
electronics

Article

A Hybrid Supervised Machine Learning Classifier System for
Breast Cancer Prognosis Using Feature Selection and Data
Imbalance Handling Approaches

Yogendra Singh Solanki 1, Prasun Chakrabarti 2, Michal Jasinski 3,* , Zbigniew Leonowicz 3 ,
Vadim Bolshev 4,* , Alexander Vinogradov 4, Elzbieta Jasinska 5 , Radomir Gono 6 and Mohammad Nami 7

����������
�������

Citation: Solanki, Y.S.; Chakrabarti,

P.; Jasinski, M.; Leonowicz, Z.;

Bolshev, V.; Vinogradov, A.; Jasinska,

E.; Gono, R.; Nami, M. A Hybrid

Supervised Machine Learning

Classifier System for Breast Cancer

Prognosis Using Feature Selection

and Data Imbalance Handling

Approaches. Electronics 2021, 10, 699.

https://doi.org/10.3390/

electronics10060699

Academic Editors: Christian Morbidoni,

Francesco Di Nardo and

Alessandro Cucchiarelli

Received: 10 February 2021

Accepted: 12 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Lincoln University College, No. 2, Jalan Stadium, SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Malaysia;
yogendra.phd@lincoln.edu.my

2 Department of Computer Science Engineering, Techno India NJR Institute of Technology, Udaipur,
Rajasthan 313003, India; drprasun.cse@gmail.com

3 Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of
Science and Technology, 50-370 Wroclaw, Poland; zbigniew.leonowicz@pwr.edu.pl

4 Laboratory of Power Supply and Heat Supply, Federal Scientific Agroengineering Center VIM,
109428 Moscow, Russia; schkolamolen@gmail.com

5 Faculty of Law, Administration and Economics, University of Wroclaw, 50-145 Wroclaw, Poland;
elzbieta.jasinska@uwr.edu.pl

6 Department of Electrical Power Engineering, Faculty of Electrical Engineering and Computer Science,
VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic; radomir.gono@vsb.cz

7 Department Department of Neuroscience, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
leanmtneurosci2@gmail.com

* Correspondence: michal.jasinski@pwr.edu.pl (M.J.); vadimbolshev@gmail.com (V.B.);
Tel.: +48-713-202-022 (M.J.); +7-499-174-85-95 (V.B.)

Abstract: Nowadays, breast cancer is the most frequent cancer among women. Early detection is a
critical issue that can be effectively achieved by machine learning (ML) techniques. Thus in this article,
the methods to improve the accuracy of ML classification models for the prognosis of breast cancer
are investigated. Wrapper-based feature selection approach along with nature-inspired algorithms
such as Particle Swarm Optimization, Genetic Search, and Greedy Stepwise has been used to identify
the important features. On these selected features popular machine learning classifiers Support Vector
Machine, J48 (C4.5 Decision Tree Algorithm), Multilayer-Perceptron (a feed-forward ANN) were used
in the system. The methodology of the proposed system is structured into five stages which include
(1) Data Pre-processing; (2) Data imbalance handling; (3) Feature Selection; (4) Machine Learning
Classifiers; (5) classifier’s performance evaluation. The dataset under this research experimentation
is referred from the UCI Machine Learning Repository, named Breast Cancer Wisconsin (Diagnostic)
Data Set. This article indicated that the J48 decision tree classifier is the appropriate machine
learning-based classifier for optimum breast cancer prognosis. Support Vector Machine with Particle
Swarm Optimization algorithm for feature selection achieves the accuracy of 98.24%, MCC = 0.961,
Sensitivity = 99.11%, Specificity = 96.54%, and Kappa statistics of 0.9606. It is also observed that
the J48 Decision Tree classifier with the Genetic Search algorithm for feature selection achieves the
accuracy of 98.83%, MCC = 0.974, Sensitivity = 98.95%, Specificity = 98.58%, and Kappa statistics of
0.9735. Furthermore, Multilayer Perceptron ANN classifier with Genetic Search algorithm for feature
selection achieves the accuracy of 98.59%, MCC = 0.968, Sensitivity = 98.6%, Specificity = 98.57%, and
Kappa statistics of 0.9682.

Keywords: breast cancer prognosis; supervised machine learning classifier; data selection; imbal-
ance handling
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1. Introduction

Breast cancers are the most frequent cancers among women, according to World Health
Organization. It concerns 2.1 million women each year, and it also causes the greatest
number of cancer-related deaths of women [1,2]. In India Breast cancer is the most common
form of cancer. In metro cities like Mumbai, Delhi, Bangalore breast cancer accounts for
25% to 32% of female cancers. This condition becomes more serious because nowadays it
became more noticeable in the younger age groups. Around 50% of all cases are in the age
group of range between 25 and 50 [3]. The numbers are shocking and constantly rising [4,5].
According to the Indian Council for Medical Research in 2016, the total number of new
cancer cases was about 14.5 × 105 and this figure is likely to increase to 17.3 × 105 in 2020.
As the number of breast cancer cases in India increases, cancer fear levels increase too. If
it’s not able to prevent breast cancer, it can increase the survival rates by being informed
and choosing the right treatment at the right time. To improve breast cancer outcomes
and survival, early detection is critical which can be effectively achieved by machine
learning (ML) and data mining techniques [6,7]. The ML algorithms such as classification
techniques can be utilized to develop a model to diagnose breast cancer either as malignant
or benign [8,9]. Various data mining techniques such as class balancing, re-sampling, etc.
can be used to handle the dataset and improve the classification accuracy. Once the data
imbalance has been handled then using the same by applying feature selection algorithms,
we can obtain the most important features which play important role in the accuracy of the
classification model as well as reduce the computation time. Many such approaches have
been proposed and we used nature-inspired algorithms.

This computation is done on breast cancer datasets on available repository datasets
from the University of California, Irvine. We have implemented different classification
methods to classify the data to detect the malignant and benign groups from the given
dataset and applied various imbalance data handling techniques and feature selection algo-
rithms to improve the performance of the classifiers. To classify breast cancer cells as malig-
nant or benign by ML classifiers, many researchers have worked around. Saoud et al. [10]
have examined six different ML techniques for breast cancer diagnosis and found that
Bayes network and support vector machine (SVM) gave an accuracy of 97.2818% on the
Wisconsin breast cancer dataset. Saoud et al [11] proposed an approach for breast cancer
detection using supervised and unsupervised machine learning algorithms and showed
that supervised algorithms are more efficient. Domingo et al. [12] analyzed the various
decision trees for classifying breast cancer stages. They observed that the fuzzy decision
tree had better performance than the J48 tree. Sahu et al. [13] found out that SVM was more
efficient in comparison to other techniques, and studied the parameters such as accuracy,
specificity, and sensitivity. Al-Shargabi et al. [14] have obtained the best result for breast
cancer classification with K-Nearest Neighbors and Random Forest with an accuracy of
100%, the second rank for the original Multi-Layer Perceptron with an accuracy of 97.19%.
Zhang et al. [15] have addressed the diagnosis of breast cancer and class imbalance problem
using the K-Boosted C5.0 algorithm based on under-sampling. Devi et al. [16] performed a
comparative analysis among various ML algorithms evaluated based on the basis accu-
racy and ROC curve of each classifier. Fotouhi et al. [17] have examined oversampling
and under-sampling on various cancer datasets and found that balancing techniques had
improved the classification of cancer datasets.

Many researchers have worked on feature selection approaches to further improve
the accuracy of ML Classifiers. al Haq et al. [18] suggested the hybrid framework using
ML classifiers with Relief, Lasso, and mRMR feature selection algorithms for heart disease.
Ahmed Abdullah Farid etal. [19] have proposed an early diagnosis system for breast
cancer using the CHFS feature selection algorithm and SVM achieved 98.25% accuracy.
Bibhuprasad Sahu etal. [20] have proposed the cancer classification approach based on SVM
optimized with particle swarm optimization and reverse firefly algorithm. Sahu etal. [21]
have proposed the predictive model of cancer diagnosis using multivariate statistical and
machine learning techniques for better accuracy. Kewat et al. [22] have evaluated wrapper-
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based feature selection techniques particle swarm optimization, genetic search, and greedy
stepwise. Tabrizchi et al. [23] have proposed breast cancer diagnosis using the multi-verse
optimizer-based gradient boosting decision tree. They have combined Gradient Boosting
Decision Tree (GBDT) and multi-verse optimizer (MVO) to propose a robust classifier for
optimal classification.

Based on the literature review, it was observed that in the majority of the cases various
classifiers and feature selection approaches had been used to improve accuracy. In this
paper, we propose a framework with a hybrid approach, which extends [24] where the
accuracy improvement by handling the data imbalance using re-sampling and SMOTE
(Synthetic Minority Over-sampling Technique) technique has been suggested. The same
technique has been used along with nature-inspired feature selection approaches to im-
prove the accuracy of the classification models. In this work, the accuracy evaluation of ML
classifiers has been done based on parameters such as Kappa statistics and MCC (Matthews
Correlation Coefficient) which had rarely been taken into consideration in other literature.

Lahoura et al. [25] have used techniques based on artificial neural networks (ANN)
to verify, the possibility to apply it to disease diagnosis. The extreme learning machine
is an example of ANN. It has a huge potential to solve various classification issues. The
proposed paper approach is based on amalgamates three research domains. Firstly, an
extreme learning machine was used to diagnose breast cancer. Then, the gain ratio feature
selection method was used to eliminate insignificant features. Finally, the cloud computing-
based system for remote diagnosis was proposed. The obtained results indicated that
accuracy achieved is around 0.987, recall is 0.913, precision is 0.905, and F1-score is 0.813.

Yu et al. [26] compared RMAF and RELU and other activation functions on deeper
models. The RMAF was selected as the most appreciated. Experiments were based on
training and classification on multi-layer perceptron MLP by benchmarking data. The
applied dataset concerns Wisconsin breast cancer, MNIST, Iris, and Car evaluation. The
results of the RMAF investigation indicated that the performance of 98.74%, 99.67%, 98.81%,
and 99.42%. Then it was compared to Sigmoid, Tanh, and ReLU. Then, the experiment
concerned the convolution neural network using MNIST, CIFAR-10, and CIFAR-100 data.
The indicated performance accuracy was 99.73%, 98.77%, and 79.82% in comparison to
Tanh, ReLU, and Swish.

Ferreira et al. [27] distinguished five types of cancer. The investigation concerned
RNA-Seq datasets: thyroid, skin, stomach, breast, and lung. Then the performance
comparison was based on three autoencoders applied as a deep neural network weight
initialization technique.

This work is segregated as follows: Section 2 presents details about the materials and
proposed methodology applied in this research. Section 2.1 describes the details about the
dataset under consideration. Section 2.2 entails in detail the methodology of the proposed
system, which includes feature selection algorithms, ML classifiers, evaluation parameters,
etc. Section 3 presents and discusses the results obtained and the comparison of the results
with different approaches applied as proposed in the methodology. Section 4 discusses the
conclusion of the conducted experiment and suggests the methodology to obtain improved
accuracy by implementing the hybrid approach.

The research has a huge social impact as it will facilitate medical treatment through
the prognosis of breast cancer at its early stages. The related accuracy rate can be noted
that will further be used as the threshold for future treatment of breast cancer. The research
will be extremely helpful for academicians, researchers, oncologists and the results will
lead to novel techniques for the proper prognosis of breast cancer.

2. Materials and Methods

The following subsections briefly discuss the research materials and methodology
used for this paper.
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2.1. Dataset and Tools

The dataset under research experimentation is referred from UCI Machine Learning
Repository, named Breast Cancer Wisconsin (Diagnostic) Data Set [28]. The dataset consists
of features computed from digital images of fine needle aspirate of a breast mass. These
features represent the characteristics of cell nuclei present in the image. The dataset
attribute description is represented in Table 1. It consists of 32 different features on cell
images of 569 participants out of which 63% cases are benign and 37% belong to malignant.
It shows that this dataset consists of data imbalance due to which the accuracy of classifiers
affects a lot. The same has already been handled in the previous research paper [24].

Table 1. Description of dataset attributes.

S.No. Feature Name

1 ID Number
2 Diagnosis (M = Malignant, B = Benign)

(3–32) Ten real-valued features for each cell nucleus

A Radius (mean of distances from the center to points on the perimeter)
B Texture (standard deviation of gray-scale values)
C Perimeter
D Area
E Smoothness (local variation in radius lengths)
F Compactness (perimeterˆ2 / area − 1.0)
G Concavity (severity of concave portions of the contour)
H Concave points (number of concave portions of the contour)
I Symmetry
J Fractal dimension (“coastline approximation” − 1)

All the experiments were performed on a personal computer with the following
specifications: 64 bit Intel Core2Duo 2.93 GHz processor, 6 GB RAM. Weka 3.8.4 as a
classification tool.

2.2. Methodology for the Proposed System

The proposed system has been designed to classify malignant cells from benign ones.
In this research, we worked on methods to enhance the accuracy of machine learning
classification models for the prognosis of Breast cancer. The performance of the classifiers
has been tested on all attributes and selected features separately to obtain and compare
the achieved accuracy. Wrapper-based feature selection approach along with nature-
inspired algorithms such as Particle Swarm Optimization (PSO), Genetic Search, and
Greedy Stepwise have been used to identify the important features. On these selected
features popular machine learning classifiers Support Vector Machine (SVM), J48 (C4.5
Decision Tree Algorithm), Multilayer-Perceptron (a feed-forward ANN) were used in the
system. The methodology of the proposed system is structured into five stages which
include: (1) Data Pre-processing; (2) Data imbalance handling; (3) Feature Selection; (4)
Machine Learning Classifiers; (5) classifier’s performance evaluation. Figure 1 shows the
proposed framework.
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Figure 1. Proposed framework for breast cancer classification.

2.2.1. Data Pre-Processing

Data pre-processing is required for efficient data representation. This stage includes
the removal of missing values, conversion of data from numeric to nominal, which is the
discretization of features. By performing discretization, it is easy for the decision tree to
create branches that are easy to understand rather than branches based on numbers. The
missing values feature row is removed from the dataset.

2.2.2. Data Imbalance Handling

Although handling data imbalance may be considered as a part of data pre-processing,
we mention it separately here. What is data imbalance? It is the condition in the dataset
where the number of instances per class is not equally distributed, which leads to mis-
leading classification accuracy. To improve the performance of classifiers and handling
imbalance conditions, we can use any of the following approaches under-sampling, over-
sampling, generation of synthetic samples. In the proposed framework we have used
oversampling with SMOTE method.

2.2.3. Feature Selection Algorithms

Feature Selection Algorithm is one more important step in the machine learning
classification process [29], as most of the time, there are many features in the dataset which
are irrelevant or have the least correlation with the output classes for example serial or
ID number in any dataset. Such features affect the performance of the machine learning
classifiers. Feature selection improves classification accuracy and reduces model execution
time [30,31].

Particle Swarm Optimization

Particle Swarm Optimization (PSO) [32,33] is a metaheuristic algorithm based on the
concept inspired by swarm behavior such as bird flocking in nature. It was proposed by
Kennedy and Eberhart in the year 1995. The indicated algorithm emulates the interaction
between members to share information. PSO was used in different areas e.g., optimization
and combination with other existing algorithms. The PSO method concerns a search of the
optimal solution by agents. They are referred to as particles, that trajectories are adjusted by
both the stochastic and deterministic components. Each particle is influenced by the best-
obtained position and the best position of the group. Finally, it tends to move randomly.

Genetic Search

Genetic Algorithm (GA) is an example of a search-based optimization technique. It
is based on the principles of Genetics and Natural Selection. It was inspired by Charles
Darwin’s evolution theory. John Holland and his students and colleagues at the University
of Michigan were the developers of this approach. David E. Goldberg worked on various
optimization problems. In GAs, there is a pool with possible solutions for the given
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problem. These solutions then undergo recombination and mutation, to produce new
children, and the process is repeated. Each solution is assigned a fitness value based on its
objective function value and based on that the fitter ones are chosen to yield more “fitter”
solutions. In this way, we keep “evolving” better solutions over generations until we reach
a stopping criterion [34–36].

Greedy Stepwise

Greedy Stepwise is a forward stepwise elimination where we start with finding the
variable that maximizes the accuracy and then keeps on increasing the number of variables
as long as the accuracy of the model increases (i.e., greedy-search optimization) [37]. There
are, however, issues with this approach. The first one is that it does not check all the
combinations. It evaluates them one by one. However, a variable that may not work well
standalone may lead to higher accuracies with the interaction of another variable. The
second issue is the selection of the prediction algorithm to use while selecting the variables.
Conventionally, computationally cheap linear regression is preferred.

2.2.4. Machine Learning Classifiers

Once the data were pre-processed where all the anomalies had been handled, they
are now passed on to the machine learning classifiers to train an ML model which could
classify cancer in a breast cell as malignant or benign. In this section, brief information
about the machine learning classifiers considered for the research is discussed [38].

Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm. It can
be applied to classification or regression tasks. However, it is preferred for classification
problems. In the SVM algorithm, each data item is plotted as a point in x-dimensional
space (where x is equal to the number of features) with the value of each feature being the
value of the particular coordinate. As a solution to separate the two classes of the data
points, many possible hyperplanes may be applied. Here the objective is to find a plane
that has the maximum distance between data points of each class. By a maximization of
a margin distance, it is provided with some reinforcement so that future data points can
be classified with more confidence. The loss function that helps maximize the margin is
hinge loss.

J48

J48 represents the open-source Java implementation of the C4.5 algorithm. It is the
algorithm applied to generate a decision tree, that was developed by Ross Quinlan. It is an
extension of Quinlan’s earlier ID3 algorithm. In this case, the decision trees are generated
using C4.5 for classification, and for this reason, C4.5 is often referred to as the statistical
classifier. It selects one attribute from a set of training instances and then selects an initial
subset of the training instances. Now the attribute and the subset of instances are used
to build a decision tree. The rest of the training instances (those not in the subset used
for construction) is used to test the accuracy of the constructed tree. It will be iterated
until a tree is built. C4.5 uses the information gain ratio to select the attribute which best
differentiates the instances.

Multilayer Perceptron

Multilayer Perceptron (MLP) is representative of a deep artificial neural network. It
is composed of more than one perceptron. These are composed using an input layer to
receive the signal. Then the output layer makes a decision or prediction about the input.
Finally, in between those two, an arbitrary number of hidden layers is noticeable. They are
used as the true computational engine of the MLP. Multilayer perceptrons are used to train
on a set of input-output pairs and learn to model the correlation (or dependencies) between
those both inputs and outputs. The training activities involve adjusting the parameters,
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or the weights and biases, of the model to minimize error level. Back-propagation is used
to make those weight and bias adjustments relative to the error. The error itself can be
measured in a variety of ways, including by root mean squared error (RMSE).

2.2.5. Performance Evaluation Metrics

The true positive represents the outcome that the model correctly predicts the positive
class. The True negative represents the outcome that the model correctly predicts the
negative class. The false-positive represents the outcome that the model incorrectly predicts
the positive class. The false-negative represents the outcome that the model incorrectly
predicts the negative class.

Classification Accuracy

The classification accuracy of an ML classifier is the solution to measure how often
the algorithm classifies a data point correctly. The accuracy informs about the number of
correctly predicted data points out of all the data points, which is evaluated as follows:

Accuracy =
(TP + TN)

TP + TN + FP + FN
(1)

Analyzing only the accuracy is not sufficient to deal with a class-imbalanced data
set, where their significant disparity is noticed between the number of positive and
negative labels.

Sensitivity

The test sensitivity is named the true positive rate (TPR). It concerns the proportion of
samples that are genuinely positive that give a positive result using the test in question. It
also concerns type II errors; false negatives are the failures to reject a false null hypothesis.

Sensitivity =
TP

FN + TP
(2)

Specificity

The test specificity is named the true negative rate (TNR). It concerns the proportion
of samples that test negative using the test in question that are genuinely negative. Ad-
ditionally, it is referred to as type I errors, false positives are the rejection of a true null
hypothesis. It is evaluated as follows:

Specificity =
TN

FP + TN
(3)

Matthew’s Correlation Coefficient

Matthew’s Correlation Coefficient (MCC) ranges from −1 to 1. The −1 means a
completely inaccurate binary classifier. The value 1 means a completely correct binary
classifier. The application of the MCC enables one to gauge how well their classification
model is performed. Unlike the F1 score (F-score, known also as F1-score), represents the
measure of a dataset model’s accuracy. It is applied to assure the evaluation of binary
classification systems. Those systems classify examples into “positive” as well as “negative”.
The F1-score enables the combination of the precision and recall of the model, and it is
defined as the harmonic mean of the model’s precision and recall. The F1-score is applied
to assure the evaluation of information retrieval systems such as search engines, and also
for many kinds of machine learning models). MCC is represented as a single-value metric,
it summarizes a confusion matrix. A confusion matrix (or error matrix), has four entries:
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).
MCC concerns the true class and the predicted class as two (binary) variables. Then it
computes their correlation coefficient the higher level of the correlation between true and



Electronics 2021, 10, 699 8 of 16

predicted values means that it is a better prediction. This is the phi-coefficient (ϕ), which is
renamed as the Matthews Correlation Coefficient (MCC), and evaluated as follows:

MCC =
((TN × TP)− (FP × FN))√

(TN + FN)(FP + TP)(TN + FP)(FN + TP)
(4)

Kappa Statistics

Cohen’s kappa statistic measures the inter-rater reliability, which means it is the
agreement between two raters who each classify the N items into C mutually exclusive
classes. Its value range is 0–1. Reference [39] the formula for evaluation of Cohen’s Kappa
coefficient is as follows:

K =
P0 − Pe
1 − Pe

(5)

where

P0: Probability of agreement.
Pe: Probability of random agreement

3. Results

This section of the paper involves the discussion on ML classification models and
results obtained with different approaches. First of all, we applied the ML classifiers
on the pre-processed data in which data imbalance was handled using the re-sampling
and SMOTE approach. The result of this experiment with detailed accuracy is shown in
Table 2 and for comparison, the percentage accuracy has been plotted in Figure 2. In the
second step, we used the nature-inspired feature selection algorithms (like Particle Swarm
Optimization, Genetic Search, and Greedy Stepwise) along with the Wrapper methods like
(Naïve Bayes, KNN, J48 decision tree, and Random forest) on both the dataset one with
preprocessing and one without preprocessing. The number of features selected by these
approaches is shown in Figure 3. It can be observed from the table as well as from the figure
that on average the number of features selected by various feature selection algorithms with
wrapper evaluation functions is lesser when applied on data after pre-processing rather
than data without preprocessing. After applying feature selection, we applied machine
learning classifiers like SVM, Decision tree J48, and Multilayer perceptron on both the
processed and unprocessed datasets. The accuracy comparison of three classifiers with
the PSO approach is shown in Table 3, similarly, accuracy comparison with the genetic
search algorithm and Greedy stepwise is shown in Tables 4 and 5, respectively. The
accuracy of different classifiers with different feature selection approaches is compared in
Figures 4 and 5.

Table 2. Performance of ml classifiers on data after pre-processing.

Classifiers SVM J48 MultiLayer
Perceptron

Correctly Classified Instances
(Total 852) 835 568 840

Accuracy (%) 98.00 66.67 98.59
MCC 0.955 N.A 0.969
Sensitivity (%) 98.761 66.667 99.467
Specificity (%) 96.51 N.A 96.89
AUC 0.979 0.494 0.997
PRC Area 0.971 0.553 0.997
Kappa statistic 0.9552 0.000 0.9685
Mean absolute error 0.020 0.444 0.0165
Root mean squared error 0.1413 0.474 0.1184
Relative absolute error (%) 4.49 99.97 3.71
Root relative squared error (%) 29.96 100.00 25.11
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Figure 2. Comparative accuracy of multilayer (ML) classifiers on data after pre-processing.

Figure 3. Comparison of the number of features selected.
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Table 3. Accuracy comparison of classifiers on data with particle swarm optimization (PSO) feature selection.

Classifiers
Wrapper Based Feature

Selection Approach

Number of FeaturesSelected Accuracy(%) Time to Build the Model
(Seconds)

WoDP WDP WoDP WDP WoDP WDP

SVM

PSO + Naive Bayes 8 10 97.0123 97.6526 0.16 s 0.53 s
PSO + KNN 14 11 96.6608 98.2394 0.08 s 0.03 s

PSO + J48 9 9 96.6608 95.7746 0.02 s 0.04 s
PSO + RandomForest 12 7 95.9578 92.2535 0.01 s 0.02 s

J48

PSO + Naive Bayes 8 10 94.9033 98.0047 0.03 s 0.03 s
PSO + KNN 14 11 94.2004 98.1221 0.01 s 0.02 s

PSO + J48 9 9 96.6608 98.3568 0.01 s 0.02 s
PSO + RandomForest 12 7 94.3761 98.2394 0.01 s 0.03 s

Multi-Layer
Perceptron

PSO + Naive Bayes 8 10 96.4851 98.0047 0.65 s 0.95 s
PSO + KNN 14 11 96.3093 97.5352 1.00 s 0.98 s

PSO + J48 9 9 96.4851 97.0657 0.52 s 0.74 s
PSO + Random Forest 12 7 97.0123 97.4178 0.79 s 0.60 s

WoDP—without data processing, WDP—with data processing, s—Seconds.

Table 4. Accuracy comparison of classifiers on data with genetic search feature selection.

Classifiers
Wrapper Based Feature

Selection Approach

Number of Features
Selected Accuracy (%) Time to Build the Model

(Seconds)

WoDP WDP WoDP WDP WoDP WDP

SVM

PSO + Naive Bayes 12 8 97.0123 97.1831 0.02 s 0.02 s
PSO + KNN 20 13 97.188 97.5352 0.03 s 0.02 s

PSO + J48 7 11 95.9578 96.3615 0.02 s 0.02 s
PSO + Random Forest 13 13 97.5395 97.7700 0.01 s 0.02 s

J48

PSO + Naive Bayes 12 8 94.9033 97.7700 0.01 s 0.01 s
PSO + KNN 20 13 94.3761 97.5352 0.02 s 0.02 s

PSO + J48 7 11 96.1336 98.8263 0.01 s 0.01 s
PSO + Random Forest 13 13 94.9033 98.8263 0.01 s 0.02 s

Multi-Layer
Perceptron

PSO + Naive Bayes 12 8 96.8366 97.4178 0.79 s 0.72 s
PSO + KNN 20 13 96.6608 98.5915 1.63 s 1.23 s

PSO + J48 7 11 96.3093 97.7700 0.39 s 1.05 s
PSO + Random Forest 13 13 97.188 98.0047 0.83 s 1.23 s

WoDP—without data processing, WDP—with data processing, s—Seconds.

Table 5. Accuracy comparison of classifiers on data with greedy stepwise feature selection.

Classifiers
Wrapper Based Feature

Selection Approach

Number of Features
Selected Accuracy (%) Time to Build the Model

(Seconds)

WoDP WDP WoDP WDP WoDP WDP

SVM

PSO + Naive Bayes 6 3 96.1336 96.7136 0.01 s 0.01 s
PSO + KNN 6 7 96.6608 97.4178 0.01 s 0.03 s

PSO + J48 6 5 95.4306 97.0657 0.02 s 0.03 s
PSO + Random Forest 5 4 96.4851 94.6009 0.02 s 0.02 s

J48

PSO + Naive Bayes 6 3 94.9033 96.9484 0.01 s 0.05 s
PSO + KNN 6 7 95.4306 98.3568 0.01 s 0.01 s

PSO + J48 6 5 97.0123 98.5915 0.01 s 0.01 s
PSO + Random Forest 5 4 95.9578 97.0657 0.01 s 0.01 s

Multi-Layer
Perceptron

PSO + Naive Bayes 6 3 96.3093 97.0657 0.37 s 0.27 s
PSO + KNN 6 7 96.3093 97.6526 0.39 s 0.58 s

PSO + J48 6 5 97.5395 97.3005 0.37 s 0.42 s
PSO + Random Forest 5 4 96.8366 95.5399 0.32 s 0.40 s

WoDP—without data processing, WDP—with data processing, s—Seconds.
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Figure 4. Accuracy comparison of Multilayer Perceptron Classifier for (a) PSO features selec-
tion algorithm; (b) Genetic Search features selection algorithm; (c) Greedy Stepwise features
selection algorithm.
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Figure 5. Accuracy comparison of support vector machine (SVM) for (a) PSO features selection algorithm; (b) Genetic Search
features selection algorithm; (c) Greedy Stepwise features selection algorithm; (d) Accuracy comparison of J48 for PSO fea-
tures selection algorithm; (e) Genetic Search features selection algorithm; (f) Greedy Stepwise features selection algorithm.

4. Discussion

Following are the observations from the accuracy comparison from Figures 4 and 5. In
most cases, the accuracy of ML classifiers with the features from data with pre-processing
is better than the features selected from data without preprocessing. This indicates that
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feature selection on data after applying re-sampling and SMOTE improves the accuracy
of the classifier. For SVM classifier three out of all feature selection algorithm, PSO with
KNN evaluator gives the maximum accuracy of 98.24%. Likewise, for the J48 Decision tree,
the maximum accuracy of 98.83% is achieved by a Genetic search with a J48 evaluator. For
the Multilayer perceptron classifier, the highest accuracy of 98.59% is obtained by using a
Genetic search algorithm with KNN. Accuracy details of all the above-mentioned classifiers
with other performance evaluation parameters such as MCC, Sensitivity, specificity AUC,
Kappa statistics, etc. are shown in Table 6. It is observed that out of all J48 decision tree
classifiers with Genetic search feature selection algorithm outperforms all other classifiers
not only in terms of accuracy but also in terms of Mathew’s Coefficient and Cohen’s Kappa
statistics along with sensitivity and specificity.

Table 6. Comparative accuracy evaluation of classifiers with various feature selection approach. On data after preprocessing
with resampling + smote.
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PSO + Naive Bayes
SVM 832 97.7 0.95 98.8 95.5 0.98 0.97 0.95 0.02 0.15 5.3 32.5
J48 835 98.0 0.96 98.4 97.2 0.97 0.96 0.96 0.03 0.14 5.7 29.9
MP 835 98.0 0.96 98.9 96.2 1.00 1.00 0.96 0.03 0.13 6.2 27.1

PSO + KNN
SVM 837 98.2 0.96 99.1 96.5 0.98 0.98 0.96 0.02 0.13 4.0 28.1
J48 836 98.1 0.96 98.4 97.5 0.98 0.97 0.96 0.02 0.14 5.1 28.9
MP 831 97.5 0.95 98.2 96.1 0.99 0.99 0.94 0.03 0.14 5.9 29.6

PSO + J48
SVM 816 95.8 0.91 98.4 91.1 0.96 0.94 0.91 0.04 0.21 9.5 43.6
J48 838 98.4 0.96 98.3 98.6 0.98 0.98 0.96 0.03 0.13 5.7 26.8
MP 827 97.1 0.93 97.5 96.1 0.99 0.99 0.93 0.04 0.16 8.4 34.6

PSO + Random Forest
SVM 786 92.3 0.83 96.1 85.4 0.92 0.90 0.83 0.08 0.28 17.4 59.0
J48 837 98.2 0.96 98.4 97.9 0.98 0.98 0.96 0.02 0.13 5.3 28.1
MP 830 97.4 0.94 98.6 95.2 1.00 1.00 0.94 0.04 0.14 8.3 29.5

Genetic Search + Naive
Bayes

SVM 828 97.2 0.94 97.4 96.8 0.97 0.96 0.94 0.03 0.17 6.3 35.6
J48 833 97.8 0.95 98.2 96.8 0.98 0.98 0.95 0.02 0.14 5.6 30.5
MP 830 97.4 0.94 98.8 94.9 0.99 0.99 0.94 0.03 0.14 7.8 30.0

Genetic Search + KNN
SVM 831 97.5 0.95 98.8 95.2 0.98 0.97 0.94 0.02 0.16 5.5 33.3
J48 831 97.5 0.94 97.7 97.1 0.97 0.97 0.94 0.03 0.15 6.1 32.8
MP 840 98.6 0.97 98.6 98.6 0.99 0.99 0.97 0.02 0.12 4.4 25.0

Genetic Search + J48
SVM 821 96.4 0.92 97.4 94.4 0.96 0.95 0.92 0.04 0.19 8.2 40.5
J48 842 98.8 0.97 98.9 98.6 0.98 0.98 0.97 0.02 0.11 3.8 22.8
MP 833 97.8 0.95 97.7 97.8 1.00 1.00 0.95 0.03 0.14 6.1 29.7

Genetic Search + Random
Forest

SVM 833 97.8 0.95 98.9 95.5 0.98 0.97 0.95 0.02 0.15 5.0 31.7
J48 842 98.8 0.97 99.1 98.2 0.98 0.98 0.97 0.02 0.11 4.0 22.9
MP 835 98.0 0.96 99.1 95.9 1.00 1.00 0.96 0.02 0.12 4.8 25.6

Greedy Stepwise + Naive
Bayes

SVM 824 96.7 0.93 96.9 96.4 0.96 0.95 0.93 0.03 0.18 7.4 38.5
J48 826 96.9 0.93 97.2 96.4 0.98 0.98 0.93 0.04 0.17 8.3 36.0
MP 827 97.1 0.93 97.9 95.4 1.00 1.00 0.93 0.04 0.14 8.9 30.7

Greedy Stepwise + KNN
SVM 830 97.4 0.94 97.4 97.5 0.97 0.96 0.94 0.03 0.16 5.8 34.1
J48 838 98.4 0.96 98.8 97.5 0.98 0.98 0.96 0.02 0.13 4.7 27.0
MP 832 97.7 0.95 98.4 96.2 0.99 0.99 0.95 0.03 0.14 7.6 30.1

Greedy Stepwise + J48
SVM 827 97.1 0.93 98.1 95.1 0.97 0.96 0.93 0.03 0.17 6.6 36.3
J48 840 98.6 0.97 99.1 97.6 0.99 0.98 0.97 0.02 0.12 3.6 24.8
MP 829 97.3 0.94 98.6 94.8 1.00 1.00 0.94 0.04 0.14 8.6 30.4

Greedy Stepwise +
Random Forest

SVM 806 94.6 0.88 96.4 91.0 0.94 0.92 0.88 0.05 0.23 12.1 49.3
J48 827 97.1 0.93 97.9 95.4 0.97 0.97 0.93 0.03 0.17 7.7 35.5
MP 814 95.5 0.90 98.0 91.0 0.99 0.99 0.90 0.07 0.18 14.8 38.7
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Based on the Feature selection approach (PSO + Naive Bayes), the classifiers J48 and
Multilayer Perceptron deliver the best accuracy (98.0%). In feature selection based on
(PSO + KNN), the accuracy rate of the SVM classifier is best (98.2%). Based on the feature
selection approach (PSO + J48), J48 delivers the best accuracy of 98.4%. Based on the feature
selection approach (PSO + Random Forest), J48 delivers the best accuracy of 98.2%. With a
feature selection approach (Genetic Search + Naive Bayes), J48 delivers the best accuracy
of 97.8%. With (Genetic Search + KNN) approach Multilayer Perceptron gives the best
accuracy of 98.6%. Based on the feature selection approach (Genetic Search + Random
Forest) and (Genetic Search + J48), J48 delivers the best accuracy of 98.8%. Based on the
feature selection approach (Greedy Stepwise + Naive Bayes), Multilayer perceptron delivers
the best accuracy of 97.1%. In the feature selection approach (Greedy Stepwise + KNN),
(Greedy Stepwise + J48), and (Greedy Stepwise + Random Forest), the J48 classifier delivers
the best accuracy of >97%. The Kappa statistics is maximum (0.973) in J48 classifier based
on Genetic Search feature selection algorithm. The error rate is also minimum in J48 thereby
yielding the best accuracy rate of 98.83%. The sensitivity and specificity are maximum in
the case of SVM (99.11%) and J48 (98.58%), respectively. The work can be further assessed
based on a 95% confidence interval.

5. Conclusions

The paper points out a Hybrid Supervised Machine Learning Classifier System for
breast cancer prognosis using feature selection and data imbalance approaches. The perfor-
mance of the classifiers has been tested on all attributes and selected features separately to
obtain and compare the achieved accuracy. Wrapper-based feature selection approach along
with nature-inspired algorithms such as Particle Swarm Optimization, Genetic Search, and
Greedy Stepwise has been used to identify important features. On these selected features
popular machine learning classifiers such as Support Vector Machine, J48 (C4.5 Decision
Tree Algorithm), Multilayer-Perceptron (a feed-forward ANN) were used in the system.
The methodology of the proposed system is structured into five stages which include
(1) data pre-processing; (2) data imbalance handling; (3) feature selection; (4) machine
learning classifiers; (5) classifier’s performance evaluation. Based on the experimental
results, it is evident that the Support Vector Machine with the Particle Swarm Optimization
algorithm for feature selection achieves an accuracy of 98.24%, MCC of 0.961, a sensitivity
of 99.11%, a specificity of 96.54%, and Kappa statistics of 0.9606. It is also observed that the
J48 Decision Tree classifier with the Genetic Search algorithm for feature selection achieves
an accuracy of 98.83%, MCC of 0.974, a sensitivity of 98.95%, a specificity of 98.58%, and
Kappa statistics of 0.9735. Furthermore, Multilayer Perceptron ANN classifier with Genetic
Search algorithm for feature selection achieves the accuracy of 98.59%, MCC of 0.968, a
sensitivity of 98.6%, a specificity of 98.57%, and Kappa statistics of 0.9682. Given the
above, it is relevant that the J48 decision tree classifier is the most appropriate machine
learning-based classifier for optimum breast cancer prognosis. This work will facilitate
medical treatment towards breast cancer prognosis in the light of machine learning. The
future scope of work includes the prognosis of breast cancer using thermal images and
IoT-based sensors.
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