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A Hybrid Deep Learning Methodology with Feature Optimization
Approach for Daily Solar Radiation Prediction

Sujan Ghimire, Ravinesh C. Deo, Hua Wang, David Casillas-Pérez, Sancho
Salcedo-Sanz, Mumtaz Ali, Ekta Sharma

• A novel deep learning model for Global Solar Radiation prediction is
proposed.

• The model integrates deep learning networks with Slime Mould Algo-
rithm optimiser for optimal feature selection.

• Global climate model and meteorological data at solar farms in Aus-
tralia are considered as predictive variables.

• Error analysis and statistical metrics establish the model’s practicality
for solar energy management problems.
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Abstract

Global solar radiation (GSR) prediction plays an important role in the plan-
ning, controlling, and monitoring of solar power systems. The intermittent
and stochastic behaviour of GSR is an important challenge in achieving the
satisfactory prediction results. To address this issue, this study proposes a
novel hybrid deep learning (DL) model, named SCLC that integrates the
Convolutional Neural Network (CNN), Long Short-Term Memory Neural
Network (LSTM) and the Multilayer Perceptron (MLP), with a feature selec-
tion mechanism by a Slime Mould Algorithm. The resultant model is applied
to predict GSR at six solar farms in Queensland, Australia at daily tempo-
ral horizons in six distinct time steps. The structure of the final prediction
system is the following: first, meteorological data from global climate models
(GCM), and ground-based observations were used for GSR prediction. Sec-
ond, a stochastic optimizer method known as Slime Mould Algorithm (SMA)
has been implemented to select the best set of predictive features for this
problem. In the next stage, a CNN entails a data processor including feature
extractors drawing upon the statistically significant antecedent lagged predic-
tor variables. Then, the model employs four independent LSTM algorithms
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to encapsulate a feature mapping scheme and another CNN layer is also used
on these LSTM-based outputs to further optimize the results. This boosts
the overall efficacy and accuracy of the SCLC-based prediction model by ex-
tracting effective features, finding the interdependence of data in time series,
and detecting the best model suitable for relevant data. The final output of
the system consists of a fully connected layer MLP, which emulates the next-
day GSR prediction. The proposed SCLC is comprehensively benchmarked,
outperforming an ensemble of two DL approaches (CNN-LSTM, Deep Neural
Network (DNN)) and three machine learning (ML) models (Artificial Neural
Network (ANN), Random Forest Regressor (RFR), Self-Adaptive Differen-
tial Evolutionary Extreme Learning Machines (SADE-ELM)). A significant
efficacy of SCLC in the prediction of next-day GSR has been observed in
the model’s testing phase for all six solar farms considered. Using detailed
error analysis, visual and statistical metrics of GSR simulations relative to
observations, this paper establishes the SCLC model’s practical utility for
the applications in renewable and sustainable energy resource management.

Keywords: Global Solar Prediction, Deep Learning networks,
Convolutional Neural Networks, Slime Mould Algorithm, Renewable
Energy, Global Climate Models
PACS: 02.70.-c, 07.05.Mh
2000 MSC: 68T05, 68T20

1. Introduction

There is unprecedented momentum to leave fossil fuel age behind us.
With the rapid transition to renewable energy and energy efficiency, the
Governments globally are trying to turn the tide [1]. Solar power is the
key to a clean energy future. With unlimited availability, its utilisation is
rapidly increasing around the world, which may relieve the current world
energy crisis [2, 3, 4, 5]. The sun offers the most abundant, reliable, and
pollution-free power in the world. Being a sustainable, and infinite energy
source, solar energy carries the potential to fulfill the energy needs of the
entire world. Global solar radiation (GSR) identifies the solar power poten-
tial [6]. An accurate GSR prediction is very important for an effective solar
energy utilization, robust planning, decision making, power system opera-
tion, management, and investment applications [7]. Furthermore, accurate

2



GSR predictions are vital for the establishment of reliability and permanency
of the electricity grid, and the reduction of risk and costs of energy markets
and systems. This will be immensely beneficial not only to the power plants
and grid operators but also to traders and Government policymakers [8].

Many researchers have proposed different models to predict GSR, in-
cluding empirical prediction models (EM) [9, 10, 11, 12]. EM are compu-
tationally efficient and easy to calculate but because of rapid changes in
weather conditions, but they cannot, in general, accurately predict short-
term GSR [13]. In many cases they result in partially unsatisfactory esti-
mates of GSR [14, 15, 16, 17]. Physical [18, 19] and Numerical Weather
Prediction (NWP) [20, 21] are other type of GSR prediction models quite
studied in the literature. In this case, there are challenges such as sourcing
and selecting the inputs for the physical or the NWP models [22, 23, 24],
and there are also issues related to the high computation cost of the mod-
els. There are other types of approaches for GSR prediction such as remote
sensing retrieval [25], time series-based algorithms [26, 27] and, of course,
Machine Learning (ML)-based models.

Artificial Neural Networks (ANN) are probably the most frequently used
ML models for GSR prediction. They include modalities such as Multi-
layer Perception Neural Networks (MLP-NNs) [28, 29, 30], recurrent neu-
ral networks [31], Radial Basis Function Neural Networks (RBF-NNs) [32],
evolutionary neural approaches [33, 34] Generalized Regression Neural Net-
works (GR-NNs) [35], or Extreme Learning Machines (ELM) [36, 37, 38],
among others. Other ML techniques such as Random Forest (RF) Regression
(RFR) [39, 40], Support Vector Regression algorithms (SVR) [41, 42, 43, 44],
Gaussian Processes [45] or Adaptive Neuro-Fuzzy Inference System (AN-
FIS) [46] have been also used in GSR prediction problems. There are other
works which have compared the performance of different ML techniques in
GSR prediction, such as [47], where MLP, ELM and SVR have been com-
pared in a problem of GSR from satellite measurements, [48] where EM,
ANN, SVR, Gaussian Process, Genetic Programming (GP), and ARIMA
models were compared in a problem of GSR prediction in cities of Australia.
In [49] ANNs, EM, time series, and mathematical models were compared for
GSR prediction, and [50] used three ML algorithms (SVM, ANN, and AN-
FIS) to predict the daily global solar radiation data of six stations in Mexico,
among many other works involving shallow ML structures. Moreover, in [44],
a wavelet-coupled SVR model for forecasting global incident solar radiation
using limited meteorological datasets for Queensland’s three solar rich cites
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was developed using only the sunshine hours, minimum temperature, maxi-
mum temperature, windspeed, evaporation and precipitation as the predictor
variables.

On the other hand, Deep Learning (DL) is gaining huge popularity from
the past decade. This is due to their robust architecture, powerful nonlinear
structure, generalisation capability, and unsupervised feature learning. Un-
like shallow ML models, DL models can extract features and latent invariant
architectures in data. This makes them a popular choice for areas such as
imaging, speech recognition, natural language processing, autonomous driv-
ing, or computer vision. Solar prediction with DL technologies is a new
and promising research area [51]. An LSTM was used for predicting next-
day hourly solar radiance using meteorological features [52]. Additionally,
researchers used CNN to extract robust features from predictive variables
while LSTM is used to predict GSR [53]. In [54] a hybrid DL model for GSR
prediction that combines Gated Recurrent Unit (GRU) and attention mech-
anisms was proposed. In [55] a hybrid DL model which combines Deep Belief
Networks (DBNs) and Embedded Clustering (ECs) to estimate solar irradi-
ance was introduced, whereas in [56] a novel DL model for GSR prediction
that incorporates the Sine Cosine Algorithm (SCA), the Bidirectional LSTM
network, and the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) was proposed. In [57] a hybrid DL method to
optimize deep neural networks (GRU, LSTM, and RNN) for GSR prediction
based on a genetic algorithm (GA) was proposed, and in [58] a hybrid DL
model that combines LSTMs and Choquet Integrals based aggregation func-
tions to predict GSR at six different locations in Finland was introduced.
In [59] an end-to-end hybrid DL model that incorporates ResNet (Residual
Network) and LSTM for short-term GSR prediction was proposed. More
recently, in [60] a DL-based hybrid method for Global Horizontal Irradiance
(GHI) forecasting is proposed. The method consists of a deep learning-based
clustering algorithm with a Feature Attention Deep Forecasting deep neu-
ral network to generate the GHI forecasts. In [61] a novel methodology to
forecast GHI in short- and long-term time-horizons, based on a hybrid DL
architecture is proposed. Specifically, the system consists in the combination
of a Variational Mode Decomposition algorithm and two CNN, together with
RF or LSTM algorithm.

As previously discussed, the single model usage in modelling has disad-
vantages of intermittent and fluctuating nature of GSR. Due to the shortcom-
ings of single models and the need for greater accuracy in GSR prediction,
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hybrid models have been developed and widely used for predicting GSR.
However, there are some concerns of these hybrid models too: First, in most
studies GSR is the only factor considered (or clear sky data taken) during
model development, ignoring meteorological factors. In practicality, as the
weather varies significantly, these models cannot fully reflect the change in
GSR. Second, the weather forecast becomes more accurate and convenient, it
gets rarely modelled with hybrid models as input parameters. Third, feature
selection algorithms are not solely preferred during the modeling process of
these hybrid models. It is important to note that, although the resultant
hybrid of deep fusion network benefits from both DL and ML, it should al-
leviate the drawbacks of both the techniques such as computation time and
cost. Hybrid models provide more accurate and less computationally expen-
sive solutions when used through Tensorflow, which is Google’s open-source
platform [62]. Most published literature for GSR fails to address these crite-
ria. These are some of the gaps the present study attempts to address.

This paper therefore proposes a novel DL-based hybrid model that over-
comes the above limitations, and produces accurate GSR predictions. A new
hybrid DL model, which process the input data with a sequential applica-
tion of Slime Mould Algorithm (SMA) for feature selection, CNN, LSTM
network, CNN and a final processing with a MLP has been developed in this
study, to overcome the shortcomings mentioned above and obtain a more
accurate GSR prediction. The complete prediction system is called SCLC,
and we have tested it by comparison with an ensemble of two alternative DL
approaches (CNN-LSTM and Deep Neural Network (DNN)) and three shal-
low ML models (Artificial Neural Network, Random Forest and a variation
of the Extreme Learning Machine), in a problem of GSR prediction at six
solar farms in Australia.

The remainder of the paper has been structured in the following way: next
section summarizes the different methods which form the SCLC prediction
system, including, the SMA, CNN and LSTM algorithms. The data and
area of the experimental study are described in Section 3. The hybrid SCLC
model description and tuning is presented in Section 4. The experimental
part and results obtained are summarized in Section 5. Finally, Section 6
closes the paper with some conclusions and remarks on the research carried
out and the results obtained.
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2. Methods: theoretical overview

In this section we provide a brief theoretical description of the different
methods which form the SCLC system for solar radiation prediction. We
first describe the SMA approach for feature selection, we then describe the
foundations of the CNN algorithm and the LSTM approach.

2.1. Slime Mould Algorithm for feature Selection

In this study, a wrapper feature selection method [63, 64, 65] based upon a
meta-heuristic algorithm called Slime Mould Algorithm (SMA) is firstly used
to select the optimal features for GSR prediction. We have selected SMA
based on its recent performance as a metaheuristic algorithm derived from
the diffusion and foraging behavior of slime mould [66], and the algorithm’s
several features with a unique mathematical model that uses adaptive weights
to simulate the process of producing positive and negative feedback of the
propagation wave of slime mould. It is fundamentally based on bio-oscillator
to form the optimal path for connecting food with excellent exploratory abil-
ity and exploitation propensity [67]. Mathematically, SMA can be divided
into three phases: approach, wrap and grabble food.

• Stage 1 (Approach food): A slime mould approaches food based on its
odor in the air, so the following formula mimics the behavior of the
slime mould towards food.

X(t+ 1) =

{
Xb(t) + vb (WXA(t)−XB(t)) , r < p

vcX(t), r ≥ p
(1)

where X is the position of slime mould, and Xb represents the location
of the currently found individual with the highest odor concentration.
Two individuals randomly selected from the population are recorded
as XA and XB. The parameter vb varies between the interval [−a, a],
vc linearly decreases from 1 to 0. Also, a is calculated as Equation (2):

a = arctanh

(
− t

Mt

+ 1

)
, (2)

where t is the current iteration and Mt is the maximum iterations; and
p is derived by Equation (3):

p = tanh|S(i)−DF |. (3)
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Here, i ∈ {1, 2, · · · , n} and S(i) is the fitness of X. DF is the best
fitness obtained in all iterations. The weight of slime mould W is
calculated following the next expression:

W (SI (i)) =


1 + r log

(
bF − S(i)

bF − wF
+ 1

)
, if S(i) < Med[S]

1− r log

(
bF − S(i)

bF − wF
+ 1

)
, otherwise

, (4)

where
SI = Sort[S], (5)

and r ∼ U(0, 1) is an uniform random variable between 0 and 1. The
Med[·] refers to the median operator. Also, the Smell Index (SI) refers
to the sequence of fitness values after ascending order in the minimum
value problem, S(i) refers to a set of individuals ranked in the top
half of the population after sorting by fitness values, bF is the optimal
fitness value obtained currently and wF is the worst one.

• Stage 2 (Wrap food): A slime mould’s search pattern changes based on
the quality of food. When there is a high concentration of food near a
region, the weight near it will be greater. If the concentration is low,
the region’s weight will be lower, and it will be forced to explore other
locations. The location of the slime mould is updated in the stage
based on Equation (6):

X(t+ 1) =


u(UB − LB) + LB, r < z

Xb(t) + vb (WXA(t)−XB(t)) , z ≤ r < p

vcX(t), r ≥ p

(6)

where LB and UB are the lower and upper bounds respectively, u, r ∼
U(0, 1), and z is a probability used to tradeoff between exploitation
and exploration.

• Stage 3 (Grabble food): In this stage, a propagation wave generated by
the biological oscillator changes the cytoplasmic flow in veins, so that
slime mould moves to better locations for food concentration. W , vb
and vc is used to mimic the variation of venous width. The variables,
vb and vc, oscillate between [−a, a] and [−1, 1] respectively. As the
iteration number increases, vb and vc draw closer to zero. The intuitive
and detailed process of SMA is shown in Figure 1.
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Figure 1: Descriptive flowchart for the relevant steps in the Slime Mould Algorithm (SMA)
adopted as a feature selection algorithm for the prediction of GSR.

Since, this SMA is wrapper -based method, to implement the SMA algo-
rithm for feature selection, a learning algorithm must be incorporated. This
study has utilised K-Nearest Neighbours (KNN) regressor [68] as a learning
algorithm for the feature selection (FS) using SMA. The objective of FS is to
increase the accuracy while also minimizing the number of features to be se-
lected, therefore, we have chosen fitness value (FV) as the root mean square
error (RMSE) complement of regression accuracy and needs to be minimised
to get the best feature subset. The three phases of the proposed SMA based
FS solution are outlined below:

• Initialization Phase: A SMA produces an initial population of N candi-
date solutions, where each entity covers a set of features for considera-
tion. The quality and convergence of the optimal solution are critically
affected by this step. The population X0 is randomly generated by
Equation (1), and the fitness value is calculated.

• Update Phase: Every new position is evaluated using the fitness func-
tion. If the solution quality of a new position is better than that of the
current position, the position is updated. The opposite-based learning
(OBL) approach [69] is used to update each search agent’s position,
Equation (4) and Equation (6) are used. To improve the search process
by exploring new regions in quest of the optimal solution, increasing

8



algorithm diversity, avoiding local optima, and confirming whether the
new solution is better than the old one, the basic principle of OBL is to
consider a solution and its matching opposite solution simultaneously.
The FV of the new population is calculated, and then the best solution
is determined. Repetition of this process will continue until the termi-
nation condition (i.e., the maximum number of function evaluations)
is reached. The SMA process returns the best solution obtained in the
previous step and only the best features are retained from the original
data.

• Termination phase: Until the stopping criteria are satisfied, the max-
imum number of function evaluations of the proposed algorithm are
performed, and the best viable feature subset is discovered.

2.2. Convolutional Neural Network (CNN)

CNN models are a popular choice of the feed-forward network since CNN
shares features parameters and enable dimensionality reduction. As CNN
enables parameter sharing, the number of parameters gets reduced therefore
the computations are also decreased. Compared to its predecessors, the main
advantage of CNN is that it automatically detects important spatial features
without any human supervision. They also extract hidden features and create
filters according to the data patterns. The convolution layers of a CNN are
optimized during training so that they extract highly discriminative features,
while the latter layers resemble multilayer perceptron’s which execute clas-
sifying or regression work. There have been very few papers describing the
application of CNNs for solar radiation modeling [70], although CNNs have
been successfully applied to many practical applications. Figure 2 shows the
structure of CNN, which consists of an input layer, convolution layer, pool-
ing layer, full connection layer, and an output layer [71]. The convolution
layer utilizes a mathematics operator known as convolution (∗) to extract
features bound to local regions within the input data, a pooling layer is used
to reduce the dimensions of the input data, and at the end of the CNN, a
fully connected dense layer is employed to predict the output based on the
extracted features. A convolutional neural network has two main features:
weight sharing and local connections [72]. Convolutional layers target strata
on the target variable (GSR) and its associated input variables (meteorologi-
cal data) to extract spatial patterns, which can be expressed mathematically
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Figure 2: A basic architecture of a Convolutional Neural Network (CNN) model, where ∗
represents the convolution operation and kernel denotes the size of the convolution kernel.

as:
h = f(x ∗W + b) (7)

where x is input data, ∗ means convolution operation, W is the weight of the
convolution kernel, and b is the offset value. The function f(·) denotes the
activation function. An efficient activation function, namely, the Rectified
linear unit (ReLu), is employed in this study:

f(x) = max{0, x} (8)

2.3. Long Short-Term Memory Network (LSTM)

Relative insensitivity to gap length is an advantage of LSTM over RNNs,
hidden Markov models, and other sequence learning methods in numerous
applications. LSTMs were developed to deal with the vanishing gradient
problem that can be encountered when training traditional RNNs. Using
LSTM, time series forecasting models can predict future values based on
previous, sequential data. This provides greater accuracy for demand fore-
casters which results in better decision-making for the business. We can say
that, when we move from RNN to LSTM (Long Short-Term Memory), we
are introducing more and more controlling knobs, which control the flow and
mixing of Inputs as per trained Weights. And thus, bringing more flexibility
in controlling the outputs.

Different versions of conventional neural networks have been widely used
to analyze time-series data, predict trends, and forecast. The accuracy of
neural networks in modeling complex relationships has been praised, but
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they have been unable to handle historical data dependencies. To deal with
historical data dependencies, Recurrent Neural Networks (RNN) have been
introduced, which utilize the information accumulated during previous time
steps using network loops. In RNN because of network loops, data from
previous time steps can be transferred to the current time step to enhance
prediction accuracy. Although RNNs are great at handling short-term de-
pendencies, they cannot handle long-term dependencies in time series data
due to issues with gradient explosion and disappearance.

To resolve this issue, in [73] a time RNN known as LSTM was introduced.
Its architecture incorporates special units called memory cells, which function
in place of traditional neurons. Moreover, LSTM employs a gate mechanism
that has input, forget, and output gates that enable updating and controlling
the information flow within the network. LSTM overcomes the problems
associated with gradient disappearance by using internal memory cells and
gate mechanism and effectively handles the long-term dependence of data
by using internal memory cells. Because LSTM is able to efficiently acquire
temporal features from time-series data and handle long-term dependencies,
LSTM has been extensively used by researchers for predicting GSR [52, 74,
75, 76]. The information distribution of LSTM are exemplified in Figure 3
and mathematically described as follows [77]:

• Forget gate, based on the last hidden state ht−1, and input data xt,
the forget gate ft, enables the LSTM to determine which information
needs to be discarded from the cell state:

ft = σ(wf · [ht−1, xt] + bf ) (9)

where σ is the sigmoid activation function, wf is the weight matrices
and bf is the bias vector.

• Input gate, it determines which information is saved to each new can-
didate state C̃t:

C̃t = tanh(wc · [ht−1, xt] + bc) (10)

it = σ(wi · [ht−1, xt] + bi) (11)

where tanh(·) demonstrates the hyperbolic tangent function.

• A combination of the previous state Ct−1 and the new candidate state
C̃t is used to update the new state, Ct as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (12)
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Figure 3: The structure of Long-Short Term Memory (LSTM) Network.

• In the end, ot a gate is developed to regulate the output of the LSTM
cell. Multiplication of ot and state of the cell Ct, activated by tanh
function is the desired output ht as follows:

ot = σ(wo · [ht−1, xt] + bo) (13)

ht = ot tanh(Ct) (14)

3. Study Area and Data

Queensland is renowned for being a leader in the Australian solar revo-
lution. With high solar radiation, the region of Western Downs has gained
a lot of recognition for its pro-solar movements. Currently, there are 44
large-scale renewable energy projects in Queensland, generating $9.9 billion
in investments, 7000 construction jobs, and 5156 megawatts (MW) of re-
newable energy [78]. This saves about 12 million tons of carbon per year.
In Queensland, there are currently 6,200 MW of renewable energy capacity
in the state, including rooftop solar panels, which account for 20% of total
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Figure 4: Architecture of the proposed GSR prediction method based on the hybrid SMA-
CNN-LSTM-CNN-MLP (SCLC) model.

electricity consumption [79]. Six solar farms in Queensland, Australia with
power outputs ranging from 55 MW to 148 MW, were chosen for the study.

1. The Cape York Battery Power Plant is the first grid-connected battery
power plant in Australia with both solar generation and battery stor-
age. According to the developer, the 20MW/80MWh Fluence battery-
based energy storage system plus 55 MW solar generation will provide
firm clean energy through a single connection point, using a single
power plant controller.

2. The Chinchilla Solar Farm is situated 140 km north of Toowoomba,
Australia, near the township of Chinchilla. There will be around 250,000
thin-film photovoltaic (PV) modules installed at the proposed 100 MW
project and they will produce enough solar energy to serve approxi-
mately 40,000 average Queensland homes.

3. Sun metal solar Farm possesses a 125 MW generation capacity and is
located near Townsville, in northern Queensland. Sun Metals is build-
ing the farm to secure their zinc refinery there with an uninterruptible
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power supply for a lower cost. A total of 1,167,000 solar panels are
used and will produce 261 GWh of electricity annually, which accounts
for almost 29% of the zinc refinery’s current electrical needs.

4. Clermont Solar Farm would build a single-axis tracking solar power
plant, located 106km north-northeast of Emerald, Queensland. In to-
tal, the site can generate approximately 89 MW and encompasses ap-
proximately 497 acres. A total of 205 GWh of electricity will be gener-
ated annually using 275,442 PV panels, enough to power approximately
30,996 households.

5. Ubergy has received approval for its Barunggam Solar Farm located on
Baking Board, 14km from Chinchilla in Queensland. This solar farm
is expected to be 140 MW in size.

6. Cameby solar farm will have a capacity of 148MW and is located in an
area of 463ha that presently serves as grazing land with little agricul-
tural potential.

Moreover, it supports the Queensland government’s goal of producing 50 per-
cent of its energy from renewable sources by 2030, while establishing Queens-
land as a leader in renewable energy. Table 1 provides details of the study
site (the statistics of GSR) and Figure 5 depicts their locations.

A supervised learning process is one in which an example input (predic-
tor) and the desired output (predictand) are presented to a predictive model
and a general rule is derived to map inputs to outputs. Since GSR prediction
is a supervised learning process, we require both predictors and predictands.
In this study, we have used global climate models (GCM) meteorological data
and ground-based observation data from Scientific Information for Landown-
ers (SILO) to make predictions. The Queensland Climate Change Centre of
Excellence (QCCCE), which is part of the Department of Science, Infor-
mation Technology, Innovation and the Arts (DSITIA), manages the Long
Paddock SILO database [80]. A GCM output archive is maintained by the
Centre for Environmental Data Analysis (CEDA) as a server for the CMIP5
project’s GCM output collection [81]. Daily atmospheric model outputs for
historical are sourced from this repository. The models include CSIRO-BOM
ACCESS1-0 (grid size 1.25×1.875) [82], MOHC Hadley-GEM2-CC (grid size
1.25×1.875) [83] and the MRI MRI-CGCM3 (grid size 1.12148×1.125) [84].
The GCM model outputs are indexed by dimensions of longitude, latitude,
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Table 1: Descriptive statistics of the target variable: daily global solar radiation (GSR;
MJm−2day−1) for six solar farms in Queensland, Australia.

Property Barunggam
Solar
Farm

Cameby
Solar
Farm

Cape
York
Solar

Storage

Chinchilla
Solar
Farm

Clermont
Solar
Farm

Sun
Metals
Solar
Farm

Latitude 26.685◦S 26.682◦S 15.898◦S 26.670◦S 22.839◦S 19.437◦S
Longitude 150.765◦E 150.510◦E 144.857◦E 150.793◦E 147.581◦E 146.696◦E
Capacity
(MW)

140 148 55 100 75 125

Median
(MJm−2)

19.00 19.00 20.00 19.00 20.00 20.00

mean
(MJm−2)

19.23 19.28 19.45 19.21 20.03 19.88

Standard
deviation
(MJm−2)

6.36 6.43 4.84 6.35 5.85 5.55

Variance
(MJm−2)

40.49 41.34 23.38 40.27 34.18 30.77

Maximum
(MJm−2)

33.00 32.00 29.00 32.00 32.00 31.00

Minimum
(MJm−2)

4.00 4.00 5.00 4.00 4.00 4.00

Mode
(MJm−2)

29.00 28.00 24.00 28.00 28.00 27.00

Interquartile
range
(MJm−2)

9.00 9.00 6.00 9.00 8.00 7.00

Skewness -0.18 -0.18 -0.51 -0.18 -0.38 -0.54
Kurtosis 2.34 2.34 2.83 2.35 2.65 2.71

15



Figure 5: Study sites in Queensland, Australia where the proposed deep hybrid SCLC
model was implemented.

time, atmospheric pressure (at 8 levels), or near-surface readings. The his-
torical outputs span the period 1950-01-01T12:00:00 to 2006-01-01T00:00:00.
Table 2 provides a brief overview of each of the meteorological variables com-
prised in the dataset. This final dataset contained 20455 records and 75
meteorological variables (20455× 75).

4. The Hybrid SCLC Model Development

The general method for predicting GSR introduced in this study is illus-
trated in Figure 6.

A hybrid model generally performs better than a single/standalone model.
Considering the usefulness of LSTMs and CNNs, this study has proposed a
new functional model for extracting temporal and spatial features to predict
GSR with greater accuracy. In this study, a hybrid model, called Hybrid
SCLC referred to as a connection of SMA, CNN, LSTM, and CNN is pro-
posed to model daily GSR, as illustrated in Figure 4. The proposed model
is exceptionally capable of predicting GSR by extracting complex features
and patterns from meteorological variables. The model is developed in the
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Table 2: Description of the global pool of predictor variables used in daily GSR prediction,
including atmospheric variables from global climate models and Ground-based observa-
tional climate data from scientific information for landowners (SILO).

Data
Repos-
itory
Name

Variable Description Units

G
lo
b
a
l
C
ir
cu

la
ti
o
n
M

o
d
e
l
(G

C
M

)
A
tm

o
sp

h
e
ri
c
P
re
d
ic
to
r
V
a
ri
a
b
le
s clt Cloud Area Fraction %

hfls Surface Upward Latent Heat Flux wm−2

hfss Surface Upward Sensible Heat Flux wm−2

hur Relative Humidity %
hus Near Surface Specific Humidity gkg−1

pr Precipitation kgm−2s−1

prc Convective Precipitation kgm−2s−1

prsn Solid Precipitation kgm−2s−1

psl Sea Level Pressure pa
rhs Near Surface Relative Humidity %
rhsmax Surface Daily Max Relative Humidity %
rhsmin Surface Daily Min Relative Humidity %
sfcWind Wind Speed ms−1

sfcWindmax Daily Maximum Near-Surface Wind
Speed

ms−1

ta Air Temperature K
tas Near Surface Air Temperature K
tasmax Daily Max Near-Surface Air Tempera-

ture
K

tasmin Daily Min Near-Surface Air Tempera-
ture

K

ua Eastward Wind ms−1

uas Eastern Near-Surface Wind ms−1

va Northward Wind ms−1

vas Northern Near-Surface Wind ms−1

wap Omega (Lagrangian Tendency of Air
Pressure)

pas−1

zg Geopotential Height m

G
ro

u
n
d
-b
a
se
d
S
IL

O T.Max Maximum Temperature K
T.Min Minimum Temperature K
Rain Rainfall mm
Evap Evaporation mm
VP Vapor Pressure Pa
RHmaxT Relative Humidity at Maximum Tem-

perature
%

RHminT Relative Humidity at Minimum Tem-
perature
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Figure 6: Workflow diagram detailing the necessary steps taken to design proposed deep
hybrid SCLC model for daily GSR prediction at six solar farms of Queensland, Australia.

following stages:

• Stage 1: Initially, meteorological data from the global climate models
(GCM), and ground-based observations from Scientific Information for
Landowners (SILO) were used for GSR prediction.

• Stage 2: Secondly, Slime Mould Algorithm was adopted as a stochas-
tic optimiser in the study to extract features. The proposed SMA has
several new features with a unique mathematical model. It uses adap-
tive weights to simulate the process of producing positive and negative
feedback of the propagation wave of slime mould. This is based on bio-
oscillator to form the optimal path for connecting food with excellent
exploratory ability and exploitation propensity.

• Stage 3: In the next stage, the CNN model is introduced as the first
extraction layer of deep learning. The introduction of CNN helps in
reducing dimensionality and thereby reduces the computation time.
CNN entails a data processer including feature extractors drawing upon
statistically significant antecedent lagged predictor variables.

• Stage 4: In the next stage, the model building employed four indepen-
dent LSTMs to encapsulate feature mapping schemes.

18



• Stage 5: For further model building stage, another CNN layer was
employed on the LSTM outputs. The convolutional layers in the sec-
ond CNN model apply the convolution operation on time series data
(input from LSTM) to extract spatial patterns and intrinsic character-
istics from diverse meteorological variables. CNNs typically consist of
several levels of convolutional– pooling layers and there are several con-
volutions runs are performed on each layer to collect useful information.
The second layer boosts the efficacy and accuracy of resultant hybrid
SCLC by extracting effective features, finding the interdependence of
data in time series, and detecting the best mode suitable for relevant
data. During this process, the CNN uses weights for the meteorological
parameter based on its effect on GSR.

• Stage 6: Lastly, the final output from stage five goes through the fully
connected (FC) layer (MLP) resulting in next-dayGSR prediction. The
proposed hybrid SMA-CNN-LSTM-CNN-MLP (SCLC) final layer has
fully connected dense layers and can predict GSR over some time.

The CNN unit’s output is a flattened feature vector hl = (h1, h2, . . . , hl)
where l represents the number of filters in CNN. The Equation (15) represents
the equation deployed at that level. σ is a non-linear activation function, w
is the weight of the ith node for layer l− 1 and jth node for layer l, and bl−1

i

represent bias.

dli =
∑
j

wl−1
ji

(
σ(hl−1

i ) + bl−1
i

)
(15)

The proposed hybrid SCLC model is depicted in Figure 1. The first CNN
layer is composed of four convolutional layers followed by a pooling layer,
then the results are flattened. Convolutional layer 1 reads through input
data (predictor) and displays results as feature maps, layer 2 and layer 3
perform the same operation on feature maps created by layer 1 and layer 2
respectively, and layer 4 repeats the process to amplify any salient features.
Feature maps that are extracted after layer 4 are then flattened and fed to
the 3-layer stacked LSTM model. The next step involves transferring the
LSTM extracted temporal information from predictor variables to the input
layer of the second CNN model (3 Convolutional layers and 3 pooling layers).
The feature maps extracted after the pooling layer of the second CNN are
then flattened into a long vector (1-dimensional array). Lastly, we use a fully
connected layer (i.e., dense) to aggregate the data and predict the GSR by
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analyzing the extracted features. In this architecture, spatial and temporal
features are extracted independently with CNNs and LSTMs, hence using the
positive aspects of both CNNs and LSTMs and producing a robust model.

4.1. Data Normalisation

In the prediction task, numerical values with different scales must be
normalized, ignoring this step hinders gradient descent-based algorithms, re-
sulting in slower convergence speeds and distorting prediction results [85].
Thus, this study has utilised the Z-score normalization method to the pre-
dictor dataset intending to scale all the variables to a similar range. Let
X = {x1, x2, . . . , xL} be the considered time-series input data with L com-
ponent. Each sample of X was normalized with a center of 0 and a standard
deviation of 1 by following Equation (16):

X̃ =
x− µ

σ
(16)

where µ and σ are the mean and standard deviation of X, respectively.
Finally, the scaled data is represented with X̃ = {x̃1, . . . , x̃L} and the subset
of the input can be prepared. Since the normalization is invertible, the results
are unaffected.

4.2. Feature Selection

This study has utilised the meta-heuristic (SMA) as search algorithm
and K-Nearest Neighbor Regressor (KNNR) as a machine learning algorithm
for the selection of optimal input for the prediction of GSR at six solar
farms of Queensland, Australia. SMA feature selection process involves the
partitioning of the normative matrix of predictors and predictands (GSR)
into training sets and testing sets (e.g., 80% for training, 20% for testing in
5-fold cross-validation) and running the KNNR on the selected features in
the dataset. Each feature subset considered in the SMA FS is trained by
the KNNR and its performance is evaluated by measuring the generalization
performance on the original data. Feature subsets with minimum RMSE are
considered the optimal subset. The SMA feature selection is run with the
below configuration:

• Population (N) = [10, 20, 50, 80, 100, 200, 300, 500].

• The number of maximum iterations (T ) = 50.
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• Number of k in K-nearest neighbor (K) = 5

• Probability of exploration and exploitation capability (z) = 0.03

This study also demonstrated that population size affects SMA feature
selection performance as measured by root mean square error (Fitness Value,
FV). Hence, this study evaluated the proposed SMA FS for populations of
10, 20, 50, 80, 100, 200, 300, and 500; the convergence curve was plotted to
show the optimal fitness value in the slime mould during the iteration pro-
cess. Based on the convergence curve (Figure 6), it can be concluded that
population increases are not always beneficial for FV, at Cape York solar
storage when population size (N) was increased from 50 to 300, there was an
only minimum change in the fitness value (with N=50, FV=2.05 and N=300,
FV=1.98). Additionally, the higher population size is computationally ineffi-
cient, therefore for all other five solar farms, the population size is set to 300
to balance the FV with the algorithm computation time. With this SMA FS
process, 17 meteorological predictors from the pool of 75 (predictor matrix:
20455× 17) are selected for Barunggam solar farm, Cameby solar farm, and
Chinchilla solar farm. Whereas for Cape York solar storage and Sun metals
solar farm only 12 meteorological predictors (predictor matrix: 20455 × 12)
are selected. Similarly, for the Clermont solar farm, only 13 meteorological
predictors (predictor matrix: 20455 × 16) are selected. The predictors from
the SMA feature selection process for the prediction of GSR for all six solar
farms are shown in Table 3, along with the correlation matrix for predictors
and the predictands (GSR) in Figure 8.
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Figure 7: Convergence curve for SMA feature selection on predictors of Cape York solar
storage.
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Figure 8: A Correlation matrix showing the correlation coefficient (r) of the predictor
variables with the target variable (GSR) for Cape York solar storage. Note: -The variables’
names are outlined in Table 2.

4.3. Data Partition

Finally, the SMA selected predictor matrix is merged with predictands
(GSR) to get the input-target data for supervised machine learning. Before
integrating data into the ML models, training, validation, and testing data
are created to predict daily GSR at six solar farms of Queensland, Australia.
The models are calibrated on the training set while the validation set doesn’t
participate in training and helps to tune the models during the model de-
velopment phase. The test set is only used after a model has been trained
(using train and validation sets), mostly for model evaluation. In this study,
for training, 54 years of data are used (20089 data points), validation uses
20% of the data in the training set (4018 data points) and testing uses 1 year
of data (365 data points).

4.4. Benchmark Model Development

A comparison of the SCLC model with five popular forecast models,
such as CNN-LSTM, Deep Neural Network (DNN), Artificial neural net-
work (GBM), SADE-ELM, and Random Forest Regression (RFR), was done
to validate its efficacy. All proposed (Hybrid SCLC), as well as benchmark
models, were built using Python under the framework of Keras 2.2.4 [86, 62]
on TensorFlow 1.13.1 [87, 62]. The training process of all the models was
conducted on a system that has the CPU type of Intel®Core™i7 with 32GB
RAM.
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4.5. Model Tuning

All the ML models have different hyperparameters that determine both
the network structure (e.g., number of filters, neurons) and how the net-
work models are trained (e.g., type of optimizer, activation function) [88].
As such, the performance of an ML model can vary greatly depending on
its chosen set of hyperparameters therefore to achieve optimal performance
hyperparameters should be selected cautiously [89]. In this study, a grid
search method [90, 91] based on five-fold cross-validation was utilized to op-
timize all the hyperparameters in the model and was evaluated based on
its average RMSE on the validation set for each set of hyperparameters.
In grid search, all possible combinations of hyperparameters are tried for a
dataset to find the best hyperparameter. Furthermore, during deep learning
model (SCLC and CLSTM) training, rectified linear unit (ReLu) activation
function is used in all except the last layer. ReLu performs better than
sigmoid and hyperbolic tangent activation functions and does not have the
vanishing gradient problem [92]. This study has also used Adam as the op-
timization algorithm with a constant learning rate of (lr) 0.001; decay rate
β1 = 0.9 and β2 = 0.9999 and epsilon (ϵ) of 10−8. Adam optimization is an
adaptive learning rate optimization algorithm designed to train neural net-
works [93]. The name Adam comes from adaptive moment estimation [94]
and uses a quadratic gradient to change the learning rate, as well as the mo-
mentum based on the moving average of the gradient. The Adam algorithm
is memory-efficient, invariant to diagonal scaling of gradients, and well suited
to problems with a large number of data [94]. Furthermore, this study also
employed the following regularization technique when developing a robust
deep learning model for GSR prediction.

• During training, the dropout technique was employed to prevent over-
fitting and enhance performance. The dropout involves dumping a
certain number of neurons randomly on the network. The connections
of the dropped neurons, therefore, are ignored [95, 96, 97].

• ReduceLROnPlateau regularization was employed to monitor the im-
provement of validation loss (root mean square error; RMSE), and in
the case that no improvement is verified for a ‘patience’ number of 10
iterations, the learning rate (lr) is reduced at the factor of 0.2(lrnew =
lr × 0.2). Consequently, when the learning process stagnates, this re-
ducing strategy could be of significant benefit to the model [98, 99].
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• The early stopping (es) regularisation method monitors the loss of the
validation set and stop stops the training when the validation loss (root
mean square error; RMSE) is no longer decreasing for a certain num-
ber of epochs [100, 101]. Hence, with es the training can be stopped
when no further important improvements can be achieved or when the
validation loss starts to increase due to overfitting [102, 103]. In this
study, the training was stopped after the loss stopped decreasing for 15
consecutive epochs.

It should be also noted that in this study the es and ReduceLROnPlateau
were not used along with grid search because the programming code did not
permit to integrate them. Therefore, these regularization methods were only
used during the training of the final model with optimal parameters. Tables 4
and 5 list the search space and optimized results for the hybrid SCLC as
well as other benchmark models. Figure 9 illustrates that the training and
validation losses of the hybrid SCLC model with optimum parameters (Cape
York solar storage); both losses gradually decrease as the epoch increases,
indicating the satisfactory performance of the SCLC training.
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Figure 9: Training and validation loss (mean absolute error)) during the predictive model
development phase for the prediction of GSR. The early stopping callback stops the model
if there is no improvement in the loss for a certain number of predefined epochs.

4.6. Performance Evaluation Metrics

Statistical metrics based on earlier approaches [35, 38, 45, 122-128] were
employed to assess the performance of the hybrid CXGBRFR model.

r =

∑n
i=1(GSRm − ⟨GSRm⟩)(GSRp − ⟨GSRp⟩)√∑n

i=1(GSRm − ⟨GSRm⟩)2
√∑n

i=1(GSRp − ⟨GSRp⟩)2
(17)

RMSE =

√√√√ 1

n

n∑
i=1

(GSRp −GSRm)2 (18)

MAE =
1

n

n∑
i=1

|GSRp −GSRm| (19)

RRMSE =

√
1
n

∑n
i=1(GSRp −GSRm)2

⟨GSRm⟩
(20)

RMAE =
1

n

n∑
i=1

|GSRp −GSRm|
GSRp (21)

29



WI = 1−
∑n

i=n(GSRm −GSRp)2∑n
i=n(|GSRp − ⟨GSRm⟩|+ |GSRm − ⟨GSRm⟩|)2

(22)

NSE = 1−
∑n

i=1(GSRm −GSRp)2∑n
i=1(GSRm − ⟨GSRm⟩)2

(23)

LM = 1−
∑n

i=1 |GSRm −GSRp|∑n
i=1 |GSRm − ⟨GSRm⟩|

(24)

Evar = 1− Var(GSRm −GSRp)

Var(GSRm)
(25)

SS = 1− RMSE (p, x)

RMSE (pr, x)
(26)

RMSE r =
RMSE (p, x)

RMSE (r, x)
(27)

whereGSRm andGSRp are the observed and predicted value ofGSR, ⟨GSRm⟩
and ⟨GSRp⟩ are the observed and predicted mean of GSR, p stands for the
model prediction, x for the observation, pr for perfect prediction (persis-
tence), and r for the reference prediction. The persistence model considers
that the solar radiation at t+1 is equal to the solar radiation at t. It assumes
that the atmospheric conditions are stationary (clear sky condition).

For a better model performance,

• r can be in the range of −1 and +1, MAE, RMSE all range from 0
(perfect fit) to ∞ (the worst fit);

• RRMSE and RMAE ranges from 0% to 100% and model evaluation, a
model’s precision level is excellent if RRMSE < 10%, good if 10% <
RRMSE < 20%, fair if 20% < RRMSE < 30%, and poor if RRMSE >
30% [104].

• WI which is improvement to RMSE and MAE and overcomes the insen-
sitivity issues as the differences between the observed and predicted val-
ues are not squared, ranges from 0 (the worst fit) to 1 (perfect fit) [105].

• NSE, compares the variance of observed and predicted GSR and ranges
from −∞ (the worst fit) to 1 (perfect fit) [106].

• LM, is a more robust metrics developed to address the limitations of
both the WI and ENS [107] and the value ranges between 0 and 1 (ideal
value).
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• Evar; uses biased variance for explaining the fraction of variance and
ranges from 0 to 1.

Furthermore, the overall model performance was ranked using the Global
Performance Indicator (GPI) [108]. GPI was calculated using the six metrics.

GPIi =
6∑

j=1

αj(gj − yij) (28)

where αj denotes the median of scaled values of statistical indicator j, equals
to 1 for RMSE, MAE, MAPE, RRMSE and RRMSE (j = 1, 2, 3, 4, 5), −1
for r; gj denotes the scaled value of the statistical indicator j for model i.
Greater GPI value indicates the corresponding model has better performance.
This study also evaluated the performance of the models using the Kling-
Gupta Efficiency (KGE) [109] and Absolute Percentage Bias (APB; %) [110].
Mathematically, these metrics are stated as follows:

KGE = 1−

√
(r − 1)2 +

(
⟨GSRp⟩
⟨GSRm⟩

− 1

)2

+

(
CV p

CVm

)2

(29)

APB =

∑n
i=1(GSRm −GSRp) ∗ 100)∑n

i=1GSRm , (30)

where r is the correlation coeffecient, CV is the coefficient of variation, GSRp

refers to the predicted GSR (MJm−2day−1), GSRm is the measured GSRp

(MJm−2day−1), ⟨GSRm⟩ is the average value of the GSRm, ⟨GSRp⟩ is the
average value of the GSRp and finally n is the number of actual values.

Furthermore, this study also use the Promoting Percentage of: Abso-
lute Percentage Bias (λAPB), Mean Absolute Error (λMAE ), and Root Mean
Square Error (λRMSE ) [111] to compare various models that have been used
in the GSR prediction.

λAPB =

∣∣∣∣APB1 − APB2

APB1

∣∣∣∣ (31)

λMAE =

∣∣∣∣RMAE 1 − RMAE 2

RMAE 1

∣∣∣∣ (32)

λRRMSE =

∣∣∣∣RRMSE 1 − RRMSE 2

RRMSE 1

∣∣∣∣ (33)
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where, APB1, RRMSE 1 and RMAE 1 refers to the objective model (i.e.,
SCLC) performance metrics and APB2, RRMSE 2 and RMAE 2 refers to the
benchmark model performance metrics.

Additionally, the performance to prediction direction of movement was
measured by a Directional Symmetry (DS) as follows:

DS =
1

n

n∑
t=2

dt × 100% (34)

where

dt =

{
1, if(GSRm

t −GSRm
t−1)(GSRp

t −GSRm
t−1) > 0

0, otherwise
(35)

An assessment criterion is known as the Diebold-Mariano (DM) test, the
Harvey, Leybourne, and the Newbold (HLN) were used to test the statistical
significance of all models in this study, these statistical tests are done to fur-
ther evaluate the propsoed model prediction performance and the directional
prediction performance from a statistical standpoint. When comparing such
models, the alternative model is expected to outperform the comparative
model when the DM statistics is greater than 0 and the HLN statistics is
greater than 0 too. The key steps in implementing the DM and HLN tests
are defined in previous literature [112, 113, 114].

5. Results and Discussion

The deep hybrid SCLC model used for GSR prediction was able to pro-
duce a high r-value and lower MAE and RMSE values for the Barunggam So-
lar Farm (r ≈ 0.930, RMSE≈ 2.338 MJm−2day−1, MAE≈ 1.69 MJm−2day−1).
This contrasted the results of the deep learning model CNN-LSTM model
(r ≈ 0.916, RMSE ≈ 2.538 MJm−2day−1, MAE ≈ 1.911 MJm−2day−1) and
the DNN model (r ≈ 0.914, RMSE ≈ 2.633 MJm−2day−1, MAE ≈ 1.946
MJm−2day−1). Likewise, for the conventional ML models (ANN, SADE-
ELM, and RFR) the r-value is lower than that of the SCLC model, RMSE,
and MAE, both metrics are higher than that of the SCLC model. Addition-
ally, the SCLC model of the other five solar farms produced substantially
healthier GSR prediction than other DL as well as conventional ML mod-
els (Table 6 and Figure 10). This result shows that the SCLC is a possible
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choice to be implemented as a well-designed forecasting approach for GSR
predictions in comparison to DL-based models (CLSTM and DNN), and the
conventional ML models.
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Figure 10: Evaluation of Deep hybrid SCLC predictive model, in respect to its counterpart
models, as measured by mean absolute error (MAE, MJm-2 day-1) in the testing phase.
(Note: Names for each model are provided in Table 3 and Tables 4 and 5).

In Table 7, to compare the SCLC model against CLSTM, DNN, ANN,
SADE-ELM, and RFR models, we utilized multiple criteria based on WI
and NSE. According to these model penalisation metrics, the results pro-
duced by the SCLC model for the case of Barunggam Solar Farm yielded
a value of (WI ≈ 0.926, NSE ≈ 0.862), followed by those for a CLSTM
(WI ≈ 0.913, NSE ≈ 0.8377), the DNN model (WI ≈ 0.904, NSE ≈ 0.826),
the ANN model (WI ≈ 0.723, NSE ≈ 0.6331), the SADE-ELM model (WI
≈ 0.886, NSE ≈ 0.795) and the RFR model (WI ≈ 0.564, NSE ≈ 0.390).
Similarly, other model penalization metrics like LM and Evar (Table 9) were
also utilised and for the Barunggam Solar Farm, the SCLC model with high
LM and Evar (LM ≈ 0.674, Evar ≈ 0.864) outperform all other DL models as
well as the conventional ML models. Furthermore, the SCLC model of other
five solar farms (Cameby Solar Farm, Cape York Solar Storage, Chinchilla
Solar Farm, Clermont Solar Farm, and Sun Metals Solar Farm) performed
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substantially better. Compared to r, RMSE, and MAE, these higher-order
metrics demonstrate that the deep hybrid SCLC model has superior predic-
tive abilities to deliver accurate prediction of GSR.
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To overcome the limitation of objective metrics in GSR prediction, diag-
nostic plots were used to improve the suitability of the deep hybrid SCLC
model. Figure 10 shows scatterplots of the observed and predicted GSR dur-
ing the testing phase from DL models as well as conventional ML models at
all six solar farms. For better illustration, both the linear fit equation and
the Correlation coefficient (r) [Range=(0,+1);Idealvalue=+1], which gives a
measure on the adequacy of the model [115], have been included. As can
also be seen by the scatter plot, the SCLC model performs the best since
the scatter points are close to the y = mx + C line, in comparison to the
other models which are scattered farther from the y = mx + C line. The
scatterplot concurs with the results of r, RMSE, MAE, LM, NSE, WI, and
Evar metrics as well.

To compare the model performances in the prediction of GSR at the sites
that differ geographically, physically, and climatically, alternative relative
metrics like RRMSE and RMAE were used. Comparing the models (Ta-
ble 9) showed that the deep hybrid SCLC model had the lowest RRMSE and
RMAE when compared to the CLSTM, DNN, ANN, SADE- ELM and RFR
approaches for all six solar farms. SCLC model at Cape York Solar Storage
produces the lowest (RRMSE ≈ 11.46%, RMAE≈ 10.37%) relative metrics
compared to other DL models as well as conventional ML models. In all
six sites, the deep hybrid SCLC model resulted in the lowest values of both
RRMSE and RMAE, and they were lower than those of other comparative
models, indicating that the SCLC is undoubtedly the best option.
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(a)

(b)
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(c)

Figure 11: Scatter plots of the observed (GSRobs) and predicted (GSRpred) daily global
solar radiation for all tested regions in Six solar farms of Queensland. a) Barunggam Solar
Farm, b) Cameby Solar Farm, c) Cape York Solar Storage, d) Chinchilla Solar Farm, e)
Clermont Solar Farm and f) Sun Metals Solar Farm. (Note: Line in red is the least-squares
fit line (y = mx+ c) to the respective scatter plots, where y is the predicted GSR and x
is the observed GSR. Names for each model are provided in Table 3 and Tables 4 and 5).
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The predictability of the deep hybrid SCLC model is evaluated by com-
paring Promoting Percentages, presented via incremental performance (λ) of
the objective model over competing approaches, where, for example, λ=RMAECLC-
RMAECLSTM, is evaluated to estimate the difference in the relative mean
absolute error of SCLC and CLSTM model. Table 10 compares the deep
hybrid SCLC model with the other models tested during the testing phase.
Deep hybrid SCLC performs better than DL models, CLSTM and DNN, and
other conventional ML models ANN, SADE-ELM, and RFR.
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A graphical analysis of model performance is as important as numeri-
cally evaluating the model. Figure 12 shows the boxplots of the deep hybrid
SCLC model and other comparative DL as well as conventional ML mod-
els. As shown in the figure, the + symbols represent the outliers of the
extreme absolute prediction error (|PE| = GSRobs−−GSRpred) of the test-
ing data, along with their upper quartile, median, and lower quartile. The
distribution of the —PE— error acquired by the deep hybrid SCLC model
for all sites is confirmed to exhibit a much smaller quartile followed by the
standalone SADE-ELM, CLSTM, DNN, ANN, and RFR. Additionally, the
kernel density estimate (KDE) plots of the standardized residuals were also
plotted in Figure 13 to get a clearer picture of the residual distributions.
The KDE plot of the standardized residuals for the SCLC model is close to
the standard normal. We have not performed any correlation tests, but with
such a large sample size, a hypothesis of correlated residuals is unlikely to
be rejected. Hence, the box plot (Figure 10) and KDE plot of standard-
ized residuals (Figure 11) further confirm SCLC’s superior accuracy in GSR
prediction compared to other competing models.

To broadly gauge the efficiency, a comprehensive and unbiased assessment
of models is carried out by plotting a Taylor graph [116]. Figure 14 illustrates
the statistical association between predicted and actual GSR based on r and
standard deviation. By comparing r to standard deviation, it is shown that
RFR, ANN, and SADE-ELM are not proper as their r to standard devia-
tion was extremely far from the observed GSR, whereas deep learning model
DNN and CLSTM overlap and are closer to observation. The SCLC model
closely matched the actual GSR approving the prediction was better. To pro-
vide further insight into the prediction capability of the proposed modelling
systems for GSR prediction, Figure 15 shows the plot for KGE, APB, and
GPI. With high KGE (≈ 0.888) and low APB (≈ 9.035), the performance
of the deep hybrid SCLC model far exceeds that of the counterpart mod-
els. Furthermore, the ranking of models is done according to their prediction
efficiency using the GPI metrics. The GPI varies from −7.172 to 1.199 (Fig-
ure 15(b)). The highest value of GPI of 1.199 is for the proposed deep hybrid
SCLC model, further cementing the advanced modelling capabilities of the
proposed deep hybrid SCLC model in GSR prediction.

Additionally, statistical test DM, HLN, and DS were used to validate
whether the prediction generated by the deep hybrid SCLC model is signif-
icantly more accurate than the prediction from other comparative models.
Table 11 and Table 12 below show the statistics of the DM and HLN test
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Figure 12: Box plots of the prediction error (PE) generated by prediction models during
the testing phase for daily GSR prediction. (Note: Names for each model are provided in
Table 3 and Tables 4 and 5).
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Figure 13: Marginal kernel density estimate for the standardized residuals of the model,
along with a standard normal density in red.
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Figure 14: Taylor plots for the GSR prediction models.

results for all models. The models in the column of the table are compared
with the model in the rows, and if the result is positive, the model in the
column outperforms the one in the row; on the contrary, if it is negative,
then the one in the row is superior. Similarly, Figure 16 shows that deep
hybrid SCLC model DS (i.e., directional prediction accuracy) is greater than
the other five models, with an average of 60.86 %. Congruent with previous
findings, DM, HLN, and DS test provides consistent results, which indicate
that deep hybrid SCLC predicts GSR more accurately than other models.

Moreover, the RMSE of the deep hybrid as well as the comparative model
prediction was compared with RMSE of the model using only clear-sky in-
dex persistence [117], thereby providing prediction skill or skill score (SS).
In addition to this, the comparison of the deep hybrid SCLC model with
other comparative models was done using RMSE ratio (RMSEr) [118]. All
comparative models have a significantly lower SS and RMSEss than the deep
hybrid SCLC model (Table 12 and Table 14).

To further evaluate the model performance for practical acceptance, data
of each site are divided into four seasons, and simulations were conducted for
the models. Figure 17 presents the model WI, NSE, KGE, RRMSE, RMAE,
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Figure 15: a) Bar chart showing a comparison of the SCLC model in terms of their absolute
percentage bias (APB, %) and the Kling–Gupta efficiency (KGE) in the testing phase.
b) Global performance indicator (GPI) of SCLC model compared with other artificial
intelligence-based models. (Note: Names for each model are provided in Table 3 and
Tables 4 and 5).
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Table 11: The Diebold-Mariano (DM) test statistics (The column of the table is compared
with the rows, and if the result is positive, the model in the column outperforms the one
in the row; on the contrary, if it is negative, then the one in the row is superior).

Predictive
Models

SCLC CLSTM SADE-ELM DNN ANN RFR

SCLC 3.070 2.971 3.726 3.897 7.002
CLSTM 0.225 1.691 2.910 5.545
SADE-ELM 1.728 2.993 5.694
DNN 1.249 4.646
ANN 2.993

Table 12: Statistics of Harvey, Leybourne, and Newbold test. The column of the table is
compared with the rows, and if the result is positive, the model in the column outperforms
the one in the row; on the contrary, if it is negative, then the one in the row is superior.

Predictive
Models

SCLC CLSTM SADE-ELM DNN ANN RFR

SCLC 3.216 3.112 3.903 4.083 7.335
CLSTM 0.236 1.771 3.048 5.809
SADE-ELM 1.810 3.136 5.965
DNN 1.308 4.867
ANN 3.135
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Figure 16: Performance comparison of deep hybrid SCLC model compared to other models
under study in terms of directional symmetry (DS) criteria. (Note: Names for each model
are provided in Table 3 and Tables 4 and 5).
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Table 13: Skill Score Metric (SS) for deep hybrid SCLC as well as other deep learning and
comparative models compared with persistence models in the testing phase. Note: The
persistence model considers that the solar radiation at t+1 is equal to the solar radiation
at t. It assumes that the atmospheric conditions are stationary (clear sky condition).

Solar Energy
Farms

SCLC CLSTM SADE-ELM DNN ANN RFR

Barunggam So-
lar

0.728 0.679 0.596 0.655 0.276 0.261

Cameby Solar 0.719 0.653 0.582 0.621 0.639 0.488
Cape York So-
lar Storage

0.582 0.489 0.446 0.512 0.460 0.450

Chinchilla So-
lar

0.731 0.651 0.597 0.610 0.395 0.352

Clermont Solar 0.697 0.631 0.623 0.661 0.627 0.215
Sun Metals So-
lar

0.613 0.525 0.521 0.429 0.346 0.315

Table 14: The performance of the SCLC model with comparative benchmark models in
the test period measured by the ratio of root mean square error (RMSEss). The column
of the table is compared with the rows, and if the result is lower than 1, the model in the
row outperforms the one in the column; on the contrary, if it is greater than 1, then the
one in the column is superior.

Predictive
Models

SCLC CLSTM SADE-ELM DNN ANN RFR

SCLC 1.226 1.238 1.474 1.687 2.554
CLSTM 1.010 1.202 1.377 2.084
SADE-ELM 1.191 1.363 2.064
DNN 1.145 1.733
ANN 1.514
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and APB for four seasons. Concurrent with previous deductions, the deep
hybrid SCLC model shows the best performance with lower RRMSE, RMAE,
and APB (spring, summer, autumn, and winter) and higher WI, NSE, and
KGE compared to DNN, DBN, ANN, and MARS model. Additionally, the
deep hybrid SCLC model produces the lower RMSE for the spring season (≈
2.171 MJm−2day−1), followed by Autumn (≈ 2.334 MJm−2day−1), Summer
(≈ 2.451 MJm−2day−1), and Winter (≈ 2.734 MJm−2day−1) (Figure 18).
Hence, it can be contended that the deep hybrid SCLC model can be deemed
suitable for seasonal GSR prediction.

6. Conclusion and Discusion

The goal of this research was to develop a new deep learning-based hy-
brid model that can be adopted to simulate the GSR across six solar farms
in Queensland, Australia by an ordered integration of the CNN, LSTM, and
finally, another CNN algorithm thus making the overall hybrid SCLC-based
predictive model. The Slime Mould Algorithm (SMA) feature selection pro-
cess was implemented to screen out the most optimal predictive features (in
terms of best input variables) from global climate model (GCM) meteorolog-
ical data sets, and ground-based observation data sets. The CNN network
was employed to extract the spatial information from feature-selected input
variables, and those extracted information from CNN was then used as po-
tential inputs for the LSTM predictive network. Through LSTM, temporal
features were extracted, and the resulting data were input to the layer of
the second CNN model. Finally, GSR prediction was done via a fully con-
nected (MLP) dense layer. To validate the proposed SCLC prediction model,
five different well-established AI models (i.e., CLSTM, DNN, ANN, SADE-
ELM, RFR) were implemented.

Using statistical metrics and diagnostic plots, the resultant SCLC model
has been validated for effectiveness and reliability. In terms of different as-
sessments, including MAE, RMSE, and r, with high r and low RMSE and
MAE, SCLC presents considerable enhancements over the comparative mod-
els for all six solar farms. Furthermore, compared with the other DL and
conventional ML models, the deep hybrid model (SCLC) can not only signif-
icantly improve the accuracy of GSR prediction but also ensure the highest
prediction accuracy at different sites. In detail, compared with CLSTM,
DNN, ANN, SADE-ELM, and RFR, the RRMSE of the proposed deep hy-
brid model SCLC is improved by 9%, 13%, 63%, 22%, and 115%, respec-
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Figure 17: Seasonal performance evaluation of deep hybrid SCLC model compared to other
artificial intelligence-based models in terms of Willmott’s Index (WI), Nash–Sutcliffe Co-
efficient (NSE), Kling Gupta efficiency (KGE), relative root mean square error (RRMSE,
%), Relative mean absolute error (RMAE, %) and absolute percentage bias (APB, %).
a) Summer, b) Autumn, c) Winter, and d) Spring. (Note: Names for each model are
provided in Table 3 and Tables 4 and 5).
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Figure 18: Seasonal performance evaluation of deep hybrid SCLC model compared to
other artificial intelligence-based models in terms of root mean square error (RMSE).
(Note: Names for each model are provided in Table 3 and Tables 4 and 5).
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tively for Barunggam Solar Farm. Additionally, the proposed hybrid method
achieved high performance on GSR prediction with the high value of KGE
(≈ 0.888), GPI (≈ 1.199), and the low value of APB (≈ 9.035).

Thus, the present research avers that by combining the strengths of these
two promising DL (CNN and LSTM) methods, the final results attained
were superior than the benchmark methods such that the performance of the
proposed deep hybrid SCLC model applied for GSR prediction had relatively
high accuracy, and fast forecasting speed, low volatility of prediction results,
and an excellent adaptability to the problem of solar radiation prediction.
Further improvements in the deep learning methodology could incorporate
design of predictor data decomposition methods such as wavelet analysis and
empirical mode decomposition [44, 119, 120] to screen best features using
the SMA or other feature selection inputs prior to emulating the global solar
radiation, windspeed, air quality and other variables of interest.
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