
A centralised cloud services repository (CCSR)
framework for optimal cloud service advertisement
discovery from heterogenous web portals

This is the Published version of the following publication

Alkalbani, Asma Musabah, Hussain, Walayat and Kim, Jung Yoon (2019) A
centralised cloud services repository (CCSR) framework for optimal cloud
service advertisement discovery from heterogenous web portals. IEEE
Access, 7. pp. 128213-128223. ISSN 2169-3536

The publisher’s official version can be found at
https://ieeexplore.ieee.org/document/8825798
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/43369/

SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING OF
DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received August 19, 2019, accepted September 1, 2019, date of publication September 5, 2019,
date of current version September 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939543

A Centralised Cloud Services Repository (CCSR)
Framework for Optimal Cloud Service
Advertisement Discovery From
Heterogenous Web Portals
ASMA MUSABAH ALKALBANI 1, WALAYAT HUSSAIN 2, AND JUNG YOON KIM 3
1Information Technology Department, College of Applied Sciences, Ibri 511, Oman
2Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
3Graduate School of Game, Gachon University, Seongnam 13120, South Korea

Corresponding authors: Asma Musabah Alkalbani (asmam.ibr@cas.edu.om) and Jung Yoon Kim (kjyoon79@gmail.com)

ABSTRACT A cloud service marketplace is the first point for a consumer to discovery, select and possible
composition of different services. Although there are some private cloud service marketplaces, such as
Microsoft Azure, that allow consumers to search service advertainment belonging to a given vendor.
However, due to an increase in the number of cloud service advertisement, a consumer needs to find related
services across the worldwide web (WWW). A consumer mostly uses a search engine such as Google,
Bing, for the service advertisement discovery. However, these search engines are insufficient in retrieving
related cloud services advertainments on time. There is a need for a framework that effectively and efficiently
discovery of the related service advertisement for ordinary users. This paper addresses the issue by proposing
a user-friendly harvester and a centralised cloud service repository framework. The proposed Centralised
Cloud Service Repository (CCSR) framework has two modules - Harvesting as-a-Service (HaaS) and the
service repository module. The HaaS module allows users to extract real-time data from the web and make
it available to different file format without the need to write any code. The service repository module
provides a centralised cloud service repository that enables a consumer for efficient and effective cloud
service discovery. We validate and demonstrate the suitability of our framework by comparing its efficiency
and feasibility with three widely used open-source harvesters. From the evaluative result, we observe that
when we harvest a large number of services advertisements, the HaaS is more efficient compared with the
traditional harvesting tools. Our cloud services advertisements dataset is publicly available for future research
at: http://cloudmarketregistry.com/cloud-market-registry/home.html.

INDEX TERMS Cloud services discovery, web harvesting, service advertisements, ontology, centralized
repository, heterogeneous data.

I. INTRODUCTION
The cloud computing paradigm is a new model of delivering
computing resources, such as online applications, storage and
networks, as a service over the World Wide Web (WWW).
It focuses on sharing IT resources over a scalable net-
work called the cloud [1]. Cloud computing is a multi-
domain environment that offers thousands of online services,
which makes the discovery of cloud services a complex and

The associate editor coordinating the review of this manuscript and
approving it for publication was Honghao Gao.

multifaceted task. Given the fact that end-users’ requirements
vary and that cloud service providers provide a range of cloud
services with only slight variations, cloud service selection is
a complex yet vital problem to address [2]. The cloud offers
three types of service models: infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a ser-
vice (SaaS). The cloud provider offers these services through
cloud service advertising. The term ‘cloud service advertis-
ing’ refers to a cloud service description that present via
media, which is an essential factor in anymarketplace [3], [4].
The cloud service description describes a complete service

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 128213

https://orcid.org/0000-0001-5507-4873
https://orcid.org/0000-0003-0610-4006
https://orcid.org/0000-0002-2396-9514

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

offered by the cloud service provider to their consumer, and
it includes some elements that add additional value to con-
sumers, such as Quality of Service (QoS) values and technical
support details [5]–[7]. The cloud service providers are pro-
viding their services offers via their websites, whereas these
website schema and layout vary from that provider to another.
For example, the service offering template inMicrosoft Azure
marketplace website is unlike the one presented in the Ama-
zon cloud web marketplace website [8], [9]. Therefore, one
of the challenges that the cloud consumers face is to have an
optimal cloud service discovery framework to guide them in
finding a suitable and trustworthy cloud service from differ-
ent cloud service advertisement on the web.

Cloud service discovery (CSD) is emerging as a new trend
for service discovery across distributed and heterogeneous
environments online. It is a process for locating a cloud
service that best matches the end-user’s requirements. Since
the emergence of cloud technologies, cloud providers adver-
tise their services online, and end-users make use of general
search engines such as Bing and Google to discover cloud
services [10]. The ability to explore cloud services adver-
tisements across multiple websites becoming a challenge for
cloud consumers, mainly when there is a large marketplace of
those services.ManyWeb portals contain up to date cloud ser-
vices advertisements such as getApp. These advertisements
can be extracted and analysed using different web harvesting
technique. Cloud consumers usually get confused by the
massive number of possibly irrelevant search results due to
keyword-based searches.

There is many literatures [10]–[14] in which the authors
tried to address the issue. Nabeeh et al. [13] suggested adding
a semantic annotation to cloud service profiles online to
automate the discovery of cloud services. The objective of
using semantic annotation is to allow search engines (such as
Google) to semantically identify and retrieve service infor-
mation based on a user’s objectives [10]. A key issue with
the semantic-based approach is that the semantic search
could vary depending on the ontology domain and termi-
nologies covered [15]. Alkalbani and Hussain [11] conducted
a survey and found that almost all of the existing studies
reuse an existing ontology. Such as a business ontology to
semantically describe cloud service functions and improve
query precision [12], [16]. Constructing an ontology which
contains all the relevant domain concepts, such as service
classification, service type, etc., is not an easy task, given
the fact that cloud providers use different terminologies and
vocabularies to describe their service offers, even though they
have the same features [14]. Akinwunmi et al. [2] addressed
the issue by proposing a decentralized agent system which
acts as a consultant for cloud consumers to improve their
experiences with cloud services. However, this system, like
other approach makes use of a web search engine to find the
services, and it is still in the conceptual phase without enough
practical applications in the real environment.

Although existing literature has expended a great effort
on enhancing search engines techniques with semantic

annotations or by developing semantic-based systems for dis-
covery cloud services, however, none of the existing literature
discussed a centralised cloud services repository framework
that has the capacity to extract, integrate and store cloud
services advertisements from semi-structured data located in
multiple and poorly organised Web portals into a centralized
repository. The centralised repository plays a vital role in
an efficient and effective service advertisement discovery
in WWW that has been ignored. In this paper, we tried to
address the issue by proposing the CCSR framework. The
proposed framework presents how to harvest cloud services
advertainments from theweb portals using our developed har-
vesting tool - Harvesting-as-a-Service (HaaS). Using HaaS
consumers crawl data from the WWW without doing any
coding and retrieve relevant details in a fractional of time
compared to the traditional methods. The extracted real-time
data can be transferred in any format such as CSV, or pdf
depending on the choice of a user. The data then analysed
and mapped into a central repository that is used for cloud
service discovery.
Significance of the Paper:This study is significant from the

following two perspectives. Firstly, the harvesting tool ‘HaaS
‘allows users to extract real-time data from the web without
the need to write any code. Secondly, the proposed centralised
cloud service repository enables a consumer for efficient
and effective cloud service discovery. The centralised repos-
itory act as a knowledge source for cloud services. Thirdly,
we didn’t find free real cloud dataset on cloud services. This
study provides real cloud services dataset and actual cloud
reviews that could be used by potential cloud consumers and
for future research as well.

The rest of the paper is organized as follows: In
Section 2 we discuss and critically analyse the related stud-
ies, Section 3 describes the proposed system architecture,
Section 4 outlines the system workflow, Section 5 presents
the system implementation, Section 6 conducts the system
evaluation and presents the results and discussion, and the
work concludes with a summary and description of future
work in Section 7.

II. RELATED STUDIES
This section aims to provide a background to the state-of-
the-art cloud service discovery approaches by studying how
these approaches have been examined in the existing litera-
ture. The section analyses each of the contexts, features and
methods for each of the approaches. We summaries some of
the approaches and highlight gaps at the end of the section.

In the current literature, approaches in terms of service
selection and composition, trust model [17] and reputation-
based approaches [18] are the main approaches in the cloud
computing context as well as in other domain such as Web
Services and mobile services [19]–[23]. Also, machine learn-
ing technologies have been involved in the area of cloud
computing to enhance the cloud service level of agree-
ment [21], [24]–[28]. The cloud service discovery process
depends on the technique and methods applied and used

128214 VOLUME 7, 2019

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

to allocate the service information online. One of the most
popular methods for service discovery task across all domains
and industries is Google. Google is not, however, restricted
to finding service information. Therefore, it may retrieve
relevant, irrelevant information depending on the descriptive
information provided [29]. In addition, searching for the ser-
vice information using web search engines depends on two
factors: (1) the keyword that best indicates the target service
which is the most important aspect in internet marketing
and the web search engine’s algorithm; and (2) finding a
service that is related to cloud services that best match user’s
requirements. The latter can be challenging if the cloud mar-
ketplace is vast. In addition, there are a considerable number
of websites relating to non-existing services. Parhi et al. [30]
proposed a semantic framework for cloud service description
based on a multi-agent approach to support the location of
cloud services [16]. The proposed framework assist consumer
for the discovery of cloud services by referring to shared
cloud ontology taxonomies to allocate an appropriate ser-
vice. Kang and Sim [31] developed a cloud service discov-
ery system (CSDS) that assists cloud users in finding cloud
services over the Internet. The framework comprises a user
interface and three agents. The model consults a cloud ser-
vice ontology, which comprises a taxonomy of cloud service
concepts. The user interface allows end-users to enter a query
which specifies their preferences, including a service name
and service requirements. To search for the service over the
Internet, the query processing agent uses the existing web
search engine - Google. Although the proposed system assists
the consumer in finding cloud services, however, the system
does not have a centralised repository for effective result.
In another work, Sim [32] proposed a multi-agent cloud ser-
vice discovery system Cloudle that focuses on matching end-
users’ requirements with an advertised cloud service. The
proposed system comprises of four self-organising agents that
are used to assist users in finding advertised cloud services
and managing cloud resources. It considers variations in
the types of cloud service resources over the Internet and
consults cloud ontology taxonomies in the search process to
match services and requirements. One of the shortcomings of
this work is that the cloud search engine agent deployed to
gather cloud services information uses a web search engine,
which is a keyword-based search engine that also retrieves
irrelevant information. To overcome the issue of key-word
based searching, Rajendran and Swamynathan [33] proposed
a model that combines the advantages of a cloud service
ontology technique with a multi-agent-based protocol. The
approach uses cloud service ontology to discover and retrieve
information about cloud service. Although the system has
a user-friendly interface that supports the end-user to find
appropriate cloud services. However, the approach, like other
existing work, make use of search engine, such as Google,
to retrieve cloud services from the Internet and lacking the
concept of a centralised repository. The idea of the centralised
repository proposed by Chen et al. [34]. The framework
comprised of twomodules - web service description language

(WSDL) andweb service registry (UDDI) [35]. The approach
semantically annotate cloud services using WSDL exten-
sion [36] and then store the semantic annotation of the cloud
service in a web service registry - UDDI [37]. Although
the proposed system provides a solution for dynamic cloud
services selection; however, the approach is unable to cope
with the growing marketplace and how to update in a real-
time manner. Building the concept of a centralised repository,
Alkalbani et al. [38] proposed a centralized open-source
repository for cloud services. The approach is supported
by the Nutch Hadoop Crawler [39], [40] which crawls a
Web portal to extract information about cloud services and
stores this information in a local repository. The authors
only focused on SaaS service data and based on crawling
information from one web portal only. To gather a variety of
cloud services detail for different services, Gong and Sim [41]
developed three versions of a cloud crawler. The pro-
posed crawler gathers cloud service information from three
well-known cloud providers - Amazon Web Services [42],
Rackspace and GoGrid. The gathered data has two tuples,
service specification and service price. Further analysis was
applied to the service specification using a K-means cluster-
ing algorithm to cluster cloud services in a different category.
One of the shortcomings of the proposed approach is that the
crawler needs to be customized for every website. It, there-
fore, failed to crawl cloud services efficiently, since customiz-
ing the crawler is a time-consuming process. Also, there are
some other studies on mobile service selection discussed the
importance of service selection, including quality of service
parameters in selecting the mobile services [43]–[45].

The above-discussed approaches tried to enhance cloud
service discovery. However, there are many shortcomings in
those approaches which are discussed as follows:
• The existing literature did not give an optimal solution of
how to extract, integrate and store cloud services details
from different semi-structured data spread across the
internet.

• The discussed approaches did not provide any solution
for customised harvesting tool while collecting cloud
services information from heterogeneous web sources to
build a comprehensive listing of cloud services.

• The existing literature did not discuss the harvester that
extracts real-time data from the web without the need to
write any code.

• The discussed approaches did not provide a means for
integrating all cloud services information in a central
repository for efficient and effective decision making.

To overcome the discussed gaps, we present our proposed
CCSR framework, as discussed in Section 3.

III. CCSR FRAMEWORK
In this section, we propose the architecture of the Centralized
Cloud Services Repository (CCSR) framework, which acts
as a directory for cloud services advertisements and assists
in efficient finding for cloud services commercial offerings.
The CCSR framework composed of twomodules: Harvesting

VOLUME 7, 2019 128215

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

FIGURE 1. Centralized Cloud Services Repository (CCSR) framework.

as-a-Service (HaaS) and the Service Repository, as shown
in Fig. 1. The detail of each module is discussed below:

A. HaaS MODULE
This section presents the design of ourHarvesting as a Service
(HaaS) module, which harvests cloud services information
from targeted Web portals. The proposed HaaS harvest the
real-time data/information from the targeted website in a few
minutes and make it available in one file. Depending on the
choice of a consumer, the file can be available in JSON,
CSV, SQL or PDF file formats. Besides, the HaaS has a user-
friendly interface that makes the process of harvesting easy
for the end-users. By ‘‘end-user’’, we mean a cloud end-
user such as a consumer, organization, or developer who has
knowledge about cloud services advertisements and where to
find them over the WWW. The HaaS comprised of six sub-
modules - Policy Centre, Configuration Manager, Learning
Agent, Harvester Agent, Semi-structured Harvested Data,
Harvesting Optimizer and Cloud Services Repository.

The sub-modules are explained below:

1) POLICY CENTRE
The policy centre defines P1-configuration policy and
P2- the polite harvesting policy for coordinating the

harvesting process. Initial policies are set in P1 that outlines
the boundary for carrying out the harvesting process. It pro-
vides details about the structure of the service advertisement
in the webpage and the targeted service information to be har-
vested. The P1 work based on two rules. The first rule assists
to choose sample page from the target website. The second
rule then identifies the data that need to be harvested from
that sample page. In our scenario, we have a list of service
advertisement attributes (custom attributes), such as service
name, review etc. and its organisation into object attributes
such as review date, review name etc. The second policy
P2 regulates the maximum time for each harvesting session.
To avoid overloading, the harvesting process is divided into
multiple sessions, depending on the total number of related
webpages. After each session, the process is paused for a
certain period before continuing a new session. In this way,
the harvested targets website is not overloaded. The user
indicates how many links can be harvested per session and
indicate how many seconds to wait before moving on to the
next session.

2) CONFIGURATION MANAGER
The Configuration Manager personalizes the harvesting pro-
cess and provides essential guidelines for collecting service
information form the targeted website. The harvesting pro-
cess is comprised of two phases: phase one is the setup phase
and phase two is the harvesting phase. Phase one is conducted
in four steps, using the ConfigurationManager user interface.
During this setup phase, the Configuration Manager utilizes
three levels of the configuration structure: the web page level,
the custom object level, and the custom attribute level. The
web page level provides a sampleUniformResources Locator
(URL) of a web page, while the custom object and the custom
attribute levels define the data targeted for collection. The
Configuration Manager consults the Policy Centre to ensure
defined rules/policies are followed during the procedure.

3) LEARNING STRUCTURE AGENT
The task of the Learning Agent is to learn the web page
layout/structure of the target Web portal. We propose an
algorithm for learning the HTML structure of a web page,
as shown in Algorithm 1. It is a learning algorithm that
required the user to determine specific control parameters
such as targeted web page URL and the required information
from in the targeted web page. Sample metadata for a particu-
lar page in the targeted website collected and stored in JSON
file format. In the sample date, we need to indicate the fol-
lowing: indicates the URL of the sample page, indicates list of
objects of the sample page (S), only get the first 25 characters
of a sample string, find all HTML tags which have a specific
text, Get name and some attributes of a HTML tag (O), Get
name, some attributes of a HTML tag and its position com-
pared with other tags of the same type under a HTML parent
tag (a). The output of this algorithm is the metadata structure
in JSON format with the core is the configuration data with
extended information to navigate the position of attributes

128216 VOLUME 7, 2019

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

Algorithm 1 Learning structure Algorithm
- Input: Configuration data in JSON format following the
structure:

- S = {multiple, objects = (o1, o2 . . . on)} is the structure
of the configuration, containing a sequence of config-
ured objects, multiple ∈ {yes, no} (get one or multiple
HTML data for objects of the same structure)

- oi (i ∈N)= {attributes= (a1, a2 . . . am)} is a detail con-
tent of each object including a sequence of configured
attributes.

- aj (j ∈ {1, 2, 3 . . .m}) = {sample, multiple, fullText}:
sample (sample text for the attribute), multiple ∈ {yes,
no} (get one or multiple HTML data of similar HTML
sibling tags) and fullText ∈ {yes, no} (sample text is in
full content or partial content)

Output: Metadata structure in JSON format with the core is
the configuration data with extended information to navigate
the position of attributes during the harvesting process. The
output for objects and attributes is as follow:

- oi (j ∈ N) = {attributes = (a1, a2 . . . am), parentTag =
{position, tagName, className, idName} }. Position:
the position of oi tagName in relation to the whole
HTML document, tagName: HTML tag name, class-
Name: HTML class name, idName: HTML ID name.

aj = {sample, multiple, fullText, filterTag={position, tag-
Name, className, idName}}. Position: the position of the
tagName in relation to the parentTag of the object contain-
ing aj, tagName: HTML tag name, className: HTML class
name, idName: HTML ID name.

Procedure: Begin Algorithm
For i = 1 to n

Fetch the sample of the first attribute a1 in oi
Compute HTML parent tag of a1 and stores parentTag in
oi using BeautifulSoup
For j = 1 to m

If parentTag does not contain aj then
Compute HTML parent tag and then store
parentTag in oi using BeautifulSoup
Repeat step 4

End if
End for
For j = 1 to m

Compute HTML tag of aj based on computed
parentTag in oi and stores filterTag in aj using
BeautifulSoup

End for
End for

End Algorithm

during the harvesting process. The output for objects and
attributes is as shown in the Algorithm 1 Output section.

FIGURE 2. Harvested sample data.

The output also displayed to the end-user for data validation
and modification, as showed in Fig 2. The end-user verifica-
tion is to ensure that the sample data is correct and complete.
Steps 1, 2 and 3 are a recursive process until the end-user-
defined harvesting boundary has been reached.

4) WEB PAGE HARVESTER ALGORITHM
The task of this component is to extract meaningful infor-
mation about cloud services from the Web, as specified by
the end-user in the data configuration step. To handle the
heterogeneity structured of service information when dealing
with a large number of web pages, we define policies within
the Policy Centre. The Harvester Agent then carries out the
harvesting process based on the defined policies. The algo-
rithm pseudocode for Harvester Agent shows in Algorithm 2.
The input in this algorithm is the JSON file output from
Algorithm 1, that has sample metadata. It shows a list sample
metadata of all sample pages and indicates the pattern of
the URL of the sample page. The output of this algorithm
is the JSON file that has a list of the harvested information,
as presented in Figure 2.

5) SEMI-STRUCTURED HARVESTED DATA
This component responsible for receiving the structured har-
vested information coming from the Web Page Harvester.
This information is structured as a JSON object, using the
restrictions specified by the end-user during the configuration
phase. At this stage, the file includes harvested information
with some redundant service attributes.

6) HARVESTING OPTIMIZER
The objective of this component is to remove redundant
service attributes from the harvested information file. These
attributes are useful for learning the correct HTML structure
of the sample targeted web page. The redundant attributes
removed after the learning process. To remove the redundant
attributes the user assesses the sample harvested information
file, then the user can remove any redundant attribute via
pressing a delete button in the user interface. It contains all
the cloud service information, including cloud services, offers
details such as service Uniform Resource Locator (URL),
service name, service type, service category, and details of

VOLUME 7, 2019 128217

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

consumers’ reviews such as reviewer name and comments.
This information is made available in different formats such
as CSV, PDF or SQL.

B. SERVICES REPOSITORY MODULE
This component is responsible for storing and mapping the
harvested information, which has meaningful information
about the cloud services advertisement. To achieve this,
we use ontology to represent the knowledge of the stored
information. The reason for choosing the ontology is because
it provides a shared and common understanding of a cloud
services advertisement that communicates between people
across different web platforms [46]. For example, Ama-
zon (www.amazon.com) and eBay (www.ebay.com) have
used the ontologies in products classification for sales and
their features [47]. Therefore, we construct the cloud ser-
vices advertisement ontology for the purpose of the sale
by referring to the NIST classification for cloud services
which includes three main categories: SaaS, PaaS, IaaS [48],
as shown in Fig 3. This ontology offers a first conceptual
of the knowledge of cloud services advertisement. Then,
we map and store each cloud services advertisements into
a concept in the ontology. We extracted meaningful infor-
mation into the SQL file that represents the main attributes
of each cloud service advertisement. We consider that cloud
service advertisement ‘A’ is represented by service metadata
M, which describes the general knowledge of the cloud ser-
vice commercial offer such as service ID, service name and
service details. In this work, we utilise the service metadata
descriptive information from the relational database, which
has the harvested information organised by attributes, such
as service name, service description and service category.
To identify the service concepts that are relevant to a par-
ticular service category concept, [service id, service name,
service category, service description, provider link, free trial
(yes, no), mobile app (yes, no), rating, starting price, year
founded. Service ID: is the URI of the service, which is the
reference to the semantically linked concepts. Service Name:
is the name of the service, Service Category: is the category to
which the service belongs, Service description: is the detailed
text description of the service features and facilities. Provider
link: is the URL link of the service provider, Starting Price:
is the starting price of the service per month, Rating: is the
score that a consumer gives to a service after purchasing and
using it,Free Trial: indicates if the service is available for free
a trial or not,Mobile App: indicates if the service is a mobile
application or not.

IV. EVALUATION AND VALIDATION OF
CCSR FRAMEWORK
To validate the proposed CCSR framework, we demonstrate
a case study shows establishing of cloud services central
repository using web harvesting tool (HaaS). Our inten-
tion in this case study is to show how the CCSR frame-
work assists in establishing a central repository for cloud
services advertainments, which assist in discovering cloud

Algorithm 2 Harvest URLs Algorithm

Input: The algorithm Harvest URLs has three types of input:
1. Metadata structure from the output of Algorithm 1:

Structure algorithm
2. A sequence of URLs that have the same HTML struc-

ture with the configured Web page. URL = (url1,
url2 . . . urlp)

3. Polite harvesting parameters {recordsPerSession,
waitingTimeInterval}. recordsPerSession: the num-
ber of URLs to be harvested over one session, wait-
ingTimeInterval: the time (seconds) the harvest pro-
cess pause between each session.

Output: Dataset includes data of configured attributes for
all inputted URLs. The dataset is stored in MongoDB and
exported to CSV format.

Procedure: Compute the number of sessions NS based on
the number of URLs and parameter recordsPerSession. NS
= Number of URLs/recordsPerSession
Set session to 1
While session <= NS then
For k = 1 to p

For i = 1 to n
Compute all possible parentTag of oi inside urlk
using BeautifulSoup and store these tags into ts
If multiple of oi is ‘‘yes’’ then

Repeat step 12 to step 18 for all parentTag
inside ts

Else then
Perform step 12 to step 18 for the parentTag
that has the position aligned with oi position

End if
For j = 1 to m

If multiple of aj in oi is ‘‘yes’’ then
Parse the content of aj for all similar
HTML siblings based on parentTag and
aj filterTag (tagName, className,
idName) using BeautifulSoup and store
the data in MongoDB for urlk

Else then
Parse the content of aj for the HTML tag
based on parentTag and aj filterTag
(position, tagName, className,
idName) using BeautifulSoup and
store the data in MongoDB for urlk

End if
End for

End for
End for
Pause the process based on waitingTimeInterval
Increment session to 1

End while

End Algorithm

128218 VOLUME 7, 2019

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

FIGURE 3. Cloud services advertisement ontology.

TABLE 1. Comparison of Crawly, Parsers, HaaS and Scrapy.

services information. For this study, we consider harvest-
ing cloud services advertainments details from two publicly
available web portals, namely getapp.com and serchen.com.
To demonstrate the feasibility of our proposed ‘HaaS frame-
work’, we compare it with the other three widely used open-
source harvesters – Parsers, Crawly and Scrapy as presented
in Table 1. We compare them based on six criteria that we
believe are an essential factor for user efficiency and sat-
isfaction. From the comparative analysis, we see that there
are many similarities between HaaS and the other harvesters.
However, our approach does not need the end-users to code
for harvesting, and it provides a user-friendly interface that
makes it usable for the end-users to easily employ the har-
vesting process.

To harvest serchen.com, the HaaS system takes the
end-user through some steps discussed as follows:

A. CONFIGURATION
The purpose of this step is to help users to configure what
they want to harvest on their target Web portal. First, the user
needs to investigate serchen.com thoroughly to understand
the serchen.com sitemap and the layout of serchen.com web
pages with repetitive HTML structure that they wish to
focus. To set up the configuration, users need to provide the

FIGURE 4. Average efficiency comparison - Serchen website.

FIGURE 5. Average efficiency comparison - getApp website.

following details on the configuration form. PAGE has Web-
site URL: Original URL of the harvested website and Page
URL: Sample page URL to obtain sample data. A page can
have one or many objects. OBJECT has Object Name: Cus-
tom object name. An object can have one or many attributes,
and Object Multiple: This option indicates whether to harvest
the same object multiple times. ATTRIBUTE has Attribute
Name: Custom attribute name, Attribute Sample: Attribute
sample copied from the sample page. If the text is too long,
partial text used, Multiple: Indicate whether to harvest the
same attribute multiple times (e.g. harvest multiple li in an
ul tag) and Full text: Indicate whether the attribute sample
is in full text or partial text (check HTML structure. The
Add Object button (+ object) inside the page panel is used
to add a new empty object to the Configuration page. The
Add Attribute button (+ attribute) inside the Object panel
for the collection of attributes is used to add a new empty
attribute to the Object on the Configuration page. Users can
remove Objects/Attributes using the delete buttons. Clicking
the Next button takes users to Step 2: View Sample. The
screenshot in Figure 7 shows the configuration setup screen
for serchen.com based on sample pre-defined data from the
system.

B. VIEW SAMPLE
the purpose of this step is to learn the HTML structure of
all configured objects and their attributes in the configured
page. It also assists users to validate the results to ensure

VOLUME 7, 2019 128219

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

that the required data is sampled, per the user’s request at
step 1: Configuration. If the data is not correct, users can
move back to Step 1 using the Previous button to adjust their
configuration of the error object/attribute. If this is the case,
users click the button to trigger the system to re-learn the
structure and re-get the sample data. Removing redundant
attributes to customize the harvested result is carried out
in Step 4: Start Harvesting. Users click the Next button to
move to Step 3: STEP 3: RELATED LINKS. THIS STEP ASSISTS

users to copy the URLs of all web pages that have the same
HTML structure as the configured sample web page from
Step 1: Configuration. The cloud services offerings located
in a unique web page URL, but all pages have the same
structure. The polite harvesting feature implemented in the
HaaS system with constraints that include records per session
and waiting for a time interval (refer to Section 3). Users click
the Next button to move to the next step, Start Harvesting.

Start Harvesting the users only need to press the Start
Harvesting button to start the harvesting process. The system
stores harvested information inMongoDBwith JSON syntax.
When the harvesting process finished, the system generates
data in CSVfile format andmakes it available to the end-user.
The web browser pops up another Tab that enables users to
download the data in CSV file format (save the file name as
<filename>.csv). If automatic popups blocked on the user’s
browser, the user needs to allow popups for the web tool
and re-start harvesting to download the file. The structure of
the exported file is as follows: All Attributes which belong
to an Objects of multiple values and assigned to No, they
are combined and considered as columns in the top table
(Main Table of output Datasets). To harvest the getapp.com
Web portal, we followed the same steps. Endusers follow the
HaaS user interface instructions to harvest the data from the
target Web portals.

C. CONSTRUCTING ONTOLOGY AND REPOSITORY
In this step, the Web ontology language (OWL) used to
represent the conceptual model and the knowledge of the
collected cloud services advertainments. We extracted mean-
ingful information into the SQL file that represents the main
attributes of each cloud service advertainment. We consider
that cloud service advertisement ‘A’ is represented by ser-
vice metadata M, which describes the general knowledge
of the cloud service commercial offer such as service ID,
service name and service details. In this work, we utilise the
service metadata descriptive information from the relational
database, which has the harvested information organised by
attributes, such as service name, service description and
service category. To identify the service concepts that are
relevant to a certain service category concept, [service id,
service name, service category, service description, provider
link, free trial (yes, no), mobile app (yes, no), rating, starting
price, year founded].
Service ID: is the URI of the service, which is the reference

to the semantically linked concepts. Service Name: is the
name of the service, Service Category: is the category to

TABLE 2. Harvesting time.

TABLE 3. Efficiency comparison (in seconds) - Serchen website.

which the service belongs, Service description: is the detailed
text description of the service features and facilities. Provider
link: is the URL link of the service provider, Starting Price:
is the starting price of the service per month, Rating: is the
score that a consumer gives to a service after purchasing and
using it, Free Trial: indicates if the service is available for free
a trial or not, Mobile App: indicates if the service is a mobile
application or not. The ontology has been implemented and
tested using Protégé Software [49].

D. RESULT
The HaaS was able to generate of 17657 cloud services items
and 17337 consumers reviews experience with cloud services
as presented in Table 2.

In addition we examine the efficiency of the proposed
HaaS system compared to the Parsers, Scrapy and Crawly
heterogeneous structured websites. We first harvested the
serchen.com Web portal using all of them without applying
the polite harvesting feature and compared both tools about
crawl time. Tables 3 shows this comparison of harvesting
time across three rounds of harvesting. To validate the har-
vesting results, we measured the percentage of change in the

128220 VOLUME 7, 2019

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

TABLE 4. Efficiency comparison (in seconds) - getApp website.

TABLE 5. Polite harvesting details.

harvesting time as a function of the number of harvested
services (20, 40, 60, 80 and 100). The harvesting results
of serchen.com show that the proposed HaaS tool performs
better than Parsers, Scrapy and Crawly.

The harvesting time usually depends on network band-
width, CPU capacity at the time of running, server response
time at the time of running, and the polite harvesting
configuration for all HaaS, Scrapy, Parsers and Crawly.
Tables 4 presents the comparison of harvesting time for
HaaS, Crawly and Scrapy across three rounds. We next har-
vested getapp.com using HaaS, Crawly, Parsers and Scrapy.
We applied the polite harvesting feature for both tools, as
presented in Table 5.

Also, we tested the quality of the harvested data using
our approach compared with the tradition tool, such as
scrapy.We have compared the results of harvesting 100 cloud
services from serchen.com using Scrapy and HaaS. The
Fig 4 and Fig 5 present the harvested data in two columns
service URL, service name.

The results indicate that significant values were missing
from the service description column in the case of the Scrapy
results. By ‘‘missing value’’, we mean that the corresponding
value was not present in the harvested data as presented
in Figure 6 and Figure 7. There are 14 missing service
name values out of 100 harvested services, with a successful

FIGURE 6. Screenshot of data harvested from serchen.com by Scrappy.

FIGURE 7. Screenshot of data harvested from serchen.com by HaaS.

TABLE 6. Experiment results mapping cloud services ads entity to the
CSA ontology.

harvesting quality rate of 86%. Interestingly, there are no
missing values in the HaaS file (Fig 5), indicating the suc-
cessful harvesting quality rate of 98%.

We used precision, recall, and F-score methods to tagged
extractions about the instantiated concepts in the knowledge
base as presented in the below equations.

Precision

=
number of instances correctly acquired

number of instances acquired
Recall

=
number of instances correctly acquired

number of instances existing in the conceptual tree
F − measure

=
2 ∗ recall ∗ precision
recall + precison

The harvested 17806 service entities are collected from three
different web portals in the repository using the equations
mentioned above. Table 5 presents the results of the set of
individuals and concepts extracted from the repository to
map and populate the cloud service advertainments (CSA)
ontology. A set of 17806 individual mappings according

VOLUME 7, 2019 128221

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

TABLE 7. Performance result.

TABLE 8. Performance of Service advertisement retrieval using ontology.

to the conceptual tree CSA produced. Of these concepts,
17793 correctly instantiated by the rules of the classification
(SaaS, PaaS and IaaS) and 13 not instantiated. We thus obtain
a recall of 99.59 and precision of 98.98. These accuracy
measures are shown in Table 8.

V. CONCLUSION
In this study, we have presented a service-based harvester
called Harvesting as a Service (HaaS) for crawling cloud
services information from various structured Web portals.
The critical contribution of the proposed system is the HaaS
with a friendly user interface, which allows end-users to
harvest websites without the need for developers or coding,
unlike other traditional harvesting tools. Experiments were
carried out, and the results show that compared to the tradi-
tional tool, our proposed approach demonstrates a significant
improvement in the harvesting time quality when the number
of harvested pages increased. Also, we used an ontology for
storing and representing the harvested data. Future work will
consider continuing harvesting of the various web portals to
enrich the cloud service advertainments ontology.

REFERENCES
[1] W. Hussain, F. K. Hussain, O. Hussain, and E. Chang, ‘‘Profile-based

viable service level agreement (SLA) violation prediction model in the
cloud,’’ in Proc. 10th Int. Conf. P2P, Parallel, Grid, Cloud Internet Com-
put. (3PGCIC), Nov. 2015, pp. 268–272.

[2] A. O. Akinwunmi, E. A. Olajubu, and G. A. Aderounmu, ‘‘A multi-agent
system approach for trustworthy cloud service discovery,’’ Cogent Eng.,
vol. 3, no. 1, 2016, Art. no. 1256084.

[3] L. Sun, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang, ‘‘Cloud
service selection: State-of-the-art and future research directions,’’ J. Netw.
Comput. Appl., vol. 45, pp. 134–150, Oct. 2014.

[4] W. Hussain, F. K. Hussain, O. K. Hussain, E. Damiani, and E. Chang,
‘‘Formulating and managing viable SLAs in cloud computing from a small
to medium service provider’s viewpoint: A state-of-the-art review,’’ Inf.
Syst., vol. 71, pp. 240–259, Nov. 2017.

[5] W. Hussain, F. K. Hussain,M. Saberi, O. K. Hussain, and E. Chang, ‘‘Com-
paring time series with machine learning-based prediction approaches
for violation management in cloud SLAs,’’ Future Gener. Comput. Syst.,
vol. 89, pp. 464–477, Dec. 2018.

[6] Y. Yin, QoS Prediction for Service Recommendation With Deep Feature
Learning in Edge Computing Environment. NewYork, NY, USA: Springer,
2019, pp. 1–11.

[7] Y. Yin, W. Xu, Y. Xu, H. Li, and L. Yu, ‘‘Collaborative QoS prediction for
mobile service with data filtering and SlopeOne model,’’Mobile Inf. Syst.,
vol. 2017, Jun. 2017, Art. no. 7356213.

[8] Amazon Web Services—Cloud Computing Services. Accessed:
Aug. 18, 2019. [Online]. Available: https://aws.amazon.com/

[9] Microsoft Azure Cloud Computing Platform & Services. Accessed:
Aug. 18, 2019. [Online]. Available: https://azure.microsoft.com/en-us/

[10] A. Goscinski andM. Brock, ‘‘Toward dynamic and attribute based publica-
tion, discovery and selection for cloud computing,’’Future Gener. Comput.
Syst., vol. 26, no. 7, pp. 947–970, 2010.

[11] A. M. Alkalbani and F. K. Hussain, ‘‘A comparative study and future
research directions in cloud service discovery,’’ in Proc. IEEE 11th Conf.
Ind. Electron. Appl. (ICIEA), Jun. 2016, pp. 1049–1056.

[12] F. Gong, Y.Ma,W.Gong, X. Li, C. Li, andX. Yuan, ‘‘Neo4j graph database
realizes efficient storage performance of oilfield ontology,’’ PLoS ONE,
vol. 13, no. 11, 2018, Art. no. e0207595.

[13] N. A. Nabeeh, A. El-Ghareeb, and A. M. Riad, ‘‘Review of cloud services
discovery,’’ Adv. Inf. Sci. Service Sci., vol. 7, no. 2, pp. 28–39, Apr. 2015.

[14] L. Youseff, M. Butrico, and D. D. Silva, ‘‘Toward a unified ontology of
cloud computing,’’ in Proc. Grid Comput. Environ. Workshop, Nov. 2008,
pp. 1–10.

[15] D. Bonino, F. Corno, L. Farinetti, and A. Bosca, ‘‘Ontology driven seman-
tic search,’’ WSEAS Trans. Inf. Sci. Appl., vol. 1, no. 6, pp. 1597–1605,
2004.

[16] Y. Yin, L. Chen, Y. Xu, and J.Wan, ‘‘Location-aware service recommenda-
tionwith enhanced probabilistic matrix factorization,’’ IEEEAccess, vol. 6,
pp. 62815–62825, 2018.

[17] W. Hussain, F. K. Hussain, and O. K. Hussain, ‘‘Maintaining trust in cloud
computing through SLA monitoring,’’ in Neural Information Processing.
Cham, Switzerland: Springer, 2014, pp. 690–697.

[18] A. Alghamdi, W. Hussain, A. Alharthi, and A. B. Almusheqah, ‘‘The need
of an optimal QoS repository and assessment framework in forming a
trusted relationship in cloud: A systematic review,’’ in Proc. IEEE 14th
Int. Conf. e-Bus. Eng. (ICEBE), Nov. 2017, pp. 301–306.

[19] H. Gao, K. Zhang, J. Yang, F.Wu, and H. Liu, ‘‘Applying improved particle
swarm optimization for dynamic service composition focusing on quality
of service evaluations under hybrid networks,’’ Int. J. Distrib. Sensor Netw.,
vol. 14, no. 2, Feb. 2018, Art. no. 1550147718761583.

[20] L. Qi, W. Dou, W. Wang, G. Li, H. Yu, and S. Wan, ‘‘Dynamic mobile
crowdsourcing selection for electricity load forecasting,’’ IEEE Access,
vol. 6, pp. 46926–46937, 2018.

[21] S. Pang, H. Chen, H. Liu, J. Yao, and M. Wang, A Deadlock Resolution
Strategy Based on Spiking Neural P Systems. Berlin, Germany: Springer,
2019, pp. 1–12.

[22] L. Qi, J. Yu, and Z. Zhou, ‘‘An invocation cost optimization method for
Web services in cloud environment,’’ Sci. Program., vol. 2017, May 2017,
Art. no. 4358536.

[23] H. Gao, Y. Duan, H. Miao, and Y. Yin, ‘‘An approach to data consistency
checking for the dynamic replacement of service process,’’ IEEE Access,
vol. 5, pp. 11700–11711, 2017.

[24] W. Hussain, F. K. Hussain, and O. K. Hussain, ‘‘SLA management frame-
work to avoid violation in cloud,’’ in Proc. Int. Conf. Neural Inf. Process.
Cham, Switzerland: Springer, 2016, pp. 309–316.

[25] W. Hussain and O. Sohaib, ‘‘Analysing cloud QoS prediction approaches
and its control parameters: Considering overall accuracy and freshness of
a dataset,’’ IEEE Access, vol. 7, pp. 82649–82671, 2019.

[26] W. Hussain, O. Sohaib, M. Naderpour, and H. Gao, ‘‘Cloud marginal
resource allocation: A decision support model,’’ in Mobile Networks and
Applications. New York, NY, USA: Springer, 2019.

[27] W. Hussain, F. K. Hussain, and O. K. Hussain, ‘‘Risk management frame-
work to avoid SLA violation in cloud from a provider’s perspective,’’
in Proc. Int. Conf. P2P, Parallel, Grid, Cloud Internet Comput. Cham,
Switzerland: Springer, 2016, pp. 233–241.

[28] W. Hussain, F. K. Hussain, and O. K. Hussain, ‘‘Towards soft computing
approaches for formulating viable service level agreements in cloud,’’
in Neural Information Processing. Cham, Switzerland: Springer, 2015,
pp. 639–646.

[29] C. Wu and E. Chang, ‘‘Searching services ‘on the Web’: A public Web
services discovery approach,’’ in Proc. 3rd Int. IEEE Conf. Signal-Image
Technol. Internet-Based Syst., Dec. 2007, pp. 321–328.

[30] M. Parhi, B. K. Pattanayak, and M. R. Patra, ‘‘A multi-agent-based frame-
work for cloud service description and discovery using ontology,’’ in
Intelligent Computing, Communication and Devices. New Delhi, India:
Springer, 2015, pp. 337–348.

[31] J. Kang and K. M. Sim, ‘‘Cloudle: An ontology-enhanced cloud service
search engine,’’ in Proc. Int. Conf. Web Inf. Syst. Eng. Berlin, Germany:
Springer, 2010, pp. 416–427.

[32] K. M. Sim, ‘‘Agent-based cloud computing,’’ IEEE Trans. Serv. Comput.,
vol. 5, no. 4, pp. 564–577, 4th Quart., 2012.

128222 VOLUME 7, 2019

A. M. Alkalbani et al.: CCSR Framework for Optimal Cloud Service Advertisement Discovery

[33] V. Rajendran and S. Swamynathan, ‘‘A novel approach for semantic service
discovery in cloud using broker agents,’’ in Proc. Int. Conf. Adv. Comput.,
Commun. Inf. Sci., Jun. 2014, pp. 242–250.

[34] F. Chen, X. Bai, and B. Liu, ‘‘Efficient service discovery for cloud com-
puting environments,’’ in Advanced Research on Computer Science and
Information Engineering. Berlin, Germany: Springer, 2011, pp. 443–448.

[35] D. Paulraj, S. Swamynathan, and M. Madhaiyan, ‘‘Process model-based
atomic service discovery and composition of composite semantic Web
services using Web ontology language for services (OWL-S),’’ Enterprise
Inf. Syst., vol. 6, no. 4, pp. 445–471, 2012.

[36] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin,
D. McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and
K. Sycara, ‘‘DAML-S: Web service description for the semantic Web,’’ in
The Semantic Web—ISWC. Berlin, Germany: Springer, 2002, pp. 348–363.

[37] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana, ‘‘Unraveling the Web services Web: An introduction
to SOAP, WSDL, and UDDI,’’ IEEE Internet Comput., vol. 6, no. 2,
pp. 86–93, Mar./Apr. 2002.

[38] A. Alkalbani, A. Shenoy, F. K. Hussain, O. K. Hussain, and Y. Xiang,
‘‘Design and implementation of theHadoop-based crawler for SaaS service
discovery,’’ in Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl., Mar. 2015,
pp. 785–790.

[39] Z. Laliwala and A. Shaikh, Web Crawling and Data Mining With Apache
Nutch. Birmingham, U.K.: Packt, 2013.

[40] M. Olson, ‘‘HADOOP: Scalable, flexible data storage and analysis,’’ IQT
Quart, vol. 1, no. 3, pp. 14–18, Jan. 2010.

[41] S. Gong and K. M. Sim, ‘‘CB-Cloudle and cloud crawlers,’’ in Proc. IEEE
5th Int. Conf. Softw. Eng. Service Sci., Jun. 2014, pp. 9–12.

[42] AWS. AWS Marketplace. Accessed: Oct. 13, 2017. [Online]. Available:
https://aws.amazon.com/marketplace

[43] Y. Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, ‘‘Collaborative service
selection via ensemble learning in mixed mobile network environments,’’
Entropy, vol. 19, no. 7, p. 358, 2017.

[44] H. Gao, D. Chu, Y. Duan, and Y. Yin, ‘‘Probabilistic model checking-based
service selectionmethod for business processmodeling,’’ Int. J. Softw. Eng.
Knowl. Eng., vol. 27, no. 6, pp. 897–923, Feb. 2017.

[45] L. Qi, W. Dou, and J. Chen, ‘‘Weighted principal component analysis-
based service selection method for multimedia services in cloud,’’ Com-
puting, vol. 98, nos. 1–2, pp. 195–214, 2016.

[46] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and
G. Antoniou, ‘‘Ontology change: Classification and survey,’’ Knowl. Eng.
Review., vol. 23, no. 2, pp. 117–152, Jun. 2008.

[47] The Product Types Ontology: Class Definition for, ‘Amazon
(Company)’. Accessed: Aug. 19, 2019. [Online]. Available: http://www.
productontology.org/doc/Amazon_%28company%29

[48] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ U.S.
Dept. Commerce, Washington, DC, USA, Tech. Rep. NIST Special Publi-
cation 800-145, 2011.

[49] A Free, Open-Source Ontology Editor and Framework for Building
Intelligent Systems. Accessed: Aug. 19, 2019. [Online]. Available:
https://protege.stanford.edu/

ASMA MUSABAH ALKALBANI received the
B.S. degree in computer engineering from the
Caledonian College of Engineering, Muscat,
Oman, in 2004, the M.S. degree in information
technology from La Trobe University, Melbourne,
Australia, in 2010, and the Ph.D. degree in soft-
ware engineering from the University of Technol-
ogy Sydney (UTS), Sydney, NSW,Australia. From
2010 to 2014, she was a Lecturer with the College
of Applied Sciences, Oman, and from 2014 to

2018, and also a Casual Academician with the Computer Science School,
UTS, where she supervised 12 Master Graduation projects (data analytics
and service discovery). Since 2018, she has been an Assistant Professor
with the Information Technology Department, College of Applied Sciences,
Oman. Her research interests include service discovery, web datamining, and
business data analytics to better understanding business need especially the
data analytics of biomedical data, text mining, and social network analysis.

WALAYAT HUSSAIN received the Ph.D. degree
from the University of Technology Sydney,
Australia. He was a Lecturer and an Assistant
Professor with the BUITEMS for many years.
He is currently a Lecturer with the Faculty of
Engineering and Information Technology, Univer-
sity of Technology Sydney. He has published in
various top-ranked reputable ERA-A*, SJR-Q1,
JCR-Q1 journals and conferences such as: The
Computer Journal (Oxford University), the Infor-

mation Systems, the Future Generation Computer Systems, IEEE ACCESS,
the Computers & Industrial Engineering, the Mobile Networks and Appli-
cations, the Journal of Ambient Intelligence and Humanized Computing,
the Global Journal of Flexible Systems Management, FUZZ-IEEE, and
ICONIP. His current research interests include business intelligence, cloud
computing, and usability engineering by focusing on providing an informed
decision to different stakeholders. He was a recipient of National and Inter-
national Research Awards and Recognitions. He was also the recipient of the
2016 FEITHDRPublicationAward by the University of Technology Sydney,
Australia.

JUNG YOON KIM was born in Seoul, South
Korea, in 1979. He received the B.S. and M.S.
degrees from Hoseo University, in 2002 and 2006,
respectively, and the Ph.D. degree from the Grad-
uate School of Advanced Imaging Science, Mul-
timedia & Film, Chung-Ang University, in 2013,
all in game engineering. From 2004 to 2005,
he was a Game Designer with Game Industry
for online casual game. Then, he started teaching
game design with the Game Specialized School,

Chung-Ang University, in 2006. From 2009 to 2013, he served as a Professor
with the Chungkang College of Cultural Industries. From 2009 to 2014,
he has been the CEO of Nextgames, where he also served as the Project
Leader. From 2015 to 2018, he was the Former Vice President of the Korea
Game Developer Associations. He is currently an Assistant Professor with
theGraduate School of Game, GachonUniversity, while serving as theDirec-
tor of the Start-Up Education Center. He has many publications in various
researching journals and books. His research interests include IT specifically
on the techniques of computer games, AI, virtual reality technology, and
interactive technology. He has been serving as the Editor-In-Chief for the
Korea Computer Game Association, since 2016.

VOLUME 7, 2019 128223

	INTRODUCTION
	RELATED STUDIES
	CCSR FRAMEWORK
	HaaS MODULE
	POLICY CENTRE
	CONFIGURATION MANAGER
	LEARNING STRUCTURE AGENT
	WEB PAGE HARVESTER ALGORITHM
	SEMI-STRUCTURED HARVESTED DATA
	HARVESTING OPTIMIZER

	SERVICES REPOSITORY MODULE

	EVALUATION AND VALIDATION OF CCSR FRAMEWORK
	CONFIGURATION
	VIEW SAMPLE
	CONSTRUCTING ONTOLOGY AND REPOSITORY
	RESULT

	CONCLUSION
	REFERENCES
	Biographies
	ASMA MUSABAH ALKALBANI
	WALAYAT HUSSAIN
	JUNG YOON KIM

