient hydraulic conditions (such as with a high level
of incrustation), as the cleaning has low water flow velocity requirements.

Keywords: drinking water distribution system (DWDS); unidirectional flushing; air scouring; Ice
Pigging®; Comprex®; total suspended solids (TSS)

1. Introduction

Supplying consumers with high-quality drinking water is a challenging and complex
process. It places high demands on water producers to ensure proper protection of water
sources, its treatment, accumulation, and distribution to final consumers [1]. The total
length of the drinking water network in Europe is 4,225,527 km [2]. This infrastructure
requires maintenance and investments to provide clean and wholesome water for all.
Therefore, some of the basic preconditions to ensure the supply of high-quality drinking
water to all consumers are the proper operation of water infrastructure, its construction,
renewal and maintenance, in particular [2].

The renewal of the water supply network and the development of water supply net-
work monitoring significantly reduce water losses in the water supply network. In certain
EU member states, the average daily demands (ADD) per capita are decreasing (e.g., in the
Czech Republic ADD has practically halved since 1989 to date; from 1.25 million m3·y−1

Int. J. Environ. Res. Public Health 2021, 18, 4311. https://doi.org/10.3390/ijerph18084311 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-6820-8340
https://doi.org/10.3390/ijerph18084311
https://doi.org/10.3390/ijerph18084311
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18084311
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18084311?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 4311 2 of 16

to 585,000 m3.y−1) [3]. This has a positive effect especially in terms of saving water re-
sources as the Earth is currently struggling with a decrease in the yield of underground
resources [4] or flow in watercourses [5] in many localities. However, the water savings
may have a negative impact on the water quality due to its longer residence time in the
pipeline [6], [7], where the resulting water quality is altered in sensory and microbiological
parameters (i.e., heterotrophic plate count) [8,9].

All EU countries place high demands on the quality of supplied drinking water,
and water management companies have begun to value consumers as valuable cus-
tomers [10], [11]. Therefore, efforts have been increasing to reduce the occurrence of
adverse phenomena, such as turbid events in the water supply network, which the con-
sumer feels the most. On the other hand, the distribution system can never be free from all
particles or microorganisms, being a complex set of chemical and biological reactants [12].
However, the presence of sediments and microorganisms can be reduced significantly by a
correctly selected and frequent maintenance method for their removal [13].

The commonly-used methods for distribution pipe cleaning [14] may be summarized
as pigging, Ice Pigging®, air scouring (AS), and water flushing. Recently, Neutral Output
Discharge Elimination System (NO-DES) method has been introduced, which functions
as aboveground loops of distribution system between two hydrants using hoses and the
water is circulated within the temporary loop at scouring velocities through the water
main and filters using pump mounted on the truck [15]. The method most authors focus
on is the so-called unidirectional flushing [12,16–22]. While the highest possible flow
rates of water in the pipeline are achieved, accumulated sediment or parts of biofilm are
removed from the pipe surface [19,21]. The principle of this method is summarized by [23]
based on the knowledge of many authors. Recommended flow velocities are in the range
of v = 1.0–1.6 m·s−1 [12,24]. These velocities are sufficient for the removal of loose and
cohesive deposits [19] and partly for tuberculated pipes [24].

The water pipe can be clogged with fine sediment at the bottom of the pipe or by
chemical deposits on the pipe walls, which can fill almost the entire pipe diameter [25].
These sediments may be soft, easily removable to solid requiring aggressive cleaning
methods [7,18]. Therefore, a higher velocity and higher shear stress are necessary to clean
the inner surface of the pipe and its adherent material [12,24]. However, this is often
problematic when using the unidirectional flushing method in real operation conditions,
which is confirmed by the results obtained. Higher shear stress can be achieved by air
scouring and Ice Pigging®, each of these methods uses a different cleaning principle. During
air scouring compressed air is blown into the pipe, together with a liquid, which increases
the shear stress at the pipe walls and scours and flushes out the sediment from the pipe [12].
Air scouring has been modernized to a software-driven impulse flushing which is marketed
under trade names. During Ice Pigging® the friction at the pipe walls is 2–4 orders of
magnitude higher than at the same speed of a water stream during flushing [26], because
the friction is increased using two-phase ice slurry in form of a plug moving down the pipe
and dislodging built-up material [27]. Mostly a mixture of 5% food salt and potable water
is used in the process [28,29].

Information about the amount and origin of deposits is useful to prevent their for-
mation [19], therefore authors evaluate the efficiency of removal and composition of the
deposits. The majority of studies focus on unidirectional flushing [12,19,22,30]. However,
it has been found that limited knowledge exists on the comparison of the modern methods,
such as Ice Pigging® and air scouring, even in terms of operational requirements or in terms
of efficiency. The existing studies only compared unidirectional flushing or pigging [12,18]
or examined their efficiency in laboratory conditions [31].

The aim of the research reported here is to provide novel information regarding
the efficiency of Ice Pigging® and air scouring based on loose and adherent deposits
removal and total water consumption. The aim is to compare two commercial methods
called Ice Pigging® and software-driven impulse flushing Comprex®, and to contrast the
results with these obtained by unidirectional flushing. This new knowledge on suitable
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operation conditions obtained by testing methods in practice can optimize the performance
of the distribution system cleaning. Air scouring is not involved in general evaluation
because only one application of AS was performed, and enough data was not obtained.
Air scouring results are in the main text mentioned only for comparison with the effectivity
of software-driven process Comprex®.

2. Methodology
2.1. Selected Network Characteristics

To address these objectives, full-scale tests were carried out in test zones in the water
distribution system of a 300,000-citizen city, which consists of 1064.8 km of pipes with the
capacity of 1.875 L·s−1. Almost 16.5 km of the distribution system was monitored during
the cleaning processes applying Ice Pigging®, Comprex® and unidirectional flushing. Ice
Pigging® was applied to 75% of investigated pipes length, unidirectional flushing to 13%
of investigated pipes length, and Comprex® to 12% of investigated pipes length. The
average length of cleaned section was for (a) Ice Pigging® lIP = 1749.1 m; (b) Comprex®

lCO = 363.3 m; (c) unidirectional flushing lUNI = 197.3 m.
According to Macek and Škripko [16], it is possible to carry out unidirectional flushing

up to pipe nominal diameter DN = 300 mm. Minimum recommended speed [12,24] for this
nominal diameter is equal to the instantaneous flow of Q = 63.6 L·s−1. In the tested operat-
ing conditions, this flow is often limited by hydrodynamic pressure and hydrant capacity,
therefore it was possible to flush effectively only sections up to DN = 150 mm. Comprex®

method is capable of cleaning pipes of nominal diameters up to DN = 1200 mm [32].
Candy et al. [33] state that Ice Pigging® can be applied to clean the diameter up to DN = 750
mm. Sections up to DN = 450 mm have been tested under real operating conditions [33].
Based on this information, pipes suitable for cleaning were selected as follows (a) pipes
from DN = 80 mm to DN = 150 mm in unidirectional flushing; (b) pipes from DN = 100
mm to DN = 250 mm in Ice Pigging®; (c) pipes from DN = 80 mm to DN = 200 mm in
Comprex® method. Tested localities were named by code (Figure 1), which characterizes
the selected method and basic properties of the cleaned section, such as pipe diameter
(DN) and pipe material. The frequency of the experiments was influenced by the cost of
the methods being evaluated. No cleaning interventions have been reported since the pipe
was commissioned.
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Figure 1. Code characterizing the experiments’ numerical order and cleaning conditions-used
method, pipe nominal diameter and pipe material (in case of one cleaned section is created by more
types, e.g. a hyphen (-) divides particular pipe nominal diameters and a slash (/) divides used types
of pipe materials).

2.2. Fieldwork Procedure, Monitoring and Sampling

According to Vreeburg [12], Ellison [18], Carrière et al. [19], Barbeau et al. [22],
Fann et al. [30] and Miller et al. [32], the effectiveness of pipe cleaning methods is of-
ten evaluated as total suspended solids removal. For this purpose, in-situ samples (volume
of 2 L each) were collected and shipped to the laboratory for analysis. In the case of
unidirectional flushing and Comprex®, sampling was carried out immediately after the



Int. J. Environ. Res. Public Health 2021, 18, 4311 4 of 16

start of cleaning. In the case of Ice Pigging®, the first sample was taken after a hydraulic
test (described by Fann et al. [32]) and further samples at the moment as the front of the
ice began to approach, which in most cases met one of the conditions: (a) Temperature
dropped below 5 ◦C; (b) conductivity began to rise above normal levels in the area (up to
K = 87.3 mS·cm−1).

Qualitative properties of flushed water (turbidity, temperature) were monitored on
site during the whole process by digital optic sensor: (a) METTLER TOLEDO InPro 8000
Series (880 nm wavelength, Back-scattered Light principle, Mettler - Toledo, s.r.o., Praha,
Czech Republic) for Ice Pigging® and (b) PONSEL® (850 nm wavelength; Side-scattered
Light principle, TECHNOAQUA, s.r.o., Dolní Břežany, Czech Republic) for unidirectional
flushing. In the case of Comprex® method, turbidity was measured only by portable
turbidimeter Eutech TN-100 (850 nm wavelength, Side-scattered Light principle, Fisher
Scientific, spol. s r.o., Pardubice, Czech Republic), as the presence of air in the water impairs
the accuracy of the continuous measurement. In all cases, the measurement of turbidity
was complemented by measuring total iron by Ferrover® method using Multiparameter
Portable Colorimeter HACH DR900 (HACH LANGE s.r.o., Praha, Czech Republic). Other
parameters measured in-situ are listed in Table 1 below as parameters measured on-site
during the whole process using on-line sensors.

Table 1. Parameters of water monitored on-site by on-line sensors.

Method Ice Pigging® AS & Comprex® Unidirectional
Flushing

Temperature x x

Pressure
hydrostatic/hydrodynamic x x x

Turbidity x x

Conductivity x

Flow rate x x x

2.3. Cleaning Parameters

Unidirectional Flushing was carried out at velocities ranging from 0.42 to 2.76 m·s−1

for metal pipes, and 0.73 to 1.87 m·s−1 for plastic pipes as a function of pipe diameter
and available pressure. Only 4 out of 10 sections met the recommended speeds [12,24] for
performing unidirectional flushing.

Air scouring without the possibility of airflow adjustment was performed only at
one location as a test before Comprex® cleaning. The used compressor was capable to
create maximum pressure of 1 MPa and air injection was controlled only by front valve
closing. Air pulses were created while the final water flow velocity was v = 0.28 m·s−1,
while airflow could not be controlled.

Set operating parameters of Comprex® cleaning method as a pressure of individual
pulses ranged from 1.9 to 5.3 bar (190 kPa to 530 kPa), and the pulse length from 2 to 7 s.
These parameters were a function of regular hydrostatic pressure in cleaned pipe and pipe
material. A total of 179 to 537 pulses were used.

The volume of ice used for Ice Pigging® is limited to 9 tons by ice manufacturing and
storage capacity. This volume together with pipe diameter, material, flow rate and ambient
temperature influence the total length of pipe which can be cleaned at a time [33]. The total
volume of ice used for Ice Pigging® cleaning varied 4–10 m3. Ice fraction varied from 75 to
85% (Mode of 80%).

The cleaning parameters, including the properties of the cleaned pipes, are summa-
rized in Table 2. In cases where groundwater predominates over surface water (U > G) a
specific groundwater-surface water ratio varies according to the instantaneous water-use
and it cannot be accurately expressed.
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Table 2. Properties of the cleaned pipes and cleaning parameters (NDA—no data available; DN—nominal diameter; p—hydrodynamic pressure; QA—flow achieved; QR—flow required;
WS—water source; G—groundwater— U—underground water).

Method Code
DN Commissioning Material Length p QA QR WS

mm Year m bar L·s−1 L·s−1

Unidirectional flushing

1UNI150PVC 150 1984 PVC 299.5 0.39 18.6 17.19 G
2UNI80PVC/PE 80 2000–2007 PVC-PE 279.8 0.15 6.3 5.41 G

3UNI80PE 80 2001 PE 122.9 0.28 9.4 4.30 G + U
4UNI100PVC 100 NDA PVC 199.2 0.41 6.6 8.01 U > G
5UNI100PE 100 2015 PE 134.2 0.05 5.8 6.36 U > G
6UNI100OC 100 1964 OC 93.5 0.06 4.5 7.85 U > G
7UNI80LT 80 1977 LT 135.9 0.04 3.1 5.02 U
8UNI80LT 80 1988 LT 250.5 0.28 13.9 5.02 G + U
9UNI100LT 100 1971 LT 314.2 0.07 3.8 7.85 U > G
10UNI80LT 80 1920 LT 143.5 0.07 2.1 5.02 U > G

AS 12AS150LT 150 1985 LT 198.8 NDA 5.0 - G

Comprex®

11CO100PVC 100 1975 PVC 371.0 0.50 2.1 - G + U
12CO150LT 150 1985 LT 654.3 1.00 2.7 - G
13CO200LT 200 1970 LT 481.7 0.70 6.9 - U
14CO80LT 80 1977 LT 135.9 0.50 1.4 - U
15CO80LT 80 1953 LT 173.5 1.50 0.9 - G

Ice Pigging®

16IP150-
250PVC/PE/OC 150, 250 1964–2001 PVC-PE-OC 1661.0 5.50 15.2 3.00 U

17IP250OC/LT 250 1964 OC-LT 1381.0 5.80 13.8 3.00 U
18IP150-200OC/LT 150, 200 1953–1966 OC-LT 633.0 NDA 3.00 G

19IP80-
150OC/LT/PE/PVC 80, 150 1953–1994 OC-LT-PE-PVC 1005.0 NDA 3.00 G

20IP150PVC/PE 150 1994–2008 PVC-PE 2052.0 3.80 14.2 3.00 G
21IP100-150PE 100, 150 2009–2012 PE 2327.0 2.80 11.5 3.00 G

22IP100-150PVC/PE 100, 150 1987–2016 PVC-PE 2638.0 0.50 8.8 3.00 U
23IP100-200PVC/PE 100, 200 1997–2011 PVC-PE 1495.0 0.60 7.5 3.00 G
24IP100-200LT/PVC 100, 200 1979 LT-PVC 687.0 0.40 14.5 3.00 G
25IP150-200LT/PVC 150, 200 1979 LT-PVC 323.0 NDA 14.5 3.00 G
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2.4. Determination of Total Water Consumption

As the water quality was monitored during the whole cleaning process, after reach-
ing a turbidity value below 1 NTU, the mass concentration of total iron was measured.
The cleaning was completed when total iron concentration met the requirements of Di-
rective (EU) 2020/2184 of the European Parliament and of the Council of 16 December
2020 on the quality of water intended for human consumption. To reach the prescribed
limits c(Fe) = 0.200 mg·L−1, the selected cleaning method had to be combined with con-
ventional flushing.

The total water consumption was calculated as the total volume of water consumed
from the start of the cleaning process to its end. The total consumption, therefore, included
the volume of water consumed for the operation of the selected method and the volume
of water consumed for conventional flushing until the drinking water quality standards
were reached. The evaluation did not include possible loss in the event of a failure and its
removal, if this failure occurred during cleaning.

2.5. Calculation of the Total Deposits Removed as TSS

The concentration of total suspended solids (TSS) in collected samples were deter-
mined using filtration through glass fiber filters according to European Standard EN
872:2005. Continuous monitoring of turbidity allowed to construct a curve of dependence
of the immediate mass concentration of total suspended solids on turbidity and to calculate
missing values to obtain more accurate results. The total amount of TSS in each experiment
was calculated using the system for modern technical computing Wolfram Mathemat-
ica [34] as a sum of definite integrals of partial areas under a TSS concentration/consumed
water volume curve. The values of the cumulative volume of water consumed for flushing
were plotted on the x-axis and on the y-axis there were plotted the measured values of TSS
corresponding to the consumed amount of water. A linear regression of the parts between
the individual measurement points was performed and found equations were used to
calculate the definite integral. The equations thus differed for each locality.

2.6. Solid Phase Composition

The composition of solid phase was compared using Inductively coupled plasma
optical emission spectrometry (ICP-OES) EN ISO 11885:2009, powder X-ray diffraction
analysis (Bruker AXS D8 Advance 2Θ/Θ LynxEye, 40 KV/40 mA radiation, emission line
Cu-Kalpha, Bruker EAS GmbH, Hanau, Germany) and electron microscopy using Quanta
650 FEG-Field Emission Scanning Electron Microscope (FEI Czech Republic s.r.o., Brno,
Czech Republic) at low-vacuum-50 Pa, 1.4 nm @ 30 kV (SED). Organic matter in the solid
phase of sediment was estimated from the loss on ignition (LOI550) of the mass of measured
total suspended solids oxidized at 550 ± 5 ◦C; t = 1 h according to ČSN 75 7350:2008 Further
on also as Volatile suspended solids (VSS).

2.7. Liquid Phase Composition

Color, turbidity, metals and suspended solids concentration were analyzed in all
the samples according to the methods of Inductively coupled plasma optical emission
spectrometry (ICP-OES) EN ISO 11885:2009, gravimetric analysis EN 872:2005, spectropho-
tometry EN ISO 6271:2015 and nephelometry ASTM D7726-11(2016)E1.

3. Results and Discussion

Three calculation approaches were used to evaluate the amount of removed sediment
in the form of TSS. The total amount of TSS from one specific section cleaning, which
was determined by integration of the area under a TSS concentration/consumed water
volume curve, was recalculated for a unit of length, a unit of volume and a unit of area
of the cleaned pipe. All the results are summarized in Table 3 and divided according to
implemented cleaning method and the chosen evaluation approach. As the results obtained
from unidirectional flushing showed a dependence on the pipe material and sufficient data
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were obtained, this method of cleaning is in Table 3 divided into two sections UF of plastic
pipes and UF of metal pipes. For each cleaning method, an average and a median are listed.
The results are commented on in the following subsections.

Table 3. Summary of total sediments recovery as TSS per unit length, unit volume and unit area and water consumption of
tested methods including average and median. (UNI—Unidirectional flushing; AS—Air scouring; Recovery 1—Total TSS
calculated per length of the pipe; Recovery 2—Total TSS calculated per the inner volume of the pipe; Recovery 3—Total TSS
calculated per the inner area of the pipe; * estimated water consumption).

Method Code
Recovery 1 Recovery 2 Recovery 3 Water Consumption-Pipe

Volume Ratiog·m−1 g·m−3 g·m−2

UNI of plastic
pipes

1UNI150PVC 0.14 8.0 0.29 13.7
2UNI80PVC/PE 0.15 29.0 0.59 4.5

3UNI80PE 0.72 143.0 2.86 6.0
4UNI100PVC 0.95 120.0 3.01 2.2
5UNI100PE 0.04 5.0 0.12 1.6

Average 0.40 61.0 1.37 5.6
Median 0.15 29.0 0.59 4.5

UNI of metal pipes

6UNI100OC 2.03 258.0 6.46 3.9
7UNI80LT 0.76 151.0 3.01 9.9
8UNI80LT 2.15 427.0 8.54 4.6
9UNI100LT 0.50 63.0 1.58 1.4
10UNI80LT 0.74 148.0 2.96 4.1

Average 1.23 209.4 4.51 4.78
Median 0.76 151.0 3.01 4.10

AS 12AS150LT 1.82 103.0 3.86 6.0

Comprex®

11CO100PVC 1.63 208.0 5.19 4.0
12CO150LT 5.20 294.0 11.04 2.9
13CO200LT 10.37 330.0 16.50 4.9
14CO80LT 5.83 1160.0 23.21–50.31 13.1–25.3 *
15CO80LT 17.40 3612.0 69.23 9.2

Average 8.09 1120.8 27.70 6.9
Median 5.83 330.0 16.50 4.9

Ice Pigging®

16IP150-
250PVC/PE/OC 25.27 1065.0 47.53 4.9

17IP250OC/LT 14.46 295.0 18.41 4.6
18IP150-

200OC/LT No data available 2.5

19IP80-
150OC/LT/PE/PVC No data available 2.2

20IP150PVC/PE 6.07 344.0 12.89 1.8
21IP100-150PE 1.77 130.0 4.36 3.9

22IP100-
150PVC/PE 9.86 677.0 23.39 2.6

23IP100-
200PVC/PE 18.91 965.0 39.58 2.4

24IP100-
200LT/PVC 15.90 736.0 31.10 4.3

25IP150-
200LT/PVC No data available 3.1

Average 13.18 601.7 25.32 3.2
Median 14.46 677.0 23.39 2.6



Int. J. Environ. Res. Public Health 2021, 18, 4311 8 of 16

3.1. Total Sediments Removed as TSS

Total amount of removed impurities in the form of TSS determined by integration was
recalculated per (a) unit length, (b) unit volume and (c) unit area of the cleaned pipeline.

The results differ depending on the chosen evaluation method. In case of (a) the
most impurities were removed as follows: Ice Pigging® (60%), Comprex® (36%) and
unidirectional flushing (4%). In case of (b) the most impurities were removed by Comprex®

(60%), Ice Pigging® (33%) and unidirectional flushing (7%), and in case of (c) the most
impurities were removed by Comprex® (50%), Ice Pigging® (45%) and unidirectional
flushing (5%). The percentage was calculated as the ratio of the amount of TSS removed by
the selected method to the total amount of TSS removed by all methods always related to a
dimension unit. See also Figure 2.
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In the case of unit length (a) the smallest amount of removed TSS was gained during
unidirectional flushing. Unidirectional flushing of plastic pipes removed 0.04–0.95 g·m−1

and unidirectional flushing of metal pipes removed 0.50–2.15 g·m−1. The total amount
per unit length depended on the material of the cleaned pipe and its age, the parameters
influencing hydraulic conditions. Comprex® removed 1.63–17.40 g·m−1 (an average of
8.09 g·m−1 TSS of 5 applications) and Ice Pigging® removed 1.77–25.27 g·m−1 (an average
of 13.18 g·m−1 TSS of 7 applications). For comparison, Vreeburg [12], Carrière et al. [19]
and Barbeau et al. [22] obtained by unidirectional flushing results of removed impurities
in form of TSS from 0.1 to 0.4 g·m−1 and Miller et al. [35] using Ice Pigging® from 0.1 to
58 g·m−1. However, comparisons based on unit length are possible to make only for pipes
of identical nominal diameters. Therefore, this evaluation approach is not suitable in the
case of different pipe nominal diameters and may distort the results.

In case of unit volume (b) amount of removed TSS per unit volume, the least impu-
rities were removed by unidirectional flushing of plastic pipes, namely 8.0–143.0 g·m−3

(61.0 g·m−3 of TSS in average) and unidirectional flushing of metal pipes 63.0–427.0 g·m−3

(209.4 g·m−3 of TSS in average). Comprex® removed 208.0–3612.0 g·m−3 (1120.8 g·m−3 of
TSS on average) and Ice Pigging® removed 130.0–1065.0 g·m−3 (601.71 g·m−3 of TSS on
average). Researchers do not use this expression of results very often, and no comparable
data were found.

In the case of unit area (c), which is the most appropriate method of result expression
as deposits can settle over the entire pipe surface [12]. The following results were achieved:
unidirectional flushing of plastic pipes removed 0.12–3.01 g/m2 (an average of 1.37 g·m−2
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TSS of 5 applications), 1.58–8.546 g·m−2 from the metal pipes (an average of 4.51 g·m−2 TSS
of 5 applications). Comprex® removed 5.19–69.23 g·m−2 (an average of 25.03 g·m−2 TSS of
5 applications), and Ice Pigging® removed 4.36–47.53 g·m−2 (an average of 25.32 g·m−2

TSS of 7 applications). The amounts of sediment removed varied only in the multiples of
tens to hundreds based on the chosen method. The 100–1000 times greater efficiency has
not been achieved as is stated by Miller et al. [35]. Despite the fact, that the required flow
rates in the pipeline were not reached in the case of unidirectional flushing of metal pipes,
a larger amount of sediment per 1 m2 was removed from the metal pipes than from the
plastic pipes. The larger amount of sediment per 1 m2 was also removed by Comprex®

method in metal pipes. The same observation was not valid for Ice Pigging method®, as
there were often operational complications with the dosing of ice into the water supply
system when cleaning metal pipes, which can have a significant effect on the cleaning
process and total recovery of impurities.

Next, the results can be compared with the research reported by Fann et al. [30] who
present the results of Ice Pigging® and unidirectional flushing cleaning method of asbestos
cement pipes DN = 150–400 mm, Miller et al. [35] who present the results for Ice Pigging of
cast iron pipes DN = 200 mm, and Barbeau et al. [22] investigating unidirectional flushing
of pipes of DN = 200 mm of cement-lined ductile iron and unlined grey cast iron. The
results vary considerably: 2.91–28.85 g·m−2 for asbestos cement pipes, 90.498 g·m−2 and
23.13 g·m−2 for cast iron pipes, and 0.41 for grey cast iron and 0.64 g·m−2 for cement-lined
ductile iron. The results may differ due to different samples’ volumes, sampling intervals
or cleaning termination points. A commonly used limit for ending the cleaning is by
achieving a turbidity value ≤ 5 NTU [17,19]. Different pipe age, which has a direct effect
on the condition of the pipeline, can have a great effect (Figure 3). The comparison above
confirms the findings of Barbeau et al. [22] that deposit accumulation (and its recovery) is
highly site-specific.
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To the authors’ knowledge, the results of the amounts removed as TSS are not available
for the Comprex® method or another method based on air scouring, so the values obtained
cannot be compared.

3.2. Water Consumption

In terms of water consumption, cleaning was completed when the total iron concen-
tration met the requirements of Directive (EU) 2020/2184, the evaluation of the methods
was as follows: The Ice Pigging® method consumed on average 3.5 times the volume of the
cleaned pipe. The unidirectional flushing method consumed 5.19 times the volume of the
cleaned pipe, and the Comprex® method consumed 6.9 times the volume of the cleaned
pipe. The water consumption of the Comprex® method was greatly affected by sections
with a high degree of incrustation, which consumed 9.2–25.3 times of the volume of the
cleaned pipeline. The water consumption for unidirectional flushing of sections with an
identical level of incrustation was similar (9.9–13.7 pipe volumes) as shown in Figure 3
(14CO80LT, 15CO80LT and 7UNI80LT), while removal of TSS was lower in the case of
unidirectional flushing. It was not possible to clean such incrusted sections by Ice Pigging
at all due to high friction and pressure loss (17IP250OC/LT and 18IP150-200OC/LT).

The obtained results comply with the data reported by Miller et al. [35], who reports
half water consumption than in the case of unidirectional flushing, and Pourcel et al. [36],
who reports the water consumption of 40% less in the case of air scouring than in the case
of unidirectional flushing. This consumption only applies if the incrusted sections are not
included in the evaluation. According to results by Fann et al. [30] the volume of water
consumed in Ice Pigging® was approx. 1.5 pipe volume. Authors in [37] identically state
less than 2 pipe volumes for Ice Pigging® and 4–7 for unidirectional flushing. Tan et al. [38]
report a saving of 95% compared to using the unidirectional flushing when cleaning
DN = 1400 mm pipes by air scouring. Differences can be caused by a number of factors,
chosen monitored parameter (turbidity X total iron) and the value [15,39], when cleaning is
completed. In the case of Ice pigging consumption may also be influenced if the total water
consumption includes water consumed for the necessary hydraulic test. These data are not
usually listed-see [30,37].

3.3. Maximum Impurities Concentration

Regardless of the chosen cleaning method, there was always a sharp increase in
measured values of observed chemical parameters (iron, manganese and aluminum
mass concentration, color and turbidity) when the required hydraulic conditions (or
the front of the ice) were reached. All the tested methods equally show a gradual
decrease in the concentration of removed impurities until the moment when all pa-
rameters met the requirements of Directive (EU) 2020/2184 and the cleaning was fin-
ished. However, the time needed to remove the largest portion of impurities differed
(Figure 4). Therefore, the achieved maximum values of TSS, color, turbidity and met-
als’ mass concentration also differ. The highest values of measured parameters were
achieved using Ice Pigging® when removed particles are absorbed the most in front of
the ice method (TSS = 924–8100 mg·L−1; color > 4000 mg·L−1 Pt; turbidity > 7500 ZF(t);
ρ(Fe) = 65.7–627 mg·L−1; ρ(Mn) = 3.06–329 mg·L−1; ρ (Al) = 32.1–274 mg·L−1). While in
Comprex® (TSS = 478–1200 mg·L−1; color = 480–2100 mg·L−1 Pt; turbidity = 66–2300 ZF(t);
ρ(Fe) = 62.1–285 mg·L−1; ρ(Mn) = 1.06–67.7 mg·L−1; ρ(Al) = 1.15–22.9 mg·L−1) and unidi-
rectional flushing (TSS = 6.4–450 mg·L−1; color = 190–1600 mg·L−1 Pt;
turbidity = 35–950 ZF(t); ]ρ (Fe) = 0.573–138 mg·L−1; ρ(Mn) = 0.098–91.6 mg·L−1;
ρ(Al) = 0.181–5.02 mg·L−1) particles are gradually entrained by the water stream, shear
stress influences the results. Since samples taken during Comprex® had a character of a
mixed sample given by a single block of water, therefore the maximum measured concen-
trations of individual parameters probably do not correspond to the absolute maxima that
were reached during cleaning and may be underestimated. The measured results thus
showed that color, turbidity or concentration indicators are not suitable for comparing
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the methods between one other, as three tested methods showed a different distribution
of measured values of color, turbidity and mass concentration of observed chemical pa-
rameters over time. No specific dependency was found between these indicators, because
concentrations varied from one locality to another. Similarly, Pourcel et al. [40] tried to
find a dependence between TSS and turbidity. Especially the metal content is strongly
influenced by particle origin-the pipe material and its age, but may be affected also by the
water source (which mainly affects the amorphous phase of the sediment as in Section 3.5).
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Figure 4. The distribution of the measured turbidity shows the principle by which particles are
carried out of the pipeline (IP—Ice Pigging®, CO—Comprex®, UNI—Unidirectional flushing).

If plastic pipes made of polyethylene or polyvinylchloride were cleaned and hydraulic
conditions were met in unidirectional flushing, the chosen sections were cleaned, and
legislative limits were met very quickly. In the case of unidirectional flushing of metal
pipes very often hydraulic conditions were not complied with, and it was always necessary
to carry out conventional flushing to reach the legislative limits in total iron parameter.
Otherwise, the fine iron particles remained suspended, legislation limits were still exceeded
and pipe cleaning was unreasonably prolonged with a minimal cleaning effect. Very small
particles bound to the pipe walls by weak electrostatic forces (Van der Waals’s forces) are
likely released during unidirectional flushing [41].

Old metal pipes made of steel or cast iron cleaned by the Comprex® method also
showed a similar course. Iron particles were removed quickly, but the presence of particles
of higher density prolonged the cleaning. These are probably released incrustations, which
require higher shear stress to set sediment in motion [42]. Comprex® method, therefore,
releases larger particles than the unidirectional flushing method, which moves more
slowly down the stream out of the pipe. Even in this case, it was appropriate to end the
cleaning by conventional flushing, to re-settle the incrustations in the pipe and flush out
any accumulated air. According to [43], the daily flow rate in the water supply system was
found to be ≤ 0.12 m·s−1, therefore, it is advisable to flush at this flow velocity or lower.
The flow velocity used in the given experiments corresponded to v = 0.066 m·s−1.

There were some limitations of sampling during Comprex® because of the different
nature of the movement of the sediment cloud through the pipeline caused by the alterna-
tion of air blocks and water blocks [18]. This principle causes (a) the formation of alternate
stress during which particles are carried away, and (b) a change in the qualitative prop-
erties of water leaving within a single alternation. Therefore, every taken sample has the
character of a composite sample of single impurities release and method principle probably
affects the overall results, because the maximal measured concentrations of individual
indicators (TSS, metal concentration, turbidity, etc.) probably do not correspond to the
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absolute maxima that were reached during the cleaning. Therefore, there is a probability
that the effectiveness of Comprex® method given in Figure 2 is even higher.

3.4. Hydraulic Capacity Assessment

Before Comprex® cleaning of cast iron pipe of DN = 80 mm (14CO80LT) the maximum
possible flow rate was measured as Q = 3.1 L·s−1. The same measurement was made after
Comprex® cleaning, but the maximum possible flow rate did not change and was on the
same level. The hydraulic capacity of the cleaned pipes was not significantly improved.
Probably, it means that only loose deposits were removed from the pipe. Cleaning will
have a positive effect on water quality during peak demand. The average consumption is
0.038 L·s−1.

3.5. Solid Phase Composition

Solid-phase composition comparison was based on the ICP-OES method, powder
X-ray diffraction and LOI550 analysis. For solid-phase composition comparison, only
samples obtained during the Comprex® method were analyzed (except LOI550 analysis),
since the Comprex® discharge passed the baffle box fitted with sieves where the sediment
was captured and a sufficient amount of sample for powder X-ray diffraction analysis
was obtained. Compared five sections varied in pipe material, year of commissioning or
water source composition as it is given in Table 2. A density difference of solid-phase was
investigated by an orientation test of measuring the sample volume at constant sample
weight. At the same weight (m = 2 g) the volume was as follows: in 14CO80LT the volume
was V = 2.4 mL, in 15CO80LT the volume was V = 7.15 mL, in 11CO100PVC the volume
was V = 2 mL, in 12CO150LT the volume was V = 3.6 mL, and in 13CO200LT the volume
was V = 2.8 mL. For this purpose, it is not suitable to compare localities with different
water sources and pipe materials between one other.

In addition to a different sediment density, a different elemental composition, was also
recorded (Table 4). According to the powder X-ray diffraction analysis in the samples from
the metal pipes, the most represented minerals were Fe minerals, which formed almost
90% of the crystalline form (in plastic pipes only 36%). The average concentrations of Fe in
the produced water in the sources supplying the investigated areas range from 19.8 to 98
µg·L−1. Thus, the composition of the crystalline form of Fe minerals did not depend on
the source of drinking water. The water source probably affected the composition of the
amorphous phase of the sediment. A significant part of the iron contained in the sediment
is probably the product of corrosion of the pipes through which the water is transported.
Samples of metal pipes contained on average 80% α-FeOOH, 6% Fe3O4 and 3% γ-FeO(OH).

Table 4. Overview of measured element concentrations in solid phase by ICP-OES.

Element Ca Mg P Al Cr Mn Cu Ni Pb Na Zn Fe Be

Code mg·g−1

11CO100PVC 10.3 2.02 0.77 9.75 0.281 17.50 0.575 0.390 0.516 1.200 43.9 145 0.001
12CO150LT 19.9 1.75 0.60 6.74 0.051 5.12 0.037 0.081 0.009 0.417 0.4 181 0.000
13CO200LT 17.5 1.43 1.79 5.62 0.215 4.00 0.223 0.205 0.041 0.336 1.3 505 0.000
14CO80LT 11.3 2.73 2.41 5.51 0.201 3.37 0.826 0.198 0.896 0.474 81.5 346 0.001
15CO80LT 22.4 3.43 1.22 34.00 0.038 148.00 0.312 1.580 0.133 0.611 8.4 251 0.001

The measured values of Volatile suspended solids (obtained as LOI550) are listed in
Figure 5. Unidirectional flushing samples contained an average of 22% organic matter,
Comprex® samples contained an average of 19% organic matter and Ice Pigging® samples
contained an average of 23% organic matter. The average organic matter of plastic and
metal pipe samples was almost identical—22% in sediment from plastic pipes and 21% in
the sediment of metal pipes. These results are in line with the research by Barbeau et al. [22].
The only difference was recorded in the evaluation based on the source of water supplying
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the studied drinking water system. Pipes supplied with a surface water source contained
in sediment an average of 29% of organic matter, while pipes supplied with a mixture
of groundwater and surface water or groundwater contained 18–19% of organic matter
in sediments. This finding is in accordance with the fact that raw water from a surface
source contains a higher proportion of organic substances than groundwater. Only the
sediment picked from the cleaning 10UNI80LT contained almost 80% of the organic matter
in the solid phase. In this section, the pipe was about 100 years old and probably the
incrustation was excessive, because it was not possible to achieve the necessary hydraulic
parameters and create sufficient shear stress to remove inorganic material of a higher
density. Therefore, the proportion of organic and inorganic substances was probably
different from the other cleaned sections, where the inorganic part formed the majority.
According to WHO [13], deposits containing organic matter may support the growth of
microorganisms and the formation of biofilms on internal surfaces of pipelines. Regular
cleaning is, therefore, appropriate also from the viewpoint of preventing the suitable
conditions for the development of pathogenic organisms, which can be attached to the
biofilms. Due to the similar ratio of organic substances in all tested samples, the efficiency
of organic matter removal depends on the efficiency of TSS removal (i.e., chosen method).
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TSS-VSS—Residue on ignition in mg·L−1.

Elements identified by the ICP-OES method can be adsorbed on the present organic
compounds or on the previously mentioned iron oxohydroxides or manganese oxohy-
droxides MnOOH, the presence of which has been detected by electron microscopy in
amorphous form in samples from 15CO80LT. Because a different sediment composition
has a direct effect on the total weight of the TSS, which is removed from the pipe, therefore,
a particle origin and a flushing method are the main variables affecting the total recovery.

4. Conclusions

Since a suitable and correctly performed process of pipe cleaning of DWDS is one of
the basic preconditions for ensuring the high quality of the supplied drinking water. Three
commonly used methods of DWDS cleaning were selected for testing in real operation.
These methods were Unidirectional Flushing, air scouring, Comprex®, and Ice Pigging.
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We found during the experiments that all three tested methods are suitable for remov-
ing loose sediments, but their effectiveness differs based on the chosen form of evaluation
(per unit length, unit area, or unit volume). Since contamination can settle along the entire
surface of the pipeline, it is most appropriate to express the results per unit area of the
pipeline. According to the obtained results, sediment in pipes differed in age, material
and water sources and shows different properties (e.g., density), which directly affect the
TSS result. It follows that evaluation of efficiency based on the amount of TSS removed
is only suitable for sites that meet the same conditions (pipe material, water source and
age ideally). The composition of the sediment was strongly influenced by particle origin,
where the pipe material mainly affected the crystalline phase of the sediment and the water
source and the age of the pipe affected the amorphous phase of the sediment.

It has further been found that the Comprex® method can be advantageously used
in real conditions to clean pipes with insufficient hydraulic conditions, as cleaning is not
limited by the amount of cleaning medium. Areas with the maximum achievable flow rate
Qmax = 3.3 L.s−1 (for DN 80 mm) were tested. This flow was determined for the use of
the method and the given DN (at a lower flow no proper mixing of air and water in the
pipeline occurred). According to the acquired experience, Ice Pigging® is the most suitable
for preventive maintenance of long straight pipe sections made of PVC, PE or metal pipes
of cast iron, ductile iron and steel without advanced incrustation of DN 100–250 mm. This
type of section was cleaned in a short period of time (7.9 m of pipes per minute), which can
be advantageously used in the cleaning of sensitive areas with these parameters.

Although the overall recovery of the removed contamination is an important param-
eter for evaluating the effectiveness of the methods, for the above reasons it should not
be the only decisive indicator. The advisable parameters are the measurement of relative
clarity of drained liquid (as turbidity determined by attenuation of the radiant flux) or any
concentration indicators chosen in dependence on the composition of the water sources
supplying the area (including historical ones). These additional measurements can only be
used to compare the cleaning results of one specific method due to the differences in the
cleaning principles.

Water consumption varied depending on the selected cleaning method. Within the
studied drinking water system water consumption was the lowest using Ice Pigging®

and for unidirectional flushing and Comprex®, total water consumption was impacted by
the condition of the cleaned pipe section. For non-incrusted sections, Comprex® water
consumption was lower than the water requirements of unidirectional flushing. If sections
with high level of incrustation are cleaned the water consumption is similar.
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